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Abstract

Equation-free macroscale modelling is a systematic and rigorous
computational methodology for efficiently predicting the dynamics of a
microscale system at a desired macroscale system level. In this scheme,
the given microscale model is computed in small patches spread across
the space-time domain, with patch coupling conditions bridging the
unsimulated space. For accurate simulations, care must be taken in de-
signing the patch coupling conditions. Here we construct novel coupling
conditions which preserve translational invariance, rotational invari-
ance, and self-adjoint symmetry, thus guaranteeing that conservation
laws associated with these symmetries are preserved in the macroscale
simulation. Spectral and algebraic analyses of the proposed scheme in
both one and two dimensions reveal mechanisms for further improving
the accuracy of the simulations. Consistency of the patch scheme’s
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macroscale dynamics with the original microscale model is proved. This
new self-adjoint patch scheme provides an efficient, flexible, and ac-
curate computational homogenisation in a wide range of multiscale
scenarios of interest to scientists and engineers.
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1 Introduction

In many complex systems the macroscale dynamics are determined from
the coherent behaviour of microscopic agents, such as electrons, molecules,
or individuals in a population. Some complex systems have macroscale
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models which adequately describe the large-scale dynamics (e.g., diffusion
through a homogenous material), but for many others there are no known
algebraic closures for a macroscale model and so any accurate description
of the system is reliant on resolving microscale structures and interactions
which are on a significantly smaller scale than the macroscale of interest.
Furthermore, often a microscale model provides the most accurate description
of a system, but its full evaluation is prohibitively expensive for large-
scale computations. Although an approximate macroscale model may be
derivable via various multiscale methods, such derivations are often reliant
on restrictive assumptions or ad hoc methods which may not be suitable
for all systems. In a recent review for nasa, Liu et al. (2018) discussed the
accuracy and adaptability of available multiscale methods and concluded that
there is a “Lack of useful automatic methods for linking models and passing
information between scales”. Our equation-free computational schemes fill
this lack by using a given microscale model directly, with no simplification
or transformation, and invoking generically crafted coupling conditions to
ensure macroscale accuracy.

Equation-free macroscale modelling avoids the derivation of a macroscale
model and seeks to overcome computational limitations by computing the
given microscale model only within a small fraction of the space-time domain
(Kevrekidis, Gear, and Hummer 2004; Samaey, Kevrekidis, and Roose 2005;
Samaey, Roose, and Kevrekidis 2006). As an example, Figure 1 shows
an equation-free simulation of two dimensional diffusion, with microscale
heterogeneity in the diffusivities. In this simulation the microscale details of
the system are not computed in the space between the patches. Nonetheless
the patch scheme effectively predicts the macroscale dynamics—it is a form
of computational homogenisation via a sparse simulation. In a ‘Roadmap’
prepared for the US Dept of Energy by Dolbow, Khaleel, and Mitchell (2004),
the scheme proposed here is a Multiresolution, Hybrid, Closure Method.

To suitably classify our equation-free scheme we distinguish the following
two terms:

• numerical homogenisation means some numerical computations and
analysis of the microscale system that somehow forms a function that



1 Introduction 4

serves as a closure for chosen macroscale variables (Engquist and
Souganidis 2008; Saeb, Steinmann, and Javili 2016);

• computational homogenisation means an on-the-fly purely computa-
tional scheme, applied to the multiscale system, that in itself provides
an effective closure which reasonably predicts the macroscale dynamics
with a computational cost that is essentially independent of the scale
separation between micro- and macro-scales (Kevrekidis and Samaey
2009; Gear, Li, and Kevrekidis 2003).

The patch scheme developed herein is an example of computational homogeni-
sation.

Much of the initial development of equation-free modelling was concerned
with simulations which reduce the size of the temporal domain and maintain
the original spatial domain (Kevrekidis, Gear, and Hummer 2004; Kevrekidis
and Samaey 2009; Samaey, Kevrekidis, and Roose 2005; Xiu and Kevrekidis
2005; Samaey, Roose, and Kevrekidis 2006). In this case the numerical
solution is constructed from a large number of microscale simulations over
short ‘bursts’ of time, with these bursts separated by some macroscale time
step (significantly larger than the burst length) and a projective integrator
providing the link between successive bursts. In contrast, Figure 1 shows
a numerical solution for which the spatial domain is reduced to a number
of non-overlapping patches, but without projective integration in time im-
plemented. In this case, the dynamics which extends across the full spatial
domain is captured by patch coupling conditions which interpolate between
patches across the unsimulated space. A full implementation of equation-free
modelling combines both projective integration and spatially coupled patches;
however, here we focus just on patches in space (often referred to as the
gap-tooth method (Gear, Li, and Kevrekidis 2003)) because we are con-
cerned with preserving spatial symmetries of the original microscale model.
In particular, we preserve translational invariance, rotational invariance and
self-adjoint symmetry by deriving new patch coupling conditions. Roberts
(2010) also constructed self-adjoint coupling conditions, but for overlapping
patches, and only in the case of limited coupling. Sections 2 and 4 describe
our new self-adjoint patch coupling scheme for 1D and 2D space, respectively.
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Figure 1: four times of a simulation of heterogeneous diffusion (1) on small
patches in 2D xy-space coupled by spectral interpolation (Section 2.2). Here
the 25 patches are relatively large for visibility (size ratio r = 0.4). The
heterogeneous, log-normal, diffusivities cause non-trivial sub-patch structures
to emerge that are computationally homogenised by our patch scheme.
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Patch coupling conditions are a crucial component in accurate patch sim-
ulations, and for systems with microscale heterogeneity particular care is
required. Bunder, Roberts, and Kevrekidis (2017a) studied the patch scheme
for 1D heterogeneous diffusion and showed accurate coupling conditions
should take account of the underlying microscale structure with the interpo-
lation between points strictly controlled by the period of the heterogeneous
diffusion. Although the coupling conditions constructed by Bunder, Roberts,
and Kevrekidis (2017a) were shown to be effective for 1D heterogeneous dif-
fusion, as were similar coupling conditions for many other systems (Roberts,
MacKenzie, and Bunder 2013; Cao and Roberts 2015; Jarrad and Roberts
2018), these coupling conditions fail to preserve self-adjoint symmetry and
thus do not maintain a fundamental symmetry of the original problem. A
system represented by ∂tu = Lu with field u and linear operator L is defined
to be self-adjoint if for all fields v,u, L satisfies 〈u,Lv〉 = 〈Lu, v〉 for some in-
ner product. Here, we consider lattice systems with square matrix operator L
and apply the usual complex inner product 〈u, v〉 = u†v , where † denotes
the complex conjugate transpose. To ensure that operator L is self-adjoint it
must satisfy L† = L, termed Hermitian.1 An approximation scheme which
does not maintain self-adjoint symmetry may result in a solution which
does not satisfy essential requirements, such as conservation of energy. In
particular, generalising the 1D patch scheme for heterogeneous diffusion
developed by Bunder, Roberts, and Kevrekidis (2017a) to 2D heterogeneous
diffusion produces undesirable fluctuations in the simulation. These fluc-
tuations arise because such a 2D patch system produces a non-self-adjoint
Jacobian that possessed complex eigenvalues. Here we construct new patch
coupling conditions which maintain the self-adjoint symmetry of the original
microscale system, for both 1D and 2D space. By preserving self-adjoint
symmetry, these new coupling conditions have much wider applicability.

The code developed herein now forms part of a flexible Matlab/Octave
Toolbox (Maclean, Bunder, and Roberts 2020) for equation-free computations
that any researcher can download and use for a variety of problems (Roberts,
Maclean, and Bunder 2020). This Toolbox provides equation-free code

1Often L is a real matrix, and then this Hermitian property is the usual matrix
symmetry.
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suitable for many systems, such as diffusion and wave dynamics, and grants
the user full flexibility in selecting one of the supplied projective integration
and/or patch coupling schemes or importing user-written code.

To clarify the theoretical results and demonstrate the benefits of our novel
self-adjoint patch scheme we use the examples of 1D and 2D microscale
heterogeneous diffusion (Sections 2 and 3, and Section 4, respectively).
For the 2D case we pose that the system’s evolving variables ui,j(t) are
defined on a spatial lattice of points (xi, yj) with microscale spacing d
(∆xi = ∆yj = d) and indexed by integers i, j. The governing large set of
odes of the heterogeneous diffusion is then

d2∂tui,j = κi+ 1
2
,j(ui+1,j − ui,j) + κi− 1

2
,j(ui−1,j − ui,j)

+ κi,j+ 1
2
(ui,j+1 − ui,j) + κi,j− 1

2
(ui,j−1 − ui,j) (1)

for heterogeneous diffusivities κi,j which vary periodically over the given
domain. Figure 1 illustrates such a lattice, albeit restricted to patches in
space rather than space-time. Here, for clarity of notation, and as shown
in the figure, we assume a square domain and a square microscale lattice,
but Section 4 generalises to a rectangular domain and rectangular microscale
lattice. We use the relatively simple example of heterogeneous diffusion
as it is a canonical example which describes many physical systems and
naturally extends to more complex systems, such as wave propagation and
advection-diffusion, as briefly discussed in Section 2.3.

There are many multiscale methods which would provide good solutions to
multiscale heterogeneous systems such as (1), as reviewed by both Engquist
and Souganidis (2008) and Saeb, Steinmann, and Javili (2016). For exam-
ple, Abdulle and Grote (2011) and Engquist, Holst, and Runborg (2011)
applied the heterogeneous multi-scale method (hmm) to wave propagation in
heterogeneous media, although it is predicated on an infinitely large scale
separation between the ‘slow’ variables which persist at the macroscale and
the ‘fast’ variables which are only observable at the microscale. Maier and
Peterseim (2019) and Peterseim (2019) considered a similar wave propagation
model, but avoided the need for infinite scale separations by applying local-
ized orthogonal decomposition with numerical homogenization. Romanazzi,
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Bruna, and Howey (2016) also applied hmm to compute a macroscale model
for a heterogeneous system of closely packed insulated conductors. Owhadi
(2015) investigated heterogeneous diffusion with numerical homogenization,
but reformulated it as a Bayesian inference problem, thus providing a new
methodology for deriving basis elements of the microscale structure. Cor-
naggia and Guzina (2020) considered one-dimensional waves in periodic
media and derived homogenized boundary and transmission conditions in
the usual separation of scales infinite limit. Homogenization and hmm multi-
scale models rely on being able to identify ‘fast’ and ‘slow’ variables in the
microscale model and some prior knowledge of the macroscale model, and
generally these models require substantial analytic work prior to numerical
implementation (Carr, Perré, and Turner 2016) while also relying on an
infinite separation of scales. In contrast, equation-free modelling makes
no assumptions concerning fast and slow variables, needs no limit on the
separation of scales, and requires no knowledge of the macroscale model,
but instead computes a numerical macroscale solution on-the-fly. Conse-
quently, equation-free modelling provides macroscale system-level predictions
for complex dynamical systems which cannot be solved via other schemes.

2 Self-adjoint preserving patch scheme for 1D

The general scenario is when scientists or engineers has a well-specified
microscale system on a characteristic microscale length d, but are only
interested in the behaviour of this system at some significantly larger
macroscale H� d . An important class of examples is the prediction of the
macroscale, homogenised, dynamics of the microscale heterogeneous diffusion
of a field u(x, t) satisfying the pde ∂tu = ∂x[κ(x)∂xu] where the diffusivity
varies rapidly on the length-scale d (Engquist and Souganidis 2008; Saeb,
Steinmann, and Javili 2016; Bunder, Roberts, and Kevrekidis 2017a, e.g.).
A distinguishing feature of our patch dynamics approach is that we do not
require infinite scale separation “d→ 0”; instead the methodology applies at
finite d via supporting theory which is directly applicable to finite d (c.f.,
Engquist and Souganidis 2008, who apply scale separation ε→ 0).
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Figure 2: three 1D spatial patches indexed by I and I ± 1 . Filled circles
indicate patch interior points with microscale spacing d, and unfilled circles
represent patch edge points. The gaps between patches are unsimulated
space. These patches have n = 5 interior points indexed by i = 1 : n , and
the two edges have indices i = 0 and i = n+ 1 = 6 . The macroscale spacing
between patches is H, and the width of each patch is denoted h := nd, as
shown.

II− 1 I+ 1

dH h

i = 0 61 2 3 4 5 i = 0 61 2 3 4 5 i = 0 61 2 3 4 5

For simplicity, we introduce our approach for systems defined on a microscale
spatial lattice, such as a spatial discretisations of pdes on the microscale
length d. This section introduces how to construct patches for a 1D system
so that a computational simulation on these patches efficiently and accurately
predicts the macroscale of interest without needing to derive a macroscale
closure. In this patch construction we focus on the specific example of
1D heterogeneous diffusion on a microscale lattice, but the new patch scheme
is similar for a wide range of 1D systems, including nonlinear systems (e.g.,
via the toolbox by Maclean, Bunder, and Roberts 2020).

In 1D, the lattice has points xi of microscale spacing d and we seek to predict
the dynamics of the variables ui(t). Heterogeneous diffusion on this 1D
microscale lattice is the restriction of (1), namely

d2∂tui = κi+ 1
2
(ui+1 − ui) + κi− 1

2
(ui−1 − ui). (2)

As illustrated in Figure 2, to implement the 1D patch scheme we construct
N small patches across the spatial domain, separated by macroscale length H
and indexed by I = 1, 2, . . . ,N . Generally we use uppercase letters to denote
macroscale quantities, and lowercase letter to denote microscale quantities.
Each patch has n interior microscale points indexed by i = 1 : n (herein,
k : ` denotes k, k + 1, k + 2, . . . , `) and two edge points indexed by i = 0

on the left and i = n + 1 on the right: in the Ith patch the location of
these points is denoted by xIi. We call n the size of the patches, as opposed
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to the physical patch width h. We now relabel the microscale field values,
using uIi to denote the value of u in patch I at microscale patch interior
index i. Similarly, κIi+1/2 is the diffusivity between the i and i+ 1 points in

the Ith patch. The patch scheme uses the given microscale system (2) inside
each patch (as a given ‘black-box’), here the sub-patch odes are

d2∂tu
I
i = κ

I
i+ 1

2

(uIi+1 − u
I
i) + κ

I
i− 1

2

(uIi−1 − u
I
i) , (3)

on the interior points i = 1 : n for every patch I, where ‘sub-patch’ refers
to spatial scales less than the patch width h. These patches are coupled
together by setting the patch-edge values uI0 and uIn+1 through interpolation
of u-values from neighbouring patches (Figure 3). The new scheme is to
interpolate from the interior values closest to the patch edges, the next-to-
edge values uI1 and uIn, to determine the edge values uIn+1 and uI0, respectively.
As illustrated in Figure 3, the interpolation is from the opposite patch edge so
that u-values at i = 1 in nearby patches I are interpolated to the edge u-value
at i = n+ 1, and u-values at i = n in nearby patches I are interpolated to
the edge u-value at i = 0 .

This article establishes that this new patch scheme both preserves self-adjoint
symmetry and also accurately captures the macroscale behaviour of the full
heterogeneous system (2).

This self-adjoint coupling is analogous to that applied by Gear, Li, and
Kevrekidis (2003) in a gap-tooth method particle simulation. In their particle
simulation, at the right edge of patch I, some fraction α ≤ 1 of the right-
moving particles (i.e., those particles leaving patch I via the right edge) enter
the left edge of adjacent patch I+ 1, and the remaining fraction 1− α enter
the left edge of patch I. Similarly, left-moving particles at the left edge
of patch I (i.e., those particles leaving patch I via the left edge) are either
distributed to the right edge of patch I− 1 or to the right edge of patch I.
Gear, Li, and Kevrekidis (2003) justified their coupling using a flux analogy.

The patch width h := nd is measured across the interior points from/to
midway between the extreme pairs of microscale points (Figure 2). The
crucial ratio r := h/H is, in 1D, the fraction of the given spatial domain
on which microscale computation takes place. For efficient simulations
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Figure 3: patch self-adjoint preserving coupling. Filled triangles/circles at
indices i = n, 1 represent next-to-edge points whose u-values are interpolated
to give u-values at the edge points, i = 0, n+ 1, represented by unfilled
triangles/circles. Interpolation to the left/right edge of a patch is from
the next-to-edge points on the right/left of nearby patches, as indicated by
blue/red arrows.

we typically choose ratio r � 1 , equivalently h � H . Herein, examples
illustrating system-level predictions often use r = 0.1 so that there is a
significant proportion of uncomputed space—the patch scheme is a sparse
simulation; however, in example simulations (e.g., Figures 1 and 4), for
better visualisation we often choose larger r. When the ratio r = 1 the patch
scheme computes the given microscale system, here (2), since the left edge
i = 0 of the Ith patch coincides with the i = n next-to-edge point of the
(I− 1)th patch, and the right edge i = n+ 1 of the Ith patch coincides with
the i = 1 next-to-edge point of the (I + 1)th patch, and thus the patches
cover all microscale points in the domain. Sections 2.2 to 2.4 demonstrate
here, and Section 3 proves in general, that patches with small fraction r
accurately predict the macroscale dynamics.

2.1 Self-adjoint patch coupling for 1D

A key requirement in accurate patch simulations is carefully chosen patch cou-
pling. Most previous patch implementations (e.g., Roberts, MacKenzie, and
Bunder 2013; Cao and Roberts 2015; Bunder, Roberts, and Kevrekidis 2017a)
interpolated the u-values from the centre of each patch to determine the
u-values on the patch edges. This was proven to be accurate for smooth dy-
namics in both 1D and 2D, as well as for 1D heterogeneous diffusion (Bunder,
Roberts, and Kevrekidis 2017a). However, this centre interpolated coupling
scheme has one weakness: it does not preserve the self-adjoint nature, the
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symmetry, of many physical systems, such as the diffusion (2). This section
establishes, via Lemmas 1 and 3, that our new patch coupling (Figure 3)
preserves the self-adjoint symmetry of the original microscale system.

The dynamic variables in the patch scheme are the u-values at the inte-
rior points of the patches. Hence, for every patch I, denote the vector of
interior values by uI := (uI1, . . . , u

I
n) ∈ Rn. These vectors do not contain

the patch edge values uI0 and uIn+1 because edge values are determined by
interpolation from nearby patches. Denote the global u-values by the vector
u := (u1, . . . ,uN) ∈ RnN. Then the microscale linear diffusion (3) on the
coupled patches has the form of the linear systems of odes

∂tu = Lu , (4)

for real-valued nN × nN matrix L. From the patch structure, the square
matrix L has the form of N×N blocks, each of microscale size n× n. Let
LIJ be the n× n block of the influence on patch I from patch J. Here, for
heterogeneous systems such as (3), we establish that the inter-patch coupling
shown by Figure 3 ensures that L is self-adjoint, which in turn ensures
accurate macroscale predictions. As discussed in Section 1, L is self-adjoint
when it is equal to its Hermitian conjugate, L = L† , and so when L is real
we only require it to be symmetric.

One crucial proviso for these results is that the patch width h = nd must
be an integral multiple of the period of the microscale heterogeneity. The
desirability of such a limitation on the patch width has been observed
before (Bunder, Roberts, and Kevrekidis 2017b, §5.2) (Abdulle, Arjmand,
and Paganoni 2020, p.3, Ref. 5, 19, 20, e.g.) (Abdulle et al. 2012, p.62).
However, Section 2.4 shows that, and Section 3.1 proves that, embedding
the given heterogeneous system into an ensemble overcomes this limitation
on the patch width.

We decompose the matrix in (4) into two parts, L = D+C, for block diagonal
dynamics matrix D = [DI] and coupling matrix C = [CIJ] with n× n blocks
DI and CIJ. For L to be self-adjoint requires that both D and C are self-
adjoint, that is, (DI)† = DI and (CIJ)† = CJI. The blocks of the dynamics
matrix DI encode the given sub-patch odes (3) within the Ith patch, and
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without any patch coupling. Thus D is self-adjoint if the given microscale
system is self-adjoint. For example, for 1D microscale diffusion odes (3) the
elements of the dynamics matrix are, for every patch I,

DIi,i = −κI
i+ 1

2

− κI
i− 1

2

for i = 1 : n ,

DIi,i+1 = DIi+1,i = κIi+ 1
2

for i = 1 : n− 1 , (5)

and therefore D is symmetric and real, and thus self-adjoint.

We now construct a self-adjoint coupling matrix C specifically for 1D het-
erogeneous diffusion (3), but readily adaptable to any 1D system of second
order in space. We make the following two assumptions that reflect that we
want the sub-patch system to be almost a ‘black-box’.

A1 The microscale odes (3) are unmodified for all i and I.

A2 The patch edge values uI0 and uIn+1 are determined by an interpolation
that is independent of the diffusion coefficients.

Assumption A1 requires that rows i = 2 : n−1 of CIJ must be zero because DI
already encodes the odes (3) for i = 2 : n−1 . Consequently, since symmetry
requires CIJ = (CJI)† , the columns j = 2 : n− 1 must be zero. Thus the only
nonzero elements in CIJ are the four corner elements CIJij for i, j = 1, n . Given
the form of D in (5), and the form of the odes (3), to satisfy Assumption A1
for the two cases i = 1, n we must have

κI1
2

uI0 =
∑
J

(
CIJ11u

J
1 + C

IJ
1nu

J
n

)
and κI

n+ 1
2

uIn+1 =
∑
J

(
CIJn1u

J
1 + C

IJ
nnu

I
n

)
. (6)

These two equations couple patches across the unsimulated space between
patches by setting the two patch edge values uI0 and uIn+1 as interpolations

of the sub-patch fields uJ1 and uJn.

To satisfy Assumption A2 we introduce an nN× nN interpolation matrix I
that has no dependence on the diffusion coefficients, with the same block
structure as C where IIJij := 0 for i or j 6= 1, n , whereas for j = 1, n the entries

satisfy CIJ1j = κI1/2I
IJ
1j and CIJnj = κIn+1/2I

IJ
nj . Consequently, (6) simplifies so
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that the interpolation to the patch-edge values is independent of the diffusion
coefficients:

uI0 =
∑
J

(
IIJ11u

J
1 + I

IJ
1nu

J
n

)
and uIn+1 =

∑
J

(
IIJn1u

J
1 + I

IJ
nnu

J
n

)
.

For the interpolation to generically interpolate real-values to real-values
we thus require matrix I, and hence C, to be real. But we have not yet
completely ensured C is self-adjoint.

For C to be self-adjoint we require that CIJ1n = κI1/2I
IJ
n1 = C

JI
n1 = κJ

n+1/2I
JI
1n ,

CIJ11 = κ
I
1/2I

IJ
11 = C

JI
11 = κ

J
1/2
IJI11 and CIJnn = κIn+1/2I

IJ
nn = CJInn = κJ

n+1/2I
JI
nn , and

since the interpolation coefficients are independent of the diffusion they must
satisfy IIJ1n = IJIn1 , IIJ11 = I

JI
11 and IIJnn = IJInn . But if the interpolation matrix

‘top-left’ and ‘bottom-right’ elements IIJ11 and IIJnn are nonzero, then they

cannot produce an accurate interpolation. To see why, say J ≥ I so that uJ1
is a distance of H(J − I) + d from uI0, and uI1 is a distance of H(J − I) − d

from uJ0—these different distances imply that if coefficients IIJ11 and IJI11 are
nonzero, then they should not have the same magnitude. A similar argument
implies that nonzero IIJnn and IJInn should not have the same magnitude. Thus
we set IIJ11 = I

IJ
nn = 0 . Consequently, the only coupling entries which may

be nonzero are κI1/2I
IJ
n1 = κ

J
n+1/2I

JI
1n , and for IIJn1 = I

JI
1n our diffusion is then

constrained by κI1/2 = κ
J
n+1/2 for all patches I, J. The resulting interpolation

gives edge values

uI0 =
∑
J

IIJ1nu
J
n and uIn+1 =

∑
J

IIJn1u
J
1 . (7)

Figure 3 draws this interpolation and shows that for symmetric interpolation
matrix I the interpolation is implemented with both translational and
rotational symmetry (i.e., interpolations are invariant upon reflection and
swapping red-blue).

Thus Assumption A1 and Assumption A2 not only tightly constrain the
form of coupling matrix C, they also constrain the patch size and placement
by requiring that the diffusivities satisfy κI1/2 = κ

J
n+1/2 for every patch I, J.

If the heterogeneity is periodic, period p, then this constrains the patch
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width h by requiring the number of patch interior indices n to be divisible
by the heterogeneous period p. Section 2.4 shows that this constraint on the
patch width may be overcome by embedding the diffusion into an ensemble
of phase-shifted diffusions, but as this embedding increases the size of the
simulation by a factor of p, it incurs extra computation and so might not be
suitable for all applications.

The self-adjoint matrix operator L is here developed in the context of 1D
heterogeneous diffusion. Nonetheless, the same coupling matrix C could be
used for any system where the dynamics matrix D is self-adjoint and the
given microscale model is no more than second order in space, and thus
requiring only one coupling condition on each patch edge. Higher order
microscale models, for example, microscale models fourth order in space,
require two coupling conditions for each patch edge and therefore require a
more complicated coupling matrix C.

Section 2.2 discusses the case of global spectral coupling, whereas Section 2.3
discusses coupling from a finite number of near neighbouring patches. Such
patch couplings have different coupling matrices C, but for both L = D + C
is self-adjoint, and both satisfy Assumption A1 and Assumption A2.

2.2 Spectral coupling of patches

This coupling uses a spectral interpolation of selected patch interior values
to give the values on patch edges. Here we assume the macroscale solution
is L-periodic in space, for domain length L := NH . This spectral coupling is
very accurate, as indicated by consistency arguments in Section 3 and by
numerical tests in Section 4.1 for the 2D case which also hold in 1D.

Let’s start by determining the patches’ right-edge values uIn+1. The first step
is to compute the Fourier transform, the N coefficients

↪→
uk, of the left-next-

to-edge values uI1 (the over-harpoon to the right denotes using left-values to
determine right-values). That is, recalling xI1 is the spatial location of uI1,
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the Fourier transform computes the coefficients (i :=
√
−1)

↪→
uk :=

1

N

∑
I

uI1e
− i kxI1 , so that uI1 =

∑
k

↪→
uke

i kxI1 , I = 1 : N . (8a)

The wavenumbers k in these Fourier transforms are an appropriate fixed set
of integer multiples of 2π/L for domain length L. The second step computes
the right-edge values by evaluating this Fourier transform at the right-edge
of each patch, namely at xIn+1 = x

I
1 + h for the displacement of one patch

width h = nd . Hence

uIn+1 :=
∑
k

↪→
uke

i kxIn+1 =
∑
k

↪→
uke

i k(xI1+h) =
∑
k

(↪→
uke

i kh
)
ei kxI1 , (8b)

which is efficiently realised by computing the inverse Fourier transform of
the values

↪→
uke

i kh for the range of wavenumbers k.

Similarly, to compute left-edge values uI0 a Fourier transform computes the
coefficients

←↩
uk of the right-next-to-edge values uIn using the same set of

wavenumbers, shifts a displacement −h by multiplying by e− i kh, and then
an inverse Fourier transform interpolates to the patch left-edge: from the
Fourier transform

uIn =
∑
k

←↩
uke

i kxIn , then uI0 :=
∑
k

(←↩
uke

− i kh
)
ei kxIn . (8c)

Lemma 1. Coupling patches with the spectral interpolation (8) preserves
the self-adjoint symmetry of heterogeneous systems in the form (3).

Some algebra now establishes this lemma. The effect of the spectral interpo-
lation to the right-edge is, recalling the patch-width h = rH ,

uIn+1 :=
∑
k

↪→
uke

i kh ei kxI1 =
∑
k

1

N

∑
J

uJ1e
− i kxJ1ei kh ei kxI1

=
∑
J

uJ1

∑
k

1

N
ei k(−xJ1+h+x

I
1) =

∑
J

uJ1

∑
k

1

N
ei kH(I−J+r)
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=
∑
J

IIJn1u
J
1 for IIJn1 :=

1

N

∑
k

ei kH(I−J+r). (9a)

Similarly, the effect of the spectral interpolation to the left-edge is

uI0 = · · · =
∑
J

IIJ1nu
J
n for IIJ1n :=

1

N

∑
k

ei kH(I−J−r). (9b)

These expressions determine the coefficients in the coupling matrix C.

Since the sums in (9) all use the same set of wavenumbers k, then every pair
of interpolation matrix elements IIJ1n and IJIn1 are the complex conjugate of
each other. In real problems, provided every wavenumber k in these Fourier
sums is partnered by the corresponding negative wavenumber −k in the sum
(as is usual), then the complex sums for IIJ1n and IJIn1 are all real-valued, and

since they are complex conjugates they must be equal, IIJ1n = IJIn1 . Hence,
C is symmetric and so this spectral coupling preserves self-adjoint symmetry.

Figure 4 shows one example patch simulation in space-time of the hetero-
geneous diffusion (3). In the initial condition at time t = 0 the ragged
sub-patch structure is rapidly smoothed within each patch—the remaining
sub-patch structure is due to the heterogeneous diffusion. Then the patches
evolve over the shown macroscale time with the macroscale mode u ∝ sin x
decaying slowest as appropriate.

Remark 2 (Hilbert space generalisation). Our discussion predominantly
addresses the case where the field values ui ∈ R. However, the arguments
equally well apply to cases where the field values ui are in a Hilbert space,
say denoted H. In that case the diffusivities κi+1/2 are to be interpreted as
linear operators κi+1/2 : H→ H , and the discourse appropriately rephrased—
provided the operators are suitable. Such a generalisation empowers much
wider applicability of the results we establish, but for simplicity we mainly
focus on the basic case of real ui. Nonetheless, Section 2.4 introduces an
ensemble of phase-shifted diffusions whose analysis requires the case of ui
being in the Hilbert space of Rp, and similarly in Section 4.
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Figure 4: example simulation in 1D space of heterogeneous diffusion (3) on
nine patches with spectral coupling (8) and rather large size ratio r = 0.3
(for visibility). The listed diffusion coefficients κi+1/2 have period five, and
each patch has n = 5 interior points as plotted. The first five computed
eigenvalues of the scheme’s operator L are expectedly close to −k2, and then
have a large spectral gap to the sub-patch modes.
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...

2.3 Lagrangian spatial coupling of patches

Spectral coupling constructs a single Fourier interpolant through all patches
and then use this one interpolant to compute the edge values of each patch;
thus the coupling matrix elements CIJ1n and CIJn1 are nonzero for every patch
I and J—it is a global coupling An alternative local scheme is, for each
patch, to construct an interpolant from neighbouring patches so that the
inter-patch coupling occurs only over a finite local region of the spatial
domain. Such Lagrangian, or polynomial, coupling is the most common form
to date (e.g., Roberts, MacKenzie, and Bunder 2013; Cao and Roberts 2015;
Bunder, Roberts, and Kevrekidis 2017a), but has always been constructed by
interpolation of the fields (or field averages) from the centre of each patch—
a scheme which does not generally maintain self-adjoint symmetry. In
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Figure 5: patch simulation, with quadratic coupling, of ‘weakly damped’
waves on a heterogeneous lattice illustrates the emergence of a coherent
travelling macroscale wave from a noisy initial condition: in terms of the
microscale difference operator δi (Table 1), the system is dui/dt = vi ,
dvi/dt = δi(κiδiui) + 0.02 δ

2
ivi for log-normal κi.
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contrast, our scheme to couple via next-to-edge values preserves self-adjoint
symmetry. Consequently, sensitive simulations such as the propagating
waves of Figure 5 preserve physically desirable properties, even with low-
order coupling (here quadratic), and for propagation through this microscale
heterogeneous medium.

To develop the Lagrangian coupling, here we adapt the derivation of Bunder,
Roberts, and Kevrekidis (2017a) to the constraints identified by Section 2.1
for self-adjoint coupling. Define a macroscale step operator E which shifts
a field by one macroscale step H to the right: EuIi = uI+1i . Its inverse
shifts by one macroscale step to the left: E−1uIi = uI−1i . Define standard
macroscale mean and difference operators, µ := (E1/2 + E−1/2)/2 and δ :=
E1/2 − E−1/2, respectively. These three operators are related by µ2 = 1+ 1

4δ
2

and E±1 = 1 ± µδ + 1
2δ
2. When operating on a field uIi, the mean and
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difference operators involve patches to the left and right of patch I; for
example, µδuIi = (uI+1i −uI−1i )/2 and δ2uIi = u

I+1
i −2uIi+u

I−1
i , and for every

positive exponent K the operators µδ2K−1uIi and δ2KuIi involve patch values
uIi, u

I±1
i , . . . , uI±Ki .

To construct the Lagrangian self-adjoint coupling, we write the edge values
in terms of known next-to-edge values for patches J near patch I. Define P
as the number of coupled nearest neighbours to the left and right of each
patch I. That is, patch I is coupled to the 2P + 1 closest patches, including
itself, and wrapped periodically for the case of macroscale periodicity, thus
forming an effective local coupling stencil of physical width (2P + 1)H For
patch I, the right-edge uIn+1 is a distance h = nd = rH from the left-next-
to-edge uI1. Consequently, in terms of the fractional macroscale shift Er,
uIn+1 = E

ruI1 determines the right-edge value by interpolating the left-next-
to-edge values. We expand the fractional shift, in powers of δ up to order 2P,
via Er = (1 + µδ + 1

2δ
2)r, where powers of µ are removed via the identity

µ2 = 1+ 1
4δ
2. Then the right-edge values are computed as

uIn+1 = E
ruI1 ≈ uI1 +

P∑
k=1

(
k−1∏
`=0

(r2 − `2)

)
+(2k/r)µδ2k−1 + δ2k

(2k)!
uI1 . (10a)

Similarly for the left-edge values, with the difference that the fractional shift
is E−r from the right-next-to-edge, so that left-edge values are computed as

uI0 = E
−ruIn ≈ uIn +

P∑
k=1

(
k−1∏
`=0

(r2 − `2)

)
−(2k/r)µδ2k−1 + δ2k

(2k)!
uIn . (10b)

The highest-order operators are µδ2P−1 and δ2P, and thus the above ex-
pressions involve patches J where J is no more than P from patch I. The
coefficients of uJ1, u

J
n in the interpolations (10) define the interpolation matrix

elements IIJn1, I
IJ
1n, respectively, as in (7), for patches I and J no more than P

apart. For greater distances between the two patches IIJn1 = I
IJ
1n = 0 .

Section 2.1 shows that self-adjoint coupling requires symmetry IIJn1 = I
JI
1n (all

elements are real so there is no need to involve the complex conjugate). The
coupling conditions (10) satisfy this symmetry constraint via the r dependence
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of the interpolation matrix elements: IIJn1(r) = I
JI
n1(−r) = I

IJ
1n(−r) = I

JI
1n(r) .

For example, for only nearest neighbour coupling with P = 1, the interpola-
tions (10) give

uIn+1 =
r
2(r− 1)u

I−1
1 + (1− r2)uI1 +

r
2(r+ 1)u

I+1
1 ,

uI0 =
r
2(r+ 1)u

I−1
n + (1− r2)uIn +

r
2(r− 1)u

I+1
n ,

so, for every patch I, II,I−1n1 = r
2(r − 1) = I

I−1,I
1n , II,I+1n1 = r

2(r + 1) = I
I+1,I
1n ,

and IIIn1 = 1− r2 = III1n. Thus the above derivation establishes the following
lemma.

Lemma 3. For every order P, coupling patches with the Lagrangian inter-
polation (10) preserves the self-adjoint symmetry of heterogeneous systems
in the form (3).

2.3.1 Accuracy of Lagrangian patch coupling

For Lagrangian coupling order P ≥ 4 plots of simulations are visually similar
to those for spectral coupling such as Figure 4. To investigate the homogeni-
sation accuracy of the patch scheme with Lagrangian coupling, we compute
the eigenvalues of the microscale heterogeneous matrix operator L in (4) and
compare them to eigenvalues obtained from spectral coupling (Section 2.2)
with otherwise identical parameters.

The modes which dominate the emergent homogenised dynamics are those
corresponding to the smallest magnitude eigenvalues. The heterogeneous
diffusion system (2) has nonpositive eigenvalues of approximately −k2 for
wavenumbers k = 0, 1, 2, . . . in our scenarios. For N patches a patch dynamics
simulation supports N ‘macroscale’ eigen-modes, those with eigenvalues of
small magnitude. The remaining eigenvalues are of large magnitude, and
represent rapidly decaying sub-patch modes that are of negligible interest.
Generally, there is a large gap between the microscale and macroscale eigen-
values, typically ∝ 1/r2. In the scenarios reported here, typically the ratio
between the large magnitude microscale eigenvalues and the small magnitude
macroscale eigenvalues is of the order of 100. So our focus here is assessing
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Figure 6: Log-log plot of relative errors of the first five unique nonzero
macroscale eigenvalues of L in (4) with coupling order P = 5, domain size 2π,
and the period five diffusion coefficients of Figure 4, but different numbers
of patches N and patch sizes n while keeping the same microscale spacing
d = rH/n for all data. The reference eigenvalues to the right are from
spectral coupling with r = 0.1 . The markers ◦,×,+ correspond to patch
size ratios r = 0.1, 0.4, 0.8 , respectively, and the solid lines join r = 0.1 data.
Dashed grey lines display the power law N−10, that is, H10.
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the accuracy of the first few smallest magnitude eigenvalues compared to the
homogenised dynamics.

For a given order P of interpolation, the main factor determining the accuracy
of the computational homogenised simulation is the macroscale H which
defines the inter-patch spacing. As in classic numerical considerations,
the reason is simply that closer spacing better interpolates the macroscale
structures. We explore a domain of fixed length 2π so that the inter-patch
spacing H decreases as the number of patches N increases. Figure 6 illustrates
that as the spacing decreases the patch scheme more accurately determines
the lowest magnitude nonzero macroscale eigenvalues. We do not show errors
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for the zero eigenvalue because this eigenvalue is always calculated to have
magnitude no more than 10−9, which is essentially zero (to round-off error).
For the non-zero eigenvalues, Figure 6 shows that their error decreases as
the power-law ∼ H10 ∝ N−10 as expected for the eleven patch stencil width
of the coupling order P = 5.

The solid lines of Figure 6 highlight the data at fixed patch size ratio r = 0.1 .
That is, as the inter-patch spacing is decreased, the patch size is proportionally
decreased. The microscale lattice spacing d is fixed for all of Figure 6, so
the underlying heterogeneous microscale system is the same for all data in
the figure. The figure also plots errors for other patch size ratios r = 0.4, 0.8,
and this data verifies that the errors in the patch scheme have only a weak
dependence upon the patch size. That is, for computational efficiency, choose
as small a patch as necessary to resolve the microscale dynamics.

In application to some large-scale physical scenario we would require the patch
scheme to resolve spatial structures on some macroscale, and so you choose
the inter-patch spacing H accordingly. For a given domain this determines
the number of patches. Then choose an inter-patch coupling order P, for the
Lagrangian spatial coupling (10), to suit your desired error in predictions by
the patch scheme. Figure 7 demonstrates that the errors for the macroscale
modes of the patch scheme decrease exponentially quickly in the order P of
inter-patch coupling. The lessened rate of the exponential decrease for higher
wavenumbers, here error ∝ exp

[
−α(2− log k)P

]
, is due to the smaller scale

macroscale modes having fewer patches to resolve their structure. Figure 7
is for N = 20 patches with size ratio r = 0.1 , but other parameter choices
produce much the same plot: in the computational homogenisation of the
patch scheme, relative errors generally decrease exponentially with the order P
of Lagrangian inter-patch coupling.

2.4 An ensemble removes periodicity limitation

Section 2.1 deduced that this new patch scheme preserves a self-adjoint
heterogeneous system when the size n of the patch is an integral multiple
of the diffusivity period p. This section proves that by using an ensemble
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Figure 7: Relative errors of the first five nonzero macroscale eigenvalues
obtained from different widths of inter-patch coupling. Here the errors
are for N = 20 patches on a domain of 2π, with patch size n = 5, and
patch size ratio r = 0.1 . The dashed grey lines approximate the data by
error ≈ 20kαPe−2αP for constant α = 1.9 and wavenumber k = 1 : 5 . Spectral
coupling gives the reference eigenvalues list in the right-hand column. The
diffusion coefficients κi+1/2, with period five, are the same as those of Figure 4.
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of phase-shifts of the diffusivities, the patch scheme can still preserve self-
adjoint symmetry without requiring the integral multiple limitation. As
long recognised in Statistical Mechanics, a rigorous route to modelling is by
considering an ensemble (e.g. van Kampen 1992; Sethna 2006).

We consider an ensemble with p-members of the heterogeneous system (2)
with each member of the ensemble distinguished by a different phase shift
of the p-periodic diffusivities κi+1/2. Importantly, do not think of this as an
ensemble of a patch scheme for (2), but instead think of it as a patch scheme
applied to an ensemble of (2). In multiscale modelling ensembles constructed
from microscale phase shifts are useful in many different contexts; for ex-
ample, Runborg, Theodoropoulos, and Kevrekidis (2002) applied projective
integration in a coarse bifurcation analysis of an evolution equation with
spatially varying coefficients, with an ensemble constructed from phase shifts
in time, in contrast to the spatial phase shifts considered here.

To form the ensemble let ui,`(t) be the field value at location xi in the
`th member of the ensemble, for ` = 0 : p− 1. These satisfy all phase-shifts
of the diffusivities in the odes (2), namely

d2∂tui,` = κi+`+ 1
2
(ui+1,` − ui,`) + κi+`− 1

2
(ui−1,` − ui,`). (11)

Throughout, the diffusivity subscripts are to be interpreted modulo their
periodicity p. Form patches of this ensemble-system as in Figure 2 with
uIi,`(t) denoting the evolving field values in the Ith patch at spatial location xIi.
Figure 8 illustrates five patches in the case of an ensemble of three members
for patches of size n = 4 of a system with diffusivity period p = 3 .

Figure 8 illustrates the proposed interpolation of edge values from next-to-
edge values in the ensemble, and shows a tangle of dependencies. This
inter-patch communication arises in the following way based upon the
analysis and notation of the previous Sections 2.1 to 2.3. The previ-
ous symbol uIi here denotes the ensemble vector (uIi,0, . . . , u

I
i,p−1) ∈ RP.

The previous diffusivity κIi±1/2 is here to denote the diffusivity matrix

diag(κi±1/2, . . . , κi+p−1±1/2) ∈ Rp×p (subscripts modulo p as always). Then
the patch scheme applied to the heterogeneous ensemble (11) is symbol-
ically the odes (3) but here interpreted as matrix-vector odes instead
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Figure 8: Five patches of the three member ensemble of phase-shifts in
the case of diffusivity period p = 3 and n = 4 patch interior points: the
diffusivities are κ1/2, κ3/2, κ5/2. Lattice points and patches in the same column
are at the same physical location. For the middle patch in each member,
u-values at the edges i = 0, 5 (unfilled triangles/circles) are interpolated
from u-values of next-to-edge points i = 4, 1 (filled triangles/circles) in
neighbouring patches, but from a different member in order to preserve
self-adjoint symmetry.
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of scalar odes.

Consequently, all the arguments and results of the previous Sections 2.1
to 2.3 apply here also. Except that we now have extra freedom in the patch-
coupling interpolation matrix. Previously the symbol CIJij was a scalar, but
here represents a p× p block in the ensemble system’s nNp× nNp matrix.
Thus we have the freedom to choose the crucial interpolation blocks CIJn1, C

IJ
1n

in non-diagonal form. The tangle of inter-patch communication in Figure 8
represents a non-diagonal CIJn1, C

IJ
1n.

We choose CIJn1, C
IJ
1n to preserve self-adjoint symmetry, and Assumption A1

and Assumption A2. In the `th member of the ensemble, the `th row
of Figure 8, has diffusivity κn+`+1/2 (subscript modp) at the right-edge
of patches. So the interpolation from its right-next-to-edges is chosen to
determine the left-edge values of member (n+ `modp) because it has the
same diffusivity κn+`+1/2 at its left-edge. Correspondingly in reverse for
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Figure 9: the ensemble-mean field ū(x, t) in a simulation of an ensemble
of heterogeneous diffusion (11) on nine patches with spectral coupling (8)
and patch-ratio r = 0.3, for comparison with Figure 4. The diffusion coeffi-
cients κi+1/2 with period p = 5 are as in Figure 4, but here there are just
n = 4 patch interior points, as plotted.
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interpolation from left-next-to-edges to right-edge values. Hence, setting the
p× p matrix K to zero except for K`+1,(`+nmod p)+1 := κ`+1/2 , ` = 0 : p − 1 ,
let’s choose

CIJ1n := KIIJ1n and CIJn1 := K
†IIJn1 (12)

in terms of the scalar interpolation coefficients IIJij of the interpolation schemes
of Sections 2.2 and 2.3. Because of this choice of K, the above argument
establishes the following lemma.

Lemma 4. The inter-patch coupling with (12) preserves self-adjoint symme-
try in the ensemble of heterogeneous diffusion systems (11).

As an example, Figure 9 plots a simulation of our patch scheme applied to het-
erogeneous diffusion with diffusivity period p = 5 and the same diffusion coeffi-
cients as listed in Figure 4. With the exception of the number of patch interior



3 The patch scheme is consistent to high-order 28

points, which here is n = 4, the parameters of Figure 9 are the same as in
Figure 4. At each spatial point xIi there are five ensemble values uIi,0, . . . , u

I
i,4

so Figure 9 plots the ensemble-mean ū(xIi, t) :=
1
p

∑p−1
`=0 u

I
i,`(t). In the sim-

ulation of Figure 9, all five members of the ensemble were given the same
initial condition, and this initial condition is the same as that for Figure 4
but with a different random component. Because of the average over the
ensemble, Figure 9 does not exhibit the rough microscale structure shown in
Figure 4 that arises from just one phase of the heterogeneous diffusivity.

To verify the accuracy of the patch scheme applied to the ensemble of phase-
shifts, we investigated the accuracy of the small-magnitude eigenvalues that
correspond to the macroscale modes in the computational scheme. Over a
range of coupling orders P, we plotted the relative errors of nonzero macroscale
eigenvalues of ensemble matrix L for Lagrangian spatial coupling (10) (relative
to the spectral eigenvalues (8)). The plots were graphically indistinguishable
from that of Figure 7—so are not reproduced here. The crucial difference is
that here we used an ensemble of patches of size n = 4 points—a size which is
not an integral multiple of the diffusivity period p = 5. Evidently the patch
scheme applied to an ensemble for general patch size of n points appears to
be just as accurate as for the well-known special case of n being an integral
multiple of the period p. Section 3 establishes this accuracy in general.

Invoking this ensemble of all phase-shifts of the diffusivities allows any
size patch, any n, while appearing to maintain the full accuracy of the
computational homogenisation supplied by the patch scheme, albeit with
an increase in the computation. We conjecture that if the heterogeneous
diffusivities is random, with no period, then an ensemble of realisations will
provide more accurate predictions than a single realisation.

3 The patch scheme is consistent to high-order

This section develops theoretical support for the accuracy of the patch scheme
with self-adjoint coupling. But before we discuss patches, we reconsider the
heterogeneous diffusion (2) and its ensemble of all phase shifts (11). Sec-
tion 3.1 establishes that the ensemble system describes the correct macroscale
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Figure 10: embed the heterogeneous diffusion (2) into p replications of itself,
here for the case p = 3. The circles denote values vi,`(t) for the example
labelled values i, `, and the coloured lines denote the heterogeneous diffusion
between vi,` that both replicates (2), but is now spatially homogeneous, in x,
on the lattice. Over x, the fields vi,`(t) of any one of the p = 3 phases
follow the coloured diagonals representing the heterogeneous diffusion for
that phase, for example, one phase has fields v1,1, v2,2, v3,3, v4,1, v5,2, . . .

-
x

t t t t t t t t t t t t t t t t t
1, 0 2, 0 3, 0 4, 0 5, 0 6, 0 7, 0 8, 0 9, 0 10, 0 11, 0 12, 0 13, 0 14, 0 15, 0 16, 0
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

t t t t t t t t t t t t t t t t t
1, 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, 1 9, 1 10, 1 11, 1 12, 1 13, 1 14, 1 15, 1 16, 1
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

t t t t t t t t t t t t t t t t t
1, 2 2, 2 3, 2 4, 2 5, 2 6, 2 7, 2 8, 2 9, 2 10, 2 11, 2 12, 2 13, 2 14, 2 15, 2 16, 2A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

A
A
A
A

homogenised behaviour. Section 3.2 then proves that the patch scheme with
self-adjoint coupling of the ensemble is consistent with the ensemble system,
and hence with the heterogeneous diffusion (2).

In this and the next section, the term “consistent” means “consistent with
arbitrarily high-order in H”, unless otherwise specified.

We use consistency to assess accuracy of the patch scheme because the usual
numerical analysis, of the finite element and finite volume methods, involves
integrals over space which in a patch scheme would be integrals over much
uncomputed space and so appear to be inappropriate for a patch scheme.

Section 2.4 creates the ensemble of phase shifts by directly ‘stacking vertically’
each member in the ensemble, as illustrated by Figure 8. This appears
best for computation. Best because a user codes the lattice dynamics
in the ‘horizontal’ direction as usual, and then the tangle of inter-patch
communication (Figure 8) may be managed by a generic patch function as
in our toolbox (Roberts, Maclean, and Bunder 2020).

However, for theoretical analysis it appears best, and we take this route
here, to form the ensemble so that each member of the ensemble is ‘wrapped
diagonally’, as illustrated by Figure 10 for the case of periodicity p = 3 . In
terms of ui,` of Section 2.4, define vi,`(t) := ui,(i−`mod p). That is, vi,` is a
field value at position xi, for ` = 0 : p − 1 , and φ = i − `modp identifies
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the physical phase-shift for the member of the ensemble. According to (11)
these evolve in time according to the odes

d2∂tvi,` = κ`+1/2(vi+1,`+1 − vi,`) + κ`−1/2(vi−1,`−1 − vi,`) , (13)

where we adopt the convention that both the subscript of κ and the second
subscript of v is always interpreted modulo the microscale periodicity p.
Consequently, ui(t) := vi,i+φ then satisfies the original diffusion (2), but with
the diffusivities phase shifted by φ. That is, the system (13) for vi,` captures
the p microscale-phase shifted versions (11) of the original heterogeneous
diffusion (2). As in macroscale modelling (Roberts 2015a, §2.5), the big
advantage of (13) is that the heterogeneity only occurs in ` and is independent
of, homogeneous in, the spatial index i. This homogeneity is unlike systems
(2) and (11) where the heterogeneity explicitly varies with the spatial index.
The homogeneity of (13) in spatial index i is crucial in developing theory.

3.1 An ensemble has the correct homogenisation

The aim of this subsection is to establish that the solutions of the ensemble
system (13) track solutions of an effective ‘homogenised’ pde Vt = K2Vxx for
a field V(x, t) and an effective diffusivity K2.

We analyse the long-time dynamics via the Fourier transform in space
(Roberts 2015b, §7.2 and Exercise 7.5). For grid-scaled spatial Fourier
wavenumber k we seek solutions vi,`(t) =

∫π
−π e

i kiṽ`(k, t)dk (for i :=
√
−1,

distinct from lattice index i). Because of the linear independence of ei ki,
(13) becomes, for every wavenumber k,

d2∂tṽ` = κ`+ 1
2
(ei kṽ`+1 − ṽ`) + κ`− 1

2
(e− i kṽ`−1 − ṽ`), ` = 0 : p− 1 . (14)

This system has a subspace of equilibria for wavenumber k = 0 and ṽ` =
constant. Since the problem is linear in ṽ, without loss of generality we analyse
the case of equilibrium ṽ` = 0 (Roberts 2015b, §7.2). When wavenumber k =
0 the system (14) has one eigenvalue of zero, and (p−1) negative eigenvalues
λ ≤ −β for bound β = 2π2 min` κ`+1/2/(p

2d2). Notionally adjoining dk/dt =
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0, we deduce there exists an emergent slow manifold of (14) for a range of
small k, and globally in ṽ (Carr 1981).

Straightforward construction (Roberts 2015b, as in Exercise 7.5) leads to the
evolution on the slow manifold, in terms of some chosen parameter Ṽ(k, t).
Here we describe the evolution on the slow manifold in terms of the mean
Fourier component Ṽ(k, t) := 1

p

∑
` ṽ`(t). We seek the evolution of Ṽ in terms

of a power series in small wavenumber k, up to some specified order. For given
diffusivities and periodicity p, the computer algebra in Appendix A efficiently
derives the evolution via an iteration, based upon the residual of (14), from
the initial approximation that ∂tṼ ≈ 0 and ṽ` ≈ Ṽ for every ` = 0 : p − 1 .
Subsequent iterations provide corrections in terms of Ṽ and powers of k. In
general, the dynamical evolution on the slow manifold is then of the form

d2∂tṼ = −k2K2Ṽ + k4K4Ṽ + · · · , (15)

for K2 := n/
(∑

` κ
−1
`+1/2

)
, and some complicated K4. As an example, for

periodicity p = 3 and κ`+1/2 = ` + 1 ; Appendix A computes K2 = 18
11 and

K4 = 675
2662 .

We obtain a physical space pde for the macroscale by integrating over
small wavenumbers (Roberts 2015b, Exercise 7.5). Let kc denote a cut-off
wavenumber, suitable to capture the macroscales of interest, and define
V(x, t) :=

∫kc
−kc

ei kx/dṼ(k, t)dk . Upon correspondingly integrating (15), we
deduce the emergent slow manifold dynamics is equivalently governed by the
‘homogenised’ pde

∂V

∂t
= K2

∂2V

∂x2
+K4d2

∂4V

∂x4
+ · · · . (16)

The coefficient d2K4 indicates that our approach supports not only the
classic diffusion homogenisation as the microscale d→ 0, but also establishes
corrections at finite d. Such higher-order corrections are needed in some
homogenisation applications (e.g., Cornaggia and Guzina 2020). We also
contend that the technique of Roberts (2015a) would extend to provide, at
finite scale separation d, a rigorous error formula for any finite truncation of
this asymptotic series, and would also do so for nonlinear systems.
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Figure 11: example of patch scheme (Figure 2) with n = 4 points in each
patch, for an ensemble with heterogeneity of period p = 3 (Figure 10). These
homogeneous patches are coupled, as in Figure 3, by interpolation to the
left/right edge of a patch from the next-to-edge points on the right/left of
nearby patches and always to points with the same `. For each ` = 0 : p− 1 ,
the value vI5,` is interpolated from values vJ1,` from nearby patches J, and vI0,`
is interpolated from vJ4,`.
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This approach rigorously establishes that the classic homogenisation of
the ensemble system (13) is the leading approximation to the evolution of
long wavelength structures on the lattice. Moreover, the centre manifold
emergence theorem (e.g., Roberts 2015b, §4.3) assures us that all solutions
approach this homogenisation on a cross-period diffusion time ∝ 1/β.

3.2 High-order consistency of the patch scheme

This section establishes that when the phase-shifted ensemble system (13)
(Figure 10) is restricted to patches, with self-adjoint coupling as in Figure 11,
the resulting patch system maintains consistency with (13). The analysis
shows that any errors arising in the scheme are due to the choice of coupling
condition. The advantage of the ensemble (13) for the patch scheme is that
the microscale system within patches is homogeneous in the x-index i; the
heterogeneity in the original diffusion (2) only appears here in the cross-
section indexed by ` (Figure 11).

Corresponding to Section 2, let the macroscale spacing in x of the patches
be H—much larger than the microscale lattice spacing d. Let the patches
have n interior points so the patches are of width h := nd in x, and let the
ratio r := h/H. Also let vIi,`(t) to denote the field value at the (i, `)th point
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Table 1: Useful operator identities based upon the shift E which shifts an
operand to the right by some ‘distance’ ∆ (Natl Physical Lab 1961, p65,
e.g.). A subscript on any of the listed operators defines the distance ∆. For
example, Ei increases the index i by one (distance ∆ = d), and Ex increases
the position x by H (distance ∆ = H).

Eu(x) := u(x+ ∆) E±1 = 1± µδ+ 1
2δ
2

δ := E1/2 − E−1/2 µ := 1
2(E

1/2 + E−1/2)
δ = 2 sinh(∆∂x/2) µ = cosh(∆∂x/2)

∆∂x = 2 asinh(δ/2) µ2 = 1+ 1
4δ
2

of the lattice within the Ith patch (Figure 11). For generality, let the
vector v(t) ∈ Rp denote the vector of p values at each x, and then for patches
the vector vIi := (vIi,0, . . . , v

I
i,p−1). That is, here the vector v corresponds to

the scalar u of Section 2. We now use shift, difference, and mean operators as
defined by Table 1 to express and analyse this patch scheme for the ensemble.

Lemma 5. The ensemble system (13) is of the vector form

∂tvi = δi
(
K̂ E

1/2
i − ǨE

−1/2
i

)
vi +Dvi , i = 1 : n , (17)

for the three p× p matrices D, K̂ and Ǩ.

Proof. Let’s rewrite the ensemble lattice odes (13) for patch interior indices
i = 1 : n :

d2∂tvi,` = κ`+1/2(vi+1,`+1 − vi,`+1) + κ`−1/2(vi−1,`−1 − vi,`−1)

+ κ`+1/2(vi,`+1 − vi,`) + κ`−1/2(vi,`−1 − vi,`)

= δi
(
κ`+1/2vi+1/2,`+1 − κ`−1/2vi−1/2,`−1

)
+ δ`(κ`δ`vi,`)

= δi
(
κ`+1/2E

1/2
i vi,`+1 − κ`−1/2E

−1/2
i vi,`−1

)
+ δ`(κ`δ`vi,`) ,

on applying operator definitions given in Table 1. Define the cell-diffusion
p×p matrix D to encode the operator δ`(κ`δ`·)/d2, and the shifted-diffusivity
p × p matrix K to be zero except Ki,i+1 := κi+1/2/d

2 for i = 1 : p − 1 and
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Kp,1 := κ1/2/d
2. Then the above odes become the vector system (17) with

matrices K̂ := K and Ǩ := KT .

Since Lemma 5 establishes that (13) and (17) are the same, we propose a
patch scheme for the heterogeneous diffusion system (13) of the form

solve (17) for vIi instead of vi, with vIn+1 = E
r
xv
I
1 , vI0 = E

−r
x v

I
n , (18)

as the inter-patch coupling via the edge-values. In the inter-patch coupling
of (18), since the shift Ex describes a macroscale shift of H, the shift Erx
describes a macroscale fractional shift of rH = nd ; that is, Erx describes a
shift over the width of a patch. So Erxv

I
1 shifts each element from the left-

next-to-edge point to the corresponding element on the right edge vIn, and
similarly, E−rx v

I
n shifts from the right-next-to-edge value to the left edge vI0.

The following Theorem 6 justifies the patch scheme (18).

Theorem 6. The macroscale of the patch scheme (18) is consistent with the
microscale dynamics of (17) over the entire spatial domain, and hence with
the ensemble (13).

This theorem may appear almost vacuous as the odes (17) are common
to both parts of the claim. However, the distinction is that the “patch
scheme (18)” has the odes (17) holding only inside small, well-separated,
patches of the spatial domain, whereas the “dynamics of (17)” are to hold
on a lattice over the entire spatial domain. With very different domains,
they are two very different dynamical systems, and so the following proof is
deeper than may be first appear necessary.

Proof of Theorem 6. Consider the vector system (17) on patches coupled by
the interpolation (18). Using Table 1, the system

∂tv
I
i = δi

(
K̂E

1/2
i − ǨE

−1/2
i

)
vIi +Dv

I
i⇐⇒ ∂tv

I
i −Dv

I
i = 2 sinh[d∂x/2]

(
K̂E

1/2
i − ǨE

−1/2
i

)
vIi⇐⇒ (∂t −D)vIi = 2 sinh

[
1
n asinh(δ̄/2)

](
K̂E

1/2
i − ǨE

−1/2
i

)
vIi
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for centred difference δ̄ := E
n/2
i −E

−n/2
i = 2 sinh(nd∂x/2), as the difference is

over a distance ∆ = h = nd . Invoking cognate steps to those of the proof by
Roberts, MacKenzie, and Bunder (2014), let’s invert the operator function
f(δ̄) := 2 sinh

[
1
n asinh(δ̄/2)

]
and write the above dynamical equation as

f−1(∂t −D)vIi

= δ̄
(
K̂E

1/2
i − ǨE

−1/2
i

)
vIi

= E
n/2
i

(
K̂E

1/2
i − ǨE

−1/2
i

)
vIi − E

−n/2
i

(
K̂E

1/2
i − ǨE

−1/2
i

)
vIi

= K̂vIi+n/2+1/2 − Ǩv
I
i+n/2−1/2 − K̂v

I
i−n/2+1/2 + Ǩv

I
i−n/2−1/2 .

Now evaluate this equation at the patch mid-point, i = n/2+ 1/2 (a virtual
mid-point when size n is even), and here define the macroscale VI(t) :=
vIn/2+1/2 ∈ Rp. Hence

f−1(∂t −D)VI

= K̂vIn+1 − Ǩv
I
n − K̂v

I
1 + Ǩv

I
0

= K̂Erxv
I
1 − Ǩv

I
n − K̂v

I
1 + ǨE

−r
x v

I
n (by edge interpolation)

= K̂(Erx − 1)v
I
1 − Ǩ(1− E

−r
x )vIn

= (E
r/2
x − E

−r/2
x )(K̂E

r/2
x v

I
1 − ǨE

−r/2
x vIn) (by commutativity).

The above right-hand side is on the macroscale because it involves the
macroscale inter-patch interpolation via the operator Ex. To compare with the
original system, we transform this macroscale identity back to its equivalent
on the microscale lattice. To do so, notionally evaluate over the microscale

the smooth macroscale interpolation underlying the operators E
±r/2
x so that

for the interpolated field we have E
±r/2
x = E

±n/2
i . Hence, for the smooth

macroscale field from the patch scheme, the above identity becomes

f−1(∂t −D)VI

= (E
n/2
i − E

−n/2
i )(K̂E

n/2
i vI1 − ǨE

−n/2
i vIn)

= δ̄(K̂vIn/2+1 − Ǩv
I
n/2) = δ̄(K̂E

1/2
i − ǨE

−1/2
i )vIn/2+1/2

= δ̄(K̂E
1/2
i − ǨE

−1/2
i )VI .
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Now revert the function f−1, recalling f(δ̄) = δi , to deduce that

(∂t −D)VI = f(δ̄)
[
(K̂E

1/2
i − ǨE

−1/2
i )VI

]
⇐⇒ ∂tV

I = δi
[
(K̂E

1/2
i − ǨE

−1/2
i )VI

]
+DVI. (19)

The operator on the right-hand side is precisely the same as that for the
microscale. Thus, in this patch scheme, the evolution over the macroscale of
the mid-patch values VI are consistent with the microscale evolution (17).

Consequently, any errors in the macroscale of this patch scheme applied
to (13) arise only from errors in the interpolation of the edge values (and
the usual round-off errors).

Corollary 7. The patch scheme (18) (or Section 2.4) applied to the ensem-
ble (13) of the heterogeneous diffusion (2), is consistent with the homogenisa-
tion (16) of the heterogeneous diffusion (2).

Proof. Recall that (13) is an ensemble of p uncoupled, phase-shifted, copies
of the heterogeneous diffusion (2). So the results for (13) apply to (2).
Also, the centre manifold theory supported homogenisation (16) is a ‘pde’
of a superposition, a linear combination, a low-pass filter, of exact solu-
tions of the ensemble (13), and hence of (2). Theorem 6 proves the patch
scheme (18) is consistent with the ensemble (13), and so it is consistent with
the homogenisation (16) of the heterogeneous diffusion (2).

Corollary 8. If the chosen size n of the patches is a multiple of the mi-
croscale periodicity p, then the patch scheme applied directly to the heteroge-
neous diffusion (2) (without the ensemble of phase shifts) is consistent with
the homogenisation of (2).

Proof. Recall that, among the ensemble of phase-shifted diffusivities, vIi,` is
the member with phase φ = (i − `modp). Further recall that coupling is
always between edge fields and next-to-edge fields with the same ` value,
so that vI0,` is computed from interpolations of vJn,`, and vIn+1,` is computed

from interpolations of vJ1,`, for some patches J neighbouring patch I. For
most n the inter-patch coupling (18) couples patches via different phases.
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For example, Figures 8 and 11 with n = 4 and periodicity p = 3 couples the
right-edge field of phase φ = 0 (i = 5 , ` = 2) to the left-next-to-edge fields
of φ = 2 (i = 1 , ` = 2) in neighbouring patches, and the left-edge field of
phase φ = 0 (i = 0 , ` = 0) to the right-next-to-edge fields of φ = 1 (i = 4 ,
` = 0) in neighbouring patches. In general, the inter-patch coupling (18)
for ` = 0 : p − 1 has phase φ on the right-edge of patch I coupled with
phase φ− nmodp left-next-to-edge fields in neighbouring patches, and on
the left-edge of patch I coupled with phase φ+nmodp in right-next-to-edge
fields neighbouring patches. Consequently, in the cases when p divides n
the inter-patch coupling (18) always couples with the same phase from
every patch. In these cases the p phases do not interact with each other.
That is, when p divides n the patch scheme of an ensemble decouples to
p independent equivalent patch systems, and so we need only compute one
of these p systems to obtain the benefits of the ensemble results. Thus,
Corollary 7 assures us that when p divides n the patch scheme applied to
the heterogeneous diffusion (2) is consistent with the homogenisation (16)
of (2).

4 Self-adjoint preserving patch scheme for 2D

Recall that Figure 1 illustrates a patch scheme simulation that provides a
computational homogenisation of the heterogeneous 2D diffusion (1) on a
microscale lattice. We explore the patch scheme applied to (1) as it is the
canonical example of the homogenisation of heterogeneous pdes in multiple
spatial dimensions. We first define how to coupling patches in 2D, confirm
that the 2D patch scheme is self-adjoint, and then verify the accuracy when
using spectral coupling (Section 4.1). For 2D heterogeneous diffusion (1),
patch coupling is constrained in the same way as the 1D heterogeneous
diffusion patch coupling; namely that we require the patch size to be divisible
by the period of the heterogeneous diffusion; but like the 1D case, an ensemble
of phase-shifts relaxes this constraint (Section 4.2). Finally, we prove that
the resultant 2D patch scheme is consistent with the macroscale dynamics
of the original microscale system (Section 4.3). We conjecture there is a
straightforward extension of this patch scheme and theory from 2D to higher
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dimensions.

4.1 Self-adjoint coupling for 2D

Consider the 2D heterogeneous diffusion (1). For this 2D case, we create a
patch scheme using similar parameters to those defined for the 1D case (e.g., d,
H, N, n, r), but now with subscripts x and y to distinguish the parameters for
the x and y directions (Figure 12). The patch scheme divides the 2D domain
of this microscale model into well-separated patches on a macroscale lattice
indexed by (I, J) with macroscale lattice spacing Hx and Hy, as illustrated
by Figures 1 and 12. In the patch scheme, the microscale indices (i, j) index
interior points within a patch by i = 1 : nx and j = 1 : ny . On all such
interior points we apply the 2D heterogeneous diffusion (1) but with the
patch index specified:

∂tu
I,J
i,j =

[
κI,J
i+ 1

2
,j
(uI,Ji+1,j − u

I,J
i,j ) + κ

I,J

i− 1
2
,j
(uI,Ji−1,j − u

I,J
i,j )
]
/d2x

+
[
κI,J
i,j+ 1

2

(uI,Ji,j+1 − u
I,J
i,j ) + κ

I,J

i,j− 1
2

(uI,Ji,j−1 − u
I,J
i,j )
]
/d2y , (20a)

where the diffusivities have lattice periods px and py in the x and y directions,
respectively.

The diffusion equation (20a) requires field values at the edges of every patch,
namely uI,J0,j, u

I,J
nx+1,j

, uI,Ji,0 and uI,Ji,ny+1
for i = 1 : nx and j = 1 : ny . The inter-

patch coupling specifies these edge values. Figure 12 illustrates the 2D patch
coupling across both x (to obtain left and right patch-edge values) and y
(to obtain bottom and top patch-edge values). We implement the following
2D form of the 1D coupling (7) in the x and y directions, respectively:

uI,J0,j =
∑
K

IIK1nx
uK,Jnx,j

and uI,Jny+1,j
=
∑
K

IIKnx1u
K,J
1,j , j = 1 : ny ; (20b)

uI,Ji,0 =
∑
K

J JK1ny
uI,Ki,ny

and uI,Ji,ny+1
=
∑
K

J JKny1
uI,Ki,1 , i = 1 : nx . (20c)

The matrices I and J for x and y coupling, respectively, are the diffusivity
independent matrices of interpolation coefficients and are equivalent to I
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Figure 12: self-adjoint preserving, nearest neighbour (P = 1), coupling of
patches of size 5 × 5 : (left) vertical y coupling; and (right) horizontal x
coupling. Filled triangles/circles are the next-to-edge points whose values are
interpolated to the edge points at unfilled triangles/circles. Interpolation to
a bottom/top edge is from the next-to-edge points with the same horizontal
position on the top/bottom of the near patches above and below, as indicated
by arrows in the left diagram. Similarly for left/right interpolation.

dy

Hy

hy

dxHx hx

for 1D systems defined in Section 2.1, but depend on different size ratios
rx = hx/Hx and ry = hy/Hy , respectively. As in 1D, we choose these
coefficients to implement either spectral coupling (Section 2.2), or Lagrangian
coupling (Section 2.3).

Figure 1 illustrates a patch simulation of the heterogeneous diffusion (20)
for a Gaussian initial condition on a macroscale lattice of 5× 5 patches. The
patches are of size nx = ny = 3 in both directions. The 18microscale diffusion
coefficients κi,j have a period of three in both directions and are independently
and identically distributed log-normally (proportional to exp[2N (0, 1)]). The
patches are coupled via two sets of 1D spectral interpolation (Section 2.2).
From the initially smooth Gaussian, the patch system evolves to a ‘rough’
sub-patch structure that reflects the microscale heterogeneity. Thereafter, the
patch system simulates how the field u diffuses across the domain according
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to an effective macroscale anisotropic homogenisation.

Figure 13 simulates a similar heterogeneous diffusion but with rectangular
patches so that there are geometric differences between the two principal
directions. Here the microscale diffusivities are (to two decimal places)

[
κi+ 1

2
,j

]
=


18.91 1.06 0.63 2.11
4.46 0.72 1.02 1.66
4.89 0.88 1.31 5.79
1.62 2.68 2.32 1.24
0.42 0.88 0.59 1.35

 ,
[
κi,j+ 1

2

]
=


0.48 0.63 1.31 0.51
0.39 10.38 3.07 0.37
2.10 1.74 2.68 1.63
1.20 4.38 0.50 1.02
2.55 1.23 0.33 1.06

 ,
(21)

for microscale periodicities px = nx = 5 and py = ny = 4, with patch
width ratios rx = 0.5 and ry = 0.4 . The qualitative properties of the
patch simulation are like those of Figure 1 albeit here starting from a noisy
initial condition. Such simulations as these are readily performed using our
Matlab/Octave Toolbox (Maclean, Bunder, and Roberts 2020).

Corollary 9 (2D self adjoint). The 2D patch scheme (20) preserves the self-
adjoint symmetry of the 2D heterogeneous diffusion (1) when the patches are
coupled by spectral (Section 2.2) or Lagrangian (Section 2.3) interpolation.

The following proof should generalise by induction to also cover corresponding
patch schemes in multi-D space.

Proof. Let the space H := RnyNy , and form all field values at fixed x,
and all y, into the vectors vIi :=

(
uI,Ji,j , j = 1 : ny , J = 1 : Ny

)
∈ H .

Correspondingly form the diffusivity matrices that operate in the x-direction
as KIi±1/2 := diag

(
κI,J
i±1/2,j , j = 1 : ny , J = 1 : Ny

)
∈ H × H . Then the 2D

heterogeneous diffusion (20a) becomes

∂tv
I
i =

[
KI
i+ 1

2

(vIi+1 − v
I
i) +KIi− 1

2

(vIi−1 − v
I
i)
]
/d2x + LIivIi , (22)

where LIi ∈ H×H is the matrix of y-direction interactions and coupling (20c)
at fixed x. By Lemmas 1 and 3, the LIi are self-adjoint, and so the system-
wide diag

(
LIi , i = 1 : nx , I = 1 : Nx

)
is self-adjoint. The term [· · · ]/d2x

in (22), coupled by (20b), is in a generalised form of the 1D diffusion (3),
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Figure 13: Simulation of 2D heterogeneous diffusion (20) with diffusivi-
ties (21), spectral coupling, and a noisy initial condition.
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and so, by Remark 2 and Lemmas 1 and 3, it also is self-adjoint. Thus (22)
coupled by (20b) is self-adjoint, and hence so is the patch scheme (20).

Numerics verify accuracy of the scheme To verify the accuracy of the
patch scheme we compare the full-space lattice dynamics of heterogeneous
diffusion (1) with the two cases of the corresponding patch scheme (20), for
two size ratios, rx, ry = 0.5 and 0.25. The underlying microscale lattice system
is kept the same across these three cases (the same dx, dy and diffusivities).
We tried dozens of cases where the microscale periodicities divide the patch
sizes, and all verified that the 2D patch scheme with spectral interpolation,
to computer round-off error,

• preserved the self-adjoint symmetry, and

• correctly predicted the (small magnitude) macroscale eigenvalues.

That is, the spectral patch scheme appears to be an accurate computational
homogenisation (as proved subsequently by Corollary 11(b)).

As an example of Lagrangian coupling, let’s continue considering the diffusiv-
ities of (21) with the same parameters. Figure 14 plots relative errors of the
macroscale eigenvalues of the 2D heterogeneous diffusion (20) for Lagrangian
coupling of various orders P. The errors are relative to the accurate spec-
tral coupling. As in the 1D case (Figure 7), Figure 14 shows the expected
exponential decrease in macroscale errors as the coupling order P increases.

4.2 An ensemble of phase-shifts appears accurate

As in Section 2.4 for 1D, simulating over an ensemble of phase-shifts provides
flexibility as then there are no constraints on the size of the patches. Further,
Corollary 7 proves that the 1D patch scheme applied to the ensemble is
consistent to arbitrarily high-order with the homogenisation of the hetero-
geneous diffusion. Here we discuss how to extend the 1D ensemble to the
2D case.

In 2D, the ensemble of all phase shifts of the diffusivities, such as (21), is
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Figure 14: Relative errors of macroscale eigenvalues from Lagrangian
coupling compared to spectral coupling for 2D heterogeneous diffusion (20)
with diffusivities (21) of periodicity px = 5 = nx , py = 4 = ny . Other
patch parameters are Nx = 10, Ny = 11, rx = 0.5 , ry = 0.4 . The right-hand
column lists the eigenvalues from spectral coupling.
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constructed from px phase-shifts in the x directions combined with py phase-
shifts in the y direction, to give a total of p := pxpy members in the ensemble.
For computation we let uI,Ji,j (t) = (uI,Ji,j,0(t), . . . , u

I,J
i,j,p−1(t)) ∈ Rp be the vector

over the ensemble of field values at position (xIi, y
J
j).

The ensemble microscale system within each patch is the odes (20a) for
every member of the ensemble. For the ensemble as a whole (20a) becomes
the system

∂tu
I,J
i,j =

[
KI,J
i+ 1

2
,j
(uI,Ji+1,j − u

I,J
i,j ) +K

I,J

i− 1
2
,j
(uI,Ji−1,j − u

I,J
i,j )
]
/d2x

+
[
KI,J
i,j+ 1

2

(uI,Ji,j+1 − u
I,J
i,j ) +K

I,J

i,j− 1
2

(uI,Ji,j−1 − u
I,J
i,j )
]
/d2y , (23a)

where diffusivity matrices Ki,j := diag
(
κI,Ji,j , in ensemble order

)
.
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Then patches of the ensemble (23a) are coupled by a variant of (20b) and (20c).
Let’s introduce permutation matrices that encode the analogue of the ‘tangle’
of inter-patch communication illustrated by Figure 8. Choose the order
of the ensemble in each patch so that the diffusivities κI,Ji,j are independent
of I, J, which can always be done as all phase-shifts are in the ensemble.
Denote the ensemble vector of diffusivities, in order, on the left patch-
edge to be κl := (κ1/2,j) ∈ Rp, denote those on the right patch-edge by
κr := (κnx+1/2,j) ∈ Rp, and then set the permutation matrix Px such that for
all κi,j the identity κl = Pxκr holds. This permutation matrix then connects
the right-edge values to the left-edge of the appropriate member of the
ensemble. Similarly, set the permutation matrix Py to connect the top-edge
values to the bottom-edge of the appropriate member of the ensemble. Then
the inter-patch coupling conditions for the ensemble are

uI,J0,j = Px
∑
K

IIK1nx
uK,Jnx,j

, uI,Jny+1,j
= P†x

∑
K

IIKnx1u
K,J
1,j , j = 1 : ny ; (23b)

uI,Ji,0 = Py
∑
K

J JK1ny
uI,Ki,ny

, uI,Ji,ny+1
= P†y

∑
K

J JKny1
uI,Ki,1 , i = 1 : nx , (23c)

where coefficients IIJij and J IJij implement, in the x and y directions respec-
tively, either spectral interpolation (Section 2.2) or Lagrangian interpolation
(Section 2.3). Naturally generalising Corollary 9 to vector systems then
asserts that this patch-ensemble system preserves the self-adjoint symmetry
of the microscale heterogeneous diffusion.

Extensions to more space dimensions appear to be straightforward.

Verify accuracy in an example Consider the example of this patch-
ensemble scheme (23), with Lagrangian coupling of order P, applied to the
heterogeneous diffusion with diffusivities (21). The ensemble has p = pxpy =
20 members from all phase-shifts of these diffusivities. Upon numerically
computing the Jacobian of this scheme, Figure 15 plots relative errors of its
macroscale eigenvalues, relative to those for spectral coupling. As before, we
observe the expected exponential decrease in errors with increasing order
of coupling P. In order to compare with Figure 14 with its microscale
spacings dx ≈ 0.063 and dy ≈ 0.057 , we here decreased the width ratios,
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Figure 15: Relative errors of macroscale eigenvalues from Lagrangian
coupling for the 2D heterogeneous diffusion (20a), with periodicity px = 5 ,
py = 4 . We implement the ensemble of all twenty phase-shifts of the
diffusivities (21). Patch parameters are Nx = 10, Ny = 11 , width ratios
rx, ry = 0.1 , and with only nx = ny = 1 . This figure and Figure 14 have the
same microscale diffusion, the same dx and dy. The right-hand column lists
the accurate eigenvalues obtained from spectral coupling.
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and used the smallest possible patch sizes nx, ny = 1 . Figures 14 and 15 are
remarkably similar, although the ensemble here provides a smoother plot
and somewhat smaller errors.

We explored many other parameter choices and observed that the ensemble
always provides error plots similar to Figure 15, but that the single phase error
plots were more variable, with errors in the Lagrangian coupling sometimes
adversely affected by a single large diffusion coefficient.

Figure 16 plots a simulation of the ensemble-mean ū(xIi, y
J
j , t) :=

1
p

∑p−1
`=0 u

I,J
i,j,`(t)

of the patch-ensemble scheme (23) for diffusivities (21)—the 2D heterogeneous
diffusion (1) on patches of the twenty member ensemble of all phase-shifts
of the diffusivities. It used spectral coupling via the Matlab/Octave Tool-
box (Maclean, Bunder, and Roberts 2020). For better visualisation we use
only 5 × 5 patches, with other parameters the same as Figure 14; that is,
nx = 5 , ny = 4 and rx = 0.5 , ry = 0.4 . The initial condition is sinusoidal in
x and y, plus microscale noise. The microscale noise dissipates rapidly so
that by time 0.05 the simulation’s ensemble average is smooth (Figure 16).
In contrast, at time 0.05 the single phase simulation (Figure 13) is ‘rough’
on the microscale, but this roughness is due to the heterogeneous diffusion
rather than the initial disorder.

4.3 This 2D patch scheme is consistent to high-order

In the previous Section 4.2 our 2D patch dynamics scheme is defined in terms
of an ensemble (23) with heterogeneity, defined by K, varying with the spatial
parameters. But for theoretical purposes the ensemble is better formed as
a homogeneous system, as in Section 3 for 1D where the system (13) is
homogeneous in the sense that the diffusion coefficient is independent of the
spatial index.

We now form a 2D homogeneous system ensemble analogous to that of the
1D system of Figure 10. At each point (xi, yj) on the microscale lattice in
space, there are p = pxpy variables forming the ensemble: form them into
vector vi,j(t) ∈ Rp. Let the components of this vector be denoted vi,j,k,`(t)
for k = 0 : nx − 1 , ` = 0 : ny − 1 , and in a suitable order for the ensemble.
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Figure 16: Simulation of 2D heterogeneous diffusion (20) with an ensemble
of diffusion configurations constructed from (21) and spectral coupling.
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ū
(x
,y
,t
)

time = 0.05

0

2

4

6 0
2

4
6

−1

0

1

x
y

ū
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Rewrite the ensemble equations in the form

d2∂tvi,j,k,` = κk+ 1
2
,`(vi+1,j,k+1,` − vi,j,k,`) + κk− 1

2
,`(vi−1,j,k−1,` − vi,j,k,`)

+ κk,`+ 1
2
(vi,j+1,i,`+1 − vi,j,k,`) + κk,`− 1

2
(vi,j−1,i,`−1 − vi,j,k,`) (24)

because then the heterogeneity only varies in k, ` (like index ` in Figure 10 for
the 1D case). Then ui,j(t) := vi,j,i+φ,j+ψ satisfies the original heterogeneous
diffusion (1), but with the diffusivities phase-shifted by φ,ψ, respectively.
That is, the system (24) captures all the p = pxpy phase-shifted versions of
the heterogeneous diffusion (1), but is homogeneous in the spatial indices i, j
and analogous to the homogeneous 1D ensemble system (13).

Now form the vectors vi,j from a suitable ordering of vi,j,k,` so that we can
write (24) in the matrix-vector form

∂tvi,j = δi
(
K̂xE

1/2
i − ǨxE

−1/2
i

)
vi,j + δj

(
K̂yE

1/2
j − ǨyE

−1/2
j

)
vi,j +Dvi,j , (25)

in terms of microscale shifts Ei and Ej, microscale centred differences δi
and δj, some p × p cross-ensemble diffusivity matrix D, and four p × p
off-diagonal diffusivity matrices K̂x , K̂y , Ǩx and Ǩy that are independent of
location i, j. The homogeneous matrix-vector system (25) is the 2D analogue
of the 1D system (17), and is just p phase-shifted copies of the original
heterogeneous diffusion (1).

To proceed to analyse the patch scheme for 2D heterogeneous diffusion, we
apply the patch scheme to the homogeneous (25). So, let vI,Ji,j ∈ Rp denote
the vector of field values at micro-grid point (i, j) in patch (I, J). In the
x, y-directions, respectively, let there be Nx, Ny patches, with spacing Hx, Hy,
and of width hx, hy. Generalising (18) to 2D, apply (25) inside the patches:

∂tv
I,J
i,j = δi

(
K̂xE

1/2
i − ǨxE

−1/2
i

)
vI,Ji,j + δj

(
K̂yE

1/2
j − ǨyE

−1/2
j

)
vI,Ji,j +Dv

I,J
i,j , (26a)

with the inter-patch coupling that the edge-values, for every i, j, I, J,

(Figure 12 right) vI,Jn+1,j = E
rx
x v

I,J
1,j , vI,J0,j = E

−rx
x vI,Jn,j , (26b)

(Figure 12 left) vI,Ji,n+1 = E
ry
y v

I,J
i,1 , vI,Ji,0 = E

−ry
y vI,Ji,n . (26c)
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As in Section 3, the operators E±rxx and E
±ry
y are shifts across the patch

widths, and may be realised and approximated by spectral or Lagrangian
interpolation. Then the following generalises Theorem 6 to 2D.

Theorem 10. The macroscale of the patch scheme (26) is consistent with
the microscale dynamics of (25) over the entire spatial domain.

As in Section 3.2, the subtlety here is that (26) holds only inside (small)
patches of space, whereas (25) holds throughout space, thus forming two very
different dynamical systems. The nontrivial challenge is to connect these
two systems.

Proof. In essence, Theorem 10 follows because the proof of Theorem 6 applies
independently to both the x and y directions.

• In the first of two steps, consider the x-direction. In this step, let the
vector wI

i be the vector of values (vI,Ji,j ) ∈ RpnyNy formed over j = 1 : ny
and J = 1 : Ny . Then the system (26) takes the form

∂tw
I
i = δi

(
K̂ ′wI

i+1/2 − Ǩ
′wI

i−1/2

)
+D ′wI

i ,

with D ′wI
i representing the collective over j, J of the y-direction opera-

tor δj
(
K̂yv

I,J
i,j+1/2− Ǩyv

I,J
i,j−1/2

)
+DvI,Ji,j coupled by (26c), and K̂ ′wI

i+1/2−

Ǩ ′wI
i−1/2 representing the collective of K̂xv

I,J
i+1/2,j − Ǩxv

I,J
i−1/2,j. Further,

from (26b), the wI
i-‘patches’ are coupled by

wI
n+1 = E

rx
x w

I
1 and wI

0 = E
−rx
x wI

n .

This wI
i-system of ‘patches’ is of the form for Theorem 6, and hence

the x-direction dynamics are consistent. Specifically, upon defining the
mid-‘patch’ value WI(t) := wI

n̄x
for n̄x := nx/2 + 1/2 , from the last

equation in the proof of Theorem 6 we have

∂tW
I = δi

[
(K̂ ′E

1/2
i − Ǩ ′E

−1/2
i )WI

]
+D ′WI.

That is, upon unpacking the WI variables,

∂tv
I,J
n̄x,j

= δi
[
(K̂xE

1/2
i − ǨxE

−1/2
i )vI,Jn̄x,j

]
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+ δj
(
K̂yv

I,J
n̄x,j+1/2

− Ǩyv
I,J
n̄x,j−1/2

)
+DvI,Jn̄x,j

. (27)

• The second of the two steps is to consider the y-direction. In this step,
let the vector wJ

j be the vector of values (vI,Jn̄x,j
) ∈ RpNx formed over

I = 1 : Nx . Then the system (27) takes the form

∂tw
J
j = δj

(
K̂ ′′wJ

j+1/2 − Ǩ
′′wJ

j−1/2

)
+D ′′wJ

j ,

with D ′′wJ
j representing the collective over I of the x-direction operator[

(K̂xE
1/2
i − ǨxE

−1/2
i )vI,Jn̄x,j

]
+DvI,Jn̄x,j

coupled by (26b), and K̂ ′′wJ
j+1/2 −

Ǩ ′′wJ
j−1/2 representing the collective of K̂yv

I,J
n̄x,j+1/2

− Ǩyv
I,J
n̄x,j−1/2

. Fur-

ther, from (26c), the wJ
j-‘patches’ are coupled by

wJ
n+1 = E

ry
y w

J
1 and wJ

0 = E
−ry
y wJ

n .

This wJ
j-system of ‘patches’ is of the form for Theorem 6, and hence

the y-direction dynamics are consistent. Specifically, upon defining the
mid-‘patch’ value WJ(t) := wJ

n̄y
= vI,Jn̄x,n̄y

for n̄y := ny/2+ 1/2 , from
the last equation in the proof of Theorem 6 we have

∂tW
J = δj

[
(K̂ ′′E

1/2
j − Ǩ ′′E

−1/2
j )WJ

]
+D ′′WJ.

That is, upon unpacking the WJ variables, and defining the mid-patch
value VI,J := vI,Jn̄x,n̄y

,

∂tV
I,J = δj

[
(K̂yE

1/2
j − ǨyE

−1/2
j )VI,J

]
+ δi

[
(K̂xE

1/2
i − ǨxE

−1/2
i )VI,J

]
+DVI,J. (28)

The operator on the right-hand side of (28) is precisely the same as that
for the microscale (25). Thus, in the patch scheme (26), the evolution over
the macroscale of the mid-patch values VI,J are consistent with the entire
domain evolution of (25).

The following Corollary 11 extends to 2D the properties of Corollaries 7
and 8.
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Corollary 11. Consider the heterogeneous diffusion (1) with diffusivities
px, py-periodic in the x, y-directions respectively.

11(a) The patch scheme applied to the ensemble (25) of the heterogeneous
diffusion (1), is consistent with the homogenisation of the heterogeneous
diffusion. (This consistency is illustrated by Figure 15.)

11(b) If the chosen sizes of the patches, nx, ny, are a multiple of the microscale
periodicities, px, py, respectively, then the patch scheme applied to (1)
with only one realisation of the heterogeneity (i.e., without the ensemble)
has macroscale dynamics consistent with the homogenisation of the
heterogeneous diffusion. (This consistency is illustrated by Figure 14.)

Proof of Corollary 11(a). Since (25) is formed of p decoupled copies of (1),
Theorem 10 implies the patch scheme (26) of (25) is thus also consistent
with the original heterogeneous diffusion (1).

Proof of Corollary 11(b). In such scenarios each member of the ensem-
ble (25) decouples from each other. Thus the patch scheme with only one
member of the ensemble, one realisation of the phase-shift in the diffusivi-
ties, has the same macroscale dynamics as the patch scheme applied to the
ensemble, and hence, by Corollary 11(a) is consistent with the heterogeneous
diffusion (1).

5 Conclusion

This article solves a longstanding issue in equation-free macroscale mod-
elling by providing accurate and efficient patch coupling conditions which
preserve self-adjoint symmetry. By preserving symmetries we ensure that
the macroscale model maintains the same conservation laws as the original
microscale model. As the self-adjoint symmetry is controlled by the spatial
coupling, here we have focused only on the spatial (or gap-tooth (Gear, Li,
and Kevrekidis 2003)) implementation of patch dynamics, but full implemen-
tation with both patch coupling in space and projective integration in time
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is straight forward with our Matlab/Octave Toolbox (Roberts, Maclean,
and Bunder 2020).

Theoretical support for our self-adjoint macroscale modelling is provided
in the context of microscale heterogeneous diffusion and its homogenised
dynamics on the macroscale. This is a canonical system for multiscale
modelling with a rich microscale structure, and provides a basis for macroscale
modelling of related but more complex systems. For other linear systems of
no more than second order in space, accurate macroscale models are expected
when implementing the self-adjoint patch coupling exactly as described here,
as shown in the example of a heterogeneous wave (Figure 5) and also shown in
the Matlab/Octave Toolbox (Roberts, Maclean, and Bunder 2020). Further
work is required for self-adjoint modelling of nonlinear problems.

For simulations, this article assumes periodic boundary conditions for the
spatial domain. Adapting patch dynamics for different spatial boundary
conditions is an important future task, and will build upon our current
research concerning patch dynamics for shocks (Maclean et al. 2020). The
multiscale modelling which accurately captures the sharp features on either
side of any shock is expected to be equally effective in capturing boundary
layer phenomena.

In multiscale modelling, an important consideration is how to define suitable
macroscale variables which parameterise the slow manifold evolution. For
the diffusion example considered here, macroscale variables are defined
from averages or point samples of microscale variables, but straight forward
averaging is often not possible in complex systems. For example, a microscale
description of cell dynamics requires parameters to describe cell locations,
velocities and interactions, but the slow macroscale dynamics might be
effectively described by only time and cell distribution (Dsilva et al. 2018).
Current research is designing manifold learning algorithms which apply
on-the-fly simulations to determine low-dimensional parameterisations on
the desired slow manifold, thus efficiently directing the simulation to the
manifold of interest (Pozharskiy et al. 2020). When implemented together,
patch dynamics and manifold learning should provide powerful on-the-fly
computation homogenisation.
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A Macroscale homogenise of 1D diffusion

This is computer algebra script homo1Ddiff.txt for Section 3.1.

1 Comment : Rigorous macrosca le homogenisat ion o f heterogeneous
2 d i f f u s i o n on a l a t t i c e , p−pe r i o d i c . Embed a l l phase s h i f t s ,
3 take Four i e r transform , and cons t ruc t slow mani fo ld and
4 evo lu t i on . Time d e r i v a t i v e s s c a l ed by dˆ2 . AJR, 9/4/2020;
5
6 on div ; o f f a l l f a c ; on r evp r i ;
7 p :=3; % mic ro s ca l e p e r i o d i c i t y
8 matrix z (p+1 ,1) , v (p+1 ,1) , l l (p+1,p+1);
9 operator ka ; % d i f f u s i v i t i e s ka ( j )=kappa { j −1/2}

10 let ka (˜p)=>p ; % opt i ona l example va lue s
11 for j :=1:p do z ( j , 1 ) :=1 ; % keep zero in p+1 element
12 % form matrix o f d i f f u s i o n & s o l v a b i l i t y
13 for j :=2:p do l l ( j , j −1):= l l ( j −1, j ):=ka ( j ) ;
14 for j :=1:p−1 do l l ( j , j ):=−ka ( j )−ka ( j +1);
15 l l (p , p):=−ka(1)−ka (p) $ l l (1 , p):= l l (p ,1 ) := l l (p ,1)+ka (1 ) $
16 for j :=1:p do l l ( j , p+1):= l l (p+1, j ):=−1;
17 wr i t e l l := l l ; % check p r in t
18 l l :=1/ l l $ % form inv e r s e o f d i f f u s i o n & s o l v a b i l i t y
19
20 % macrosca le f i e l d depends upon time
21 depend vv , t ;
22 let df ( vv , t)=>v (p+1 ,1) ;
23 v:=vv∗z ; % i n i t i a l approximation
24
25 % i t e r a t e to t h i s order o f e r r o r
26 let kˆ5=>0;
27 expk:= for n :=0:9 sum (+ i ∗k )ˆn/ f a c t o r i a l (n ) ;
28 exmk:= for n :=0:9 sum (− i ∗k )ˆn/ f a c t o r i a l (n ) ;
29 for i t :=1:9 do begin
30 % compute r e s i d u a l
31 r e s :=−df (v , t ) ; r e s (p+1 ,1):=0;
32 r e s (p ,1 ) := r e s (p ,1)+ka (1 )∗ ( expk∗v(1 ,1)−v (p , 1 ) ) $
33 r e s (1 ,1) := r e s (1 ,1)+ka (1 )∗ ( exmk∗v (p,1)−v ( 1 , 1 ) ) $
34 for j :=1:p−1 do r e s ( j , 1 ) := r e s ( j ,1)+ka ( j +1)∗( expk∗v ( j +1,1)−v ( j , 1 ) ) ;
35 for j :=2:p do r e s ( j , 1 ) := r e s ( j ,1)+ka ( j )∗ ( exmk∗v ( j −1,1)−v ( j , 1 ) ) ;
36 % update f i e l d and evo lu t i on from r e s i d u a l
37 v:=v− l l ∗ r e s ;
38 i f r e s=0∗z then wr i t e ” Success ” , i t := i t +10000;
39 end ;
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40 % wr i t e slow manifo ld and evo lu t i on
41 v:=v ;
42 d2dvvdt :=v (p+1 ,1) ;
43 end ;
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