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Abstract

Narratives tell us about the people, cultures, and time periods in and about
which they were written. Therefore, narrative analysis is a powerful tool
for understanding culture. One way to analyse narratives is through their
social networks, however extracting the network is a complex task. Man-
ually recording characters and their interactions is an accurate, but time
consuming method for narrative social network extraction, however e�cient
automatic extraction methods may introduce errors.

In this thesis, we perform a detailed comparative study of narrative so-
cial network extraction techniques, and investigate the e↵ect the techniques
have on the analysis of the narrative. We use the 1994–2004 television series
Friends as a case study to model and compare extraction techniques. By
designing a simulated social network and observation processes resembling
di↵erent network extraction techniques, we find that automated network ex-
traction methods are reliable for computing many network metrics, but can
distort the clustering coe�cient. Our comparison of extraction techniques
allows for many more narratives to be extracted and analysed e�ciently.

We also analyse and model the social networks of Friends, to gain new
insights into the the series, and what made it successful. We show which
are the most important characters and relationships, and through modelling
social network features we find the most informative features to predict suc-
cess. Our analysis of Friends provides and example and a building block for
deeper understanding about particular narratives and narratives in general.
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Chapter 1

Introduction

“How you doin’?”

Matt LeBlanc as Joey Tribbiani

Season 8, Episode 19

1.1 Overview

Narratives, or stories, are reports of real or fictional events. They can be
presented with words, images, or both, and are an important aspect of human
behaviour. Yuval Noah Harari, in his book Sapiens [61], claims that humans
were able to co-operate in large numbers due to their ability to tell stories
and believe in fiction. Today, narratives are just as crucial, and come in
many di↵erent forms. In Western society it is rare to find someone without
a favourite movie, novel or television series.

We watch and read narratives for many di↵erent reasons. Non-fiction
narratives are informative about historical events, scientific topics and recent
news. Fictional narratives can also tell us about the world around us. For
example, myths and legends from di↵erent cultures inform us about those
cultures, and fictional narratives from di↵erent time periods inform us about
those time periods. Narratives are a powerful way to learn about cultures
because they are enjoyable and memorable.

It follows that being able to understand narratives at a deep level is
advantageous. However, there are more reasons to analyse narratives. While
narrative analysis can help us to understand particular narratives in great
detail, and details of di↵erent cultures and time periods, it can also help
create new narratives, and of better quality.

1



2 Chapter 1. Introduction

Most narratives are primarily about their characters and the relationships
between them. The narrative introduces the characters and we learn about
their interactions. In many cases these characters and interactions define the
narrative. In this way, the social structure contains substantial information
of the narrative, and so it is reasonable to analyse the narrative by analysing
the social structure. An important feature of narratives is their evolution
over time, so we analyse the social structure temporally.

By analysing the social structure of a narrative, we may find information
that is not obvious in its original form. We can also use mathematical and
statistical social network techniques to quantify attributes of the social struc-
ture and to identify trends. We use time windows, such as episodes or seasons
(for a television series), or paragraphs or chapters (for a novel) to capture
the social structure at particular times, and we analyse how relationships
and characters change over the course of the narrative.

From here, we can discover elements of the social structure of a narrative
that makes it particularly successful. We do this by modelling quantitive
features of the relationships and characters in a narrative with some measure
of success, such as the rating of a television series.

Before we can model the ratings and other aspects of a narrative’s social
structure, we must extract and record the social structure from the narrative.
A variety of techniques have been developed, but the e↵ect of the di↵erent
techniques on the analysis of the narrative needs to be considered. In this
thesis we discuss and compare common extraction techniques. In particular,
extracting a social network manually is accurate, but very time consuming.
In contrast, automated network extraction is generally quick, but can intro-
duce errors. We model and compare these errors and find that automated
network extraction is reliable for many narrative analyses.

We use the television situation comedy Friends as a case study for narra-
tive social network analysis. We find new insights into the series, as well as
possible useful insights into narratives in general. For example, we use fea-
tures of social networks of episodes in the series to predict success, and find
the features which increase success. With further analysis of other narrative
social networks, generalisation of our results could lead to improvement in
new and developing narratives. Improving narratives makes them more en-
joyable and memorable, which means they are more likely to stand the test
of time.
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1.2 Preliminary background

In this thesis, we analyse narrative social networks and related extraction
techniques from text. Before outlining the thesis, we present important pre-
liminary background information.

Social networks describe the characters and relationships between char-
acters in narratives. A narrative social network is made up of nodes, which
represent characters, and edges, which represent interactions between char-
acters. In some social networks, the edges are weighted so that they represent
the number of interactions between characters.

An important feature of narratives is their evolution over time. Therefore,
a social networks of a narrative should have a temporal component. We define
social networks temporally by splitting the narrative into time windows. For
example, in a television series, the time windows could be episodes, seasons
or the entire series. For each time window, we have a single set of characters
and interactions, and the time window networks together form the temporal
network.

To extract a social network from a narrative, several methods have been
developed. An accurate, but time-consuming method is to manually watch or
read the narrative and record interactions. We call networks extracted like
this manual networks. Automatic methods are less time consuming, but
can introduce errors. One automatic method is to extract a co-occurrence

network, where an “interaction” is assumed to occur if characters appear
together. For example, in a television show, an interaction could be defined
as characters appearing in the same scene.

Once the network has been extracted, we perform analysis using network
metrics. Network metrics quantitatively describe the network and its charac-
ters. We calculate three types of metrics; global, character and relationship
metrics. Global metrics describe the overall structure of the network, which
can be used to compare di↵erent social networks or changes to temporal net-
works over time. Character metrics measure attributes such as centrality for
each character, which aids analysis of character roles and importance. Rela-
tionship metrics measure the importance of the di↵erent relationships in the
narrative.

As a case study for narrative social network analysis, we use the television
series Friends, which was aired from 1994 to 2004. Friends is a situation
comedy about six “friends” living in Manhattan – Chandler, Joey, Monica,
Phoebe, Rachel and Ross – and their lives, relationships and careers.
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1.3 Summary of thesis

In Chapter 2 we discuss previous works in narrative analysis, particularly
using social networks. We also define social networks and associated metrics
and terms.

In Chapter 3 we describe the process of collecting two datasets of so-
cial networks for the television series Friends ; manual networks and co-

occurrence networks. We use these datasets throughout the thesis.
In Chapter 4 we compare three di↵erent narrative social network extrac-

tion techniques. We simulate social networks for a narrative and extract
three networks from each simulation, based on extraction techniques seen
in the literature. We then compare the extracted networks using network
metrics, and discuss the e↵ect the extraction technique has on the analysis
of the narrative. The content of Chapter 4 has been submitted for a journal.

In Chapter 5 we exhaustively analyse the social networks of Friends. We
examine the television show using the two social network datasets by cal-
culating global, character and edge metrics. We perform univariate analysis
on the network metrics of the series networks, season networks and episode
networks. We also perform bivariate analysis on the network metrics of the
season and episode networks over time. Our analysis leads to interesting in-
sights into the series about the most important characters and relationships.

In Chapter 6 we model the social networks from Friends and their metrics.
First, we attempt to fit simple models to the network datasets, which make
use of the di↵erence in screen-time between the core characters and the other
characters, but find that a suitable model needs to be more complex. We then
fit a stochastic block model, which automatically infers the class structure
on the network.

We also fit linear models to network metrics over time to find patterns
in the data. The patterns we find provide evidence that “the Friends get
less friendly”. Similarly we model the success of the series by fitting a multi-
variate model to the Internet Movie Database rating using episode network
metrics. Our final model shows the relationship between network structure
and narrative success.



Chapter 2

The One With the Background

Information

“They don’t know that we know

they know we know.”

Lisa Kudrow as Phoebe Bu↵ay

Season 5, Episode 14

2.1 Narrative analysis

Quantitative narrative analysis has become increasingly popular in recent
years with the increasing availability of literary works and film and television
scripts online. Narratives can be of the form of films [35, 88, 97, 108, 126],
television shows [21, 30, 84, 89] or novels [24, 43, 65, 76, 83, 94, 125]. Reasons
to analyse these include:

• to gain a deeper understanding of a particular narrative, narratives of
a certain type, or narratives in general;

• to make predictions about what will happen next in a narrative that
has not yet been written or released; or

• to help determine what would improve narratives in the future.

2.1.1 Understanding the narrative

There are several examples of narrative analyses that shed light on particular
narratives in the literature. For example, Min and Park [83] analysed Victor

5
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Hugo’s novel Les Misérables and found how the presence of di↵erent char-
acters and communities a↵ected how happy other characters or communities
were.

Prado et al. [94] analysed Lewis Carroll’s Alice in Wonderland, and the
anonymous La Chanson de Roland. They looked at influential characters at
di↵erent points and discussed the best ways to conduct such analyses. They
find that social networks with a temporal component are more appropriate
for narrative analyses than time-independent networks because they capture
more features.

While these examples focussed on novels, Tan et al. [120] analysed and
compared two scientific fiction television series: Star Trek: The Next Gener-
ation and Stargate SG-1. These series seem similar, however Star Trek ran
for 48 years, compared to Stargate’s 18 years. Tan et al. found that they are
surprisingly similar in the way characters interact with each other, however
new characters in Star Trek were introduced more than they were in Stargate.

Gaining a deeper understanding of particular narratives is also popular
within an online blog context where fans of television shows such as Game
of Thrones [55], Seinfeld [118], The Simpsons [104], Grey’s Anatomy [73]
and Friends [18, 105, 112] are able to visualise data without having detailed
mathematical knowledge. Similarly, films [19, 50, 53] and even plays [59, 129]
have been analysed quantitatively through this media.

Fans of narratives are interested in which characters have the most di-
alogue, and how that changes over time [19, 104, 112, 118]. They want to
know about the most prominent relationships [18, 83], and the sentiment of
the relationships [44, 57, 83, 111] to distinguish between friends and enemies.

Sentiment analysis of narratives has also been used to classify the nar-
ratives based on their emotional arcs [97]. Waumans et al. [125] also use
narrative analysis to classify narratives. They look at how characters inter-
act with each other in novels and attempt to classify the novels into authors,
with reasonably successful results. Alternatively, Luczak-Roesch et al. [74]
created a tool for interactive visualisation of character occurrences in Victo-
rian novels.

Learning more about narratives and mythological characters in general
was the purpose of other narrative analyses in the literature. Mac Carron
and Kenna [75] analysed three fictional narratives based on varying degrees
of facts: Beowulf, Iliad and Táin Bó Cualinge to find the di↵erence be-
tween historical narratives and completely fictional narratives. Similarly in
a seperate article, they analysed viking sagas and compared the characters
and their relationships to real-life relationships [76]. Ricardo et al. [17] also
compared mythological social structures to real-life social structures, using
the characters from the Marvel comic books.
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2.1.2 Making predictions

Another reason to analyse narratives is to make predictions about what will
happen next. This is useful to:

• automatically create or complete narratives to inspire writers [26, 49,
106, 108, 130],

• to allow fans to guess the events of the next season of a television show
[66], or

• to summarise documents, such as film scripts, automatically [30, 35,
47, 58, 113].

In particular, Fortuin et al. [49] used narrative analysis to inspire script-
writers su↵ering from writer’s block. They modelled the sequence of stories
and predicted what sequences might come next. These sequences can act as
suggestions for writers who are struggling to write some parts of their nar-
rative. Their model also generates visualisations, which help provide deeper
understanding to the narrative.

Janosov [66] quantitatively analysed the characters in the television series
Game of Thrones to predict which character would die next, and probabil-
ities that each character would die, based on the first six seasons. This is
interesting for fans of the show waiting for the next season to be released.

Summarising documents automatically is useful for anyone who has to
understand large documents within a time limit. For narratives, automatic
summarisation can help with creating previews and/or synopses of films,
books and television shows. In particular, Gorinski et al. [58] analysed film
scripts to find a logical chain of important events, with the purpose of gen-
erating a shorter version of the script that includes all the important parts.
This allows them to summarise film scripts automatically.

Event prediction in narratives also suggests potential methods for pre-
dicting real-world events from news texts [60, 72].

2.1.3 Improving narratives

Making predictions in narratives means that writers have more ideas at their
fingertips, so they can choose the best direction for their narrative. They can
also focus on perfecting the finer details instead of struggling for ideas, so in
general, narratives may be improved.

Analysing narratives can also indicate what the audience likes in a narra-
tive, and what is missing and needs to be included. For example, researchers
[19, 79, 104] have noticed a di↵erence in the appearance of males and females
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in narratives. For example, Anderson and Daniels [19]. found that in a vast
majority of films, men have at least 60% of the dialogue.

Narrative analysis gives us awareness of issues such as gender imbalance,
which is the first step to addressing the issue. However, in this thesis, we
are interested in the specific field of social network analysis. Many of the
narrative studies in the literature use social networks of characters to analyse
narratives. Before we explain how to analyse narratives using social networks,
we must define a social network and associated concepts.

2.2 Social networks

2.2.1 Social network definitions

A network is defined as a set of nodes (or vertices) V = {1, . . . , n}, some
of which are pairwise connected by edges E = {wij|i, j 2 V }, where n is
the number of nodes in the network [91]. In the field of social network
analysis, nodes will usually represent people or characters, and are often
called “actors”. In narrative social networks, nodes represent characters in
the narrative.

An edge in a social network connects two actors if they share some form of
interaction, such as a friendship. The edges of a social network are generally
called “links”. In narrative social networks, there are many possibilities for
the types of interactions used to define edges.

Here, we focus only on simple, undirected, but weighted networks. A
simple network is one in which a node cannot have an edge to itself, (i.e., no
“self-loops”), and there is at most one edge between each pair of nodes.

Undirected networks have undirected edges which represent interactions
that are mutual for the characters. For example, “character A and character
B are friends” describes a mutual interaction, whereas “character A likes
character B” describes a directed interaction, where the edge would go from
character A to character B.

In a weighted network, each edge has a number associated with it, called
a “weight”. The number could indicate a distance or capacity for the edge.
In many narrative social networks, the weight is a non-negative integer that
represents the number of times characters interact, e.g. the number of times
characters speak to each other.



2.2. Social networks 9

2.2.2 Metric definitions

Let G = (V,E) be a network with nodes

V = {1, . . . , n},

and edge weights
E = {wij 2 N|i, j 2 V, i < j}.

Our networks are undirected, so wij = wji 8i, j 2 V . From this definition,
we define a non-negative edge weight between every pair of nodes. We take
an edge weight of 0 to mean there is no edge. Our networks are loop-free, so
wii = 0 8i 2 V .

A path from node i to node j is a sequence of edges connecting the
nodes. We define a geodesic path between node i and node j by a path that
contains the least number of edges, dij. Note that this definition ignores the
edge weights. In our networks, nodes connected with higher edge weights
are “closer” to each other, so for a weighted shortest path we would use
the reciprocal of the edge weights, however we only use unweighted geodesic
paths in this thesis.

A subgraph of G is a network Gsub = (Vsub, Esub) such that

Vsub ✓ V, and Esub ✓ {wij 2 E|i, j 2 Vsub}.

Finally, we define an adjacency matrix for G as

A = [Aij],

where Aij = wij 2 E, for i, j 2 V .
Here we define the commonly used metrics for narrative social network

analysis. For the following definitions, define the indicator function

I[statement] =

(
1 if statement is true, and

0 if statement is false.

Global metrics

• The size of G is the number of nodes/characters:

|G| = |V | = n.

• The total edge weight of G is the sum of all edge weights:
X

ij

wij.
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• The total number of edges of G is the number of edges with positive
edge weight: X

i<j

I[wij > 0].

• The density of G is the proportion of observed edges:

dens(G) =
2

n(n� 1)

X

i<j

I[wij > 0].

• The average path length of G is the average of the geodesic path lengths
between each pair of nodes:

lG =
2

n(n� 1)

X

i<j

dij.

For an unconnected network (i.e., a network in which there are no paths
between some pairs of nodes), we only calculate and average geodesic
path lengths of nodes that have a path between them.

• The diameter of G is the longest geodesic path:

d = max
i,j2V,dij<1

dij.

• The clustering coe�cient of G is

C(G) =
(number of triangles)⇥ 3

(number of connected triples)
,

where a triangles is three mutually adjacent vertices and a connected
triple is three vertices with at least two edges connecting the three.

• The number of connected components of G is the minimum number
of subgraphs of G where every node in a subgraph is connected (i.e.,
there is at least one path between the nodes) to every other node in
the subgraph by some sequence of edges.

Character metrics

• The degree of node i is the number of adjacent edges:

ki =
X

j

I[wij > 0].
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• The normalised degree of node i is the number of adjacent edges, di-
vided by the maximum possible degree:

normdeg(i) =
1

n� 1

X

j

I[wij > 0].

• The weighted degree of node i is the sum of the weights of the adjacent
edges:

weighteddeg(i) =
X

j

wij.

• The betweenness centrality of node i is

between(i) =
X

s,t

ni
st

gst
,

where ni
st is the number of geodesic paths from node s to t that go

through node i and gst is the total number of geodesic paths from node
s to t.

• The closeness centrality of node i is the inverse of the average length
of geodesic paths from node i:

close(i) =
1P

j dij/n
.

• The eigenvector centrality of node i is the ith element of the eigenvector
corresponding to the largest eigenvalue of the adjacency matrix A of
G.

• The local clustering coe�cient of node i is the proportion of triangles
centred on node i that are closed:

C(i) =
2|{wjk 2 E|j, k 2 Ni, wjk > 0}|

ki(ki � 1)
,

where Ni is the set of nodes connected to node i by an edge (i.e., the
neighbourhood of i) and ki is the number of neighbours of node i (or
unweighted degree). This is sometimes referred to as the transitivity of
node i.
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Relationship metrics

• The edge weight of the edge from node i to node j is wij. In our nar-
rative social network context wij represents the number of interactions
that occur between node i and node j, so it must be a non-negative
integer.

2.3 Social networks in narratives

Narratives are stories about characters and their interactions [58, 83], so it
makes sense to analyse narratives using social networks. In fact, many of the
examples in literature of narrative analysis use social networks.

Some researchers look at global metrics to obtain general results about
the narrative [36, 46, 83, 88]. For example, Chen et al. [36] found that the
social network of Cao Xueqin’s Dream of the Red Chamber exhibits properties
of a scale-free network (the frequency of character degrees follows a power
law) and a small-world network (short average geodesic path length and high
clustering).

Others calculate network metrics and model the networks to compare the
social networks from narratives to other narrative social networks [35, 120,
125], or to real-life social networks [17, 75, 76].

Researchers also investigate the characters in narrative social networks
[11, 21, 24, 36, 94, 120, 126], and underlying class structures of the characters
[30, 56, 74, 127]. In particular, Bost et al. [30] demonstrate methods to
extract the multiple complex storylines from modern television series using
social networks, and show that characters within storylines cluster for the
duration of the storyline.

Other narrative social network literature involves analysis of the relation-
ships between characters [21, 44, 49, 83, 89]. Some of these analyses involve
measures of sentiment, such as Deleris et al.’s analysis of Friends [44], which
focussed on visualising the characters’ relationships. In their social networks
of the Friends characters, edges were labelled with the average sentiment of
the words characters spoke to one-another, i.e., whether they spoke in anger,
disgust, joy, fear or sadness.

The online blog analyses of narratives mirror the formal literature. Many
blogs involving narrative analysis focus on visualising the narrative, and so
social networks are a convenient method [27, 31, 53, 55, 59, 66, 73, 81, 84,
105, 118, 128].
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2.3.1 Temporally-evolving networks

Several studies also discuss the necessity of viewing a social network of a
narrative temporally [11, 21, 30, 94, 127]. Temporal social networks are more
informative than static networks as they incorporate a time component. In
narrative analysis (and many other applications), a static network is not
appropriate because much of the interest is in how the story unfolds and
transforms over time. Most attempts at analysing temporal social networks
involve time windows in which we view the static network over each window,
and observe the changes in these static networks as the time window moves
[13, 30, 69, 83].

When the time window is short, there may not be enough structure for a
decent analysis. However, if the time window is too large, we lose some finer
details about the timing of interactions. Some attempts have been made
to determine the optimal length of time windows [116], but for narrative
analysis, there are some obvious choices. For example, in novels, the time
windows could be paragraphs, pages or chapters. In television series, the time
windows could be scenes, episodes or seasons, which is what we consider here.

2.3.2 Social network extraction

A vital part of narrative social network analysis is extracting the social net-
work from the narrative. A variety of methods have been used to do this in
the literature.

A co-occurrence network is a popular way of automating the extraction
process, where characters “interact” if they appear together in some time
window, e.g., in the same scene [47, 89, 127], book [17, 56], chapter [36, 83, 94]
or within a number of words [24] as each other.

Alternatively, we could define an interaction as a character mentioning
or conversing with another character. Several methods for automating this
process are also under development [12, 34, 38, 44, 46, 62, 65, 101, 125].

Other ways to extract the social network are to do so manually [21, 75,
76], or to use alternative types of “interactions”. For example, Gorinski
and Lapata [58] created a bipartite network for their film analysis, where
nodes are split into two groups; characters and scenes, and edges only go
between groups. Note that this similar to our approach, however we retain
the bipartite information.

We describe extraction methods in more detail in Chapters 3 and 4. In
this study, we extract a co-occurrence social network, and use a previously
manually extracted network, for Friends and use it as a case study for nar-
rative social network analysis.
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2.4 Friends

Friends is an American situation comedy (sitcom) created by David Crane
and Marta Kau↵man, with ten seasons aired from 1994 to 2004. We choose
Friends as a case study for our model because the series is well-known, long-
running and a popular subject and narrative case study amongst researchers
[21, 38, 44, 79, 89].

Friends is known for having six core characters:

• Chandler Bing, played by Matthew Perry,

• Joey Tribbiani, played by Matt LeBlanc,

• Monica Geller (later Bing), played by Courteney Cox,

• Phoebe Bu↵ay, played by Lisa Kudrow,

• Rachel Green, played by Jennifer Aniston, and

• Ross Geller, played by David Schwimmer.

Figure 2.1 shows these six characters underneath the Friends logo. Here,
Rachel appears to be the central character, however our analysis in Chapter 5
shows that this is not the case.

The series takes place in Manhattan, New York City, where the epony-
mous “friends” live. The friends are commonly seen in Monica and Rachel’s
apartment, across the hall in Joey and Chandler’s apartment, or in their
favourite co↵ee shop, “Central Perk”. Throughout the ten seasons, we watch
the friends as they enter new relationships, break-up, start new jobs, quit
old jobs, and many other events along the way.

Whilst Friends has no dominant storylines, there are several recurrent
stories that are built on over the series. One of the most notable storylines
is the intermittent relationship between Ross and Rachel. The producers
intended for this to be the central romance [41], but several other significant
relationships form over the ten seasons. Using social network analysis, we
can verify whether Rachel and Ross remained the central romance. This will
be one of our findings in Chapter 5.

Between 1994 and 2004, when it was being aired, Friends was very popu-
lar. Every season ranked within the top ten of Nielsen ratings for American
primetime television series [2], and ranked first in its eighth season. The se-
ries finale in 2004 was particularly popular, with approximately 52.2 million
American viewers [67]. In fact, it had the 5th highest viewer rating for any
series finale as of 2015.
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Figure 2.1: Image of the Friends logo, and the six core characters: Phoebe
(top left), Ross (top middle), Monica (top right), Chandler (bottom left),
Rachel (bottom middle) and Joey (bottom right) [5].

More recently, Friends has arrived on television streaming services such
as Netflix [42] and Stan [4] (in Australia). Through these services, Friends
is reaching a whole new generation, and hence it remains very popular [117].

Friends has been the subject of several narrative network case studies
[38, 44, 89], and some in-depth analysis [21, 79]. Marshall [79] analysed
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representations of friendship, gender, race and class in the series in his thesis,
whereas Quaglio [95] analysed the language used in the series and compared
it to natural conversation language.

Bazzan [21] manually created a temporal social network for the entire
series of Friends, and analysed it using global, character and relationship
metrics, and looked at how di↵erent clustering methods perform on the net-
works. We perform similar metric analyses with a di↵erent dataset represent-
ing the Friends characters and their interactions in Chapter 5, and extend
the analysis to modelling the network and network features in Chapter 6.

In the next chapter, we describe how we extracted the Friends network
from available resources, and then we will perform analysis and modelling of
the networks and the network’s metrics.



Chapter 3

The One With the Data

Collection

“Now, I need you to be careful

and e�cient. And remember: if

I’m harsh with you, it’s only

because you’re doing it wrong.”

Courtney Cox as Monica Bing

Season 10, Episode 16

3.1 Introduction

Our first step towards analysing a social network is data collection. The
data collection task involves converting a narrative into a social network.
We want the social network to represent the characters of the narrative and
their relationships.

Mathematically, we define a social network G = (V,E) by its nodes V
and edges E. The nodes represent characters in the narrative, and the edges
represent interactions between characters. Here, we extract weighted social
networks, where edges have non-negative integers associated with them, rep-
resenting the number of interactions between characters within the timeframe
of the network.

We have some options as to how we define characters and interactions.
While many characters are obviously characters, some “characters” may not
be considered characters by everyone. For example, pets may interact with
obvious characters, but do they count as characters themselves? Or if obvious
characters talk to their answering machine, does that mean the answering

17
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machine should be considered a character? Therefore we need to carefully
define the characters in the social network.

Similarly, we could define an interaction as a pair of characters having
a conversation, or one character speaking to another character. In the for-
mer case, the interactions are mutual, so the social network is undirected,
whereas in the latter case, the edge would go from the speaking character to
the character being spoken to. Other possibilities for interaction definitions
include; characters are friends, characters touch each other, characters are
in a romantic relationship, or characters appear in the same place as each
other. Hence we must clearly define interactions.

As a case study for narrative social network analysis, we extract social
networks from Friends. The whole series consists of 236 episodes, making up
10 seasons.

Our goal is to analyse the social networks, characters and relationships
in Friends, and how these change throughout the series. Therefore our social
network needs to represent all characters of interest, and the strength of their
relationships as they change over time. For the temporal component of the
analysis, we partition the series into individual episodes and create social
networks for each episode. For season and series time windows, we merge
the relevant episode networks by adding the weights of the edges.

We discuss the elements of di↵erent techniques for social network ex-
traction, and the e↵ect they have on narrative social network analysis, in
Chapter 4, but here we describe how we used two di↵erent methods, man-
ual extraction and co-occurrence extraction, to obtain two datasets of social
networks for Friends.

3.2 Manual network

3.2.1 Motivation

Manual extraction involves the data collector familiarising themselves with
the narrative and recording each character and interaction, however char-
acters and interactions are defined. Additionally, the temporal component
involves recording times of interactions, which could be grouped into scenes
or episodes if the narrative is a movie or television show, or in order of occur-
rence. Manually extracting the social network produces high-quality data,
as it is not necessary to make coarse assumptions that may approximate and
introduce errors.
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3.2.2 Definitions

In the manual dataset of Friends, we define an interaction as two characters
talking (even if one talks and the other listens), touching or making eye
contact as done by Bazzan [21]. Bazzan defines a character as any human or
animal that talks to, touches or looks at any other human or animal. The
characters are checked against the credits and character list on the Internet
Movie Database (IMDb) [1]. Bazzan defines the edge weight as the number
of interactions between two characters in a given time frame. The smallest
time frame is an episode, and the largest is the whole series.

3.2.3 Method

Prof. Ana Bazzan [21] manually collected the data by watching each of the
236 episodes, and it is available at github.com/anabazzan/friends. The
networks are stored as edge lists in a text file, with comments signalling
the season and episode number, as well as any extra information, such as if
the episode is a Thanksgiving or flashback episode. Table 3.1 shows some
features of the manual dataset.

Manual Co-occurrence
Episodes 236 227
Seasons 10 10

Interactions 16569 18574
Interacting pairs 1609 2695

Characters 746 669

Table 3.1: Table of features of manual dataset and co-occurrence dataset
for the social network of Friends.

3.2.4 Issues

Inspection shows that the manual data represents the characters of interest
and their relationships well, and we can be confident that the data is of
high quality. However, there are some disadvantages of obtaining the social
network in this way. The first issue is that the process is time consuming.
Each episode of Friends is approximately 22–23 minutes long, so it takes
approximately 88.5 hours to watch the entire series, let alone the time it takes
to note the interactions, check characters against the credits and correct any
mistakes. This makes manual extraction impractical for analysing a large
corpus of narrative social networks. Other possible issues with this method
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of network extraction are human errors, such as typographical errors, and
the decisions made around “grey areas”. Grey areas could occur in the data
collection when characters almost interact, but not quite, or if it is unclear
who a character is talking to. In these cases, a decision is made as to whether
to include the interaction or not. Although a single person collecting all the
data is more likely to be consistent with such decisions, it is di�cult to be
perfectly consistent, especially over the 88.5 hours of the entire series. Also,
these cases mean that if someone else extracted a network in the same way,
using the same definitions, the resulting network could be di↵erent.

Additionally, the length and type of interactions were not recorded. Al-
though some characters interact hold long conversations and some only make
eye contact for a fraction of a second, each interaction is weighted equally.
We could also have friendly interactions, where characters get along, or hos-
tile interactions where characters are fighting. Manual extraction methods
could include length and type of interaction, however this would increase the
complexity of the task, which would take even longer and could introduce
more errors.

3.3 Co-occurrence network

3.3.1 Motivation

An alternative method to manual extraction is to automate the process.
Di↵erent automated extraction processes make use of di↵erent features of
the characters or network. Some such processes are discussed in Chapter 4.
One way to automate the extraction process is to extract a co-occurrence

network, where an interaction is assumed to occur if characters both appear
within a scene, number of words or other constraint. Beveridge and Shan
[24] extracted a co-occurrence social network from the third book in the
Game of Thrones series: A Storm of Swords by incrementing the edge weight
between two characters whenever their names appeared within 15 words of
each other. Weng et al. [127] used character co-occurrences in scenes to create
social networks of various movies. Min and Park [83] extracted a temporal
social network of Victor Hugo’s Les Misérables based on whether characters
are mentioned in a chapter together. Co-occurrence networks are simple to
extract as scenes and chapters (and character names within them) are easy
for a machine to identify from a television or movie script or the text from a
novel.
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3.3.2 Definitions

For our co-occurrence network of Friends, we define an interaction as two
characters speaking in the same scene. Notice we only count characters
that speak in the scene, as these are the characters that are easily identified
from a script. For this reason, we define characters as anyone or anything
with a speaking role as expressed in the script. In contrast to the manual

networks, here we include characters that talk only to themselves, and also
include objects such as “answering machine” and “oven” as characters if
they make noises written in the script, such as beeping. As in the manual

dataset, the smallest timeframe we have in the co-occurrence dataset is
episodes. Episode networks are combined to form seasons and the overall
series networks.

3.3.3 Method

To extract the co-occurrence network of Friends, we clean the scripts to
identify the scenes and characters speaking in the scenes. We use the cleaned
scripts to create co-occurrence edge lists for each episode, and iteratively
clean any remaining errors in the data. Python [123] code for parsing and
cleaning the scripts and networks is in the Github repository for this thesis:
https://github.com/AdelaideUniversityMathSciences/MediaStudies.

The scripts for each episode are on the fan webpage www.livesinabox.

com/friends/scripts.shtml [6]. We parse the episode script Hypertext
Markup Language (HTML) file to classify each line into;

• Scene (signalling the start of a new scene),

• Title (of the episode),

• Action (of a character),

• Dialogue (beginning with the speaking character),

• Information (signalling the end or the start of the end credits), or

• Not important (information about HTML link, copyright, etc.).

Lines that do not fit into any of these classes are part of the previous line.
Using the classified lines, for each episode we separate the episode into

scenes and each character speaking in the scenes. In the co-occurrence

dataset, the set of characters speaking in a scene creates a fully connected
network (or a clique), so for each pair of characters in a scene, we add one
to their edge weight to signify an interaction. We end up with a weighted

https://github.com/AdelaideUniversityMathSciences/MediaStudies
www.livesinabox.com/friends/scripts.shtml
www.livesinabox.com/friends/scripts.shtml
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Figure 3.1: Example of uncleaned co-occurrence network for Season 4,
Episode 8: The One with Chandler in a Box. The node representing more
than one character is circled in green, the typographical error is circled in
blue and the aliases are circled in orange.

edge list for each episode, where the weights of edges between characters
correspond to how many scenes they co-occurred in.

Once the edge lists have been extracted, we analyse each network for
errors. Figure 3.1 highlights three common errors we encounter;

1. Nodes representing more than one character (circled in green), e.g.
“both”,

2. Typographical errors and misspellings (circled in blue), e.g. “Chandlr”,
and

3. Aliases (circled in orange), e.g. “Tim” = “Doctor”.

Figure 3.1 shows a node labelled “both”. This is not the name of a char-
acter, but represents two characters who speak at once. In this context, we
could take a guess that the two characters represented by “both” are Chan-
dler and Joey, as the apparent character interacts with these two, however
it may not be as obvious simply from the network in every case. We choose
to ignore any “characters” that represent more than one character on the
basis that if a character speaks at the same time as other characters, it is
likely that they have already spoken in the scene, and hence will already be
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counted. If the character does not speak alone in the scene, we assume their
presence in the scene is not important enough to warrant interactions with
every other character.

The node labelled “Chandlr” in Figure 3.1 is a misspelling of the character
Chandler. The scripts we use were manually transcribed by fans of Friends,
so human typographical errors arise. While we can tell that the spelling of
“Chandlr” is very close to Chandler, and “Chandlr” interacts with similar
characters to whom we would expect Chandler to interact with, we cannot
consistently identify typographical errors like this. For example, in Season 2,
Episode 10: The One with Russ, Rachel dates a character named Russ. The
producers intentionally named this character similarly to Ross: Ross and
Russ are comically similar in appearance and persona. Therefore “Russ”
is not a misspelling of Ross, even though it may appear that way without
outside knowledge. Hence, we manually identify these errors by plotting and
looking through each episode network.

Finally, three characters are circled in orange in Figure 3.1, highlight-
ing the issue of aliases. Aliases occur when one character is referred to by
more than one name in the script, for example Jack could be referred to as
“Jack”, “Jack Geller”, “Mr. Geller” or “Ross’s dad”. Once identified, we can
change all of these instances to simply “Jack”. Here, Dr. Timothy Burke is
referred to as “Dr. Timothy Burke”, “Tim” and “Doctor”. We can change
all instances of “Dr. Timothy Burke” to “Tim”, but if we also change all
instances “Doctor” to “Tim”, we could be changing the label of unnamed
doctors in other episodes, even if they aren’t actually Dr. Timothy Burke.
We can either change these instances manually, but here we leave the errors
in the data, assuming they won’t significantly a↵ect the analysis of the social
networks as these cases are rare. Hence for this dataset, we only change
non-generic aliases.

We use regular expressions to deal with the three types of errors. For the
nodes representing more than one characters, we create a list of all instances
of these nodes. After identifying the set of “characters” in a scene, we remove
any names that appear in this list. Similarly for the typographical and alias
errors, we create a regular expression dictionary. The dictionary includes the
name to change, and the preferred name. We refer to this list when we find
the set of characters in the scene and change the names. Although manual
work is sometimes involved in identifying these errors, the process of fixing
the errors (using regular expressions) is automated. The regular expression
dictionary code is in Appendix B.1.

Table 3.1 shows some features of the cleaned co-occurrence dataset.
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3.3.4 Issues

Even after removing nodes that refer to more than one character and chang-
ing the names where there have been typographical or inconsistency errors,
there are some issues with the co-occurrence dataset. Firstly, we are bound
to have missed some of the errors that need changing. Over a total of 227
episodes, checking each one closely for these errors is time consuming, which
defeats the purpose of the automated network. Also, as mentioned, some
aliases are impossible to change automatically, so these errors could still af-
fect the quality of the dataset.

Secondly, the labelling of scenes is not consistent throughout the scripts.
Many scene changes are indicated by a line beginning with

“[Scene: ”,

but some scene changes start with “[Cut ”, “[Time lapse”, “[Flashback”,
etc., and others simply say the new location and the characters that start in
the scene so our scene identification must account for these. With all these
inconsistencies, the task of automatically identifying scene breaks becomes
complex, which creates more room for error. We also include commercial
breaks written into the script as scene changes, even though after the break
the location and time setting may not have changed.

Another issue with the co-occurrence dataset is that we only include
characters that speak in a scene. While most of the important characters
do speak at some point, there are some characters, such as the baby Emma
and Joey and Chandler’s pets Chick and Duck, who certainly interact with
others in some sense, but never speak. We also assume everyone in a scene
interacts with everyone else in a scene, however, a character could have left
the scene by the time another character arrives, so they never actually meet.

Finally, as in the manual data collection, we do not record the length
of scenes, so don’t store information about the length of interactions in the
co-occurrence dataset. This means we could have two characters having
a long conversation, then a third comes along and says one word. Each of
these interactions are weighted equally.

3.4 Overview of network datasets

Table 3.1 shows some features of the manual and co-occurrence datasets.
Notice that there are more episodes in the manual dataset than in the

co-occurrence dataset. This is because the scripts used to create the co-

occurrence networks treated some double episodes as single double-length
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episodes, as they were originally aired. These episodes are sometimes split
into two parts (e.g. The One After the Superbowl: Part 1 and The One After
the Superbowl: Part 2 in Season 2) for reruns and DVD release, and are thus
counted as two individual episodes in the manual dataset. For this reason,
we cannot compare every episode in the two datasets unless we combine the
double episodes in the manual dataset. Throughout the thesis we use the
episode names and numberings from the manual dataset.

Also notice that there are more interactions and interacting pairs in the
co-occurrence dataset than in the manual dataset, but there are fewer
characters in the co-occurrence dataset than the manual dataset. We
discuss these di↵erences in Chapter 5.

3.5 Other data

3.5.1 From the script

Through the automated co-occurrence network extraction from the episode
scripts [6], we also collected

• the number of lines in each episode, where a line is a continuous state-
ment from a single character (or group of characters), and

• the number of words spoken in each episode.

These give indication about the length of character interactions (through the
average words per line for an episode). There are 616665 words and 61026
lines in the whole series. Table 3.2 shows some summary statistics for this
data.

Words Lines Words/line
Minimum 1896.00 176.00 8.09
Maximum 4032.00 402.00 13.54

Mean 2612.99 258.58 10.16

Table 3.2: Table of the minimum, maximum and mean of the number of
words, lines and words per line in each episode of Friends.

3.5.2 From IMDb

We use the code in GitHub to scrape IMDb [1] for the
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• title,

• rating (out of 10), and

• number of people who gave ratings

for each episode. Viewers can rate each episode by logging into their IMDb
account and choosing a number of stars between 1 and 10. The ratings we
collect are the average of viewer ratings for each episode. The rating is a
measure of how successful each episode was, so we model the success of the
series with network metrics in Chapter 6. Table 3.3 shows some summary
statistics for the ratings.

Rating Raters
Minimum 7.30 1864.00
Maximum 9.70 7740.00

Mean 8.52 2442.84

Table 3.3: Table of the minimum, maximum and mean of the average rating
of, and number of people who rated (raters) each episode of Friends on IMDb.

3.6 Conclusion

We extracted two datasets that represent the social networks of Friends
episodes; the manual and the co-occurrence dataset. While the manual

networks show character relationships more precisely, the co-occurrence

networks were extracted automatically. Other automated methods for ex-
tracting a social network from a narrative are available, but it is of interest
to compare how di↵erent extraction techniques a↵ect the network, and hence
the narrative analysis. In the next chapter, we model and compare manual,
co-occurrence and another automated extraction techniques and discuss how
they a↵ect the analysis of the narrative.



Chapter 4

The One With the Comparison

of Network Extraction

Techniques

“Pivot! Pivot! Pivot! Pivot.

Pivot. Pivot.”

David Schwimmer as Ross

Geller

Season 5, Episode 16

4.1 Background

In Chapter 3 we discussed the di�culty of extracting a social network from
a narrative. Manually extracting a social network from any narrative can be
time consuming, so automatic extraction methods of varying complexity have
been developed. However, the e↵ect of di↵erent extraction methods on the
analysis is unknown. In this chapter, we model and compare three extraction
methods for social networks in narratives: manual extraction, automated ex-
traction by co-occurrence, and automated extraction using machine learning.

One of the most problematic aspects of narrative social network analysis is
constructing the network from an unstructured text source such as a script or
novel. Extracting an interaction network from novels is challenging because
the text does not always state who is speaking. Most attempts to match
quoted speech in novels to the character speaking involve Natural Language
Processing (NLP) and/or machine learning techniques [12, 34, 46, 62, 65,
125]. A disadvantage of these techniques is that there is either significant

27
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manual work in identifying aliases of characters, or that the accuracy of
character identification ranges from < 50% to ⇡ 90% [62]. The more manual
work put in at the NLP stage, the more accurate the identification tends to
be. Alternatively, researchers can manually identify the speakers in novels
[11], but this takes substantially longer and is not practical for analysing
large corpora.

Extracting social networks from film or television scripts is almost as
di�cult. The most accurate, but time-consuming, approach is to manually
record interactions between characters [21]. A more scalable approach is to
automatically create a social network from the script of the film or television
show. Scripts necessarily label speakers, but not who each character is speak-
ing to. There are examples of using NLP and machine learning techniques
[37, 38, 44], but again there is a trade-o↵ with the accuracy of identifications.

An alternative automatic method is to extract a co-occurrence network
[47, 66, 89, 127], which infers interactions between characters from the num-
ber of times they appear in a scene together. We can create co-occurrence
networks for novels as well, for example by counting the number of times
characters are mentioned within a number of words of each other [24]. Using
a co-occurrence network presumes that relationship strength can be mea-
sured by the number of times characters share a scene, as opposed to the
number of times characters directly interact. While researchers have investi-
gated the e↵ect of di↵erent types of interactions in real life social networks
[29, 71, 77, 80, 85, 86, 107, 115, 119], to the best of our knowledge, there is no
research into the e↵ect of network extraction methods in narrative analysis.

In this chapter we compare three social network extraction techniques in
the context of television scripts for Friends :

• manual extraction (as in Bazzan [21]),

• extraction using NLP (as in Deleris et al. [44]), and

• co-occurence extraction using scripts.

To compare these techniques we create a model to simulate interactions
in a narrative. Using the simulated interactions, we create and compare
observation networks based on the three extraction techniques. This in sil-
ico model allows us to compare techniques with complete knowledge of the
ground truth. Modelling the narrative also allows us to control and mea-
sure parameters such as the error rate for the NLP method or the number
of scenes for the co-occurrence method. There are inconsistencies in the
naming of characters across our datasets, so the model allows us to com-
pare attributes of individual characters and relationships across the di↵erent
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extraction techniques. We can also simulate more data, which makes our
analyses more powerful. Finally, the model allows our methods to be applied
to a range of narratives, not just the case study we give here.

We use standard network metrics (see Chapter 2) to compare the three
di↵erent network extraction techniques, applied to the characters in the tele-
vision series Friends.

In this chapter we find:

• Co-occurrence networks have higher edge densities than the manually
extracted networks, but the densities are highly correlated between
techniques (the Pearson’s correlation coe�cient is 0.96).

• Centrality measures (degree, betweenness, eigenvector and closeness)
are highly correlated in the manually extracted networks and co-occurrence
and NLP networks, but clustering is not reliable in the automated net-
works.

• Edge weights in the automated networks correlate moderately with the
edge weights in the manually extracted networks (the median Spear-
man’s correlation coe�cient is 0.77 for the co-occurrence networks and
0.80 for the NLP networks).

We conclude that automatically extracted networks – co-occurrence and NLP
networks – give reliable analyses for most global, character, and relationship
metrics, so we recommend extracting narrative social networks in one of these
ways for time e�ciency. If clustering is of high importance in an analysis,
however, manually extracted networks are required.

4.2 Data

Although our findings are partially based on in silico experiments, we use
real data to inform our models and to provide final verification. Details of
the real datasets are in Chapter 3.

We examine three methods to extract social networks from Friends. The
social network describing character relationships are defined by nodes that
represent characters in a chosen time frame (usually an episode or season),
and edges connecting characters who interact. The precise definition of an
interaction varies throughout the literature, but the assumption that char-
acters who interact more have stronger relationships remains constant. Our
goal is to model these relationships. Note that the strength of a relationship
does not imply characters are good friends (despite the name of the series),
as characters can have strong hostile interactions [75, 83].
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The first dataset consists of manually extracted data by Bazzan [21],
described in Chapter 3. While there may be human interpretation errors in
this dataset, this is the most reliable method of extracting the social network.
Therefore, the manual extraction method provides a “gold standard” for the
social networks of the characters. We call the networks from this dataset the
manual networks. The edge weights in the manual networks correspond
to the number of interactions between two characters in a given timeframe.
Table 4.1 shows the number of episodes, interactions, scenes and characters
in each season.

Season Eps Chars Ints Scenes Ints/Ep Scenes/Ep Ints/Scene

1 24 126 2492 364 103.83 15.17 6.85
2 24 107 1815 314 75.62 13.08 5.78
3 25 98 1770 422 70.80 16.88 4.19
4 24 96 1598 438 66.58 18.25 3.65
5 24 92 1786 378 74.42 15.75 4.72
6 25 99 1491 387 59.64 15.48 3.85
7 24 81 1475 402 61.46 16.75 3.67
8 24 110 1220 356 50.83 14.83 3.43
9 24 101 1454 345 60.58 14.38 4.21
10 18 88 1468 238 81.56 13.22 6.17

Table 4.1: Summary of data from manual dataset [21]. For each season we
have the number of episodes (Eps), the number of characters (Chars), the
total number of interactions (Ints), and the number of scenes (Scenes). We
also calculate the number of interactions per episode (Ints/Ep), number of
scenes per episode (Scenes/Ep) and average number of interactions per scene
for each season (Ints/Scene).

Table 4.1 shows there are 24 episodes in most seasons, but 25 episodes
in Season 3 and Season 6 and only 18 episodes in Season 10. Season 1 has
notably more interactions than any other season, possibly due to the need
to establish characters and relationships at the beginning of the series. We
will discuss our findings on trends in network properties over all 10 seasons
in Chapters 5 and 6.

The second dataset contains co-occurrence networks, extracted using
scripts available from a fan website [6], as in Chapter 3.

An NLP network dataset for Friends was not available, but Deleris et
al. [44] provide information about how they extracted the social network,
making use of Chen and Choi’s data [38]. Chen and Choi use NLP techniques
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to identify which character is mentioned when another character says “you”,
“he”, “they”, etc. They estimate their model correctly identifies a character
69.21% of the time. Deleris et al. use “character mention” information to
build a directed social network where the interactions are one of four kinds
of signals:

• Direct Speech (e.g. A talks to B).

• Direct Reference (e.g. A says ‘I like you’ to B).

• Indirect Reference (e.g. A says ‘I like B’).

• Third-Party Reference (e.g. C says ‘A likes B’).

Each of these is an example of a directed interaction from A to B. However, for
the purpose of modelling networks consistently between all three approaches,
we assume all interactions are reciprocated. We call the undirected networks
extracted using this approach the NLP networks.

4.3 Method

4.3.1 Overview

We compare the network extraction methods by simulating narrative social
networks, “extracting” observed networks using the three extraction methods
and comparing these observed networks. We simulate social networks using
a data-driven model. Simulation allows us to generalise the problem to any
narrative that has a similar underlying social network and to generate large
datasets for statistical analyses. The simulation and extraction process is
outlined in Figure 4.1 and the following sections.

We estimate parameters for our model using the manual networks data,
then use the model to simulate nu underlying season networks. For each
season network, we use a random walk process to simulate ns scenes. We
then combine the scenes to form a simulated episode. From each simulated
episode, we extract three observation networks resembling the manual net-
works, co-occurrence networks and NLP networks. We compare these
simulated networks using the network metrics outlined in Section 4.3.6.

4.3.2 Simulate season from data

The first step described by Figure 4.1 is simulating underlying season net-
works from the observed data. To simulate networks we need to model the



32 Chapter 4. Extraction Technique Comparison

Figure 4.1: Flow chart describing the simulation process. We model each
season m in the observed data to simulate underlying season networks U (m,k),
where k = 1, . . . , nu (Section 4.3.2). From each underlying season network

we simulate scene networks G(m,k)
` for ` = 1, . . . , ns (Section 4.3.3). The scene

networks combine to generate episode networks G(m,k) (Section 4.3.4). From
each simulated episode network we extract three observation networks; a
manual network, a co-occurrence network networks and an NLP network
(Section 4.3.5).
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seasons in the manual networks dataset. We want, in addition to edges,
to simulate edge weights, non-negative integers representing the number of
character interactions. We notice there are significant di↵erences between the
way the core characters of Friends (Monica, Rachel, Phoebe, Ross, Chandler
and Joey) interact with each other (average of 81 interactions per pair per
season) and with other characters (average of 0.71 interactions per pair per
season), and the way other characters interact with each other (average of
0.0093 interactions per pair per season). We therefore propose a two-class
Poisson model for each season of the manual networks. More details of the
model selection are in Chapter 6.

Let V (m) =
�
1, . . . , N (m)

 
be the set of characters in Seasonm and w(m)

ij �
0 be the number of interactions between character i and character j in Season
m of the manual networks dataset. We partition V (m) such that

V (m) = Vcore [ V (m)
non-core,

where Vcore contains the 6 core characters who are constant across all seasons,
and V (m)

non-core contains the
�
N (m) � 6

�
non-core characters for Season m.

For the two-class Poisson model, assume each edge weight w(m)
ij in Season

m of the manual networks dataset is a random observation of

W (m)
ij ⇠ Poi

⇣
�(m)
Ci,Cj

⌘
,

where

Ci =

(
1 if i 2 Vcore,

0 if i 2 Vnon-core.

We estimate �(m)
Ci,Cj

using maximum likelihood estimation with the man-

ual network edge weights:

�̂(m)
Ci,Cj

=

8
>>>>>>>><

>>>>>>>>:

P
i<j w

(m)
ij CiCjP

i<j CiCj
if Ci = Cj = 1 (within core class),

P
i<j w

(m)
ij (1� Ci)(1� Cj)P

i<j(1� Ci)(1� Cj)
if Ci = Cj = 0 (within non-core class),

P
i<j w

(m)
ij (Ci + Cj � 2CiCj)P

i<j(Ci + Cj � 2CiCj)
otherwise (between classes).

For each season m we simulate nu season networks

U (m,k) =
�
V (m), E(m,k)

�
,



34 Chapter 4. Extraction Technique Comparison

where k = 1, . . . , nu and

E(m,k) =
n
W (m,k)

ij | i, j 2 V (m), i < j
o
.

Note that each simulation contains all characters V (m) from Season m, but
the edge weights are randomised. We generate random edge weights between
each pair of nodes from the distribution

W (m,k)
ij ⇠ Poi

⇣
�̂(m)
Ci,Cj

⌘
.

This method allows for edges with zero-weights. We take zero-weights to
mean there are no interactions between the characters, which is equivalent
to having no edge between the characters.

4.3.3 Simulate scene from season

Given an underlying season network U (m,k), we wish to sample an episode
network, every episode being a sequence of scenes. Following Fortuin et al.
[49], we define a scene as a story part with a constant set of characters in
a constant location. This approximation allows a consistent comparison be-
tween methods. Each scene also contains a set of interactions, so we can form
a social network for every scene. Interactions within a scene are dependent.
For example, if Joey talks to Monica, it is likely that Monica will then talk
to Joey. We capture this in the model by proposing a random walk model
for interactions in each scene.

The random walk model randomly picks a starting character in V (m),
with probability proportional to the eigenvector centrality of the character
in U (m,k) (see Chapter 2). We use eigenvector centralities because they are
the steady state probabilities of the random walk system, however other
probability distributions could also be used. The starting character ran-
domly interacts with another character with probability proportional to the
edge weight between the characters. That character randomly interacts with
another character, selected in the same way. The random walk process con-
tinues until we reach nint,` interactions. We choose nint,` based on the average
number of interactions per scene in the data from Table 4.1. The next scene
starts with a new random starting character so that we have a fresh set of
characters in each scene.

Each scene ` consists of a set of characters C(m,k)
` and interactions L(m,k)

` .

Let n(m)
s be the rounded average number of scenes per episode in Season m

from our datasets. We define the network of a scene ` sampled from U (m,k)

as
G(m,k)

` =
⇣
C(m,k)

` , L(m,k)
`

⌘
,
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where ` = 1, . . . , n(m)
s . As shown in Figure 4.1, we independently simulate

ns scenes with the random walk model from each simulated season network
U (m,k), then combine the scenes to generate a random episode.

4.3.4 Generate episode from simulated scenes

We generate an episode by concatenating simulated scenes. An episode sam-
pled from U (m,k) is

G(m,k) =
⇣
G(m,k)

1 , G(m,k)
2 , . . . , G(m,k)

ns

⌘
.

The set of characters in G(m,k) are the union of the sets of characters in
the scenes, i.e.,

Sns

`=1 C
(m,k)
` . The edge weight between character i and j in

G(m,k) is the sum of the interactions between characters i and j in the scene
networks, which is zero if at least one of i or j was not in the scene.

4.3.5 Extract observation networks from simulated episodes

As in Figure 4.1, we extract three observed networks from each simulated
episode G(m,k); a manual network, a co-occurrence network and an NLP

network. We compare these simulated networks using metrics outlined in
Section 4.3.6.

The manual network is built from the actual data so it is assumed to
be 100% correct. Therefore the simulated manual network extracted from
G(m,k) is G(m,k).

The co-occurrence network is obtained by creating a clique for the char-
acters in each scene. We add clique networks so that edge weights correspond
to the number of scenes two characters are in together, as they would be in
the automated process.

The NLP network counts interactions similarly to the manual network,
however it simulates NLP by including errors in the identification of charac-
ters. We model these errors by assuming:

1. One character (the speaking character) has been identified correctly,
but the character being spoken to may be misidentified with probability
q.

2. An incorrectly identified character is equally likely to be any character
in the episode except the speaking character or correct character.

Chen and Choi [38] obtained a “purity score” of 69.21% in their analysis of
Friends, which they describe as the e↵ective accuracy of character identifi-
cation and hence we set q = 0.3. The impact of q as it changes is a potential
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direction for future work. We call the process of incorrect character identifi-
cation “rewiring”.

In practice, the definition of an interaction (and hence edge weight) di↵ers
in NLP networks compared to manual networks. In the manual networks
an interaction occurs between two characters who see, talk to or touch each
other, whereas an interaction in the NLP networks occurs when two charac-
ters talk to, mention or refer to each other. We do not have this information
in the manual networks, so we assume that characters seeing and touching
each other is equivalent to characters mentioning and referring to each other.

4.3.6 Comparing observation networks

To measure how social network extraction method a↵ects narrative anal-
ysis we compare the simulated manual networks with the simulated co-

occurrence and NLP networks, using three types of network metrics, which
are defined in Chapter 2;

1. Global metrics : size, total edge weight, edge density and clustering
coe�cient.

2. Node/character metrics : degree, betweenness centrality, eigenvector
centrality, closeness centrality and local clustering coe�cient.

3. Edge/relationship metrics : edge weights.

These metrics are common in narrative social network analysis, providing
useful insight into social structure and important characters and relation-
ships. The aim is not to compare the observation networks directly, but
to investigate the e↵ect the di↵erent observation types have on the narrative
analysis. Consequently, we are more interested in understanding how metrics
correlate rather than systematic di↵erences in their value.

4.4 Results

We simulate nu = 10000 seasons using the two-class Poisson model on Season
m = 6, as the number of scenes per episode in Season 6 is close to the mean
number of scenes per episode over all ten seasons. Figure 4.2 shows the social
network of interactions from Season 6. From each simulation, we sample
interactions from one episode using random walks for each scene. Table 4.1
shows Season 6 of Friends has 25 episodes, 1491 interactions and 379 scenes.
Therefore the average episode in Season 6 has approximately 60 interactions
and 20 scenes. We set ns = 15 scenes and nint,` = 4 for every scene `.
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Figure 4.2: Network of Season 6 from the manual dataset. The core char-
acters have blue nodes and other characters have red nodes. The width of
the edges represent the edge weight and the size of the nodes represent the
node degree.

From each sample episode network we “extract” the three observation
networks using the methods described in Section 4.3.5 and compare using
the metrics listed in Section 4.3.6. We find that there are di↵erences in the
value of the metrics across observation networks, but the errors are mostly
systematic. While the exact values of metrics can vary across the di↵erent
observation networks, the important features in the narrative analysis (i.e.
the rankings and trends of metrics) would not be greatly a↵ected. The global
metrics of the simulated co-occurrence networks and NLP networks cor-
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relate to those of the associated manual networks. The centrality metrics
(degree, betweenness, eigenvector and closeness centrality) also have high
correlation with the same character metrics across the simulated manual

and random observation networks, but there is wide variance in the correla-
tions of the local clustering coe�cient of characters. The edge weights in the
simulated manual networks also correlate reasonably highly with the edge
weights in the simulated co-occurrence and NLP networks.

4.4.1 Global metric comparison

Global network metrics are useful for understanding characteristics of the so-
cial networks as a whole. These metrics applied to narrative social networks
tell us important information about the number of characters in the narra-
tive and how they interact on average. Popular global metrics for analysing
narrative social networks are the size, total edge weight, edge density and
clustering coe�cient. Figure 4.3 show box plots of the normalised size, total
edge weight, density and clustering for each network type. We normalise size
and total edge by dividing by the maximum over the three network types.

Size

The size of the network in the case of the narrative networks is the number
of characters in the narrative. The manual and co-occurrence networks
have the same number of characters in each simulation by construction of
the model. In the real data, however, it is possible for the co-occurrence

network to miss characters if they interact but don’t speak as they would
not be mentioned in the script. But this is unlikely to cause problems in
the analysis of the social network as characters with important roles are
very likely to speak in a scene. We notice that discrepancies in the size of
the networks in the two datasets were almost always due to di↵erences in
what defines a character. For example “answering machine” is counted as
a character in the co-occurrence dataset, but not in the manual dataset,
and Ross’s monkey Marcel is counted as a character in the manual dataset,
but not the co-occurrence dataset. As the “important” characters are most
likely to be included in both networks, the analysis of the narrative would
not be greatly a↵ected by this.

The size of the NLP network is always equal to or less than the size of
the other networks. This is because our model can only rewire to characters
within the episode, but characters can be excluded if all the edges connected
to that character are rewired away and no edges are rewired back to the
character. This is more likely to happen to characters that are connected to
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Figure 4.3: Box plots of the normalised size (norm-size), normalised total
edge weight (norm-weight), edge density (density) and clustering coe�cients
(clustering) of the manual, co-occurrence and NLP networks from the
10000 simulations. The size and total edge weights are normalised by dividing
by the maximum.

few edges in the first place, and so the e↵ect of the rewiring on the analysis
is minimal.

Total Edge Weight

The total edge weight of our narrative social networks is the total number of
interactions. This is an important metric for analysing how much characters
are seen to interact with each other. Our model for the NLP network only
rewires interactions, so these have the same amount of interactions as the
manual network. In practice there might be discrepancies in total edge
weights due to di↵erent definitions of interactions as discussed in Section 4.2
and Section 4.3.5.

The total edge weight for the co-occurrence networks, however, varies in
di↵erent simulations. The simulated co-occurrence networks have between
10% and 100% more interactions than themanual andNLP networks on av-
erage. It makes sense that the co-occurrence network has more interactions
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because we create a clique with all the characters from each scene. There-
fore when analysing the co-occurrence network we should keep in mind the
total edge weight will be larger than if we had the manual network.

Comparing the manual and co-occurrence network datasets we find
that while the edge weights are generally larger for the co-occurrence net-
work, the di↵erence is not as significant. This could be due to the number of
interactions, and hence characters, that occur in each scene in the model. In
reality there are longer and shorter scenes with a varying number of interac-
tions and characters, but for simplicity this is not reflected in our model.

Edge Density

The edge density of a network indicates what proportion of character pairs
directly interact. Figures 4.3 and 4.4 show that both the co-occurrence

and NLP networks have a higher edge density than the manual networks,
and the co-occurrence networks have higher edge densities than the NLP

networks. Interestingly, it is rare for the simulated NLP network to have
a lower edge density than the simulated manual network even though the
edges are rewired with equal probability to any other character. This occurs
because we only rewire one interaction, not the entire edge with its weight.

However, there is very high correlation between themanual network den-
sity and the other observation networks. Figure 4.4 shows a scatterplot of the
two. The Pearson correlation coe�cient between the simulated manual and
co-occurrence network edge densities is 0.947, and between the simulated
manual and NLP network edge densities is 0.950. This means that while
there is some systematic bias, comparing social networks using relative edge
density is not greatly a↵ected. Importantly, the di↵erent extraction methods
don’t distort trends.

Clustering Coe�cient

Figure 4.3 shows that the simulated co-occurrence networks are more clus-
tered than the simulated manual networks. This is not surprising as forming
cliques for every scene creates clusters. We also notice that the clustering
coe�cients of the simulated NLP networks are distributed similarly to that
of the simulated manual networks.

Figure 4.5 shows a scatterplot of the relationships between the cluster-
ing coe�cients in the simulated manual networks and the simulated co-

occurrence and NLP networks. The increase in clustering from the simu-
latedmanual to co-occurrence network is smaller for more highly clustered
networks. This occurs because if the manual network is already highly clus-
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Figure 4.4: Edge density of the simulated manual network compared to the
simulated co-occurrence (red) and NLP (blue) networks. The dashed line
shows y = x. The R2 value for the co-occurrence networks is 0.898, and
for the NLP networks is 0.903.

tered, forming cliques in every scene will add fewer interactions between char-
acters. Unclustered networks, however, will appear clustered using the co-
occurrence method, so analysis of clustering is not reliable in co-occurrence

networks. This is the largest non-systematic distortion we see across the dif-
ferent techniques.

The clustering coe�cients of the simulated NLP networks are similar to
those of the simulated manual networks (Pearson’s correlation coe�cient of
0.805), but there is some variation due to rewiring interactions. Therefore,
when analysing clustering in the networks, NLP networks are reliable in
general.

4.4.2 Character metrics

Character metrics are used in narrative social network analysis to investigate
the role of each character. Generally narratives are made up of a variety of
characters with di↵erent roles. For example, Agarwal et al. [11] determined
that Alice was the main storyteller in Lewis Carroll’s Alice in Wonderland,
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Figure 4.5: Clustering coe�cient of the simulated manual network contain-
ing all interactions compared to the simulated co-occurrence (red) and
simulated NLP (blue) networks. The dashed line shows y = x. The R2

value for the co-occurrence networks is 0.659, and for the NLP networks
is 0.648.

whereas Mouse’s main role was to introduce other characters to Alice. Sim-
ilarly Bazzan [21] showed that in Friends, while Joey connects many char-
acters, Monica interacts the most with the five other main characters. We
investigate character roles using character metrics in Chapter 6. Degree,
betweenness centrality, eigenvector centrality, closeness centrality and local
clustering coe�cient are commonly used to assess the relative importance of
the characters. We care more about comparisons between characters, e.g.
who is the most central, so we examine the correlation between character
metrics in the di↵erent networks, not the actual values. We use Spearman’s
correlation coe�cient because we are interested in the rankings of importance
of characters. Figure 4.6 shows box plots of these correlations for weighted
degree, betweenness, eigenvector and closeness centrality, and local clustering
coe�cient.
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Figure 4.6: Box plots of the character metric correlations between the simu-
lated manual network and simulated co-occurrence (red) and NLP (blue)
networks from the 10000 simulations.

Weighted Degree

In a narrative social network a character with a high weighted degree is in-
volved with many interactions and hence is very social, so is likely to be a
main character in the narrative. Figure 4.6 shows that there is a high cor-
relation between the weighted degree of characters in all three observation
networks, especially between the NLP and manual networks. This sug-
gests that the observation type does not have a strong e↵ect on the relative
number of interactions each character makes, so while the actual weighted
degree of characters may vary across the di↵erent observation networks, the
importance of characters as measured by the degree will usually remain the
same.
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Betweenness Centrality

In a narrative social network betweenness centrality measures how much
of a “connector” the character is; i.e. to what extent the character con-
nects characters to other characters. Our results show that on average there
is a high correlation between betweenness centralities of the simulated co-

occurrence and NLP network and the simulated manual network, but the
distributions of correlations are negatively skewed, so few simulations have
low and sometimes even negative correlations. Therefore our automatically
extracted networks usually give indication about which characters have high
betweenness scores, but we should be careful to completely trust these.

We see a similar pattern in the data. Figure 4.7 shows the rankings
of betweenness centralities of Joey in the real data for the manual and
co-occurrence season networks. Joey has the highest or second highest
betweenness ranking in every season except Season 1 and Season 4 (and
Season 10 in the co-occurrence network). The rankings of betweenness
centrality for the other core characters are in Appendix A.1. While the exact
value of the centrality may change in the di↵erent datasets, the ranking of
the character is similar, so the analysis of character importance would be
similar also. We analyse the metric di↵erences between the two datasets in
detail in Chapter 5.

Eigenvector Centrality

The eigenvector centrality of a node is similar to the degree, but weights
connections with more highly connected nodes higher. Figure 4.6 shows that
for both the co-occurrence and NLP networks, the eigenvector centrality
scores are very similar to those of the manual network. Similarly to degree,
the importance of characters as measured by the eigenvector centrality is un-
likely to change with the extraction method of the social network, so analysis
results will also not change.

Closeness Centrality

In a narrative social network closeness centrality measures how close (in terms
of geodesics) a character is to all the other characters, which can indicate
whether the character is central to the plot. We find that the correlation be-
tween closeness centralities for characters in the co-occurrence andmanual

networks, and in the NLP and manual networks are quite high. Therefore,
similarly to weighted degree and eigenvector centrality, when analysing a nar-
rative through the closeness centrality of its characters in a co-occurrence

or NLP network, we can be confident in the results.
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Figure 4.7: Betweenness centrality ranks of Joey over the 10 seasons of
Friends for the manual (blue) and co-occurrence (red) network datasets.

Local Clustering Coe�cient

The local clustering coe�cient of a character measures how much a char-
acter is part of a cluster. Figure 4.6 shows that the local clustering coef-
ficient is highly variable in the simulated co-occurrence and NLP net-
works. The correlations between the clustering coe�cients of nodes in the
co-occurrence andmanual networks are moderate and positive on average,
but range from -0.93 to 1. The correlations between the clustering coe�cients
of nodes in the NLP and manual networks are centred higher than the cor-
relations for the co-occurrence networks, but the range is similar.

The large range of correlations show that the random networks do not al-
ways give reliable rankings of character clusterings, so we should not trust au-
tomatically extracted networks when looking at local clustering coe�cients.

4.4.3 Relationship metrics

Similarly to character metrics, we use edge weights to investigate the impor-
tance of relationships between characters. We correlate three sets of edge
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weights to assess the accuracy of di↵erent types of relationship analyses:

1. All weights - including zero weights where there is no edge,

2. Non-zero weights - between characters that interact at least once in at
least one of the networks, and

3. Core weights - between core characters, as these are usually the rela-
tionships we are most interested in.

Figure 4.8 shows the correlations between edge weights for the simulated
co-occurrence and manual networks and simulated NLP and manual

networks. Again, we use Spearman’s correlation coe�cient because we are
interested in rank orderings rather than actual values.
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Figure 4.8: Box plots of the edge weight correlations between the simulated
manual network and simulated co-occurrence (red) and NLP (blue) net-
works from the 10000 simulations.
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All Edge Weights

The correlation between all edge weights in the simulated manual and co-

occurrence networks are high with little variance. There is more spread in
the correlation between edge weights in the simulated NLP and the manual

networks. The high correlations indicate that relationships that are impor-
tant in the manual networks are also important in the co-occurrence and
NLP networks.

Non-zero Edge Weights

Correlations decrease, however, when we exclude edges with zero weights in
both networks. This indicates that while we frequently get the correct set of
interactions, the weights of those that interact are less accurate. The non-
zero edge weight correlations are still high for the simulated co-occurrence

networks, but the correlations vary greatly for the non-zero edge weights
between the simulated NLP and manual networks.

Core Edge Weights

If we only compare the edges between the six core characters, the simulated
NLP networks are more highly correlated with the simulated manual net-
works. This is because the core characters are frequently in scenes together
but do not necessarily interact. This makes inferring the relative strengths
of each relationship di�cult when we only observe who is in the scene (i.e.
from the co-occurrence network), but NLP networks misdirect each inter-
action with the same probability, so edge weights between core characters
are equally likely to be changed.

While the majority of correlations for simulated episodes are medium to
high, the core edge weight correlations for both automatically extracted net-
works vary greatly. Therefore the analysis of relationships should be trusted
more if we compare all characters than if we compare only the core characters.

4.5 Discussion

We modelled and compared three social network extraction methods for nar-
rative analysis; manual extraction, co-occurrence network extraction and
natural language processing (NLP) network extraction. Manual network ex-
traction is time consuming but co-occurrence and NLP techniques introduce
errors.
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Our results show high correlation between the metrics of the manual

networks and the automatically extracted networks, suggesting that for most
narrative analyses we can extract the social network automatically and achieve
similar results to the more time consuming manual extraction. We should,
however, keep in mind that automatic extraction methods introduce some
errors. For most metrics (size, total edge weight, edge density, weighted de-
gree, betweenness centrality, eigenvector centrality and closeness centrality)
these errors will have minimal e↵ects on the comparison of global metrics
over time and the importance of characters. A small set of metrics related
to clustering (global and local clustering coe�cient) are not reliable in the
automatically extracted networks.

The importance of relationships in the automatically extracted networks
correlate with those in the manual networks, however when we look more
closely at relationships between core characters, the automated networks are
not as reliable. The reliability of most narrative analyses using automatically
extracted social networks means we can extract and analyse more social
networks without the high time cost. The more narrative social networks we
extract and analyse, the greater our understanding of narratives, literature
and social structure.

Here we only investigated the e↵ect of the extraction method on the
television show Friends. With these comparison methods in place, one could
check for consistent results in the other television shows and other types of
narratives such as films and novels.

The core group of characters in Friends is intrinsic to the series, but
extending the work to other narratives means we have to identify core char-
acters in those narratives. A stochastic block model [14] could be used here
to automatically identify the core group of characters. It is interesting to
consider how the extraction approach might bias this identification, as some
approaches to find core characters might be perturbed by distortion in clus-
tering.

Also, our model did not take into account variation in scene lengths.
Experimenting with parameters of the model, such as the length and number
of characters in scenes and the error rate of the NLP extraction method could
lead to further results about the quality of social network data as extracted
using automated methods.

Finally, we chose the episode time frame for the social networks somewhat
arbitrarily. In other narratives such a time frame may not exist, so future
work could involve experimenting with di↵erent time frames in the analysis
of narrative social networks.

Now that we understand the di↵erent network extraction types and their
similarities and biases through simulation, we can move to a network anal-
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ysis of the datasets themselves. In the next chapter, we analyse the co-

occurrence and manual datasets and reinforce our findings from this chap-
ter.
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Chapter 5

The One With the Network

Metric Analysis

“Alright, kids, I gotta get to

work. If I don’t input those

numbers. . . it doesn’t make

much of a di↵erence.”

Matthew Perry as Chandler

Bing

Season 1, Episode 1

5.1 Background

In Chapter 4, we compared methods of extracting a social network from a
narrative for the purpose of analysing the narrative. The social network of
a narrative can tell us whether the social structure is similar to real social
networks and who the important characters are, but also features of the
narrative that are not obvious to the regular audience. In this chapter,
we analyse and compare the two datasets representing the characters and
relationships in Friends described in Chapter 3:

• the co-occurrence dataset, where interactions occur when characters
appear in a scene together, and

• the manual dataset, where interactions occur when characters speak
to, touch, or look at each other.

51
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We analyse three types of network metrics; global, character and edge.
We define these metrics in Chapter 2. Global metrics tell us attributes of the
networks as a whole. Character metrics allow us to analyse the importance
of characters with respect to di↵erent measures of importance. Edge weights
represent the strength of relationships between characters.

We analyse the networks using three di↵erent time windows for the tem-
poral component of the television series. A large time window will give
general results about the series as a whole, whereas a small time window will
allow us to analyse specific events throughout the series, and how these events
a↵ect the social network. We use the whole series, seasons and episodes as
time windows in this chapter.

We perform a univariate analysis on both datasets for all time windows
to understand the network structure and importance of characters and rela-
tionships. We also perform bivariate analysis to investigate how the networks
change over time. We compare the temporal network with important events
in Friends. Table 5.1 shows some of the main events that happen in each
season of Friends, many of which can be inferred from inspecting the social
network.

Our main findings are:

• the six core characters and their relationships are the essence of the
series;

• while Chandler and Phoebe were originally meant to be side charac-
ters [41], Chandler becomes the most important character, yet Phoebe
remains the least important; and

• Rachel and Ross’s famous intermittent relationship is not as important
as Chandler and Monica’s relationship.

The first finding is almost trivial to fans and viewers of Friends, however
the last two findings are rather surprising.

5.2 Network visualisation

5.2.1 Series view

The series network contains every character and every interaction throughout
the series. Figures 5.1 and 5.2 show the networks of the entire series of
Friends for the co-occurrence and manual datasets respectively. The blue
nodes represent the core characters: Joey, Phoebe, Monica, Chandler, Rachel
and Ross. The red nodes represent every other character – the non-core
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Season Events
1 Joey and Chandler live together

Rachel moves in with Monica
Ross’s son Ben is born

2 Ross dates Julie, then Rachel
Carol and Susan get married
Monica dates Richard

3 Phoebe meets her half brother, Frank Jr
Rachel quits waitressing
Rachel and Ross have a break

4 Rachel and Ross break up
Ross dates (and almost marries) Emily
Phoebe is surrogate for Frank Jr.’s triplets

5 Monica and Chandler start dating
Rachel is hired by Ralph Lauren
Ross and Rachel marry in Las Vegas

6 Chandler moves in with Monica
Rachel moves in with Phoebe
Ross dates Elizabeth

7 Rachel is promoted and dates Tag
Joey gets re-hired on Days of Our Lives
Monica and Chandler get married

8 Ross and Rachel have a one-night-stand
Ross dates Mona
Rachel gives birth to Emma

9 Chandler is relocated to Tulsa, then quits his job
Phoebe dates Mike
Joey, then Ross dates Charlie

10 Charlie breaks up with Ross
Phoebe and Mike get married
Monica and Chandler adopt twins and move to Westchester

Table 5.1: Timeline of key events in the ten seasons of Friends.

characters. The radii of the nodes are proportional to the weighted node
degrees. Both series networks are laid out using the Fruchterman-Reingold
layout algorithm [52]. This iterative process takes each edge to be a spring
and calculates the attractive forces from edges and the repulsive forces from
other nearby nodes using the node positions from the current iteration, then
adjust the positions accordingly. The edge weights determine the strength
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of each spring, so that characters who interact many times are likely to be
close together in the layout. The edge weights in the static networks are the
number of times the characters interacted over the series.

Figure 5.1: Series network for the co-occurrence dataset. The blue nodes
represent the core characters and the red nodes represent the non-core char-
acters. The radius of the nodes is proportional to the weighted node degree.

Comparing Figure 5.1 and Figure 5.2 shows that both series networks
are centred around the core characters. This is because at least one of the
core characters is part of most of the interactions that occur throughout
the series, so the force network algorithm places them in the centre. The
co-occurrence network appears denser than the manual network with less
nodes of degree 1. We will quantify this in Section 5.3. We also notice that
the manual network contains more non-core characters that interact only
with other non-core characters. This is because it is very unlikely that non-
core characters will be in a scene together without core characters. It is more
likely a non-core character will interact with another non-core character, but



5.2. Network visualisation 55

Figure 5.2: Series network for the manual dataset. The blue nodes represent
the core characters and the red nodes represent the non-core characters. The
radius of the nodes is proportional to the weighted node degree.

never interact with a core character.

5.2.2 Season view

There are 10 seasons of Friends, so the season view of the networks contains
10 networks. Each network is labelled with a season number, and contains
every character and interaction that appears in that season. With the 10 dis-
tinct networks, we can start investigating temporal attributes of the Friends
social network. We also investigate di↵erences in metrics between the entire
series and individual seasons.

Figure 5.3 shows the co-occurrence network for Season 1. As expected,
the core characters (in blue) are central to the season network, and the non-
core characters range in importance. Figure 5.4 shows the manual network
for Season 1. Figures for Seasons 2 to 10 are in Appendix A.2. Compar-
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ing Figure 5.3 and Figure 5.4, the manual network appears to have fewer
connections between non-core characters than the co-occurrence network,
which we quantify in Section 5.4.10, meaning non-core characters are more
likely to be in a scene together than to actually talk to, look at or touch each
other. Also note that there are far fewer characters in the season networks
than the series networks in Figure 5.1 and Figure 5.2, as many characters
don’t appear in Season 1.

Figure 5.3: Season 1 network for the co-occurrence dataset.

5.2.3 Episode view

The episode view is the shortest timeframe we analyse. There are 227 episode
networks in the co-occurrence dataset and 236 episode networks in the
manual dataset. As discussed in Chapter 3, episodes that were originally
aired as single, double-length episodes are counted as a single episode in the
co-occurrence dataset, but two episodes in the manual dataset as they
were presented for re-runs and DVDs.

Figure 5.5 shows the network for Season 9, Episode 13 – The One Where
Monica Sings – for both the co-occurrence and manual networks. Fig-
ure 5.5a and Figure 5.5b are quite similar, but there are inconsistencies in
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Figure 5.4: Season 1 network for the manual dataset.

character names, (e.g. Michelle’s friend is called “Her Friend” in the co-

occurrence dataset, but “Michelle’sfriend” in the manual dataset). There
are also di↵erences in edges where characters share a scene but don’t talk
to, touch or look at each other (e.g. “Sonia” and “Salon Girl” interact in
the co-occurrence dataset, but their equivalent nodes “Sonya” and “Re-
ceptionist 9 13” do not interact in the manual network). Finally, there are
di↵erences in some edge weights between the two datasets. For example, in
the co-occurrence network, Rachel, Molly and Gavin share one scene, so
they form a clique with all edge weights 1. In the manual network, however,
Rachel interacts with Gavin and Molly more than they interact with each
other. We do not yet know how important these di↵erences will be, so we
analyse both datasets.

Visualisations of all manual and co-occurrence episode networks are
presented at https://friends-network.shinyapps.io/ingenuity_app/.

5.3 Global metric univariate analysis

Global metrics give us an understanding of the “big picture” of the social
network. Here we examine the global metrics of the co-occurrence and

https://friends-network.shinyapps.io/ingenuity_app/
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Figure 5.5: Networks of Season 9, Episode 13 – The One Where Monica Sings
for the co-occurrence and manual datasets. This is the 207th episode in
the manual dataset and 200th in the co-occurrence dataset.

manual datasets for three di↵erent timeframes; series view (Table 5.2), sea-
son view (Figure 5.6) and episode view (Figure 5.7). We examine 10 metrics,
which we define in Chapter 2: size, total edge weight, total number of edges,
average edge weight, density, average degree, average path length, diameter,
clustering coe�cient and size of the largest clique.

5.3.1 Size

The manual series network has more characters than the co-occurrence

series network because it includes characters that do not speak, such as
Joey and Chandler’s pets Duck and Chick. The manual network also dis-
tinguishes between unnamed characters, which is discussed further in Sec-
tion 5.4.10.

The size of some of the manual season networks is also larger than the
size of the co-occurrence season networks (Figure 5.6), also due to not
distinguishing between unnamed characters in the co-occurrence networks.
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Co-occurrence Manual
size 671 746

totalEW 18574 16569
totalE 2695 1609
avEW 6.89 10.30
density 0.00599 0.00290
avDeg 8.03 4.31
avPath 2.27 2.59

diameter 4 5
clustering 0.0541 0.0335

clique 13 10

Table 5.2: Table of global metrics: size, total edge weight (totalEW), num-
ber of edges (totalE), average edge weight (avEW), density, average degree
(avDeg), average path length (avPath), diameter, clustering coe�cient (clus-
tering) and size of the largest clique (clique) for the co-occurrence and
manual series networks.

However, the median season network size is smaller in the manual dataset.
At the episode level, the size of the co-occurrence and manual net-

works are similar (Figure 5.7), with 11 characters in the median episode in
both datasets, i.e. the six core characters (Chandler, Joey, Monica, Phoebe,
Rachel and Ross), with five others, as the core characters are in every episode.

5.3.2 Total Edges and Edge Weights

The total edge weight is larger for the co-occurrence series network than
the manual series network, but only by 13% (Table 5.2). The total num-
ber of edges is larger in the co-occurrence series network by 60%, meaning
many more character pairs interact at least once in the co-occurrence net-
work than in the manual network over the series. This is not surprising as
the requirement for “interaction” is more di�cult to achieve in the manual

network, as most of the time when characters talk to, touch or look at each
other, they are in the same scene anyway. The total edge weight is not so
greatly impacted as several interactions can happen in a single scene, but
not necessarily between all pairs of characters.

Similarly, Figure 5.6 shows a large di↵erence in total edges between the
two datasets, and a smaller di↵erence in total edge weights. Figure 5.7 shows
that the distribution of total edges for each episode is centred higher for the
co-occurrence dataset, and there are select episodes that predominantly
add to the total number of edges overall.
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Figure 5.6: Box plots of global metrics: size, total edge weight (totalEW),
number of edges (totalE), average edge weight (avEW), density, average de-
gree (avDeg), average path length (avPath), diameter, clustering coe�cient
(clustering) and size of the largest clique (clique) for the co-occurrence

(blue) and manual (red) season networks.

On the other hand, the average edge weight is larger in the manual series
network compared to the co-occurrence series network. Less character pairs
interact in the co-occurrence network, but of the characters that interact
at some point, their relationships are stronger, with more interactions on
average.

We see this clearly in Figure 5.6, where, apart from one season (Season 8,
which had the lowest average edge weight in both datasets), the average edge
weights of the manual season networks are larger than any of the average
edge weights of the co-occurrence season networks.

Interestingly, the di↵erence is less notable in the episode view (Figure 5.7),
but the average edge weight of the manual episode networks are still larger
than for the co-occurrence networks.
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Figure 5.7: Box plots of global metrics: size, total edge weight (totalEW),
number of edges (totalE), average edge weight (avEW), density, average de-
gree (avDeg), average path length (avPath), diameter, clustering coe�cient
(clustering) and size of the largest clique (clique) for the co-occurrence

(blue) and manual (red) episode networks.

5.3.3 Density

The density of the co-occurrence series network is more than double the
density of the manual static network (Table 5.2) because many characters
that do not directly interact are in scenes together. Both densities are small,
so many character pairs never interact throughout the entire series. We see
in Figure 5.1 and Figure 5.2 that there are many ‘extra’ characters in both
series networks who only interact with one or two characters - leaving possible
connections with every other character absent. This sparsity is normal in
large social networks [91], and especially expected in the series network of a
television show, as many characters appear in only one episode, so never get
the chance to interact with anyone not in the episode.

We also see greater density in the co-occurrence season networks in
Figure 5.6 for the same reason, however the densities in the season networks
are much larger than in the series networks. As the time windows for the
season networks are smaller, there are fewer extras who interact with few
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others, and fewer opportunities for characters to only appear in one episode.
Figure 5.7 further confirms this, as the densities for both datasets at the

episode view are an order of magnitude larger than for the season view. The
di↵erence between edge densities in the co-occurrence episode networks
and manual episode networks is not as large as in the series and season view
case, but the density is still larger on average in the co-occurrence dataset.

5.3.4 Average degree

Similarly to density, the average (unweighted) degree of the co-occurrence

series network is almost double the average degree of the manual network.
The average character in the co-occurrence dataset interacts with approxi-
mately 8 other characters, compared to the 4.31 characters the average char-
acter in the manual dataset interacts with.

Figure 5.6 shows that the range of average degrees in the co-occurrence
season networks is much wider than the range for the manual network.

At the episode level, however, the average degrees in both datasets have
a wide range (Figure 5.7), and while it appears the average degree of the co-
occurrence networks are generally larger than those of the manual episode
networks, the di↵erences are much smaller than for the season and series
views.

We notice that as the time window shrinks, the average degree of the co-
occurrence networks decrease, i.e. as we merge co-occurrence episode
networks together to form season and series networks, the average degree
increases. The average degree in the manual networks, however, remain
reasonably constant in the series, season and episode networks. Figure 5.8
shows box plots of the average degree in the co-occurrence and manual

networks at the series, season and episode views, and also the average degrees
of the core and non-core characters for these time windows.

The average degree of the core characters increases from episode to season
to series view in both datasets as over more episodes, the core characters are
able to interact with more non-core characters than in a single episode. In the
co-occurrence networks, we also see an increase in average degrees of non-
core characters as we increase the time window, but the average degrees of
non-core characters in the manual networks remains constant. The pattern
of non-core character average degrees is similar to the average degree overall
because there are many more non-core characters than core characters. The
co-occurrence networks overestimate the degree of non-core characters be-
cause many non-core characters are in scenes with several other characters,
but only interact with a single character.

Figure 5.8 also provides evidence that the core characters are much more



5.3. Global metric univariate analysis 63

●
●●
●

●

●

●●

●

●

●

●

●

●

●●●●● ●●●●●●

●

●●
●
●
●

●

●
●●●

●

●

●

●

●

●●●●
●
●

●

●

●

●

●●

●

●

●
●

non−core

core

all

Co−occurrenceManual

2.5

5.0

7.5

10.0

0

100

200

300

2.5

5.0

7.5

10.0

12.5

Dataset

Av
er

ag
e 

D
eg

re
e

View
episode

season

series

Figure 5.8: Box plots of the average (unweighted) degree in the co-

occurrence and manual networks at the episode, season and series views
for all characters (all), the core characters (core) and the non-core characters
(non-core).

important than any of the non-core characters, as the average degree of the
core characters is more than that of the non-core characters in both datasets
for all time windows.

5.3.5 Average path length

The average geodesic path length of the co-occurrence series network (2.27)
is slightly smaller than the average path length of the manual series net-
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work (2.59), but both are smaller than many real-world social networks. For
example, Watts and Strogatz [124] find the network of film actors co-starring
in a film has an average path length of 3.65.

Likewise in narrative networks, paths tend to be larger. For example,
Mac Carron and Kenna [76] showed that networks representing the characters
in Icelandic Viking Sagas have mean path lengths between 3.4 and 5.7. The
average path lengths in the social networks of the iconic narratives Beowulf,
Táin Bó Cuailnge and Iliad are 2.37, 2.76 and 3.54 respectively [75]. The
average path length in the co-occurrence series network is smaller than all
of these average path lengths, which suggests the characters appear closer
than we would expect from a social network. The average path length for the
manual social network is similar to that of Beowulf and Táin Bó Cuailnge
social networks, which are on the small side compared to other narrative
social networks. Small average path lengths in narratives that are focused on
a core group of characters, such as Friends, Beowulf and Táin Bó Cuailnge,
could be because most characters are connected through the core group, and
the core group is fully connected.

One technique to asses the suitability of a small world network model
(as described by Watts and Strogatz [124]) is to compare the average path
length of the network with the average path length of a random network with
the same number of nodes and edges. We also compare the clustering of the
original and random network and find that the path length is slightly larger
in the random network, but the clustering coe�cient is much lower. We find
that out of 100 Gilbert-Erdös-Rényi (GER) [48, 54] random networks with
the same number of nodes and edges as the co-occurrence network, the
average of the average path lengths is 3.35, which is slightly larger than the
2.27 from the original co-occurrence network. The average of the average
path lengths out of 100 random networks with the same number of nodes
and edges as the manual network is 4.66, which is 1.8 times the 2.59 from
the original manual network.

The average path lengths in the season networks are similar to the average
path lengths in the series network (Figure 5.6), but at the episode view, the
is a wide range of average path lengths for both datasets, ranging from 1,
to over 2.25 (Figure 5.7). The average path length is generally smaller in
the episode networks because there is usually a single story for an episode,
so most characters are closely related. Characters in di↵erent episodes are
usually linked through one or two core characters at most.
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5.3.6 Diameter

The diameters of the co-occurrence and manual series networks are 4
and 5 respectively (Table 5.2). These agree with previous results in social
networks, known as “six degrees of separation” [68, 82], which says that any
two individuals are connected by at most five others. This concept gives
rise to similar concepts in di↵erent social circles, such as the “six degrees
of Kevin Bacon” [40], which says that nearly every movie actor is no more
than six steps from appearing in a film with Kevin Bacon, and the “Erdős
number” [63], which is the number of co-authorships someone is away from
co-authoring a paper with Paul Erdős. The Friends networks have diameters
smaller than 6 because many characters are connected through at least one of
the six core characters. The show rarely shows characters interacting without
at least one of the core characters being present.

In comparison, the diameters in the social networks of Beowulf, Táin Bó
Cuailnge and Iliad are 6, 7 and 11 respectively [75], even though they have
74, 404 and 716 characters respectively, so the Friends networks have smaller
diameters than other narratives. This alludes to the six core characters being
the main focus of Friends, as most characters are connected through the core
group.

The diameters of the series networks form the maximum of the diameters
for the season and episode networks (Figure 5.6 and Figure 5.7), except
for one episode in the co-occurrence dataset with a diameter of 5. The
co-occurrence episode with diameter 5 is Season 7, Episode 7, and is in
Figure 5.9. Notice that many of the core characters don’t interact, so the
longest path in this episode doesn’t contribute to the longest path in the
Season 7 co-occurrence network, where all the core characters interact.

Excluding Season 7, Episode 7, the episode network diameters range from
1 to 4 for the co-occurrence networks and 1 to 5 for the manual networks.
There is a smaller range in the diameters of the season networks, where
the co-occurrence network diameters are either 3 or 4, and the manual

network diameters are either 4 or 5.

5.3.7 Clustering coe�cient

The clustering coe�cient in the co-occurrence series network, 0.0541, is
larger than the clustering coe�cient in the manual network, 0.0335 (Ta-
ble 5.2), but compared to many real-world social networks and other nar-
rative social networks, both clustering coe�cients are small. For example,
Watts and Strogatz [124] found that the network of film actors co-starring
in a film has a clustering coe�cient of 0.79.
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Figure 5.9: Co-occurrence network for Season 7, Episode 7: The One with
Ross’s Library Book. The longest geodesic path has length 5. One path of
length 5 is between The Colonel and Joey’s Date, which is highlighted in red.

Mac Carron and Kenna [76] showed that networks representing the char-
acters in Icelandic Viking Sagas have clustering coe�cients between 0.4 and
0.6. The clustering coe�cients in the networks for Beowulf, Táin Bó Cuail-
nge and Iliad are 0.69, 0.82 and 0.57 [75]. Bersini et al. [125] extracted social
networks from popular books and found the clustering coe�cients ranged
from 0.21 to 0.54.

The Friends networks have much lower clustering coe�cients because
they are structured di↵erently. Alberich et al. [17] showed the clustering
coe�cient in the Marvel superhero collaboration network is 0.012. This net-
work is more comparable to the Friends networks because it has characters
that are significantly more ‘core’ to the network, and many other characters
are connected through the core characters, as opposed to several groups, or
clusters, which come together to form the whole social network.

We simulate 100 GER random networks with the same number of nodes
and edges as the co-occurrence series network and calculate the mean of
the clustering coe�cients, 0.0122 (compared to 0.0541). We do the same
for the manual networks and get a mean clustering coe�cient of 0.0058
(compared to 0.0335). These random clustering coe�cients are significantly
less than the clustering coe�cients of the original networks (see t-tests in
Appendix B.2), which suggests some small-world network attributes, but the
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di↵erences are not as drastic as one would expect in small-world networks.
There is more clustering in the season networks (Figure 5.6) and the

episode networks (Figure 5.7). As we expect, in the season networks there is
more clustering in the co-occurrence dataset than themanual dataset, but
the di↵erence is less prominent in the episode view. The minimum episode
clustering coe�cient for the co-occurrence dataset is 0.47, which is large for
a random network, but in the reasonable range for other narrative networks.
The minimum episode clustering coe�cient for the manual dataset is 0.25,
which is also in a reasonable range for a narrative, based on Bersini et al.’s
analysis of narrative social networks in novels [125]. The maximum episode
clustering coe�cient in both datasets is 1, which corresponds to a fully con-
nected network. This is large for a social network, but not unexpected in a
small time window such as an episode.

5.3.8 Clique size

The largest clique contains three more characters in the co-occurrence se-
ries network than in the manual social network. There is only one clique
with 10 characters in the manual network. The characters in the largest
clique are the six core characters (Chandler, Joey, Monica, Phoebe, Rachel
and Ross), along with Jack, Judy, Emily and “registrar”. Most of these char-
acters are central to the series, except the registrar who is included in the
largest clique as he interacts with everyone at Ross and Emily’s wedding in
Season 4, Episode 24.

There are two cliques with 13 characters in the co-occurrence network.
Both contain the six core characters. The extra seven characters in one
clique are Uncle Dan, Parker, “man”, “woman”, Jack, Judy and Aunt Lisa.
The other clique contains Judy, Gunther, “guy”, “girl 1”, “girl’s voice”,
Mr. Greene and Mrs. Greene. There is a notable e↵ect of not being able
to distinguish between unnamed characters such as “man” and “woman”
here, but interestingly Judy is the only non-core character in all three largest
cliques.

Figure 5.6 and Figure 5.7 show that the maximum clique size in the
co-occurrence dataset remains the same in the series, season and episode
views. This means that the clique of 13 characters was formed in a single
episode. Based on the characters in the clique, it is not surprising that the
clique of 13 characters was formed in a scene at Ross and Emily’s wedding
in Season 4, Episode 24. In each season of the manual dataset, there are
either 7 or 8 characters in the largest clique. In the episode view, the range
of characters in the largest clique goes from 3 to 8 in the manual dataset,
but 4 to 13 in the co-occurrence dataset.
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5.4 Character metric univariate analysis

5.4.1 Core character metrics

Figure 5.10 shows the character metrics for the six core characters in the
co-occurrence and manual series networks. Many of the character metrics
across the two datasets have systematic di↵erences even though the met-
ric values in each network can di↵er. While the values of the metrics are
interesting, for many character metrics we are more interested in how the
characters score in these metrics compared to the other characters (i.e. to
analyse their “importance”). To investigate the importance of characters,
and to test whether there are also di↵erences in the relative metrics of each
character compared to the other characters, we plot the ranks of each charac-
ter for each of these metrics. Figure 5.11 shows scatterplots of the character
metric rank of each of the core characters in both the co-occurrence and
manual series networks. Trends are visually similar for both methods of
network construction.

We also look at the character metrics for the core characters using the
season and episode time windows. Figure 5.12 shows box plots of the charac-
ter metrics for the six core characters in the co-occurrence season networks,
and Figure 5.13 shows box plots of the character metrics for the core char-
acters in the co-occurrence episode networks. The season and episode box
plots for the core characters in the manual networks are in Appendix A.3.

5.4.2 Degree

The degree of a character in the series network is the number of characters
that interact with at some point in the series. Figure 5.10 shows the core
characters in the co-occurrence networks systematically interact with more
characters than their corresponding characters in themanual networks. This
is not surprising as characters are likely to be in scenes with other characters
that they never talk to, touch or look at, so they form an edge in the co-

occurrence network but not the manual network.
Figure 5.11 shows that the degree ranks of every core character except

for Ross and Joey, who are switched, are the same in the co-occurrence

and manual series networks. Ross co-appears in scenes with more characters
than any of the other core characters, however, Joey directly interacts with
more characters than any other core character. In both datasets, Phoebe is
the least “important” core character, as measured by the degree.

Figure 5.12 shows Ross has the highest degree out of any characters for
a single season, but Figure 5.12 shows Ross and Rachel share the highest
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Figure 5.10: Scatterplots of character metrics: degree (Deg), normalised
weighted degree (normDeg), weighted degree (weightedDeg), betweenness
centrality (between), closeness centrality (close), eigenvector centrality
(eigen), local clustering coe�cient (clustering) and proportion of scenes
(scenes) for the six core characters in the co-occurrence (blue) and manual

(red) series network.
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Figure 5.11: Scatterplots of ranks for character metrics: degree (Deg), nor-
malised weighted degree (normDeg), weighted degree (weightedDeg), be-
tweenness centrality (between), closeness centrality (close), eigenvector cen-
trality (eigen), local clustering coe�cient (clustering) and proportion of
scenes (scenes) for the six core characters in the co-occurrence (blue) and
manual (red) series network.
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Figure 5.12: Box plots of character metrics: degree (Deg), normalised
weighted degree (normDeg), weighted degree (weightedDeg), betweenness
centrality (between), closeness centrality (close), eigenvector centrality
(eigen), local clustering coe�cient (clustering) and proportion of scenes
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Figure 5.13: Box plots of character metrics: degree (Deg), normalised
weighted degree (normDeg), weighted degree (weightedDeg), betweenness
centrality (between), closeness centrality (close), eigenvector centrality
(eigen), local clustering coe�cient (clustering) and proportion of scenes
(scenes) for the six core characters in the co-occurrence episode networks.
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degree for a single episode, but the distribution of degrees for every episode
between the six core characters is quite even.

5.4.3 Normalised weighted degree

The normalised weighted degree of a character in the series network is the
total number of interactions a character makes, divided by the total number
of characters they could interact with (n � 1). In Figure 5.10, we see that
both Chandler and Monica appear in a scene with each character more than
7.5 times on average, whereas Phoebe appears in a scene with each character
less than 7 times on average. The normalised weighted degrees are lower
for the manual network, where Chandler and Monica talk to, touch or look
at every other character about 6.75 times on average, and Phoebe talks to,
touches or looks at every other character less than 6 times on average.

Chandler and Monica have exactly the same normalised weighted degree
in the co-occurrence series network and are both rank 1 (Figure 5.11), but
Monica’s normalised weighted degree is slightly higher than Chandler’s in
the manual series network. As in the degree case, Phoebe has the lowest
normalised weighted degree out of the core characters in both datasets. In-
terestingly, while Ross and Joey interacted with more characters (higher de-
gree), Monica and Chandler interact with each character more times (higher
normalised weighted degree).

In the co-occurrence season networks, Monica has higher normalised
weighted degree than Chandler on average (Figure 5.12), but both charac-
ters still rank the highest and Phoebe remains having the lowest normalised
weighted degree.

Figure 5.13 shows that at an episode level, there is not much di↵erence
in normalised weighted degrees between the core characters, except for a
handful of episodes marked as outliers, where Chandler, Joey and Monica
have much higher normalised weighted degrees than any other characters in
any episode.

5.4.4 Weighted degree

The weighted degree of a character in the series network is the total number of
interactions the character makes in the series. The weighted degree character
ranks are the same as in the normalised case, however Figure 5.10 shows the
gap between metrics in the co-occurrence and manual networks is smaller
in the unnormalised case. This is because we normalise by dividing (roughly)
by the size of the network and there are more characters in themanual series
network.
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The weighted degree of the characters in the co-occurrence season net-
works are also very similar to the normalised case (Figure 5.12), but in the
episode networks, there are more outlier episodes where Chandler, Joey, Mon-
ica, and now Ross have unusually high weighted degrees (Figure 5.13). The
stand-out episode for Ross’s weighted degree did not stand out for his nor-
malised weighted degree because the size of the episode network is large.

5.4.5 Betweenness centrality

The betweenness centrality of a character measures the degree to which the
character lies on the shortest unweighted path between two other characters.
Figure 5.10 shows that the betweenness centralities for the core characters in
themanual network are larger than the betweenness centralities for the same
characters in the co-occurrence network. This is due to the added interac-
tions in the co-occurrence network. There are more shortest paths between
characters so either the core character is no longer on the shortest path, or
is on a smaller proportion of the shortest paths in the co-occurrence series
network.

Figure 5.11 shows that the betweenness ranks for the two highest ranked
and the lowest ranked core characters are the same in both the co-occurrence
and manual series networks. Joey lies on the shortest path between two
characters most often, possibly because of all the characters from his acting
career that only interact with him. Ross interacts at least once with many
characters, as shown by his high degree, but Ross also has the second highest
betweenness centrality score, so is also a connector of characters. The other
core characters are rarely shown interacting with many characters from their
jobs. Monica, for example, has the lowest betweenness centrality score out
of the core group as we rarely see her interacting with characters outside the
core group unless another core character is also present. This agrees with
Bazzan’s argument [21] that Monica is the “mother hen” of the group, as she
interacts many times (as evidenced by her high weighted degree), but rarely
to non-core characters.

Joey’s betweenness centrality is also the highest in the co-occurrence

season networks (Figure 5.12). While Monica has a low betweenness central-
ity for most season networks, there is one outlier season where she has a high
betweenness centrality. Figure 5.13 shows that every character usually has a
low betweenness centrality for every episode in the co-occurrence dataset,
there are significant episodes where some or all of the core characters have
much higher betweenness centralities. Joey and Ross are more likely to have
high betweenness centralities in episodes than the other characters.
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5.4.6 Closeness centrality

The closeness centralities of the core characters in the manual networks are
approximately double the closeness centralities of the characters in the co-

occurrence networks (Figure 5.11). This is the largest systematic di↵erence
between the two datasets for the character metrics. The small closeness
centralities in the co-occurrence network are due to the series network
having more than one component. The shortest path to characters in a
di↵erent component is the size of the network (as defined in Chapter 2), so
the closeness centrality, which takes the reciprocal of the shortest paths, will
be much lower. A scatterplot of the closeness centralities of core characters
in the largest connected component is in Appendix A.4.

The rankings of characters’ closeness centralities are almost identical to
the rankings of characters’ degrees (Figure 5.11), except for Phoebe’s rank
in the manual network, which is equal last with Monica for the closeness
centrality, but exclusively last for the degree. Therefore the analysis of close-
ness centrality rank is identical to the analysis of degree rank in the core
characters for the series view.

Figure 5.12 shows that the rankings for the closeness centralities of the
core characters in the co-occurrence season networks are similar to the
rankings for the series network, but the distributions over the 10 seasons are
very left-skewed. Most closeness centralities are above 0.5 like the closeness
centralities for the manual series network, but there seasons with more than
one component, which decreases the closeness centrality.

Similarly, Figure 5.13 shows that for most episodes, the core characters
have high closeness centralities, but for some episodes (the episodes with
more than one component), the closeness centralities are low.

5.4.7 Eigenvector centrality

The eigenvector centrality, as defined in Chapter 2, measures the importance
of characters based on their interactions to other important characters. Fig-
ure 5.10 shows that Chandler and Monica have the highest eigenvector cen-
tralities in both the co-occurrence and manual series network, similarly to
the weighted degree. This means Chandler and Monica frequently interact
with other characters, especially other important characters such as the core
characters. As Chandler and Monica are a couple from Season 5 until the
end of the series (Table 5.1), it is likely that they interact with each other
often, which could explain their high eigenvector centralities. The eigenvec-
tor centralities of the other four core characters are smaller for the manual

network than for the co-occurrence network, so there is more of a di↵erence
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in their centralities compared to Chandler and Monica’s.
Figure 5.11 shows that Phoebe has the lowest eigenvector centrality out

of the six core characters in both series networks. We combine this results
with the ranks for degree, weighted degree and closeness centrality and find
that Phoebe seems to be the least important of the six core characters.

Chandler and Monica also have the highest eigenvector centralities in the
co-occurrence season and episode networks (Figure 5.12 and Figure 5.13).
At the season level, Ross and Phoebe both have low eigenvector centralities
on average, but all characters have eigenvector centralities above 0.8 in every
season, so are still highly central. At the episode level, the core characters
usually have high eigenvector centralities, but there are many episodes where
the core characters have low eigenvector centralities (less than 0.5). This is
because every core character might not be central to every episode, but over
an entire season, or series, the core characters certainly are the most central.

5.4.8 Clustering

The local clustering coe�cient of a character measures the degree to which
the character is part of a cluster. Figure 5.10 shows the local clustering co-
e�cients are systematically larger for the characters in the co-occurrence

network compared to the manual network. This is because we form clus-
ters when we create cliques out of all the characters in a scene in the co-

occurrence network.
Surprisingly, the local clustering coe�cient ranks of the core characters

are exactly the same for the co-occurrence and manual series networks
(Figure 5.11). The local clustering coe�cient ranks are exactly the opposite
of the degree ranks for the core characters in the manual series network,
which suggests that the characters that have less friends outside of group fit
into clusters better.

In the co-occurrence season networks, Joey and Ross have the lowest
local clustering coe�cients. Notice that Joey and Ross were also the charac-
ters with high betweenness centralities as they interact with many characters
that do not interact with anyone else. These sparse neighbourhoods of Joey
and Ross mean that their clustering coe�cients are low.

The clustering coe�cients for every character are an order of magni-
tude larger than in the series networks (Figure 5.12). Similarly in the co-

occurrence episode networks, every character has generally high local clus-
tering coe�cients (Figure 5.13), meaning the characters that interact with
core characters in each episode often interact with each other too. As we
make cliques out of every scene in the episode, the core characters, who ap-
pear in a high proportion of scenes, are often part of cliques, which contribute
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to their high clustering coe�cients.

5.4.9 Scenes

The proportion of scenes is only collected for the co-occurrence dataset.
Figure 5.10 and Figure 5.11 show Chandler is in the most scenes (44.8%)
and Phoebe is in the least scenes (31.1%) out of the core characters, which
alludes to Chandler being the most important and Phoebe being the least
important core character. The proportion of scenes the characters are in has
similar trends to the eigenvector centralities of characters, but Monica and
Joey swap ranks.

We see similar patterns in the proportion of scenes in the season networks
(Figure 5.12), but overall each character is in a similar proportion of scenes,
with the exception of Phoebe, who is in the smallest proportion of scenes.
For most seasons, each character is in less than half of the scenes.

Figure 5.13 shows that the proportion of scenes the core characters are
in range from less than 0.1 to 1. Ross and Chandler are in every scene
of Season 3, Episode 2: The One Where No One’s Ready. Joey, Monica,
Phoebe, and Rachel are in every scene of Season 8, Episode 9: The One with
the Rumor. These episodes only have 4 and 5 scenes respectively, and every
scene takes place in Monica’s apartment. Every character’s proportion of
scenes is centred between 0.4 and 0.5 for the episode view networks, so apart
from the variation from episode to episode, the core characters get reasonably
equal screen-time.

5.4.10 Non-core character metrics

The core characters are the most important characters in the series by all
measures considered here, but the character metrics for the non-core char-
acters are still of interest. Here, we look at the degree and weighted degree
distributions of the non-core characters for both the co-occurrence series
network and the manual series network.

Figure 5.14 shows the complementary cumulative degree distribution for
the co-occurrence and manual series networks on the log-scale. Note that
for both datasets, the degree distribution is far from the power laws com-
monly found in social networks. The degree of a character is the number
of other characters they interact with over the series. The core characters’
degrees for the series are much larger than the non-core characters’. Both
degree distributions are heavily right skew, but the mode degree in the co-

occurrence network is 3, whereas the mode degree in the the manual net-
work is 1. As suggested in Section 5.2, there are more characters with degree
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1 in the manual network than in the co-occurrence network.
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Figure 5.14: Complementary cumulative degree distribution of Friends char-
acters in the series networks for the co-occurrence dataset and the manual

dataset on the log-scale.

In the co-occurrence series network there is a non-core character with
degree 60. Such a high degree character is not present in the manual net-
work. The character with degree 60 is labelled “Woman”. Many unnamed
women interact with other characters over the series, but the co-occurrence
algorithm doesn’t distinguish between di↵erent women. In the manual

network there are characters such as “Woman 7 7”, who was in Season 7,
Episode 7. We could label each of these non-recurring characters in the co-

occurrence networks similarly, however it is di�cult to recognise whether
a character really is recurring. For example, how do we know the “Direc-
tor” in Season 1, Episode 21 is not the same as the “Director” in Season
2, Episode 13, whereas the “Waiter” in Season 8, Episode 16 is the same
as the “Waiter” in Season 9, Episode 14? Only by manually watching the
series. Similarly, the non-core character with second highest degree (36) in
the co-occurrence network is labelled “Man”.

The highest ranked named characters in both datasets are the same;
Gunther, Jack/Mr. Geller, Judy/Mrs. Geller, and Mike. The high degrees
in the co-occurrence network, however, are higher than in the manual

network.
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Figure 5.14 shows the degree distribution of both datasets on the log-
scale. Again we see that the degrees of characters in manual network is
smaller than in the co-occurrence networks. We also see that the cumu-
lative probability flattens out for the large gap between degrees of core and
non-core characters. The cumulative probability is smaller for the manual

network at this point is smaller than for the co-occurrence because the
six core characters represent a smaller proportion of all characters (i.e., the
manual network has fewer characters).

Figure 5.15 shows the complementary cumulative distribution of weighted
degrees of all non-core characters in the co-occurrence and manual series
networks on the log-scale. The weighted degree distribution is similar to
the degree distribution, but is even more right-skew. The log-scale cumula-
tive distribution appears linear for the non-core characters, which suggests a
power-law weighted degree distribution. However, as in Figure 5.14, there is
a large gap between weighted degrees of core and non-core characters, as the
core characters have much larger weighted degrees than any other characters.
This is similar to the pattern observed by Chen et al. [36] in their analysis
of the social network of Cao Xueqin’s Dream of the Red Chamber .
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Figure 5.15: Complementary cumulative weighted degree distribution of
Friends characters in the series networks for the co-occurrence dataset
and the manual dataset on the log-scale.

Table 5.3 shows the non-core characters with the highest weighted de-
grees in the series networks. Note that Mrs. Geller and Judy are the same
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character, and Mr. Geller and Jack are the same character. Most of the high
degree characters in the manual network match with the high degree char-
acters in the co-occurrence network, even though the weighted degree for
each of these characters is higher in the co-occurrence network than the
manual network. The exceptions to this are “Woman”, who interacts many
times in the co-occurrence network, and “Ben” and “Emma”, who interact
many times in the manual network.

Co-occurrence weights Manual weights
1 Mrs. Geller 303 Judy 182
2 Mr. Geller 296 Mike 181
3 Gunther 234 Jack 180
4 Woman 201 Gunther 109
5 Mike 196 Janice 105
6 Emily 153 Ben 103
7 Carol 148 Carol 97
8 Janice 144 Emma 84

Table 5.3: Table of weighted degrees of the 8 most highly weighted non-core
characters in the co-occurrence and manual static networks for the social
network of Friends.

As discussed, the character “Woman” is usually a di↵erent, unnamed
character every appearance. The co-occurrence doesn’t distinguish be-
tween these characters and so this node in the co-occurrence series network
has a high weighted degree. The unweighted degree of “Woman” is signif-
icantly higher than that of any other non-core character, but she only has
the 5th highest weighted degree. This di↵erence shows that a “Woman” in-
teracts with an unusually large range of characters compared to the number
of interactions she has with each of those characters. This is not surprising
as the node represent di↵erent characters and hence doesn’t have any strong
connections with any other characters. Removing “Woman” from the analy-
sis also removes many single interaction edges, however much of the analysis
is unchanged. Figures and tables of network metrics for the co-occurrence
network with the “Woman” node removed are in Appendix A.5.

Ben and Emma have high weighted degrees in the manual network, but
not the co-occurrence network because they are both babies or young chil-
dren throughout the series. Ben is Ross and Carol’s child, born at the end
of Season 1, and Emma is Ross and Rachel’s child, born at the end of Sea-
son 8 (Table 5.1). Recall the manual network defines an interaction as two
characters talking to, looking at or touching each other. The co-occurrence
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network only observes characters that speak in a scene. Naturally, babies are
the centre of attention for looking at and touching, but they rarely speak, so
are rarely picked up in the co-occurrence networks.

5.5 Edge univariate analysis

The edge weights of the series network allow us to analyse the prominence
of each relationship in Friends. We are particularly interested in the rela-
tionships between the six core characters as the show revolves around them.
Figure 5.16 shows heat maps of the edge weights between the core charac-
ters in the co-occurrence and manual series networks. Note that the heat
maps are symmetric because the networks are undirected. Figure 5.16a and
Figure 5.16b show that the pair with the most interactions for the series
is Monica and Chandler, who are closely followed by Joey and Chandler.
The famous intermittent relationship between Ross and Rachel ranks third
in both datasets in terms of the number of interactions. The least number
of interactions between core characters occur between Chandler and Rachel
and between Phoebe and Ross. We also notice that the manual dataset has
the highest number of interactions in a pair, as well as the least.

Figure 5.17 shows a scatterplot of the edge weights between the core
characters for the co-occurrence and manual series networks. For the
pairs of characters with the largest edge weights; Chandler and Monica,
Chandler and Joey, Ross and Rachel and Monica and Phoebe, there are
more interactions in the manual network than the co-occurrence network.
For the pairs of characters with the smallest edge weights; Chandler and
Rachel and Phoebe and Ross, however, there are more interactions in the
co-occurrence network than the manual network. This could be because
characters who are closer in relationship tend to talk to, touch or look at
each other several times in a scene, which counts as only one interaction in
the co-occurrence, but several interactions in the manual network. On
the other hand, characters who are not as close in relationship may be in a
scene with each other without talking to, touching or looking at each other.

Interestingly, while Joey and Chandler shared an apartment for as long as
Rachel and Monica did, Joey and Chandler shared many more interactions
than Rachel and Monica. It is common for narratives to feature males more
than females [7, 19, 51, 104]. In fact, Allison Bechdel [22] popularised the
term “Bechdel Test” in her comic strip Dykes to Watch Out For in 1985, for
a test measuring the presence of women in films. A film passes the Bechdel
test if it has at least two women in it who talk to each other about something
other than a man. A surprising number of films do not pass this test. The
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Figure 5.16: Heat map of edge weights between core characters (Chandler,
Joey, Monica, Phoebe, Rachel and Ross) for the co-occurrence series net-
work and the manual series network. The edge weight is equivalent to the
number of interactions between the characters throughout the series.
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manual dataset does not contain information about the topic of conversation
between characters, but we know that women in Friends talk to each other.

Co-occurrence Manual Equal
Male-Male (%) 20.83 21.66 20.00

Female-Female (%) 20.88 20.84 20.00
Male-Female (%) 58.29 57.50 60.00

Couples (%) 16.22 17.14 13.33

Table 5.4: Table of percentages of male-male, female-female and male-female
interactions between core characters in the co-occurrence and manual static
networks of Friends, and the percentages if each pair interacted an equal
number of times (Equal). Couple (%) is the percentage of interactions be-
tween either Chandler and Monica or Rachel and Ross.

Table 5.4 shows, however, that the interactions are distributed evenly
amongst males and females in Friends in the co-occurrence dataset, and
only slightly favour males in the manual dataset. In both datasets, the
majority of interactions between the core characters occur between a male
and female character. Compared to the percentage of interactions if all char-
acter pairs interacted equally, the males prefer to interact with males, and
females with females. This is called homophily, and is analysed in depth
in Chapter 6. We also notice that the percentage of male to female inter-
actions is slightly less than it would be if all pairs interacted equally, but
the couples (Chandler and Monica, and Rachel and Ross) interact more, so
unsurprisingly, they dominate the male to female interactions.

Similarly to the analysis of character metrics, we are interested in the
ranking of character relationships over the actual values. Figure 5.18 shows
a scatterplot of the rank of the edge weights of each pair of core characters
in both the co-occurrence and manual series networks. The four highest
ranked relationships are the same for both datasets, and most other di↵er-
ences in ranks across the datasets are only 1. The exceptions are Chandler
and Ross with a di↵erence in rank of 2, and Joey and Rachel and Monica
and Ross, both with di↵erence in ranks of 3, however from Figure 5.17, the
di↵erences in number of interactions between the datasets are not notably
di↵erent.
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Figure 5.17: Scatterplot of edge weights between core characters (C = Chandler, J = Joey, M = Monica, P =
Phoebe, Ra = Rachel and Ro = Ross) for the co-occurrence (red) and manual (blue) series networks. The edge
weight is equivalent to the number of interactions between the characters throughout the series.
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Figure 5.18: Scatterplot of the rank of edge weights between core characters (C = Chandler, J = Joey, M = Monica,
P = Phoebe, Ra = Rachel and Ro = Ross) for the co-occurrence (red) and manual (blue) series networks.
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Figure 5.19 shows box plots of edge weights between every core charac-
ter pair for the co-occurrence season networks. The edge weights for the
manual season networks are in Appendix A.6. Again, Chandler and Joey
and Chandler and Monica seem to be the most prominent pairs in the show,
closely followed by Rachel and Ross. Monica and Rachel interact 138 times
in Season 1, which is the second highest maximum for any pair in a single
season, but they don’t interact as much in the other seasons.

●

60

90

120

150

C&J C&M C&P C&Ra C&Ro J&M J&P J&Ra J&Ro M&P M&Ra M&Ro P&Ra P&Ro Ra&Ro
Character Pair

Ed
ge

 W
ei

gh
t

Figure 5.19: Box plots of edge weights between core characters (C = Chan-
dler, J = Joey, M = Monica, P = Phoebe, Ra = Rachel and Ro = Ross) for
the co-occurrence season networks. The edge weight is equivalent to the
number of interactions between the characters in the season.

Figure 5.20 shows box plots of edge weights between every core charac-
ter pair for the co-occurrence episode networks. The edge weights for the
manual episode networks are in Appendix A.7. The distributions of char-
acter pair edge weights across the episodes are relatively similar, but there
are many unusually high edge weights for most character pairs, with the
exception of Chandler and Phoebe, and Monica and Phoebe. This suggests
that there are various episodes that focus on almost all of the character pairs.
The highest edge weight for a single episode occurs between Rachel and Ross,
which is in line with their intermittent relationship.

We are also interested in relationships between core characters and non-
core characters, as well as between non-core characters. Figure 5.21 shows
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Figure 5.20: Box plots of edge weights between core characters (C = Chan-
dler, J = Joey, M = Monica, P = Phoebe, Ra = Rachel and Ro = Ross) for
the co-occurrence episode networks. The edge weight is equivalent to the
number of interactions between the characters in the episode.

the complementary cumulative distribution of the edge weights on the log
scale for the co-occurrence and manual series networks. Note that the
edges between core characters are much larger than the other edges, which
motivates our modelling choices of a two-class model in Chapter 6. We find
that the edge weights are very right-skew in both datasets as there are many
pairs of characters that only interact once or twice, but few pairs that interact
more than 10 times. Similarly to the weighted degree distribution, the edge
weight distribution appears to have a power law. The characters pairs that
do interact more than 10 times often include one core character, with the
exception of Jack and Judy (who interact 39 times in the co-occurrence

dataset and 29 times in the manual dataset), and Carol and Susan (who
interact 25 times in the co-occurrence dataset and 17 times in the manual

dataset). These relationships are unsurprising as both character pairs are
couples that are close to the core group.

The highest edge weights between a character in the core group and a
character in the non-core group are between Phoebe and Mike, and Ross and
Monica and their parents Jack and Judy. Despite these relationships which
are vital to the show, there is a large di↵erence in the edge weights between
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Figure 5.21: Complementary cumulative edge weight distribution of Friends
character pairs in the series networks for the co-occurrence dataset and the
manual dataset on the log-scale.

these pairs of characters and the edge weight between any pair of characters
in the core group. This supports the claim that the core group is the essence
of the series.

5.6 Global metric bivariate analysis

The season and episode view of the metrics allow us to analyse the metrics
as they change over time. Bivariate analysis with episode time windows for
the networks is noisy, so we analyse the metrics using season time windows.
Figure 5.22 shows scatterplots of the global metrics for the co-occurrence

and manual season networks over time.
The size of the network is similar in both datasets for most seasons, but

Season 1 of the manual dataset has the most characters. There is a drop
in the size of the networks in Season 7 and Season 10. Season 10 only has
18 episodes, compared to the 24 or 25 episodes in every other season, so we
expect there will be fewer “extra” characters who only appear once. This
could also explain the peak in the density in both datasets in Season 10. The
drop in size in Season 7 corresponds to a drop in the total number of edges
and a peak in the average edge weight in the manual network.
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Figure 5.22: Scatterplots of network size, total edge weight (totalEW), num-
ber of edges (totalE), average edge weight (avEW), density, average degree
(avDeg), average path length (avPath), diameter, clustering coe�cient (clus-
tering) and size of the largest clique (clique) for the co-occurrence and
manual season networks over time.
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There is also a downward trend in the total edge weight in both datasets.
This means characters interact less as the series goes on. This trend is
discussed further in Chapter 6.

The average degree varies more in the co-occurrence dataset than the
manual dataset. In the co-occurrence networks there is a peak in the
average degree in Season 2 and Season 8. These are the same seasons with
the highest number of characters in the largest clique in the co-occurrence
networks. There seems to be a drop in the average degree in Season 6,
however, which lines up with a drop in density and clustering, and a peak in
average path length.

5.7 Character metric bivariate analysis

Analysing character metrics over time allows us to identify changes in char-
acter importance and character attributes as the series develops. Figure 5.23
shows the character metrics for the six core characters in the co-occurrence
season networks over time. Scatterplots for themanual season networks over
time are in Appendix A.8.

Figure 5.23 shows that the degree, normalised weighted degree and weighted
degree are similar for every character in each season, so although there are
some changes in character rankings for these metrics throughout the series,
many of the di↵erences are not notable. There is a downward trend in the
weighted degrees of the characters, similar to the trend in the total edge
weights in Figure 5.22. It seems as though the core characters interact less
as the series develops. We discuss this trend further in Chapter 6.

The betweenness centrality of the core characters vary widely over the 10
seasons. Joey seems to dominate the betweenness centrality of the networks
from Season 5 to Season 10, except for Season 9 where Chandler becomes
more important by this metric. This happens because Season 5 is when
Joey’s acting career kicked o↵, so he has many interactions with characters
from his work from then on. Season 9, however, focusses on Chandler’s work
as he quits his job in Season 9, Episode 10, then looks for more work in the
rest of the season. Chandler interacts with many characters that none of the
other core characters interact with through this season, so his betweenness
centrality peaks. Therefore betweenness centrality predominantly only tells
us about who the core characters interact with when they are not with the
other core characters.

Closeness centralities are similar for each character over the ten seasons.
We see drops in closeness centralities in Season 2, Season 3 and Season 5.
These are the three seasons with more than one component, so we expect
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Figure 5.23: Scatterplots of character metrics: degree (Deg), normalised
weighted degree (normDeg), weighted degree (weightedDeg), betweenness
centrality (between), closeness centrality (close), eigenvector centrality
(eigen), local clustering coe�cient (clustering) and proportion of scenes
(scenes) for the six core characters in the co-occurrence season networks
over time.
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closeness centralities to decrease. A scatterplot of closeness centralities for
each character in the largest connected component of the 10 season networks
is in Appendix A.4.

Chandler and Monica have the highest eigenvector centralities in every
season except for Season 8, where Joey’s eigenvector centrality peaks. Monica
starts and ends the series as the most important character by this metric,
but Chandler dominates the eigenvector centralities in Season 2 to Season 6.
In Season 7 we notice a drop in Ross’s eigenvector centrality. Ross also has
the least interactions and number of scenes in this season, even though his
degree is not particularly low. This could be because the season is focussed
on Monica and Chandler in their preparation for their wedding (Table 5.1),
so there is little time for Ross’s character development.

The clustering coe�cients of the core characters vary widely over the 10
seasons, but the clustering coe�cient peaks and drops correspond to many of
the drops and peaks of the betweenness centralities, respectively. For exam-
ple, Joey’s clustering coe�cient drops in Season 6, which is the same season
he has his highest betweenness centrality. Similarly, Rachel’s clustering co-
e�cient peaks in Season 7 and her betweenness centrality drops in Season
7. We see this pattern because characters have high betweenness centralities
when they interact with many characters that no-one else interacts with. On
the other hand, characters have high clustering coe�cients when they inter-
act with characters that do interact with others. For example, if a character
only interacts with the core group, all of the character’s connections will also
interact, leaving the character with a high clustering coe�cient. This may
not mean the character is particularly important, so clustering tells us little
about the importance of characters.

Phoebe is in the smallest proportion of scenes in most seasons of Friends.
As discussed, Ross is in the smallest proportion of scenes in Season 7, which
lines up with when he has the smallest eigenvector centrality, and similarly to
eigenvector centrality, Monica is in the most scenes in the season. In Season
8, Joey is in the largest proportion of scenes, which also lines up with his
peak in eigenvector centrality. The proportion of scenes each character is in
is rarely above half of the scenes in a season.

5.8 Edge bivariate analysis

To analyse the edge weights over time, for simplicity we look at Chandler’s
edge weights with the other core characters over the 10 seasons as Chan-
dler featured in the two highest ranked relationships overall (Figure 5.18).
Figure 5.24 shows a scatterplot of the edge weights between Chandler and
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the other core characters over time in the co-occurrence dataset. Similar
scatterplots for the other characters are in Appendix A.9. We notice that
Chandler was closest to Joey in the first four seasons, but Monica’s rela-
tionship with Chandler takes over in the remaining six seasons. With some
knowledge of the series, this is unsurprising because Chandler and Joey are
roommates at the beginning of the series, and hence they are close friends,
but in Season 5, Chandler and Monica get together and eventually get mar-
ried in Season 7 (Table 5.1). Before they get together, there were no hints of
this happening based on the season view edge weights, as the edge weights
between Monica and Chandler were not outstanding in Seasons 1 to 4, except
having the second highest edge weight with Chandler in Season 4, equal with
Rachel.
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Figure 5.24: Scatterplot of the edge weight of Chandler with the five other
core characters in the co-occurrence season networks over time.

Chandler was also close to Ross in the first three seasons, but from
Season 4 onwards, interactions with Ross were as frequent as interactions
with Phoebe and Rachel. Chandler’s interactions with Monica, Phoebe and
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Rachel in Seasons 1 to 4 and with Ross, Phoebe and Rachel in Seasons 4
to 10 roughly follow the trend of decreasing edge weights in Figure 5.22 and
Figure 5.23.

Figure 5.25 shows a scatterplot of the proportion of Chandler’s interac-
tions that are with each of the other core characters. While Chandler and
Joey interacted many times in the first four seasons, as a proportion of his
interactions, Chandler interacts with Monica more in Seasons 5 to 10 than
he did with Joey in Seasons 1 to 4.
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Figure 5.25: Scatterplot of the proportion of Chandler’s interactions that are
with the five other core characters in the co-occurrence season networks
over time.

Figure 5.26 shows box plots of the edge weights between Chandler and the
other core characters in each episode of every season in the co-occurrence

network. In Season 1, Chandler interacts with Joey much more than the
other characters. In fact, Chandler interacts with Joey at least once in every
episode until Season 3.

In Season 4, there are episode edge weights between Chandler and Joey
and Chandler and Monica that are unusually high. The high edge weight
between Chandler and Monica could hint towards their potential as a couple.
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In Season 5, when Chandler and Monica get together, the edge weights
between Chandler and Joey remain predominantly between 4 and 6, but
Chandler and Monica usually interact more than 5 times. There are two
outlying episodes in which Chandler and Monica interact 11 and 14 times.

The highest number of interactions for Chandler with a character in a
single episode is 18. This is with Monica in Season 7, Episode 21, The One
with the Vows. In this episode Chandler and Monica attempt to write their
wedding vows, but don’t know what to say, so they reflect on all their times
together in the past. This episode shows flashbacks of previous interactions
between Chandler and Monica, so we would expect to see them interact
frequently here.
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5.9 Summary

Through the analysis of global, character and edge metrics of the co-occurrence
and manual networks, we found that Chandler and Monica’s relationship
is the most prominent in the series, but it only started in Season 5. Before
Season 5, Chandler and Joey’s friendship was the strongest relationship. Us-
ing the edge weights, the famous intermittent relationship between Rachel
and Ross is of less importance than these. This is because the intermittent
nature of their relationship means that for much of the series Rachel and
Ross are not a couple.

While Chandler’s relationships with Monica and Joey have the highest
edge weights, there is more evidence that Chandler is the most important
character in Friends. Chandler frequently has the highest eigenvector central-
ity, meaning he interacts the most with other important characters. Chandler
is also in the highest proportion of scenes throughout the series. Phoebe, on
the other hand, is in the smallest proportion of scenes and is the least im-
portant character by almost all character metrics. Interestingly, Chandler
and Phoebe were originally meant to be secondary characters, providing hu-
mour when needed [41], but the producers quickly realised they would be
more central to the show. Chandler certainly became central to the show,
but Phoebe was closer to remaining as a secondary character. Despite this,
Phoebe was certainly more central than any non-core character.

We also noticed that interactions between the core characters in Friends
are not biased towards either gender. In both datasets the interactions be-
tween two males or two females make up slightly more than 20% of the
interactions each. The proportion of interactions between males and females
is slightly less than 60%, but over a quarter of these interactions are between
the famous couples; Monica and Chandler, and Rachel and Ross.

All six core characters are much more important than any of the other
characters. This is not surprising as the show is intentionally about these six
characters, however it is interesting that none of the more important non-
core characters come close to being part of the core group. We can use this
information to model the network.
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Chapter 6

The One With the Model of

the Network, its Metrics and

Success

“Come on Ross, you’re a

paleontologist, dig a little

deeper.”

Lisa Kudrow as Phoebe Bu↵ay

Season 6, Episode 23

6.1 Introduction

Analysis of network metrics is useful for understanding certain features of
networks, but finding a suitable model for the network can tell us more about
its structure and formation. In this chapter, we model the Friends networks,
and describe the results we can infer from the models. We also model features
of the network over time, and features of the network with ratings. These
bivariate models allow us to gain insight into, and make predictions about
Friends and narratives in general.

It is important to note that the Friends networks have undirected edges
with weights. As we found in Chapter 5, the weights are essential to the
network, and so the model should take these into account. Also recall that
the networks can represent episodes, seasons or the entire series. The best
model for the episode networks may be di↵erent to the best model for the
season networks. Similarly, we have manual and co-occurrence networks.

99
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Although many aspects of the networks are similar, they may be fundamen-
tally di↵erent, and hence the same model is not necessarily the best model for
both datasets. In this chapter, we fit each suggested model to both datasets,
and compare the fits.

These are the main contributions of this chapter:

• We demonstrate the suitability of stochastic block models for narrative
social network analysis.

• We show that “the Friends get less friendly” over the series.

• We show that number of words spoken in each episode increases through-
out the series, which is similar to some other television series, but op-
posite to others.

• We find the network characteristics that predict higher ratings. In
particular, high edge density and low clustering coe�cient is optimal,
which is the combination that appears in “bottle episodes”.

6.2 Supervised network modelling

6.2.1 Initial model

A natural starting point for modelling social networks is a Gilbert-Erdős-
Rényi (GER) random network [48, 54]. A GER network has n nodes, and
probability p of an edge between pairs of nodes. This means that each edge
is a Bernoulli random variable with probability of success p. This models a
simple, unweighted networks. Both Friends network datasets, however, have
weighted edges. We saw in Chapter 5 that the weights are essential to the
network, so it is important that the model allows for these.

We therefore propose a Poisson model for the graph, where we assume
that each edge is an independent observation of the Poisson distribution with
rate � interactions per time frame, i.e.

Wij ⇠ Poi (�) ,

for edge weights Wij, i, j = 1, . . . , n, i < j. The Poisson distribution counts
the number of times an event occurs in an interval, so in our context, it counts
the number of interactions between a pair of characters in an episode, season
or series. Note that this means there could be edges with weight 0. We say
an edge with weight 0 is the same as no edge, as it means the characters do
not interact in the time frame.
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An attribute of the Poisson distribution is that the mean is equal to the
variance, so we can use this in determining whether the model is reasonable
for the data. To fit the model, we use Maximum Likelihood Estimation
(MLE). The likelihood for a particular graph G = (V,E), with nodes

V = {1, . . . , n}

and edges
E = {wij 2 N|i, j 2 V, i < j},

is

L(�;E, n) =
Y

i,j2V, i<j

�wije��

wij!
.

The log-likelihood is then

`(�;E, n) =
X

i,j2V, i<j

wij log ��
✓
n

2

◆
��

X

i,j2V, i<j

logwij!.

To find the maximum likelihood estimator, �̂, we di↵erentiate with respect
to � and set the derivative equal to zero. We find

�̂ =

P
i<j wij�
n
2

� := w̄.

Hence the Poisson parameter estimate is the mean of the edge weights. We
use the fact that the mean of a Poisson distribution is the same as the
variance to check how appropriate this simple model is for the data. Define
the dispersion parameter

D =
�2

µ
,

where �2 is the variance and µ = w̄ is the mean of the edge weights. For a
true Poisson distribution, D = 1. If D > 1, we say the model is overdispersed
and if D < 1, the model is underdispersed. Figure 6.1 shows a histogram of
the calculated dispersion parameters for every episode of the co-occurrence
and manual networks of Friends. In both datasets many episodes are very
overdispersed, meaning the model doesn’t fit the data well. Similarly in the
season networks, Figure 6.2 shows that the dispersion parameters in every
season of both datasets is much larger than 1.

Recall the large di↵erence between the edge weights between core charac-
ters (Rachel, Phoebe, Chandler, Joey, Monica and Ross) and all other edge
weights as discussed in Chapter 5. As the model assumes all edge weights
come from the same distribution, the di↵erence in these “classes” of edge
weights could contribute to the high variance. Therefore we suggest a two-
class Poisson model.
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Figure 6.1: Histogram of dispersion for each episode in the co-occurrence

and manual episode networks using the simple Poisson model. The dotted
line at 1 indicates the dispersion of a true Poisson distribution.

6.2.2 Two-class Poisson model

We define the two-class Poisson model as follows. Partition the nodes into
two classes; core and non-core, such that

V = Vcore [ Vnon-core

and

Vcore \ Vnon-core = ;.

Here, Vcore contains the 6 core characters, and Vnon-core contains the remaining
n� 6 non-core characters. There are now three types of edges;

1. edges between characters within the core group,

2. edges between characters within the non-core group, and

3. edges between characters from each group.
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Figure 6.2: Histogram of dispersion for each season in the co-occurrence

and manual season networks using the simple Poisson model. The dotted
line at 1 indicates the dispersion of a true Poisson distribution.

Let

Wij ⇠ Poi
�
�Ci,Cj

�
,

where

Ci =

(
1 if i 2 Vcore,

0 if i 2 Vnon-core,

as in Chapter 4. Recall the networks are undirected, so �Ci,Cj = �Cj ,Ci . Also
define ncore = |Vcore| and nnon-core = |Vnon-core|.

We estimate �Ci,Cj for the co-occurrence and manual network edge
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weights at both the episode and season view using MLE and find:

�̂Ci,Cj =

8
>>>>>>><

>>>>>>>:

P
i<j wijCiCjP
i<j CiCj

if Ci = Cj = 1,
P

i<j wij(1� Ci)(1� Cj)P
i<j(1� Ci)(1� Cj)

if Ci = Cj = 0,
P

i<j wij(Ci + Cj � 2CiCj)P
i<j(Ci + Cj � 2CiCj)

otherwise.

=

8
>>>>>>><

>>>>>>>:

P
i<j wij�
ncore

2

� if i, j 2 Vcore,
P

i<j wij�
nnon-core

2

� if i, j 2 Vnon-core,
P

i<j wij

ncorennon-core
otherwise.

This means the maximum likelihood estimator for the Poisson parameter of
an edge type is the average of the edges of that edge type.

As in the one-class model, we calculate the dispersion for each parameter
in each episode and season to check the model is reasonable. Figure 6.3
shows histograms of the dispersion for each of the edge types in the co-
occurrence and manual episode networks. In some episodes there are no
non-core characters, so we cannot estimate �0,0 or �0,1. In other episodes
there is only one non-core character, so we cannot estimate �0,0. In these
circumstances we ignore the dispersion parameters that we cannot calculate.

Most of the dispersion parameters in the two-class model are much closer
to 1 than in the one-class model, giving some evidence that the two-class
model is better. Figure 6.4 shows box plots of the dispersion parameters for
each edge type of each season of the co-occurrence and manual networks.
While these are closer to 1 than in the one-class model, the model is still
overdispersed for the season networks.
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Figure 6.3: Histograms of dispersion for each episode using the two-class Poisson model for the co-occurrence and
manual datasets. The dispersion has been calculated separately for each type of edge: core group to core group
(1), non-core group to non-core group (2), and between groups (3). The dotted line at 1 indicates the dispersion of
a true Poisson distribution.
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Figure 6.4: Box plots of dispersion for each season using the two-class Pois-
son model for the co-occurrence (red) and manual (blue) datasets. The
dispersion has been calculated separately for each type of edge: core group to
core group (1), non-core group to non-core group (2), and between groups (3).
The dotted line at 1 indicates the dispersion of a true Poisson distribution.

Model selection

We now formally compare models using Akaike’s information criterion (AIC)
[15, 16]. The AIC for a model is

AICmodel = 2kmodel � 2l(�̂)model

where kmodel is the number of parameters estimated in the model, and l(�̂)model

is the log-likelihood of the model at its maximum. A smaller AIC roughly
means the model fits the data better, without overcomplicating it with too
many parameters. To favour the simpler model, we use the rule of thumb
that if Model 2 has more parameters estimated than Model 1 (i.e. k2 > k1),
then we choose Model 2 over Model 1 if

AIC2 < AIC1 � 2.

Figure 6.5 is a cumulative density function of the di↵erence in AIC scores
for each episode in the co-occurrence and manual datasets. The dotted line is



6.2. Supervised network modelling 107

0.00

0.25

0.50

0.75

1.00

−100 0 100 200 300 400
x

P(
AI
C
on
e−
cl
as
s
−
AI
C
tw
o−
cl
as
s
>
x)

dataset
co−occurrence

manual

Figure 6.5: Cumulative distribution of the di↵erence in AICs for the one-
class and two-class model for the episode networks in the co-occurrence

(red) and manual (blue) datasets. The dotted line represents is at x = 2,
which is the lower bound threshold for accepting the two-class model over
the one-class model.

the AIC threshold (where the di↵erence is 2) for accepting the more compli-
cated model. The more complicated model is the two-class model, which has
3 parameters, as opposed to 1 in the one-class model. In the co-occurrence
dataset, we would select the two-class model for 63.4% of episodes, and in the
manual dataset, we would select the two-class model for 76.7% of episodes.
Therefore, in general, the two-class model is worth the extra parameters,
particularly in the manual dataset.

One could argue that the sample sizes are small and so the AIC could
overfit [39]. To address this issue we also calculate the corrected AIC (AICc)
[33]. The AICc of a model further penalises for extra parameters, and is
given by

AICcmodel = AICmodel +
2k2

model + 2kmodel

n� kmodel � 1
.

Using the AICc over the AIC, we would select the two-class model for 63.0%
of the co-occurrence episodes and 76.3% of the manual networks.

Therefore, for both datasets, the majority of networks are better modelled
by the two-class Poisson model than the one-class model. In the season
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networks, the di↵erence in AICs in the two-class model and the one-class
model are much greater than 2 for both datasets, so the two-class model is
much better here too.

Verification against simulations

To check whether the model fits the data well, we simulate networks using
out model and compare the global metrics of the simulated networks to those
of the observed networks. Figure 6.6 shows histograms of metrics for 1000
simulations of episodes with the estimated parameters as the co-occurrence
network for Season 1, Episode 9: The One Where Underdog Gets Away. We
chose this episode as it has the median number of characters, six core and five
non-core. The dotted black line represents the metric of the actual network
for this episode.

Notice that the total number of edges, density and average degree are
the same, but on di↵erent scales. This is because we simulate with a fixed
number of nodes. Most of the simulated network metrics are centred around
the value of the real network, however the clustering coe�cient and clique size
are underestimated by the model. We obtain similar results with simulations
based on other co-occurrence episode networks (see Appendix A.10).

We also simulate 1000 networks using our model based on co-occurrence

season networks. Figure 6.7 shows histograms of metrics for 1000 simulations
of episodes with the estimated parameters as the co-occurrence network for
Season 1. See Appendix A.10 for histograms of metrics for simulations based
on the co-occurrence network for Season 2.

At the season view, the model overestimates the number of edges (and
hence density and average degree), and underestimates the average edge
weight, average path length, clustering coe�cient and number of charac-
ters in the largest clique. The total edge weight and diameter are simulated
well by the model.

The model fits the data at the episode view better than at the season
view, so we could simply use it for episode networks and aggregate these to
form a season network. However, the model overestimates the clustering and
size of the largest clique even at the episode view, so it may be beneficial to
consider other models.

6.2.3 Other possible models

While the two-class Poisson model does not fit every aspect of the Friends
episode data well, the need to split the characters into core and non-core
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Figure 6.6: Histograms of metrics (total edge weight: totalEW, total number
of edges: totalE, average edge weight: avEW, density, average degree: avDeg,
average path length: avPath, diameter, clustering coe�cient: clustering, and
size of the largest clique: clique) for 1000 simulations of episodes with the
estimated parameters as the co-occurrence network for Season 1, Episode
9: The One Where Underdog Gets Away. The dotted black line represents
the metric of the actual network for episode.

groups still applies. Here we discuss di↵erent network models and how one
could apply them to the Friends networks.

Preferential attachment model

The preferential attachment model, or Barabási-Albert model generates scale-
free networks, where there are few nodes with unusually high degrees, and
many nodes with low degrees [20]. A unique properly of the preferential at-
tachment model is that the resulting degree distribution follows a power law.
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Figure 6.7: Histograms of metrics (total edge weight: totalEW, total number
of edges: totalE, average edge weight: avEW, density, average degree: avDeg,
average path length: avPath, diameter, clustering coe�cient: clustering, and
size of the largest clique: clique) for 1000 simulations of episodes with the
estimated parameters as the co-occurrence network for Season 1. The
dotted black line represents the metric of the actual network for episode.

One indication of a power law is a linear pattern in the cumulative degree
distribution on the log-log scale.

In Chapter 5 we noticed that the the cumulative weighted degree distri-
butions of the non-core characters in the global networks appeared linear on
the log-log scale. As the network is weighted and has the two-class struc-
ture, the standard preferential attachment model is not suitable. However,
an adapted preferential attachment model may be suitable, such as the mul-
ticlass preferential attachment model suggested by Shakkottai et al. [109] to
model the evolution of the internet.
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Small-world model

The small-word model, or Watts-Strogatz model generates networks with
“small-world” properties such as short average path lengths and high clus-
tering [124]. The two-class Poisson model did not capture the high clustering
of the episode or season networks, so a small-world model may be more suit-
able for this aspect of the model. An attribute of the small-world model,
however, is degree regularity, i.e., the degree is similar across all nodes. We
saw in Chapter 5 that this is not evident in the Friends networks, so the
small-world model would have to be adapted to fit these networks.

More classes

An alternative to changing the basic model assumptions to be more like the
preferential attachment or small-world model is to change the number of
classes. More classes could allow for clustering within classes, and hence
would increase the clustering in the model simulations. It is not clear, how-
ever, what the third class would represent, and which characters would be
in it. This motivates the application of a stochastic block model to these
datasets.

6.3 Unsupervised block model

In the two-class model we used information about the characters in the core
group to split the network into the two classes. However, the model might be
more suitable if we have more classes, for example, a three-class model with
the core characters, recurring non-core characters and non-recurring non-core
characters as the three classes. This raises the question of how many classes
is best, and how can we determine which characters are in each class? Given
an adequate method for determining each character’s class, we could apply
the model to social networks of narratives where the core characters are not
as intrinsic to the narrative as Chandler, Joey, Monica, Phoebe, Ross and
Rachel are to Friends.

There are various methods for community detection in networks, such as
multilievel [28], spinglass [98], leading eigenvector [90], label propagation [96],
infomap [103], walktrap [93] and edge betweenness [92]. Bazzan compared
these methods of community detection on the Friends manual networks
[21]. Here, however, we are not interested in finding communities (where
there are more edges within communities than between communities). We
wish to find classes, or hierarchies, where the parameters that describe how
characters interact depend on which class the characters are in, but it may
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be that characters in the same class are less likely to interact with each other
than with characters outside of their class. Therefore we use a stochastic
block model.

6.3.1 Stochastic block models

A stochastic block model assumes each node belongs to a class, and interac-
tions between characters depend on the class in which the character is in. We
observe the interactions, and must infer the class structure. Here we define
the stochastic block model as described by Mariadassou et al. [78].

Model

Let G = (V,E) be a network with nodes V = {1, . . . , n} and E = {Wij 2
G|i, j 2 V }. For the weighted interaction networks, G = N. Our networks
are undirected, so Wij = Wji, and hence we only define edges for i < j.

Assume each node is a member of a class q = 1, . . . , Q. We estimate the
number of classes, Q using a process described later in this section.

Also define the n⇥ q membership matrix Z by

Ziq =

(
1 if node i is in class q

0 otherwise.

The latent layer of the model is the class membership, for which we
assume

Zi ⇠ M(1,↵),

independently, whereM is the multinomial distribution and↵ = (↵1, . . . ,↵Q) 2
R+ is the probability vector for class membership, i.e.

P (Ziq = 1) = ↵q

and
QX

q=1

↵q = 1.

The observed layer of the model is the set of edges, Wij for i, j 2 V . We
assume

Wij|(ZiqZj` = 1) ⇠ Fq`,

where Fq` is a distribution that depends on the classes q and `. For an
unweighted network we use the Bernoulli distribution:

Fq` = B(⇡q`) =

(
1 with probability ⇡q`

0 with probability 1� ⇡q`.
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The Friends networks are weighted, so we use the Poisson distribution:

Fq` = Poi(�q`).

Estimation

We use Leger’s R-package Blockmodels [64] for estimation, which imple-
ments Mariadassou et al.’s method [78]. Here we describe the methods used
in the the package.

Define the parameter ✓ := (↵,�) where

� =

2

6664

�11 �12 . . . �1Q

�21 �22 . . . �2Q
...

...
. . .

...
�Q1 �Q2 . . . �QQ

3

7775
.

Given the number of classes Q, we estimate ✓ by maximising the likelihood
of the observed data,

L(E;Z,✓) = P (E|Z,✓).

Now,

P (E|Z,✓) =
X

Z

P (Z, E|✓)

=
X

Z

P (Z|✓)P (E|Z,✓)

But

P (Z|✓) =
nY

i=1

QY

q=1

↵Ziq
q ,

and
P (E|Z,✓) =

Y

i<j

Y

q,`

fq` (Wij)
ZiqZj` ,

where

fq` (Wij) =
�
Wij

q` e��q`

Wij!

for the Poisson edge weights.
So

P (E|Z,✓) =
X

Z

 
nY

i=1

QY

q=1

↵Ziq
q

! 
Y

i<j

Y

q,`

fq` (Wij)
ZiqZj`

!
.
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This summation involves Qn terms, so quickly becomes intractable. There-
fore we use the Expectation-Maximisation (EM) algorithm [45]. The EM
algorithm iterates two steps;

1. adjusting the class memberships Z based on parameters ✓ = (↵,�)
(expectation step),

2. estimating parameter ✓ = (↵,�) given the edges E and classes Z
(maximisation step).

To initialise the class membership of the nodes, we use the Absolute Eigen-
values Spectral Clustering method, as in Rohe et al. [100]. In the expectation
step we calculate

Q
�
✓|✓(t)

�
= EZ|E,✓(t) [logL(✓|E,Z)] ,

for iteration t, and in the maximisation step we calculate

✓(t+1) = argmax
✓

Q
�
✓|✓(t)

�
.

However, L(✓|E,Z) (and hence Q
�
✓|✓(t)

�
) depends on P (Z|E), which is

intractable due to the network’s strong dependency between edges. Instead,
we use variational EM to approximate the likelihood, as outlined by Mari-
adarrou et al. [78].

The variational EM algorithm outputs the parameters ↵ and � for a
model with Q classes, which we denote as mQ. In practice, we also wish
to estimate Q. We use the Integrated Classification Likelihood (ICL), as
proposed by Biernacki et al. [25];

ICLmQ = max
✓

log(P (E, Z̃|✓,mQ))� pen(mQ),

where the penalty term pen(mQ) =
1
2 (PQ log(n(n� 1))� (Q� 1) log n). Here

Z̃ is the prediction for Z, and PQ is the number of parameters estimated by

the model, which is Q(Q+1)
2 for the undirected Poisson model. The best model

is the one with the highest ICL.
We run the model for Q = 1, 2, 3 and 4. If the model with the maximum

ICL has Qmax classes, we also run the model up to Q = 1.5Qmax. Out of
these models, we select the number of classes that achieves the highest ICL.

6.3.2 Results

We fit the stochastic block model to every episode, season and series network
in the co-occurrence and manual dataset using the Blockmodels package



6.3. Unsupervised block model 115

in R. The algorithm classifies the core characters in their own class in every
season and series network, but in some episode networks core characters are
split up and combined with non-core characters.

Series-level model

Figure 6.8 shows the series co-occurence network with the nodes coloured
by classes. The co-occurrence series network has 9 classes with 6, 427, 30,
37, 2, 9, 55, 11 and 81 nodes in the classes. Figure 6.9 shows a heatmap of
the � parameters for the 9 classes.
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Figure 6.8: Co-occurrence series network with nodes coloured by classes
determined by stochastic block model. There are 9 classes in total.
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Figure 6.9: Heatmap of the co-occurrence series stochastic block model �
parameters. The legend shows that the darker shades correspond to larger
parameters (i.e., larger mean number of interactions).

Class 1 contains the six core characters, so �11 is larger than any other
parameters by far. The dark row and column for Class 1 show that most
characters mainly interact with the core characters. We also see high inter-
action rate within Class 5. Class 5 contains only Mr. Geller and Mrs. Geller,
so it is not surprising that they frequently interact with each other and with
the core group.

Characters in Class 6 also interact frequently with the core characters.
Class 6 contains Charlie, Emily, Mike, Richard, Gunther, “woman”, Janice,
Susan and Carol. These characters are those who have long term relation-
ships with the core characters, as well as characters that are regularly around
the core characters: Gunther, “woman” and Carol. Class 3 contains some
of the characters that had a shorter relationship with the core characters,
such as Tag, Joshua, Kathy, Paolo and David. Class 8 contains characters
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that are also close to the core six characters, however they interact within
their own class less. This class contains the frequently occurring non-specific
characters such as “waiter”, “man”, “guy” and “nurse”.

The remaining classes – Classes 2, 4, 7 and 9 – contain the characters
with smaller roles in the series. The four classes di↵er by how much the
characters in them interact with the core characters and other important
characters, such as Mr. and Mrs. Geller. Characters in Classes 4 and 9
interact the most with core characters, and characters in Class 2 interact the
least with core characters.
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Figure 6.10: Manual series network with nodes coloured by classes deter-
mined by stochastic block model. There are 7 total classes.
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Figure 6.11: Heatmap of the manual series stochastic block model � pa-
rameters. The legend shows that the darker shades correspond to larger
parameters (i.e., larger mean number of interactions).

Figure 6.10 shows the series manual network with the nodes coloured by
classes. The manual series network has 7 classes with 585, 6, 102, 14, 11, 2
and 26 nodes. Figure 6.11 shows a heatmap of the � parameters for the 7
classes. Note that the labelling of the classes is arbitrary, so we compare the
classes in each of the datasets.

As in the co-occurrence network, there is a class containing exactly the
six core characters, who interact frequently with each other and characters
in other classes often interact with them. In the Figure 6.11 the core group is
labelled by Class 2. There is also a class containing only Ross and Monica’s
parents Jack and Judy (Class 6), as in Class 5 in the co-occurrence network.

Class 5 in the manual network is most similar to Class 6 in the co-

occurrence network, as it contains characters with close relationships to
the core characters; Mike, Emma, Emily, Richard, Gunther, FrankJr, Ben,
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Charlie, Janice, Susan and Carol. Class 7 in the manual network is similar
to Class 3 in the co-occurrence network, as it contains recurring characters
that had a smaller role than those in Classes 2, 5 and 6.

Class 4 contains characters that interact with each other almost as much
as they interact with the core group. For example, Barry (Rachel’s ex-fiancé)
and Mindy (his new wife) interact with each other more than any core char-
acters.

The remaining characters are in Classes 1 and 3. The di↵erence between
these classes is how much they interact with the core group. Characters in
Class 3 interact with the core group more than characters in Class 1.

Table 6.1 shows a contingency table of the class membership of the char-
acters with the same name in both themanual and co-occurrence datasets.
This table shows how the character classifications overlap between the two
datasets. For most classes in the manual series network, the majority of
characters in the class are in the same class in the co-occurrence network.
For example, Class 1 in the manual network (Man1) has 98 of the 132 pos-
sible commonly named characters in Class 2 in the co-occurrence network
(Co2). The manual Class 6 is also exactly the same as the co-occurrence

Class 5, although the Table 6.1 doesn’t show this as Ross and Monica’s par-
ents have di↵erent names in the di↵erent datasets.

Man1 Man2 Man3 Man4 Man5 Man6 Man7 total
Co1 0 6 0 0 0 0 0 6
Co2 98 0 12 0 1 0 1 112
Co3 1 0 6 0 1 0 14 22
Co4 4 0 9 2 0 0 1 16
Co5 0 0 0 0 0 0 0 0
Co6 0 0 0 0 8 0 0 8
Co7 9 0 9 4 0 0 0 22
Co8 1 0 2 0 0 0 2 5
Co9 19 0 20 0 0 0 1 40
total 132 6 58 6 10 0 19 231

Table 6.1: Contingency table of the 231 characters that are in the manual

and co-occurrence dataset, and which class they are in using the stochastic
block model on each series network. The rows indicate the 9 classes of the
co-occurrence series network, and the columns indicate the 7 classes of the
manual series network.

However, there are some exceptions to the similar classes across the
datasets. For instance, Class 8 in the co-occurrence network only has
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five characters with names in both datasets, but these characters are split
into Classes 1, 3 and 7 in the manual network.

Season-level models

Figure 6.12 shows the co-occurrence Season 1 network as classified into
classes by the stochastic block model, along with a heatmap that represents
the interaction rate within and between classes. The co-occurrence net-
works for Seasons 2 to 10 are in Appendix A.11. Similar figures for the man-

ual season networks are in Appendix A.12. In every season of both datasets
there is a class containing the six core characters. In the co-occurrence

dataset, there are 4 classes in every season, except for Seasons 5 and 6,
which have 3 classes, and Season 7, which has 5 classes.
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Figure 6.12: Season 1 network with nodes coloured by class, and heatmap for
the stochastic block model � parameters for the co-occurrence networks.

In Season 1, Susan and Carol are alone in a Class 1, and Class 3 and Class
4 split the remaining characters into those who interact with the core group
frequently (Class 4), which form an “inner non-core group”, and those with
less interaction with anyone (Class 3), forming an “outer non-core group”.
We see similar class structures in all the seasons, with the core group, an
inner non-core group and an outer non-core group. Figure 6.13 shows the
parameters representing the expected number of interactions with these three
groups and the core group over time.

Characters in the core group interact with each other more than with
characters from any other group, but we consistently see two non-core groups
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Figure 6.13: Parameters representing the expected number of interactions
between characters in the core group, and other characters in the core group
(red), and characters in the inner non-core (green) and outer non-core (blue)
groups.

that also have some contact with the core group. The parameters of the
interactions with these groups and the core group vary from season to season,
but even more noticeably, the characters in these groups vary.

In Season 2, the class containing Susan and Carol expands to also include
Richard, Mrs. Geller, Mr. Geller, Julie and Mrs. Green – characters that are
very close to the core group. The remaining classes are split similarly to in
Season 1, with an inner non-core group and an outer non-core group.

In Season 3, the class with a very close relationship to the core characters
reflects the important side characters in this season. Interestingly, Class 4
contains Lauren, the Director, Kate and “woman”. This is because these
characters appear together in some scenes, so not only are there interactions
between them and the core characters, but also interactions within the class.
Class 3 contains the outer non-core group.

Season 4 is similar to Season 1 and 2, as it has a class very close to the
core group (Class 2), and an inner non-core group (Class 4) and an outer
non-core group (Class 3). Season 5 and 6, however, only have three classes;
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the core group, an inner non-core group and an outer non-core group. The
inner core groups are di↵erent in Seasons 5 and 6, however Mrs. Geller and
Gunther are in this group in both seasons.

Season 7 has five classes. In Class 1, there are three characters who are
very close to the core group in this season: Mrs. Geller, Mr. Geller and Tag.
Class 5 is the second closest to the core characters, and contains characters
such as Mrs. Bing, Mr. Bing and Gunther. Class 4 contains a group of
characters from Joey’s acting career, who interact with each other as much
as with the core characters. The remaining characters are in Class 3, which
is similar to the outer non-core group.

In Season 8, surprisingly, the class that is closest to the core group con-
tains three characters: Mona, “man” and “woman”. The inner non-core
group is in Class 4, and Class 1 contains the outer non-core group. In Season
9, however, the closest class to the core group only contains two characters:
Mike and Charlie. These characters are in long-term relationships with core
characters, so it is not surprising they are in this class. Again, the remain-
ing characters are split into an inner non-core group (Class 4) and an outer
non-core group (Class 3).

Finally, in Season 10, the class close to the core group contains Mike,
Charlie and Emma, so it doesn’t change much from Season 9.

Episode-level model

At the episode view, the core characters are not always in the same class, and
there is more variability in the class classification across the two datasets.
For some episodes, the stochastic block model classifies the characters into
the same or similar classes in the co-occurrence and manual networks.
For example, Figure 6.14 shows the co-occurrence and manual networks
for Season 1, Episode 20: The One With the Evil Orthodontist, with nodes
coloured by class as determined by the stochastic block model. For both
datasets, the characters in this episode network are split into core and non-
core classes, as we would split the network in the two-class Poisson model.
Note that the class labelling and hence node colour is arbitrary.

In contrast, for some episodes the stochastic block model classifies the
characters into very di↵erent classes in the co-occurrence and manual

networks. For example, Figure 6.15 shows the co-occurrence and manual

networks for Season 1, Episode 8: The One Where Nana Dies Twice, with
nodes coloured by class as determined by the stochastic block model. In the
co-occurrence network, there are only two classes: one containing the core
characters and Mrs. Geller, and the other containing the non-core characters.
In the manual network however, there are four classes. The core characters
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Figure 6.14: Co-occurrence and manual networks for Season 1, Episode
20: The One With the Evil Orthodontist, with nodes coloured by class as
determined by the stochastic block model.

are split into two groups: Monica and Ross, who interact with Jack, Judy and
Aunt Lillian more frequently; and Rachel, Joey, Phoebe and Chandler. Jack,
Judy and Aunt Lillian form a class, and the remaining non-core characters
form the final class.

The majority of episode networks in both classes have two classes – some-
times the core class and non-core class, and sometimes the core class is split in
two. In the co-occurrence dataset, 78.0% of episodes have two classes, com-
pared to 78.9% of themanual networks. While these proportions are similar,
Figure 6.15 demonstrates that the episodes with the same number of classes
are not necessarily the same in each dataset. Some episodes had all charac-
ters in a single class (8.8% in the co-occurrence and 5.5% in the manual

dataset). Some episodes have three classes (11.9% in the co-occurrence

and 15.3% in the manual dataset), and the remaining episodes have four
classes (1.3% in the co-occurrence and 0.4% in the manual dataset). No
episodes have more than four classes in either dataset.

Figure 6.16 shows histograms of the number of classes in each season
of the co-occurrence and manual dataset. There are only episodes with
four classes in Season 1, as well as Season 7 and 10 for the co-occurrence

dataset. In Seasons 1 to 7, there is a clear mode of two classes for both
datasets, however for Seasons 8 and 9, there are more episodes with one or
three classes. Season 10 has fewer episodes, hence fewer episodes with two
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Figure 6.15: Co-occurrence and manual networks for Season 1, Episode 8:
The One Where Nana Dies Twice, with nodes coloured by class as determined
by the stochastic block model.

classes, but also has very few episodes with one, three or four classes.
Notice that the number of classes the stochastic block model suggests de-

creases as we go from series to season to episode view. This could be because
there are fewer characters when the time frame is smaller. Figure 6.17 shows
scatterplots of the number of classes suggested by the stochastic block model
against the size of the network for each episode of the co-occurrence and
manual networks. Notice that in both datasets, in general there are more
classes when there are more characters.

Any pattern in the number of classes in the episode networks as the season
progresses is unclear, however, we can check for patterns statistically. It is
also of interest whether episodes with more classes rate more highly than
episodes with less classes. In the next sections, we search for attributes of
the networks that change over time and model the success of the series.

6.4 Bivariate modelling with time

6.4.1 Episode view

Over the ten seasons of Friends, fans will notice the development of characters
and changes in the social structure with the presences of new characters and
absence of old characters. Here we use quantified attributes of the social
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Figure 6.16: Histograms of the number of classes in each episode of the co-

occurrence and manual networks as determined by the stochastic block
model, split into the ten seasons.

network of Friends to model the network over time. We define and calculate
the following variables for each episode network for the manual dataset:

• words – total number of words spoken,

• lines – number of speaking lines,

• words per line – average number of words spoken in each line,

• size – number of characters,

• total interactions – total number of interactions,

• density – edge density,

• clustering – clustering coe�cient,

• classes – number of classes suggested by the stochastic block model,

• core lambda – average number of interactions between core characters,

• core interactions – number of interactions between core characters,
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• core proportion – proportion of interactions that occur between core
characters,

• chan degree – Chandler’s degree,

• chan norm degree – Chandler’s normalised degree,

• chan betweenness – Chandler’s betweenness centrality,

• chan closeness – Chandler’s closeness centrality,

• mon degree – Monica’s degree,

• mon norm degree – Monica’s normalised degree,

• mon betweenness – Monica’s betweenness centrality,

• mon closeness – Monica’s closeness centrality,

• ross degree – Ross’s degree,

• ross norm degree – Ross’s normalised degree,

• ross betweenness – Ross’s betweenness centrality,

• ross closeness – Ross’s closeness centrality,

• rach degree – Rachel’s degree,
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• rach norm degree – Rachel’s normalised degree,

• rach betweenness – Rachel’s betweenness centrality,

• rach closeness – Rachel’s closeness centrality,

• joey degree – Joey’s degree,

• joey norm degree – Joey’s normalised degree,

• joey betweenness – Joey’s betweenness centrality,

• joey closeness – Joey’s closeness centrality,

• phoebe degree – Phoebe’s degree,

• phoebe norm degree – Phoebe’s normalised degree,

• phoebe betweenness – Phoebe’s betweenness centrality,

• phoebe closeness – Phoebe’s closeness centrality,

• gunther degree – Gunther’s degree,

• mike degree – Mike’s degree,

• estelle degree – Estelle’s degree,

• janice degree – Janice’s degree,

• tag degree – Tag’s degree,

• jack degree – Jack’s degree,

• judy degree – Judy’s degree,

• ben degree – Ben’s degree,

• carol degree – Carol’s degree,

• emma degree – Emma’s degree,

• marcel degree – Marcel’s degree,

• rach and ross – edge weight between Rachel and Ross,

• mon and chan – edge weight between Monica and Chandler,

• joey and chan – edge weight between Joey and Chandler, and

• scenes – number of scenes.

We check our model against a similar model for the co-occurrence net-
works in Section 6.4.3.
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Initially, we create histograms of each variable, to get an idea of any
outlying values we need to be aware of. We notice that the degrees of non-
core characters are usually 0 as there are many episodes they are not in.
We convert these variables into logical vectors for whether their degree is
greater than 0 or equal to 0, i.e. whether they are in the episode or not. The
histograms of the remaining numerical variables are in Appendix A.15.

We also plot the variables against the episode number and visually check
for trends. The scatterplots of the variables against episode number are in
Appendix A.15. We notice possible positive linear relationships between the
number of lines and episode number, and the number of words and episode
number.

We check for linear relationships by fitting a linear model to each variable
independently. The response variable is the episode number. We normalise
each predictor variable by dividing by the absolute maximum value so that
all predictor variable values are between -1 and 1, which helps with the
comparison of linear model coe�cients. We calculate the p-values for the
hypothesis that the coe�cient of the predictor variable is 0 in each linear
model, and adjust p-values using the False Discovery Rate correction, as
outlined by Benjamini and Hochberg [23]. Figure 6.18 shows the p-values for
each variable, with a line for the cut-o↵ at the 5% significance level.

21 out of the 50 possible predictor variables appear to be significant pre-
dictors of the episode number, meaning there is a linear relationship between
these variables and time. Figure 6.19 shows the coe�cients of the normalised
significant predictor variables.

The degree of Carol, Marcel, and the six core characters significantly
decrease over time. Marcel only appears in the first two seasons, so it is not
surprising that the coe�cient of the indicator variable of whether Marcel is
in the episode is negative. Similarly, Carol appears more in the first few
seasons when Ross is “getting over” his relationships with her, and their
son, Ben, is young. Later in the series, the producers focus on Rachel and
Ross’s daughter Emma, instead of Ben, so Carol does not appear (except for
mentions) after Season 7.

In contrast, Emma and Mike are in the last few seasons, so their ap-
pearance increases over the series. Rachel gives birth to Emma in the final
episode of Season 8, and appears in many episodes in Seasons 9 and 10. Mike
is introduced in Season 9, Episode 3: The One with the Pediatrician, and
appears frequently after that.

The six core characters interact with each other less as the series goes
on. We see a similar trend in the total interactions and core interactions,
which decrease over time too. Figure 6.20 shows a scatterplot of the number
of interactions between core characters versus the episode number, with a
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Figure 6.19: Line range plot of coe�cients of normalised significant predictors
for episode number for the manual episode networks.

line representing the predicted mean and confidence interval for the mean.
The proportion of interactions that are between core characters significantly
decreases over time as well, but the coe�cient is smaller in magnitude than
for total and core interactions, so the change over time is not as drastic.

The negative coe�cient of joey and chan means that Joey and Chandler
interact less over the series. As we discussed in Chapter 5, this happens be-
cause Chandler and Joey are very close in the first few seasons when they are
roommates, but when Chandler and Monica start their relationship, Chan-
dler’s interactions occur more with Monica than with Joey. Figure 6.21 shows
scatterplots of the edge weights between Joey and Chandler, and Chandler
and Monica over the 236 episodes, with the linear prediction of the means.
Interestingly, there is no significant linear trend in the number of interac-
tions between Monica and Chandler over time. This is because overall, the
characters interact less, and so even though most of Chandler’s interactions
are with Monica, Chandler makes fewer interactions in total.
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Figure 6.20: Scatterplot of the number of interactions between core char-
acters (core interactions) with episode number for the manual episode
networks. The line represents the predicted mean and the shaded region
represents the confidence interval for the mean.

Finally, the number of words and number of lines in each episode increase
significantly throughout the series. Figure 6.22 shows a scatterplot of the
number of words versus the episode number. The predicted average number
of words increases by almost 500 from Episode 1 to Episode 236, which is an
increase of 20.8%.

The increase in number of words over the series could be because of
changes in cultural speaking patterns over the 10 years Friends was aired,
or changes in development of characters and plot. Sherman analysed how
the length of sentences changed from the 16th to 19th century and found
that sentences have become 75% shorter over this time [110, 121]. However,
changes in a span of 10 years are di�cult to quantify. Also note that the
number of lines increased significantly as well as the number of words, and the
number of words per line was not a significant predictor for episode number
at the 5% level, so there is no evidence for characters speaking for longer
periods of time at once. To examine language changes between the years
Friends was aired (1994 – 2004), one could investigate the number of words
and lines per episode in other television shows around that time, and how
they change over time.
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Figure 6.21: Scatterplots for the edge weights between Joey and Chandler
(red) and between Monica and Chandler (blue) for the manual episode net-
works. The lines represent the predicted mean and the shaded region repre-
sents the confidence interval for the mean.

Looking at trends for the number of words and lines per episode could
also provide evidence that producers increase the number of words and lines
characters have as a television series develops. Fans of another American sit-
uation comedy, Seinfeld (1989 – 1998), calculated the percentage of words per
character per season [9]. Using their extracted number of words spoken each
season, we find that characters speak significantly more (see Appendix A.13
and Appendix B.3) in later seasons.

However, fans of other shows performed similar analyses and found that
the number of words or lines in the episode decreases as the series goes on.
For many characters in The West Wing (1999 – 2006), the number of lines per
episode decreases [114]. Similarly in The Walking Dead (2010 – present), the
average number of words spoken by Daryl Dixon per episode in each season
decreases significantly [10] (see Appendix A.14 and Appendix B.4). We see
a similar trend in the number of words spoken by four main characters from
The O�ce (2005 – 2013) [8].

One explanation for this di↵erence is that “90s sitcoms” such as Friends
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Figure 6.22: Scatterplot of number of words (words) with episode number
for the manual episode networks. The line represents the predicted mean
and the shaded region represents the confidence interval for the mean.

and Seinfeld have more words and lines as the series develops because viewers
are familiar with the way characters speak, so they can fit more words and
lines in. In drama series such as The West Wing and The Walking Dead,
however, there is less need for speaking when the viewers are familiar with
the characters.

Predicting season number using episode metrics

So far we have considered relationships between variables and episode num-
ber, but this only allows for one datapoint for each episode. Alternatively,
we could consider relationships between the variables and season number,
where each season has 18 to 25 datapoints. We use the same method to
fit the linear model with season number as the response variable instead of
episode number. Figure 6.23 shows the adjusted p-values of the model fit in
this way.

Comparing the model where the response variable is the episode number,
to the one with season number as the response variable, core proportion

and mon norm degree are not significant predictors of season number at the
episode view. Figure 6.24 shows the coe�cients of the normalised significant
predictors of season number. The variables have similar relationships as with



134 Chapter 6. Network Modelling

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

emma_degree
words

mike_degree
lines

joey_and_chan
marcel_degree

ross_degree
total_interactions

chan_degree
core_interactions

core_lambda
carol_degree
mon_degree

phoebe_degree
rach_degree
joey_degree

ross_norm_degree
chan_norm_degree

phoebe_norm_degree
core_proportion
chan_closeness

mon_norm_degree
rach_and_ross

rach_norm_degree
joey_norm_degree

clustering
mon_closeness

tag_degree
janice_degree

phoebe_closeness
mon_and_chan
joey_closeness
words_per_line

ben_degree
rach_closeness

joey_betweenness
size

ross_closeness
chan_betweenness
mon_betweenness
ross_betweenness

scenes
rach_betweenness

judy_degree
phoebe_betweenness

density
gunther_degree

classes
estelle_degree

jack_degree

0.00 0.25 0.50 0.75 1.00
Adjusted p−value

Va
ria

bl
e Significant at 5% level

●

●

no

yes

Figure 6.23: Scatterplot of adjusted p-values for the linear models of each
variable with season number for the manual episode networks. The black
line is at 0.05, which is the cut-o↵ for p-values at the 5% significance level.
Significant variables are coloured in blue, and insignificant variables are red.
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the episode number, but the coe�cients are smaller as the seasons only go
from 1 to 10, as opposed to the episodes which go from 1 to 236. This supports
our previous arguments that there are trends in the number of words, lines
and interactions over time.
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Figure 6.24: Line range plot of coe�cients of normalised significant predictors
for season number for the manual episode networks.

6.4.2 Season view

We also look for bivariate relationships with time and network features at
the season view. We measure the same variables as above for the season
view manual networks and check for linear relationships by fitting linear
models, with the variables as predictors and season number as the response.
Figure 6.25 shows the adjusted p-values of the coe�cients of the variables,
with a line at the 5% significance level cut-o↵.

Note that there are NA values for the p-value of the coe�cients of judy degree,
jack degree and janice degree. These appear because Judy, Jack and
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Figure 6.25: Scatterplot of adjusted p-values for the linear models of each
variable with season number for the manual season networks. The black
line is at 0.05, which is the cut-o↵ for p-values at the 5% significance level.
Significant variables are coloured in blue, and insignificant variables are red.
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Janice appear at least once in every season of Friends.
The significant predictors for season number at the season view are joey and chan,

carol degree, core interactions, core lambda, emma degree and total interactions.
Figure 6.26 shows the coe�cients of the normalised significant predictor vari-
ables.
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Figure 6.26: Line range plot of coe�cients of normalised significant predictors
for season number for the manual season networks.

As in the episode number model, Carol’s presence decreases over time
and Emma’s presence increases over time. The number of interactions be-
tween Joey and Chandler also significantly decreases over time. Notice that
the number of words and lines are not significant predictors at the season
view because seasons with fewer episodes will have fewer words and lines.
Figure 6.27 illustrates this point with a scatterplot of the number of words
in each season. Season 10 has the least words as it only has 18 episodes. If
we average the number of words by the number of episodes in each season,
the model will be similar to that in Section 6.4.1.

The other significant predictors of season number at the season view
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Figure 6.27: Scatterplot of number of words (words) with season number for
the manual season networks. The line represents the predicted mean and
the shaded region represents the confidence interval for the mean.

relate to the edge weights. The coe�cients for these variables have the
greatest magnitude, meaning they change the most with the seasons. The
core lambda is a scaled version of core interactions, so when they are
both scaled between -1 and 1, they are equal. Figure 6.28 shows a scatter-
plot of the decreasing number of interactions between core characters at the
season view with a confidence interval for the predicted mean. The trend
indicates that “the Friends get less friendly” over the series.

It is interesting, however, that the total number of interactions also de-
creases over the series. This is because most of the interactions occur between
the core characters, so core interactions follow a similar trend to total inter-
actions. Therefore the trend in number of interactions between core char-
acters cannot be explained by the core characters becoming more friendly
with non-core characters and spending their interactions with them. Also,
the proportion of interactions that are between core characters was not a
significant predictor of season number.

One theory to explain this trend is that as the series develops, characters
can have deeper, longer interactions, as there are more complex storylines.
The increasing number of words and lines per episode backs this theory up,
as longer conversations mean characters can say more. Further evidence for
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Figure 6.28: Scatterplot of the number of interactions between core char-
acters (core interactions) with season number for the manual season
networks. The line represents the predicted mean and the shaded region
represents the confidence interval for the mean.

this theory involves investigating other television shows, and narratives to
see if similar trends are present, or if it is only the Friends that get less
friendly.

6.4.3 Co-occurrence networks

We also model the same variables over time for the co-occurrence dataset.
We find that the main results are consistent between the datasets. Figures
for the co-occurrence bivariate analysis with time are in Appendix A.16.
Here, we discuss the di↵erences between the models for the two datasets.

Episode view

At the episode view, the variables clustering and rach and ross signifi-
cantly decrease over time for the co-occurrence networks, even though they
were not significant in themanual networks. The variables emma degree and
marcel degree are not significant, which is unsurprising because as discussed
in Chapter 5, these characters show up in the co-occurrence dataset a lot
less as they do not talk.
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Most of the predictor coe�cients are similar across the datasets, but
joey and chan has a larger coe�cient in the co-occurrence networks. This
means that while Joey and Chandler speak to each other much more earlier
on in the series, the change in how many scenes they share is even more
drastic.

When we average the co-occurrence variables over seasons, we get the
same significant predictors, excluding clustering. Again, the coe�cients
are similar in scales to the coe�cients for the episode times.

Season view

Looking at the variables from the season view, the variables that change sig-
nificantly over time are the same in both datasets, except for emma degree,
which is only significant in the manual networks, and mon degree and
rach and ross, which are only significant in the co-occurrence networks.

The coe�cients of the significant predictors for the co-occurrence season
number are similar to those for the manual season number. In particular,
the number of core interactions and total interactions decrease significantly
over the 10 seasons, even though there is no significant linear trend in the
number of scenes in each season.

6.5 Bivariate modelling with ratings

6.5.1 Predicting success

Our previous models look at the relationship of features of the networks
over time. We can use similar features to predict the success of the Friends
episodes. If certain features correlate with measures of success of episodes,
we can infer the features that make an episode better. This information
can potentially lead to creating better narratives by structuring the social
network optimally.

To measure the success of each episode, we extract the ratings from IMDb,
as discussed in Chapter 3. We also extract the number of IMDb users that
rated each episode so we can adjust our model for possible bias from this.
Figure 6.29 shows a scatterplot of the ratings for each episode, coloured by
season. The five highest and five lowest rated episodes are labelled.

We use the variables listed in Section 6.4, as well as the number of IMDb
users who rate they episode (n ratings) to fit a multivariate linear model
to predict the ratings of episodes.
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Figure 6.29: Scatterplot of the ratings for each episode, coloured by season.
The five highest and five lowest rated episodes are labelled.

6.5.2 Transformation of variables

First, we plot scatterplots of each variable with rating for every episode to
check for non-linearity, outliers, etc. The scatterplots are in Appendix A.17.
Some plots have a datapoint which could be an outlier, but we fit the model
as in the standard manner to begin with. We also notice two variables that
could have a non-linear relationship with rating: n ratings and density.
One of the assumptions of the linear model is that there is a linear relationship
between the response and predictor variable, so we look at transformations
for these variables.

Number of ratings

We compare three transformations on the number of ratings data: expo-
nential transform, log transform and inverse transform. Figure 6.30 shows
scatterplots of the transformed variables with rating. We divide the number
of ratings by 1000 for the exponential transformation to adjust for computa-
tional storage limits.
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Figure 6.30: Scatterplots of the number of IMDb users rating each episode,
n ratings, with the average ratings, rating, for the raw data and three
transformations: exponential (top right), log (bottom left) and inverse (bot-
tom right).

We also fit linear models to each of these transformations, and find that
the log transformation is the best, as it has the smallest residual standard
error. We define a new variable

n ratings transformed = log (n ratings) .

Density

Similarly, we compare the same three transformations on the edge density
data. Figure 6.31 shows scatterplots of the transformed variables with rating.

Again, we fit linear models to each of these transformations, and find that
the exponential transformation is the best, as it has the smallest residual
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Figure 6.31: Scatterplots of the edge density of each episode, density, with
the average ratings, rating, for the raw data and three transformations:
exponential (top right), log (bottom left) and inverse (bottom right).

standard error. We define a new variable

density transformed = exp (density) .

6.5.3 Full model

We then fit individual linear models to each of our possible predictor vari-
ables, with rating as the response variable, similarly to the bivariate model
with time in Section 6.4. We adjust the p-values to account for the false
discovery rate of fitting many models. Figure 6.32 shows the p-values for the
coe�cients of each variable not equalling zero.
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Figure 6.32: Scatterplot of adjusted p-values for the linear models of each
variable with IMDb ratings. The black line is at 0.05, which is the cut-o↵
for p-values at the 5% significance level. Significant variables are coloured in
blue, and insignificant variables are red.
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6.5.4 Model selection

We put every variable with a significant linear relationship with rating at the
5% level into a multivariate linear model:

ratingi = xT
i � + ✏i,

for datapoint i = 1, . . . , 236 and

xi =

2

6664

1
xi1
...

xim

3

7775
, � =

2

6664

�0

�1
...
�m

3

7775
, ✏i ⇠ N(0, �2).

Here, xi are the predictors for the ith rating datapoint, and � are the coef-
ficients. The resulting model, not all of the predictors are significant, so we
use AIC backwards stepwise selection to find a suitable model.

6.5.5 Final model

The selected model from the AIC backwards stepwise selection method has
six predictors: chan closeness, lines, scenes, clustering, density transformed

and n ratings transformed. Details of the selected model are below:

Call:

lm(formula = rating ~ chan_closeness + lines + scenes + clustering +

density_transformed + n_ratings_transformed, data = df_features)

Residuals:

Min 1Q Median 3Q Max

-0.79852 -0.16874 0.02146 0.19785 0.53874

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.0027527 0.7468594 -1.343 0.180723

chan_closeness -0.2496370 0.1523675 -1.638 0.102714

lines 0.0021893 0.0005477 3.997 8.65e-05 ***

scenes -0.0110943 0.0029644 -3.742 0.000230 ***

clustering -0.5573694 0.2317373 -2.405 0.016959 *

density_transformed 0.5039654 0.1281961 3.931 0.000112 ***

n_ratings_transformed 1.1420232 0.0940671 12.141 < 2e-16 ***

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2734 on 229 degrees of freedom

Multiple R-squared: 0.4603,Adjusted R-squared: 0.4461

F-statistic: 32.55 on 6 and 229 DF, p-value: < 2.2e-16

Notice that chan closeness is not a significant predictor in this model
at the 5% level. We fit a multivariate model without chan closeness and
compare the AICs of the model. The model with chan closeness has an
AIC of 66.5, and without has an AIC of 67.3. The latter model is simpler,
and the AIC is not more than 2 greater than the AIC of the former model,
so we remove the predictor chan closeness from the model. The resulting
model is:

Call:

lm(formula = rating ~ lines + scenes + clustering + density_transformed +

n_ratings_transformed, data = df)

Residuals:

Min 1Q Median 3Q Max

-0.81993 -0.16947 0.02233 0.20127 0.52915

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8964700 0.7467562 -1.200 0.231186

lines 0.0022416 0.0005488 4.085 6.1e-05 ***

scenes -0.0111366 0.0029751 -3.743 0.000230 ***

clustering -0.5810124 0.2321329 -2.503 0.013012 *

density_transformed 0.4046954 0.1133867 3.569 0.000436 ***

n_ratings_transformed 1.1240510 0.0937668 11.988 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2744 on 230 degrees of freedom

Multiple R-squared: 0.4539,Adjusted R-squared: 0.4421

F-statistic: 38.24 on 5 and 230 DF, p-value: < 2.2e-16

The model suggests that the number of scenes and the clustering coef-
ficient of the episode network have a negative e↵ect on the rating, whereas
the number of lines and the edge density have a positive e↵ect on the rating.
Before we thoroughly analyse the model, we check the model assumptions.
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6.5.6 Model assumptions

We check the assumptions of the linear model using diagnostic plots. Fig-
ure 6.33 shows the residuals versus leverage plot of this model, and we find
the 94th datapoint is a potential outlier. This datapoint represents Season
4, Episode 21: The One with the Invitation, which is a flashback episode
and has the lowest average IMDb rating of all the episodes, 7.3. A flashback
episode contains clips of past episodes with little new content, so is not rep-
resentative of most Friends episodes. Therefore we remove this episode from
our dataset and refit the model.
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Figure 6.33: Residual versus leverage plot of the final model with all data-
points. Points outside the red dotted line representing Cook’s distance are
particularly influential and could be considered outliers.

We use the same method to transform variables, find significant linear pre-
dictors and select predictors for the final model. Details of the model selection
process are in Appendix A.17. The final model with the 94th datapoint re-
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moved has four predictors: lines, clustering, density transformed and
n ratings transformed. The model summary is:

Call:

lm(formula = rating ~ lines + clustering + density_transformed +

n_ratings_transformed, data = df_features)

Residuals:

Min 1Q Median 3Q Max

-0.86997 -0.15317 0.01449 0.19806 0.50250

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.0550336 0.7378755 -1.430 0.154124

lines 0.0020924 0.0005425 3.857 0.000149 ***

clustering -0.5698645 0.2294528 -2.484 0.013721 *

density_transformed 0.4330201 0.1120229 3.865 0.000144 ***

n_ratings_transformed 1.1212815 0.0927557 12.089 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2715 on 230 degrees of freedom

Multiple R-squared: 0.439,Adjusted R-squared: 0.4292

F-statistic: 44.99 on 4 and 230 DF, p-value: < 2.2e-16

We check the assumptions of the new model using diagnostic plots in
Figures 6.34, 6.35 and 6.36. Figure 6.34 shows scatterplots of residuals versus
predictors for the final model without datapoint 94. The residuals appear
random, as there are no clear patterns in these plots, so the assumption of
linearity between residuals and predictors is reasonable.

The residuals versus fitted scatterplot in Figure 6.35 also has no obvious
trend, which provides evidence that the residuals are randomly distributed.
The scale-location plot also has no obvious trend, providing evidence for
homoscedasticity of residuals. There are no datapoints outside of Cook’s dis-
tance in the residuals versus leverage plot, so no more indications of outliers.

The normal quantile plot of the residuals has some curvature at the ends,
but the middle datapoints lie on the line. This means there could be some
skew in the residuals. Figure 6.36 shows the normal quantile plot of the
residuals from the model next to randomly generated normal data with the
same number of datapoints, same mean and same variance as the residuals.
The real data has more curvature than the randomly generated data, sug-
gesting that the residuals are not from a normal distribution. Figure 6.37
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Figure 6.34: Scatterplots of residuals from the final model without datapoint
94 versus model predictors: clustering, density transformed, lines and
n ratings transformed.

shows a histogram of the residuals. As the normal quantile plot suggested,
the residuals are left-skew. Therefore, a few datapoints have very low ratings.

This could be attributed to other flashback episodes, such as Season 6,
Episode 20: The One with Mac and C.H.E.E.S.E.; Season 7, Episode 21:
The One with the Vows ; Season 8, Episode 19: The One with Joey’s Inter-
view ; and Season 9, Episode 10: The One with Christmas in Tulsa. These
episodes, along with Season 4, Episode 21: The One with the Invitation,
which we removed, have the five lowest ratings (Figure 6.29). Hence, it would
be interesting to consider removing these episodes, which do not accurately
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Figure 6.35: Diagnostic plots for the final model without datapoint 94: resid-
ual versus fitted scatterplot (top left), normal quantile plot of residuals (top
right), scale-location plot (bottom left) and residuals versus leverage plot
(bottom right).

represent many of the other episodes. Some flashback episodes, however,
contain new material in flashback form, or the flashbacks only make up some
of the episode. Hence, we would have to consider the degree to which each
episode should be discounted for its flashbacks. For this analysis, however,
we keep these episodes in the dataset and infer results using the final model
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Figure 6.36: Normal quantile plot of residuals of the final model without dat-
apoint 94 (The real data), and normal quantile plots of randomly generated
normal data with the same mean, variance and number of datapoints as the
residuals (Reference data).

without datapoint 94.

6.5.7 Discussion

The final model has four significant predictors for the rating of an episode
of Friends. Figure 6.38 shows the e↵ect of each of these predictors when
all other predictors are held constant, with 95% confidence intervals for the
predicted mean rating.
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Figure 6.37: Histogram of residuals of the final model without datapoint 94.

Number of raters

The predictor with the greatest e↵ect on episode rating is the number of
people who rated it. As the number of people rating the episode increases,
the rating also increases, however, the opposite makes more sense. If an
episode is particularly good, more viewers rate it. Recall that the transformed
number of people rating the episode is on the log scale, so the number of
raters increases exponentially compared to the rating. This is because the
last episode, The Last One: Part 2, was rated by the most IMDb users, and
this episode rated second highest.

Number of lines

If we hold the clustering coe�cient, density and number of people rating an
episode constant, as the number of lines in an episode increases, the rating
also increases. One explanation for this is that viewers prefer when characters
have short, punctual lines, which means they can fit in more lines. In Brody’s
guide to writing good quality television scripts [32], he writes:

“Good dialogue has a generally accepted definition. It’s dia-
logue that is concise, witty, believable, and revealing of human
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Figure 6.38: Line plots of the e↵ect of the predictor variables lines,
clustering, density transformed and n ratings transformed, if all
other predictors are held constant, on rating in the final multivariate model
without datapoint 94. The shaded region represents the 95% confidence in-
terval for the predicted mean rating.

character and emotion.”

Audiences prefer television shows with concise, witty dialogue [99], and it
appears as though Friends viewers prefer this in episodes with the series
too. This theory is supported by a negative linear relationship between the
average number of words per line and the episode’s rating. The words per
line was not included in the final model, however, because it is correlated
with the number of lines. To further investigate the e↵ect of the number of
lines and length of lines on the success of television series, one could extract
the number of words and lines from other television series and look at the
relationship of these with episode ratings.
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Clustering and density

The clustering coe�cient of an episode network has a negative e↵ect on the
IMDb rating of the episode, whereas the density has a positive e↵ect. How-
ever, density and clustering are positively correlated. Figure 6.39 shows a
scatterplot of the transformed density and clustering of the manual net-
works, coloured by the rating. As the exponential of the density increases,
the clustering coe�cient of the network also increases on average. However
highly rated episodes require maximising the density and minimising the
clustering.
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Figure 6.39: Scatterplot of exponentially transformed density
(density transformed) and clustering coe�cient (clustering) of each
episode of the manual networks, coloured by IMDb (rating).

To construct an episode with high density and low clustering, one could
either fix the density and minimise clustering, or fix clustering and maximise
density. Figure 6.40 shows the networks for two episodes with similar densi-
ties; Season 7, Episode 16: The One with the Truth About London (density
of 0.357) and Season 2, Episode 13: The One After the Superbowl: Part 2
(density of 0.364). The former episode has a high clustering coe�cient of
0.882, and the latter has a low clustering coe�cient of 0.457.
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Figure 6.40: Manual networks of Friends episodes with similar densities
but di↵erent clustering coe�cients. Panel (b) has low clustering and high
density, so would be predicted to have a higher rating by our model.

Figure 6.41 shows the networks for two episodes with similar cluster-
ing coe�cients; Season 9, Episode 8: The One with Rachel’s Other Sister
(clustering coe�cient of 0.789) and Season 3, Episode 24: The One with the
Ultimate Fighting Champion (clustering coe�cient of 0.783). The former
episode has a high density of 0.750, and the latter has a low density of 0.352.

Based on these networks, it appears as though viewers prefer episodes
where all characters are connected in some way, even if it is through other
characters, and we also enjoy episodes with minimal side characters, i.e.,
there are few non-core characters, and they are closely connected with many
of the core characters. Kevin S. Bright, one of the executive producers and
director of Friends, remarked that viewers really enjoyed the episodes with
just the core characters [41], which they call “bottle shows”. In fact, the first
episode with only core characters was made to save money on additional sets
and guest actors, but it was so well-received that they decided to make more.

An interesting extension of this observation would be to find whether
the social networks other television shows exhibit similar relationships with
clustering and density and success, or whether this is unique to Friends.
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Figure 6.41: Manual networks of Friends episodes with similar clustering
coe�cients but di↵erent densities. Panel (a) has high density and low clus-
tering, so would be predicted to have a higher rating by our model.

6.6 Summary

In the first section of this chapter, we modelled the series, season and episode
networks for the co-occurrence and manual dataset. We found that a
two-class Poisson model fit many episode networks well, however the model
underestimated the clustering coe�cient. We discussed supervised nature
of the grouping of the characters into two classes, which lead us into us-
ing stochastic block models to classify characters into more groups without
depending on prior knowledge of the characters.

The stochastic block models allowed us to analyse the relationships be-
tween groups of characters, and which characters belong to each group. We
found that for each season, the core characters were alone in a class, and
there was a non-core inner group and a non-core outer group.

Next, we used linear models to find trends in the network metrics over
time. We found that the number of words and lines spoken in each episode
increases, while the total number of interactions decrease. We also used
multivariate linear models to predict the rating of Friends episodes using
the network metrics. The final ratings model suggests that the best episodes
of Friends are the ones where the characters should have short, concise and
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frequent lines, and the social network of character interactions are dense, but
not too clustered.

With further analysis of other television shows, these factors could help
television script writers to design more successful televisions shows. Further-
more, with social networks from di↵erent types of narratives, such as films
and novels, we could investigate the di↵erences in successful films, movies
and television shows, and generalise our results to all types of narratives.
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Chapter 7

Conclusion

“I’m not great at the advice. . .

Can I interest you in a sarcastic

comment?”

Matthew Perry as Chandler

Bing

Season 8, Episode 17

7.1 Summary

Social networks are a powerful tool for narrative analysis. In this thesis, we
compared techniques to extract social networks from narratives, and used
time-evolving social networks to analyse the television series Friends. Our
main contributions to the field of narrative social network analysis are our
findings, that:

• co-occurrence network extraction, and other automated extraction meth-
ods provide e�cient and reliable social networks for narrative analysis
(Chapter 4);

• the Friends get less friendly over the course of the series (Chapter 5);
and

• the ratings of Friends episodes are influenced by the number of lines,
the clustering coe�cient and the edge density of the social network
(Chapter 6).

In more detail, the extraction of a social network from a narrative is a vital
part of the analysis. One method is to manually record character interactions
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while watching or reading the narrative. This “manual” method is accurate,
but time consuming, so automated methods have been developed. We looked
at two automated methods in detail; co-occurrence network extraction and
extraction using natural language processing for identifying mentioned or
recipient characters of dialogue. By modelling these techniques, and simu-
lating social networks similar to those in episodes of Friends, we compared
metrics of the simulated episode networks. We found that for many anal-
yses, the extraction technique would not a↵ect the results of the analysis.
If one investigates the clustering of narrative social networks, however, the
automated networks are unreliable, as they can distort the local and global
clustering coe�cients compared to the manually extracted network. On the
other hand, analyses of the importance of relationships and characters in the
narrative remain the same, irrespective of the technique used to extract the
social network. Therefore, for many analyses, the use of automated social
network extraction for narrative analysis is justified.

For further evidence, we analysed and compared two datasets of social
networks from the television series Friends. For the manual dataset, Bazzan
[21] watched all episodes of Friends, and recorded every interaction, i.e., when
characters talked, touched or looked at each other. In the co-occurrence

dataset, we defined interactions as characters speaking in the same scene,
and automatically extracted social networks using the scripts for Friends.

Through analysis of these networks, we made several interesting findings,
which are consistent for both datasets. For instance, we found that, unsur-
prisingly, the six core characters; Chandler, Joey, Monica, Phoebe, Rachel
and Ross are the most important characters in the series by far. Through
character analysis in the social networks, we found that Chandler is the
central character by many measures of centrality, and Phoebe is the least
central of the core group. This is surprising, as both Chandler and Phoebe
were originally meant to be side characters to the core group, but Chandler
clearly did not end up that way. We also found that the famous intermittent
relationship between Ross and Rachel, which was meant to be the central
romance of the series, was not as prominent as the surprising relationship
between Monica and Chandler.

We made further findings about Friends using network models and net-
work metrics in linear models. We modelled the Friends networks using a
two-class Poisson model for each episode and season of Friends, where the
core characters made a class, but found that the model underestimated clus-
tering at the episode level, and several metrics at the season level. This sug-
gested that there is clustering in the social network that we did not account
for by splitting the characters into two classes. We suggested a stochas-
tic block model to split the characters into more classes, allowing for more
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groups of families (e.g. Monica, Ross, Jack and Judy), partners (e.g. Carol
and Susan) and work groups (e.g. Joey’s costars). In particular, we found
that in each season of both datasets, the characters tended to group into their
roles, such as the core characters, who always formed a class, and long-term
partners of the core characters, who formed another class.

Finally, we modelled network metrics over time and with ratings to find
informative trends. The main findings of trends over time are that the total
number of interactions between any pair of characters in a season or episode
significantly decrease over time. This trend is noticeable in both datasets,
at the episode and season level, so we infer that the Friends characters get
less friendly. We also notice that the number of words and lines spoken per
episode increase over the series, which is similar to some other television
series (e.g., Seinfeld), but dissimilar to others (e.g., The Walking Dead, The
O�ce and The West Wing).

We fit a multivariate linear model to the Internet Movie Database ratings
for each episode using network metrics and features as predictor variables.
We then used step-wise selection processes to find a final model to predict
episode rating using network features. From the final model, we inferred
that to create a highly rated episode social network, it would need to have
high density, but low clustering coe�cient. “Bottle episodes”, which consist
mainly of the core characters in a single place, fit this description. Viewers
of Friends also prefer episodes with fewer lines.

7.2 Contribution to literature

This thesis contributes to the original literature in three main ways;

1. providing evidence that automated social network extraction methods
are reliable for narrative analyses,

2. gaining deeper insights into a specific narrative – Friends – using social
networks, and

3. developing the techniques for temporal narrative social network analy-
sis and modelling.

First, we discuss and examine several narrative social network extraction
techniques, and quantitatively compare three of the most used methods.
Our results show that while manual extraction is the most accurate method,
automated methods such as co-occurrence networks or using natural language
processing usually achieve the same analysis results. As manual extraction
is time consuming, these results mean that one can extract social networks
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from narratives quickly and automatically without damaging the analysis.
Then we can extract and analyse a large corpus of narratives using their
social networks.

We analysed two types of social networks representing the characters and
relationships from Friends in great detail, and so our results add to the
literature on the series. We also made discoveries about the trends over time
and episode ratings of Friends. With more research into other narratives,
our results about Friends could lead to results about television shows or all
narratives in general.

The last of the main contributions to the literature on narrative social net-
works was development of the narrative analysis methods. Narrative analysis
in the literature using social networks usually involve calculating global or
character metrics, and describing or comparing the networks and characters.
We performed this analysis in detail on the Friends social network, but also
modelled the temporal network for a deeper understanding of the characters
and their social structure. We introduced the use of stochastic block models
for narrative analysis, and fit linear models to the network metrics over time
and with ratings. These steps provided more information about the Friends
series, and prove to be e↵ective methods for narrative analysis.

7.3 Future research

While our research contributes to the literature in several ways, it also pro-
vides a platform for future research. In particular, we suggest ways to im-
prove on our models and analysis throughout the thesis. We also discuss
unanswered questions that were touched on in the thesis.

In the comparison of extraction techniques in Chapter 4, we use a two-
class Poisson model, but we later find that this model underestimates clus-
tering. It is not clear that the extraction technique comparison relies heavily
on this model, but a more complicated, but better fitting model could be
of use. We also assumed a constant number of interactions in each scene.
One could investigate the e↵ect of changing parameters of the model, such
as the number of scenes, number of interactions and error rate of the natural
language processing. It is also of interest to consider other network extrac-
tion techniques, and di↵erences in directed or undirected, and weighted or
unweighted networks.

When modelling the social networks of Friends characters, we noticed the
two-class Poisson model underestimated the clustering coe�cient. We sug-
gested some alternate models, such as the preferential attachment model, or
the small-world model, however these model unweighted, one-class networks,
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so the models would have to be adapted to fit the Friends networks. The
stochastic block models provided insights into the classes and character roles
of Friends characters, and an interesting extension is to fit the same model
to other narrative networks. This leads to questions of the form, “Do the
same models fit all narratives, or all narratives of a certain type?”

Our comparison of narrative social network extraction techniques showed
that narrative networks extracted automatically are as reliable networks ex-
tracted manually for most analyses. One could use this information to extract
a large corpus of narrative social networks (e.g., from Project Gutenberg [3],
which provides thousands of novels for free online), and apply our techniques
for narrative analysis to achieve general results about narratives. For exam-
ple, what do narratives of particular genres or medias have in common? Do
the same network attributes cause higher success in all narratives? And do
all narratives exhibit similar patterns to those we see in Friends (e.g., the
characters getting less “friendly”)? And if they do, why? In Chapter 6 we
suggested that the number of interactions in the series decreases because the
storylines become more complex once we are familiar with the characters.
One could measure the complexity of a storyline using information theory
entropy measures on the words in the narrative (i.e., the script if the nar-
rative is a television series). Much previous work has gone into methods
for measuring complexity of text [70], including some analyses of narratives
[87, 102, 122].

In particular, we found in Chapter 6 that the number of words and lines
spoken by characters in Friends decreases over time. We hypothesised that
this is because of language changes between the years Friends aired: 1994
– 2004. To test this theory, one could perform similar analysis on other
television series that aired at similar times. For example, Frasier (1993 –
2004), Dawson’s Creek (1998 – 2003), Rugrats (1991 – 2004), Sex and the
City (1998 – 2004), Bu↵y the Vampire Slayer (1997 – 2003), and Sabrina the
Teenage Witch (1996 – 2003) aired over similar years to Friends.

Further narrative analysis will allow us to understand di↵erent cultures
through the stories they tell, and di↵erent periods of time through the nar-
ratives that were created and were popular at di↵erent times. Our research
provides a building block for improving and understanding the narratives
that surround us.
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Appendix A

Figures and Tables

A.1 Betweenness centrality core character ranks

Figure A.1 shows the betweenness centrality ranks for all core characters,
analogous to Figure 4.7 in the main text. Although there are minor di↵er-
ences in many of the ranks from the co-occurrence networks compared to the
manual networks, large di↵erences are rare. Therefore analysis of characters
using betweenness centrality is not greatly a↵ected by the network extraction
method. For example, the spike in Chandler’s betweenness centrality rank
in Season 9 is present in both datasets, as well as Joey’s constantly high
betweenness rank.
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Figure A.1: Betweenness centrality ranks of each core character over every
season for the co-occurrence and manual datasets.
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A.2 Season view Friends networks

Figures A.2 – A.19 show the social networks for Seasons 2 to 10 of Friends,
for the co-occurrence and manual datasets. The networks for Season 1
are Figure 5.3 and Figure 5.4 in the main text.

Figure A.2: Season 2 network for the co-occurrence dataset.

Figure A.3: Season 2 network for the manual dataset.
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Figure A.4: Season 3 network for the co-occurrence dataset.

Figure A.5: Season 3 network for the manual dataset.
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Figure A.6: Season 4 network for the co-occurrence dataset.

Figure A.7: Season 4 network for the manual dataset.
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Figure A.8: Season 5 network for the co-occurrence dataset.

Figure A.9: Season 5 network for the manual dataset.
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Figure A.10: Season 6 network for the co-occurrence dataset.

Figure A.11: Season 6 network for the manual dataset.
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Figure A.12: Season 7 network for the co-occurrence dataset.

Figure A.13: Season 7 network for the manual dataset.
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Figure A.14: Season 8 network for the co-occurrence dataset.

Figure A.15: Season 8 network for the manual dataset.
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Figure A.16: Season 9 network for the co-occurrence dataset.

Figure A.17: Season 9 network for the manual dataset.
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Figure A.18: Season 10 network for the co-occurrence dataset.

Figure A.19: Season 10 network for the manual dataset.
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A.3 Core character metric boxplots for man-

ual networks

Figure A.20 shows boxplots of the character metrics for the six core characters
in the manual season networks, and Figure A.21 shows boxplots of the
character metrics for the core characters in the manual episode networks.
These are similar to Figure 5.12 and Figure 5.13 in the main text, but are
calculated for the manual networks instead of the co-occurrence networks.

While there are some di↵erences in the exact values of the metrics over
the two datasets, the analysis from the boxplots is almost identical. This
supports the idea that the extraction method has little e↵ect on the analysis
of the narrative through its social network.
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Figure A.20: Boxplots of character metrics: degree (Deg), normalised
weighted degree (normDeg), weighted degree (weightedDeg), betweenness
centrality (between), closeness centrality (close), eigenvector centrality
(eigen) and local clustering coe�cient (clustering) for the six core charac-
ters in the manual season networks. Note that we have no data for the
proportion of scenes (scenes) in the manual networks.
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Figure A.21: Boxplots of character metrics: degree (Deg), normalised
weighted degree (normDeg), weighted degree (weightedDeg), betweenness
centrality (between), closeness centrality (close), eigenvector centrality
(eigen) and local clustering coe�cient (clustering) for the six core charac-
ters in the manual episode networks. Note that we have no data for the
proportion of scenes (scenes) in the manual networks.
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A.4 Closeness centralities in largest connected

component

Figure A.22 shows the closeness centralities of the six core characters in both
the co-occurrence and manual series networks, similarly to Figure 5.10 in
the main text. However, in the main text, the closeness centrality calculates
the path length from each node to every other node. If there is no path, the
size of the network is used. In the co-occurrence series network, this results
in an underestimation of the closeness centralities of characters, as there is
more than one component. Here, we recalculate the closeness centralities, but
only use the largest component. We find the closeness centralities for each
character is now larger in the co-occurrence network than in the manual

network, which is not surprising, as there are more connections, so many
path lengths are shorter.
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Figure A.22: Closeness centralities for the six core characters in the largest
connected components of the co-occurrence (blue) andmanual (red) series
networks.

Figure A.23 shows the closeness centralities of the six core characters in
both the co-occurrence and manual series networks, analogous to Fig-
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ure 5.12 in the main text. For some seasons, only calculating paths to char-
acters in the largest component increases the closeness centrality of all the
characters. We can now see that Ross has the highest closeness centrality
median for the co-occurrence season networks. Note that the boxplots for
core character closeness centralities in the co-occurrence season networks
now look very similar to the closeness centralities in the manual season
networks (Figure A.20).
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Figure A.23: Boxplots of closeness centralities for the six core characters in
the largest connected components of the co-occurrence season networks.

Figure A.24 is analogous to Figure 5.23 in the main text, showing the
closeness centralities of the six core characters in the co-occurrence season
networks over time. For Seasons 2, 3 and 5, which have more than one
component, the closeness centralities increase to similar values to the other
seasons. We can now see trends in the closeness centralities of characters,
and find that the patterns are similar to the degree of the characters.
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A.5 Network metrics with “woman” removed

Table A.1 is analogous to Table 5.2 in the main text, with an extra col-
umn showing the metrics for the co-occurrence series network with the
node “woman” removed. The analysis would be identical without the node
“woman”.

Co-occurrence No Woman Manual
size 660 659 746

totalEW 18528 18327 16569
totalE 2632 2572 1609
avEW 7.04 7.13 10.30
density 0.00605 0.00593 0.00290
avDeg 7.98 7.81 4.31
avPath 2.27 2.28 2.59

diameter 4 4 5
clustering 0.0551 0.0528 0.0335

clique 13 13 10

Table A.1: Table of global metrics: size, total edge weight (totalEW), num-
ber of edges (totalE), average edge weight (avEW), density, average degree
(avDeg), average path length (avPath), diameter, clustering coe�cient (clus-
tering) and size of the largest clique (clique) for the co-occurrence and man-
ually extracted static networks.

Figure A.25 is analogous to Figure 5.10 in the main text. It shows scatter-
plots of the character metrics for the core characters in the series networks for
the co-occurrence dataset, the manual dataset, and the co-occurrence

dataset with the node “woman” removed. The analysis would be identical
without the node “woman”.
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Figure A.25: Scatterplots of character metrics: degree (Deg), normalised
weighted degree (normDeg), weighted degree (weightedDeg), betweenness
centrality (between), closeness centrality (close), eigenvector centrality
(eigen), local clustering coe�cient (clustering) and proportion of scenes
(scenes) for the six core characters in the co-occurrence (green), manual

(red), and co-occurrence with “woman” removed (blue) series network.
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A.6 Manual dataset season edge weights

Figure A.26 shows the boxplots of edge weights between every core character
pair for the manual season networks. This is analogous to Figure 5.19 in
the main text, which shows the edge weights for the core characters in the
co-occurrence season networks. There are some di↵erences between the
two datasets, but the key features are present in both.
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Figure A.26: Boxplots of edge weights between core characters (C = Chan-
dler, J = Joey, M = Monica, P = Phoebe, Ra = Rachel and Ro = Ross) for
the manual season networks. The edge weight is equivalent to the number
of interactions between the characters in the season.
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A.7 Manual dataset episode edge weights

Figure A.27 shows the boxplots of edge weights between every core character
pair for the manual episode networks. This is analogous to Figure 5.20 in
the main text, which shows the edge weights for the core characters in the
co-occurrence episode networks. There are some di↵erences between the
two datasets, but the key features are present in both.
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Figure A.27: Boxplots of edge weights between core characters (C = Chan-
dler, J = Joey, M = Monica, P = Phoebe, Ra = Rachel and Ro = Ross) for
the manual episode networks. The edge weight is equivalent to the number
of interactions between the characters in the episode.
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A.8 Manual dataset episode bivariate char-

acter metrics

Figure A.28 shows the character metrics for the six core characters in the
manual season networks over time. This is analogous to Figure 5.23 in the
main text, which shows the character metrics for the six core characters in the
co-occurrence season networks over time. Here, we list some key features
that are in the manual dataset, but not the co-occurrence dataset:

• peak in Joey’s degree in Season 6,

• peak in Joey’s closeness and betweenness centrality in Season 6

• peak in Chandler’s clustering coe�cient in Season 7.

Bazzan discussed these features in her analysis of the manual Friends
network [21]. Apart from these, the character metrics are quite similar in
the two datasets.
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Figure A.28: Scatterplots of character metrics: degree (Deg), normalised
weighted degree (normDeg), weighted degree (weightedDeg), betweenness
centrality (between), closeness centrality (close), eigenvector centrality
(eigen) and local clustering coe�cient (clustering) for the six core charac-
ters in the manual season networks over time. Note that we have no data
for the proportion of scenes (scenes) in the manual networks.
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A.9 Core relationship edge weights

Figures A.29 to A.33 show scatterplots of the edge weights between Joey,
Monica, Phoebe, Rachel and Ross, respectively, and the other core characters
over time in the co-occurrence dataset. Figure 5.24 in the main text shows
shows a scatterplot of the edge weights between Chandler and the other core
characters over time in the co-occurrence dataset.

Recall that Figure 5.24 shows that Chandler was closest to Joey in the
first four seasons, but Monica’s relationship with Chandler takes over in the
remaining six seasons.

In Figure A.29, we notice that Joey is closest to Chandler until Season 6,
when he becomes closer to Rachel. Once he stops interacting with Chandler
so much, he interacts less with all characters.
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Figure A.29: Scatterplot of the edge weight of Joey with the five other core
characters in the co-occurrence season networks over time.

In Figure A.30 show that Monica interacted similarly with all the core
characters, until her and Chandler started dating in Season 5. From Season 5
onwards, her interactions with Chandler remain strong, but her interactions
with the other core characters decrease.

In Figure A.31, we see that Phoebe is usually closest to Monica, even
though Monica was closer to other characters than she is to Phoebe. This
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Figure A.30: Scatterplot of the edge weight of Monica with the five other
core characters in the co-occurrence season networks over time.

supports the theory that Phoebe is the least important character out of the
core characters.

Figure A.32 show that Rachel was close to many di↵erent characters,
depending on the season. In Seasons 1, 4 and 5, while she is roommates with
Monica (and not dating Ross), she is closest to Monica. In Seasons 6 and 7
when she lives with Phoebe, she is closest to Phoebe. In every other season,
she is closest to Ross, which is in line with Rachel and Ross’s intermittent
relationship.

Ross, however, is solely focussed on Rachel for most of the series. Fig-
ure A.33 shows that he is closest to Rachel by far in Seasons 2, 3, 4, 6, 7, 8
and 10. In the other seasons, Rachel ranks close to the top in interactions
with Ross.

In all figures we see a general trend of the edge weight/number of inter-
actions in the season decreasing as the series develops. We see this pattern
several times throughout the thesis.
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Figure A.31: Scatterplot of the edge weight of Phoebe with the five other
core characters in the co-occurrence season networks over time.
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Figure A.32: Scatterplot of the edge weight of Rachel with the five other core
characters in the co-occurrence season networks over time.
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Figure A.33: Scatterplot of the edge weight of Ross with the five other core
characters in the co-occurrence season networks over time.
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A.10 Two-class Poisson model simulations

Figure A.34 shows histograms of metrics for 1000 simulations of episodes
with the estimated parameters as the co-occurrence network for Season
1, Episode 16: The One with Two Parts: Part 1, and Figure A.35 shows
histograms of metrics for 1000 simulations of episodes with the estimated
parameters as the co-occurrence network for Season 6, Episode 9: The
One Where Ross Got High.
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Figure A.34: Histograms of metrics (total edge weight: totalEW, total num-
ber of edges: totalE, average edge weight: avEW, density, average degree:
avDeg, average path length: avPath, diameter, clustering coe�cient: clus-
tering, and size of the largest clique: clique) for 1000 simulations of episodes
with the estimated parameters as the co-occurrence network for Season
1, Episode 16: The One with Two Parts: Part 1. The dotted black line
represents the metric of the actual network for episode.

For both sets of parameters, and the set of parameters used in the main



A.10. Two-class Poisson model simulations 193

text (see Figure 6.6), the two-class Poisson model achieves reasonable net-
works, except for the clustering. In both figures, the simulations underesti-
mate the clustering in the episode networks.
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Figure A.35: Histograms of metrics (total edge weight: totalEW, total num-
ber of edges: totalE, average edge weight: avEW, density, average degree:
avDeg, average path length: avPath, diameter, clustering coe�cient: clus-
tering, and size of the largest clique: clique) for 1000 simulations of episodes
with the estimated parameters as the co-occurrence network for Season 6,
Episode 9: The One Where Ross Got High. The dotted black line represents
the metric of the actual network for episode.

Figure A.36 shows histograms of metrics for 1000 simulations of episodes
with the estimated parameters as the co-occurrence network for Season 2.
This is analogous to Figure 6.7 in the main text, which shows histograms of
metrics for 1000 simulations of episodes with the estimated parameters as
the co-occurrence network for Season 1.

For both sets of parameters, the two-class Poission model under or over-
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Figure A.36: Histograms of metrics (total edge weight: totalEW, total num-
ber of edges: totalE, average edge weight: avEW, density, average degree:
avDeg, average path length: avPath, diameter, clustering coe�cient: clus-
tering, and size of the largest clique: clique) for 1000 simulations of episodes
with the estimated parameters as the co-occurrence network for Season 2.
The dotted black line represents the metric of the actual network for episode.

estimates many of the metrics. Therefore the model does not fit the Friends
season networks well.
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A.11 Stochastic block model co-occurrence sea-

son networks

Figures A.37 to A.45 show the co-occurrence season networks as classified
into classes by the stochastic block model, along with heatmaps that repre-
sent the interaction rate within and between classes. The similar figure for
Season 1 in Figure 6.12 in the main text.
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Figure A.37: Season 2 network with nodes coloured by class, and heatmap for
the stochastic block model � parameters for the co-occurrence networks.
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Figure A.38: Season 3 network with nodes coloured by class, and heatmap for
the stochastic block model � parameters for the co-occurrence networks.
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Figure A.39: Season 4 network with nodes coloured by class, and heatmap for
the stochastic block model � parameters for the co-occurrence networks.
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Figure A.40: Season 5 network with nodes coloured by class, and heatmap for
the stochastic block model � parameters for the co-occurrence networks.
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Figure A.41: Season 6 network with nodes coloured by class, and heatmap for
the stochastic block model � parameters for the co-occurrence networks.
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Figure A.42: Season 7 network with nodes coloured by class, and heatmap for
the stochastic block model � parameters for the co-occurrence networks.
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Figure A.43: Season 8 network with nodes coloured by class, and heatmap for
the stochastic block model � parameters for the co-occurrence networks.
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Figure A.44: Season 9 network with nodes coloured by class, and heatmap for
the stochastic block model � parameters for the co-occurrence networks.
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Figure A.45: Season 10 network with nodes coloured by class, and heatmap
for the stochastic block model � parameters for the co-occurrence networks.
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A.12 Stochastic block model manual season

networks

Figures A.46 to A.55 show the manual season networks as classified into
classes by the stochastic block model, along with heatmaps that represent
the interaction rate within and between classes. For many of the seasons, the
classes are very similar to the classes in the co-occurrence season networks
(see Figure 6.12 and Figures A.37 to A.45).

In Season 4, the manual network has 5 classes compared to 4 in the
co-occurrence network. In Season 8, the manual network has 3 classes
compared to 4 in the co-occurrence network. The greatest di↵erence, how-
ever, is in Season 7. In the co-occurrence network, there are 5 classes in
Season 7, but there are only 3 in the manual network.

Despite some di↵erences in the number of classes, in general the classes
have similar characters in both datasets. In particular, the six core characters
make up one class in every season of both datasets.
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Figure A.46: Season 1 network with nodes coloured by class, and heatmap
for the stochastic block model � parameters for the manual networks.
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Figure A.47: Season 2 network with nodes coloured by class, and heatmap
for the stochastic block model � parameters for the manual networks.
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Figure A.48: Season 3 network with nodes coloured by class, and heatmap
for the stochastic block model � parameters for the manual networks.
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Figure A.49: Season 4 network with nodes coloured by class, and heatmap
for the stochastic block model � parameters for the manual networks.
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Figure A.50: Season 5 network with nodes coloured by class, and heatmap
for the stochastic block model � parameters for the manual networks.
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Figure A.51: Season 6 network with nodes coloured by class, and heatmap
for the stochastic block model � parameters for the manual networks.
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Figure A.52: Season 7 network with nodes coloured by class, and heatmap
for the stochastic block model � parameters for the manual networks.
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Figure A.53: Season 8 network with nodes coloured by class, and heatmap
for the stochastic block model � parameters for the manual networks.
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Figure A.54: Season 9 network with nodes coloured by class, and heatmap
for the stochastic block model � parameters for the manual networks.



A.12. Stochastic block model manual season networks 205

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●●
●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

Class ● ● ● ●1 2 3 4

1

2

3

4

1 2 3 4

20

40
60

Interactions

Figure A.55: Season 10 network with nodes coloured by class, and heatmap
for the stochastic block model � parameters for the manual networks.
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A.13 Seinfeld words per season

Figure A.56 shows the number of words spoken in each season of Seinfeld.
We see that the number of words spoken increases over time, and we quantify
this by fitting a linear model in Appendix B.3.
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Figure A.56: Scatterplot of the number of words spoken in the 9 seasons of
Seinfeld. The blue line shows the linear model trend line, with the confidence
interval shown by the shaded region.
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A.14 The Walking Dead words per season

Figure A.57 shows the number of words spoken by the character Daryl Dixon
in The Walking Dead of 8 seasons. We see that the number of words spo-
ken decreases over time, and we quantify this by fitting a linear model in
Appendix B.4.
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Figure A.57: Scatterplot of the number of words spoken by the character
Daryl Dixon in the 8 seasons of The Walking Dead. The blue line shows the
linear model trend line, with the confidence interval shown by the shaded
region.
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A.15 Linear model variables

Figure A.58 shows histograms of the numerical variables used in the linear
model in Section 6.4 in the main text. We use these histograms to look for
outliers and the general shape of our data.

Figure A.59 shows scatterplots of numerical variables used in the the
linear model in Section 6.4 in the main text against the episode number.
Here we look for possible outliers, and non-linear trends. We also notice
trends that appear linear, but we test for significant linear trends using the
linear model.

Figure A.60 shows boxplots of numerical variables used in the the linear
model in Section 6.4 in the main text grouped by season. We look for any
outliers or non-linear trends.
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Figure A.58: Histograms of numeric variables for linear model with time
using the manual episode networks.
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Figure A.59: Scatterplots of numeric variables against episode number for
linear model using the manual episode networks.
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Figure A.60: Boxplots of numeric variables against season number for linear
model using the manual episode networks.
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A.16 Bivariate model with time for co-occurrence

networks

Here, we fit linear models to metrics of the co-occurrence networks against
episode number to find trends over time. We use the same process as in
Section 6.4. Figure A.61 shows histograms of the numeric variables we will
fit for the co-occurrence linear model. Figure A.62 shows scatterplots of
the numeric variables to be fit in the linear model against episode number,
and Figure A.63 shows the same datapoints, but grouped into seasons via
boxplots.

Figure A.64 shows the adjusted p-values of all predictors for episode num-
ber using the co-occurrence episode networks. The p-values are adjusted
using the false discovery rate correction. In total there are 21 significant pre-
dictors at the 5% level. We plot the coe�cients of the (normalised) significant
predictors in Figure A.65 and find that the predictors with the greatest e↵ect
are the same as in the model using the manual network.

Figure A.66 shows the adjusted p-values of all predictors for season num-
ber using the co-occurrence episode networks. The p-values are adjusted
using the false discovery rate correction. In total there are 20 significant pre-
dictors at the 5% level. We plot the coe�cients of the (normalised) significant
predictors in Figure A.67 and find that the predictors with the greatest e↵ect
are the same as in the model using the manual network.

Figure A.68 shows the adjusted p-values of all predictors for season num-
ber using the co-occurrence season networks. The p-values are adjusted
using the False Discovery Rate correction. In total there are 7 significant pre-
dictors at the 5% level. We plot the coe�cients of the (normalised) significant
predictors in Figure A.69 and find that the predictors with the greatest e↵ect
are the same as in the model using the manual network.

One of the significant predictors for season number is core interactions.
Figure A.70 shows a scatterplot of the number of core interactions against
season number in the co-occurrence network. We see the same trend as in
the manual networks – that the Friends get less friendly over the series.
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Figure A.61: Histograms of numeric variables for linear model with time
using the co-occurrence episode networks.
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Figure A.62: Scatterplots of numeric variables against episode number for
linear model using the co-occurrence episode networks.
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Figure A.63: Boxplots of numeric variables against season number for linear
model using the co-occurrence episode networks.
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Figure A.65: Line range plot of coe�cients of normalised significant predic-
tors for episode number for the co-occurrence episode networks.
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Figure A.66: Scatterplot of adjusted p-values for the linear models of each
variable with season number for the co-occurrence episode networks. The
black line is at 0.05, which is the cut-o↵ for p-values at the 5% significance
level. Significant variables are coloured in blue, and insignificant variables
are red.
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Figure A.67: Line range plot of coe�cients of normalised significant predic-
tors for season number for the co-occurrence episode networks.
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Figure A.68: Scatterplot of adjusted p-values for the linear models of each
variable with season number for the co-occurrence season networks. The
black line is at 0.05, which is the cut-o↵ for p-values at the 5% significance
level. Significant variables are coloured in blue, and insignificant variables
are red.



A.16. Bivariate model with time for co-occurrence networks 221

−20

−15

−10

−5

0

ca
ro

l_
de

gr
ee

co
re

_i
nt

er
ac

tio
ns

co
re

_l
am

bd
a

jo
ey

_a
nd

_c
ha

n

m
on

_d
eg

re
e

ra
ch

_a
nd

_r
os

s

to
ta

l_
in

te
ra

ct
io

ns

Predictor Variable

C
oe

ffi
ci

en
t

Figure A.69: Line range plot of coe�cients of normalised significant predic-
tors for season number for the co-occurrence season networks.
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A.17 Bivariate model with ratings

Figure A.71 shows scatterplots of the numeric variables used in the linear
model to predict the rating of an episode from the manual network features.
We look for any outliers and non-linear trends.
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Figure A.71: Scatterplots of numeric variables against IMDb rating for mul-
tivariate linear model using the manual episode networks.



Appendix B

Code

B.1 Name change dictionary

The following function, written for Python, was used to extract the co-

occurrence Friends networks from the script. See Chapter 3 for details.
The name changes were necessary to ensure characters mentioned by more
than one name were recorded as single characters.

The string before the colon is the name as appears in the script, and the
string after the colon is the name to be changed to. We also change the
symbols “/”, “&” and “-” in character names to the word “and”, as they
indicate more than one character speaking.

def get_name_changes():

name_changes = {

’mnca’: ’monica’,

’phoe’: ’phoebe’,

’chan’: ’chandler’,

’rach’: ’rachel’,

’rtst’: ’mr. ratstatter’,

’estl’: ’estelle’,

’fbob’: ’fun bobby’,

’robin williams’: ’robin’,

’billy crystal’: ’billy’,

’phoebe sr.’: ’phoebe sr’,

’dr. timothy burke’: ’tim’,

’big nosed rachel’: ’rachel’,

’fat monica’: ’monica’,

’french phoebe’: ’phoebe’,

’janice\’s voice’: ’janice’,

225



226 Appendix B. Code

’rache’: ’rachel’,

’joey on tv’: ’joey’,

’ross lays head on table)’: ’ross’,

’gunter’: ’gunther’,

’young ross’: ’ross’,

’young monica’: ’monica’,

’past life phoebe’: ’phoebe’,

’dream joey’: ’joey’,

’dream monica’: ’monica’,

’present chandler\’s voice’: ’chandler’,

’mike\’s mom’: ’mike\’s mother’,

’mike\’s dad’: ’mike\’s father’,

’agency guy’: ’adoption agency guy’,

’a waiter’: ’waiter’,

’the waiter’: ’waiter’,

’a waiter in drag’: ’waiter in drag’,

’prof. sherman’: ’professor sherman’,

’racel’: ’rachel’,

’dr horton’: ’dr. horton’,

’same man\’s voice’: ’man\’s voice’,

’mr.heckles’: ’mr. heckles’,

’a drunken gambler’: ’drunken gambler’,

’phoebe[cutting in]’: ’phoebe’,

’rachel [cutting in]’: ’rachel’,

’chandlers’: ’chandler’,

’mr. greene’: ’dr. greene’,

’jack’: ’mr. geller’,

’judy’: ’mrs. geller’

}

return name_changes

always_change = {

’/’: ’ and ’,

’&’: ’and’,

’-’: ’ and ’

}
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B.2 Clustering coe�cient t-tests

The one sample t-test for clustering of 100 simulated GER random networks
with the same number of nodes and edges as the co-occurrence static net-
work is below. The t-test shows that if a network with this many nodes and
edges is random, the probability of observing a clustering coe�cient as high
as the 0.0551, or more extreme, is minute. Hence the co-occurrence static
network has significantly more clustering than a random network.

One Sample t-test

data: sapply(1:100, function(i) {

return(transitivity(erdos.renyi.game(vcount(g), ecount(g),

type = "gnm")))})

t = -332.34, df = 99, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0.05510536

95 percent confidence interval:

0.01213884 0.01264885

sample estimates:

mean of x

0.01239385

The one sample t-test for clustering of 100 simulated GER random net-
works with the same number of nodes and edges as the manual static net-
work is below. The t-test shows that if a network with this many nodes and
edges is random, the probability of observing a clustering coe�cient as high
as the 0.0335, or more extreme, is minute. Hence the manual static network
has significantly more clustering than a random network.

One Sample t-test

data: sapply(1:100, function(i) {

return(transitivity(erdos.renyi.game(vcount(ga), ecount(ga),

type = "gnm")))})

t = -165.9, df = 99, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0.03354714

95 percent confidence interval:

0.005412769 0.006077803

sample estimates:

mean of x

0.005745286
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B.3 Seinfeld words per season linear model

In Seinfeld (1989 – 1998), the number of words spoken by any character in
each season increases significantly. The linear model results below show that
the coe�cient of the number of words is unlikely to be 0, given the data
collected from reddit.com [9]. As the coe�cient is positive, we conclude the
number of words significantly increases. This is the same as the pattern we
observe in the number of words spoken in each season of Friends.

Call:

lm(formula = seas ~ n, data = seinfeld)

Residuals:

Min 1Q Median 3Q Max

-2.6813 -1.0333 0.2325 0.6027 3.0858

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.220e-01 2.328e+00 -0.353 0.7344

n 9.554e-05 3.647e-05 2.620 0.0344 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.08 on 7 degrees of freedom

Multiple R-squared: 0.495,Adjusted R-squared: 0.4229

F-statistic: 6.862 on 1 and 7 DF, p-value: 0.03443
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B.4 The Walking Dead words per season lin-

ear model

In The Walking Dead (2010 – present), the average number of words spoken
by Daryl Dixon per episode in each season decreases significantly. The lin-
ear model results below show that the coe�cient of the number of words is
unlikely to be 0, given the data collected from reddit.com [10]. As the coef-
ficient is negative, we conclude the number of words significantly decreases.
This is the opposite of the pattern we observe in the number of words spoken
in each season of Friends.

Call:

lm(formula = seas ~ n, data = daryldixon)

Residuals:

Min 1Q Median 3Q Max

-1.4249 -0.9172 -0.1219 0.5173 1.9953

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.290602 1.013538 8.18 0.00018 ***

n -0.026301 0.006232 -4.22 0.00556 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.328 on 6 degrees of freedom

Multiple R-squared: 0.748,Adjusted R-squared: 0.706

F-statistic: 17.81 on 1 and 6 DF, p-value: 0.00556
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