

Optimum Operating Policies

for

Multiple Reservoir Systems

by

P. Crawley, B.E. (Hons)

A Thesis for the Degree of

Master of Engineering Science

Department of Civil Engineering

University of Adelaide

Australia

April 1990

This Thesis embodies the results of supervised project work making up all of the work for the degree.

ACKNOWLEDGEMENTS

The author wishes to thank his supervisor, Dr. G. Dandy, Senior Lecturer in the Civil Engineering Department of the University of Adelaide, for his many hours of patient listening, valuable discussion and constructive criticism.

Funding for this work was provided by the Australian Water Resources Advisory Council and the Engineering and Water Supply Department of South Australia through the Partnership Research Program. In addition, a great deal of help was provided by members of the Water Resources Branch and the Operations Support Branch of the Engineering and Water Supply Department.

All these people, and any others who helped are thanked for the contribution they have made to this project.

I am extremely grateful to my family and friends who provided encouragement throughout the project.

Statement of Originality

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university and that, to my knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference is made in the text. I consent to the thesis being made available for photocopying and loan if accepted for the award of the degree.

Philip Crawley

Date .. 20/4/90

Synopsis

Synopsis

Using the Adelaide system as a case study, this research work examines the the use of linear programming as an aid in the identification of optimum operating policies for water supply headworks systems. Such policies are aimed at achieving maximum yield for a given level of reliability. In systems where a large fraction of the supply is pumped a further objective is to minimise pumping cost.

The results obtained for the Adelaide system indicate that significant savings in pumping costs can be achieved by the use of linear programming. In systems with little pumping it is expected that an increased system yield can be achieved.

А	ckn	owledgements	i		
S	tate	ment of Originality	ii		
S	ynop	osis	iii		
С	onte	nts	iv		
Li	ist of	f Figures	xi		
Li	List of Tables xiv				
1	Int	roduction	1		
	1.1	Reasons for this research	1		
	1.2	Objectives and Scope of Research Work	2		
	1.3	Method of Approach	2		
	1.4	Mathematical Programming	3		
	1.5	Summary	3		
2	Rev	iew of Optimisation Techniques	5		
	2.1	Introduction	5		

	2.2	2 Linea	ar Programming	. 8
		2.2.1	Deterministic Linear Programming	. 9
		2.2.2	Stochastic Linear Programming	. 9
		2.2.3	Linear Decision Rules	. 12
		2.2.4	Network Models	. 13
	2.3	Dyna	mic Programming	. 15
		2.3.1	Incremental Dynamic Programming and Discrete Differ- ential Dynamic Programming	16
		2.3.2	Incremental Dynamic Programming with Successive Approximations	16
		2.3.3	Stochastic Dynamic Programming	17
		2.3.4	Reliability Programming	17
	2.4	Real 7	Time Operating Models	19
		2.4.1	California Central Valley Project	19
		2.4.2	California State Water Project	20
		2.4.3	Central Arizona Project	20
		2.4.4	Tennessee Valley Authority Project	20
		2.4.5	Alcan Saguenay Hydro System	21
		2.4.6	Ottawa River Regulation Modelling System	21
	2.5	Summa	ary	22
3	The	Adela	ide Headworks System	24
	3.1	Introdu	action	2 4
	3.2	Descrip Storage	otion of the Metropolitan Adelaide Water Supply and System	24

v

		3.2.1	The Southern System	27
		3.2.2	The Northern System	31
	3.3	8 Sumr	mary	44
4	4 M	odellin	g Technique	45
			-	
	4.1	Intro	duction	45
	4.2	2 Select	tion of the Modelling Technique	45
	4.3	Form	ulation of the Problem	47
		4.3.1	Objective Function	47
		4.3.2	Constraint Equations	48
	4.4	Data	Input	52
		4.4.1	Catchment Inflow Volumes	52
		4.4.2	System Demands	53
		4.4.3	Pump Cost Curves	53
		4.4.4	Storage vs. Evaporation Curves	56
		4.4.5	System Parameters	58
	4.5	Linear	Programming Model	54
		4.5.1	'Perfect' Mode	65
		4.5.2	'Forecast' Mode	56
	4.6	Summa	ary	7
5	Res	ults and	d Analysis 6	8
	5.1	Introdu	action \ldots \ldots \ldots \ldots \ldots \ldots 6	8
	5.2	Historio	cal Operation	8

vi

	5.	3 Linea	r Programming Model	• • •	70
		5.3.1	'Perfect' Mode		
		5.3.2	'Forecast' Mode		
		5.3.3	Southern System - Historical and Model Comparison		
		5.3.4	Northern System - Historical and Model Comparison		
		5.3.5	Target Storage Sensitivity Analysis		
		5.3.6	Inflow Forecasting Sensitivity Analysis		
	5.4	Summ	nary		
6	Co	nclusio	ns and Recommendations		93
	6.1	Conclu	isions		93
	6.2		ations of Research		
	6.3		mendations for Further Work		
		6.3.1	Application of Synthetic Data Generation	• •	95
		6.3.2	Risk and Reliability Aspects	• •	96
A	Des	scription	n of LINDO Package	1	05
в	Des	criptive	e Flow Charts of Linear Programming Models	1	06
	B.1	Introdu	lction	. 1	06
	B.2		2' Mode		
			st' Mode		
С	Line	ear Prog	gramming Models - List of Variables Used	10)9
	C.1	Introdu	ction	. 1()9

vii

С	Conter	nts	viii
	C.2	2 Southern System Model	109
		8 Northern System Model	
D	Lin ma	near Programming Models - Input and Output Data For- ats	121
	D.1	Introduction	121
	D.2	2 Model Input Data Files	122
		D.2.1 Southern System Model	122
		D.2.2 Northern System Model	132
	D.3	Model Output Data Files	155
		D.3.1 Southern System Model	155
		D.3.2 Northern System Model	156
\mathbf{E}	Line	ear Programming Models - Output Details 1	.59
	E.1	Introduction	159
	E.2	Southern System Model Results	
		Northern System Model Results	
F	Line	ear Programming Model Program Descriptions	80
	F.1	Introduction	80
]		Southern System Model	
		F.2.1 'Shell' Script Programs	
		F.2.2 Fortran Programs	
ł	F.3	Northern System Model	
		F.3.1 'Shell' Script Programs	

		F.3.2	2 Fortran Programs	.87
G	Lin	ear P	rogramming Model Data 18	89
	G.1	Sout	hern System Model Data	89
		G.1.1	Reservoir Storage Capacities	89
		G.1.2	2 Initial Reservoir Storage Levels	89
		G.1.3	B Target Storage Levels	91
		G.1.4	Inflow Exceedance Volumes	94
		G.1.5	Historical Inflow Volumes	96
		G.1.6	Forecast Demand Volumes	99
		G.1.7	Historical Demand Volumes	99
		G.1.8	Murray Bridge-Onkaparinga Pump Cost Curve Coefficients)1
		G.1.9	Reservoir Evaporation Coefficients	1
		G.1.1(0 Myponga/Happy Valley Trunk Main Limitations 20	2
(G.2	North	ern System Model Data	3
		G.2.1	Reservoir Storage Capacities	3
		G.2.2	Initial Reservoir Storage Levels	4
		G.2.3	Target Storage Levels	5
	(G.2.4	Inflow Exceedence Volumes	
	(G.2.5	Historical Inflow Volumes	
	(G.2.6	Forecast Demands	
	(G.2.7	Historical Demands	
	(G.2.8	Pipeline Pump Cost Curve Coefficients	

ix

H Corigenda

х

List of Figures

1.1	Water Resources Planning Techniques	4
3.1	The Metropolitan Adelaide Water Storage System	26
3.2	The Southern Metropolitan Water Storage System Layout	28
3.3	The Southern Metropolitan Water Storage System Schematic	29
3.4	The Northern Metropolitan Water Storage System Schematic	33
3.5	The South Para Water Storage Subsystem Layout	34
3.6	The Little Para Water Storage Subsystem Layout	35
3.7	The Torrens Water Storage Subsystem Layout	36
3.8	The Swan Reach Stockwell Pipeline System Schematic	39
3.9	The Swan Reach Stockwell Pipeline System Layout	40
3.10	The Mannum Adelaide Pipeline System Schematic	43
3.11	The Mannum Adelaide Pipeline System Layout	43
4.1	Mannum - Adelaide Pump Cost Curve	54
4.2	Mount Bold Reservoir - Evaporation Loss vs. Storage curve	57
4.3	The Hope Valley System Schematic	62
5.1	Southern System Model - Annual Total Pumping Costs	72

5.2	Northern System Model - Annual Total Pumping Costs 75
5.3	Northern System Annual Mannum-Adelaide Pumping Costs 77
5.4	Northern System Annual Swan Reach-Stockwell Pumping Costs 79
5.5	Northern System Annual Ex-Millbrook Pumping Costs 81
5.6	Southern System - Inflow Forecasting Pumping Costs 89
B.1	Model Flowchart - 'Perfect' Mode
B.2	Model Flowchart - 'Forecast' Mode
D.1	Southern System Model - 'LINDO.IN' Component Files 123
D.2	Northern System Model - 'LINDO.IN' Component Files 132
E.1	Murray Bridge-Onkaparinga Pumping Behaviour
E.2	Mount Bold Storage Behaviour
E.3	Happy Valley Storage Behaviour
E.4	Myponga Storage Behaviour
E.5	Clarendon Weir Spill Behaviour
E.6	Myponga Spill Behaviour
E.7	Supply Distribution Behaviour - Happy Valley
E.8	Supply Distribution Behaviour - Myponga
E.9	Mannum-Adelaide Pumping Behaviour
E.10	Swan Reach-Stockwell Pumping Behaviour
	Ex-Millbrook Pumping Behaviour
	Warren Storage Behaviour
	South Para and Barossa Storage Behaviour

E.14 Little Para Storage Behaviour
E.15 Millbrook Storage Behaviour
E.16 Kangaroo Creek and Hope Valley Storage Behaviour
E.17 Barossa Weir Spill Behaviour
E.18 Little Para Spill Behaviour
E.19 Gorge Weir Spill Behaviour

xiii

List of Tables

5.1	Southern System Model - Annual Pumping Costs
5.2	Northern System Model - Annual Total Pumping Costs 74
5.3	Northern System Annual Mannum-Adelaide Pumping Costs 78
5.4	Northern System Annual Swan Reach-Stockwell Pumping Costs 80
5.5	Northern System Annual Ex-Millbrook Pumping Costs 82
5.6	Myponga Reservoir Target Storage Sensitivity
5.7	Southern System - Target Storage Level Pumping Costs 86
5.8	Southern System - Inflow Forecasting Pumping Costs 88
G.1	Southern System Historical Reservoir Storage Capacities 190
G.2	Southern System - Historical 'Start of Year' Reservoir Storage Levels
G.3	Southern System - 'Current Operating' Target Storage Levels . 191
G.4	Southern System - '2 Month Supply' Target Storage Levels 192
G.5	Southern System - '6 Week Supply' Target Storage Levels 192
G.6	Southern System - '4 Week Supply' Target Storage Levels 193
G.7	Southern System - 90% Inflow Exceedence Volumes
	Southern System - 80% Inflow Exceedence Volumes

G.9 Southern System - 70% Inflow Exceedence Volumes
G.10 Southern System - 60% Inflow Exceedence Volumes
G.11 Mount Bold and Happy Valley Historical Inflow Volumes (Gl) $.197$
G.12 Mount Bold and Happy Valley Historical Inflow Volumes (Gl) $$. 197
G.13 Myponga Historical Inflow Volumes (Gl)
G.14 Myponga Historical Inflow Volumes (Gl)
G.15 Southern System - Forecast Demand Volumes
G.16 Total Southern System Historical Demand Volumes (Gl) 200
G.17 Total Southern System Historical Demand Volumes (Gl) 200
G.18 Murray Bridge-Onkaparinga Monthly Pump Cost Curve Coef- ficients (1987 Dollars)
G.19 Southern System Reservoir Evaporation Coefficients 201
G.20 Southern System Demands - Maximum and Minimum Myponga Supply Proportions
G.21 South and Little Para Subsystems Historical Reservoir Storage Capacities
G.22 Torrens Subsystem Historical Reservoir Storage Capacities 203
G.23 South and Little Para Subsystems Historical 'Start of Year' Reservoir Storage Levels
G.24 Torrens Subsystem Historical 'Start of Year' Reservoir Storage Levels
G.25 Warren Reservoir Historical Target Storage Levels (for all years) 205
G.26 South and Little Para Subsystems Target Storage Levels \ldots 205
G.27 Torrens Subsystem Target Storage Levels
G.28 South and Little Para Subsystems 90% Inflow Exceedence Vol- umes

G.29 Torrens Subsystem 90% Inflow Exceedence Volumes
G.30 South and Little Para Subsystems 80% Inflow Exceedence Vol- umes
G.31 Torrens Subsystem 80% Inflow Exceedence Volumes 208
G.32 South and Little Para Subsystems 70% Inflow Exceedence Vol- umes
G.33 Torrens Subsystem 70% Inflow Exceedence Volumes 209
G.34 South and Little Para Subsystems 60% Inflow Exceedence Vol- umes
G.35 Torrens Subsystem 60% Inflow Exceedence Volumes
G.36 Warren Historical Inflow Volumes (Gl)
G.37 Warren Historical Inflow Volumes (Gl)
G.38 South Para Historical Inflow Volumes (Gl)
G.39 South Para Historical Inflow Volumes (Gl)
G.40 Little Para Historical Inflow Volumes (Gl)
G.41 Little Para Historical Inflow Volumes (Gl)
G.42 Torrens System Historical Inflow Volumes (Gl)
G.43 Torrens System Historical Inflow Volumes (Gl)
G.44 Northern System - Forecast Demand Volumes
G.45 Warren and Lower North Historical Demand Volumes (ND1) (Gl)217
G.46 Warren and Lower North Historical Demand Volumes (ND1) (Gl)217
G.47 Barossa Historical Demand Volumes (ND2) (Gl)
G.48 Barossa Historical Demand Volumes (ND2) (Gl)
G.49 Little Para Historical Demand Volumes (ND3) (Gl)

G.50 Little Para Historical Demand Volumes (ND3) (Gl)
G.51 Anstey Hill Historical Demand Volumes (ND4) (Gl) 220
G.52 Anstey Hill Historical Demand Volumes (ND4) (Gl) 220
G.53 Hope Valley Historical Demand Volumes (ND5) (Gl)
G.54 Hope Valley Historical Demand Volumes (ND5) (Gl)
G.55 Mannum-Adelaide Online Historical Demand Volumes (Gl) 222
G.56 Mannum-Adelaide Online Historical Demand Volumes (Gl) 222
G.57 Mannum-Adelaide Monthly Pump Cost Curve Coefficients (1987 Dollars)
G.58 Swan Reach-Stockwell Monthly Pump Cost Curve Coefficients (1987 Dollars)
G.59 Ex-Millbrook Monthly Pump Cost Curve Coefficients (1987 Dol- lars)
G.60 South Para Subsystem Reservoir Evaporation Coefficients 224
G.61 Little Para Subsystem Reservoir Evaporation Coefficients 225
G.62 Torrens Subsystem Reservoir Evaporation Coefficients