
Dynamic Scene Understanding
with Applications to Traffic

Monitoring

Qichang Hu

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY
School of Computer Science
The University of Adelaide

November 2017

Abstract

Many breakthroughs have been witnessed in the computer vision community in re-
cent years, largely due to deep Convolutional Neural Networks (CNN) and large-
scale datasets. This thesis aims to investigate dynamic scene understanding from im-
ages. The problem of dynamic scene understanding involves simultaneously solving
several sub-tasks including object detection, object recognition, and segmentation.
Successfully completing these tasks will enable us to interpret the objects of interest
within a scene.

Vision-based traffic monitoring is one of many fast-emerging areas in the intelligent
transportation system (ITS). In the thesis, we focus on the following problems in
traffic scene understanding. They are 1) How to detect and recognize all the objects
of interest in street view images? 2) How to employ CNN features and semantic
pixel labelling to boost the performance of pedestrian detection? 3) How to enhance
the discriminative power of CNN representations for improving the performance of
fine-grained car recognition? 4) How to learn an adaptive color space to represent
vehicle images for vehicle color recognition?

For the first task, we propose a single learning based detection framework to de-
tect three important classes of objects (traffic signs, cars, and cyclists). The proposed
framework consists of a dense feature extractor and detectors of these three classes.
The advantage of using one common framework is that the detection speed is much
faster, since all dense features need only to be evaluated once and then are shared
with all detectors. The proposed framework introduces spatially pooled features as
a part of aggregated channel features to enhance the robustness to noises and image
deformations. We also propose an object subcategorization scheme as a means of
capturing the intra-class variation of objects.

To address the second problem, we show that by re-using the convolutional feature
maps (CFMs) of a deep CNN model as visual features to train an ensemble of boosted
decision forests, we are able to remarkably improve the performance of pedestrian
detection without using specially designed learning algorithms. We also show that
semantic pixel labelling can be simply combined with a pedestrian detector to fur-
ther boost the detection performance.

Fine-grained details of objects usually contain very discriminative information which
are crucial for fine-grained object recognition. Conventional pooling strategies (e.g.
max-pooling, average-pooling) may discard these fine-grained details and hurt the

iii

iv

recognition performance. To remedy this problem, we propose a spatially weighted
pooling (swp) strategy which considerably improves the discriminative power of
CNN representations. The swp pools the CNN features with the guidance of its
learnt masks, which measures the importance of the spatial units in terms of dis-
criminative power.

In image color recognition, visual features are extracted from image pixels repre-
sented in one color space. The choice of the color space may influence the quality
of extracted features and impact the recognition performance. We propose a color
transformation method that converts image pixels from the RGB space to a learnt
space for improving the recognition performance. Moreover, we propose a ColorNet
which optimizes the architecture of AlexNet and embeds a mini-CNN of color trans-
formation for vehicle color recognition.

Declaration

I certify that this work contains no material which has been accepted for the award
of any other degree or diploma in my name, in any university or other tertiary insti-
tution and, to the best of my knowledge and belief, contains no material previously
published or written by another person, except where due reference has been made
in the text. In addition, I certify that no part of this work will, in the future, be used
in a submission in my name, for any other degree or diploma in any university or
other tertiary institution without the prior approval of the University of Adelaide
and where applicable, any partner institution responsible for the joint-award of this
degree.

I give consent to this copy of my thesis, when deposited in the University Library,
being made available for loan and photocopying, subject to the provisions of the
Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on
the web, via the University‘s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University
to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision of
an Australian Government Research Training Program Scholarship.

Signed: Date:

v

vi

Publications

This thesis is based on the content of the following journal papers:

• Qichang Hu, Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hen-
gel, Fatih Porikli. “Fast Detection of Multiple Objects in Traffic Scenes With a
Common Detection Framework”, IEEE Transactions on Intelligent Transporta-
tion Systems (TITS), 2015, DOI: 10.1109/TITS.2015.2496795. (incorporated as
Chapter 3)

• Qichang Hu, Peng Wang, Chunhua Shen, Anton van den Hengel, Fatih Porikli.
“Pushing the Limits of Deep CNNs for Pedestrian Detection”, IEEE Trans-
actions on Circuits and Systems for Video Technology (TCSVT), 2017, DOI:
10.1109/TCSVT.2017.2648850. (incorporated as Chapter 4)

• Qichang Hu, Huibing Wang, Teng Li, Chunhua Shen. “Deep CNNs with Spa-
tially Weighted Pooling for Fine-grained Car Recognition”, IEEE Transactions
on Intelligent Transportation Systems (TITS), 2017, DOI: 10.1109/TITS.2017.2679114.
(incorporated as Chapter 5)

In addition, I have co-authored the below papers:

• Biyun Sheng, Qichang Hu, Jun Li, Wankou Yang, Baochang Zhang, Changyin
Sun. “Filtered Shallow-Deep Feature Channels for Pedestrian Detection”, Jour-
nal of Neurocomputing, 2017, DOI: 10.1016/j.neucom.2017.03.007

• Teng Li, Qichang Hu, Chunhua Shen, Yidong Li. “Spatially Weighted Pooling
in Deep Convolutional Neural Networks for Fine-grained Visual Recognition”,
IEEE Transactions on Multimedia (TMM). (under review)

vii

viii

Acknowledgments

First of all, I would like to express the deepest gratitude to my principle supervi-
sor, Prof. Chunhua Shen, for his in-depth guidance on my research and generous
support for my life. He has been very supportive since the days I contacted him for
a postgraduate study. He always made himself available to me for discussing any
research problems and potential directions that I brought. I believe that this thesis
would not have been possible without his supervision and constant help.

I would like to thank the other members in my advisory team, Dr. Peng Wang and
Prof. Anton van den Hengel, for their constructive advice and insightful feedback. I
would also like to thank my former co-supervisor Dr. Sakrapee Paisitkriangkrai for
his valuable support and insightful advice over the first year of my Ph.D. study.

I thank my supportive friends and colleagues at the University of Adelaide. I would
like to thank Yuanzhouhan Cao, Ruizhi Qiao, Hui Li, Yao Li, Teng Li, Bohan Zhuang,
and Peng Wang, for not only the research discussions but also the happy time we en-
joyed together.

Last but not at least, I would like to express my great appreciation to my family for
their unconditional love and endless support throughout the past three years.

ix

Contents

Abstract iii

Declaration v

Publications vii

Acknowledgments ix

1 Introduction 1
1.1 Overview . 1
1.2 Problem formulations . 2

1.2.1 A common detection framework to fastly detect multiple ob-
jects of interest in traffic scenes . 2

1.2.2 Pedestrian detection . 3
1.2.3 Fine-grained car recognition . 4
1.2.4 Vehicle color recognition . 4

1.3 Main contributions . 5
1.4 Thesis outline . 6

2 Literature Review 9
2.1 Hand-crafted features . 9

2.1.1 Scale invariant feature transform 9
2.1.2 Histogram of oriented gradients 10
2.1.3 Local binary patterns . 10
2.1.4 Region covariance features . 10
2.1.5 Aggregated channel features . 11

2.2 AdaBoost . 11
2.2.1 Introduction . 12
2.2.2 Training AdaBoost . 12
2.2.3 Shrinkage version of AdaBoost . 13

2.3 Convolutional neural networks . 15
2.3.1 Architecture . 15
2.3.2 Extensions and variants . 17
2.3.3 Training CNNs . 18
2.3.4 Applications . 18

xi

xii Contents

3 Fast Detection of Multiple Objects in Traffic Scenes with a Common Frame-
work 21
3.1 Introduction . 21
3.2 Background . 23

3.2.1 Generic object detection . 23
3.2.2 Traffic sign detection . 24
3.2.3 Car detection . 25
3.2.4 Cyclist detection . 26

3.3 Proposed approach . 27
3.3.1 Object Subcategorization . 28

3.3.1.1 Visual features . 28
3.3.1.2 Geometrical features . 29
3.3.1.3 Clustering . 29

3.3.2 Feature extraction . 30
3.3.2.1 Aggregated channel features (ACF) 30
3.3.2.2 Spatially pooled features 31

3.3.3 Supervised learning . 33
3.3.4 Post-processing . 34

3.3.4.1 Calibration of confidence scores 34
3.3.4.2 Non-maximum suppression (NMS) 35
3.3.4.3 Fusion of detection results 35

3.4 Experiments . 36
3.4.1 Traffic sign detection on GTSDB dataset 36

3.4.1.1 Dataset . 36
3.4.1.2 Evaluation criteria . 37
3.4.1.3 Parameter selection . 37
3.4.1.4 Experimental design . 37
3.4.1.5 Comparison with state-of-the-art detectors 39

3.4.2 Car detection on UIUC dataset . 39
3.4.3 Car detection on KITTI dataset . 40

3.4.3.1 Dataset . 40
3.4.3.2 Evaluation criteria . 41
3.4.3.3 Parameter selection . 41
3.4.3.4 Experimental design . 42
3.4.3.5 Comparison with state-of-the-art detectors 43

3.4.4 Cyclist detection on KITTI dataset 44
3.4.4.1 Dataset . 44
3.4.4.2 Evaluation criteria . 44
3.4.4.3 Parameter selection . 44
3.4.4.4 Experimental design . 45
3.4.4.5 Comparison with state-of-the-art detectors 46

3.4.5 An evaluation of the overall runtime 46
3.5 Conclusion . 47

Contents xiii

4 Pushing the Limits of Deep CNNs for Pedestrian Detection 49
4.1 Introduction . 49
4.2 Background . 51

4.2.1 Convolutional feature maps (CFMs) 51
4.2.2 Segmentation for object detection 51

4.3 Datasets, evaluation metric and models 52
4.3.1 Caltech pedestrian dataset . 52
4.3.2 Inria pedestrian dataset . 53
4.3.3 KITTI pedestrian dataset . 53
4.3.4 Boosted decision forest . 53

4.4 Boosted decision forests with multi-layer CFMs 54
4.4.1 Architecture of the VGG16 model 54
4.4.2 Fine-tuning DCNNs with Bootstrapped Data 54
4.4.3 Ensemble of Boosted Decision Forests 56

4.5 Pixel labelling improves pedestrian detection 59
4.6 Overview of the proposed framework . 62
4.7 Fusing models and evaluations . 62

4.7.1 Using complementary hand-crafted features 62
4.7.2 Pixel labelling . 66
4.7.3 Ablation studies . 66
4.7.4 Fast ensemble models . 67
4.7.5 Comparison to state-of-the-art approaches 68

4.7.5.1 Caltech . 68
4.7.5.2 Inria . 71
4.7.5.3 KITTI . 71

4.8 Conclusion . 73

5 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recog-
nition 75
5.1 Introduction . 75
5.2 Background . 77
5.3 Properties of fine-grained car datasets . 78
5.4 Proposed approach . 80

5.4.1 Spatially weighted pooling . 81
5.4.2 Using swp with DCNNs . 83
5.4.3 End-to-end training of swp . 84

5.5 Experiments . 85
5.5.1 Methods . 85

5.5.1.1 AlexNet with swp . 85
5.5.1.2 VGG16 with swp . 85
5.5.1.3 ResNets with local max-pooling 86
5.5.1.4 ResNets with swp . 86

5.5.2 Implementation details . 86
5.5.3 Evaluation on the Stanford Cars-196 dataset 87

xiv Contents

5.5.4 Evaluation on the CompCars dataset 89
5.5.5 Evaluation on our CarFlag-1532 dataset 91
5.5.6 Evaluation on the CarFlag-563 dataset 93

5.6 Conclusion . 96

6 ColorNet: A Small CNN with Color Transformation for Vehicle Color Recog-
nition 99
6.1 Introduction . 99
6.2 Background . 101
6.3 Proposed approach . 102

6.3.1 Color transformation . 102
6.3.2 Model optimization . 104
6.3.3 Model integration . 105

6.4 Experiments . 106
6.4.1 Dataset and evaluation metric . 106
6.4.2 Implementation details . 107
6.4.3 Experimental design . 107

6.4.3.1 Global average pooling (GAP) 108
6.4.3.2 Size of input image . 108
6.4.3.3 Batch normalization (BN) 109
6.4.3.4 Number of convolutional filters 109
6.4.3.5 Number of convolutional layers 110
6.4.3.6 Color transformation . 111

6.4.4 Comparison with state-of-the-art approaches 111
6.5 Conclusion . 113

7 Conclusion and Future Directions 115
7.1 Conclusion . 115
7.2 Future work . 116

List of Figures

3.1 Top image: A typical on-road traffic scene with the detected objects of
interest. Bottom images: Each block represents one class of objects of
interest. From left to right, the first block contains traffic sign exam-
ples, the second contains car examples, and the third contains cyclist
examples. 22

3.2 Overview of the proposed detection framework. Top diagram is the
training phase and bottom diagram is the testing phase. 27

3.3 Architecture of the spatially pooled covariance features. 33

3.4 Sample images of three main categories on the GTSDB dataset. 36

3.5 Detection performance (AP) of various detectors with different num-
ber of subcategories on the KITTI validation set. (a) Car detector
(spectral clustering + geometrical features). (b) Car detector (spectral
clustering + visual features). (c) Cyclist detector (spectral clustering +
aspect-ratios). 42

4.1 The architecture of the VGG16 model. 55

4.2 The spatial distribution of regions of CFMs selected by boosting algo-
rithms. For a 128× 64 input image, the size of feature maps are 32× 16,
16× 8, 8× 4 respectively. Red pixels indicate that a large number of
features are selected in those regions and blue pixels correspond to
low frequency regions. The most discriminative regions correspond to
the head, shoulder, waist and feet of a human. 58

4.3 The framework of an ensemble of boosted decision forests with multi-
layer CFMs (CFM3+CFM4+CFM5), which obtain a 10.46% MR on the Cal-
tech Reasonable test setting. 58

4.4 The framework for pedestrian detection with pixel-labelling. The re-
gion proposals and pixel-level score maps are obtained by individually
applying the sliding-window detector and the pixel labelling model.
Next, the weighted sum of pixel scores within a proposal region is
aggregated with the detector score of the same proposal region. 60

4.5 Examples of some region proposals on the original images and the
corresponding pixel score maps. A strong complementary relationship
can be found in the generated proposals and the pixel score maps. . . 62

xv

xvi LIST OF FIGURES

4.6 Overview of our pedestrian detection framework. The framework con-
sists of one pedestrian detector and one pixel labelling model. The fi-
nal confidence score of one proposal is computed by averaging outputs
of multiple components. 63

4.7 Visualization of some intermediate features. 64
4.8 Visualization of detection results of different variants of the CFM3 de-

tector. Yellow bounding boxes are ground truth, green bounding boxes
are true positives, and red bounding boxes are false positives. 65

4.9 Comparison to state-of-the-art approaches on the Caltech Reasonable

test setting. 69
4.10 Comparison to state-of-the-art approaches on various Caltech test set-

tings. 70
4.11 Comparison to state-of-the-art approaches on the Inria positive test set. 71
4.12 Comparison to state-of-the-art approaches on the KITTI Moderate test

set. 72

5.1 Example images from the web-image dataset (left block). These images
have large appearance variations due to the unconstrained poses and
multiple viewpoints.Toyota Camry Example images from the surveillance-
image dataset (right block). These frontal car images are captured by
fixed surveillance cameras from the front view. 79

5.2 The structure of the car model hierarchy. Several car models of Toyota
Camry produced in different years are also displayed. 80

5.3 Overview of the proposed method. The convolutional feature maps
are generated by the last convolutional layer of a pre-trained deep
CNN model. The swp layer contains a predefined number of spatially
weighted masks and pools the extracted feature maps with the guid-
ance of learnt masks. The image representation is the concatenation of
pooled features from multiple pooling channels. 81

5.4 Visualization of some spatially weighted masks learned from the VGG16
with the swp layer. 82

5.5 Sample images with unconstrained poses from the CarFlag-1532 dataset
captured from various scenes. 92

5.6 Sample images from the CarFlag-563 dataset captured by surveillance
cameras in various weather and illumination conditions. Car types
from top to bottom row: sedan, SUV, MPV, bus and truck. 94

5.7 Images of left column are raw images. Right column are car images
detected by the faster-rcnn model. 95

5.8 Visualization of 9 spatially weighted masks learned from the AlexNet-
swp on the CarFlag-563 dataset. 96

6.1 Visualization of car images in several color spaces. (a) The RGB space.
(b) The space learned from the mini-CNN B. (c) The space learned
from the mini-CNN C. 103

LIST OF FIGURES xvii

6.2 Visualization of 96 filters of the first convolutional layer of the AlexNet
with mini-CNN B. These filters of size 11 × 3 are learned from the
227× 227× 3 input images. 106

xviii LIST OF FIGURES

List of Tables

3.1 Performance (AUC) difference between training on original training
set and jittered training set. 37

3.2 Performance (AUC) of detectors with different shrinkage values. ∗ The
model consists of 4096 weak learners while others consist of 2048 weak
learners. 38

3.3 Performance (AUC) of detectors with different depths of decision trees. 38

3.4 Performance (AUC) of detectors with various feature combinations. . . 39

3.5 Detection performance (AUC) of various detectors on GTSDB test set
with 60% overlap ratio. 39

3.6 Detection performance of various detectors on UIUC multi-scale test set. 40

3.7 Comparison of car datasets. The first four columns indicate the amount
of training/testing data in each dataset. Note that KITTI dataset is two
orders of magnitude larger than other existing datasets. The next five
columns provide additional properties of each dataset. 41

3.8 Performance (AP) of detectors with different depths of decision trees. . 43

3.9 Performance (AP) of detectors with various feature combinations. . . . 43

3.10 Detection performance (AP) of various detectors on KITTI car test set
with 70% overlap ratio. 44

3.11 Performance (AP) of detectors with different depths of decision trees. . 45

3.12 Performance (AP) of detectors with various feature combinations. . . . 46

3.13 Detection performance (AP) of various detectors on KITTI cyclist test
set with 50% overlap ratio. 46

3.14 An evaluation of the overall runtime of the proposed framework with
various feature combinations. 47

4.1 Performance improvements with different fine-tuning strategies and
shrinkage (on Reasonable). All boosted decision forests are trained
with the CFM extracted from the Conv3-3 layer of VGG16. CFM3a:
the original VGG16 model pre-trained on ImageNet is used to extract
features. CFM3b: the VGG16 model is fine-tuned with the data col-
lected by an ACF (Dollár et al., 2014) detector. CFM3c and CFM3: the
fine-tuning data is obtained by bootstrapping with CFM3b. With the
same fine-tuning data, setting the shrinkage parameter of Adaboost to
0.5 brings an additional 1% reduction on the MR 56

xix

xx LIST OF TABLES

4.2 Comparison of detection performance (on Reasonable) of boosted de-
cision forests trained on individual CFMs. Note that models with
Conv3-x features works as sliding-window detectors, and models with
Conv4-x and Conv5-x features are applied to the proposals generated
by CFM3. The top performing layers in each convolutional stack are
Conv3-3, Conv4-3 and Conv5-1 respectively. The models trained with
these three layers are denoted as CFM3, CFM4, and CFM5 respectively . . . 57

4.3 The comparison of performance (on Reasonable) of different ensemble
models. DCNN: the entire VGG16 model fine-tuned by data collected
by CFM3. The combination of multi-layer CFM models improves the
detection performance of single-layer CFM models significantly (3%) . 59

4.4 Performance improvements by aggregating pixel labelling models with
sliding-window detectors (on Reasonable). All the three detectors achieve
performance gains, which shows that pixel labelling can be used to
help detection. Note that the performance of our model ‘CFM3 with
Pixel labelling’ already outperforms the previously best reported re-
sult of (Cai et al., 2015) . 61

4.5 Comparison of detection results of different variants of the CFM3 de-
tector (on Reasonable). The convolutional features of the Conv3-3 layer
are combined with different types of hand-crafted features, and used
to train a boosted decision forest. Both the performance of the variants
and the ensemble models is improved with these additional features.
Flow: optical flow features. DCNN: the entire VGG16 model fine-
tuned by data collected by CFM3 . 63

4.6 Comparison of detection performance (on Reasonable) of different en-
semble models with pixel labelling. DCNN: the entire VGG16 model
fine-tuned by hard negative data collected by CFM3; Pixel label.: pixel
labelling model; Flow: optical flow. The pixel labelling model consis-
tently improves all the considered models in this table. The All-in-one
model set a new record on the Caltech pedestrian benchmark 66

4.7 Ablation studies of the All-in-one model on the Caltech Reasonable test
setting . 67

4.8 Comparison of detection performance (on Reasonable) between the orig-
inal ensemble model and fast ensemble models 68

4.9 Detection performance of different types of detectors on the Caltech
Reasonable test setting. Three types of approaches are compared in
this table, including boosted decision trees trained on hand-crafted
features, RCNN-based methods and the state-of-the-art sophisticated
methods. All of our models outperform the first three types of mod-
els, and our All-in-one set a new recorded MR on Caltech pedestrian
benchmark. † indicates the methods trained with optical flow features 69

4.10 Detection results (AP) on three KITTI test subsets. Note: ∗ indicates
the methods trained with stereo images 72

LIST OF TABLES xxi

5.1 Comparison of existing fine-grained car datasets. The first two columns
indicate the amount of training/test data in each dataset. Note that
both the CarFlag-563 and CarFlag-1532 datasets are larger than other
existing datasets. The middle three columns present the diversity of
each dataset. The next four columns provide additional properties of
each dataset. 80

5.2 Comparison of classification results of various DCNNs with different
parameter settings on the Stanford Cars-196 dataset. For AlexNet-swp
and VGG16-swp, N is the number of neurons of FC6 and FC7 layers.
For ResNets-swp, N is the number of neurons of the inserted FC layer. . 88

5.3 Comparison of classification results on the Stanford Cars-196 dataset
with bounding box annotations. ‘LMP’ means the local max-pooling
and ‘swp’ indicates the spatially weighted pooling. 89

5.4 Comparison of classification results on the CompCars dataset. † is
quoted from the baseline in (Sochor et al., 2016). 90

5.5 Comparison of classification results on the CarFlag-1532 dataset. 91
5.6 Comparison of classification results on the CarFlag-563 dataset. † in-

dicates the model is fine-tuned on large-size images (400× 400 pixels). . 93

6.1 Several architectures of the mini-CNN for color transformation. 103
6.2 Architecture of the AlexNet. 104
6.3 Data distribution for each color category on the Vehicle-color dataset. . 107
6.4 Performance of the AlexNet with traditional FC layers or with GAP

layer on the Vehicle-color dataset. N is the number of neurons on FC6
and FC7 layers. † is the default setting of AlexNet. 108

6.5 Performance of the AlexNet-gap with different input image sizes on
the Vehicle-color dataset. 109

6.6 Average accuracy of the AlexNet-gap with different BN placements on
the Vehicle-color dataset. 109

6.7 Performance of the AlexNet-gap with different number of convolu-
tional filters on the Vehicle-color dataset. 110

6.8 Performance of the AlexNet-gap with different number of convolu-
tional layers on the Vehicle-color dataset. 110

6.9 Performance of the ColorNet with the different mini-CNNs for color
transformation on the Vehicle-color dataset. 111

6.10 Comparison of classification results on the Vehicle-color dataset. 112
6.11 Comparison between ColorNet and SqueezeNet on the Vehicle-color

dataset. 50% #Conv filters indicate that only half number of Conv
filters are used in each Conv layer of the ColorNet. 113

xxii LIST OF TABLES

Chapter 1

Introduction

1.1 Overview

Image understanding is effortless and instantaneous for humans but remains a fun-
damental challenge for machine vision. Enabling machines to understand images as
we humans do is one of the ultimate goals in the field of computer vision. By ap-
propriately defining the classes, image understanding can be used to determine the
presence of objects in an image (object recognition), locate the position of an object
in an image (object detection), classify the category of an object in an image (object
classification), to name just a few.

Image understanding has attracted a lot of attention for a long time in the com-
puter vision community. A crucial problem in the image understanding research is
what is a good feature representation for machines to understand images. Histori-
cally, many previous works have been focused on the design of meaningful feature
representations. Tremendous efforts have been made in seeking good feature repre-
sentations for image understanding in the last twenty years. After the introduction
of the scale-invariant features (Lowe, 1999), better performance was achieved by new
feature representations(e.g. local binary patterns (Ahonen et al., 2004), histogram
of gradients (Dalal and Triggs, 2005), region covariance features (Tuzel et al., 2006),
aggregated channel features (Dollár et al., 2010), etc.). Although many significant
research progresses have been made along this line, their performances on different
applications of image understanding are still far from being satisfactory. The main
drawback for these representations is that they often make strong assumptions on
the input image, e.g. the images are well aligned and the illumination of images is
stable. However, for the images captured from real environments, these assumptions
are often violated and hence these methods are usually too fragile for real-world
applications.

Recently, benefiting from the collection of large-scale datasets and the develop-
ment of computing power, a breakthrough was made by deep convolutional neural

1

2 Introduction

networks (CNN) (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; He et al.,
2016), which have significantly outperformed comparable methods on a wide vari-
ety of vision problems. Compared to hand-crafted features, deep CNNs are able
to learn semantically meaningful features within the end-to-end training process,
when given a large-scale annotated dataset. Recent studies (Donahue et al., 2014;
Azizpour et al., 2016) have shown that features learned by CNNs pre-trained on
the ImageNet dataset (Deng et al., 2009) tend to be generic, hence are beneficial to
many other vision tasks. For example, a region-based convolutional neural network
(R-CNN) (Girshick et al., 2014b) has shown that fine-tuned CNN features achieved
excellent performance for generic object detection. For the task of fine-grained object
classification, the performance can be significantly boosted by employing the fine-
tuned CNN features (Liu et al., 2015; Lin et al., 2015c). Moreover, the emergence of
the CNN features and CNN architectures do introduce some new directions to solve
existing vision problems.

1.2 Problem formulations

This thesis focuses on the following applications of traffic scene understanding: a
common detection framework to fastly detect multiple objects of interest in traffic
scenes, pedestrian detection, fine-grained car recognition, and vehicle color recogni-
tion.

1.2.1 A common detection framework to fastly detect multiple objects of
interest in traffic scenes

Object detection is an important application of traffic scene understanding which
aims to extract accurate real-time on-road environment information. The ability to
detect multiple objects (traffic signs, cars, and cyclists) of interest effectively plays
a crucial role in the task. One challenge is that the detector need to detect objects
of different classes simultaneously. Most previous methods have designed specific
detectors using different features for each of these three classes. None of them can
detect all the objects of three classes at the same time.

We address this problem by proposing a single learning based detection frame-
work. The proposed framework consists of a dense feature extractor and detectors of
these three classes. Once the dense features have been extracted, these features are
shared with all detectors. The advantage of using one common framework is that
the detection speed is much faster, since all dense features need only to be evaluated
once. The proposed framework introduces spatially pooled features (Paisitkriangkrai

§1.2 Problem formulations 3

et al., 2014b) as a part of aggregated channel features (Dollár et al., 2010) to enhance
the feature robustness to noises and image deformations. In order to further improve
the generalization performance, we propose an object subcategorization scheme as a
means of capturing the intra-class variation of objects.

1.2.2 Pedestrian detection

Pedestrian detection is an important problem due to its practical use in many com-
puter vision applications. The problem is made challenging by the inevitable vari-
ation in target appearance, illumination, pose, and by occlusion. Prior to the very
recent work in deep convolutional neural networks (DCNNs) based methods (Cai
et al., 2015; Tian et al., 2015), the top performing pedestrian detectors are boosted
decision forests with carefully hand-crafted features.

Recently, DCNNs have significantly outperformed comparable methods on a
wide variety of vision problems. A region-based convolutional neural network (R-
CNN) (Girshick et al., 2014a) achieved excellent performance for generic object de-
tection. Later, R-CNN was extended to the Fast R-CNN (Girshick, 2015) which sig-
nificantly increases the detection speed and accuracy. The performance of pedes-
trian detection is improved over hand-crafted features by a large margin by two
very recent approaches relying on DCNNs: CompACT-Deep (Cai et al., 2015) com-
bines hand-crafted features and fine-tuned DCNNs into a complexity-aware cascade.
DeepParts (Tian et al., 2015) fine-tunes a pool of part detectors using a pre-trained
GoogLeNet (Szegedy et al., 2015) and delivers similar results as CompACT-Deep.
Both approaches are much more sophisticated than the standard R-CNN framework:
CompACT-Deep involves the use of a variety of hand-crafted features, a small CNN
and a large VGG16 model (Simonyan and Zisserman, 2015). DeepParts contains
45 fine-tuned DCNN models and needs a set of strategies (including bounding-box
shifting handling and part selection) to arrive at the reported result. Note that the
high complexity of DCNNs can lead to practical difficulties.

We propose alternative methods for pedestrian detection, which are simpler in
design, with comparable or even better performance. Firstly, we extensively evaluate
the convolutional feature maps (CFMs) extracted from multiple convolutional layers
of a fine-tuned VGG16 model for pedestrian detection. Using only a CFM of a single
convolutional layer, we train a boosted-tree-based detector and the resulting model
already significantly outperforms all conventional methods. Next, we show that the
CFMs from multiple convolutional layers can be used for training effective boosted
decision forests. These boosted decision forests can be combined altogether simply
by score averaging. The resulting ensemble model beats all competing CNN-based

4 Introduction

methods. The detection performance can be further improved by incorporating a
semantic pixel labelling model.

1.2.3 Fine-grained car recognition

Compared to generic objects, cars have a unique hierarchical structure, which con-
tains three levels from top to bottom: car make, car model, and year of manufacture.
Fine-grained car recognition aims to distinguish subcategories within the same car
category. Car model classification is a intra-class classification task which is made
difficult by the small visual differences between subcategories, unconstrained poses,
different illuminations, and cluttered backgrounds. In this thesis, we mainly focus
on car model classification.

A common approach for fine-grained object classification tasks is the parts-based
pooling strategy (Zhang et al., 2012). Another line of research focuses on the ro-
bust feature representations of images, such as the VLAD (Jégou et al., 2010), Fisher
vector (Perronnin et al., 2010) with SIFT features (Lowe, 1999). A breakthrough was
made recently by the cross-convolutional-layer pooling method (Liu et al., 2015). This
method extracts subarrarys of convolutional feature maps (CFMs) as local features
and uses the CFMs of the successive convolutional layer as pooling channels. Then,
the extracted features are pooled with these pooling channels to generate more ro-
bust image representations. Although this method achieves good results, it does not
support the end-to-end training.

Considering the promising performance of deep CNNs in image classification,
we propose a spatially weighted pooling (swp) strategy which considerably enhances
the discriminative power of feature representations of CNNs for fine-grained car
recognition. The swp is a novel pooling layer which contains a predefined number
of spatially weighted masks or pooling channels. The swp pools CNN features with
the guidance of its learnt masks, which measures the importance of the spatial units
in terms of discriminative power. In addition, the swp layer is compatible with most
dominant CNNs and the parameters of the swp layer can be learned in the end-to-end
training process.

1.2.4 Vehicle color recognition

Vehicle color is an important property for vehicle identification and provides visual
cues for many applications, such as vehicle detection, vehicle tracking, law enforce-
ment, etc.. One challenging is that vehicle color can be easily influenced by illumina-
tion changes and uncontrolled environments. The quality of input images or videos
also limits the recognition performance.

§1.3 Main contributions 5

Most previous methods handle this problem by designing hand-crafted color his-
tograms. Since color images are usually represented in RGB space, RGB histogram
is a natural representation for color recognition. However, the RGB space is very
sensitive to illumination change since all three channels include a representation of
brightness. The normalized RGB histogram (Kender, 1976) is proposed to normalize
raw RGB pixels to increase the illumination invariance. The Hue histogram (Van de
Weijer et al., 2006) represents color information without illumination, thus it is par-
tially invariant to illumination change. Although these methods obtain reasonable
performance gains, they are still far from being satisfactory in real-world scenarios.

In image color recognition, visual features are usually extracted from image pixels
represented in one color space. The choice of the color space may influence the qual-
ity of extracted features and impact the recognition performance. This observation
motivates us to propose a color transformation method that converts input images
from the RGB space to a learnt space. Moreover, we propose a small CNN architec-
ture, called ColorNet, which optimizes the architecture of AlexNet (Krizhevsky et al.,
2012) and embeds a mini-CNN of color transformation for vehicle color recognition.

1.3 Main contributions

The main contributions of this thesis include a set of algorithms for several applica-
tions of traffic scene understanding (i.e. traffic sign detection, car detection, pedes-
trian detection, fine-grained car recognition, and vehicle color recognition). More
specifically, they are:

• We propose a single learning based detection framework to effectively and ef-
ficiently detect three important classes of objects (traffic signs, cars, cyclists) in
traffic scenes. The advantage of this framework is that the detection speed is
much faster, since all dense features need only to be evaluated once and then
are shared with all detectors. We also employ spatially pooled features as a
part of aggregated channel features to enhance the robustness to noises and
image deformations.

• We propose a subcategorization scheme for capturing the intra-class variation
of objects. This method applies spectral clustering to geometrical features of
training samples to generate multiple subcategories. The subcategorization
scheme can simplify the original learning problem by dividing it into multi-
ple sub-problems.

• We propose an ensemble of boost decision forests with CNN features for pedes-

6 Introduction

trian detection. The convolutional feature maps (CFMs) extracted from multi-
ple convolutional layers of a fine-tuned VGG16 model can be used for training
effective boosted decision forests. Our key insight is that an ensemble of these
boosted decision forests further improves the detection performance and out-
performs all previous methods.

• We propose to use a semantic pixel labelling model to enhance the predictions
of a pedestrian detector. We use the weighted sum of pixel-labelling scores
within a proposal region to represent the score of the proposal. This score can
be used to enhance the detector confidence of the same proposal region. Our
method shows that the detection performance of our ensemble model can be
further improved by incorporating the pixel labelling model.

• We propose a spatially weighted pooling (swp) strategy which considerably
enhances the discriminative power of feature representations of most dominant
deep CNNs for fine-grained car recognition. We also collect two challenging
fine-grained car datasets: CarFlag-563 and CarFlag-1532. These two datasets
are more challenging than existing datasets due to the large number of car
objects and the rich diversity of car models.

• We propose a color transformation method that converts image pixels from
the RGB space to a learnt space. We show that the recognition performance
can be boosted by employing this color transformation. Moreover, we propose
a ColorNet which optimizes the architecture of AlexNet and embeds a mini-
CNN of color transformation for vehicle color recognition.

1.4 Thesis outline

The structure of this thesis is organized as follows.

In chapter 2, we first review some common hand-crafted features and boosting
algorithms which have been widely used in many visual problems. Also, we give a
detailed literature review on convolutional neural networks and their applications to
visual classification and detection.

In chapter 3, a common detection framework for fast detection of multiple objects
of interest is given. The proposed framework can detect three important classes
of objects (traffic signs, cars, cyclists) in traffic scenes. An object subcategorization
scheme is also proposed as a means of capturing the intra-class variation of objects.

In chapter 4, we explore how to apply deep CNNs in the context of pedestrian de-
tection. We design a simple but effective algorithm for training a pedestrian detector.

§1.4 Thesis outline 7

A pixel labelling method is also proposed to cooperate with a pedestrian detector for
improving the detection performance. The proposed algorithm fills in the gaps in
chapter 3.

In chapter 5, we focus on the problem of fine-grained car model classification. We
propose a spatially weighted pooling (swp) strategy which considerably improves
the discriminative poser of feature representations of most dominant deep CNNs.
Two challenging fine-grained car datasets are given in this chapter. This approach
can be used to post-process outputs of the detection framework in chapter 3 to get
detailed vehicle information.

In chapter 6, we concentrate on the vehicle color recognition that is an extension
of the problem in chapter 5. A color transformation method is proposed to convert
image pixels from the RGB space to one learnt space. We also propose a light-weight
ColorNet which is specifically designed for vehicle color recognition.

In chapter 7, the conclusion and the potential research directions are discussed.

8 Introduction

Chapter 2

Literature Review

In this chapter, we will firstly review some of the conventional hand-crafted features
to object recognition and detection. Then, we will introduce the adaptive boosting
algorithm which is the most commonly used classification technique. Finally, some
background information on deep convolutional neural networks will be introduced.

2.1 Hand-crafted features

Real-world data such as images and videos are usually complex, redundant, and
highly variable. However, computer vision tasks such as recognition and detection
often require input that is mathematically and computationally convenient to pro-
cess. Thus, it is necessary to discover some useful feature representations from raw
data. This motivates the design of hand-crafted features based on the prior domain-
specific knowledge. Many different hand-crafted features (Lowe, 2004; Dalal and
Triggs, 2005; Dalal et al., 2006; Ahonen et al., 2004; Tuzel et al., 2006; Dollár et al.,
2014; Paisitkriangkrai et al., 2014b; Nam et al., 2014; Zhang et al., 2015) are proposed
in the literature. We briefly introduce some of them used in this thesis.

2.1.1 Scale invariant feature transform

The scale invariant feature transform (SIFT) method (Lowe, 2004) are used to detect
and describe local features in images. Keypoints of a image can be extracted by
the SIFT detector using the appropriate level of the gaussian pyramid of the image.
Therefore, the SIFT features are generated by computing the gradient at each pixel in
a 16× 16 patch around the detected keypoints. In each 4× 4 quadrant, a histogram
of gradient orientations is computed by adding the weighted gradient value to one
of eight orientation histogram bins. Histogram bins of each quadrant within the 16×
16 patch are concatenated as a 128-D vector. The 128-D vector represents the SIFT
features for the patch. To reduce the negative effects of contrast or gain, the 128-D
vector is normalized to unit length. Another popular variant of SIFT is PCA-SIFT (Ke

9

10 Literature Review

and Sukthankar, 2004), which computes gradient derivatives over a 39× 39 patch and
reduces the resulting 3042-D vector to 36 using principal component analysis (PCA).

2.1.2 Histogram of oriented gradients

The histogram of oriented gradients (HOG) (Dalal and Triggs, 2005) are visual de-
scriptors used in computer vision for the purpose of object detection and recognition.
HOG is computed by evaluating well-normalized local histograms of image gradi-
ent orientations in a dense grid. The key idea is that local object appearance and
shape within an image can be described by the distribution of intensity gradients or
edge directions. The implementation of HOG can be achieved by dividing the image
window into small spatial regions called cells, and for each cell accumulating a his-
togram of gradient orientations or edge directions over all pixels within the cell. The
combination of these histograms represents the descriptor for the image. To improve
the robustness of HOG, the local histograms can be contrast-normalized by accumu-
lating a measure of the intensity over larger spatial regions called blocks, and then
using this value to normalize all cells within this block. The normalized features are
partially invariant to change in illumination and shadowing.

2.1.3 Local binary patterns

The local binary patterns (LBP) (Ojala et al., 1996) is a powerful means of texture
description for object recognition. The original LBP labels the pixels of an image by
thresholding the 3× 3-neighbourhood of each pixel with the center value and con-
sidering the result as a binary number. All binary results are concatenated to form an
8-bit length binary sequence with 28 different labels. The histogram of these 256 dif-
ferent labels can represent a texture descriptor. Later, the original LBP was extended
by using neighbourhoods of different sizes (Ojala et al., 2002). The neighbourhood
can be any radius and number of pixels by using circular neighbourhoods. Another
extension to the original LBP is the uniform LBP (Ojala et al., 2002), which can be
used to reduce the length of the binary sequence and implement a simple rotation
invariant descriptor. This idea is motivated by the fact that some binary patterns
occur more frequently in images than others.

2.1.4 Region covariance features

The region covariance features (Tuzel et al., 2006) employs covariance matrices as
region descriptors for object detection. Let I be a one dimensional grayscale image
or three dimensional color image. Let F be the W × H × d dimensional features

§2.2 AdaBoost 11

extracted from I
F(x, y) = φ(I, x, y) (2.1)

where the function φ can be any transformation. Given a rectangular region R ⊂ F,
we use {zk}k=1,...,n to represent the d-dimensional feature points in R. The descriptor
of the region R can be represented by the d× d covariance matrix of the feature points

CR =
1

n− 1

n

∑
k=1

(zk − µ)(zk − µ)T (2.2)

where µ is the mean of the points.

There are several advantages of using these covariance matrices as region de-
scriptors. A covariance matrix extracted from a region usually contains enough in-
formation to match the region in different viewpoints and poses. Compared to other
visual descriptors, the covariance matrices are low-dimensional due to the symmetry
property of CR. Moreover, the covariance features are partially invariant to change
in scale and rotation with the appropriate choice of φ.

2.1.5 Aggregated channel features

Aggregated channel features (ACF) (Dollár et al., 2014) combine various features that
are extracted from multiple image channels using pixel lookups method. Many im-
age channels are available for extracting features. A trivial channel of a grayscale
image is the image itself. For a color image, each color channel can be used as a
channel. Other channels can be computed using various transformations of the in-
put image. In order to accelerate the speed of feature extraction, all transformations
are required to be translationally invariant. It means that the transformation need
only to be evaluated once on the entire image rather than separately for each over-
lapping detection window. ACF consists of 10 feature channels: LUV color channels
(3 channels), histogram of oriented gradients (6 channels), and normalized gradient
magnitude (1 channel). ACF achieves state-of-the-art performance in the pedestrian
detection problem by employing carefully designed channel features.

2.2 AdaBoost

Boosting is a supervised method for improving the accuracy of any given learning
algorithm. Adaptive Boosting (AdaBoost) (Freund and Schapire, 1999) is one of
the most popular boosting methods. We briefly introduce the training algorithm
of AdaBoost and a variant of AdaBoost in this section.

12 Literature Review

2.2.1 Introduction

AdaBoost is a classification technique which combines multiple weak classifiers into
a single strong classifier, where the weak classifiers perform only slightly better than
random guesses. The principle of the algorithm is to learn a global binary deci-
sion function by iteratively adding and training weak classifiers. AdaBoost has been
applied to many classification and recognition tasks. It has become a widely used
machine learning technique due to its simplicity and performance in terms of accu-
racy and speed.

2.2.2 Training AdaBoost

AdaBoost takes as input a training set (x1,y1), . . . , (xN ,yN) where the xi ∈ X are the
training samples, and yi ∈ Y are the corresponding labels. We focus here on the
AdaBoost for binary classification, where Y = {−1,+1}. AdaBoost calls a given
weak learning algorithm repeatedly in a series of rounds t = 1, . . . , T. It maintains
a distribution of weights over the training set. Initially, all weights are set equally to
1/N. The weight of this distribution on the training sample xi on round t is denoted
as Dt(i).

The training process is as follows: at each iteration t = 1, . . . , T, a weak classifier
ht : X → {−1,+1} is trained using the training samples weighted by a set of weights
Dt(i), i = 1, . . . , N. The performance of a weak classifier is measured by its error

εt = Pri∼Dt [ht(xi) 6= yi] = ∑
i:ht(xi) 6=yi

Dt(i) (2.3)

Once the weak classifier ht has been trained, AdaBoost chooses a parameter at to
determine the importance of the weak classifier in the final hypothesis.

at =
1
2

ln
(

1− εt

εt

)
(2.4)

Note that at ≥ 0 if εt ≤ 1/2, and that at gets larger as εt gets smaller. Then, we
update the distribution Dt. The weights of misclassified samples are increased and
the weights of correctly classified samples are decreased. Thus, the weak classifier ht

is forced to focus on the hard examples in the training set. The final hypothesis H(x)
is a weighted majority vote of the T weak classifiers.

H(x) = sign
(T

∑
t=1

atht(x)
)

(2.5)

§2.2 AdaBoost 13

Input: The training set S = {(x1, y1), · · · , (xi, yi), · · · , (xN , yN)}, xi ∈ X, yi ∈
{−1,+1}, i = 1, 2, · · · , N.

Initialize: The weighted distribution D of training set in the 1st round, D1 =
(w1,1, · · · , w1,i, · · · , wi,N), w1,i = 1/N, i = 1, 2, · · · , N.

for t = 1 · · · T do
· Train the weak classifier ht using the weighted distribution Dt,

ht : X → {−1,+1}

· Compute the error rate εt of ht in training set S.

εt = Pri∼Dt [ht(xi) 6= yi]

· Compute the coefficient at of ht.

at =
1
2

ln
(

1− εt

εt

)
· Update the weighted distribution of the training set

Dt+1 = (wt+1,1, · · · , wt+1,i, · · · , wt+1,N)

wt+1,i =
wt,i

Zt
exp (−atyiht(~xi)), i = 1, 2, · · · , N

where Zt is a normalization factor,

Zt =
N

∑
i=1

wt,i exp (−atyiht(~xi))

end
Output: Final classifier

H(x) = sign

(
T

∑
t=1

atht(~x)

)
.

Algorithm 1: The boosting algorithm AdaBoost.

where at is the weight assigned to ht. Algorithm 1 describes the basic Adaboost algo-
rithm. The variable Zt is a normalization factor in order to make Dt+1 a distribution.

2.2.3 Shrinkage version of AdaBoost

The accuracy of AdaBoost can be further improved by applying a weighting coeffi-
cient known as shrinkage (Hastie et al., 2005). The shrinkage version of AdaBoost can
be viewed as a form of regularization for boosting. At each iteration, the coefficient
of weak learner is updated by

Ht(~x) = Ht−1(~x) + ν · wtht(~x). (2.6)

14 Literature Review

Input: The training set S = {(~x1, y1), · · · , (~xi, yi), · · · , (~xN , yN)}, ~xi ⊆ Rn, yi ∈
{−1,+1}, i = 1, 2, · · · , N.

Initialize:The weighted distribution D of training set in 1st round, D1 =
(w1,1, · · · , w1,i, · · · , wi,N), w1,i = 1/N, i = 1, 2, · · · , N.

for t = 1 · · · T do
· Train the weak learner ht(·) using the weighted distribution Dt,

ht(·) : Rn → {−1,+1}

· Compute the error rate et of ht(·) in training set S.

et =
N

∑
i=1

wt,i · 1(ht(~xi) 6= yi)

· Compute the coefficient wt of ht(·) and update it by multiplying shrinkage
parameter ν.

wt =
1
2

log
1− et

et

at = ν · wt

· Update the weighted distribution of the training set

Dt+1 = (wt+1,1, · · · , wt+1,i, · · · , wt+1,N)

wt+1,i =
wt,i

Zt
exp (−atyiht(~xi)), i = 1, 2, · · · , N

where Zt is a normalization factor,

Zt =
N

∑
i=1

wt,i exp (−atyiht(~xi))

end
Output: Final classifier

H(x) = sign

(
T

∑
t=1

atht(~x)

)
.

Algorithm 2: Shrinkage version of AdaBoost

Here ht(·) is a weak learner of AdaBoost at the t-th round and wt is the coefficient
of the weak learner. ν ∈ (0, 1] is a learning rate which controls the trade-off be-
tween overall accuracy and training time. The smaller the value of ν, the higher
the overall accuracy as long as the number of weak learners is sufficiently large.
Compared to the standard AdaBoost, shrinkage often produces better generalization
performance (Friedman et al., 2000). Algorithm 2 describes the shrinkage version of
AdaBoost algorithm.

§2.3 Convolutional neural networks 15

2.3 Convolutional neural networks

Prior to the development of deep learning techniques, multi-layer feed-forward neu-
ral networks (NNs) have shown to be a very powerful machine learning technique
as they can be trained to approximate complex non-linear functions from high-
dimensional input data. NNs can be viewed as a trainable structure consisting of
a set of inter-connected neurons, each implementing a simple function, and together
performing a complex task. NNs consist of an input layer, a sequence of hidden lay-
ers, and an output layer. More specifically, an NN takes a single vector as input and
each element of the vector forms one neuron in the input layer. These input data are
then propagated to all neurons in the succeeding layer. Each hidden layer consists
of a set of neurons and each neuron in the hidden layer connects to all neurons in
the previous layer. The output of a neuron is generated by a weighted summation
of the inputs from the previous layer followed by an activation function. The last
fully-connected layer in an NN is referred to the output layer.

The problem with NNs is that when the dimension of input data is high, the
number of inter-connections and the number of parameters is also high because each
hidden unit would be fully connected to the previous layer. However, the number
of training samples might be relatively small compared to the dimension of input
data, which might lead to an over-fitting issue in the training of NNs. Another
disadvantage is that NNs do not take into account correlations of neighbouring input
data. In fact, there is generally a high amount of local correlation in the object
recognition and detection.

Convolutional Neural Networks (CNNs) (LeCun et al., 1998) are an extension
of the conventional NN that alleviates the above mentioned drawbacks. Compared
to NNs, CNNs propose to implement the principle of weight sharing which remark-
ably reduces the number of parameters and thus increase the generalization capacity.
Moreover, CNNs employ the pooling techniques to improve the robustness of CNN
features to small translations and distortions in the input image. Nowadays, many
deep CNNs achieve state-of-the-art performance at a wide range of computer vision
problems, due to the large-scale datasets and powerful computational capacities.

2.3.1 Architecture

Compared to the conventional NNs, CNNs contain a variety of distinct layers, in-
cluding convolutional layer, pooling layer, ReLU layer, and so on. We discuss them
further below:

• Convolutional layer. The convolutional layer is the core building block of CNNs.

16 Literature Review

The parameters of this layer are a filter bank which consists of a set of learn-
able filters. Each filter has a small receptive field and the number of channels
matches the depth of the input volume. In the forward pass, each filter is con-
volved with local regions at different spatial locations in the input volume with
a fixed stride, computing the dot product between the coefficients of the filter
and the input and producing a 2-dimensional feature map of that filter. Feature
maps generated by all filters are concatenated in the channel dimension. The
resulting feature maps are the output of this convolutional layer and serve as
the input of the next layer. Therefore, the CNN learns multiple distinct filters
that activate when it detects some specific patterns at some spatial location in
the input image.

• Pooling layer. The pooling layer is a form of non-linear down-sampling. Max
pooling and average pooling are two most commonly used pooling strategies
in CNNs. Max-pooling takes the maximum value in a spatial region (e.g. 2× 2)
to represent the pooled features in the region. It aims to keep the most salient
information and discard irrelevant details over the pooling region. Since the
pooling layer reduces the spatial size of the feature representation, it can be
used to reduce the number of parameters and the amount of computation in
the CNN model. The pooling operation also alleviates the over-fitting and
provides a form of translation invariance.

• ReLU layer. The rectified linear unit (ReLU) layer applies the non-saturating ac-
tivation function f (x) = max(0, x) to the input feature maps. It aims to increase
the non-linearity of the feature representation. Compared to other activation
functions (sigmoid, tangent), the ReLU addresses the gradient exploding or
vanishing problem during the training phase. Thus, it accelerates the CNN
training phase without degrading the performance.

• Fully-connected layer. The fully-connected layer in CNNs is the same as it in the
conventional NNs. Each neuron in a fully-connected layer has full connections
to all activations in the previous layer. Their activations can be computed by a
matrix multiplication followed by a bias offset.

• Loss layer. The loss layer is used to penalize the deviation between the predicted
and true labels during the training phase. Different loss functions are design for
different tasks. Softmax loss and sigmoid cross-entropy loss are two commonly
used loss functions in object classification and detection. Softmax loss is used
for predicting a single class of K mutually exclusive classes. Sigmoid cross-
entropy loss is used for predicting K independent probability values in [0, 1].

§2.3 Convolutional neural networks 17

The loss layer is usually the last layer in CNNs.

2.3.2 Extensions and variants

In this section, we briefly review some dominant CNNs in the computer vision com-
munity.

• AlexNet (Krizhevsky et al., 2012) is a recently major breakthrough in the field
of deep learning. This network employs the ReLU layer and the dropout layer
for the first time. It contains five convolutional layers and three fully-connected
layers, followed by a 1000-way softmax. AlexNet won the the ImageNet large
scale visual recognition challenge (ILSVRC) in 2012, which significantly outper-
formed other competitors by a large margin.

• VGGNet (Simonyan and Zisserman, 2015) obtained excellent performance in
the ILSVRC 2014. Compared to AlexNet, VGGNet employs a relatively small
(3× 3) convolutional filters. The depth of the VGGNet can be increased up to 19
by stacking a sequence of these small filters. It has shown that the importance
of deepening the CNN for achieving better performance in many recognition
and detection tasks.

• GoogleNet (Szegedy et al., 2015) is a deep CNN architecture that employs an
inception module to remarkably reduce the number of parameters in the net-
work. By a carefully crafted design, the depth of GoogleNet is increased to 22
while keeping the computational cost constant. GoogleNet achieved the new
state-of-the-art for classification and detection in the ILSVRC 2014.

• ResNet (He et al., 2016) is the state-of-the-art CNN architecture in the ILSVR
2015. In general, deeper CNNs are more difficult to train. To remedy this prob-
lem, ResNet adopted residual learning to every few stacks of layers by adding
skip connections. By employing a good weights initialization method (He et al.,
2015b) and batch normalization (Ioffe and Szegedy, 2015), ResNet achieved
better performance than VGGNet and GoogleNet. Since there are no fully-
connected layers, the number of parameters in ResNet is significantly reduced.

• SqueezeNet (Iandola et al., 2017) is a small CNN architecture which achieves
AlexNet-level accuracy on ImageNet with 50x fewer parameters. By employing
some model compression techniques, the SqueezeNet can be compressed to
less than 0.5MB. Due to the small size of SqueezeNet, it can be deployed into
some mobile devices to implement real-time detection or classification tasks.

18 Literature Review

2.3.3 Training CNNs

Backpropagation is the most commonly used method to train multi-layer feed-forward
networks (e.g. NNs, CNNs). The algorithm repeatedly implement two phases: prop-
agation and weight update. During the forward pass in the propagation phase, the
input is fed to the network and is propagated forward through the network, until it
reaches the output layer. The residual error of the output layer can be computed by
using a loss function which compares the output of the network with the ground-
truth. The residual error is then propagated backwards from the output layer to the
input layer. Then, backpropagation uses the residual error to compute the gradient
of the loss function with respect to the weights in the network using the chain rule.
In the update phase, this gradient is fed to an optimization method which uses it to
update the weights and attempts to minimize the loss function.

Backpropagation is usually used in conjunction with an optimization method
such as stochastic gradient descent (SGD). Compared to gradient descent, SGD com-
putes the gradient of the loss function using only a few training samples instead of
the entire training set. The use of SGD is motivated by the high computational cost
of implementing the backpropagation over the entire training set. These few training
samples are usually organized in a mini-batch. A typical size of the mini-batch is 256
for training ImageNet. The optimal size of the mini-batch is determined by different
applications and architectures. The learning rate a in SGD is typically a very small
value (e.g. 0.001). A practical way to determine a is to use a small enough constant
learning rate that gives stable convergence in initial epochs and then halve the value
as convergence slows down.

The depth of CNNs is an important factor to achieve better performance in many
applications. However, deeper CNNs are more difficult to train since the huge num-
ber of parameters may lead to the over-fitting. In order to remedy this issue, dropout
proposed by (Srivastava et al., 2014) is a regularization technique to avoid over-fitting
when training CNNs. The key idea is to randomly drop some neurons in the training
phase. Batch normalization (Ioffe and Szegedy, 2015) is a useful method to acceler-
ate the training process of CNNs. It addresses the gradient exploding or vanishing
problem by reducing the internal covariate shift of each mini-batch. It also acts as a
regularizer to avoid the over-fitting.

2.3.4 Applications

Nowadays, CNNs have demonstrated great success in many visual detection and
recognition tasks. In this section, we review two fundamental tasks in image under-
standing, including image classification and object detection.

§2.3 Convolutional neural networks 19

Image classification is the task of assigning a predefined label to the input image.
Based on the subjects in the image, image classification tasks can be divided into
different subcategories, such as generic object classification (person, vehicle, dog etc.)
and fine-grained object classification(e.g. different models of vehicles). For generic
object classification, the ImageNet dataset (Deng et al., 2009) is one of the most dom-
inant benchmark datasets, and the ILSVRC competition (Russakovsky et al., 2015)
has become the driving-force for deep learning research in the computer vision com-
munity. Some state-of-the-art CNNs, such as AlexNet (Krizhevsky et al., 2012), VG-
GNet (Simonyan and Zisserman, 2015) and ResNet (He et al., 2016), have achieved
tremendous success in the ILSVRC classification tasks in different years. The fine-
grained object classification aims to distinguish subcategories within the same object
category. The best performance of the fine-grained object classification are achieved
by recently proposed CNNs based methods (Lin et al., 2015c; Liu et al., 2015).

Object detection is a challenging but important research topic in the computer
vision community. It has achieved successful outcomes in many practical applica-
tions such as face detection and pedestrian detection. Prior to the very recent work
in deep CNNs based methods, the top performing object detectors are built upon
hand-craft features (e.g. HOG, LBP, ACF, etc.) and a classifier (e.g. SVM, AdaBoost,
etc.). A region-based convolutional neural network (R-CNN) (Girshick et al., 2014a)
achieved excellent performance for generic object detection. Later, R-CNN was ex-
tended to the fast R-CNN (Girshick, 2015) which significantly increases the detection
speed by introducing a Region-of-Interest pooling layer for fast feature extraction.
Faster R-CNN (Ren et al., 2015) proposes to employ a region proposal network to re-
place traditional proposal generation methods (e.g. selective serach, edgeBox, Bings,
etc.) Instead of generating object proposals, there are also some recent works (Red-
mon et al., 2016; Liu et al., 2016) which predicts bounding boxes of objects and class
probabilities directly from full images in one evaluation.

20 Literature Review

Chapter 3

Fast Detection of Multiple Objects
in Traffic Scenes with a Common
Framework

3.1 Introduction

Vision-based traffic scene perception (TSP) is one of many fast-emerging areas in the
intelligent transportation system. This field of research has been actively studied over
the past decade (Sivaraman and Trivedi, 2013). TSP involves three phases: detection,
recognition and tracking of various objects of interest. Since recognition and tracking
often rely on the results from detection, the ability to detect objects of interest effec-
tively plays a crucial role in TSP. In this chapter, we focus on three important classes
of objects: traffic signs, cars, and cyclists. Fig. 3.1 shows a typical on-road traffic scene
with the detected objects of interest and illustrates some positive examples from the
three mentioned classes.

The aim of traffic sign detection is to alert the driver of the changed traffic condi-
tions. The task is to accurately localize and recognize road signs in various traffic en-
vironments. Prior approaches (De La Escalera et al., 1997; de la Escalera et al., 2003;
Kuo and Lin, 2007) use color and shape information. However, these approaches
are not adaptive under severe weather and lighting conditions. Additionally, ap-
pearance of traffic signs can physically change over time, due to the weather and
damage caused by accidents. Instead of using color and shape features, most recent
approaches (Mathias et al., 2013b; Wang et al., 2013a) employ texture or gradient
features, such as local binary patterns (LBP) (Ahonen et al., 2004) and histogram
of oriented gradients (HOG) (Dalal and Triggs, 2005). These features are partially
invariant to image distortion and illumination change, but they are still unable to
handle severe deformations.

Car detection is a more challenging problem compared to traffic sign detection

21

22 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

Figure 3.1: Top image: A typical on-road traffic scene with the detected objects of interest.
Bottom images: Each block represents one class of objects of interest. From left to right, the
first block contains traffic sign examples, the second contains car examples, and the third

contains cyclist examples.

due to its large intra-class variation caused by different viewpoints and occlusions.
Although sliding-window based methods have shown promising results in face and
human detection (Viola and Jones, 2004; Dalal and Triggs, 2005), they often fail to de-
tect cars due to a large variation of viewpoints. Recently the deformable parts model
(DPM) (Felzenszwalb et al., 2010), which has gained a lot of attention in generic
object detection, has been adapted successfully for car detection (Geiger et al., 2011;
Hejrati and Ramanan, 2012; Pepik et al., 2013). In addition to the DPM, visual subcat-
egorization based approaches (Divvala et al., 2012; Kuo and Nevatia, 2009; Ohn-Bar
and Trivedi, 2014) have been applied to improve the generalization performance of
detection model.

Cyclist detection is a new attractive application in the domain of TSP. At present,
only few methods are designed purposely for cyclist detection. Many existing pedes-
trian detection approaches (Dalal and Triggs, 2005; Dollár et al., 2014; Geiger et al.,
2011) can be adapted for cyclist detection because appearances of pedestrians are
very similar to appearances of cyclists along the road. Compared to pedestrian
detection, the new problem is more difficult because the various appearances and
viewpoints increase the diversity of cyclists. Therefore, existing pedestrian detectors
hardly achieve the acceptable performance for cyclist detection.

Most previous methods have designed specific detectors using different features
for each of these three classes. The approach we claim here differs from these existing

§3.2 Background 23

approaches in that we propose a single learning based detection framework to detect
all the three important classes of objects. The proposed framework consists of a dense
feature extractor and detectors of these three classes. Once the dense features have
been extracted, these features are shared with all detectors. The advantage of using
one common framework is that the detection speed is much faster, since all dense
features need only to be evaluated once in the testing phase. The proposed frame-
work introduces spatially pooled features (Paisitkriangkrai et al., 2014b) as a part of
aggregated channel features (Dollár et al., 2009) to enhance the feature robustness to
noises and image deformations. In order to further improve the generalization per-
formance, we propose an object subcategorization method as a means of capturing
the intra-class variation of objects.

3.2 Background

3.2.1 Generic object detection

Object detection is a challenging but important application in the computer vision
community. It has achieved successful outcomes in many practical applications such
as face detection and pedestrian detection (Viola and Jones, 2004; Ahonen et al., 2004;
Dalal and Triggs, 2005; Wang et al., 2009). Complete survey of object detection can
be found in (Viola and Jones, 2004; Dalal and Triggs, 2005; Felzenszwalb et al., 2010;
Wang et al., 2013b; Girshick et al., 2014b). This section briefly reviews several generic
object detection methods.

One classical object detector is the detection framework of Viola and Jones which
uses a sliding-window search with a cascade classifier to achieve accurate location
and efficient classification (Viola and Jones, 2004). The other commonly used frame-
work is using a linear support vector machine (SVM) classifier with histogram of
oriented gradients (HOG) features, which has been applied successfully in pedes-
trian detection (Dalal and Triggs, 2005). These frameworks achieve excellent detec-
tion results on rigid object classes. However, for object classes with a large intra-class
variation, their detection performance falls down dramatically (Paisitkriangkrai et al.,
2014b).

In order to deal with appearance variations in object detection, a deformable
parts model (DPM) based method has been proposed in (Felzenszwalb et al., 2010).
This method relies on a variant of HOG features and window template matching,
but explicitly models deformations using a latent SVM classifier. It has been applied
successfully in many object detection applications (Geiger et al., 2011; Torres et al.,
2014; Yan et al., 2013). In addition to the DPM, visual subcategorization (Divvala

24 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

et al., 2012) is another common approach to improve the generalization performance
of detection model. It divides the entire object class into multiple subclasses such
that objects with similar visual appearance are grouped together. A sub-detector is
trained for each subclass and detection results from all sub-detectors are merged to
generate the final results. Recently, a new detection framework which uses aggre-
gated channel features (ACF) and an AdaBoost classifier has been proposed in (Dol-
lár et al., 2014). This framework uses exhaustive sliding-window search to detect
objects at multi-scales. It has been adapted successfully for many practical applica-
tions (Ohn-Bar and Trivedi, 2014; Mathias et al., 2013b; Paisitkriangkrai et al., 2014b).

3.2.2 Traffic sign detection

Many traffic sign detectors have been proposed over the last decade with newly cre-
ated challenging benchmarks. Interested reader should see (Mogelmose et al., 2012)
which provides a detailed analysis on the recent progress in the field of traffic sign
detection. Most existing traffic sign detectors are appearance-based detectors. These
detectors generally fall into one of four categories, namely, color-based approaches,
shape-based approaches, texture-based approaches, and hybrid approaches.

Color-based approaches (De La Escalera et al., 1997; de la Escalera et al., 2003;
Kuo and Lin, 2007) usually employ a two-stage strategy. First, segmentation is done
by a thresholding operation in one specific color space. Subsequently, shape detec-
tion is implemented and is applied only to the segmented regions. Since RGB color
space is very sensitive to illumination change, some approaches (Fang et al., 2003;
Maldonado-Bascón et al., 2007; Kuo and Lin, 2007) convert the RGB space to the HSI
space which is partially invariant to light change. Other approaches (Janssen et al.,
1993; De La Escalera et al., 1997) implement segmentation in the normalized RGB
space which is shown to outperform the HSI space (Gómez-Moreno et al., 2010).
Both the HSI and the normalized RGB space can alleviate the negative effect of illu-
mination change, but still fail on some severe situations.

Shape-based approaches (Houben, 2011; Loy and Barnes, 2004; Timofte et al.,
2009) detect edges or corners from raw images using canny edge detector or its
variants. Then, edges and corners will be connected to regular polygons or circles
by using Hough-like voting scheme. These detectors are invariant to illumination
change, but the memory and computational requirement is quite high for large im-
ages. In (de la Escalera et al., 2003), a genetic algorithm is adopted to detect circles
and is invariant to projective deformation, but the expensive computational require-
ment limits its application.

Texture-based approaches firstly extract hand-crafted features computed from

§3.2 Background 25

texture of images, and then use these extracted features to train a classifier. Popular
hand-crafted features include HOG, LBP, ACF, etc (Dalal and Triggs, 2005; Ahonen
et al., 2004; Dollár et al., 2014). Some approaches (Liang et al., 2013; Wang et al.,
2013a; Pettersson et al., 2008) use the HOG features with a SVM, others (Mathias
et al., 2013b) use the ACF features with an Adaboost classifier. Besides the above ap-
proaches, a convolutional neural network (CNN) is adopted for traffic sign detection
and achieves excellent results in (Sermanet and LeCun, 2011).

Hybrid approaches (Gao et al., 2006; Prisacariu et al., 2010) are a combination
of the aforementioned approaches. Usually, the initial step is the segmentation to
narrow the search space, which is same as the color-based approaches. Instead of
only using edges features or texture-based features, these methods use them together
to improve the detection performance.

One standard benchmark for traffic sign detection is the German traffic sign de-
tection benchmark (GTSDB) (Houben et al., 2013) which collects three important
categories of road signs (prohibitory, danger, and mandatory) from various traf-
fic scenes. All traffic signs have been fully annotated with the rectangular regions
of interest (ROIs). Researchers can conveniently compare their work based on this
benchmark.

3.2.3 Car detection

Many existing car detectors are vision-based detectors. Interested reader should
see (Sivaraman and Trivedi, 2013) which discusses different approaches for vehicle
detection using mono, stereo, and other vision-sensors. We focus on vision-based
car detectors using monocular information in this chapter. These detectors can be
divided into three categories: DPM-based approaches, subcategorization-based ap-
proaches and motion-based approaches.

DPM-based approaches are built on the deformable parts model (DPM) (Felzen-
szwalb et al., 2010) which has been successfully applied in car detection (Torres et al.,
2014). In (Geiger et al., 2011), a variant of DPM discretizes the number of car orienta-
tions and each component of the mixture model corresponds to one orientation. The
authors of (Hejrati and Ramanan, 2012) train a variant of DPM to detect cars under
severe occlusions and clutters. In (Pepik et al., 2013), occlusion patterns are used as
training data to train a DPM which can reason the relationships between cars and
obstacles for detection.

Visual subcategorization which learns subcategories within an object class is a
common approach to improve the model generalization in car detection (Divvala
et al., 2012). It usually consists of two phases: feature extraction and clustering.

26 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

Samples with similar visual features are grouped together by applying clustering al-
gorithm on extracted feature space. Subcategorization-based methods are commonly
used with DPM to detect cars from multiple viewpoints. In (Kuo and Nevatia, 2009),
subcategories of cars corresponding to car orientation are learned by using locally
linear embedding method with HOG features. In (Ohn-Bar and Trivedi, 2014), cars
with similar viewpoints, occlusions, and truncation scenarios are grouped into the
same subcategory using a semi-supervised clustering method with ACF features.

Motion-based approaches often use appearance cues in monocular vision since
monocular images do not provide any 3D and depth information. In (Broggi et al.,
2008), adaptive background model is used to detect cars based on motion that differ-
entiated them from the background. The authors of (Wang et al., 2005) propose an
adaptive background model to model the area where overtaking cars tend to appear
in the camera’s field of view. Optical flow (Martinez et al., 2008), which is a popular
tool in machine vision, has been used for monocular car detection. In (Kyo et al.,
1999), a combination of optical flow and symmetry tracking is used for car detection.
Optical flow is also used in conjunction with appearance-based techniques in (Cui
et al., 2010).

The KITTI vision benchmark (KITTI) (Geiger et al., 2013) is a novel challenging
benchmark for the tasks of monocular, stereo, optical flow, visual odometry, and 3D
object detection. The KITTI dataset provides a wide range of images from various
traffic scenes with fully annotated objects. Objects in the KITTI dataset includes
pedestrians, cyclists, and vehicles.

3.2.4 Cyclist detection

Many existing cyclist detectors use pedestrian detection techniques since appear-
ances of pedestrians are very similar to appearances of cyclists along the road (Qui
et al., 2003; Rogers and Papanikolopoulos, 2000; Wang et al., 2006). In (Qui et al.,
2003), corner feature extraction, motion matching, and object classification are com-
bined to detect pedestrians and cyclists simultaneously. In (Wang et al., 2006), a
stereo vision based approach is proposed for pedestrian and cyclist detection. It uses
the shape features and matching criterion of partial Hausdorff distance to detect
targets. The authors of (Rogers and Papanikolopoulos, 2000) propose a cyclist detec-
tor to detect two wheels of bicycles on road, but this approach is limited to detect
crossing cyclists.

§3.3 Proposed approach 27

Training
 data

Large
intra-class
 variation?

Unsupervised
Subcategorization

Sub-
category#2

Single
category

Sub-
category#1

Sub-
category#k

Yes

No

Feature
set#1

Feature
set

Feature
set#2

Feature
set#k

Single
detector

Sub-
detector#1

Sub-
detector#2

Sub-
detector#k

Scores
calibration

Sub-category
detectors?

Testing
 data

Yes

No

Detection
results#1

Detection
results#2

Detection
results#k

Detection
results

Non-maximum
suppression

Final detection
bounding boxes with

confidence score

Object Subcategorization Dense
feature

extraction

Supervised
learning

Post-processing

Sub-
detector#1

Sub-
detector#2

Sub-
detector#k

Single
detector

Classification

Offline(training)

Online(testing)

Raw
results#1

Raw
results#2

Raw
results#k

Dense
features

Figure 3.2: Overview of the proposed detection framework. Top diagram is the training
phase and bottom diagram is the testing phase.

3.3 Proposed approach

Despite several important techniques have been proposed on object detection, the
conventional sliding-window based method of Viola and Jones (Viola and Jones,
2004) is still the most successful and practical object detector. The VJ framework con-
sists of two main components: a dense feature extractor and a cascade classifier. In

28 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

this chapter, we build a common object detection framework for traffic scene percep-
tion based on the VJ framework, but our framework can employ a number of different
classifiers to detect target objects of different classes. Apart from basic components
of the VJ framework, we propose an object subcategorization method to improve the
generalization performance and employ spatially pooled features (Paisitkriangkrai
et al., 2014b) to enhance the robustness and effectiveness.

Fig. 3.2 shows an overview of our framework. In the training phase, we firstly
check the intra-class variation of the input object class with respect to object proper-
ties, e.g. size, orientation, aspect ratio, and occlusion. If the variation is considerable
large, we apply the object subcategorization method to categorize the object class
into multiple subcategories and train one sub-detector for each subcategory. Other-
wise, we train a single detector for the entire object class. In the testing phase, raw
detection results from all sub-detectors need to be calibrated before merging them to-
gether. Non-maximum suppression is used to eliminate redundant bounding boxes.
If the framework employs detectors of different classes, detection results need to be
carefully merged together.

3.3.1 Object Subcategorization

For object classes with a large intra-class variation like cars, the appearances and
shapes of cars change significantly as viewpoints change. In order to deal with these
variations that cannot be tackled by the conventional VJ framework, we present an
object subcategorization method which aims to cluster the object class into visually
homogeneous subcategories. The proposed subcategorization method applies an un-
supervised clustering method to one specific feature space of the training samples to
generate multiple subcategories. This method simplifies the original learning prob-
lem by dividing it into multiple sub-problems and improves model generalization
performance.

3.3.1.1 Visual features

A variety of hand-designed features can be used to perform the clustering algorithm,
such as HOG and ACF (Dalal and Triggs, 2005; Dollár et al., 2014). HOG is successful
at capturing the shapes of objects while does not consider color information. ACF
combines both color information and gradient information, which is shown to out-
perform HOG (Dollár et al., 2009). In our experiments, a total of 10 channels of fea-
tures are used for clustering: LUV color channels (3 channels), histogram of oriented
gradients at 6 bins (6 channels), and normalized gradient magnitude (1 channel).
To extract features from the training samples, all samples are resized to the median

§3.3 Proposed approach 29

object size.

3.3.1.2 Geometrical features

Besides the visual features, geometrical information of objects can be extracted from
traffic scenes using a variety of sensors and methods. In the KITTI dataset, objects
in images from a velodyne laser scanner were annotated with 3D bounding boxes
and 3D orientations. Ohn-Bar et al. (Ohn-Bar and Trivedi, 2015) propose an analysis
of different types of geometrical features, which shows that the geometrical features
outperform the visual features for clustering, even for the CNN features. We use the
following set of geometrical features to represent the object instances in our experi-
ments.

• 3D orientation. The appearances and shapes of objects change significantly as
viewpoints change. We include the 3D orientation (relative orientation between
the object and the camera) in clustering, aiming at grouping objects with similar
visual appearance together.

• Aspect-ratio. The aspect-ratio (width/height) of objects is strongly correlated
with the geometry of objects being detected. We use this feature because learn-
ing models at different aspect-ratios significantly improve the generalization
performance.

• Truncation level. The truncation level refers to the percentage of the object
outside of the image boundaries. This feature strongly affects appearances of
objects.

• Occlusion index. Instead of using subtle occlusion patterns defined in (Ohn-
Bar and Trivedi, 2015), we use an occlusion index to indicate whether an object
is not occluded, partially occluded, largely occluded or an unknown situation.
We simplify the occlusion patterns because some occlusion features cannot be
defined for each occluded object, such as occlusion level, relative orientation
and relative 3D point between occluded objects and occluders. The above fea-
tures are only available when the object is occluded by other labelled occluders.
However, many occluders are unlabelled in the KITTI dataset.

3.3.1.3 Clustering

A clustering method is used to generate a predefined number of clusters on a specific
feature space. Traditional clustering schemes, such as k-means or single linkage,
suffer from the cluster degeneration which means that a few clusters claim most

30 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

data samples (Jain et al., 1999). The cluster degeneration problem can be alleviated by
using spectral clustering. Spectral clustering followed by k-means often outperforms
the traditional schemes. We implement the normalized spectral clustering using the
algorithm proposed in (Ng et al., 2002). The quality of clustering results is very
sensitive to the predefined number of clusters. Unfortunately, how to determine
the appropriate number of centroids is still an open question. We experimentally
determine the number of clusters for each application.

3.3.2 Feature extraction

The proposed framework introduces spatially pooled features (Paisitkriangkrai et al.,
2014b) as a part of the aggregated channel features (Dollár et al., 2009) and employs
them as dense features in the training phase. All feature channels are aggregated in
4× 4 blocks in order to produce fast pixel lookup features.

3.3.2.1 Aggregated channel features (ACF)

Given an input image I, a channel C of I is a feature map, where the output pixels are
computed from corresponding pixels of the input image. Aggregated channel fea-
tures are extracted from multiple image channels using pixel lookups method. Many
image channels are available for extracting features. For example, a trivial channel
of a grayscale image is the image itself. For a color image, each color channel can be
used as a channel. Other channels can be computed using various transformations
of I. In order to accelerate the speed of feature extraction, all transformations are
required to be translational invariant. It means that the transformation need only to
be evaluated once on the entire image rather than separately for each overlapping
detection window.

ACF uses the same channel features as ChnFtrs (Dollár et al., 2009): LUV color
channels (3 channels), histogram of oriented gradients (6 channels), and normalized
gradient magnitude (1 channel). ACF combines the richness and diversity of statistics
from these channels, which is shown to outperform HOG (Dollár et al., 2014, 2009).
Prior to computing these 10 channels, we smooth the input image I to suppress fine
scale structures as well as noises.

• LUV color channels. LUV color space contains 3 channels, L channel describes
the lightness of the object, U channel and V channel represent the chromaticity
of the object. Compared to RGB space, LUV space is able to partially invariant
to illumination change. So the proposed detector can work under different
light conditions. Images can be converted to LUV space by using a specific
transformation.

§3.3 Proposed approach 31

• Gradient magnitude channel. A normalized gradient magnitude is used to
measure the edge strength. Gradient magnitude M(x, y) at location (x, y) is
computed by

√
I2
x + I2

y , where Ix and Iy are first intensity derivatives along
the x-axis and y-axis, respectively. Since the gradient magnitude is computed
on 3 LUV channels independently, only the maximum response is used as the
gradient magnitude channel.

• Gradient histogram channels. A histogram of oriented gradients is a weighted
histogram where bin index is determined by gradient orientation and weighted
by gradient magnitude (Dollár et al., 2009). The histogram of oriented gradi-
ents at location (x, y) is computed by M(x, y) · 1[Θ(x, y) = θ], where 1 is the
indicator function, M(x, y) and Θ(x, y) are the gradient magnitude and discrete
gradient orientation, respectively. ACF quantizes the orientation space to 6 ori-
entations and compute one gradient histogram channel for each orientation.

3.3.2.2 Spatially pooled features

Spatial pooling is used to combine multiple visual descriptors obtained at nearby
locations into a lower dimensional descriptor over the pooling region. We follow the
work of (Paisitkriangkrai et al., 2014b) which is shown that pooling can enhance the
robustness of two hand-crafted low-level features, covariance features (Tuzel et al.,
2006) and LBP (Ahonen et al., 2004).

Covariance matrix A covariance matrix is a positive semidefinite matrix which
provides a measure of the relationship between multiple sets of variates. The diago-
nal elements of a covariance matrix represent the variance of each feature and non-
diagonal elements represent the correlation between different features. In order to
compute the covariance matrix, we use the following variates proposed in (Paisitkri-
angkrai et al., 2014b):

[x, y, |Ix|, |Iy|, |Ixx|, |Iyy|, M, O1, O2]

where x and y indicate the pixel location. Ix and Iy are first intensity derivatives
along the horizontal-axis and vertical-axis respectively. Similarly, Ixx and Iyy are
second intensity derivatives, respectively. M is the gradient magnitude

√
I2
x + I2

y . O1

is the edge orientation arctan(|Ix|/|Iy|) and O2 is an additional edge orientation in
which,

O2 =

atan2(Iy, Ix) if atan2(Iy, Ix) > 0,

atan2(Iy, Ix) + π otherwise.

32 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

where the atan2 function is defined in terms of the arctan in the following:

atan2(y, x) =

arctan y
x x > 0

arctan y
x + π y ≥ 0, x < 0

arctan y
x − π y < 0, x < 0

+π
2 y > 0, x = 0

−π
2 y < 0, x = 0

undefined y = 0, x = 0

The covariance descriptor of a region is a 9 × 9 covariance matrix which can be
computed efficiently because the computational cost is independent of the size of
the region. We also exclude the variance of pixel locations (x and y coordinates)
and the correlation coefficient between pixel locations (x and y coordinates), since
these features do not capture discriminative information. Due to the symmetry, each
covariance descriptor finally contains 42 different values.

Spatially pooled covariance The spatial invariance and robustness of the covari-
ance descriptors can be improved by applying pooling method. There are two com-
mon pooling methods in this context: average pooling and max pooling. Max pool-
ing is used in our framework as it has been shown to outperform average pooling
in image classification (Coates and Ng, 2011). Max-pooling uses the maximum value
of a pooling region to represent the pooled features in the region. It aims to re-
tain the most salient information and discard irrelevant details and noises over the
pooling region. The image window is divided into multiple dense patches (refer to
Fig. 3.3). Covariance features are computed over pixels within each patch. Then, we
perform max pooling over a fixed-size pooling region and use the pooled features
to represent the covariance features in the pooling region. In fact, multiple covari-
ance matrices within each pooling region are summarized into a single matrix which
has better invariance to image deformation and translation. The pooled features ex-
tracted from each pooling region is called the spatially pooled covariance (sp-Cov)
features in (Paisitkriangkrai et al., 2014b).

Implementation To expand the richness of our feature representation, we extract
sp-Cov features using multi-scale patches with the following sizes: 4× 4, 8× 8 and
16× 16 pixels. Each scale will generate an independent set of visual descriptors. In
our experiments, the patch step-size is set to be 1 pixel, the pooling region is set to
be 4× 4 pixels, and the pooling spacing stride is set to be 4 pixels.

Local Binary Pattern (LBP) LBP is a texture descriptor which uses a histogram
to represent the binary code of each image patch (Ahonen et al., 2004). The original

§3.3 Proposed approach 33

Original image Patch sp-Cov feature

Pooling region

Figure 3.3: Architecture of the spatially pooled covariance features.

LBP is generated by thresholding the 3 × 3-neighbourhood of each pixel with the
value of centre pixel. All binary results are concatenated to form an 8-bit length
binary sequence with 28 different labels. The histogram of these 256 different labels
can represent a texture descriptor. By following the work of (Paisitkriangkrai et al.,
2014b), we convert the input image from the RGB space to LUV space, and extract
the uniform LBP (Wang et al., 2009) from the luminance (L) channel. The uniform
LBP, which is an extension of the original LBP, can better filter out noises.

Spatially pooled LBP Similar to the sp-Cov features, the image window is di-
vided into multiple dense patches and LBP histogram is computed over pixels within
each patch. In order to enhance the invariance to image deformation and translation,
we perform max pooling over a fixed-size pooling region and use the pooled fea-
tures to represent the LBP histogram in the pooling region. The pooled features
extracted from each pooling region is called the spatially pooled LBP (sp-LBP) fea-
tures in (Paisitkriangkrai et al., 2014b).

Implementation To extract LBP, we apply the LBP operator on the 33-neighbourhood
at each pixel. The LBP histogram is extracted from a 4× 4 pixels patch. We extract
the 58-dimension LBP histogram using a C-MEX implementation of (Vedaldi and
Fulkerson, 2010). In our experiments, the patch step-size, the pooling region, and
the pooling spacing stride are set to 1 pixel, 8× 8 pixels, and 4 pixels, respectively.
Instead of extracting LBP histograms from multi-scale patches, the sp-LBP and LBP
are combined as channel features.

3.3.3 Supervised learning

Once dense features have been extracted, we are in a position to train a classifier.
Instead of training a standard AdaBoost classifier, we use a shrinkage version of

34 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

AdaBoost as the strong classifier and use decision trees as weak learners. To train
the classifier, the procedure known as bootstrapping is applied, which collects hard
negative samples and re-trains the classifier. If the object subcategorization is applied
to the object class, we train one classifier for each subcategory. The learning algorithm
is the shrinkage version of AdaBoost presented in Algorithm 2.

Bootstrapping To improve the performance of the learned classifier, we perform
three bootstrapping iterations in addition to the original training phase. The initial
training phase randomly sample negative samples from training images with positive
regions cropped out, and further bootstrapping iterations add more hard negatives to
the training set. The learning process consists of 4 training iterations with increasing
number of weak learners and the final model consists of 2048 weak learners.

3.3.4 Post-processing

Raw detection results are generated by applying trained detectors to test images, but
these results often contain some noises and redundant information. To improve de-
tection performance, some techniques are used to post-process raw detection results.

3.3.4.1 Calibration of confidence scores

If we have multiple sub-detectors and apply them to test data, detection results of
each sub-detector are required to merge together to generate the integrated results.
However, the classifier of each sub-detector is learned with different training data,
confidence scores of raw detection results output by individual classifiers need to
be calibrated appropriately to suppress noises before merging them together. We
address this problem by transforming the output of each classifier by a sigmoid
regression to generate comparable score distributions (Platt, 1999; Lin et al., 2007).
For sample i in subcategory k, its confidence score is the output of the ensemble
classifier which is defined as

sk
i =

T

∑
t=1

atht(~xk
i), (3.1)

its calibrated score is defined as

gk
i =

1
1 + exp(Ak · sk

i + Bk)
, (3.2)

where Ak, Bk are the learned parameters for the k-th subcategory of the following
regularized maximum likelihood problem:

arg min
Ak ,Bk

−
Nk

∑
i=1

[
ti log gk

i + (1− ti) log (1− gk
i)
]

, (3.3)

§3.3 Proposed approach 35

ti =

N++1
N++2 if yi = +1

1
N−+2 if yi = −1

, i = 1, · · · , Nk. (3.4)

The gk
i in equation 3.3 can be cancelled by reformulation:

arg min
Ak ,Bk

Nk

∑
i=1

[
(ti − 1)(Ak · sk

i + Bk) + log (1 + exp(Ak · sk
i + Bk))

]
. (3.5)

Nk is the total number of training examples for the k-th subcategory-specific classifier,
N+ is the number of positive examples, and N− is the number of negative examples.

3.3.4.2 Non-maximum suppression (NMS)

NMS aims to suppress redundant bounding boxes among the raw detection results.
When multiple bounding boxes overlap, NMS will eliminate the lower-scored de-
tections and retain the highest-scored detection. Pascal overlap score (Everingham
et al., 2010) is used to determine the overlap ratio a0 between two bounding boxes.
The overlap ratio a0 is defined as

a0 =
area(B1 ∩ B2)

area(B1 ∪ B2)
, (3.6)

where B1 and B2 are two different bounding boxes. If the overlap ratio a0 exceeds a
predefined threshold, bounding box with the lower confidence score is discarded.

3.3.4.3 Fusion of detection results

The proposed framework can detect multiple objects simultaneously using detectors
or sub-detectors of different classes. We need to consider how to merge detection
results from different detectors. Since an object may be detected redundantly using
multiple sub-detectors or a single detector at multiple scales, NMS is usually used to
eliminate these redundant detections in the merging process. However, NMS is not
suitable for merging detections from different classes. Assume that a car is occluded
by a cyclist. If their overlap ratio exceeds the threshold, NMS will simply delete the
lower-scored detection, and retain the higher-scored detection. It means that one true
positive will be removed in this case.

To solve the above problem, we propose a fusion method to merge all detection
results in two steps. Instead of applying NMS to detection results from all detectors,
we apply NMS to detections of each single class (traffic sign, car, cyclist) separately to
filter out redundant bounding boxes generated by either a single detector or multiple

36 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

(a) Prohibitory (b) Danger (c) Mandatory

Figure 3.4: Sample images of three main categories on the GTSDB dataset.

sub-detectors of the class. Next, we directly combine filtered bounding boxes from
different classes without using NMS to generate the final detection results. This
fusion method can eliminate the overlapped false positives of each single class while
it keeps the true positives from different classes as much as possible.

3.4 Experiments

In this section, we demonstrate the effectiveness and robustness of the proposed
framework in three detection problems: traffic sign detection, car detection, and
cyclist detection.

3.4.1 Traffic sign detection on GTSDB dataset

We firstly conduct an experiment on traffic sign detection and evaluate our detector
on the German Traffic Sign Detection Benchmark (GTSDB) (Houben et al., 2013).

3.4.1.1 Dataset

The GTSDB dataset contains 600 images for training and 300 images for testing.
Images are captured from various scenes (highway, urban, rural) and various time
slots (morning, afternoon, dusk, etc.). The dataset contains more than 1000 traffic
signs from different categories. Three main categories of traffic signs (prohibitory,
danger, mandatory) are selected as the target classes in the IJCNN 2013 (Houben
et al., 2013) competition and in our experiments. The resolutions of traffic signs vary
from 16 × 16 pixels to 128 × 128 pixels. Fig. 3.4 illustrates some samples of three
mentioned categories on the GTSDB dataset.

§3.4 Experiments 37

3.4.1.2 Evaluation criteria

Pascal overlap score (Everingham et al., 2010) is used to find the best match between
each predicted bounding box and each ground truth. The minimum overlap ratio
a0 is set to be 60% on the GTSDB. Only the bounding box with the highest confi-
dence score is counted as true positive if multiple bounding boxes satisfy the overlap
criterion, the others are ignored. To compare the performance of different detec-
tors, we follow the evaluation metric of the GTSDB which uses the area under the
precision-recall curve (AUC) as a final score.

3.4.1.3 Parameter selection

To alleviate the effect of the illumination change, we apply the automatic color equal-
ization algorithm (ACE) (Getreuer, 2012) to globally normalize all images. The res-
olution of the traffic sign model is set to 20× 20 pixels and the dimension of model
padding is set to 30× 30 pixels. This border provides an additional amount of con-
text that helps improve the detection performance (Dalal and Triggs, 2005; Dollár
et al., 2010). Additionally, we increase the number of positive samples by adding
jittered versions of the original samples, which significantly improves the detection
performance. For prohibitory and danger signs, flipped versions are added to the
training set. For mandatory signs, samples are randomly perturbed in translation
([−2, 2] pixels), in scale ([0.8, 1] ratio), in rotation ([−5, 5] degrees), and flipping. We
demonstrate the performance gain on the test set in table 3.1. Negative samples are
collected from the GTSDB training images with the corresponding traffic sign regions
cropped out.

Prohibitory Danger Mandatory Avg. AUC

Original dataset 98.76% 93.65% 86.86% 93.09%
Jittered dataset 100.00% 98.00% 97.57% 98.52%

Table 3.1: Performance (AUC) difference between training on original training set and jittered
training set.

3.4.1.4 Experimental design

We investigate the experimental design of the proposed detector on traffic sign detec-
tion. Since traffic signs are divided into three subcategories, we train one sub-detector
for each subcategory. We train all detectors on the GTSDB training set and evaluate
them on the GTSDB test set. All experiments are carried out using combined fea-

38 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

tures (ACF+sp-Cov+sp-LBP) as dense features, Adaboost with shrinkage value of 0.1
as the strong classifier, and depth3-decision trees as weak learners (if not specified
otherwise).

Shrinkage We evaluate the performance of AdaBoost with 4 different shrinkage
values from {0.05, 0.1, 0.2, 0.5}. We decrease the reject threshold of soft cascade by a
factor of ν as coefficients of weak learners have been diminished by a factor of ν. The
area under precision-recall curve of different detectors are shown in Table 3.2. We
observe that applying a small shrinkage value often improves the detection perfor-
mance and the best performance is achieved by setting ν = 0.1. However, without
increasing the number of weak learners, setting the shrinkage value to be too small
(ν = 0.05) can degrade the performance as the boosting cannot converge within a
limited number of boosting iterations.

Shrinkage Prohibitory Danger Mandatory Avg. AUC

ν = 0.5 98.13% 95.28% 90.32% 94.58%
ν = 0.2 99.38% 96.80% 92.79% 96.32%
ν = 0.1 100.00% 98.00% 97.57% 98.52%
ν = 0.05 99.99% 97.81% 95.16% 97.63%
ν = 0.05∗ 99.99% 98.00% 96.76% 98.25%

Table 3.2: Performance (AUC) of detectors with different shrinkage values. ∗ The model
consists of 4096 weak learners while others consist of 2048 weak learners.

Depth of decision trees We trained 4 different traffic sign detectors with decision
trees of depth 1 to depth 4. Table 3.3 shows the detection performance of different
detectors. We observe that increase the depth of decision trees provides a perfor-
mance gain, especially for the mandatory category. However, the depth-3 decision
trees achieve better generalization performance and are faster to train than depth-4
decision trees.

Depth Prohibitory Danger Mandatory Avg. AUC

depth-1 99.98% 97.41% 75.47% 90.95%
depth-2 99.99% 97.98% 95.49% 97.82%
depth-3 100.00% 98.00% 97.57% 98.52%
depth-4 99.99% 96.77% 98.10% 98.29%

Table 3.3: Performance (AUC) of detectors with different depths of decision trees.

Combination of features To compare the discriminative power of different fea-
ture representations, we evaluate the performance of various feature combinations.

§3.4 Experiments 39

The results are shown in Table 3.4. We observe that a combination of the sp-Cov
features and LUV outperforms the ACF features and combining more features can
further improve the detection performance. The best result is achieved using a com-
bination of all features (sp-Cov+sp-LBP+ACF).

Feature combination Prohibitory Danger Mandatory Avg. AUC

ACF (LUV+O+M) 98.72% 94.58% 92.65% 95.32%
sp-LBP+ACF 99.99% 95.07% 96.12% 97.06%
sp-Cov+LUV 99.30% 96.67% 95.56% 97.18%
sp-Cov+ACF 98.73% 95.23% 95.61% 96.52%
sp-Cov+sp-LBP+ACF 100.00% 98.00% 97.57% 98.52%

Table 3.4: Performance (AUC) of detectors with various feature combinations.

3.4.1.5 Comparison with state-of-the-art detectors

Detection performance of various detectors on the GTSDB test set are shown in Ta-
ble 3.5. The proposed detector achieves the comparable results with state-of-the-art
detectors despite its simplicity. These detectors (Wang et al., 2013a; Mathias et al.,
2013b) that offer better performance employ multi-scale models in detection. The
authors of (Wang et al., 2013a) train multiple subcategory-specific classifiers for each
type of mandatory signs to achieve the best performance.

Method Prohibitory Danger Mandatory Avg. AUC

Ours 100.00% 98.00% 97.57% 98.52%
Wang et al. (Wang et al., 2013a) 100.00% 99.91% 100.00% 99.97%
Mathias et al. (Mathias et al., 2013b) 100.00% 100.00% 96.98% 98.99%
BolognaCVLab (Houben et al., 2013) 99.98% 98.72% 95.76% 98.15%
Liang et al. (Liang et al., 2013) 100.00% 98.85% 92.00% 96.95%
Timofte et al. (Timofte et al., 2009) 61.12% 79.43% 72.60% 71.05%
Viola-Jones (Viola and Jones, 2004) 90.81% 46.26% 44.87% 60.65%

Table 3.5: Detection performance (AUC) of various detectors on GTSDB test set with 60%
overlap ratio.

3.4.2 Car detection on UIUC dataset

Next, we conduct an experiment on car detection and compare detection perfor-
mance of different detectors on the UIUC dataset (Agarwal et al., 2004). The UIUC
dataset captures images of side views of cars with a resolution 40× 100 pixels. The

40 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

training set contains 550 positive samples and 500 negative samples. The test set is
divided into two subsets: 170 single-scale test images, containing 200 cars at roughly
the same scale as in the training set, and 108 multi-scale test images, containing 139
cars at various scales.

We follow the evaluation protocol provided along with the UIUC dataset. A
bounding box is counted as true positive if it lies within 25% of the ground truth
dimension in each direction. Only the bounding box with the highest confidence
score is counted as true positive if multiple bounding boxes satisfy the criterion, the
others are counted as false positives. In the dataset, three criteria are used to evaluate
the performance: F1-score, detection rate, and the number of false positives. F1-score
is the weighted harmonic mean of precision and recall.

The dimension of UIUC car model is set to 40 × 100 pixels without marginal
padding as the car images are clipped to the same size. We expand the positive sam-
ples by flipping car images along the vertical axis. Since viewpoints of cars in the
UIUC dataset are limited to side-views, we train a single detector without applying
subcategorization and bootstrapping. Table 3.6 shows the results of different detec-
tors on the multi-scale test images. We observe that our detector achieves the best
detection rate with slight more false positives on this dataset.

Method F-Measure Det. rate No. false pos.

Ours 98.6% 99.28% 3
Pruning (Paisitkriangkrai et al., 2014a) 98.6% 97.8% 1
AdaBoost (Viola and Jones, 2004) 98.6% 98.6% 2
AdaBoost+LDA (Wu et al., 2008) 98.6% 97.8% 1
CS-AdaBoost (Masnadi-Shirazi and Vasconcelos, 2011) 95.3% 95.5% 9

Table 3.6: Detection performance of various detectors on UIUC multi-scale test set.

3.4.3 Car detection on KITTI dataset

To further demonstrate the effectiveness and robustness of the proposed detector
on car detection, we evaluate our detector on a more challenging object detection
benchmark, KITTI dataset (Geiger et al., 2013)

3.4.3.1 Dataset

The KITTI dataset is a recently proposed challenging dataset which consists of 7481
training images and 7518 test images, comprising more than 80 thousands of anno-
tated objects in traffic scenes. Table 3.7 provides a summary of existing car datasets.
We observe that the KITTI dataset provides a large number of cars with different

§3.4 Experiments 41

Training Testing Properties

#
ca

rs

#
im

ag
es

#
ca

rs

#
im

ag
es

co
lo

r

A
nn

ot
at

io
ns

m
ul

ti
-v

ie
w

s

oc
c.

la
be

ls

tr
un

c.
la

be
ls

UIUC Car 550 1050 139 108
MIT Car 516 516 - - X
Street Parking - 881 - - X X X X
Pascal VOC 1250 713 1201 721 X X X X X

KITTI Car 27k 7481 - 7518 X X X X X

Table 3.7: Comparison of car datasets. The first four columns indicate the amount of train-
ing/testing data in each dataset. Note that KITTI dataset is two orders of magnitude larger
than other existing datasets. The next five columns provide additional properties of each

dataset.

sizes, viewpoints, occlusion patterns, and truncation scenarios. Due to the diversity
of these objects, the dataset has three subsets (Easy, Moderate, Hard) with respect
to the difficulty of object size, occlusion and truncation. Since KITTI evaluates the
detection performance on the moderate subset, the moderate subset is used as the
training data in our experiments. The moderate subset contains 15710 cars, with
the heights of the cars vary from 25 pixels to 270 pixels and the aspect ratios vary
between 0.9 and 4.0. Since annotations of test data are not provided by the KITTI
benchmark, we split the KITTI training images into training set (first 4000 images)
and validation set (remaining 3481 images).

3.4.3.2 Evaluation criteria

We follow the provided protocol for evaluation. Pascal overlap score is used to find
the best match and the minimum overlap ratio a0 is set to be 70%. Only the bounding
box with the highest confidence score is kept if multiple bounding boxes satisfy the
overlap criterion, the others are counted as false positives. Instead of using AUC,
average precision (AP) (Everingham et al., 2010) is used to evaluate the detection
performance. The AP summaries the shape of the precision-recall curve, and is
defined as the mean precision at a set of evenly spaced recall levels.

3.4.3.3 Parameter selection

We apply the proposed subcategorization method to categorize the training data into
multiple subcategories. To find the model dimensions of each subcategory, we set the
base height of each model to 52 pixels. From the base height, the width of each model

42 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

1 4 16 25 50 100
30

40

50

60

70

80

90

100

Number of subcategories(K)
A

ve
ra

ge
 p

re
ci

si
on

(%
)

Car detection (spectral clustering on visual features)

easy
moderate
hard

(a) (b) (c)

1 4 16 25 50 100
30

40

50

60

70

80

90

100

Number of subcategories(K)

A
ve

ra
ge

 p
re

ci
si

on
(%

)

Car detection (spectral clustering on geometrical features)

easy
moderate
hard

1 2 3 4 6 8
30

40

50

60

70

80

90

100

Number of subcategories(K)

A
ve

ra
ge

 p
re

ci
si

on
(%

)

Cyclist detection (spectral clustering on aspect−ratios)

easy
moderate
hard

Figure 3.5: Detection performance (AP) of various detectors with different number of sub-
categories on the KITTI validation set. (a) Car detector (spectral clustering + geometrical
features). (b) Car detector (spectral clustering + visual features). (c) Cyclist detector (spectral

clustering + aspect-ratios).

can be obtained by taking the median aspect ratios of cars in the corresponding sub-
category. Each model includes additional 4 pixels of marginal padding on all sides.
Using a model with suitable aspect ratio can significantly improves the detection
performance due to better localization. We expand the positive training samples by
randomly perturbing original car samples in translation ([−2, 2] pixels), and in rota-
tion ([−2, 2] degrees). Negative samples are collected from the KITTI training images
with vehicle regions cropped out.

3.4.3.4 Experimental design

We investigate the experimental design of the proposed detector on car detection.
We train car detectors on the training set and evaluate them on the validation set. All
experiments are carried out using ACF as dense features, Adaboost with shrinkage
value of 0.1 as the strong classifier, depth4-decision trees as weak learners, and K =

25 in the subcategorization method (if not specified otherwise).

Number of subcategories To investigate the effect of different number of clusters
in our subcategorization method, we set the number from {1, 4, 16, 25, 50, 100}.
Fig. 3.5(a) and Fig. 3.5(b) shows the effect of increasing the number of subcategories
on geometrical features and visual features, respectively. We observe that geometrical
features outperform visual features in spectral clustering. We also observe that the
detection performance improves as we increase the number of subcategories up to 50.
However, setting the number of subcategories to be too large (K = 100) can hurt the
performance as the average number of samples in each subcategory is not enough
to train an effective model. For the rest of our experiments, we set the number of
subcategories to be 25 as it gives a better trade-off between the performance and the
complexity.

§3.4 Experiments 43

Depth of decision trees We evaluate the performance for different decision tree
depths. As can be observed in Table 3.8, the depth-4 decision trees perform the best
as they can provide the best generalization performance.

Depth Easy Moderate Hard

depth-2 96.38% 89.18% 70.87%
depth-3 97.17% 91.21% 74.44%
depth-4 97.41% 93.37% 75.60%
depth-5 96.67% 92.08% 72.77%

Table 3.8: Performance (AP) of detectors with different depths of decision trees.

Combination of features We evaluate the performance of various feature com-
binations on car detection. The results are shown in table 3.9. We observe that the
detection performance improves as we add more features and the best performance
is achieved using a combination of all features (sp-Cov+sp-LBP+ACF). A combina-
tion of sp-LBP features and ACF features also achieves the similar performance and
is five times faster than the combination of all features. We use the combination of
sp-LBP features and ACF features as dense features in the testing phase since it gives
a better trade-off between detection performance and runtime.

Feature combination Easy Moderate Hard Runtime

ACF (LUV+O+M) 97.41% 93.37% 75.60% 0.5s
sp-LBP+ACF 97.74% 94.38% 76.50% 1.5s
sp-Cov+LUV 97.76% 93.68% 75.68% 6.8s
sp-Cov+ACF 97.98% 93.48% 75.61% 6.8s
sp-Cov+sp-LBP+ACF 98.42% 94.55% 76.66% 7.5s

Table 3.9: Performance (AP) of detectors with various feature combinations.

3.4.3.5 Comparison with state-of-the-art detectors

Table 3.10 shows the performance comparison of state-of-the-art detectors on the
KITTI testing set. Experimental results show that the proposed detector is of not
only better performance than all DPM-based methods (Pepik et al., 2013; Torres et al.,
2014; Felzenszwalb et al., 2010) but also less runtime. More significantly, our detec-
tor outperforms the SubCat (Ohn-Bar and Trivedi, 2014) which employs a similar
object subcategorization method and the Regionlets (Wang et al., 2013b; Long et al.,
2014) which employs a similar pooling strategy. We conjecture that the additional
performance gain is provided by the spatially pooled features.

44 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

Method Easy Moderate Hard Runtime

Ours 87.19% 77.40% 60.60% 1.5s
Regionlets (Wang et al., 2013b) 84.75% 76.54% 59.70% 1s
SubCat (Ohn-Bar and Trivedi, 2014) 81.94% 66.32% 51.10% 0.3s
AOG (Li et al., 2014a) 80.26% 67.03% 55.60% 3s
OC-DPM (Pepik et al., 2013) 74.94% 65.95% 53.86% 10s
DPM-C8B1 (Torres et al., 2014) 74.33% 60.99% 47.16% 15s
MDPM-un-BB (Felzenszwalb et al., 2010) 71.19% 62.16% 48.43% 60s
mBoW (Behley et al., 2013) 36.02% 23.76% 18.44% 10s

Table 3.10: Detection performance (AP) of various detectors on KITTI car test set with 70%
overlap ratio.

3.4.4 Cyclist detection on KITTI dataset

In this section, we conduct an experiment on cyclist detection and evaluate our de-
tector on the KITTI dataset.

3.4.4.1 Dataset

The KITTI dataset contains annotated cyclist objects which are captured from various
traffic scenes. Similar to cars, cyclists are divided into three subsets (Easy, Moderate,
Hard) and the moderate subset is used as the training data in our experiments. The
moderate subset contains 1098 cyclists, with the heights of the cyclists vary from 25
pixels to 275 pixels and the aspect ratios vary between 0.3 and 1.5.

3.4.4.2 Evaluation criteria

The KITTI cyclist detection uses the same evaluation protocol with the car detection
except that the minimum overlap ratio is relaxed to 50%.

3.4.4.3 Parameter selection

The proposed subcategorization method is applied to cyclist detection. We define the
dimensions of cyclist models using the similar method in car detection. We set the
base height of each model to 56 pixels, and the width of each model is derived from
the median aspect ratios of cyclists in the corresponding subcategory. Each model
includes additional 4 pixels of marginal padding on all sides. We expand the positive
training samples by randomly perturbing the original cyclists in translation ([−2, 2]
pixels), in rotation ([−2, 2] degrees). Negative samples are collected from the KITTI
training images with cyclist regions cropped out.

§3.4 Experiments 45

3.4.4.4 Experimental design

We investigate the experimental design of our detector on cyclist detection. We train
cyclist detectors on the training set and evaluate them on the validation set. All
experiments are carried out using ACF as dense features, Adaboost with shrinkage
value of 0.1 as the strong classifier, depth4-decision trees as weak learners, and K = 4
in the subcategorization method (if not specified otherwise).

Number of subcategories We set the number of clusters from {1, 2, 3, 4, 6, 8} in
our subcategorization method. Since only the minority of cyclists are occluded and
truncated, clustering on all geometrical features leads to a cluster degeneration prob-
lem. We carefully select the aspect-ratios of cyclists as the feature space to avoid the
above problem. Fig. 3.5(c) shows the effect of increasing the number of subcategories.
We observe that the detection performance improves as we increase the number of
subcategories up to 4. Since the number of cyclists is much less than cars, the av-
erage number of cyclists in each subcategory becomes very small when we have a
large number of subcategories, which results in an imbalanced learning problem and
degrades the detection performance.

Depth of decision trees We trained 4 cyclist detectors with decision trees of depth
2 to depth 5. Average precisions of different detectors are shown in Table 3.11. We ob-
serve that depth-4 decision trees offer the best generalization performance, as similar
in the car detection.

Depth Easy Moderate Hard

depth-2 80.92% 75.47% 69.46%
depth-3 89.83% 82.67% 76.65%
depth-4 92.15% 86.18% 79.28%
depth-5 90.98% 85.21% 78.26%

Table 3.11: Performance (AP) of detectors with different depths of decision trees.

Combination of features We evaluate the performance of various feature com-
binations on cyclist detection. The results are shown in Table 3.12. We observe that
the best performance is achieved using a combination of sp-LBP features and ACF
features. The performance declines when we add the sp-Cov features as a part of
aggregated channel features. The reason may be due to the lack of enough cyclist
training samples. We use the combination of sp-LBP features and ACF features as
the dense features in the testing phase.

46 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

Feature combination Easy Moderate Hard Runtime

ACF (LUV+O+M) 92.15% 86.18% 79.28% 0.2s
sp-LBP+ACF 92.56% 87.40% 80.01% 0.6s
sp-Cov+LUV 85.48% 79.17% 72.20% 5.8s
sp-Cov+ACF 85.16% 80.58% 73.64% 5.8s
sp-Cov+sp-LBP+ACF 90.08% 83.80% 76.89% 6.1s

Table 3.12: Performance (AP) of detectors with various feature combinations.

3.4.4.5 Comparison with state-of-the-art detectors

Table 3.13 shows the performance comparison with state-of-the-art approaches. As
shown in Table 3.13, our detector outperforms all other methods on the test set.
Specifically, our detector outperforms the best DPM-based method DPM-VOC+VP (Pepik
et al., 2015) on all the three subsets by 16.29%, 14.95%, and 12.35%, respectively. Our
detector also performs slightly better than the Regionlets (Wang et al., 2013b; Long
et al., 2014).

Method Easy Moderate Hard Runtime

Our method 58.72% 46.03% 40.58% 0.6s
Regionlets (Wang et al., 2013b) 56.96% 44.65% 39.05% 1s
MV-RGBD-RF(González et al., 2015) 52.97% 42.61% 37.42% 4s
DPM-VOC+VP (Pepik et al., 2015) 42.43% 31.08% 28.23% 8s
LSVM-MDPM-us (Felzenszwalb et al., 2010) 38.84% 29.88% 27.31% 10s
DPM-C8B1 (Torres et al., 2014) 43.49% 29.04% 26.20% 15s
mBoW (Behley et al., 2013) 28.00% 21.62% 20.93% 10s

Table 3.13: Detection performance (AP) of various detectors on KITTI cyclist test set with
50% overlap ratio.

3.4.5 An evaluation of the overall runtime

We conduct an experiment on the evaluation of the overall runtime of the proposed
detection framework on the KITTI dataset. All experiments are carried out on a com-
puter with an octa-core Intel Xeon 2.50GHz processor. The average runtime of each
component of the framework can be seen in Table 3.14. For feature extraction, we ob-
serve that the ACF features can be extracted very quickly within 0.1s. When we add
the sp-LBP features, the runtime increases moderately, but these features provide
an obvious performance gain in all three applications. When the sp-Cov features
are employed, the runtime of feature extraction increases rapidly and dominates the

§3.5 Conclusion 47

Feature combination Feature Cars(25) Cyclists(4) Signs(3) Total
extraction detection detection detection Runtime

ACF (LUV+O+M) 0.10s 0.40s 0.10s 0.05s 0.65s
sp-LBP+ACF 0.35s 1.20s 0.30s 0.10s 1.95s
sp-Cov+ACF 5.50s 1.30s 0.30s 0.10s 7.20s
sp-Cov+sp-LBP+ACF 5.75s 1.75s 0.35s 0.15s 8.00s

Table 3.14: An evaluation of the overall runtime of the proposed framework with various
feature combinations.

total runtime of the system. For object detection, we observe that the car detector
costs the most time in this framework since it has 25 sub-detectors. The traffic sign
detector uses the least time since it has only 3 sub-detectors. We also observe that
the runtime of detection increases as we add more complicated features in the frame-
work. According to observe the detection results of three applications, we conjecture
that using a combination of ACF features and sp-LBP features can provide a better
trade-off between detection performance and system runtime.

3.5 Conclusion

In this chapter, we propose a common detection framework for detecting three impor-
tant classes of objects in traffic scenes. The proposed framework introduces spatially
pooled features as a part of aggregated channel features to enhance the feature ro-
bustness and employs detectors of three important classes to detect multiple objects.
The detection speed of the framework is fast since dense features need only to be
evaluated once rather than individually for each detector. To overcome the weakness
of the VJ framework for object classes with a large intra-class variation, we propose
an object subcategorization method to improve the generalization performance by
capturing the variation. We demonstrated that our detector achieves the competitive
results with state-of-the-art detectors in traffic sign detection, car detection, and cy-
clist detection. Future work could include that contextual information can be used to
facilitate object detection in traffic scenes and convolutional neural network can be
used to generate more discriminative feature representations.

48 Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework

Chapter 4

Pushing the Limits of Deep CNNs
for Pedestrian Detection

4.1 Introduction

The problem of pedestrian detection has been intensively studied in recent years.
Prior to the very recent work in deep convolutional neural networks (DCNNs) based
methods (Cai et al., 2015; Tian et al., 2015), the top performing pedestrian detec-
tors are boosted decision forests with carefully hand-crafted features, such as his-
togram of gradients (HOG) (Dalal and Triggs, 2005), self-similarity (SS) (Shechtman
and Irani, 2007), aggregate channel features (ACF) (Dollár et al., 2014), filtered chan-
nel features (Zhang et al., 2015) and optical flow (Paisitkriangkrai et al., 2016).

Recently, DCNNs have significantly outperformed comparable methods on a
wide variety of vision problems (Krizhevsky et al., 2012; Simonyan and Zisserman,
2015; Szegedy et al., 2015; Girshick et al., 2014a; Tompson et al., 2014; Hariharan
et al., 2014; Simonyan and Zisserman, 2014; Branson et al., 2014). A region-based
convolutional neural network (R-CNN) (Girshick et al., 2014a) achieved excellent
performance for generic object detection, for example, in which a set of potential
detections (object proposals) are evaluated by a DCNN model. Later, R-CNN was
extended to the Fast R-CNN (Girshick, 2015) which significantly increases the de-
tection speed. CifarNet (Krizhevsky and Hinton, 2009) and AlexNet (Krizhevsky
et al., 2012) have been extensively evaluated in the R-CNN detection framework in
(Hosang et al., 2015) for pedestrian detection. In their work, the best performance is
23.3% log-average miss rate (MR) on Caltech dataset, which was achieved by AlexNet
pre-trained on the ImageNet (Deng et al., 2009) classification dataset. Note that this
result is still inferior to conventional pedestrian detectors such as (Zhang et al., 2015)
and (Paisitkriangkrai et al., 2016). The DCNN models in (Hosang et al., 2015) under-
perform mainly because the network design is not optimal for pedestrian detection.
The performance of R-CNNs for pedestrian detection has further improved to 16.43%

49

50 Pushing the Limits of Deep CNNs for Pedestrian Detection

MR in (Tian et al., 2015) through the use of a deeper GoogLeNet model which is fine-
tuned using Caltech pedestrian dataset.

To explicitly model the deformation and occlusion, another line of research for
object detection is part-based models (Enzweiler et al., 2010; Felzenszwalb et al., 2010;
Lin et al., 2015b; Girshick et al., 2015) and explicit occlusion handling (Mathias et al.,
2013a; Ouyang and Wang, 2013b; Tang et al., 2014). DCNNs have also been incorpo-
rated along this stream of work for pedestrian detection (Ouyang and Wang, 2012,
2013a; Luo et al., 2014), but none of these approaches has achieved better results than
the best hand-crafted features based method of (Zhang et al., 2015) on the Caltech
dataset.

The performance of pedestrian detection is improved over hand-crafted features
by a large margin (a ∼ 5% MR gain on Caltech), by two very recent approaches re-
lying on DCNNs: CompACT-Deep (Cai et al., 2015) combines hand-crafted features
and fine-tuned DCNNs into a complexity-aware cascade. Tian et al. (Tian et al., 2015)
fine-tuned a pool of part detectors using a pre-trained GoogLeNet, and the resulting
ensemble model (refer to as DeepParts) delivers similar results as CompACT-Deep.
Both approaches are much more sophisticated than the standard R-CNN framework:
CompACT-Deep involves the use of a variety of hand-crafted features, a small CNN
model and a large VGG16 model (Simonyan and Zisserman, 2015). DeepParts con-
tains 45 fine-tuned DCNN models and needs a set of strategies (including bounding-
box shifting handling and part selection) to arrive at the reported result. Note that
the high complexity of DCNN models can lead to practical difficulties. For example,
it can be too costly to load all 45 DCNN models into a GPU card.

Here we ask a question: Is a complex DCNN based learning approach really a
must for achieving the state-of-the-art performance? Our answer to this question
is negative. In this work, we propose alternative methods for pedestrian detection,
which are simpler in design, with comparable or even better performance. Firstly,
we extensively evaluate the CFMs extracted from multiple convolutional layers of
a fine-tuned VGG16 model for pedestrian detection. Using only a CFM of a single
convolutional layer, we train a boosted-tree-based detector and the resulting model
already significantly outperforms all previous methods except the above two so-
phisticated DCNN frameworks. This model can be seen as a strong baseline for
pedestrian detection as it is very simple in terms of implementation.

We show that the CFMs from multiple convolutional layers can be used for train-
ing effective boosted decision forests. These boosted decision forests are combined
altogether simply by score averaging. The resulting ensemble model beats all com-
peting methods on the Caltech dataset. We further improve the detection perfor-
mance by incorporating a semantic pixel labelling model. Next we review some

§4.2 Background 51

related work.

4.2 Background

4.2.1 Convolutional feature maps (CFMs)

It has been shown in (Ren et al., 2016; Hariharan et al., 2015; Yang et al., 2015a)
that CFMs have strong representation abilities for many tasks. Long et al. (Long
et al., 2015) adapt predominant DCNNs into fully convolutional networks and trans-
fer their learned representations by fine-tuning to the semantic segmentation domain.
In (Hariharan et al., 2015), the CFMs from multiple layers are stacked into one vec-
tor and used for segmentation and localization. Ren et al. (Ren et al., 2016) learn a
network on the CFMs (pooled to a fixed size) of a pre-trained model.

The work by Yang et al. (Yang et al., 2015a) is close to ours, which trains a boosted
decision forest for pedestrian detection with the CFM features from the Conv3-3
layer of the VGG16 model (Simonyan and Zisserman, 2015), and the performance
(17.32% MR) on Caltech is comparable to checkerboards (Zhang et al., 2015). It
seems that there is no significant superiority of the CFM used in (Yang et al., 2015a)
over hand-crafted features on the task of pedestrian detection. The reason may be
two-fold. First, the CFM used in (Yang et al., 2015a) are extract from the pre-trained
VGG16 model which is not fine-tuned on a pedestrian dataset; Second, CFM features are
extracted from only one layer and the multi-layer structure of DCNNs is not fully
exploited. We show in this work that both of these two issues are critically important
in achieving good performance.

4.2.2 Segmentation for object detection

The cues used by segmentation approaches are typically complementary to those
exploited by top-down methods. Recently, Yan et al. (Yan et al., 2015) propose to
perform generic object detection by labelling super-pixels, which results in an energy
minimization problem with data term learned by DCNN models. In (Fidler et al.,
2013; Hariharan et al., 2014), segmented image regions (not bounding boxes) are
generated as object proposals and then used for object detection.

In contrast to the above region (or super-pixel) based methods, we here exploit at
an even finer level of information, that is, pixel labelling. In particular, in this work
we demonstrate that we can improve the detection performance by simply re-scoring
the proposals generated by a detector, using pixel-level scores.

52 Pushing the Limits of Deep CNNs for Pedestrian Detection

4.3 Datasets, evaluation metric and models

Before we present our methods, we briefly describe the datasets, evaluation metric
and boosting models in our experiments.

4.3.1 Caltech pedestrian dataset

The Caltech dataset (Dollar et al., 2012) is one of the most dominant datasets for
pedestrian detection. It contains 250k frames captured from 10 hours of urban traffic
videos. There are in total 350k annotated bounding boxes with 2300 unique pedes-
trians. The standard training set and test set consider one out of each 30 frames.
In our experiments, the training images are expanded to one out of each 4 frames.
The test set is fixed and contains 4024 images. The dataset has different test set-
tings with respect to the difficulty of pedestrian height, visibility and aspect ratio.
The proposed framework is evaluated on five test settings (Reasonable, Near scale,
Medium scale, Partial occlusion, and Overall). Definitions of these test settings are given
in the following:

• Reasonable The minimum height of pedestrians is 50 pixels, the occlusion level
is either no or partial occlusion.

• Near scale The minimum height of pedestrians is 80 pixels, there is no occlusion
on pedestrians.

• Medium scale The height of pedestrians is greater than or equal to 30 pixels and
is less than or equal to 80 pixels, there is no occlusion on pedestrians.

• Partial occlusion The minimum height of pedestrians is 50 pixels, the occlusion
level is partial occlusion.

• Overall The minimum height of pedestrians is 20 pixels, the occlusion level can
be one of no occlusion, partial occlusion, or heavy occlusion.

Note that many competing methods (Zhang et al., 2015; Yang et al., 2015a; Hosang
et al., 2015) have used the same extended training set or even more data (every third
frame). We evaluate the performance of various detectors using the log-average miss
rate (MR) which is computed by averaging the miss rate at false positive rates spaced
evenly between 0.01 to 1 false-positive-per-image (FPPI) range. The dataset has dif-
ferent test settings with respect to the difficulty of pedestrian height, visibility and
aspect ratio. Unless otherwise specified, the detection performance on our experi-
ments shown in the remainder of the chapter is the MR on the Caltech Reasonable

test setting.

§4.3 Datasets, evaluation metric and models 53

4.3.2 Inria pedestrian dataset

The Inria dataset (Dalal and Triggs, 2005) contains 614 positive training images and
288 positive test images. Images of Inria are captured from multiple different scenes,
including scenic spot, forest, grassland, snow mountain, etc.. We use the log-average
miss rate to evaluate the detection performance as same as the Caltech. All results
are reported on the 288 positive test images (negative images are not used).

4.3.3 KITTI pedestrian dataset

The KITTI dataset (Geiger et al., 2012) consists of 7481 training images and 7518 test
images, comprising more than 80 thousands of annotated objects in traffic scenes.
The KITTI dataset provides a large number of pedestrians with different sizes, view-
points, occlusions, and truncations. Due to the diversity of these objects, the dataset
has three subsets (Easy, Moderate, Hard) with respect to the difficulty of object size,
occlusion and truncation. Definitions of these subsets are provided in the following:

• Easy The minimum height of bounding boxes is 40 pixels, the maximum occlu-
sion level is fully visible, the maximum truncation level is 15% .

• Moderate The minimum height of bounding boxes is 25 pixels, the maximum
occlusion level is partial occlusion, the maximum truncation level is 30% .

• Hard The minimum height of bounding boxes is 25 pixels, the maximum occlu-
sion level is heavy occlusion, the maximum truncation level is 50%.

We use the Moderate training subset as the training data in our experiments. Av-
erage precision (AP) is used to evaluate the detection performance for KITTI dataset.
The average precision summaries the shape of the precision-recall curve, and is de-
fined as the mean precision at a set of evenly spaced recall levels. All methods are
ranked based on the Moderate difficult results.

4.3.4 Boosted decision forest

For supervised classification tasks, boosting is a popular method to select features for
improving the performance of any given learning algorithm (Freund and Schapire,
1999; Demiriz et al., 2002; Paisitkriangkrai et al., 2016; Zhang et al., 2015). In this
chapter, we use the boosted decision forest as a strong classifier which is a convex
linear combination of a set of given weak decision trees. The final classification is
based on the weighted vote of these decision trees. Unless otherwise specified, we
train all our boosted decision forests using the following parameters. The boosted de-
cision forest consists of 4096 depth-5 decision trees, trained via the shrinkage version

54 Pushing the Limits of Deep CNNs for Pedestrian Detection

of real-Adaboost (Hastie et al., 2005). The size of detection model is set to 128× 64
pixels for Caltech and Inria, 64× 32 pixels for KITTI. One bootstrapping iteration is
implemented to collect hard negatives and re-train the model. The sliding window
stride is set to 4 pixels.

4.4 Boosted decision forests with multi-layer CFMs

In this section, we firstly introduce the general layout of VGG16 model. Then, we
show that the performance of boosted decision forests with CFMs can be significantly
improved by simply fine-tuning DCNNs with hard negative data extracted through
bootstrapping. Next, boosted decision forests are trained with different layers of
CFMs, and the resulting ensemble model is able to achieve the best reported result
on Caltech dataset.

4.4.1 Architecture of the VGG16 model

VGG16 (Simonyan and Zisserman, 2015) is one of the most commonly used deep
CNN model. In this work, VGG16 is used to extract CFMs. The input of the model
is a fixed-size 224 × 224 RGB image. The image is passed through a sequence of
13 convolutional (Conv) layers. Each Conv layer contains a predefined number of
kernels with a 3× 3 receptive field. Both the stride of convolution and the spatial
padding is set to 1 pixel. All 13 Conv layers are organized into five Conv stacks.
The first two Conv stacks have two Conv layers, respectively. Each of the succeeding
three Conv stacks contains three Conv layers. Conv layers in the same stack have
the same down-sampling ratio. Each Conv stack is followed by a max-pooling layer
which is performed over a 2× 2 pooling region with stride 2. These Conv stacks
are followed by three fully-connected (FC) layers: the first two have 4096 neurons
each, the last one contains 1000 neurons and performs 1000-way classification. The
final layer is the soft-max layer. To increase the non-linearity of the model, all Conv
layers and FC layers are equipped with the rectification (ReLU) layers. Fig. 4.1 shows
the architecture of VGG16 model. We use ConvY-x to denote a specific Conv layer,
where Y indicates the Yth Conv stack and x indicates the xth Conv layer in this stack.
FC-6, FC-7, and FC-8 are used to denote three FC layers, respectively.

4.4.2 Fine-tuning DCNNs with Bootstrapped Data

As we know, the VGG16 model was originally pre-trained on the ImageNet data
with image-level annotations and was not trained specifically for the pedestrian de-
tection task. The CCF framework of (Yang et al., 2015a) extracts CFMs from a single

§4.4 Boosted decision forests with multi-layer CFMs 55

fc
 1

0
0

0

Figure 4.1: The architecture of the VGG16 model.

convolutional layer (Conv3-3) of the pre-trained VGG16 model to train the boosted
decision forest for diverse detection tasks. To maintain a good generalization ability,
the method dose not fine-tune the VGG16 model on any domain-specific datasets. It
is expected that the detection performance of boosted decision forests trained with
CFMs ought to be improved by fine-tuning the VGG16 model with Caltech pedes-
trian data. Moreover, We extract CFMs from multiple convolutional layers to train
effective boosted decision forests. These boosted decision forests are combined into
an ensemble model which further improves the detection performance.

To adapt the pre-trained VGG16 model to the pedestrian detection task, we mod-
ify the structure of the model. We replace the 1000-way classification layer with a ran-
domly initialized binary classification layer and change the input size from 224× 224
to 128× 64 pixels. We also reduce the number of neurons in fully connected layers
from 4096 to 2048. We fine-tune all layers of this modified VGG16, except the first
4 convolutional layers since they correspond to low-level features which are largely
universal for most visual objects. The initial learning rate is set to 0.001 for convo-
lutional layers and 0.01 for fully connected layers. The learning rate is divided by
10 at every 10000 iterations. For fine-tuning, 30k positive and 90k negative examples
are collected by different approaches. The positive samples are those overlapping
with a ground-truth bounding box by [0.5, 1], and the negative samples by [0, 0.25].
At each stochastic gradient descent (SGD) iteration, we uniformly sample 32 positive
samples and 96 negative samples to construct a mini-batch of size 128.

Shallow convolutional layers of the VGG16 contain low-level features which are
precise in localization. On the contrary, deep convolutional layers contain discrimi-
native information which are good in classification. According to the evaluation of
different CFMs of the VGG16 model in (Yang et al., 2015a), we find that features of
Conv3-3 layer provide the best trade-off between the localization information and the
discriminative information. It means that these features can achieve the reasonable
detection performance and provide effective region proposals simultaneously.

56 Pushing the Limits of Deep CNNs for Pedestrian Detection

Model Fine-tuning data Shrinkage Avg. miss rate (%)

CFM3a No fine-tuning − 18.71
CFM3b Collected by ACF − 16.42
CFM3c Bootstrapping with CFM3b − 14.54
CFM3 Bootstrapping with CFM3b 0.5 13.49

Table 4.1: Performance improvements with different fine-tuning strategies and shrinkage
(on Reasonable). All boosted decision forests are trained with the CFM extracted from the
Conv3-3 layer of VGG16. CFM3a: the original VGG16 model pre-trained on ImageNet is
used to extract features. CFM3b: the VGG16 model is fine-tuned with the data collected by
an ACF (Dollár et al., 2014) detector. CFM3c and CFM3: the fine-tuning data is obtained by
bootstrapping with CFM3b. With the same fine-tuning data, setting the shrinkage parameter

of Adaboost to 0.5 brings an additional 1% reduction on the MR

We train boosted decision forests with the CFM extracted from the Conv3-3 layer
of differently fine-tuned VGG16 models and the results are shown in Table 4.1. Note
that all the VGG16 models in this table are fine-tuned from the original model pre-
trained on ImageNet data. It can be observed that the log-average miss rate is re-
duced from 18.71% to 16.42% by replacing the pre-trained VGG16 model with the
one fine-tuned on data collected by applying an ACF (Dollár et al., 2014) detector on
Caltech training dataset. The detection performance is further improved to 14.54%
MR if it is fine-tuned on the bootstrapped data using the previous trained model
CFM3b. Another 1% performance gain is obtained by applying shrinkage to the co-
efficients of weak learners, with shrinkage parameter being 0.5 (see (Paisitkriangkrai
et al., 2014b)). The last model (corresponding to row 4 in Table 4.1) is referred to as
CFM3 from now on.

4.4.3 Ensemble of Boosted Decision Forests

In the last experiment, we only use a CFM from a single layer of the VGG16 model.
In this section, we intensively explore the deep structure of the VGG16 model. We
ignore the CFMs of the first two convolutional stacks since they are universal for
most visual objects.

We train boosted decision forests with CFMs from individual convolutional layers
of the VGG16 model which is the one fine-tuned with bootstrapped data (same as
row 4 in Table 4.1). All boosted decision forests are trained with the same data
as CFM3. For models with Conv3-x features, the input image are directly applied
on the convolutional layers and resulting in a feature map with the down-sampling
ratio of 4. The corresponding boosted decision forests work as a sliding-window
detector with step-size of 4. In detection, we upsample the image by a factor of 2

§4.4 Boosted decision forests with multi-layer CFMs 57

Convolutional # Channels Down-sampling Avg. miss rate (%)
layer ratio

Conv3-1 256 4 19.15
Conv3-2 256 4 16.25

Conv3-3 (CFM3) 256 4 13.49

Conv4-1 512 8 12.95
Conv4-2 512 8 12.68

Conv4-3 (CFM4) 512 8 12.21

Conv5-1 (CFM5) 512 16 14.17
Conv5-2 512 16 14.56
Conv5-3 512 16 18.24

Table 4.2: Comparison of detection performance (on Reasonable) of boosted decision forests
trained on individual CFMs. Note that models with Conv3-x features works as sliding-
window detectors, and models with Conv4-x and Conv5-x features are applied to the pro-
posals generated by CFM3. The top performing layers in each convolutional stack are Conv3-3,
Conv4-3 and Conv5-1 respectively. The models trained with these three layers are denoted

as CFM3, CFM4, and CFM5 respectively

as in (Zhang et al., 2015) and the minimum size of the shortest image edge is 72
pixels. The number of scales per each octave is set to 8. For models with Conv4-x
and Conv5-x features, they are applied to proposals generated by CFM3 model. This
is due to the large downsampling ratio of Conv4-x and Conv5-x. If the step-size of
the sliding-window detector is too large, it will hurt the detection performance.

Table 4.2 shows the comparison of detection performance of these boosted deci-
sion forests on Caltech Reasonable setting. We can observe that the MR is relatively
high for the Conv3-1 layer and the Conv5-3 layer. We conjecture that the Conv3-1
layer provides relatively low-level features which result in an under-fitting training.
In contrast, the semantic information in the Conv5-3 layer may be too coarse to pre-
cisely localize small pedestrians. We also note that Conv5-3 layer performs much
worse than Conv5-1 layer. This may be caused by that Conv5-3 has a larger receptive
field than Conv5-1, more localization information is lost. The large receptive field of
Conv5-3 layer degrades its final detection performance. According to Table 4.2, the
best performing layer in each convolutional stack, are from inner layers of Conv3-3
(CFM3), Conv4-3 (CFM4), and Conv5-1 (CFM5) respectively. Fig. 4.2 shows the spatial
distribution of regions of different CFMs selected by boosting algorithms. Features
within the warm color area are frequently selected by above three CFM models. We
observe that most active regions correspond to the contours of human-body. The
head-shoulder area shows to be more discriminative than other body parts.

The boosted decision forests trained with CFMs of these three layers are further

58 Pushing the Limits of Deep CNNs for Pedestrian Detection

(a) conv3-3 (b) conv4-3 (c) conv5-1

Figure 4.2: The spatial distribution of regions of CFMs selected by boosting algorithms. For
a 128× 64 input image, the size of feature maps are 32× 16, 16× 8, 8× 4 respectively. Red
pixels indicate that a large number of features are selected in those regions and blue pixels
correspond to low frequency regions. The most discriminative regions correspond to the

head, shoulder, waist and feet of a human.

Rejected
negatives

VGG
Conv3-3

Boosted Forest
(CFM3)

VGG
Conv4-3

Boosted Forest
(CFM4)

Boosted Forest
(CFM5)

Final
Score

Passed
Proposals

Sliding
window

Score 2

Score 3

Score 1

Score
Averaging

Input image
VGG

Conv5-1

Score1>0?	

Figure 4.3: The framework of an ensemble of boosted decision forests with multi-layer CFMs
(CFM3+CFM4+CFM5), which obtain a 10.46% MR on the Caltech Reasonable test setting.

combined together simply through score averaging. Fig. 4.3 shows the framework
of the resulting ensemble model. Firstly, CFM3 model works as a sliding-window
detector, which rejects the majority of negative examples and pass region proposals to
CFM4 and CFM5. Both CFM4 and CFM5 generate the confidence score for each incoming
proposal. The CFM3 features are reused in the computation of CFM4 and CFM5 features.
A subregion of CFM3 feature map is cropped and fed into the 4/5-th convolutional
layers of the VGG16 model to compute CFM4 and CFM5 features. The final score
is computed by averaging over the scores output by these three boosted decision
forests. This model delivers the best reported log-average miss rate (10.46%) on Caltech
Reasonable setting without using any sophisticatedly designed algorithms.

§4.5 Pixel labelling improves pedestrian detection 59

Model combination Avg. miss rate (%)

CFM3+CFM4 10.68

CFM3+CFM5 10.88

CFM3+CFM4+CFM5 10.46

CFM3+CFM4+CFM5+DCNN 10.07

Table 4.3: The comparison of performance (on Reasonable) of different ensemble models.
DCNN: the entire VGG16 model fine-tuned by data collected by CFM3. The combination of
multi-layer CFM models improves the detection performance of single-layer CFM models

significantly (3%)

We also evaluate other combinations of the ensemble models. Furthermore, a
VGG16 model is fine-tuned with another round of bootstrapping (using CFM3) and
its final output is also combined to improve the detection performance. The corre-
sponding results can be found in Table 4.3. We can see that combining two layers
already beats all existing approaches on Caltech, and adding the entire large VGG16
model also gives a small improvement.

4.5 Pixel labelling improves pedestrian detection

In this section, the sliding-window based detectors are enhanced by semantic pixel
labelling. By incorporating DCNNs, the performance of pixel labelling (semantic im-
age segmentation) methods have been recently improved significantly (Long et al.,
2015; Chen et al., 2015a; Hariharan et al., 2015; Zheng et al., 2015; Lin et al., 2015a). In
general, we argue that pixel labelling models encode information complementary to
the sliding-window based detectors. Empirically, we show that consistent improve-
ments are achieved over different types of detectors.

The segmentation method proposed in (Chen et al., 2015a) is used here for pixel
labelling, in which a DCNN model (VGG16) is trained on the Cityscapes dataset (Cordts
et al., 2015). The prediction map is refined by a fully-connected conditional random
field (CRF) (Krähenbühl and Koltun, 2011) with DCNN responses as unary terms.
The Cityscapes dataset that we use for training is similar to the KITTI dataset which
contains dense pixel annotations of 19 semantic classes such as road, building, car,
pedestrian, sky, etc. Note that our models that exploiting pixel labelling have used
extra data for training on top of the Caltech dataset. However, most deep learning
based methods (Cai et al., 2015; Tian et al., 2015) have used extra data, at least the
ImageNet dataset for pre-training the deep model. Pedestrian detection may benefit
from the semantic pixel labelling in the following aspects:

60 Pushing the Limits of Deep CNNs for Pedestrian Detection

DCNN + CRF
(Pixel
Labeling)

Detector	

Weighted sum Aggregating

Proposals
Score

Final
Score

Score Map Input image

Figure 4.4: The framework for pedestrian detection with pixel-labelling. The region pro-
posals and pixel-level score maps are obtained by individually applying the sliding-window
detector and the pixel labelling model. Next, the weighted sum of pixel scores within a

proposal region is aggregated with the detector score of the same proposal region.

− Multi-class information: Learning from multiple classes, in contrast to the object
detectors typically trained with two-class data, the pixel labelling model carries richer
object-level information.

− Long-range context: Using CRFs (especially fully-connected CRFs) as post-processing
procedure, many models (for example, (Chen et al., 2015a; Lin et al., 2015a; Zheng
et al., 2015)) have the ability to capture long-range context information. In contrast,
sliding-window detectors only extract features from fixed-sized bounding boxes.

− Object parts: The trained pixel labelling model may cater for more fine-grained
details, such that they are more insensitive to deformation and occlusion to some
extent.

However, it is not straightforward to apply pixel labelling models to pedestrian
detection problems. One of the main impediments is that it is difficult to estimate
the object bounding boxes from the pixel score map, especially for people in crowds.

To this end, we propose to bring the pedestrian detector and pixel labelling model
together. In our framework (see Fig. 4.4), a sliding-window detector is responsible for
providing region proposals and a pixel labelling model is applied to the input image
to generate a score map for the “person” class. Next, a spatially weighted mask M is
applied to the proposal region x of the “person” score map to generate the weighted
sum of pixel scores. The weighted sum of the kth region proposal, denoted as Sk,
can be calculated by the following equation:

Sk =
H×W

∑
i

mixk
i (4.1)

§4.5 Pixel labelling improves pedestrian detection 61

Method Avg. miss rate (%) Improve. (%)

ACF (Dollár et al., 2014) 22.23
4.50

ACF+Pixel label. 17.73

Checkerboards (Zhang et al., 2015) 18.25
3.61

Checkerboards+Pixel label. 14.64

CFM3 (ours) 13.49
1.91

CFM3+Pixel label. 11.58

Table 4.4: Performance improvements by aggregating pixel labelling models with sliding-
window detectors (on Reasonable). All the three detectors achieve performance gains, which
shows that pixel labelling can be used to help detection. Note that the performance of our
model ‘CFM3 with Pixel labelling’ already outperforms the previously best reported result of

(Cai et al., 2015)

where H and W denote the height and width of the mask M, xk
i denotes the ith local

value of the kth region proposal on the “person” score map, and mi is the corre-
sponding coefficient on the mask. Note that the dimension of each cropped proposal
region x need to be resized to match the dimension of the mask M. Finally, the
weighted sum and the detector score for the same proposal are aggregated together
as the final score.

To learn the spatially weighted mask, the pixel labelling model is firstly applied
to all training images to generate the “person” score maps. Then, ground truth
regions are cropped from these score maps and all cropped patches are resized to
the dimension of the detection model without padding area (e.g. 100× 41 pixels for
Caltech). The mask is learned by averaging these cropped patches.

Note that, there are more sophisticated methods for exploiting the labelling scores.
For example, one can use the pixel labelling scores as the image features, similar to
‘object bank’ (Li et al., 2014b), and train a linear model. In this work, we show that
even simply weighted sum of the pixel scores considerably improves the results.

Table 4.4 shows the detection performance of different sliding-window detectors
enhanced by pixel labelling. Boosted decision forests are trained here with three
types of features, which are ACF (Dollár et al., 2014), checkerboards features (Zhang
et al., 2015) and the CFM from the Conv3-3 layer of VGG16 model (CFM3). We can see
that the performances of all the three detectors are improved by aggregating pixel
labelling models. Fig. 4.5 presents some region proposals on the original images and
the corresponding pixel score maps. Some of false proposals generated by pedestrian
detectors (CFM3) can be eliminated by considering the context of a larger region (the
largest bounding box in the first column in Fig. 4.5). Some occluded pedestrians have
responses on the pixel score map (the rightmost bounding box in the last column in

62 Pushing the Limits of Deep CNNs for Pedestrian Detection
(a

)
p
ro

p
o
sa

ls
 b

y
 d

e
te

ct
o
r

(b
)

p
ix

e
l
sc

o
re

 m
a
p

Figure 4.5: Examples of some region proposals on the original images and the correspond-
ing pixel score maps. A strong complementary relationship can be found in the generated

proposals and the pixel score maps.

Fig. 4.5). This clearly illustrates why this combination works.

4.6 Overview of the proposed framework

Fig. 4.6 shows an overview of the proposed pedestrian detection framework. The
framework consists of two components: a pedestrian detector and a semantic pixel
labelling model. Our pedestrian detector is an ensemble detection model which
takes as input an image and outputs a number of proposals with detection scores.
The pixel labelling model takes as input an image and proposals within the image. It
generates the weighted sum of pixel scores for each proposal. Finally, the confidence
score of one proposal is computed by averaging outputs of multiple components.
To accelerate the detection speed, the CFM3 detection model can be replaced by a
light-weight proposal method, which is described in section 4.7.4.

4.7 Fusing models and evaluations

In this section, we integrate all individual components into a combined model and
evaluate the performance of the model.

4.7.1 Using complementary hand-crafted features

The detection performance of the CFM3 model is critical in the proposed ensemble
model, since later components often rely on the detection results of this model. In
order to enhance the detection performance of the CFM3 model, we make two vari-

§4.7 Fusing models and evaluations 63

Input
image

Weighted
mask

CFM3
detection

model

Pixel
labelling
model

'Person'
score map

Scores
averaging

Final detection
proposals with

aggregated scores

Proposals
with CFM3

scores

Weighted sum
of pixel scores

for each proposal

CFM4
model

CFM5
model

DCNN
model

Region
proposals

Pedestrian detector

Segmantic pixel labelling

Figure 4.6: Overview of our pedestrian detection framework. The framework consists of one
pedestrian detector and one pixel labelling model. The final confidence score of one proposal

is computed by averaging outputs of multiple components.

Method Avg. miss rate (%)

CFM3 only 13.49

CFM3+ACF 12.38

CFM3+ACF+Flow 11.11

(CFM3+ACF)+CFM4+CFM5+DCNN 9.37

(CFM3+ACF+Flow)+CFM4+CFM5+DCNN 9.32

Table 4.5: Comparison of detection results of different variants of the CFM3 detector (on
Reasonable). The convolutional features of the Conv3-3 layer are combined with different
types of hand-crafted features, and used to train a boosted decision forest. Both the perfor-
mance of the variants and the ensemble models is improved with these additional features.
Flow: optical flow features. DCNN: the entire VGG16 model fine-tuned by data collected by

CFM3

ants of it by combining two hand-crafted features: the ACF and optical flow. We
augment the CFM3 features with the ACF and optical flow features to train an ensem-
ble of boosted decision forests. ACF and optical flow features are directly concate-
nated with the CFM3 features. Optical flow features are extracted the same way as in
(Paisitkriangkrai et al., 2016).

Table 4.5 shows the detection results of different variants of CFM3 model. With
adding the ACF features, the MR of CFM3 detector is reduce by 1.11%. With the extra
optical flow features, the MR is further reduced to 11.11%. These experimental results
demonstrate that hand-crafted features carry complementary information which can
further improve the DCNN convolutional features. Fig. 4.7 shows the visualization
of some intermediate features. We can observe that the ACF features may be viewed

64 Pushing the Limits of Deep CNNs for Pedestrian Detection

Image Conv1-2 Conv2-2 Conv3-3 Conv4-3 Conv5-1 ACF Flow

Figure 4.7: Visualization of some intermediate features.

§4.7 Fusing models and evaluations 65

Ground truth CFM3 CFM3+ACF CFM3+ACF+Flow

Figure 4.8: Visualization of detection results of different variants of the CFM3 detector. Yellow
bounding boxes are ground truth, green bounding boxes are true positives, and red bounding

boxes are false positives.

as lower-level features, compared with the middle-level features in CFM3. The optical
flow clearly encodes motion information which is not in CFM3 features. By adding the
other components of the proposed ensemble model, our detector can achieve 9.32%
MR. The MR is slightly increased to 9.37% by removing motion information. Fig. 4.8
shows the visualization of detection results of different variants of the CFM3 detector.
By involving these hand-crafted features, more hard false positives can be eliminated
by the proposed detector.

66 Pushing the Limits of Deep CNNs for Pedestrian Detection

Method Avg. miss rate (%)

CFM3+Pixel label. 11.58

CFM3+CFM4+CFM5+Pixel label. 9.94

CFM3+CFM4+CFM5+DCNN+Pixel label. 9.53

(CFM3+ACF)+CFM4+CFM5+
9.06

DCNN+Pixel label.

(CFM3+ACF+Flow)+CFM4+CFM5+
8.93

DCNN+Pixel label. (All-in-one)

Table 4.6: Comparison of detection performance (on Reasonable) of different ensemble mod-
els with pixel labelling. DCNN: the entire VGG16 model fine-tuned by hard negative data
collected by CFM3; Pixel label.: pixel labelling model; Flow: optical flow. The pixel labelling
model consistently improves all the considered models in this table. The All-in-one model

set a new record on the Caltech pedestrian benchmark

4.7.2 Pixel labelling

As shown in Section 4.5, the pixel labelling model is also complementary to convo-
lutional features. Table 4.6 shows the detection performance of different ensemble
models enhanced by pixel labelling model. The best result is achieved by combin-
ing the most number of different types of models (which is referred to as All-in-one),
which reduces the MR on the Caltech Reasonable setting from the previous best 11.7%
to 8.9%. Note that the combination rule used by our methods is simple, which im-
plies a potential for further improvement.

4.7.3 Ablation studies

We investigate the overall pipeline of the All-in-one model by adding each compo-
nent step by step, which is shown in Table 4.7. As the start point, the CFM3a model
with the original VGG16 model pre-trained on ImageNet data achieves a miss rate of
18.71%. A 5.22% performance gain can be obtained by fine-tuning the VGG16 model
with bootstrapped data. The detection results can be improved to 10.46% (better
than all previous methods) by adding CFM4 and CFM5 models to construct an ensem-
ble model. We obtain 0.39% performance improvement if we use the entire VGG16
model (fine-tuned by bootstrapped data with CFM3) as a component of our ensemble
model. Combining the pixel labelling information to detected bounding boxes can
further reduce the MR by 0.54%. By replacing the CFM3 model to CFM3+ACF+Flow
model, the MR of our ensemble model can eventually achieve 8.93% on the Caltech
Reasonable test setting.

§4.7 Fusing models and evaluations 67

Model
CFM3a CFM3 CFM3+CFM4 CFM3+CFM4

+CFM5

Pipeline CFM3a fine-tuning Add CFM4 Add CFM5

Miss rate (%) 18.71 13.49 10.68 10.46

Improve. (%) − +5.22 +2.81 +0.22

CFM3+CFM4 CFM3+CFM4+CFM5 All-in-one
+CFM5+DCNN +DCNN+Label.

Add DCNN Add Pixel Label. Use (CFM3+ACF+Flow)

10.07 9.53 8.93

+0.39 +0.54 +0.6

Table 4.7: Ablation studies of the All-in-one model on the Caltech Reasonable test setting

4.7.4 Fast ensemble models

In this section, we investigate the speed issue of the proposed detector. Our All-
in-one model takes about 8s for processing one 640× 480 image on a workstation
with one octa-core Intel Xeon 2.30GHz processor and one Nvidia Tesla K40c GPU.
Most of time (about 7s) is spent on the extraction of the CFMs on a multi-scale image
pyramid. The remaining components of the ensemble model take less than 1s to
process the passed region proposals. The pixel labelling model only uses about 0.25s
to process one image since it only need to be applied to one scale. It can be easily
observed that the current bottleneck of the proposed detector is the CFM3 which is
used to extract region proposals with associated detection scores. The speed of our
detector can be accelerated using a light-weight proposal method at the start of the
pipeline in Fig. 4.3.

We use two pedestrian detectors ACF (Dollár et al., 2014) and checkerboards (Zhang
et al., 2015) as the proposal methods. Our ACF detector consists of 4096 depth-4 de-
cision trees, trained via real-Adaboost. The model has size 128× 64 pixels, and is
trained via four rounds of bootstrapping. The sliding window stride is 4 pixels.
The checkerboards detector is trained using almost identical parameters as for ACF.
The only difference is that the feature channels are the results of convolving the ACF
channels with a set of checkerboards filters. In our implementation, we adopt a set of
12 binary 2× 2 filters to generate checkerboards feature channels. To limit the num-
ber of region proposals, we set a threshold of the above two detectors to generate
about 20 proposals per image in average.

Table 4.8 shows the detection performance of the original ensemble model and

68 Pushing the Limits of Deep CNNs for Pedestrian Detection

Method Avg. miss rate (%) runtime (s)

CFM3 (proposals)+CFM4+
9.53 8.0

CFM5+DCNN+Pixel label.

ACF (proposals)+CFM3+CFM4+
12.20 0.85

CFM5+DCNN+Pixel label.

Checkerboards (proposals)+CFM3+
10.65 1.25

CFM4+CFM5+DCNN+Pixel label.

Table 4.8: Comparison of detection performance (on Reasonable) between the original ensem-
ble model and fast ensemble models

fast ensemble models on Caltech Reasonable test setting. We can observe that the
quality of proposals are enhanced by a large margin using both ensemble models
and the pixel labelling model. The best result of fast ensemble models is achieved by
using proposals generated by the checkerboards detector. This method uses the data
collected by checkerboards detector as the initial fine-tuning data. With a negotiable
performance loss (e.g., 1.12%), it’s about 6 times faster than the original method.
Note that the fast ensemble model (with checkerboards proposals) also achieves the
state-of-the-art results.

4.7.5 Comparison to state-of-the-art approaches

In this section, we demonstrate the effectiveness and robustness of the proposed
model in three dominant datasets: Caltech, Inria, and KITTI.

4.7.5.1 Caltech

We compare the detection performance of our models with existing state-of-the-
art approaches on the Caltech dataset. Table 4.9 and Fig. 4.9 compares our mod-
els with a wide range of detectors, including boosted decision forests trained on
hand-crafted features, RCNN-based methods and the state-of-the-art methods on the
Caltech Reasonable test setting. The performance of the first two types are quite
close to each other. Using only one single layer of convolutional feature map, our
CFM3 model has outperformed all other methods except the two sophisticated meth-
ods (Tian et al., 2015; Cai et al., 2015). Note that the RCNN based methods are based
on larger models than CFM3. As feature representation, the CFM from the Conv3-3
layer of our fine-tuned model significantly outperforms all other hand-crafted fea-
tures. The CFM3+Pixel labelling model already outperforms the state-of-the-art per-
formance achieved by sophisticated methods (Tian et al., 2015; Cai et al., 2015). Our

§4.7 Fusing models and evaluations 69

Type Method Miss Rate (%)

Hand-crafted Features SpatialPooling (Paisitkriangkrai et al., 2014b) 29.24
SpatialPooling+ (Paisitkriangkrai et al., 2016)† 21.89
LDCF (Nam et al., 2014) 24.80
Checkerboards (Zhang et al., 2015) 18.47
Checkerboards+ (Zhang et al., 2015)† 17.10

RCNN based AlexNet (Hosang et al., 2015) 23.32
GoogLeNet (Tian et al., 2015) 16.43

State-of-the-arts DeepParts (Tian et al., 2015) 11.89
CompACT-Deep (Cai et al., 2015) 11.75

Ours CFM3 13.49
CFM3+Label. 11.58
CFM3+CFM4+CFM5 10.46
CFM3+CFM4+CFM5+DCNN+Label. 9.53
All-in-one† 8.93

Table 4.9: Detection performance of different types of detectors on the Caltech Reasonable
test setting. Three types of approaches are compared in this table, including boosted de-
cision trees trained on hand-crafted features, RCNN-based methods and the state-of-the-art
sophisticated methods. All of our models outperform the first three types of models, and our
All-in-one set a new recorded MR on Caltech pedestrian benchmark. † indicates the methods

trained with optical flow features

10−3 10−2 10−1 100 101

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

94.73% VJ
68.46% HOG
29.24% SpatialPooling
24.80% LDCF
21.89% SpatialPooling+
18.71% CCF
17.32% CCF+CF
17.10% Checkerboards+
11.89% DeepParts
11.75% CompACT−Deep
11.58% Ours(CFM3+Label.)
10.65% Ours(CB−proposals+CFMs)
10.46% Ours(CFM3+CFM4+CFM5)
8.93% Ours(All−in−one)

Figure 4.9: Comparison to state-of-the-art approaches on the Caltech Reasonable test setting.

70 Pushing the Limits of Deep CNNs for Pedestrian Detection

(a) Overall (b) Medium scale

(c) Partial occlusion (d) Near scale

10−3 10−2 10−1 100 101

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

98.67% VJ
84.47% HOG
52.52% SpatialPooling
43.19% LDCF
40.57% CCF
39.25% SpatialPooling+
37.69% CCF+CF
31.31% Checkerboards+
30.45% Ours(CFM3+Label.)
29.91% Ours(CFM3+CFM4+CFM5)
25.14% CompACT−Deep
25.09% Ours(All−in−one)
23.98% Ours(CB−proposals+CFMs)
19.93% DeepParts

10−3 10−2 10−1 100 101

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

99.53% VJ
90.36% HOG
74.04% SpatialPooling
71.25% LDCF
71.11% SpatialPooling+
68.60% CCF+CF
67.70% Checkerboards+
66.73% CCF
64.78% DeepParts
64.44% CompACT−Deep
64.13% Ours(CFM3+Label.)
63.48% Ours(CB−proposals+CFMs)
63.41% Ours(CFM3+CFM4+CFM5)
62.49% Ours(All−in−one)

10−3 10−2 10−1 100 101

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

99.38% VJ
87.39% HOG
65.49% SpatialPooling
63.38% SpatialPooling+
61.82% LDCF
59.56% CCF+CF
57.96% Checkerboards+
56.42% DeepParts
56.29% CCF
54.94% Ours(CFM3+Label.)
53.56% Ours(CB−proposals+CFMs)
53.54% Ours(CFM3+CFM4+CFM5)
53.23% CompACT−Deep
52.40% Ours(All−in−one)

10−3 10−2 10−1 100 101

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

89.85% VJ
44.04% HOG
14.32% SpatialPooling
10.46% LDCF
7.98% SpatialPooling+
5.50% CCF+CF
4.89% Checkerboards+
4.78% DeepParts
4.68% CCF
3.99% CompACT−Deep
2.97% Ours(CB−proposals+CFMs)
2.92% Ours(CFM3+Label.)
2.16% Ours(CFM3+CFM4+CFM5)
1.42% Ours(All−in−one)

Figure 4.10: Comparison to state-of-the-art approaches on various Caltech test settings.

CFM3+CFM4+CFM5 model performs even better. Without using hand-crafted features,
our model can achieve 9.53% MR. The best result is achieved by the All-in-one model
which combines a number of hand-crafted features and CFM models.

Fig. 4.10 shows a more complete evaluation of the proposed detection frame-
work on various Caltech test settings, including Overall, Near scale, Medium scale,
Partial occlusion. We can observe that our ensemble models achieve the best results
on most test settings (including Reasonable). On the Partial occlusion test setting, our
models are only outperformed by DeepParts which is specifically trained for han-
dling occlusions.

§4.7 Fusing models and evaluations 71

10−3 10−2 10−1 100 101

.05

.10

.20

.30

.40

.50

.64

.80

1

false positives per image

m
is

s
ra

te

72.48% VJ
45.98% HOG
15.96% VeryFast
15.95% WordChannels
14.43% InformedHaar
13.79% LDCF
13.53% Roerei
13.32% SketchTokens
11.22% SpatialPooling
8.63% Ours(Fast−CFMs)

Figure 4.11: Comparison to state-of-the-art approaches on the Inria positive test set.

4.7.5.2 Inria

Fig. 4.11 represents the detection results on the Inria dataset. In our experiments,
we only apply the fast ensemble model without using the pixel labelling method.
Since our pixel labelling model is trained on the Cityscapes dataset which has totally
different scenes from the Inria dataset, the improvement of pixel labelling is limited
for this dataset. It can be observed that our method achieves the lowest MR of 8.63%
outperforming all previously-reported results.

4.7.5.3 KITTI

Table 4.10 shows the detection results on the KITTI dataset. Since images of KITTI
are larger than in Caltech, the feature extraction of CFM3 model is time-consuming.
In our experiments, only the fast ensemble model with Checkerboards proposals is
used for testing on KITTI. Our model achieves competitive results, 74.22%, 63.26%,
and 56.44% AP on Easy, Moderate, and Hard subsets respectively. Fig. 4.12 presents
the comparison of detection performance on the KITTI Moderate test subset. It can
be observed that the proposed detector outperforms all published monocular-based
methods. Note that the 3DOP (Chen et al., 2015b) is based on stereo images. The
proposed ensemble model is the best-performing detector based on DCNN, and sur-

72 Pushing the Limits of Deep CNNs for Pedestrian Detection

Method Moderate(%) Easy(%) Hard(%)

3DOP∗ (Chen et al., 2015b) 67.47 81.78 64.70
Fast-CFMs (Ours) 63.26 74.22 56.44

Reionlets (Wang et al., 2013b) 61.15 73.14 55.21
CompACT-Deep (Cai et al., 2015) 58.74 70.69 52.71

DeepParts (Tian et al., 2015) 58.67 70.49 52.78
FilteredICF (Zhang et al., 2015) 56.75 67.65 51.12

pAUCEnsT (Paisitkriangkrai et al., 2016) 54.49 65.26 48.60
R-CNN (Hosang et al., 2015) 50.13 61.61 44.79

Table 4.10: Detection results (AP) on three KITTI test subsets. Note: ∗ indicates the methods
trained with stereo images

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Recall

P
re

ci
si

on

KITTI Pedestrian (moderate)

3DOP 67.47%
Fast−CFMs 63.26%
Regionlets 61.15%
CompACT−Deep 58.74%
DeepParts 58.67%
FilteredICF 56.75%
pAUCEnsT 54.49
R−CNN 50.13%

Figure 4.12: Comparison to state-of-the-art approaches on the KITTI Moderate test set.

passes CompACT-Deep (Cai et al., 2015) and DeepParts (Tian et al., 2015) by 4.52%
and 4.59% respectively.

§4.8 Conclusion 73

4.8 Conclusion

In this chapter, we have built a simple-yet-powerful pedestrian detector, which re-
uses inner layers of convolutional features extracted by a properly fine-tuned VGG16
model. This ‘vanilla’ model has already achieved the best reported results on the
Caltech dataset, using the same training data as previous DCNN approaches. With
a few simple modifications, its variants have achieved even more significant results.

We have presented extensive and systematic empirical evaluations on the effec-
tiveness of DCNN features for pedestrian detection. We show that it is possible to
build the best pedestrian detector, yet avoiding complex custom designs. We also
show that a pixel labelling model can be used to improve performance by simply
incorporating the labelling scores with the detection scores of a standard pedestrian
detector. Note that simple combination rules are used here, which leaves potentials
for further improvement. For example the ROI pooling for further speed and perfor-
mance improvement.

74 Pushing the Limits of Deep CNNs for Pedestrian Detection

Chapter 5

Deep CNNs with Spatially
Weighted Pooling for Fine-Grained
Car Recognition

5.1 Introduction

Fine-grained object recognition, exemplified by fine-grained car recognition, has at-
tracted much attention recently. Many works and datasets have been proposed in
this research field (Krause et al., 2015; Lin et al., 2015c; Krause et al., 2013; Yang
et al., 2015b). Compared to other objects, cars have some unique properties, which
provides a range of challenging research topics in object recognition. The enormous
number of car models makes car a rich object class. Moreover, cars have a large
intra-class variation due to unconstrained poses and multiple viewpoints. Cars also
have a unique hierarchical structure, which contains three levels from top to bottom:
car make, car model, and year of manufacture. This structure presents a direction
to address the fine-grained car recognition in a hierarchical way which targets at
recognizing the identity of a car, such as car make, car model, even the year of man-
ufacture. In contrast to generic object classification (Felzenszwalb et al., 2010; Wang
et al., 2013b; Hu et al., 2016), the fine-grained car classification aims to distinguish
subcategories within the same car category. Car model classification is a intra-class
classification task which is made difficult by the small visual differences between sub-
categories, unconstrained poses, different illuminations, and cluttered backgrounds.
In this chapter, we mainly focus on the car model classification.

A common approach for fine-grained classification tasks is the parts-based pool-
ing strategy (Zhang et al., 2012). In this approach, various discriminative parts of
the object are firstly localized, each corresponding to a human-specified object part.
Then local features falling into each part are pooled together to obtain a pooled fea-

75

76 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

ture vector used for classification. Those parts are often defined manually based
on domain-specific knowledge and part-based detectors are trained in a supervised
method. However, there is usually no human-specified parts annotation in many
fine-grained classification tasks. Annotating parts is significantly more challenging
than collecting image labels. Furthermore, these human-specified parts may not be
optimal for the specific task. Another line of research focuses on the robust feature
representation of images, such as the VLAD (Jégou et al., 2010), Fisher vector (Per-
ronnin et al., 2010) with SIFT features (Lowe, 1999). Recently, deep convolutional
neural networks (DCNNs) have been shown to significantly outperform comparable
methods on a wide variety of vision problems (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2015; He et al., 2016). By replacing the SIFT with features extracted
from convolutional layers of a DCNN pre-trained on ImageNet (Deng et al., 2009),
the fisher vector with DCNN features (Cimpoi et al., 2015) achieve state-of-the-art
results on a number of classification tasks.

Although DCNNs achieve good results in generic object classification, their per-
formances are still below the aforementioned methods in fine-grained classifica-
tion tasks. These DCNNs under-perform mainly because their architectures are not
optimal for fine-grained objects, especially when objects are small and appear in
clutter. A breakthrough was made recently by a cross-convolutional-layer pooling
method (Liu et al., 2015). This method extracts subarrarys of convolutional feature
maps (CFMs) of a convolutional layer as local features and uses the CFMs of the
successive convolutional layer as pooling channels. Then, the extracted features are
pooled with these pooling channels to generate more robust image representations.
This method achieves the state-of-the-art results on several popular visual classifica-
tion tasks. Later, a bilinear CNN framework (Lin et al., 2015c) has been proposed
for the fine-grained visual recognition. This framework consists of two feature ex-
tractors based on DCNNs, one is used for extracting features and the other is used
for generating pooling channels. The outputs of these two DCNNs are multiplied
using outer product at each location of the image and pooled to obtain an image
descriptor. The bilinear framework can capture pairwise correlations between CFMs
of different DCNNs in a translationally invariant manner which is particularly useful
for the fine-grained object classification.

We propose a spatially weighted pooling (swp) strategy which considerably en-
hances the robustness and effectiveness of the feature representation of most dom-
inant DCNNs for the fine-grained car classification. More specifically, the swp is
a novel pooling layer which contains a predefined number of spatially weighted
masks or pooling channels. The swp pools the extracted features of DCNNs with the
guidance of its learnt masks. In addition, the swp layer is compatible with most DC-

§5.2 Background 77

NNs, such as AlexNet (Krizhevsky et al., 2012), VGGNets (Simonyan and Zisserman,
2015), and ResNets (He et al., 2016). A swp layer can be embedded into those DCNNs
with slight modifications. The proposed method also addresses several drawbacks of
aforementioned approaches. Firstly, the parameters of the swp layer can be learned
in the end-to-end training process of the DCNN. Moreover, the extracted features
and the learnt masks are provided from the same DCNN, which is simpler than the
bilinear CNN framework.

Experiments are conducted on four fine-grained car datasets. The experimental
results show that the swp method can improve the accuracies of fine-grained car clas-
sification considerably over the baselines. For example, the VGG16 and ResNet101
achieve 85.4% and 90.9% accuracy on the Cars-196 dataset respectively. The pro-
posed method improves the performance to 90.7% and 93.1%, respectively. More
importantly, the ResNet101 with the swp layer outperforms other state-of-the-art ap-
proaches and achieves the best reported results on the Cars-196 dataset and Comp-
Cars dataset.

5.2 Background

Many existing approaches focus on the car model classification which aims to classify
the model type of car objects. These approaches can be divided into three categories:
texture feature-based approaches, 3D representation-based approaches and DCNN-
based approaches.

The texture feature-based approaches are designed for traffic monitoring using
fixed surveillance cameras. These approaches are limited to the fine-grained clas-
sification of frontal car images. He et al. (He et al., 2015a) propose a framework to
correctly detect license plates, headlamps and entire car objects. Features of each
component are extracted, normalized, and classified using an ensemble classifier.
Liao et al. (Liao et al., 2015) propose a DPM-based method for car parts localization
and classification. This method uses supervised DPM to categorize frontal car im-
ages and integrates discriminative powers of different parts into the classification.
Based on the speeded-up robust features (SURF), Hsieh et al. (Liao et al., 2015) de-
velop a new symmetrical SURF descriptor to enhance the discriminative power of
SURF to detect and segment frontal car images into several grids for the fine-grained
classification.

3D representation-based approaches are able to handle car images with uncon-
strained poses and multiple viewpoints. Krause et al. (Krause et al., 2013) propose to
extract 3D car representations to train geometry classifiers which outperform their
corresponding 2D counterparts and state-of-the-arts in the fine-grained categoriza-

78 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

tion. Gu et al. (Gu and Lee, 2013) introduce an effective pose and center estimation
approach to initialize the active shape model which is used to deal with pose varia-
tion and normalization. Lin et al. (Lin et al., 2014) propose to optimize the 3D active
shape model and the fine-grained classification jointly. 3D model fitting is used to
obtain positions of landmarks. Hsiao et al. (Hsiao et al., 2014) propose an approach
which constructs 3D space curves by back-projecting image curves onto silhouette-
based visual hulls. Then, refining them using three-view based alignment technique.
BoxCars (Sochor et al., 2016) propose to use the automatically calibrated camera to
extract 3D information for improving the recognition system.

Recently, deep convolutional neural networks achieve impressive results at a
range of image classification tasks. DCNN-based approaches use dominant DC-
NNs as the main framework for the fine-grained classification. Yang et al. (Yang
et al., 2015b) directly apply several DCNN baselines to the car model classification
and achieve comparable results with state-of-the-art methods. Krause et al. (Krause
et al., 2015) propose to use co-segmentation and alignment in combination with
R-CNN (Girshick et al., 2014a) to generate parts annotations which are useful for
fine-grained classification tasks. Liu et al. (Liu et al., 2015) propose to use the sub-
arrays of convolutional layer activations as local features and pool extracted local
features by using convolutional feature maps from two successive convolutional lay-
ers. Lin et al. (Lin et al., 2015c) propose a bilinear CNN framework that consists of
two DCNNs whose convolutional feature maps are multiplied using outer product
at each location of the image and pooled to obtain an image descriptor.

5.3 Properties of fine-grained car datasets

Existing fine-grained car recognition datasets (Krause et al., 2013; Yang et al., 2015b;
Lin et al., 2014) generally fall into one of three categories, namely, web-image datasets,
surveillance-image datasets, and hybrid datasets. The web-image dataset collected
car images from public websites and search engines. These images contain a variety
of car models with unconstrained poses. Fig. 5.1 (left block) shows some examples
of web images. Note that cars have large appearance variations due to the uncon-
strained poses and multiple viewpoints. The surveillance-image dataset collected
car images from videos taken by fixed surveillance cameras on various traffic scenes.
Fig. 5.1 (right block) illustrates some examples of surveillance images, which are cap-
tured by cameras from the front view. Hybrid datasets are a combination of those
web images and surveillance images.

The fine-grained car datasets own a unique structure. Car objects can be orga-
nized into a hierarchical structure. This structure consists of three levels, namely

§5.3 Properties of fine-grained car datasets 79

Figure 5.1: Example images from the web-image dataset (left block). These images have
large appearance variations due to the unconstrained poses and multiple viewpoints.Toyota
Camry Example images from the surveillance-image dataset (right block). These frontal car

images are captured by fixed surveillance cameras from the front view.

car make, car model, and the year of manufacture, from top to bottom as illustrated
on Fig. 5.2. The fine-grained car classification can be implemented in a hierarchical
way. Following the evaluation protocol in (Krause et al., 2013; Yang et al., 2015b),
we mainly focus on the car model classification in this chapter. The complexity of
the classification task can be further increased by the fact that there are small visual
differences between car models of the same series produced at adjacent years. For in-
stance, four versions of Toyota Camry were produced from 2008 to 2011, respectively.
However, they share very similar appearance design.

Two dominant datasets are used to evaluate our method in this chapter, Cars-
196 (Krause et al., 2013) and CompCars (Yang et al., 2015b). The Cars-196 dataset
contains 16,185 images of 196 car models. Car images are captured from multiple
viewpoints in different scenes. The CompCars dataset contains 52,083 images of 431
car models. Car images are captured from multiple viewpoints in various scenes.

In addition to existing datasets, we collected two challenging fine-grained car
datasets: CarFlag-563 and CarFlag-1532. The CarFlag-563 is a large-scale surveillance-
image dataset which consists of 113,867 frontal car images captured by fixed surveil-
lance cameras on various traffic scenes. The CarFlag-563 contains 100 car makes
with 563 car models, and 1152 subcategories on the level of year of manufacture. The
CarFlag-1532 is a large-scale web-image dataset which contains 165 car makes with
1532 car models. It contains a total of 156,098 car images with unconstrained poses.
The CarFlag-1532 is more challenging due to the large number of car objects and the
rich diversity of car models. Table 5.1 provides a summary of existing fine-grained
car datasets.

80 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

Car
Dataset

Toyota Honda

Camry Corolla Pardo

2010 2011 2012

...

...

...

Make

Model

Year

Figure 5.2: The structure of the car model hierarchy. Several car models of Toyota Camry
produced in different years are also displayed.

Images Structures Properties

#
tr

ai
ni

ng
im

ag
es

#
te

st
im

ag
es

#
ca

r
m

ak
es

#
ca

r
m

od
el

s

#
ye

ar
of

pr
od

.

w
eb

-i
m

ag
e

su
rv

ei
lla

nc
e

fr
on

ta
lv

ie
w

m
ul

ti
-v

ie
w

s

Cars-196 (Krause et al., 2013) 8,144 8,041 - 196 - X X
CompCars (Yang et al., 2015b) 36,456 15,627 75 431 1631 X X X X
CarFlag-563 80,210 33,657 100 563 1152 X X
CarFlag-1532 109,938 46,160 165 1532 5320 X X

Table 5.1: Comparison of existing fine-grained car datasets. The first two columns indicate the
amount of training/test data in each dataset. Note that both the CarFlag-563 and CarFlag-
1532 datasets are larger than other existing datasets. The middle three columns present
the diversity of each dataset. The next four columns provide additional properties of each

dataset.

5.4 Proposed approach

Traditional pooling methods aim to reduce the spatial size of convolutional feature
maps and discard irrelevant details over the pooling region. In this section, we pro-
pose an alternative pooling strategy which can significantly improve the performance
of the fine-grained car classification.

§5.4 Proposed approach 81

Figure 5.3: Overview of the proposed method. The convolutional feature maps are generated
by the last convolutional layer of a pre-trained deep CNN model. The swp layer contains a
predefined number of spatially weighted masks and pools the extracted feature maps with
the guidance of learnt masks. The image representation is the concatenation of pooled fea-

tures from multiple pooling channels.

5.4.1 Spatially weighted pooling

After extracting convolutional feature maps (CFMs) from a convolutional layer of a
DCNN, one can directly perform max-pooling or average pooling to obtain the im-
age representation. Many previous studies have explored the usage of the mid-level
convolutional features in classification tasks (Liu et al., 2014; Li et al., 2015, 2016b).
In (Liu et al., 2015), extracted local features are pooled by using CFMs from two suc-
cessive convolutional layers. The bilinear CNN framework consists of two DCNNs
whose CFMs are multiplied using outer product at each location of the image and
pooled to obtain an image descriptor. The use of CFMs as pooling channels is moti-
vated by the observation that a feature map of a deep convolutional layer is usually
sparse and indicates some semantically meaningful regions. Moreover, the discrimi-
native power of the feature representation can benefit from using a larger number of
pooling channels. It has been shown that both methods achieve significantly better
performance than previous methods.

Although the aforementioned methods achieve good results, there are still some
drawbacks on those methods. The cross-convolutional-layer pooling employs an ad-
ditional SVM as the classifier. Since the DCNN and the SVM are trained separately,
this method does not support the end-to-end training. The bilinear CNN framework

82 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220
0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220
0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220
0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220
0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220
0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220
0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

(a) (b) (c)

(d) (e) (f)

(h) (i)(g)

Figure 5.4: Visualization of some spatially weighted masks learned from the VGG16 with the
swp layer.

consists of two DCNNs, which increases the complexity and computational cost of
the system. To handle the above weaknesses, we introduce the spatially weighted
pooling (swp) method to enhance the robustness and effectiveness of the feature rep-
resentation of DCNNs. Compared to traditional pooling methods, the swp contains
a predefined number of spatially weighted masks and pools the features extracted
from the previous layer with the guidance of learnt masks. Moreover, the parameters
of the swp layer can be learned in the end-to-end training process of DCNNs. The
overview of the swp method is illustrated in Fig. 5.3.

Spatially weighted masks of a swp layer can be treated as a set of various pool-
ing channels. These masks can indicate some discriminative image regions used by
DCNNs to identify the category of the car object. Features extracted from these dis-
criminative regions contribute significantly to the pooled features. This observation
is showed in Fig. 5.4. We choose three typical car images taken from the Cars-196
dataset, including the frontal car image, the rear car image, and the side car im-
age. We show several spatially weighted masks learned from the swp layer of the

§5.4 Proposed approach 83

VGG16 and overlay them on the original images for better visualization. As can be
observed from Fig. 5.4, the activated regions of the learnt masks are actually seman-
tically meaningful. For example, the activated regions of Fig. 5.4(a) correspond to
the front face of the car. Fig. 5.4(c) indicates that both the front lights and fog lights
are discriminative parts of the car. Fig. 5.4(d) shows that the activated regions are
exhaust pipes of the car. Hence, these masks serve as a similar role as the part-region
indicator maps. Compared to the human-specified part annotations, parameters of
spatially weighted masks can be optimized in the process of training without any
domain-specific knowledge.

Suppose the extracted feature maps can be formulated as a tensor of the size
H ×W × D, where H, W denote the height and width of each feature map and D
denotes the number of features maps. The spatially weighted masks of a swp layer
can be formulated as K pooling channels of the size H×W. The height and width of
these masks are the same as the size of the input feature maps. The pooled feature
of the kth learnt mask, denoted as Pk, can be calculated by the following equation:

Pk =
H×W

∑
i

mk
i xi (5.1)

where xi denotes the ith local feature of the input feature maps and mk
i is the corre-

sponding coefficient in the kth learnt mask. The pooled feature Pk has a dimension
of 1× 1× D. Essentially, each learnt mask defines a pooling channel and the image
representation is the concatenation of pooled results from multiple pooling channels.
Formally, the image representation generated by the swp layer can be expressed as
follows:

P = [P1
>, P2

>, · · · , Pk
>, · · · , PK

>]>

where, Pk =
H×W

∑
i

mk
i xi (5.2)

where P denotes the output of the swp layer, which is calculated by concatenating the
pooled feature of each learnt mask Pk, k = 1, · · · , K and K refers to the total number
of learnt masks. Concatenating all K pooled D-dimensional features generates K×D
feature representation for the input image.

5.4.2 Using swp with DCNNs

The swp layer is compatible with most dominant DCNNs, including AlexNet (Krizhevsky
et al., 2012), VGG16 (Simonyan and Zisserman, 2015), and various ResNets (He et al.,
2016). Suppose all above DCNNs retain their default architectures and the size of in-

84 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

put image is set to 224× 224 (227× 227 for AlexNet). We can apply the swp layer to
those DCNNs with minimal modifications to their structures.

To apply the swp layer to the AlexNet and VGG16, we insert the swp layer between
the last max-pooling layer and the first fully-connected layer. The output of the max-
pooling layer has a dimension of 6 × 6 × 256 for the AlexNet and 7 × 7 × 512 for
the VGG16, respectively. Through the processing of the swp layer, the dimension of
pooled results is changed to K × D, where K is the number of spatially weighted
masks and D is the number of feature maps. So the dimension of the swp features
changes as the K varies. The number of neurons of two succeeding fully-connected
(FC) layers needs to be adjusted appropriately to avoid over-fitting or under-fitting
problems. The related experiments are shown on the Section 5.5.3.

ResNets use the global average pooling (GAP) layer as the last pooling layer. The
output of the GAP layer has a dimension of 1× 1× 2048. In fact, the GAP layer can be
treated as a special case of the swp layer which contains only one spatially weighted
mask with equally distributed weights. Therefore, we straightforwardly replace the
GAP layer with the swp layer for ResNets. Note that the output of the swp layer is K
times larger than the original output of the GAP layer, an over-fitting issue may occur
due to the increase of the dimension of the swp features. To overcome this problem,
we insert one additional FC layer between the swp layer and the last FC layer. Both
the swp layer and the inserted FC layer are followed by a Batch Normalization (BN)
layer to speed-up the training process.

5.4.3 End-to-end training of swp

To train a DCNN with the swp layer, the DCNN needs to back-propagate derivatives
from the loss function to the input image. This means that the parameters of spatially
weighted masks can be trained by back-propagating the gradients of the classification
loss. Back-propagation routes gradients through the swp layer, as described below.

Suppose M is the set of learnt masks in the swp layer and has size of H ×W × K,
K denotes to the number of masks. X is the input feature maps of the swp layer and
has a dimension of H ×W × D. The output of the swp layer is P of size K × D. Let
d`/dP be the gradient of the loss function ` with respect to pooled features P in the
equation 5.2, then by the chain rule of gradients we have:

∂`

∂M
=

∂`

∂P
∂P
∂M

=
∂`

∂P
X (5.3)

∂`

∂X
=

∂`

∂P
∂P
∂X

=
∂`

∂P
MT (5.4)

§5.5 Experiments 85

where the partial derivatives ∂`/∂P are already computed by the backwards func-
tion of the layer on top of the swp layer. The derivatives of the layers below the swp

layer can be computed using chain rule. We fine-tune our models using stochastic
gradient descent with mini-batches with weight decay and momentum as described
on the Section 5.5.2.

5.5 Experiments

In this section, we comprehensively evaluate the swp method on the Cars-196 (Krause
et al., 2013) which is the currently most predominant dataset. Then, we show the ro-
bustness and effectiveness of the proposed method on three recently proposed fine-
grained car datasets: CompCars (Yang et al., 2015b), Carflag-1532, and Carflag-563.
These four datasets cover a large number of cars of various models from different
scenes. Previous studies (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; He
et al., 2016) have shown that using some pre-trained DCNNs lead to good perfor-
mance on generic object classification tasks. In our experiments, we apply the swp

method to those DCNNs to further improve the performance of the fine-grained car
classification.

5.5.1 Methods

We consider three kinds of widely used pre-trained DCNNs: AlexNet, VGG16, and
ResNets as baselines to evaluate the performance improvement caused by using the
swp method. For ResNets, we conduct experiments on models with different depths,
such as ResNet50 and ResNet101. In addition to ResNets with default structures, we
introduce different variants of ResNets as the improved baselines.

5.5.1.1 AlexNet with swp

As described on Section 5.4.2, we apply the swp layer to the AlexNet by inserting
the swp layer between the last max-pooling layer and the first fully-connected layer.
Since the dimension of the pooled features is changed from 6× 6× 256 to K × 256,
the number of neurons of FC6 and FC7 layer also need to be adjusted appropriately.
All other components remain unchanged. We refer to this model as the AlexNet-swp.

5.5.1.2 VGG16 with swp

We apply the swp layer to the VGG16 in a similar way to the AlexNet. The swp

layer changes the dimension of the pooled features from 7× 7× 512 to K × 512, we

86 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

also need to modify the number of neurons of FC6 and FC7 layer to maximize the
performance of the variant of VGG16. All other components keep unchanged. We
refer to this variant as VGG16-swp.

5.5.1.3 ResNets with local max-pooling

Instead of using the local max-pooling layer, ResNets use the global averaging pool-
ing (GAP) layer as the last pooling layer. However, the pooled results of the GAP lose
all spatial information about the object and may be too spatially coarse (1× 1× 2048
via a 7× 7 average pooling kernel) to capture the fine-grained information. To rem-
edy this problem, we change the receptive field of pooling kernel from 7× 7 to 3× 3
and change the stride from 1 to 2, the pooling operator is also changed to the max-
pooling which is partially translation invariant. So the last GAP layer is replaced
with a local max-pooling (LMP) layer. Since the dimension of pooled features in-
creases by decreasing the size of receptive field, we need to add one additional FC
layer followed by a drop-out layer with probability of 0.5 and a ReLU layer to prevent
over-fitting during training. All other layers remain unchanged. The ResNets with
the LMP layer are referred as ResNet-LMP.

5.5.1.4 ResNets with swp

Since the dimension of output of the GAP layer is 1× 1× 2048 which is spatially
coarse, the swp cannot extract meaningful representations from such a low dimen-
sional features. Instead of inserting the swp layer between the GAP layer and the
FC layer, we straightforwardly replace the GAP layer with the swp layer followed by
a batch normalization (BN) layer and a ReLU layer. The swp layer increases the di-
mension of pooled features from 1× 1× 2048 to K× 2048 where K is the number of
learnt masks. One additional FC layer is inserted between the swp layer and the last
FC layer. ResNets employ the batch normalization to accelerate the training process
and get better generalization performance. We similarly add a BN layer after the
newly added FC layer to keep the fast training. We refer the ResNet with the swp

layer as ResNet-swp.

5.5.2 Implementation details

To adapt the aforementioned DCNNs to the fine-grained car classification, we fine-
tune these DCNNs on each car dataset individually. We replace the 1000-way classifi-
cation layer trained on ImageNet dataset with a randomly initialized C-way soft-max
layer, where C is the number of classes in the specific dataset. We resize the image

§5.5 Experiments 87

dimension to 256× 256. Then a 224× 224 (227× 227 for AlexNet) crop is randomly
sampled from the image or its horizontal flip, with the per-pixel mean subtracted.
Note that, the implementation of ResNets is slightly different from the AlexNet and
VGG16. We follow the training and testing procedure proposed in (He et al., 2016).
Once we generate crops from the images, we do color jittering that randomly per-
turbs the brightness, contrast and saturation of these crops. The standard color aug-
mentation in (Krizhevsky et al., 2012) is applied to these crops. We also adopt the
batch normalization right after the swp layer and the newly added FC layer before the
ReLU activation. The swp layer and the FC layers are initialized by random weights
drawn from Gaussian distributions with a fixed standard deviation of 0.005. We use
the stochastic gradient descent (SGD) with a mini-batch size of 64. The initial learn-
ing rate is set to 0.001 for convolutional layers and 0.01 for the swp layer and the FC
layers. The learning rate is divided by 10 after each 40 training epochs. These models
are trained for up to 90 epochs. We use a weight decay of 0.0005 and a momentum
of 0.9.

5.5.3 Evaluation on the Stanford Cars-196 dataset

The Cars-196 (Krause et al., 2013) dataset contains 16,185 images of 196 car mod-
els. This dataset provides ground-truth annotations of bounding boxes, on both the
training set and test set. In our experiments, we evaluate the proposed method on
the Cars-196 with bounding box annotations. We train proposed models on classes
of 196 car models.

Experimental design We investigate the experimental design of the proposed
method, especially the number of spatially weighted masks in the swp layer and
the number of neurons of the FC layers. The number of masks affects the quality
of the swp method and the setting of succeeding FC layers also affects the overall
performance of the proposed method. We determine these parameters in a heuristic
way for the fine-grained car classification. We set the number of masks K from {1,
4, 9, 16, 25, 36}. The number of neurons N of the FC layers is correlated to the
dimension of the swp features. For the AlexNet-swp and VGG16-swp, we set N of
the FC6 and FC7 layer from {512, 1024, 2048}. For the ResNets-swp, we set N of the
inserted FC layer from {1024, 2048}.

Table 5.2 represents the comparison of classification results of various DCNNs
with different parameter settings. For the AlexNet-swp and VGG16-swp, we observe
that the accuracies generally improve as we increase the number of masks up to 9.
However, setting the number of masks to be too large (e.g., K = 36) may hurt the
performance. By observing the 36 learnt masks of the AlexNet-swp, we find that

88 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

weighted
masks

AlexNet-swp VGG16-swp
N = 512 N = 1024 N = 2048 N = 512 N = 1024 N = 2048

K = 1 81.9% 81.2% 80.7% 89.6% 89.2% 88.9%
K = 4 83.1% 82.8% 81.2% 90.3% 90.1% 89.7%
K = 9 83.6% 83.5% 82.0% 90.7% 90.4% 90.3%
K = 16 83.6% 83.4% 81.9% 90.4% 90.2% 90.1%
K = 25 83.3% 83.2% 81.8% 90.5% 90.3% 90.1%
K = 36 83.2% 83.0% 81.5% 90.3% 90.0% 89.8%
Baselines 80.7% 80.5% 79.8% 87.2% 86.7% 86.0%

ResNet50-swp ResNet101-swp
N = 1024 N = 2048 N = 1024 N = 2048

91.9% 91.6% 92.7% 92.6%
92.1% 91.7% 92.9% 92.7%
92.3% 92.1% 92.7% 93.1%
92.2% 91.9% 92.6% 92.7%
92.0% 91.7% 92.8% 92.9%
92.1% 91.9% 92.8% 92.8%
89.7% with GAP 90.9% with GAP

Table 5.2: Comparison of classification results of various DCNNs with different parameter
settings on the Stanford Cars-196 dataset. For AlexNet-swp and VGG16-swp, N is the number
of neurons of FC6 and FC7 layers. For ResNets-swp, N is the number of neurons of the

inserted FC layer.

some masks have similar weight distributions. This means that these masks focus on
the similar parts of cars and generate redundant pooled features. For ResNets-swp,
the performance is not very sensitive to the number of learnt masks. We conjecture
that their deep architectures can learn more semantically meaningful information
for each mask. We also observe that accuracies decline with the increase of N in
the AlexNet-swp and VGG16-swp. Since the swp layer generates a low dimensional
output, the large N may lead to an under-fitting issue. The highest accuracy of 93.1%
is achieved by the ResNet101-swp with setting K = 9 and N = 2048. For the rest of
our experiments, we set the number of spatially weighted masks K to 9 as it gives
the best trade-off between the performance and the size of the trained model. The
number of neurons N is set by considering the number of categories of a specific
dataset. N is usually greater than the number of categories.

Comparison of results Table 5.3 shows the comparison of classification results on
the Stanford Cars-196 dataset with bounding box annotations. The AlexNet achieves
accuracy of 78.9%. The VGG16 significantly improves the accuracy to 85.4%. The
recently proposed ResNet50 and ResNet101 remarkably outperform the VGG16 by
a large margin about 5%. This outcome is consistent with the result in (He et al.,
2016), which shows that the depth of DCNNs is very important for improving the

§5.5 Experiments 89

Type Methods Acc. on Model

Baselines AlexNet 78.9%
VGG16 85.4%
ResNet50 89.7%
ResNet101 90.9%
ResNet50-LMP 91.6%
ResNet101-LMP 92.9%

Previous Chai et al. (Chai et al., 2013) 78.0%
FV-CNN(Gosselin et al., 2014) 82.7%
B-CNN(Lin et al., 2015c) 91.3%
Krause et al. (Krause et al., 2015) 92.6%

Ours AlexNet-swp 83.6%
VGG16-swp 90.7%
ResNet50-swp 92.3%
ResNet101-swp 93.1%

Table 5.3: Comparison of classification results on the Stanford Cars-196 dataset with bound-
ing box annotations. ‘LMP’ means the local max-pooling and ‘swp’ indicates the spatially

weighted pooling.

performance of the classification. Moreover, by replacing the GAP layer with the
LMP layer and inserting one additional FC layer with 512 neurons for ResNets,
we get some performance gains, e.g., 89.7% to 91.6% for ResNet50-LMP and 90.9%
to 92.9% for ResNet101-LMP. These results confirm our hypothesis that the GAP
may discard some fine-grained information and hurt the performance of the clas-
sification. Furthermore, by applying the swp layer to baselines, all their accura-
cies are improved considerably, e.g., 89.7% to 92.3% for ResNet50-swp and 90.9%
to 93.1% for ResNet101-swp. This shows that the swp method does improve the per-
formance of the car model classification. The comparison with state-of-the-art results
is also illustrated on Table 5.3. Two recently proposed methods that perform well on
this dataset are 91.3% of the B-CNN framework and 92.6% in (Krause et al., 2015).
Our ResNet101-swp method achieves the best accuracy of 93.1% outperforming all
previously-reported results.

5.5.4 Evaluation on the CompCars dataset

The CompCars (Yang et al., 2015b) is a hybrid dataset which contains 52,083 images
of 431 car models. In our experiments, we train proposed models on classes of 431
car models.

Experimental settings To prove the robustness of the swp method on this dataset,

90 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

Type Methods Acc. on Model Acc. on Make

Baselines AlexNet (Yang et al., 2015b) 81.9% -
OverFeat (Yang et al., 2015b) 87.9% -
GoogLeNet (Yang et al., 2015b) 91.2% -
VGG16 92.4% 95.6%
ResNet50 93.3% 96.1%
ResNet101 93.7% 96.4%
ResNet50-LMP 93.6% 96.2%
ResNet101-LMP 94.2% 96.7%

Previous BoxCars (Sochor et al., 2016)† 84.8% -

Ours AlexNet-swp 88.0% 91.9%
VGG16-swp 95.3% 97.8%
ResNet50-swp 97.5% 99.3%
ResNet101-swp 97.6% 99.3%

Table 5.4: Comparison of classification results on the CompCars dataset. † is quoted from the
baseline in (Sochor et al., 2016).

we use the same parameter settings with the best performance on the Cars-196 to
the CompCars. We set the number of spatially weighted masks in the swp layer to 9.
Since the number of subcategories on the CompCars is greater than the Cars-196, we
set the number of neurons of the FC6 and FC7 layer to 1024 for the AlexNet-swp and
VGG16-swp. For ResNets-swp, we set the number of neurons of the inserted FC layer
to 1024.

Comparison of results Table 5.4 illustrates the comparison of results on the Com-
pCars dataset. We can observe that the trends among the baselines are similar to
those on the Stanford Cars-196 dataset. ResNets once again outperform previously
proposed DCNNs, including AlexNet, OverFeat, GoogLeNet, and VGG16. Both the
ResNet50 and ResNet101 achieve remarkably good results of 93.3% and 93.7%, re-
spectively. Moreover, we can get a slight performance gain by replacing the GAP
layer with the LMP layer. For instance, the ResNet101-LMP improve the accuracy
from 93.7% to 94.2%. When the swp method is applied to all baselines, their accu-
racies are further increased by a large margin. The ResNet101-swp model achieves
the best accuracy of 97.6% outperforming all previously reported results. We also
evaluate above models in the car make classification task (75 makes) on this dataset
and the ResNet101-swp achieves the best accuracy of 99.3%.

§5.5 Experiments 91

Type Methods Acc. on Model Acc. on Make

Baselines AlexNet 67.64% 75.27%
VGG16 88.62% 92.54%
ResNet50 88.72% 92.70%
ResNet101 89.26% 92.91%
Resnet50-LMP 90.00% 93.26%
Resnet101-LMP 90.34% 93.58%

Ours AlexNet-swp 81.80% 86.96%
VGG16-swp 92.34% 95.09%
Resnet50-swp 96.22% 98.43%
Resnet101-swp 96.70% 98.67%

Table 5.5: Comparison of classification results on the CarFlag-1532 dataset.

5.5.5 Evaluation on our CarFlag-1532 dataset

The CarFlag-1532 is a large-scale web-image dataset which contains 156,098 images
of 1,532 car models. In our experiments, we train proposed models on classes of
1,532 car models. Fig. 5.5 illustrates some samples from the CarFlag-1532 dataset.

Experimental settings We set the number of spatially weighted masks in the swp

layer to 9 as same as the CompCars. Since the number of car models on the CarFlag-
1532 is greater than the CompCars, we set the number of neurons of the FC6 and
FC7 layer to 2048 for the AlexNet-swp and VGG16-swp. For ResNets-swp, the number
of neurons of the inserted FC layer is also set to 2048.

Comparison of results According to table 5.5, we can observe that ResNets once
again outperform the VGG16. The ResNet50 and ResNet101 achieve accuracy of
88.72% and 89.26%, respectively. The AlexNet performs extremely worse on this
dataset, we conjecture that this model cannot handle such a huge number of car
models effectively. The performance of ResNets can be further improved by replac-
ing the GAP layer with the LMP layer, e.g., ResNet50-LMP improves to 90.00% and
ResNet101-LMP improves to 90.34%. The swp method takes additional performance
gains to each baseline, especially for the AlexNet. The AlexNet-swp remarkably
improves the accuracy from 67.64% to 81.80%. The best performance of 96.70% is
achieved by the ResNet101-swp. The swp leads to about 7.44% improvement in its
accuracy. All above models are evaluated in the car make classification task (165
makes) on this dataset and the ResNet101-swp achieves the best accuracy of 98.5%.

92 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

Figure 5.5: Sample images with unconstrained poses from the CarFlag-1532 dataset captured
from various scenes.

§5.5 Experiments 93

Methods Acc. on Year Acc. on Model Acc. on Make

AlexNet 85.78% 95.38% 99.38%
VGG16 86.48% 95.59% 99.43%
ResNet50 85.40% 95.28% 99.34%
ResNet101 85.51% 95.35% 99.35%
ResNet50-LMP 86.37% 95.54% 99.42%
ResNet101-LMP 86.52% 95.62% 99.43%
ResNet50-LMP† 86.67% 95.69% 99.46%
ResNet101-LMP† 86.74% 95.72% 99.47%

AlexNet-swp 85.86% 95.39% 99.38%
VGG16-swp 86.70% 95.70% 99.46%
ResNet50-swp 87.22% 96.27% 99.69%
ResNet101-swp 87.46% 96.42% 99.71%

Table 5.6: Comparison of classification results on the CarFlag-563 dataset. † indicates the
model is fine-tuned on large-size images (400× 400 pixels).

5.5.6 Evaluation on the CarFlag-563 dataset

Compared to aforementioned datasets, the complexity of the CarFlag-563 is relatively
simple since it only contains frontal car images. We decide to train proposed models
on the subcategories based on the year of manufacture (1152 classes) rather than the
car model. Some samples from the CarFlag-563 dataset are shown in Fig. 5.6.

Data preprocessing Car images captured by surveillance cameras are often raw
images, which means that car objects are not aligned well in the center of images.
There are also some noises on these images, such as parts of other vehicles. Direct
using these images leads to poor performance for the fine-grained classification. To
remedy this issue, we apply the faster-rcnn model (Ren et al., 2015) pre-trained on
the VOC dataset to detect cars from these raw images. All detected cars are cropped
with an appropriate padding area and organized as the CarFlag-563 dataset. Fig. 5.7
shows the effect of this preprocessing.

Experimental settings Since viewpoints of car images are constrained to the front
view, we conjecture that 9 spatially weighted masks in the swp layer are capable to
capture the discriminative regions of car objects. The number of subcategories on the
CarFlag-563 is greater than the CompCars, we set the number of neurons of the FC6
and FC7 layer to 2048 for the AlexNet-swp and VGG16-swp. For ResNets-swp, we set
the number of neurons of the inserted FC layer to 2048 as same as the CarFlag-1532.

Comparison of results Table 5.6 shows comparison of classification results of
various DCNNs on the CarFlag-563 dataset. We surprisingly observe that the trends
among the baselines are different from those on previous three datasets. The AlexNet

94 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

Figure 5.6: Sample images from the CarFlag-563 dataset captured by surveillance cameras in
various weather and illumination conditions. Car types from top to bottom row: sedan, SUV,

MPV, bus and truck.

§5.5 Experiments 95

Figure 5.7: Images of left column are raw images. Right column are car images detected by
the faster-rcnn model.

slightly outperforms both the ResNet50 and ResNet101, and the VGG16 achieves
the best performance of 86.48% among all baselines. We conjecture that this phe-
nomenon is caused by the GAP layer of ResNets. For cars belong to the same model,
they share very similar appearance design if they are produced in adjacent years.
These cars can only be distinguished by some fine-grained details, such as front
lights, fog lights, and the front face. Both the ResNet50 and ResNet101 are inferior
to the AlexNet because the GAP layer may discard such fine-grained discriminative
information. By replacing the GAP layer with the LMP layer, both the ResNet50-LMP
and ResNet101-LMP perform on par with VGG16, e.g., 86.37% for Resnet50-LMP and
86.52% for ResNet101-LMP. Since the fine-grained information is significant to clas-
sify the frontal car images, we conduct one experiment to explore the effect of image
resolution. We resize car images to 400 × 400 pixels and train the ResNet50-LMP
and ResNet101-LMP on these larger images. We get some additional performance
gains on both two models. The swp method further improves all baselines and the
ResNet101-swp model achieves the best accuracy of 87.46%. However, the perfor-
mance gains of the swp method are quite minor on this dataset especially for the
AlexNet-swp and VGG16-swp. We conjecture that this was due to the simplicity of
car images. Unlike other three datasets, car images of this dataset have only one pose
since they are all captured from the frontal viewpoint. Fig. 5.8 shows the visualiza-
tion of 9 spatially weighted masks learned from the AlexNet-swp. We can observe
that most discriminative regions are located on unmeaningful regions rather than

96 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

(a) (b) (c)

(d) (e) (f)

(h) (i)(g)

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250

20

40

60

80

100

120

140

160

180

200

220

Figure 5.8: Visualization of 9 spatially weighted masks learned from the AlexNet-swp on the
CarFlag-563 dataset.

fine-grained parts of the car. It means that AlexNet-swp cannot extract semantically
meaningful regions well. VGG16-swp behaves similarly as the AlexNet-swp on this
dataset.

We also evaluate trained models in the car model classification task (563 models)
and the car make classification task (100 makes) on this dataset. The ResNet101-swp
achieves the best accuracy of 96.42% for the car model classification and 99.71% for
the car make classification.

5.6 Conclusion

In this work, we have proposed a spatially weighted pooling strategy, which indicates
the discriminative regions of the input image used by DCNNs to classify the subcat-
egory of the object. This proposed method has already achieved the best reported
results on the public Stanford Cars-196 and CompCars datasets. We also collect two
large-scale datasets to prove the robustness of the proposed method. We have pre-
sented comprehensive evaluations on the effectiveness of the swp method for the

§5.6 Conclusion 97

fine-grained car classification. We show that both the local features and the spatial
pooling channels can be extracted from a single DCNN and these pooling channels
can be learned in the end-to-end training process of the DCNN. In our future work,
we plan to further explore this idea by applying multiple swp layers appropriately
into the existing DCNNs.

98 Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition

Chapter 6

ColorNet: A Small CNN with Color
Transformation for Vehicle Color
Recognition

6.1 Introduction

As an important component of the intelligent transportation system (ITS), automatic
vehicle recognition has received a lot of attention in recent years. Vehicles contain
a variety of information, including vehicle model, body color, license plate and so
on. Vehicle color is an important property for vehicle identification and provides
visual cues for many applications of ITS, such as vehicle detection, vehicle tracking,
criminal detection, and law enforcement. However, vehicle color recognition is made
difficult by the following three aspects:

1. Different illumination conditions and uncontrolled environments may cause a
significant color variation. Color can be influenced by many factors, such as
rain, snow, haze, and illumination change.

2. Certain colors are very difficult to discriminate from other colors under some
specific circumstances. For example, white is not easily distinguishable from
gray in dusk.

3. Vehicle color recognition is limited by the quality of input images or videos,
that are affected by noise and overexposure of surveillance cameras.

In order to tackle these problems, Most previous methods focus on the design of
hand-crafted color features (Huang et al., 1997; Gevers et al., 2006; Stokman and Gev-
ers, 2007; Wang et al., 2008; Van De Sande et al., 2010; Hsieh et al., 2015). Since color
images are usually represented in RGB space, RGB histogram is a natural represen-
tation for color recognition. However, the RGB space is very sensitive to illumination

99

100 ColorNet: A Small CNN with Color Transformation for Vehicle Color Recognition

change since all three channels include a representation of brightness. The normal-
ized RGB histogram (Kender, 1976) is proposed to normalize raw RGB pixels to
increase the illumination invariance. The Hue histogram (Van de Weijer et al., 2006)
represents color information without illumination, thus it is partially invariant to il-
lumination change. A framework of feature context (Chen et al., 2014) is proposed
to encode color features as histograms based on the visual words in a codebook. The
encoded features are more robust than original color features. Although these meth-
ods obtain reasonable performance gains, they are still far from being satisfactory in
real-world applications.

Recently, convolutional neural networks (CNNs) have achieved great success in a
variety of vision problems (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015;
He et al., 2016). CNNs have shown the powerful ability to learn meaningful rep-
resentations from input data. A CNN-based method is proposed for vehicle color
recognition (Hu et al., 2015). Instead of designing hand-crafted features, this method
employs a CNN as the feature extractor to extract features from input images. Then,
spatial pyramid pooling is applied to these extracted features to enhance the feature
robustness. Finally, a support vector machine (SVM) is trained on these pooled fea-
tures to predict the color of a given vehicle. This method outperforms other conven-
tional methods by a large margin. Although this method achieves excellent results,
its high complexity and large model size can lead to practical difficulties.

In this chapter, we propose a small CNN architecture called ColorNet, which
is specifically designed for vehicle color recognition. We develop the ColorNet by
optimizing the architecture of AlexNet (Krizhevsky et al., 2012) which is the one
of the most dominant CNNs. The major difference between ColorNet and AlexNet
is that ColorNet has a structure to learn color transformation which converts input
images from the RGB space to an appropriate color space. This color space is learned
during training ColorNet. Moreover, since the number of parameters in ColorNet
is much less than the original AlexNet, the model size of ColorNet is very small.
This means that ColorNet are more feasible to deploy on mobile devices and other
hardware with limited memory.

Comprehensive experiments are conducted on the vehicle-color dataset (Chen
et al., 2014) which is the most popular dataset for vehicle color recognition. The
experimental results show that our ColorNet performs better than all previous meth-
ods, including some sophisticated CNN-based methods (Rachmadi and Purnama,
2015; Hu et al., 2015).

§6.2 Background 101

6.2 Background

Many existing approaches have been proposed over the last decade to handle the
image color recognition task. Most of them can be easily applied to vehicle color
recognition. These approaches can be divided into two categories: color histogram-
based approaches and CNN-based approaches.

Color histogram-based methods usually design a variety of color histograms to
represent colors. Image pixels with similar colors are represented in the same color
histogram since similar colors fall into the same bin. A normalized RGB histogram
proposed by Kender (Kender, 1976) is used to increase the feature robustness to
illumination change. Huang et al. (Huang et al., 1997) propose a correlogram for
indexing images. The correlogram is a histogram of color pairs and is more robust
than the RGB histogram. Qiu et al. (Qiu et al., 2004) investigate the redundancy and
performance of different color histograms in the context of automatic colour photo
categorization. Van de Weijer et al. (Van de Weijer et al., 2006) propose to use a Hue
histogram to alleviate the effect of overexposure since it only represents information
of color without illumination. Wang et al. (Wang et al., 2008) propose to extract
color features from the HSV space for the color recognition of license plates. Van de
Sande et al. (Van De Sande et al., 2010) investigate dominant color descriptors and
analyse their invariance to illumination change and color shift. They also propose
an opponent histogram which is invariant to overexposure and color shift. Hsieh
et al. (Hsieh et al., 2015) propose a color correction algorithm to reduce lighting
effects and color distortions.

CNN-based methods often employ CNNs to extract CNN features and apply a
classifier to these CNN features. Rachmadi et al. (Rachmadi and Purnama, 2015)
propose a bilinear CNN framework for vehicle color recognition. This framework
consists of two CNNs which share the same fully-connected layers and the softmax
layer. This framework converts input images to two color spaces, HSV and CIE Lab,
and then feeds each of them to one CNN of the framework. Hu et al. (Hu et al., 2015)
propose a CNN-based method which combines the spatial pyramid strategy with the
CNN architecture. This method employs the AlexNet to extract CNN features and
applies spatial pyramid pooling to these extracted features. The pooled features are
than used to train a support vector machine classifier. Since spatial information are
embedded into these pooled features, the recognition performance can be further
improved.

102 ColorNet: A Small CNN with Color Transformation for Vehicle Color Recognition

6.3 Proposed approach

In this section, we propose a light-weight ColorNet to effectively and efficiently rec-
ognize the color of vehicles. To improve the accuracy, we employ a mini-CNN to
learn the color transformation. To boost the speed of recognition, we optimize the
architecture of AlexNet by removing non-essential structures.

6.3.1 Color transformation

Digital color images are usually represented in one color space defined by domain-
specific knowledge. Most commonly used color spaces in digital photography are
RGB, HSV, YCrCb, and CIE-lab. In image color recognition, visual features are ex-
tracted from image pixels represented in one color space. The choice of the color
space may influence the quality of extracted features and impact the recognition per-
formance. In the context of deep learning, the commonly used input to CNNs is RGB
images. Recently, Mishkin et al. (Mishkin et al., 2016) employ different color spaces
as the input to CNNs and analyse their performances for generic object classification.
Later, Rachmadi et al. (Rachmadi and Purnama, 2015) investigate the effectiveness of
different color spaces for vehicle color recognition. Their experimental results show
that using RGB images as the input to CNNs leads to better performance than other
color spaces. Here we ask a question: Can we learn a color space which performs
better than the RGB space using the CNN? Our answer to this question is positive.

Inspired by image preprocessing techniques of (Mishkin et al., 2016), we propose
a color transformation method that can convert image pixels from the RGB space
to a learnt color space. More specifically, the color transformation is implemented
by a mini-CNN which consists of two convolutional (Conv) layers and one rectified
linear unit. The first Conv layer contains a predefined number of 1× 1 Conv filters
and the second Conv layer contains three 1 × 1 Conv filters. 1× 1 convolution is
a way to increase the non-linearity of the transformation function. Table 6.1 shows
several possible architectures of the mini-CNN for color transformation. The input of
the mini-CNN is RGB pixels. RGB pixels need to be centred by subtracting the per-
pixel mean and scaled by multiplying a constant 0.04. The number of Conv filters
in the second Conv layer is fix to 3. This setting restores the original dimensions
of input images. The rectified linear unit at the end of the mini-CNN is used to
change negative values to zeros and further increases the non-linearity of image
representations.

Fig. 6.1 illustrates the visualization of car images in different color spaces. We
choose three car images taken from the Vehicle-color dataset (Chen et al., 2014),
including a black car, a red car, and a white car. As can be observed from Fig. 6.1,

§6.3 Proposed approach 103

Mini-CNN Architecture

RGB RGB
A RGB→ Conv1x1-3→ Conv1x1-3→ ReLU
B RGB→ Conv1x1-3→ Conv1x1-3→ PReLU
C RGB→ Conv1x1-10→ Conv1x1-3→ PReLU
D RGB→ Conv1x1-16→ Conv1x1-3→ PReLU

Table 6.1: Several architectures of the mini-CNN for color transformation.

(a) RGB space (c) Color space

learned by C

(b) Color space

learned by B

Figure 6.1: Visualization of car images in several color spaces. (a) The RGB space. (b) The
space learned from the mini-CNN B. (c) The space learned from the mini-CNN C.

these colors (black, red, white) in RGB space are visually changed in these learnt
spaces. Specifically, black is changed to dark red, red is converted to bright pink,
and white is changed to bright cyan. The effectiveness of these color spaces will be
explored in the Section 6.4.3.

104 ColorNet: A Small CNN with Color Transformation for Vehicle Color Recognition

Layer Architecture

Conv1 Conv11x11-96→ ReLU→ LRN→ Max-pooling
Conv2 Conv5x5-256→ ReLU→ LRN→ Max-pooling
Conv3 Conv3x3-384→ ReLU
Conv4 Conv3x3-384→ ReLU
Conv5 Conv3x3-256→ ReLU→ Max-pooling
FC6 4096 neurons→ Drop-out
FC7 4096 neurons→ Drop-out
FC8 1000 neurons→ Softmax

Table 6.2: Architecture of the AlexNet.

6.3.2 Model optimization

The mini-CNN is only used for color transformation, we still need a main CNN to
implement the vehicle color recognition task. In this work, we develop our portable
CNN model by optimizing the architecture of AlexNet (Krizhevsky et al., 2012). Ta-
ble 6.2 shows the general layout of AlexNet. In general, AlexNet has five Conv layers
and three fully-connected (FC) layers. The default input of the AlexNet is a fixed-size
227× 227 RGB image. The input image is passed through a sequence of five Conv
layers. These Conv layers are followed by three FC layers: the first two have 4096
neurons each, the last one contains 1000 neurons and performs 1000-way classifica-
tion. The final layer is the soft-max layer. To increase the non-linearity of the model,
all Conv layers and FC layers are equipped with the rectification (ReLU) layers. We
use ConvX to denote the Xth Conv layer in the AlexNet. FC6, FC7, and FC8 are used
to denote three FC layers, respectively.

Since AlexNet was originally pre-trained on the ImageNet dataset (Deng et al.,
2009) for generic object classification, the original AlexNet is not suitable for real-
time vehicle color classification. Therefore, we optimize the architecture of AlexNet
by compressing its model size and simplifying its redundant structure. Optimized
CNN architectures provide at least two advantages: (1) Smaller CNNs are more
feasible to deploy on mobile devices and other hardware with limited memory. (2)
Simpler CNNs require less computational resources in execution.

The model size of CNNs is determined by the number of parameters. In the
original AlexNet, FC layers contain the majority of parameters. Hence, one way to
compress the model size is to reduce the number of neurons on FC layers. How-
ever, setting the number of neurons to be too small can hurt the performance as the
CNN can not converge in the training phase (under-fitting). A recently proposed
global average pooling (GAP) (Lin et al., 2013) can be used to remedy this problem.

§6.3 Proposed approach 105

Instead of adding FC6 and FC7 layers on top of the feature maps of Conv5, a GAP
layer computes the average of each feature map, and the pooled feature vector is fed
directly into the last softmax layer. Compared to FC layers, the GAP layer is more
native to the convolution structure by enforcing correspondences between convolu-
tional feature maps and object categories. The GAP layer acts as a regularizer which
prevents the over-fitting during training, so drop-out layers can be eliminated. The
model size of AlexNet can be remarkably reduced by replacing FC6 and FC7 layers
with the GAP layer.

Compared to the large-scale generic object classification (ImageNet), the vehicle
color classification is relatively simple. The architecture of AlexNet may be too com-
plex to implement this task. We can simplify AlexNet by the following three aspects:
narrowing the size of input images, reducing the number of Conv filters, and de-
creasing the number of Conv layers. Since vehicles usually occur a large area of the
car image, we conjecture that even a small image can keep enough discriminative
information for color classification. We can change the resolution of input images
to provide a better trade-off between the accuracy and the speed. Superfluous Conv
filters or Conv layers may generate redundant features which are useless to improve
the performance, but bring additionally computational burdens. We can prune some
Conv filters and Conv layers to accelerate the speed. The detailed discussion on this
point is provided in Section 6.4.3.

6.3.3 Model integration

The mini-CNN takes RGB pixels as input, converts them to a learnt color space,
then feeds them to a main CNN which is used for vehicle color classification. Since
the architecture of the mini-CNN is very simple, it can be easily embedded into
many dominant CNNs (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; He
et al., 2016). For example, a mini-CNN can be embedded into AlexNet by inserting
it between the input layer and the first Conv layer of AlexNet. Embedding a mini-
CNN into a main CNN simplifies the training process. The mini-CNN can be trained
jointly with the main CNN, parameters of the mini-CNN can be learned in the end-
to-end training. The integrated CNN architecture is referred as the ColorNet.

Once we embedded a mini-CNN into a main CNN, we can investigate the visual
features learned from the integrated model. Fig 6.2 shows the visualization of 96
filters of the Conv1 layer of AlexNet embedded with the mini-CNN B. We observe
that most filters are visualized as various color patches. This is very different from
those filters of the pre-trained AlexNet which have large response to borders and
edges. This observation shows that filters of the integrated model can obtain large

106 ColorNet: A Small CNN with Color Transformation for Vehicle Color Recognition

Figure 6.2: Visualization of 96 filters of the first convolutional layer of the AlexNet with
mini-CNN B. These filters of size 11× 3 are learned from the 227× 227× 3 input images.

response in these colors.

6.4 Experiments

In this section, we comprehensively investigate the design space of our method and
evaluate the proposed ColorNet on the Vehicle-color dataset (Chen et al., 2014).

6.4.1 Dataset and evaluation metric

The Vehicle-color dataset (Chen et al., 2014) is a vehicle image dataset which contains
15,601 vehicle images of 8 color categories. Vehicle images are captured from the
frontal viewpoint under different illuminations and weather conditions. The dataset
is randomly split into the training set of 7,802 images and the test set of 7,799 images.
Each category is roughly split about 50-50. We evaluate the performance of various
methods using the average accuracy which is computed by averaging the classifica-
tion accuracy of each category. Table 6.3 shows the data distribution for each color

§6.4 Experiments 107

Category # Images

Black 3442
Blue 1086
Cyan 281
Gray 3046
Green 482
Red 1941
White 4742
Yellow 581

Total 15601

Table 6.3: Data distribution for each color category on the Vehicle-color dataset.

category on the Vehicle-color dataset.

6.4.2 Implementation details

To adapt AlexNet to the vehicle color classification task, we trained the model on
the Vehicle-color dataset. We replace the 1000-way classification layer trained on
ImageNet dataset with a randomly initialized C-way soft-max layer, where C is the
number of categories in the dataset. We resize the image dimension to 256× 256.
Then a 227× 227 crop is randomly sampled from the image or its horizontal flip,
with the per-pixel mean subtracted. Since the number of colors is much less than
the number of categories in ImageNet dataset, we modify the original AlexNet by
reducing the number of neurons on FC6 and FC7 layers from 4096 to 512. We use the
stochastic gradient descent (SGD) with a mini-batch size of 128. The initial learning
rate is set to 0.001 for Conv layers. The learning rate is divided by 10 after each 40
training epochs. These models are trained for up to 100 epochs. We use a weight
decay of 0.0005 and a momentum of 0.9. We use the Caffe (Jia et al., 2014) framework
to implement our experiments.

6.4.3 Experimental design

We further investigate the design space of the proposed method. For each experi-
ment, we evaluate the performance of different settings on the Vehicle-color dataset.
All experiments are carried out on a computer with an octa-core Intel Xeon 2.50GHz
processor and a Nvidia GTX780 video card.

108 ColorNet: A Small CNN with Color Transformation for Vehicle Color Recognition

Architecture Ave. Accuracy Model Size

AlexNet (N = 4096)† 93.70% 227.6MB
AlexNet (N = 512) 94.15% 29.3MB
AlexNet-gap 94.15% 9.6MB

Table 6.4: Performance of the AlexNet with traditional FC layers or with GAP layer on the
Vehicle-color dataset. N is the number of neurons on FC6 and FC7 layers. † is the default

setting of AlexNet.

6.4.3.1 Global average pooling (GAP)

We propose to use GAP to replace traditional FC layers in AlexNet. GAP can reduce
the number of parameters and alleviate the computational burdens on FC layers.
Since there is no parameter in the GAP layer, over-fitting can be avoided and drop-
out layers can be eliminated. The GAP sums out the spatial information, hence it
is more robust to spatial translations of input images. We apply the GAP layer to
AlexNet by replacing the max-pooling in the Conv5 with GAP and removing FC6
and FC7 layers. We refer to this model as the AlexNet-gap.

We compare the performance of AlexNet with traditional FC layers or with the
GAP layer. The average accuracies are shown in Table 6.4. We observe that applying
the GAP layer can remarkably reduce the model size of the original AlexNet from
227.6MB to 9.6MB with a reasonable performance gain. We conjecture that the GAP
layer alleviates the negative effect of the over-fitting and improves the accuracy. De-
creasing the number of neurons on FC6 and FC7 layers from 4096 to 512 can achieve
the similar result with the AlexNet-gap. For the rest of our experiments, we employ
the AlexNet-gap as it gives the best average accuracy with the smallest model size.

6.4.3.2 Size of input image

The size of input image directly affects the accuracy and speed on many visual clas-
sification tasks. Large images often bring additional information and fine-grained
details. For each Conv filter, more training samples are provided by large images.
On the other hand, it takes more time to process large images. We investigate the
relationship between the image size and the average accuracy.

We compare three different sizes of the input image from {80x80, 128x128, 227x227}.
The results are presented in Table 6.5. We observe that the average accuracy improves
as we enlarge the input image. The highest accuracy is achieved by using the largest
image size 227x227. However, larger images bring additionally computational bur-
dens. The average runtime (runtime per image) also increases when we select a large
image size. For the rest of our experiments, we set the size of input images to be

§6.4 Experiments 109

Input image size Ave. Accuracy Ave. Runtime

80x80 93.74% 0.008s
128x128 94.00% 0.009s
227x227 94.15% 0.015s

Table 6.5: Performance of the AlexNet-gap with different input image sizes on the Vehicle-
color dataset.

BN Placement Ave. Accuracy

without BN 94.00%
BN before ReLU 94.22%
BN after ReLU 94.13%

Table 6.6: Average accuracy of the AlexNet-gap with different BN placements on the Vehicle-
color dataset.

128x128 as it gives a better trade-off between the average accuracy and the average
runtime.

6.4.3.3 Batch normalization (BN)

Batch normalization addresses the gradient exploding or vanishing problem by re-
ducing the internal covariate shift of each mini-batch. By normalizing activations
throughout the network, the training process of a CNN can be accelerated by using
a high learning rate. BN also acts as a regularizer to avoid the over-fitting, it can
improve the generalization performance of the CNN.

To apply BN to the AlexNet-gap, we need to decide the placement of BN - before
or after the non-linearity ReLU. Table 6.6 shows the results of different BN place-
ments. We observe that it is beneficial to apply BN as it avoids the over-fitting. In
both two options, BN slightly improves the average accuracy. The better accuracy is
achieved by the Conv-BN-ReLU setting. For the next experiment, we apply BN to
the AlexNet-gap and place BN before the ReLU layer.

6.4.3.4 Number of convolutional filters

AlexNet employs a plenty of Conv filters on each Conv layer. These Conv filters
learn specific features or patterns that are presented in input images. We investigate
the relationship between the number of Conv filters and the performance.

We set the number of Conv filters of the original AlexNet as the baseline (100%),

110 ColorNet: A Small CNN with Color Transformation for Vehicle Color Recognition

Conv filters Ave. Accuracy Ave. Runtime Model size

100% 94.22% 0.011s 9.4MB
75% 94.16% 0.010s 5.3MB
50% 93.80% 0.010s 2.4MB
25% 93.41% 0.009s 0.62MB

12.5% 92.67% 0.008s 0.17MB

Table 6.7: Performance of the AlexNet-gap with different number of convolutional filters on
the Vehicle-color dataset.

Conv layers Ave. Accuracy Ave. Runtime Model size

1 85.02% 0.008s 0.15MB
2 93.02% 0.009s 1.4MB
3 93.49% 0.009s 4.9MB
4 93.93% 0.010s 7.6MB
5 94.22% 0.011s 9.4MB

Table 6.8: Performance of the AlexNet-gap with different number of convolutional layers on
the Vehicle-color dataset.

we decrease the number of Conv filters on each Conv layer by multiplying the base-
line with a ratio. We trained 5 different models with the number of Conv filters
from {100%, 75%, 50%, 25%, 12.5%}. The results are shown in Table 6.7. We observe
that the average accuracy slightly decreases as we reduce the number of Conv filters.
However, using less Conv filters remarkably reduces the model size and slightly ac-
celerates the speed of recognition. For the rest of our experiments, we set the number
of Conv filters as the same to the original AlexNet since it provides the best perfor-
mance.

6.4.3.5 Number of convolutional layers

AlexNet contains five Conv layers. Shallow Conv layers have high responses to
edges and borders. On the contrary, deep Conv layers contain high-level feature
representations which provide more discriminative information.

In Table 6.8, we compare the performance of AlexNet-gap with different number
of Conv layers. We observe that the average accuracy continuously increases as we
add Conv layers one by one. Adding the Conv2 significantly improve the accuracy.
We conjecture that the Conv2 extracts texture information which are crucial for color
classification. Adding more deeper Conv layers can further improve the accuracy, but
improvements tend to be saturated. Using more Conv layers brings more parameters
and computational burdens. The best result is achieved by the model with five Conv

§6.4 Experiments 111

Architecture Ave. Accuracy

AlexNet-gap 94.22%
AlexNet-gap + Mini-CNN A 94.25%
AlexNet-gap + Mini-CNN B 94.28%
AlexNet-gap + Mini-CNN C 94.36%
AlexNet-gap + Mini-CNN D 94.31%

Table 6.9: Performance of the ColorNet with the different mini-CNNs for color transforma-
tion on the Vehicle-color dataset.

layers. For the next experiment, we set the number of Conv layers to five as it achieves
the best result.

6.4.3.6 Color transformation

As we described in Section 6.3.1, we employ a mini-CNN to implement color trans-
formation. The mini-CNN converts input images from the RGB space to the learnt
color space and feeds them to the AlexNet-gap. The mini-CNN can be embedded
into the AlexNet-gap to form the ColorNet.

We evaluate the performance of the ColorNet with different mini-CNNs from {A,
B, C, D}. The performance of different models is shown in Table 6.9. By comparing
mini-CNN A and mini-CNN B, we observe that the parametric rectified linear unit
(PReLU) (He et al., 2015b) performs better than ReLU, since PReLU generalizes the
traditional ReLU and improves accuracy at negligible extra computational cost. It
can be observed that using more Conv filters in the mini-CNN can bring additional
performance gains. However, setting the number of Conv filters in the mini-CNN to
be too large without enlarging the size of images can hurt the performance. The best
accuracy of 94.36% is achieved by using the mini-CNN C. We embed the mini-CNN
C into the AlexNet-gap and refer to the integrated model as the ColorNet.

6.4.4 Comparison with state-of-the-art approaches

Table 6.10 shows the comparison of classification results on the Vehicle-color dataset.
We observe that all CNN-based methods perform better than the color histogram-
based methods. This shows that the effectiveness of CNN features is clearly superior
than conventional hand-crafted features. The original AlexNet achieves the aver-
age accuracy of 93.29%. BilinearNet (Rachmadi and Purnama, 2015) improves the
accuracy to 93.77% by employing a two stream architecture. The recently proposed
squeezeNet (Iandola et al., 2017) performs on a par with the BilinearNet with a much

112 ColorNet: A Small CNN with Color Transformation for Vehicle Color Recognition

Method Black Blue Cyan Gray

Color Correlogram (Huang et al., 1997) 80.83% 74.22% 90.78% 55.68%
Normalized RG Hist (Gevers et al., 2006) 77.31% 82.29% 87.66% 58.96%
Hue Hist (Van de Weijer et al., 2006) 86.54% 84.37% 90.14% 60.32%
Transformed Color Hist (Van De Sande et al., 2010) 92.06% 84.79% 86.76% 75.70%
Opponent Hist (Van De Sande et al., 2010) 93.12% 81.72% 95.18% 78.56%
Combined Color Hist (Chen et al., 2014) 97.14% 93.63% 96.60% 82.18%

AlexNet (Krizhevsky et al., 2012) 96.46% 96.69% 96.43% 86.08%
BilinearNet (Rachmadi and Purnama, 2015) 97.38% 94.10% 96.45% 86.08%
SqueezeNet (Iandola et al., 2017) 97.91% 96.87% 95.71% 88.90%
SP-CNN+FC (Hu et al., 2015) 96.74% 95.94% 99.28% 84.04%
SP-CNN+SVM (Hu et al., 2015) 97.32% 96.50% 98.57% 86.80%

Ours(AlexNet-gap) 97.68% 98.34% 97.14% 88.77%
Ours(ColorNet) 98.02% 97.79% 97.86% 90.41%

Green Red White Yellow Ave. Accuracy

65.98% 94.75% 81.70% 86.94% 78.86%
68.03% 96.10% 82.70% 83.86% 79.62%
76.30% 97.29% 85.50% 88.69% 83.64%
64.61% 95.28% 91.92% 96.34% 85.18%
63.50% 97.53% 92.50% 87.96% 86.26%
78.59% 98.85% 94.15% 93.95% 91.89%

80.50% 98.97% 94.69% 96.55% 93.29%
82.57% 98.89% 96.66% 97.94% 93.77%
81.33% 98.97% 94.77% 95.86% 93.79%
84.23% 99.07% 94.81% 97.58% 93.96%
83.40% 98.76% 95.90% 97.24% 94.31%

80.50% 98.97% 95.15% 97.24% 94.22%
80.08% 99.18% 94.60% 96.90% 94.36%

Table 6.10: Comparison of classification results on the Vehicle-color dataset.

smaller model size. SP-CNN (Hu et al., 2015) method applies spatial pyramid pooling
to CNN features to boost the performance. SP-CNN achieves the average accuracy
of 93.96%. This accuracy can be further improved to 94.31% by replacing the softmax
classifier with a SVM classifier.

Compared to the original AlexNet, our optimized AlexNet-gap considerably im-
proves the accuracy from 93.29% to 94.22% with much fewer parameters. Moreover,
we can get a reasonable performance gain by embedding the mini-CNN C into the
AlexNet-gap. Our ColorNet achieves the best accuracy of 94.36% outperforming all
previously-reported results. Table 6.11 presents a comparison between ColorNet and

§6.5 Conclusion 113

Method Ave. Accuracy Model Size

SqueezeNet 93.77% 2.9MB
ColorNet 94.36% 9.4MB
ColorNet (50% #Conv filters) 93.87% 2.4MB

Table 6.11: Comparison between ColorNet and SqueezeNet on the Vehicle-color dataset. 50%
#Conv filters indicate that only half number of Conv filters are used in each Conv layer of

the ColorNet.

the existing compact model SqueezeNet on the Vehicle-color dataset. SqueezeNet is
a small CNN architecture which achieves AlexNet-level accuracy on ImageNet with
much fewer parameters. We observe that SqueezeNet has smaller model size than
the proposed ColorNet. However, the accuracy of SqueezeNet is lower than Color-
Net. Furthermore, if we halve the number of Conv filters in each Conv layer of the
ColorNet, the model size can be further compressed from 9.4 MB to 2.4 MB with a
slight accuracy loss.

6.5 Conclusion

In this chapter, we have proposed a mini-CNN to implement color transformation for
vehicle color recognition. The mini-CNN takes RGB pixels as input, converts them to
a learnt color space, then feeds them to the main CNN. We also proposed a portable
ColorNet, which optimizes the architecture of original AlexNet and embeds the mini-
CNN of color transformation. The ColorNet requires less computational resources,
but achieves the best reported results on the Vehicle-color dataset. Since the model
size of ColorNet is very small, we plan to deploy the ColorNet on mobile devices
and develop an application to recognize vehicle color in real-world scenarios.

114 ColorNet: A Small CNN with Color Transformation for Vehicle Color Recognition

Chapter 7

Conclusion and Future Directions

7.1 Conclusion

In this thesis, we concentrated on several tasks of traffic scene understanding, such as
traffic sign detection, car detection, pedestrian detection, fine-grained car recognition,
etc.. The main contributions presented in this thesis are:

• In chapter 3, we propose a common detection framework to detect three impor-
tant classes of objects (traffic signs, cars, cyclists) in traffic scenes. The proposed
framework introduces spatially pooled features as a part of aggregated chan-
nel features to enhance the feature robustness and employs detectors of these
three classes to detect multiple objects. To tackle objects with a large intra-
class variation, we propose an object subcategorization method to improve the
generalization performance by capturing the intra-class variation of objects.

• In chapter 4, we propose a simple-yet-powerful pedestrian detector, which re-
uses inner layers of convolutional features extracted by a properly fine-tuned
VGG16 model. We show that by re-using the convolutional feature maps of the
fine-tuned VGG16 model as visual features to train an ensemble of boosted de-
cision forests, the resulting ensemble model outperforms all competing CNN-
based methods. We also show that a pixel labelling model can be used to
improve performance by simply incorporating the labelling scores with the de-
tection scores of a standard pedestrian detector.

• In chapter 5, we propose a spatially weighted pooling (swp) strategy which
considerably enhances the discriminative power of CNN representations for
fine-grained car classification. The swp pools the extracted features of deep
CNNs with the guidance of its learnt masks, which measures the importance
of the spatial units in terms of discriminative power. We also collect two chal-
lenging fine-grained car datasets: CarFlag-563 and CarFlag-1532. These two

115

116 Conclusion and Future Directions

datasets are more challenging than existing datasets due to the large number
of car objects and the rich diversity of car models.

• In chapter 6, we propose a color transformation method that converts image
pixels from the RGB space to a learnt space for improving the recognition per-
formance. We also propose a small CNN architecture called ColorNet, which
optimizes the architecture of AlexNet and embeds a mini-CNN of color trans-
formation for vehicle color recognition.

7.2 Future work

Even though the work in this thesis has made considerable progress in several tasks
of traffic scene understanding, several important issues remain unresolved. We point
out future directions for these tasks.

• In chapter 3 and chapter 4 we addressed several detection tasks with a common
detection framework and a CNN-based pedestrian detector. Since these tasks
are still implemented by two independent methods, one interesting research
direction is to integrate the pedestrian detector into the common detection
framework. This idea can be achieved by generalizing feature representations
of these two methods. Many powerful CNN-based detection frameworks have
been proposed (Ren et al., 2015; Redmon et al., 2016; Liu et al., 2016; Li et al.,
2016a) in recent years for generic object detection. These frameworks achieve
the excellent performance in detection accuracy and speed. We plan to opti-
mize one of these state-of-the-art frameworks to implement detection tasks of
traffic scene understanding. It would be interesting to use a single CNN-based
framework to detect every objects of interest in traffic scenes.

• In chapter 5 and 6 we addressed the recognition task for vehicle model and
vehicle color. Since vehicles contain a variety of properties, including brand,
model, year of manufacture, color, license plate, etc., it is not very efficient to
design specific methods to recognize each of these properties. We are interested
in designing a portable recognizer which can simultaneously recognizes all
kinds of information of a given vehicle. Moreover, we plan to deploy this
recognizer on mobile devices or FPGAs for practical applications.

Bibliography

Agarwal, S.; Awan, A.; and Roth, D., 2004. Learning to detect objects in images
via a sparse, part-based representation. IEEE Trans. Pattern Anal. Mach. Intell., 26,
11 (2004), 1475–1490. (cited on page 39)

Ahonen, T.; Hadid, A.; and Pietikäinen, M., 2004. Face recognition with local
binary patterns. In Proc. Eur. Conf. Comp. Vis., 469–481. Springer. (cited on pages
1, 9, 21, 23, 25, 31, and 32)

Azizpour, H.; Razavian, A. S.; Sullivan, J.; Maki, A.; and Carlsson, S., 2016.
Factors of transferability for a generic convnet representation. IEEE Trans. Pattern
Anal. Mach. Intell., 38, 9 (2016), 1790–1802. (cited on page 2)

Behley, J.; Steinhage, V.; and Cremers, A. B., 2013. Laser-based segment classifi-
cation using a mixture of bag-of-words. In Proc. IEEE Int. Conf. Intell. Robots Syst.,
4195–4200. IEEE. (cited on pages 44 and 46)

Branson, S.; Van Horn, G.; Belongie, S.; and Perona, P., 2014. Bird species cat-
egorization using pose normalized deep convolutional nets. In Proc. British Mach.
Vis. Conf. (cited on page 49)

Broggi, A.; Cappalunga, A.; Cattani, S.; and Zani, P., 2008. Lateral vehicles de-
tection using monocular high resolution cameras on terramax. In Proc. IEEE Intell.
Vehicles Symp., 1143–1148. IEEE. (cited on page 26)

Cai, Z.; Saberian, M.; and Vasconcelos, N., 2015. Learning complexity-aware
cascades for deep pedestrian detection. In Proc. IEEE Int. Conf. Comp. Vis., 3361–
3369. (cited on pages xx, 3, 49, 50, 59, 61, 68, 69, and 72)

Chai, Y.; Lempitsky, V.; and Zisserman, A., 2013. Symbiotic segmentation and part
localization for fine-grained categorization. In Proc. IEEE Int. Conf. Comp. Vis., 321–
328. (cited on page 89)

Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and Yuille, A. L., 2015a.
Semantic image segmentation with deep convolutional nets and fully connected
CRFs. In Proc. Int. Conf. Learning Representations. (cited on pages 59 and 60)

117

118 BIBLIOGRAPHY

Chen, P.; Bai, X.; and Liu, W., 2014. Vehicle color recognition on urban road by fea-
ture context. IEEE Trans. Intell. Transportation Syst., 15, 5 (2014), 2340–2346. (cited
on pages 100, 102, 106, and 112)

Chen, X.; Kundu, K.; Zhu, Y.; Berneshawi, A. G.; Ma, H.; Fidler, S.; and Urtasun,
R., 2015b. 3d object proposals for accurate object class detection. In Proc. Adv.
Neural Inf. Process. Syst., 424–432. (cited on pages 71 and 72)

Cimpoi, M.; Maji, S.; and Vedaldi, A., 2015. Deep filter banks for texture recognition
and segmentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 3828–3836. (cited
on page 76)

Coates, A. and Ng, A. Y., 2011. The importance of encoding versus training with
sparse coding and vector quantization. In Proc. Int. Conf. Mach. Learn., 921–928.
(cited on page 32)

Cordts, M.; Omran, M.; Ramos, S.; Scharwächter, T.; Enzweiler, M.; Benenson,
R.; Franke, U.; Roth, S.; and Schiele, B., 2015. The cityscapes dataset. In Proc.
IEEE Conf. Comp. Vis. Patt. Recogn. Workshops. (cited on page 59)

Cui, J.; Liu, F.; Li, Z.; and Jia, Z., 2010. Vehicle localisation using a single camera. In
Proc. IEEE Intell. Vehicles Symp., 871–876. IEEE. (cited on page 26)

Dalal, N. and Triggs, B., 2005. Histograms of oriented gradients for human detec-
tion. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 886–893. IEEE. (cited on pages 1,
9, 10, 21, 22, 23, 25, 28, 37, 49, and 53)

Dalal, N.; Triggs, B.; and Schmid, C., 2006. Human detection using oriented his-
tograms of flow and appearance. In Proc. Eur. Conf. Comp. Vis., 428–441. Springer.
(cited on page 9)

de la Escalera, A.; Armingol, J. M.; and Mata, M., 2003. Traffic sign recognition
and analysis for intelligent vehicles. Image Vis. Comput., 21, 3 (2003), 247–258. (cited
on pages 21 and 24)

De La Escalera, A.; Moreno, L. E.; Salichs, M. A.; and Armingol, J. M., 1997.
Road traffic sign detection and classification. IEEE Trans. Industrial Electronics, 44,
6 (1997), 848–859. (cited on pages 21 and 24)

Demiriz, A.; Bennett, K. P.; and Shawe-Taylor, J., 2002. Linear programming
boosting via column generation. Mach. Learn., 46, 1-3 (2002), 225–254. (cited on
page 53)

BIBLIOGRAPHY 119

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L., 2009. Imagenet: A
large-scale hierarchical image database. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
248–255. (cited on pages 2, 19, 49, 76, and 104)

Divvala, S. K.; Efros, A. A.; and Hebert, M., 2012. How important are "deformable
parts" in the deformable parts model? In Proc. Eur. Conf. Comp. Vis. Workshop,
31–40. Springer. (cited on pages 22, 23, and 25)

Dollár, P.; Appel, R.; Belongie, S.; and Perona, P., 2014. Fast feature pyramids
for object detection. IEEE Trans. Pattern Anal. Mach. Intell., 36, 8 (2014), 1532–1545.
(cited on pages xix, 49, 56, 61, and 67)

Dollár, P.; Appel, R.; Belongie, S.; and Perona, P., 2014. Fast feature pyramids
for object detection. IEEE Trans. Pattern Anal. Mach. Intell., 36, 8 (2014), 1532–1545.
(cited on pages 9, 11, 22, 24, 25, 28, and 30)

Dollár, P.; Belongie, S.; and Perona, P., 2010. The fastest pedestrian detector in
the west. In Proc. British Mach. Vis. Conf., 1–11. (cited on pages 1, 3, and 37)

Dollár, P.; Tu, Z.; Perona, P.; and Belongie, S., 2009. Integral channel features. In
Proc. British Mach. Vis. Conf., 1–11. (cited on pages 23, 28, 30, and 31)

Dollar, P.; Wojek, C.; Schiele, B.; and Perona, P., 2012. Pedestrian detection: An
evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell., 34, 4 (2012),
743–761. (cited on page 52)

Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; and Dar-
rell, T., 2014. Decaf: A deep convolutional activation feature for generic visual
recognition. In Proc. Int. Conf. Mach. Learn., vol. 32, 647–655. (cited on page 2)

Enzweiler, M.; Eigenstetter, A.; Schiele, B.; and Gavrila, D. M., 2010. Multi-cue
pedestrian classification with partial occlusion handling. In Proc. IEEE Conf. Comp.
Vis. Patt. Recogn., 990–997. (cited on page 50)

Everingham, M.; Gool, L. J. V.; Williams, C. K. I.; Winn, J. M.; and Zisserman,
A., 2010. The pascal visual object classes (VOC) challenge. Int. J. Comp. Vis., 88, 2
(2010), 303–338. (cited on pages 35, 37, and 41)

Fang, C.; Chen, S.; and Fuh, C., 2003. Road-sign detection and tracking. IEEE Trans.
Vehicular Technol., 52, 5 (2003), 1329–1341. (cited on page 24)

Felzenszwalb, P. F.; Girshick, R. B.; McAllester, D. A.; and Ramanan, D., 2010.
Object detection with discriminatively trained part-based models. IEEE Trans. Pat-

120 BIBLIOGRAPHY

tern Anal. Mach. Intell., 32, 9 (2010), 1627–1645. (cited on pages 22, 23, 25, 43, 44,
46, 50, and 75)

Fidler, S.; Mottaghi, R.; Urtasun, R.; et al., 2013. Bottom-up segmentation for
top-down detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 3294–3301. (cited
on page 51)

Freund, Y. and Schapire, R. E., 1999. A short introduction to boosting. (1999),
1401–1406. (cited on pages 11 and 53)

Friedman, J.; Hastie, T.; and Tibshirani, R., 2000. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). J.
Annals Stat., 28, 2 (2000), 337–407. (cited on page 14)

Gao, X. W.; Podladchikova, L.; Shaposhnikov, D.; Hong, K.; and Shevtsova,
N., 2006. Recognition of traffic signs based on their colour and shape features
extracted using human vision models. J. Visual Comm. Image Repr., 17, 4 (2006),
675–685. (cited on page 25)

Geiger, A.; Lenz, P.; Stiller, C.; and Urtasun, R., 2013. Vision meets robotics: The
KITTI dataset. Int. J. Robotic Res., 32, 11 (2013), 1231–1237. (cited on pages 26
and 40)

Geiger, A.; Lenz, P.; and Urtasun, R., 2012. Are we ready for autonomous driving?
the kitti vision benchmark suite. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 3354–
3361. (cited on page 53)

Geiger, A.; Wojek, C.; and Urtasun, R., 2011. Joint 3d estimation of objects and
scene layout. In Proc. Adv. Neural Inf. Process. Syst., 1467–1475. (cited on pages 22,
23, and 25)

Getreuer, P., 2012. Automatic color enhancement (ace) and its fast implementation.
Image Process. Line, 2 (2012), 266–277. (cited on page 37)

Gevers, T.; Van De Weijer, J.; and Stokman, H., 2006. Color feature detection.
(cited on pages 99 and 112)

Girshick, R., 2015. Fast R-CNN. In Proc. IEEE Int. Conf. Comp. Vis., 1440–1448. (cited
on pages 3, 19, and 49)

Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J., 2014a. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., 580–587. (cited on pages 3, 19, 49, and 78)

BIBLIOGRAPHY 121

Girshick, R.; Iandola, F.; Darrell, T.; and Malik, J., 2015. Deformable part models
are convolutional neural networks. Proc. IEEE Conf. Comp. Vis. Patt. Recogn., (2015),
437–446. (cited on page 50)

Girshick, R. B.; Donahue, J.; Darrell, T.; and Malik, J., 2014b. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., 580–587. (cited on pages 2 and 23)

Gómez-Moreno, H.; Maldonado-Bascón, S.; Gil-Jiménez, P.; and Lafuente-
Arroyo, S., 2010. Goal evaluation of segmentation algorithms for traffic sign
recognition. IEEE Trans. Intell. Transportation Syst., 11, 4 (2010), 917–930. (cited
on page 24)

González, A.; Villalonga, G.; Xu, J.; Vázquez, D.; Amores, J.; and López, A. M.,
2015. Multiview random forest of local experts combining rgb and lidar data for
pedestrian detection. In Proc. IEEE Intell. Vehicles Symp., 356–361. IEEE. (cited on
page 46)

Gosselin, P.-H.; Murray, N.; Jégou, H.; and Perronnin, F., 2014. Revisiting the
fisher vector for fine-grained classification. Patt. Recogn. Lett., 49 (2014), 92–98.
(cited on page 89)

Gu, H.-Z. and Lee, S.-Y., 2013. Car model recognition by utilizing symmetric prop-
erty to overcome severe pose variation. Mach. vis. app., 24, 2 (2013), 255–274. (cited
on page 78)

Hariharan, B.; Arbeláez, P.; Girshick, R.; and Malik, J., 2014. Simultaneous
detection and segmentation. In Proc. Eur. Conf. Comp. Vis., 297–312. (cited on
pages 49 and 51)

Hariharan, B.; Arbeláez, P.; Girshick, R.; and Malik, J., 2015. Hypercolumns for
object segmentation and fine-grained localization. Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., (2015), 447–456. (cited on pages 51 and 59)

Hastie, T.; Tibshirani, R.; Friedman, J.; and Franklin, J., 2005. The elements of
statistical learning: data mining, inference and prediction. J. Math. Intelligencer, 27,
2 (2005), 83–85. (cited on pages 13 and 54)

He, H.; Shao, Z.; and Tan, J., 2015a. Recognition of car makes and models from
a single traffic-camera image. IEEE Trans. Intell. Transportation Syst., 16, 6 (2015),
3182–3192. (cited on page 77)

122 BIBLIOGRAPHY

He, K.; Zhang, X.; Ren, S.; and Sun, J., 2015b. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proc. IEEE Int. Conf.
Comp. Vis., 1026–1034. (cited on pages 17 and 111)

He, K.; Zhang, X.; Ren, S.; and Sun, J., 2016. Deep residual learning for image
recognition. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 770–778. (cited on pages
2, 17, 19, 76, 77, 83, 85, 87, 88, 100, and 105)

Hejrati, M. and Ramanan, D., 2012. Analyzing 3d objects in cluttered images. In
Proc. Adv. Neural Inf. Process. Syst., 602–610. (cited on pages 22 and 25)

Hosang, J.; Omran, M.; Benenson, R.; and Schiele, B., 2015. Taking a deeper look
at pedestrians. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 4073–4082. (cited on
pages 49, 52, 69, and 72)

Houben, S., 2011. A single target voting scheme for traffic sign detection. In Proc.
IEEE Intell. Vehicles Symp., 124–129. IEEE. (cited on page 24)

Houben, S.; Stallkamp, J.; Salmen, J.; Schlipsing, M.; and Igel, C., 2013. De-
tection of traffic signs in real-world images: The German Traffic Sign Detection
Benchmark. In Proc. Int. Joint Conf. Neural Net., 1–8. IEEE. (cited on pages 25, 36,
and 39)

Hsiao, E.; Sinha, S. N.; Ramnath, K.; Baker, S.; Zitnick, L.; and Szeliski, R., 2014.
Car make and model recognition using 3d curve alignment. In Proc. IEEE Win.
Conf. App. Comp. Vis., 1–1. IEEE. (cited on page 78)

Hsieh, J.-W.; Chen, L.-C.; Chen, S.-Y.; Chen, D.-Y.; Alghyaline, S.; and Chiang,
H.-F., 2015. Vehicle color classification under different lighting conditions through
color correction. IEEE Sensors Journal, 15, 2 (2015), 971–983. (cited on pages 99
and 101)

Hu, C.; Bai, X.; Qi, L.; Chen, P.; Xue, G.; and Mei, L., 2015. Vehicle color recognition
with spatial pyramid deep learning. IEEE Trans. Intell. Transportation Syst., 16, 5
(2015), 2925–2934. (cited on pages 100, 101, and 112)

Hu, Q.; Paisitkriangkrai, S.; Shen, C.; van den Hengel, A.; and Porikli, F., 2016.
Fast detection of multiple objects in traffic scenes with a common detection frame-
work. IEEE Transactions on Intelligent Transportation Systems, 17, 4 (2016), 1002–1014.
(cited on page 75)

Huang, J.; Kumar, S. R.; Mitra, M.; Zhu, W.-J.; and Zabih, R., 1997. Image indexing
using color correlograms. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 762–768.
IEEE. (cited on pages 99, 101, and 112)

BIBLIOGRAPHY 123

Iandola, F. N.; Han, S.; Moskewicz, M. W.; Ashraf, K.; Dally, W. J.; and Keutzer,
K., 2017. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5
mb model size. arXiv preprint arXiv:1602.07360, (2017). (cited on pages 17, 111,
and 112)

Ioffe, S. and Szegedy, C., 2015. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, (2015).
(cited on pages 17 and 18)

Jain, A. K.; Murty, M. N.; and Flynn, P. J., 1999. Data clustering: a review. ACM
computing surveys (CSUR), 31, 3 (1999), 264–323. (cited on page 30)

Janssen, R.; Ritter, W.; Stein, F.; and Ott, S., 1993. Hybrid approach for traffic sign
recognition. In Proc. IEEE Intell. Vehicles Symp., 390–395. (cited on page 24)

Jégou, H.; Douze, M.; Schmid, C.; and Pérez, P., 2010. Aggregating local descriptors
into a compact image representation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
3304–3311. IEEE. (cited on pages 4 and 76)

Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadar-
rama, S.; and Darrell, T., 2014. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093, (2014). (cited on page 107)

Ke, Y. and Sukthankar, R., 2004. Pca-sift: A more distinctive representation for
local image descriptors. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., vol. 2, 506–513.
IEEE. (cited on page 9)

Kender, J. R., 1976. Saturation, heu, and normalized color: Calculation, digitization
effects, and use. Technical report, DTIC Document. (cited on pages 5, 100, and 101)

Krähenbühl, P. and Koltun, V., 2011. Efficient inference in fully connected CRFs
with Gaussian edge potentials. In Proc. Adv. Neural Inf. Process. Syst. (cited on
page 59)

Krause, J.; Jin, H.; Yang, J.; and Fei-Fei, L., 2015. Fine-grained recognition without
part annotations. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 5546–5555. (cited on
pages 75, 78, and 89)

Krause, J.; Stark, M.; Deng, J.; and Fei-Fei, L., 2013. 3d object representations for
fine-grained categorization. In Proc. IEEE Int. Conf. Comp. Vis. Workshops, 554–561.
(cited on pages 75, 77, 78, 79, 80, 85, and 87)

Krizhevsky, A. and Hinton, G., 2009. Learning multiple layers of features from tiny
images. Technical report, University of Toronto. (cited on page 49)

124 BIBLIOGRAPHY

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E., 2012. Imagenet classification
with deep convolutional neural networks. In Proc. Adv. Neural Inf. Process. Syst.,
1097–1105. (cited on pages 2, 5, 17, 19, 49, 76, 77, 83, 85, 87, 100, 104, 105, and 112)

Kuo, C. and Nevatia, R., 2009. Robust multi-view car detection using unsupervised
sub-categorization. In Proc. App. Comp. Vis. Workshop, 1–8. IEEE. (cited on pages
22 and 26)

Kuo, W. and Lin, C., 2007. Two-stage road sign detection and recognition. In Proc.
IEEE Int. Conf. Multimedia Expo., 1427–1430. IEEE. (cited on pages 21 and 24)

Kyo, S.; Koga, T.; Sakurai, K.; and Okazaki, S., 1999. A robust vehicle detecting and
tracking system for wet weather conditions using the imap-vision image process-
ing board. In Proc. IEEE Int. Conf. Intell. Transportation Syst., 423–428. IEEE. (cited
on page 26)

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P., 1998. Gradient-based learning
applied to document recognition. Proc. IEEE, 86, 11 (1998), 2278–2324. (cited on
page 15)

Li, B.; Wu, T.; and Zhu, S., 2014a. Integrating context and occlusion for car detection
by hierarchical and-or model. In Proc. Eur. Conf. Comp. Vis., 652–667. Springer.
(cited on page 44)

Li, L.-J.; Su, H.; Lim, Y.; and Fei-Fei, L., 2014b. Object bank: An object-level image
representation for high-level visual recognition. Int. J. Comput. Vision, 107, 1 (2014),
20–39. (cited on page 61)

Li, Y.; He, K.; Sun, J.; et al., 2016a. R-fcn: Object detection via region-based fully
convolutional networks. In Proc. Adv. Neural Inf. Process. Syst., 379–387. (cited on
page 116)

Li, Y.; Liu, L.; Shen, C.; and Hengel, A. v. d., 2016b. Mining mid-level visual patterns
with deep cnn activations. Int. J. Comp. Vis., (2016), 1–21. (cited on page 81)

Li, Y.; Liu, L.; Shen, C.; and van den Hengel, A., 2015. Mid-level deep pattern
mining. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 971–980. IEEE. (cited on page
81)

Liang, M.; Yuan, M.; Hu, X.; Li, J.; and Liu, H., 2013. Traffic sign detection by ROI
extraction and histogram features-basedrecognition. In Proc. Int. Joint Conf. Neural
Net., 1–8. IEEE. (cited on pages 25 and 39)

BIBLIOGRAPHY 125

Liao, L.; Hu, R.; Xiao, J.; Wang, Q.; Xiao, J.; and Chen, J., 2015. Exploiting effects of
parts in fine-grained categorization of vehicles. In Proc. IEEE Int. Conf. Image Proc.,
745–749. IEEE. (cited on page 77)

Lin, G.; Shen, C.; Reid, I.; et al., 2015a. Efficient piecewise training of deep struc-
tured models for semantic segmentation. arXiv:1504.01013, (2015). (cited on pages
59 and 60)

Lin, H.-T.; Lin, C.-J.; and Weng, R. C., 2007. A note on platt’s probabilistic outputs
for support vector machines. Mach. Learn., 68, 3 (2007), 267–276. (cited on page
34)

Lin, L.; Wang, X.; Yang, W.; and Lai, J.-H., 2015b. Discriminatively trained and-or
graph models for object shape detection. IEEE Trans. Pattern Anal. Mach. Intell., 37,
5 (2015), 959–972. (cited on page 50)

Lin, M.; Chen, Q.; and Yan, S., 2013. Network in network. arXiv preprint
arXiv:1312.4400, (2013). (cited on page 104)

Lin, T.-Y.; RoyChowdhury, A.; and Maji, S., 2015c. Bilinear cnn models for fine-
grained visual recognition. In Proc. IEEE Int. Conf. Comp. Vis., 1449–1457. (cited on
pages 2, 19, 75, 76, 78, and 89)

Lin, Y.-L.; Morariu, V. I.; Hsu, W.; and Davis, L. S., 2014. Jointly optimizing 3d
model fitting and fine-grained classification. In Proc. Eur. Conf. Comp. Vis., 466–480.
Springer. (cited on page 78)

Liu, L.; Shen, C.; and van den Hengel, A., 2015. The treasure beneath convolutional
layers: Cross-convolutional-layer pooling for image classification. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., 4749–4757. (cited on pages 2, 4, 19, 76, 78, and 81)

Liu, L.; Shen, C.; Wang, L.; van den Hengel, A.; and Wang, C., 2014. Encoding
high dimensional local features by sparse coding based fisher vectors. In Proc. Adv.
Neural Inf. Process. Syst., 1143–1151. (cited on page 81)

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; and Berg, A. C.,
2016. Ssd: Single shot multibox detector. In Proc. Eur. Conf. Comp. Vis., 21–37.
Springer. (cited on pages 19 and 116)

Long, C.; Wang, X.; Hua, G.; Yang, M.; and Lin, Y., 2014. Accurate object detection
with location relaxation and regionlets re-localization. In Proc. Asian Conf. Comp.
Vis., 3000–3016. IEEE. (cited on pages 43 and 46)

126 BIBLIOGRAPHY

Long, J.; Shelhamer, E.; and Darrell, T., 2015. Fully convolutional networks for
semantic segmentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 3431–3440.
(cited on pages 51 and 59)

Lowe, D. G., 1999. Object recognition from local scale-invariant features. In Computer
vision, 1999. The proceedings of the seventh IEEE international conference on, vol. 2,
1150–1157. Ieee. (cited on pages 1, 4, and 76)

Lowe, D. G., 2004. Distinctive image features from scale-invariant keypoints. Int. J.
Comp. Vis., 60, 2 (2004), 91–110. (cited on page 9)

Loy, G. B. and Barnes, N. M., 2004. Fast shape-based road sign detection for a driver
assistance system. In Proc. IEEE Int. Conf. Intell. Robots Syst., 70–75. IEEE. (cited
on page 24)

Luo, P.; Tian, Y.; Wang, X.; and Tang, X., 2014. Switchable deep network for pedes-
trian detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 899–906. (cited on page
50)

Maldonado-Bascón, S.; Lafuente-Arroyo, S.; Gil-Jiménez, P.; Gómez-Moreno,
H.; and López-Ferreras, F., 2007. Road-sign detection and recognition based on
support vector machines. IEEE Trans. Intell. Transportation Syst., 8, 2 (2007), 264–278.
(cited on page 24)

Martinez, E.; Diaz, M.; Melenchon, J.; Montero, J.; Iriondo, I.; and Socoro, J.,
2008. Driving assistance system based on the detection of head-on collisions. In
Proc. IEEE Intell. Vehicles Symp., 913–918. IEEE. (cited on page 26)

Masnadi-Shirazi, H. and Vasconcelos, N., 2011. Cost-sensitive boosting. IEEE
Trans. Pattern Anal. Mach. Intell., 33, 2 (2011), 294–309. (cited on page 40)

Mathias, M.; Benenson, R.; Timofte, R.; and Van Gool, L., 2013a. Handling
occlusions with franken-classifiers. In Proc. IEEE Int. Conf. Comp. Vis., 1505–1512.
(cited on page 50)

Mathias, M.; Timofte, R.; Benenson, R.; and Gool, L. J. V., 2013b. Traffic sign
recognition - how far are we from the solution? In Proc. Int. Joint Conf. Neural Net.,
1–8. IEEE. (cited on pages 21, 24, 25, and 39)

Mishkin, D.; Sergievskiy, N.; and Matas, J., 2016. Systematic evaluation of cnn
advances on the imagenet. arXiv preprint arXiv:1606.02228, (2016). (cited on page
102)

BIBLIOGRAPHY 127

Mogelmose, A.; Trivedi, M. M.; and Moeslund, T. B., 2012. Vision-based traffic
sign detection and analysis for intelligent driver assistance systems: Perspectives
and survey. IEEE Trans. Intell. Transportation Syst., 13, 4 (2012), 1484–1497. (cited
on page 24)

Nam, W.; Dollár, P.; and Han, J. H., 2014. Local decorrelation for improved pedes-
trian detection. In Proc. Adv. Neural Inf. Process. Syst., 424–432. (cited on pages 9
and 69)

Ng, A. Y.; Jordan, M. I.; Weiss, Y.; et al., 2002. On spectral clustering: Analysis and
an algorithm. Proc. Adv. Neural Inf. Process. Syst., 2 (2002), 849–856. (cited on page
30)

Ohn-Bar, E. and Trivedi, M. M., 2014. Fast and robust object detection using visual
subcategories. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn. Workshop, 179–184. (cited
on pages 22, 24, 26, 43, and 44)

Ohn-Bar, E. and Trivedi, M. M., 2015. Learning to detect vehicles by clustering
appearance patterns. IEEE Trans. Intell. Transportation Syst., 16, 5 (2015), 2511–2521.
(cited on page 29)

Ojala, T.; Pietikäinen, M.; and Harwood, D., 1996. A comparative study of texture
measures with classification based on featured distributions. Patt. Recogn., 29, 1
(1996), 51–59. (cited on page 10)

Ojala, T.; Pietikainen, M.; and Maenpaa, T., 2002. Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. IEEE Trans. Pat-
tern Anal. Mach. Intell., 24, 7 (2002), 971–987. (cited on page 10)

Ouyang, W. and Wang, X., 2012. A discriminative deep model for pedestrian de-
tection with occlusion handling. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 3258–
3265. (cited on page 50)

Ouyang, W. and Wang, X., 2013a. Joint deep learning for pedestrian detection. In
Proc. IEEE Int. Conf. Comp. Vis., 2056–2063. (cited on page 50)

Ouyang, W. and Wang, X., 2013b. Single-pedestrian detection aided by multi-
pedestrian detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 3198–3205. (cited
on page 50)

Paisitkriangkrai, S.; Shen, C.; and Hengel, A. v. d., 2016. Pedestrian detection with
spatially pooled features and structured ensemble learning. IEEE Trans. Pattern
Anal. Mach. Intell., 38, 6 (2016), 1243–1257. (cited on pages 49, 53, 63, 69, and 72)

128 BIBLIOGRAPHY

Paisitkriangkrai, S.; Shen, C.; and van den Hengel, A., 2014a. Asymmetric prun-
ing for learning cascade detectors. IEEE Trans. Multimedia, 16, 5 (2014), 1254–1267.
(cited on page 40)

Paisitkriangkrai, S.; Shen, C.; and van den Hengel, A., 2014b. Strengthening the
effectiveness of pedestrian detection with spatially pooled features. In Proc. Eur.
Conf. Comp. Vis., 546–561. Springer. (cited on pages 2, 9, 23, 24, 28, 30, 31, 32, 33,
56, and 69)

Pepik, B.; Stark, M.; Gehler, P.; and Schiele, B., 2015. Multi-view and 3d de-
formable part models. IEEE Trans. Pattern Anal. Mach. Intell., 37, 11 (2015), 2232–
2245. (cited on page 46)

Pepik, B.; Stark, M.; Gehler, P. V.; and Schiele, B., 2013. Occlusion patterns for
object class detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 3286–3293. IEEE.
(cited on pages 22, 25, 43, and 44)

Perronnin, F.; Sánchez, J.; and Mensink, T., 2010. Improving the fisher kernel for
large-scale image classification. In Proc. Eur. Conf. Comp. Vis., 143–156. Springer.
(cited on pages 4 and 76)

Pettersson, N.; Petersson, L.; and Andersson, L., 2008. The histogram feature-a
resource-efficient weak classifier. In Proc. IEEE Intell. Vehicles Symp., 678–683. IEEE.
(cited on page 25)

Platt, J. C., 1999. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In Proc. Adv. Large Margin Classifiers, 61–74.
Citeseer. (cited on page 34)

Prisacariu, V. A.; Timofte, R.; Zimmermann, K.; Reid, I.; and Gool, L. J. V., 2010.
Integrating object detection with 3d tracking towards a better driver assistance
system. In Proc. Int. conf. Patt. Recogn., 3344–3347. IEEE. (cited on page 25)

Qiu, G.; Feng, X.; and Fang, J., 2004. Compressing histogram representations for au-
tomatic colour photo categorization. Patt. Recogn., 37, 11 (2004), 2177–2193. (cited
on page 101)

Qui, Z.; Yao, D.; Zhang, Y.; Ma, D.; and Liu, X., 2003. The study of the detection
of pedestrian and bicycle using image processing. IEEE Trans. Intell. Transportation
Syst., 1 (2003), 340–345. (cited on page 26)

Rachmadi, R. F. and Purnama, I., 2015. Vehicle color recognition using convolu-
tional neural network. arXiv preprint arXiv:1510.07391, (2015). (cited on pages 100,
101, 102, 111, and 112)

BIBLIOGRAPHY 129

Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A., 2016. You only look once:
Unified, real-time object detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
779–788. (cited on pages 19 and 116)

Ren, S.; He, K.; Girshick, R.; and Sun, J., 2015. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Proc. Adv. Neural Inf. Process.
Syst., 91–99. (cited on pages 19, 93, and 116)

Ren, S.; He, K.; Girshick, R.; Zhang, X.; and Sun, J., 2016. Object detection networks
on convolutional feature maps. IEEE Trans. Pattern Anal. Mach. Intell., (2016). (cited
on page 51)

Rogers, S. and Papanikolopoulos, N. P., 2000. Counting bicycles using computer
vision. In Proc. IEEE Conf. Intell. Transportation Syst., 33–38. IEEE. (cited on page
26)

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.;
Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; and Fei-Fei, L., 2015.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comp. Vis., 115, 3 (2015),
211–252. doi:10.1007/s11263-015-0816-y. (cited on page 19)

Sermanet, P. and LeCun, Y., 2011. Traffic sign recognition with multi-scale convo-
lutional networks. In Proc. Int. Joint Conf. Neural Net., 2809–2813. IEEE. (cited on
page 25)

Shechtman, E. and Irani, M., 2007. Matching local self-similarities across images
and videos. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 1–8. IEEE. (cited on page
49)

Simonyan, K. and Zisserman, A., 2014. Two-stream convolutional networks for
action recognition in videos. In Proc. Adv. Neural Inf. Process. Syst., 568–576. (cited
on page 49)

Simonyan, K. and Zisserman, A., 2015. Very deep convolutional networks for large-
scale image recognition. In Proc. Int. Conf. Learning Representations. (cited on pages
2, 3, 17, 19, 49, 50, 51, 54, 76, 77, 83, 85, 100, and 105)

Sivaraman, S. and Trivedi, M. M., 2013. Looking at vehicles on the road: A survey
of vision-based vehicle detection, tracking, and behavior analysis. IEEE Trans. Intell.
Transportation Syst., 14, 4 (2013), 1773–1795. (cited on pages 21 and 25)

Sochor, J.; Herout, A.; and Havel, J., 2016. Boxcars: 3d boxes as cnn input for
improved fine-grained vehicle recognition. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., 3006–3015. (cited on pages xxi, 78, and 90)

130 BIBLIOGRAPHY

Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.; and Salakhutdinov,
R., 2014. Dropout: a simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res., 15, 1 (2014), 1929–1958. (cited on page 18)

Stokman, H. and Gevers, T., 2007. Selection and fusion of color models for image
feature detection. IEEE transactions on pattern analysis and machine intelligence, 29, 3
(2007). (cited on page 99)

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.;
Vanhoucke, V.; and Rabinovich, A., 2015. Going deeper with convolutions. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 1–9. (cited on pages 3, 17, and 49)

Tang, S.; Andriluka, M.; and Schiele, B., 2014. Detection and tracking of occluded
people. Int. J. Comp. Vis., 110, 1 (2014), 58–69. (cited on page 50)

Tian, Y.; Luo, P.; Wang, X.; and Tang, X., 2015. Deep learning strong parts for
pedestrian detection. In Proc. IEEE Int. Conf. Comp. Vis., 1904–1912. (cited on
pages 3, 49, 50, 59, 68, 69, and 72)

Timofte, R.; Zimmermann, K.; and Gool, L. J. V., 2009. Multi-view traffic sign
detection, recognition, and 3d localisation. In Proc. App. Comp. Vis. Workshop, 1–8.
IEEE. (cited on pages 24 and 39)

Tompson, J. J.; Jain, A.; LeCun, Y.; and Bregler, C., 2014. Joint training of a convo-
lutional network and a graphical model for human pose estimation. In Proc. Adv.
Neural Inf. Process. Syst., 1799–1807. (cited on page 49)

Torres, J. J. Y.; Bergasa, L. M.; Arroyo, R.; and Lazaro, A., 2014. Supervised
learning and evaluation of kitti’s cars detector with DPM. In Proc. IEEE Intell.
Vehicles Symp., 768–773. (cited on pages 23, 25, 43, 44, and 46)

Tuzel, O.; Porikli, F.; and Meer, P., 2006. Region covariance: A fast descriptor for
detection and classification. In Proc. Eur. Conf. Comp. Vis., 589–600. Springer. (cited
on pages 1, 9, 10, and 31)

Van De Sande, K.; Gevers, T.; and Snoek, C., 2010. Evaluating color descriptors for
object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell., 32, 9 (2010),
1582–1596. (cited on pages 99, 101, and 112)

Van de Weijer, J.; Gevers, T.; and Bagdanov, A. D., 2006. Boosting color saliency
in image feature detection. IEEE Trans. Pattern Anal. Mach. Intell., 28, 1 (2006),
150–156. (cited on pages 5, 100, 101, and 112)

BIBLIOGRAPHY 131

Vedaldi, A. and Fulkerson, B., 2010. Vlfeat: an open and portable library of com-
puter vision algorithms. In Proc. IEEE Int. Conf. Multimedia, 1469–1472. ACM.
(cited on page 33)

Viola, P. and Jones, M. J., 2004. Robust real-time face detection. Int. J. Comp. Vis.,
57, 2 (2004), 137–154. (cited on pages 22, 23, 27, 39, and 40)

Wang, F.; Man, L.; Wang, B.; Xiao, Y.; Pan, W.; and Lu, X., 2008. Fuzzy-based
algorithm for color recognition of license plates. Patt. Recogn. Lett., 29, 7 (2008),
1007–1020. (cited on pages 99 and 101)

Wang, G.; Ren, G.; Wu, Z.; Zhao, Y.; and Jiang, L., 2013a. A robust, coarse-to-fine
traffic sign detection method. In Proc. Int. Joint Conf. Neural Net., 1–5. IEEE. (cited
on pages 21, 25, and 39)

Wang, H.; Chen, Q.; and Cai, W., 2006. Shape-based pedestrian/bicyclist detection
via onboard stereo vision. In Proc. Multiconf. Computational Eng. Syst. App., 1776–
1780. IEEE. (cited on page 26)

Wang, J.; Bebis, G.; and Miller, R., 2005. Overtaking vehicle detection using dy-
namic and quasi-static background modeling. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn. workshop, 64–64. IEEE. (cited on page 26)

Wang, X.; Han, T. X.; and Yan, S., 2009. An HOG-LBP human detector with partial
occlusion handling. In Proc. IEEE Int. Conf. Comp. Vis., 32–39. IEEE. (cited on pages
23 and 33)

Wang, X.; Yang, M.; Zhu, S.; and Lin, Y., 2013b. Regionlets for generic object
detection. In Proc. IEEE Int. Conf. Comp. Vis., 17–24. IEEE. (cited on pages 23, 43,
44, 46, 72, and 75)

Wu, J.; Brubaker, S. C.; Mullin, M. D.; and Rehg, J. M., 2008. Fast asymmetric
learning for cascade face detection. IEEE Trans. Pattern Anal. Mach. Intell., 30, 3
(2008), 369–382. (cited on page 40)

Yan, J.; Yu, Y.; Zhu, X.; Lei, Z.; and Li, S. Z., 2015. Object detection by labeling
superpixels. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 5107–5116. (cited on page
51)

Yan, J.; Zhang, X.; Lei, Z.; Liao, S.; and Li, S. Z., 2013. Robust multi-resolution
pedestrian detection in traffic scenes. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
3033–3040. IEEE. (cited on page 23)

132 BIBLIOGRAPHY

Yang, B.; Yan, J.; Lei, Z.; and Li, S. Z., 2015a. Convolutional channel features. In
Proc. IEEE Int. Conf. Comp. Vis., 82–90. (cited on pages 51, 52, 54, and 55)

Yang, L.; Luo, P.; Change Loy, C.; and Tang, X., 2015b. A large-scale car dataset
for fine-grained categorization and verification. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., 3973–3981. (cited on pages 75, 78, 79, 80, 85, 89, and 90)

Zhang, N.; Farrell, R.; and Darrell, T., 2012. Pose pooling kernels for sub-
category recognition. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 3665–3672. IEEE.
(cited on pages 4 and 75)

Zhang, S.; Benenson, R.; and Schiele, B., 2015. Filtered channel features for pedes-
trian detection. Proc. IEEE Conf. Comp. Vis. Patt. Recogn., (2015), 1751–1760. (cited
on pages 9, 49, 50, 51, 52, 53, 57, 61, 67, 69, and 72)

Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.; Su, Z.; Du, D.; Huang,
C.; and Torr, P., 2015. Conditional random fields as recurrent neural networks.
arXiv:1502.03240, (2015). (cited on pages 59 and 60)

	Abstract
	Declaration
	Publications
	Acknowledgments
	Contents
	Introduction
	Overview
	Problem formulations
	A common detection framework to fastly detect multiple objects of interest in traffic scenes
	Pedestrian detection
	Fine-grained car recognition
	Vehicle color recognition

	Main contributions
	Thesis outline

	Literature Review
	Hand-crafted features
	Scale invariant feature transform
	Histogram of oriented gradients
	Local binary patterns
	Region covariance features
	Aggregated channel features

	AdaBoost
	Introduction
	Training AdaBoost
	Shrinkage version of AdaBoost

	Convolutional neural networks
	Architecture
	Extensions and variants
	Training CNNs
	Applications

	Fast Detection of Multiple Objects in Traffic Scenes with a Common Framework
	Introduction
	Background
	Generic object detection
	Traffic sign detection
	Car detection
	Cyclist detection

	Proposed approach
	Object Subcategorization
	Visual features
	Geometrical features
	Clustering

	Feature extraction
	Aggregated channel features (ACF)
	Spatially pooled features

	Supervised learning
	Post-processing
	Calibration of confidence scores
	Non-maximum suppression (NMS)
	Fusion of detection results

	Experiments
	Traffic sign detection on GTSDB dataset
	Dataset
	Evaluation criteria
	Parameter selection
	Experimental design
	Comparison with state-of-the-art detectors

	Car detection on UIUC dataset
	Car detection on KITTI dataset
	Dataset
	Evaluation criteria
	Parameter selection
	Experimental design
	Comparison with state-of-the-art detectors

	Cyclist detection on KITTI dataset
	Dataset
	Evaluation criteria
	Parameter selection
	Experimental design
	Comparison with state-of-the-art detectors

	An evaluation of the overall runtime

	Conclusion

	Pushing the Limits of Deep CNNs for Pedestrian Detection
	Introduction
	Background
	Convolutional feature maps (CFMs)
	Segmentation for object detection

	Datasets, evaluation metric and models
	Caltech pedestrian dataset
	Inria pedestrian dataset
	KITTI pedestrian dataset
	Boosted decision forest

	Boosted decision forests with multi-layer CFMs
	Architecture of the VGG16 model
	Fine-tuning DCNNs with Bootstrapped Data
	Ensemble of Boosted Decision Forests

	Pixel labelling improves pedestrian detection
	Overview of the proposed framework
	Fusing models and evaluations
	Using complementary hand-crafted features
	Pixel labelling
	Ablation studies
	Fast ensemble models
	Comparison to state-of-the-art approaches
	Caltech
	Inria
	KITTI

	Conclusion

	Deep CNNs with Spatially Weighted Pooling for Fine-Grained Car Recognition
	Introduction
	Background
	Properties of fine-grained car datasets
	Proposed approach
	Spatially weighted pooling
	Using swp with DCNNs
	End-to-end training of swp

	Experiments
	Methods
	AlexNet with swp
	VGG16 with swp
	ResNets with local max-pooling
	ResNets with swp

	Implementation details
	Evaluation on the Stanford Cars-196 dataset
	Evaluation on the CompCars dataset
	Evaluation on our CarFlag-1532 dataset
	Evaluation on the CarFlag-563 dataset

	Conclusion

	ColorNet: A Small CNN with Color Transformation for Vehicle Color Recognition
	Introduction
	Background
	Proposed approach
	Color transformation
	Model optimization
	Model integration

	Experiments
	Dataset and evaluation metric
	Implementation details
	Experimental design
	Global average pooling (GAP)
	Size of input image
	Batch normalization (BN)
	Number of convolutional filters
	Number of convolutional layers
	Color transformation

	Comparison with state-of-the-art approaches

	Conclusion

	Conclusion and Future Directions
	Conclusion
	Future work

