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Abstract

Assessing the risk of disease spread between communities is important in our
highly connected modern world. However, the impact of disease- and population-
specific factors on the time taken for an epidemic to spread between communi-
ties, as well as the impact of stochastic disease dynamics on this spreading time,
are not well understood. In this study, we model the spread of an acute infec-
tion between two communities (‘patches’) using a susceptible-infectious-removed
(SIR) metapopulation model. We develop approximations to efficiently evaluate
the probability of a major outbreak in a second patch given disease introduction
in a source patch, and the distribution of the time taken for this to occur. We
use these approximations to assess how interventions, which either control dis-
ease spread within a patch or decrease the travel rate between patches, change
the spreading probability and median spreading time.

We find that decreasing the basic reproduction number in the source patch is
the most effective way of both decreasing the spreading probability, and delaying
epidemic spread to the second patch should this occur. Moreover, we show that
the qualitative effects of interventions are the same regardless of the approxima-
tions used to evaluate the spreading time distribution, but for some regions in
parameter space, quantitative findings depend upon the approximations used.
Importantly, if we neglect the possibility that an intervention prevents a large
outbreak in the source patch altogether, then intervention effectiveness is not
estimated accurately.
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1. Introduction

Infectious disease spread across regions has become more rapid due to in-
creased global mobility (Cliff et al., 2009). Understanding how disease- and
population-specific factors influence the timing of disease importation is impor-
tant for effective interventions to prevent or delay disease spread.5

As reviewed by Arino (2017), metapopulation models are useful for modelling
the spread of disease between regions, or ‘patches’, where within-patch disease
transmission occurs more frequently than between-patch transmission (Rvachev
& Longini, 1985). In this study, we focus on the early stages of the epidemic,
when it first begins to spread from its source patch. Previous studies of metapop-10

ulation models have used branching process approximations to calculate out-
break probabilities (Ball et al., 1997; Lahodny & Allen, 2013). However, these
studies do not examine the timing of disease spread. Studies which address
the timing of travel of infectious individuals, and thus of disease spread, have
assumed deterministic within-patch disease dynamics (Gautreau et al., 2008;15

Barthélemy et al., 2010; Wang & Wu, 2018). The studies also do not explicitly
include the effect of interventions. Importantly, all of these studies assume that
travel results in permanent migration, but short-term travel may be a greater
driving force in the spread of infection (Keeling & Rohani, 2002). Threshold
conditions for outbreaks assuming short-term travel have been previously deter-20

mined (Balcan & Vespignani, 2012), but the temporal dynamics of such models
were not analysed.

In this study, using a two-patch susceptible-infectious-removed (SIR) model
with stochastic disease dynamics and short-term travel between patches, we
analyse the temporal aspect of disease spread, addressing limitations of previ-25

ous studies. We evaluate the distribution of the time taken for the epidemic
to spread to the second patch (the spreading time distribution), and the prob-
ability that such spread occurs (the spreading probability). In Section 2, we
outline the methods used to perform these calculations. We proceed to explore
how interventions change the spreading probability and median spreading time30

(Section 3.1), and how approximations can be made to calculate the spreading
time distribution accurately and efficiently (Section 3.2).

2. Methods

In Section 2.1, we specify the ‘ground truth’ model for this study. However,
exact calculation of the spreading time distribution for this model is compu-35

tationally infeasible. Therefore, in Section 2.2.1 we make approximations to
simplify the model, before deriving an expression for the spreading time dis-
tribution in Sections 2.2.2–2.2.3. Three methods for evaluating the spreading
time distribution for the reduced model, with varying degrees of approximation,
are presented in Section 2.3. In Section 3, we will use these three methods to40
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Figure 1: The ‘ground truth’ model. The red dotted rectangle and cyan dotted double rect-
angle indicate the extent of Patch 1 and Patch 2 respectively. The subscripts 1 and 2 denote
the current location of the individual, and the subscripts L and T denote whether they are
local to that patch or a traveller. Table 1 defines the model parameters.

obtain the spreading time distribution, and compare them with the spreading
time distribution obtained by simulating from the ‘ground truth’ model.

2.1. The model

Figure 1 illustrates the ‘ground truth’ model for this study: a two-patch SIR
model where within-patch disease dynamics and movement between patches are45

modelled stochastically. The formal specification of the model as a continuous-
time Markov chain (CTMC) {X(t)} is given in Appendix A.

Table 1 defines the model parameters. Within each patch i, susceptibles SLi,
STi are infected by infectious individuals ILi, ITi at a rate βi. The subscripts Li
and Ti denote locals to patch i and travellers temporarily in patch i respectively.50

Infectious individuals then recover at a rate γi. The leaving rate per local in
home patch i is given by li, and the return rate per traveller currently in patch
i is given by ri. The basic reproduction number in each patch, conditioned on
no travel, is given by
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Parameter Description Default value
βi Transmission parameter in patch i calculated accord-

ing to R0i

γi Recovery rate in patch i 1
R0i Basic reproduction number in patch i 5
li Rate at which locals of patch i leave patch i 10−2

ri Rate at which travellers in patch i leave patch i 1
NLi(0) Initial number of locals in patch i NL1(0) + NT1(0) =

NL2(0) + NT2(0) =
500

NTi(0) Initial number of travellers in patch i see Eq. 2
φLi Probability that one infectious local causes an out-

break in patch i
derived in Sec-
tion 2.2.3

φTi Probability that one infectious traveller causes an
outbreak in patch i

derived in Sec-
tion 2.2.3

κL Rate at which infectious locals in Patch 1 travel to
Patch 2 and cause an outbreak

defined in Eq. (3)

κT Rate at which infectious travellers in Patch 1 return
to Patch 2 and cause an outbreak

defined in Eq. (3)

Table 1: Parameters and derived quantities. Note that all rates are scaled such that γi =
1, and are hence in units of (mean infectious period)−1. To specify NLi(0) and NTi(0),
NLi(0) +NTi(0) is fixed, and their ratio calculated using Eq. 2.

R0i =
βi
γi
. (1)

All references to R0i in the study refer to this quantity.55

We assume that population sizes are at equilibrium initially, such that

NT2(0) =
l1
r2
NL2(0), (2)

and similarly for NT1(0). For example, for the values in Table 1, NT2(0) =
NL2(0)/100; combined with the population size NL2(0) + NT2(0) = 500, we
obtain NL2(0) = 495.05, NT2(0) = 4.95, which we round to NL2(0) = 495,
NT2(0) = 5. We assume that the epidemic starts with one infectious local in60

Patch 1. Calculations can be adjusted for the case where the epidemic starts
instead with one infectious traveller, or with more than one infectious individual
(not shown).

2.2. Calculating the spreading time distribution

We define the spreading time as the time at which an infectious individ-65

ual who proceeds to cause a major outbreak in Patch 2 arrives in that patch.
The spreading probability is the probability that such an event occurs. A major
outbreak is informally defined as one where a significant proportion of the popu-
lation is infected. For the ‘ground truth’ model, we define a major outbreak as
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having a transmission chain in Patch 2 whose final size exceeds 10 individuals70

(out of N2 = 500 individuals in the patch). For some parameter values, the
spreading time distribution is sensitive to the value chosen for this threshold;
the difficulties thus arising are discussed in Section 2.1 of the Supplementary
Material.

Two possible events trigger a major outbreak to occur in Patch 2, as previ-75

ously considered by Lopez et al. (2016) (in a deterministic context): either

• an infectious individual from Patch 1 travels to Patch 2 and starts a major
outbreak; or

• a susceptible individual from Patch 2 travels to Patch 1, contracts the
disease, returns, and starts a major outbreak.80

2.2.1. Reducing the ‘ground truth’ model

In theory, the spreading time distribution can be numerically evaluated.
This would be achieved by numerical solution of the forward equation of the
continuous-time Markov chain (see Jenkinson & Goutsias (2012). for one ap-
proach), to provide the probability distribution of the number of infectious in-85

dividuals in Patch 2 at any given time, and a choice of threshold above which a
major outbreak is declared. Unfortunately, such an approach is computationally
infeasible for all but the smallest population sizes, as the size of the state space
is O(N6

1N
6
2 ). This means that even estimation of the spreading time distribu-

tion can be computationally expensive. Hence, we reduce the ‘ground truth’90

model by assuming that up until the spreading time:

• susceptibles are not depleted in Patch 2 (SL2 and ST2 are constant);

• the movement of individuals changes the population size in each patch
negligibly (NLi and NTi are constant);

• changes in numbers of susceptible and recovered locals and travellers in95

each patch are driven by infection rather than travel, such that travel of
susceptible and recovered individuals can be ignored; and

• the travel rates li are sufficiently small compared to the recovery rates
γi, such that the disease dynamics in Patch 1 are driven by transmission
within that patch and not by importation of infectious individuals.100

The validity of the last assumption depends both on the timescale of the
movement between patches and the recovery time of the disease modelled. For
example, the assumption may not hold if daily commuting is a significant con-
tributor to travel.

The first assumption allows us to approximate disease dynamics in Patch 2105

as a branching process, which we will define in Section 2.2.3 (see Harris (1963)
for the theory of branching processes, Kimmel & Axelrod (2015) for branching
processes in biology, and Ball (1983) for modelling the initial stages of an epi-
demic as a branching process). Instead of defining a major outbreak according
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Figure 2: The reduced model. The subscripts L and T denote whether an individual is local
to Patch 1 or a traveller. Î counts the individuals in Patch 2 who lead to an unbroken
transmission chain in that patch. Table 1 defines the model parameters.

to a threshold, we use the branching process non-extinction probability as the110

spreading probability.
Under the above assumptions, the model can be reduced to a CTMC {Y(t)}

given in Appendix A and illustrated in Fig. 2. Î counts the individuals in
Patch 2 who lead to an unbroken transmission chain in that patch. φL2 and
φT2 are the probabilities that one infectious local/traveller in Patch 2 causes a115

major outbreak respectively. We will derive expressions for these quantities in
Section 2.2.3.

2.2.2. Deriving expressions for the spreading time distribution

As the size of the state space of the reduced model CTMC is O(N2
1N

2
2 ),

for population sizes of interest herein it is not feasible to numerically solve120

the forward equation for the spreading time distribution. Instead, we simulate
a number of paired realisations of IL1(t), IT1(t); evaluate the spreading time
distributions conditioning on each trajectory pair; and take the mean of those
distributions to obtain our final estimate of the spreading time distribution.
Bootstrapping is used to quantify the uncertainty in our estimate.125

We define

κL := l1φT2, (3a)

κT := r1φL2 (3b)

to be the rates at which infectious locals IL1(t) and travellers IT1(t) from
Patch 1 cause a major outbreak in Patch 2 respectively. Then the arrival of
outbreak-causing individuals in Patch 2 is a non-homogeneneous Poisson pro-
cess with an intensity κLIL1(t) + κT IT1(t). Wang & Wu (2018) used a similar
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non-homogeneneous Poisson process for a model assuming permanent migra-130

tion. However, the aforementioned study assumed that all infectious individuals
arriving in Patch 2 cause a major outbreak. In our study, we explicitly incorpo-
rate the probability that an infectious individual arriving in Patch 2 causes an
outbreak, through the probabilities φL2 and φT2. Because temporary travellers
spend less time than locals in Patch 2, they are (per capita) less likely to cause135

an outbreak; thus, the two probabilities are different.
The probability that no outbreak-causing infectious individuals have arrived

in Patch 2 by time t is given by

p(Î = 0, t) = exp(−µ(t)) (4a)

where µ(t) =

∫ t

0

κLIL1(τ) + κT IT1(τ)dτ. (4b)

Hence, for given trajectories IL1(t), IT1(t), the cumulative distribution function
of the arrival time (spreading time) is given by140

p(Tspread < t) = 1− p(Î = 0, t) = 1− exp[−µ(t)], (5)

the probability density function for the spreading time is given by

p(Tspread = t) = − d

dt
p(X = 0, t) = exp[−µ(t)]

d

dt
µ(t), (6)

and the spreading probability is given by

p(Tspread <∞) = lim
t→∞

1− exp[−µ(t)]. (7)

Importantly, the spreading time distribution conditioning on particular tra-
jectories IL1(t), IT1(t) is a function only of the composite parameters κL, κT .
Note that the probability density function is improper, with its integral being145

the spreading probability.

2.2.3. Deriving expressions for the spreading probability per import, φL2 and
φT2

We model disease dynamics in Patch 2 using the time-homogeneous CTMC
{Z(t)}t≥0 which takes values (IL2, IT2) where IL2, IT2 ≥ 0. This CTMC is a150

branching process. Let cj denote the stochiometries of {Z(t)} and qZ(z, z + cj)
denote the transition rate from z to z + cj , for j = 1, . . . , 4. The values of
cj and qZ(z, z + cj) are given in Table 2. We define pz→z+cj := qZ(z, z +
cj)/

∑
j qZ(z, z + cj). The offspring generating functions are then given by

f1(y1, y2) = p(1,0)→(2,0)y
2
1 + p(1,0)→(1,1)y1y2 + p(1,0)→(0,0), (8a)

f2(y1, y2) = p(0,1)→(0,2)y
2
2 + p(0,1)→(1,1)y1y2 + p(0,1)→(0,0). (8b)

The extinction probability is the minimal non-negative solution to155
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j cj qZ(z, z + cj) Description

1 (1, 0) β2SL2(IL2+IT2)
NL2+NT2

Local becomes infected

2 (0, 1) β2ST2(IL2+IT2)
NL2+NT2

Traveller becomes infected

3 (−1, 0) (γ2 + l2)IL2 Local recovers/travels
4 (0,−1) (γ2 + r2)IT2 Traveller recovers/travels

Table 2: Stoichiometries and transition rates of the CTMC {Z(t)} = (IL2, IT2).

y = f(y). (9)

Hence, φL2 = 1− y1 is the spreading probability per infectious local in Patch 2,
and φT2 = 1−y2 is the spreading probability per infectious traveller in Patch 2.
We solve Eq. (9) for φT2 and φL2 numerically using the fsolve function in Octave
4.0.0 (Eaton et al., 2015). Note that if movements were assumed to be perma-
nent, setting r1 = r2 = 0 yields κL = l1(1 − 1/R02) and κR = 0, in agreement160

with previous results (Wang & Wu, 2018).

2.3. Methods for obtaining disease trajectories in Patch 1

In this section, we will outline three methods for obtaining the trajectories
IL1(t), IT1(t):

1. using a deterministic approximation (Section 2.3.1),165

(a) without scaling to account for the possibility that the epidemic may
not become established in Patch 1, or

(b) with this scaling;

2. using a hybrid approximation (Section 2.3.2); and

3. direct simulation (Section 2.3.3).170

2.3.1. Deterministic approximation

Kurtz (1970, 1971) and Barbour (1974) show that when the number of in-
dividuals in each compartment is sufficiently large, a certain class of CTMCs
(to which our models belong) can be approximated deterministically by a set of
ordinary differential equations. Taking the fluid limit approximation of {Y(t)}175

yields a set of differential equations, where s and i are the proportion of suscep-
tible and infectious individuals in Patch 1 respectively:

dsL
dt

= −β1sL(iL + iT ), (10a)

diL
dt

= β1sL(iL + iT )− (γ1 + l1)iL, (10b)

dsT
dt

= −β1sT (iL + iT ), (10c)

diT
dt

= β1sT (iL + iT )− (γ1 + r1)iT . (10d)
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We integrate forward to obtain the trajectories iL(t), iT (t), and translate this
back into the number of infectious individuals IL1(t), IT1(t). Barthélemy et al.
(2010) uses this approach for a model with permanent migration. Gautreau et al.180

(2008) and Wang & Wu (2018) make the additional assumption that epidemic
spread ocurs while the epidemic in Patch 1 is still exponentially growing. This
assumption can be relaxed in our work.

Gautreau et al. (2008) and Barthélemy et al. (2010) assume that the epidemic
becomes established in Patch 1 (that is, the final size in Patch 1 is large). This185

assumption can also be relaxed in our work. If the epidemic does not become
established in Patch 1, the probability that an infectious individual travels to
Patch 2 is greatly reduced. We can account for this reduction by scaling Eqs. (5–
7) by the factor φL1 — the probability that one infectious local in Patch 1 causes
a major outbreak. For example, the spreading probability in Eq. (7) becomes190

p(Tspread <∞) = φL1

{
1− exp

[
−
∫ ∞
0

(κLIL1(τ) + κT IT1(τ))dτ

]}
. (11)

The probability φL1 is calculated using versions of Eqs. (8) and (9) where
for the rates in Table 2, the subscript ‘2’ is replaced with ‘1’. An interpretation
of the scaling is that if the epidemic does not become established in Patch 1,
either no travel of infectious individuals occurs, or travel does not cause a major
outbreak in Patch 2.195

2.3.2. Hybrid simulations

Approximating the CTMC by ordinary differential equations requires the
number of individuals in each compartment to be sufficiently large, which is not
true at the start or the end of the epidemic. Hybrid Markov chain models are
designed to overcome this difficulty (Rebuli et al., 2016; Ballard et al., 2016).200

We use a hybrid model modified from Rebuli et al. (2016) to track the numbers
of locals and travellers. When the numbers of susceptible and infectious indi-
viduals SL1 + ST1 and IL1 + IT1 both exceed a threshold, deterministic disease
dynamics are used (Eq. (10)); otherwise, the CTMC {Y(t)} is simulated. In
our implementation, the threshold is chosen to be 4 individuals. Using a higher205

threshold does not change qualitative results (not shown).

2.3.3. Stochastic simulation

We simulate {Y(t)} using the direct algorithm popularised by Gillespie
(1977). This method provides the baseline accuracy of the branching process
approximation.210

3. Results

This section focuses on the effect of interventions — reducing R0 (Eq. (1))
and the travel rate l in each patch — on the spreading time distribution (Sec-
tion 3.1). We will additionally investigate the effect of the approximations used
(Section 3.2). All results are obtained using Octave 4.0.0 (Eaton et al., 2015),215

with plots made using MATLAB (2015).
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3.1. The effect of interventions

First, we explore the effect of changing R0 in each patch on the spreading
time distribution (Fig. 3). R0 is varied between 1.1 and 5, encompassing a range
of pathogens for which routine childhood immunization is not available, such220

as Ebola, influenza and SARS. Values for the other parameters are given in
Table 1. Throughout this section, the spreading time distribution is calculated
using approximation (1b) as enumerated in Section 2.3: the branching process
approximation, and deterministic disease dynamics in Patch 1 with scaling. Ap-
proximation (1b) was chosen because the results are more intuitively explained,225

while retaining accuracy and computational efficiency; however, we could have
chosen any of the approximations, as the qualitative effects of interventions are
the same regardless of the approximations used, as shown in the Supplementary
Material.

0 2 4 6 8 10
Spreading time

0

0.5

1

1.5

P
ro

ba
bi

lit
y 

de
ns

ity

A
R01 = 5

R01 = 3

R01 = 1.5

R01 = 1.1

0 2 4 6 8 10
Spreading time

0

0.5

1

1.5
P

ro
ba

bi
lit

y 
de

ns
ity

B
R02 = 5

R02 = 3

R02 = 1.5

R02 = 1.1

Figure 3: Reducing R01 is more effective than reducing R02 for preventing or delaying disease
spread. The spreading time distribution for decreasing values of (a) R01 (b) R02, calculated
using approximation (1b) in Section 2.3. All other parameter values are as per Table 1. As
noted in Section 2.2.2, the distributions are improper; the area under the curve represents the
spreading probability.

Fig. 3A shows that as R01 is reduced, the spreading probability (the area230

under the curve) decreases. In addition, the spreading time is delayed (the distri-
bution shifts to the right). On the other hand, as R02 is reduced, the spreading
probability does not decrease as dramatically; the delay in the spreading time
is also less apparent, making this intervention less effective than reducing R01.
Note that if R0 decreases to below one in either patch, the spreading probability235

becomes very small and cannot be seen on the scale of the figure.
Reducing R01 reduces the spreading probability more because it has the

potential to prevent a major outbreak in Patch 1 altogether. On the other
hand, reducing R02 only decreases the spreading probability per import, which
is incorporated in the terms κL and κT as defined in Eq. (3). Eq. (11) showed240

that the spreading probability is linear with respect to the outbreak probability
in Patch 1 (φL1), but has a negative exponential relationship with κL and κT .
Decreasing R01 also has a greater effect on the median spreading time compared
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to decreasing R02, because reducing R01 slows down the exponential growth of
infectious individuals in Patch 1, slowing down importations linearly. On the245

other hand, decreasing R02 only decreases the outbreak probability per import.
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Figure 4: Reducing l1 and l2 are equally ineffective at preventing or delaying an outbreak in
Patch 2. The spreading time distribution for decreasing values of (a) l1 (b) l2, calculated
using approximation (1b) in Section 2.3. All other parameter values are as per Table 1. The
distributions are improper; the area under the curve represents the spreading probability.

Figure 4 shows that reducing either l1 or l2 decreases the spreading proba-
bility as well as prolonging the median spreading time. However, these inter-
ventions are not as effective as reducing R01 (Fig. 3A). The baseline value is
li = 10−2, satisfying li � γi as assumed in Section 2.2. As the return rate is250

the same as the recovery rate, at equilibrium 1% of individuals in each patch
are travellers. Although we have modelled travel restriction as decreasing travel
rates by tenfold at most, increasing the range of travel rates does not change
qualitative results (not shown). Like reducing R02, the main effect of reducing
the travel rates is to decrease the terms κL and κT .255

To more systematically explore parameter space, we plot the spreading prob-
ability and the median spreading time conditioning on this occurring, as either
R01 and R02 are changed simultaneously, or l1 and l2 are changed simultane-
ously. (For small values of li, the initial condition is rounded such that there is
at least one initial traveller in each patch.) Figure 5 shows that for a wide range260

of parameter values, decreasing R0 or l in either patch decreases the spreading
probability and delays the median spreading time; however, decreasing R0 in
the source patch is the most effective intervention in this regard.

3.2. Comparing computation methods

The previous conclusions were drawn using the branching process approxi-265

mation with deterministic disease dynamics in Patch 1. This approximation not
only enables analytic insight, but increases computational efficiency. Figure 6
shows the computing time using different degrees of approximation and for dif-
ferent population sizes, as enumerated in Section 2.3, and for the ‘ground truth’
model (Fig. 1 and Eq. (A.1c)). The branching process approximation greatly270
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Figure 5: For a wide range of parameter values, decreasing R0 in either patch or decreasing
l in each patch decreases the spreading probability and delays the median spreading time;
however, decreasing R0 in the first patch is the most effective way of doing so. The effect
of changing (top) R01 and R02 or (bottom) l1 and l2 on (left) the spreading probability and
(right) the median spreading time conditioning on this occurring, calculated using approxi-
mation (1b) in Section 2.3. All other parameter values are as per Table 1. Note that the two
figures on the right have different scales because they encompass different ranges of values.

reduces computing time. Using deterministic or hybrid disease dynamics further
drops the computing time from O(NL1 +NT1) to O(1). As Section 3.1 focuses
on parameter changes in the context of interventions, the effect of changing the
population size on the spreading time distribution is not included in the main
text, but is given in Section 3 of the Supplementary Material.275

To check whether computational efficiency comes at the expense of accu-
racy, we now compare the spreading time distributions obtained using different
degrees of approximation. The key result is that depending on the parameters
used, the accuracy of the spreading time distribution evaluated using each of
the approximations changes.280

Figure 7 shows the cumulative density function (left) and the probability
density function (right) of the spreading time for different computational meth-
ods. For the case where R01 = R02 = 5 (Fig. 7A), the spreading time dis-
trubution is very similar for all methods except for approximation (1a), which
overestimates the spreading probability (the cumulative density function ap-285

proaches a higher value). This overestimation occurs because approximation
(1a) assumes that the epidemic becomes established in Patch 1; if this is not
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Figure 6: The branching process approximation increases the computational efficiency of
evaluating the spreading time distribution. Efficiency is further gained by assuming either
deterministic or hybrid disease dynamics in Patch 1. The computing time for each of approx-
imations (1)–(3), as well as the ‘ground truth’, as the population size increases. Note that
approximations (1a) and (1b) have the same computing time. The parameters used are those
in Table 1. Stochastic/hybrid simulations are run 1000 times.

the case, the number of infectious individuals leaving that patch is much lower,
leading to a much lower spreading probability. This discrepancy is of interest
because many existing studies of the spreading time distribution (such as that290

by Barthélemy et al. (2010)) also assume that the epidemic becomes established
in Patch 1. Effectively, these studies model the spreading time distribution con-
ditioning on a major outbreak occurring in Patch 1. This conditioning may be
appropriate if we are performing risk assessment when the epidemic in Patch 1 is
already large, but is not appropriate during early stages when a large outbreak295

in Patch 1 can still be averted due to stochasticity and/or early interventions.
WhenR01 = 1.1 andR02 = 5 (Fig. 7B), results are approximation-dependent.

In this case, approximation (1a) still overestimates the spreading probability,
but scaling (approximation (1b)) over-corrects for this. The underestimation
occurs because approximation (1b) ignores the possibility that a major out-300

break occurs in Patch 2 despite one not occurring in Patch 1. This scenario
is relatively more likely when R01 is small. Moreover, the median spreading
time is overestimated. Section 2.2 in the Supplementary Material analyses this
phenomenon in more detail.

In the Supplementary Material, the discrepancies between the approxima-305

tions and the ‘ground truth’ model are explored for a wider range of parameter
values. Section 1 shows that despite quantitative discrepancies, the qualitative
effects of interventions are the same regardless of the approximations used. The
relative effectiveness of interventions is also qualitatively the same regardless
of the approximations used, with the exception of approximation (1a), which310

incorrectly predicts that reducing R0 in either patch is equally effective at reduc-
ing the spreading probability. Section 2 analyses the quantitiative discrepancies
introduced by the branching process approximation (Section 2.1) and by using
deterministic/hybrid disease dynamics (Section 2.2).
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Figure 7: Approximation (1a) overestimates the spreading probability. The effects of other
approximations are parameter-dependent. The cumulative density function (left) and prob-
ability density function (right) of the spreading time for different computational methods.
The grey area shows the ‘ground truth’ model, while markers indicate approximations (1-3),
which all use the branching process approximation but with deterministic, hybrid, or stochas-
tic wiithin-patch disease dynamics. The values of R0 are indicated under each subfigure. The
other parameter values are listed in Table 1. For approximations (2-3), we use bootstrapping
to obtain estimates of the distribution at a given spreading time; we plot the median of the
bootstrap samples. Note the different scales between the probability density functions. The
distributions are improper; the area under the curve represents the spreading probability.
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4. Conclusion315

In this study, we have modelled disease spread between two regions. We con-
structed a branching process in Patch 2 and combined it with epidemic trajec-
tories in Patch 1 to derive equations for the spreading probability and spreading
time distribution. This approach decouples the contributions to the spreading
time distribution by travel parameters and disease parameters in Patch 2, and320

by disease parameters in Patch 1. Previous studies (such as by Lahodny &
Allen (2013)) have used the branching process approximation to evaluate the
probability that the epidemic undergoes early extinction in all populations, but
a branching process across both patches is not appropriate for evaluating the
spreading probability (Milliken, 2017).325

We used this model to show that decreasing the outbreak size in Patch 1
through decreasing R01 is more effective at either preventing or delaying an
outbreak in Patch 2, compared to decreasing R02 or reducing travel. These
qualitative effects are the same regardless of the approximations used, and the
branching process approximation is more computationally efficient, especially330

when used with deterministic or hybrid disease dynamics in Patch 1. However,
quantitative differences between spreading time distributions evaluated using
different approximations are parameter-dependent. Importantly, if determinis-
tic disease dynamics are assumed in Patch 1, the probability density function
must be scaled to account for the possibility that a major outbreak does not335

occur in Patch 1; otherwise, the spreading probability is overestimated, and the
effectiveness of reducing R01 is underestimated. Previous studies have not ac-
counted for possible early epidemic fadeout in the source patch when evaluating
the spreading time. Wang & Wu (2018) conjectured that when using deter-
ministic disease dynamics, stochastic effects could be accounted for by simply340

multiplying the probability of each importion event by the outbreak probability,
which in our case is the outbreak probability for the branching process. This
approach considers epidemic fadeout in the second patch to be the only effect of
stochastic transmission dynamics. In our study, we have also incorporated the
effects of epidemic fadeout in the source patch, as previously discussed, and the345

effects of stochasticity in the epidemic trajectories in Patch 1. We have identi-
fied regions of parameter space where stochasticity greatly affects the epidemic
trajectories in Patch 1, in turn affecting the spreading time distribution. Hence,
the conjecture by Wang & Wu (2018) is only partially accurate in these regions;
instead of simply multiplying the importation probability by a factor, stochastic350

epidemic trajectories in Patch 1 should be used.
A limitation of this study is the assumption that model parameters are

known and the effects of the intervention on disease and travel parameters can
be quantified. However, R0 is difficult to estimate during the early stages of
the epidemic, for example because of inhomogeneous mixing or observation bi-355

ases (Nishiura et al., 2010; Mercer et al., 2011; Chowell et al., 2016; Rebuli
et al., 2018). Furthermore, the disease parameters for the patches to which the
epidemic has yet to spread are unknown, and quantifying the rate of short trips
between patches requires extensive data collection. Of course, this limitation
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applies to all methods for predicting the spreading time. Nevertheless, because360

we can now efficiently calculate the spreading time distribution, the effects of
interventions can be explored over a range of biologically plausible parameters.

We envisage a number of possible extensions to this work.
First, one can examine different network structures connecting more than

two patches. The more straightforward case is determining the spreading time365

from an initial patch to any second patch (rather than the spreading time to a
specific patch). Determining the spreading time to a specific patch is difficult
because of multiple possible routes of disease spread through the network to that
patch. For a star network, which avoids this difficulty, it has been shown that
decreasing the reproduction number in the central patch has the greatest effect370

on reducing the epidemic final size (Arino, 2017). However, the effects of inter-
ventions on the spreading time were not examined in the study; moreover, the
deterministic model used does not capture the possibility that an intervention
could prevent disease spread altogether.

For our two-patch model, to determine the spreading time we only need to375

simulate epidemic trajectories within Patch 1. For a model with more patches,
a further difficulty is that once infection spreads beyond Patch 1, continued
movement of individuals between infected patches may change the epidemic
trajectories within each infected patch, and thus change the spreading time to
further uninfected patches. Thus, a metapopulation model may be required to380

simulate epidemic trajectories within infected patches. Previous studies have
estimated the spreading times for various networks of patches (Swinton, 1998;
Park et al., 2002; Gautreau et al., 2008; Wang & Wu, 2018) and calculated the
distribution of the final number of infected patches (Ball et al., 1997; Colizza
& Vespignani, 2007; Barthélemy et al., 2010). However, these studies have385

either assumed exponential epidemic growth within each patch, or assumed that
beyond the initial seeding event, epidemics within each patch are unaffected by
between-patch movement.

Second, the spreading time distribution for different within-patch disease
dynamics models can be calculated using the general approach in this study:390

simulating disease dynamics within Patch 1, then calculating the probability
that each import from each compartment causes a major outbreak in Patch 2.
For example, for the SEIR model, a major outbreak can be caused by importa-
tion of either an exposed or an infectious individual. The case where permanent
migration is assumed has been previously studied (Wang & Wu, 2018). In395

this case, exposed imported individuals are guaranteed to become infectious in
Patch 2; then, the probabilities of a major outbreak given one importation are
the same for an exposed and an infectious individual. However, if temporary
travel is assumed, an exposed traveller in Patch 2 may return to their home
patch before becoming infectious. Then, the probabilities of a major outbreak400

given importation are different for exposed and infectious individuals, so the
equations to be solved for the spreading probability per import (corresponding
to Eq. 8) will be different for the SEIR and SIR models.

For each within-patch model, the assumptions required to convert a ‘ground
truth’ model into a reduced model will be different, so extensive sensitivity405
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analysis will be needed to assess accuracy losses. Hence, this extension is the
subject of future work. However, to intuit what may change for a more com-
plicated model, we can use the breakdown of the calculation into simulating
disease dynamics within Patch 1, then calculating the spreading probability per
import. For example, for the SEIR model, compared to the SIR model with the410

same values of βi and γi, the final size distribution is approximately the same
(it is the same for a single-patch model). Thus, the distribution of the area
under the prevalence curve for the number of infectious individuals, and hence
this term’s contribution to the spreading time, is the same. However, there is an
additional contribution due to the importation of exposed individuals. Hence,415

we expect the spreading probability to be greater for the SEIR model. However,
the slower time course of the epidemic in Patch 1 for the SEIR model suggests
that conditional on the epidemic spreading, the median spreading time will be
slower.

Third, to better reflect social structure, the assumption that each compart-420

ment travels at the same rate can be relaxed. For example, one could have
a subpopulation which never travels, and a regularly travelling subpopulation.
This modification would increase the probability that an infectious traveller
travels multiple times, which is negligible in our model.

Fourth, one can identify the conditions under which modelling travel as425

temporary predicts a different spreading time distribution to modelling travel
as permanent migration. This information will tell us when data on travel
duration is required.

Last, the modelling of interventions can be refined In our study, interventions
take immediate effect upon disease introduction in Patch 1, but in reality, delays430

may decrease their effectiveness. For example, if the time to vaccination rollout
is long, then vaccination in the source patch may not be able to conrol the
outbreak there, and pre-emptively vaccinating neighbouring patches becomes
relatively more effective (Kelly Jr. et al., 2016).

The relationships between the spreading time distribution and other quan-435

tities of interest, such as the number of seeding events, the extinction time,
and the final size, remain open questions. For example, the extinction time
and final size distributions for a two-patch model have been explored numeri-
cally (Hernandez-Ceron et al., 2015), but the dependence of these distributions
on the spreading time is unknown. It is also unclear how ongoing travel after the440

initial seeding event modifies the extinction time and final size of the outbreak
in each patch. A better understanding of these quantities will guide intervention
assessment.
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Gautreau, A., Barrat, A., & Barthélemy, M. (2008). Global disease spread:485

Statistics and estimation of arrival times. Journal of Theoretical Biology ,
251 , 509 – 522. doi:10.1016/j.jtbi.2007.12.001.

18

http://dx.doi.org/10.1016/j.idm.2017.05.001
http://dx.doi.org/10.1016/j.jtbi.2011.10.010
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2016.01.012
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2016.01.012
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2016.01.012
http://dx.doi.org/10.1016/j.jtbi.2010.09.015
http://dx.doi.org/10.1098/rsif.2016.0659
http://dx.doi.org/10.1098/rsif.2016.0659
http://dx.doi.org/10.1098/rsif.2016.0659
http://dx.doi.org/10.1103/PhysRevLett.99.148701
http://dx.doi.org/10.1103/PhysRevLett.99.148701
http://dx.doi.org/10.1103/PhysRevLett.99.148701
http://www.gnu.org/software/octave/doc/interpreter
http://dx.doi.org/10.1016/j.jtbi.2007.12.001


Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical re-
actions. The Journal of Physical Chemistry , 81 , 2340–2361. doi:10.1021/
j100540a008.490

Harris, T. E. (1963). The Theory of Branching Processes. (1st ed.). The RAND
Corporation.

Hernandez-Ceron, N., Chavez-Casillas, J. A., & Feng, Z. (2015). Discrete
stochastic metapopulation model with arbitrarily distributed infectious pe-
riod. Mathematical Biosciences, 261 , 74 – 82. doi:10.1016/j.mbs.2014.12.495

003.

Jenkinson, G., & Goutsias, J. (2012). Numerical integration of the master
equation in some models of stochastic epidemiology. PLoS ONE , 7 , 1–9.
doi:10.1371/journal.pone.0036160.

Keeling, M. J., & Rohani, P. (2002). Estimating spatial coupling in epi-500

demiological systems: a mechanistic approach. Ecology Letters, 5 , 20–29.
doi:10.1046/j.1461-0248.2002.00268.x.

Kelly Jr., M. R., Tien, J. H., Eisenberg, M. C., & Lenhart, S. (2016). The
impact of spatial arrangements on epidemic disease dynamics and interven-
tion strategies. Journal of Biological Dynamics, 10 , 222–249. doi:10.1080/505

17513758.2016.1156172.

Kimmel, M., & Axelrod, D. E. (2015). Branching Processes in Biology . Springer,
New York, NY.

Kurtz, T. G. (1970). Solutions of ordinary differential equations as limits of
pure jump Markov processes. Journal of Applied Probability , 7 , 49–58.510

Kurtz, T. G. (1971). Limit theorems for sequences of jump Markov processes
approximating ordinary differential processes. Journal of Applied Probability ,
8 , 344–356.

Lahodny, G. E., & Allen, L. J. S. (2013). Probability of a disease outbreak
in stochastic multipatch epidemic models. Bulletin of Mathematical Biology ,515

75 , 1157–1180. doi:10.1007/s11538-013-9848-z.

Lopez, L. F., Amaku, M., Coutinho, F. A. B., Quam, M., Burattini, M. N.,
Struchiner, C. J., Wilder-Smith, A., & Massad, E. (2016). Modeling im-
portations and exportations of infectious diseases via travelers. Bulletin of
Mathematical Biology , 78 , 185–209. doi:10.1007/s11538-015-0135-z.520

MATLAB (2015). R2015b. Natick, Massachusetts: The MathWorks Inc.

Mercer, G. N., Glass, K., & Becker, N. G. (2011). Effective reproduction num-
bers are commonly overestimated early in a disease outbreak. Statistics in
Medicine, 30 , 984–994. doi:10.1002/sim.4174.

19

http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1016/j.mbs.2014.12.003
http://dx.doi.org/10.1016/j.mbs.2014.12.003
http://dx.doi.org/10.1016/j.mbs.2014.12.003
http://dx.doi.org/10.1371/journal.pone.0036160
http://dx.doi.org/10.1046/j.1461-0248.2002.00268.x
http://dx.doi.org/10.1080/17513758.2016.1156172
http://dx.doi.org/10.1080/17513758.2016.1156172
http://dx.doi.org/10.1080/17513758.2016.1156172
http://dx.doi.org/10.1007/s11538-013-9848-z
http://dx.doi.org/10.1007/s11538-015-0135-z
http://dx.doi.org/10.1002/sim.4174


Milliken, E. (2017). The probability of extinction of infectious salmon anemia525

virus in one and two patches. Bulletin of Mathematical Biology , 79 , 2887–
2904. doi:10.1007/s11538-017-0355-5.

Nishiura, H., Chowell, G., Safan, M., & Castillo-Chavez, C. (2010). Pros and
cons of estimating the reproduction number from early epidemic growth rate
of influenza A (H1N1) 2009. Theoretical Biology and Medical Modelling , 7 ,530

1. doi:10.1186/1742-4682-7-1.

Park, A. W., Gubbins, S., & Gilligan, C. A. (2002). Extinction times for closed
epidemics: the effects of host spatial structure. Ecology Letters, 5 , 747–755.
doi:10.1046/j.1461-0248.2002.00378.x.

Rebuli, N. P., Bean, N. G., & Ross, J. V. (2016). Hybrid Markov chain models535

of S–I–R disease dynamics. Journal of Mathematical Biology , 75 , 521–541.
doi:10.1007/s00285-016-1085-2.

Rebuli, N. P., Bean, N. G., & Ross, J. V. (2018). Estimating the basic repro-
ductive number during the early stages of an emerging epidemic. Theoreti-
cal Population Biology , 119 , 26 – 36. doi:https://doi.org/10.1016/j.tpb.540

2017.10.004.

Rvachev, L. A., & Longini, I. M. (1985). A mathematical model for the
global spread of influenza. Mathematical Biosciences, 75 , 3–22. doi:10.1016/
0025-5564(85)90064-1.

Swinton, J. (1998). Extinction times and phase transitions for spatially struc-545

tured closed epidemics. Bulletin of Mathematical Biology , 60 , 215–230.
doi:10.1006/bulm.1997.0014.

Wang, L., & Wu, J. T. (2018). Characterizing the dynamics underlying
global spread of epidemics. Nature Communications, 9 , 218. doi:10.1038/
s41467-017-02344-z.550

Appendix A. Formal definitions of the continuous-time Markov chain
models

The model in Fig. 1 can be specified as a continuous-time Markov chain
(CTMC) {X(t)}t≥0 which takes values (SL1, IL1, RL1, ST2, IT2, SL2, IL2, RL2, ST1, IT1)
from the ten-dimensional lattice555

χ = {(SL1, IL1, RL1, ST2, IT2, SL2, IL2, RL2, ST1, IT1) ∈ Z10
+ : (A.1a)

SL1 + IL1 +RL1 + ST2 + IT2 ≤ NL1(0) +NT2(0), (A.1b)

SL2 + IL2 +RL2 + ST1 + IT1 ≤ NL2(0) +NT1(0)}. (A.1c)

(RT1 and RT2 are redundant due to the conservation of the number of individ-
uals local to each patch.) Let ej denote the stochiometries (jumps) of {X(t)}
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j ej qX(x,x + ej)

1 (−1, 1, 0, 0, 0, 0, 0, 0, 0, 0) β1SL1
IL1+IT1

NL1+NT1

2 (0, 0, 0, 0, 0, 0, 0, 0,−1, 1) β1ST1
IL1+IT1

NL1+NT1

3 (0, 0, 0, 0, 0,−1, 1, 0, 0, 0) β1SL2
IL2+IT2

NL2+NT2

4 (0, 0, 0,−1, 1, 0, 0, 0, 0, 0) β1ST2
IL2+IT2

NL2+NT2

5 (0,−1, 1, 0, 0, 0, 0, 0, 0, 0) γ1IL1
6 (0, 0, 0, 0, 0, 0, 0, 0, 0,−1) γ1IT1

7 (0, 0, 0, 0, 0, 0,−1, 1, 0, 0) γ2IL2
8 (0, 0, 0, 0,−1, 0, 0, 0, 0, 0) γ2IT2

9 (−1, 0, 0, 1, 0, 0, 0, 0, 0, 0) l1SL1
10 (0,−1, 0, 0, 1, 0, 0, 0, 0, 0) l1IL1
11 (0, 0,−1, 0, 0, 0, 0, 0, 0, 0) l1RL1
12 (0, 0, 0, 0, 0,−1, 0, 0, 1, 0) l2SL2
13 (0, 0, 0, 0, 0, 0,−1, 0, 0, 1) l2IL2
14 (0, 0, 0, 0, 0, 0, 0,−1, 0, 0) l2RL2
15 (0, 0, 0, 0, 0, 1, 0, 0,−1, 0) r1ST1

16 (0, 0, 0, 0, 0, 0, 1, 0, 0,−1) r1IT1

17 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0) r1RT1

18 (1, 0, 0,−1, 0, 0, 0, 0, 0, 0) r2ST2

19 (0, 1, 0, 0,−1, 0, 0, 0, 0, 0) r2IT2

20 (0, 0, 1, 0, 0, 0, 0, 0, 0, 0) r2RT2

Table A.3: Stoichiometries and transition rates of the CTMC {X(t) =
(SL1, IL1, RL1, ST2, IT2, SL2, IL2, RL2, ST1, IT1)}. RT1 and RT2 are implic-
itly tracked by the relations RT1 = NL2(0) + NT1(0) − NL2 − ST1 − IT1 and
RT2 = NL1(0) +NT2(0)−NL1 − ST2 − IT2.
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j dj qY (y,y + dj)

1 (−1, 1, 0, 0, 0) β1SL1
IL1+IT1

NL1+NT1

2 (0,−1, 0, 0, 0) [γ1 + l1(1− φT2)]IL1
3 (0,−1, 0, 0, 1) l1φT2IL1
4 (0, 0,−1, 1, 0) β1ST1

IL1+IT1

NL1+NT1

5 (0, 0, 0,−1, 0) [γ1 + r1(1− φL2)IT1]
6 (0, 0, 0,−1, 1) r1φL2IT1

Table A.4: Stoichiometries and transition rates of the CTMC {Y(t)} =
(SL1, IL1, ST1, IT1,K).

and qX(x,x + ej) denote the transition rate from x to x + ej , for j = 1, ..., 12.
The values of ej and qX(x,x + ej) for all x ∈ χ are given in Table A.3.

The process in Fig. 2 can be modelled using the CTMC {Y(t)}t≥0 which560

takes values (SL1, IL1, ST1, IT1,K) from the five-dimensional lattice

Ψ = {(SL1, IL1, ST1, IT1,K) ∈ Z3
+ : SL1+IL1 ≤ NL1(0)+NT2(0), ST1+IT1 ≤ NL2(0)+NT1(0),K = 0, 1}

(A.2)
where K is a binary variable indicating whether an outbreak has occurred in
Patch 2 (whether Î, the number of outbreak-causing infectious individuals, is
greater than zero). Let dj denote the stochiometries of {Y(t)} and qY (y,y+dj)
denote the transition rate from y to y + dj , for j = 1, . . . , 5. The values of dj565

and qY (y,y + dj) for all y ∈ Ψ are given in Table A.4.
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