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(i)

ABSTRACT

The use of piezoelectric devices for the purposes of active noise or vibration control has

become attractive in recent times. These small, power to weight efficient devices have had

some success in active vibration control; however, the force transfer mechanism by which

they interact with the structure to which they a¡e attached needs to be understood to

optimise the efficiency of their use.

Various modelling approaches have been used over the past six (6) years to try and

understand the force transfer mechanism in beams and plates, and in this work an

adaptation of a published model is presented, and compared with experimental data and

other published models.

The force transfer mechanism between the piezoelectric actuator and the beam is found to

be dependent upon the impedance of the beam. At resonance, the free edge condition of

the piezoelectric actuator does not affect the strain field close to the free edge. Away from

resonances, the force transfer mechanism is different and less efficient, and the free edge

condition of the piezoelectric actuator does affect the strain field close to the free edge of

the actuator.

Further experimental work, investigating the power flow from the piezoelectric actuators

to the beam, emphasises some of the differences found between the theory and

experiments, and between the performance of piezoelectric actuators and electrodynamic

actuators
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1.0 INTRODUCTION

In recent times there has been a substantial amount of interest generated in the use of

piezoelectric actuators for structural and acoustic control. (Bailey and Hubbard Jr., 1985;

Crawley and de Luis, 1987; Burke and Hubbard Jr, 1988; Baz and Poh, 1988; Fuller et al.,

1989; Liang and Rogers, 1989; Pan and Hansen, 1989 and 1990; Hansen and Pan, 1990;

Wang et al., 1990; Liao and Sung, l99l; Rogers et al., 1991). For the purposes of active

vibration and noise control, piezoelectric devices have shown grcat potential as actuators

or sensors, because they are inexpensive, small and lightweight, and can be easily bonded

to or into any structure. They are spatiaily distributed and thus cannot be modelled as

point force excitations. This latter characteristic demands that new and special modelling

techniques be used to estimate the response of structures driven by them.

The remainder of this thesis begins with a review of previously published work on the use

of piezoelectric crystals as actuators on beams and plates. In particular, work done by Pan

and others at the University of Adelaide which involves an attempt to obtain a valid,

exact, classical model for the response of a beam excited in pure bending by a pair of out

of phase piezoelectric actuators is discussed in detail.

The review of previous work is followed by the presentation of a corrected model which

is compared to experimental data and to other published theoretical models.Differences

between the experimental data and the theoretical models are discussed and explanations

are given for some of these differences.
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Finally, the coupling efficiency, defined as the electrical input over the mechanical power

output of piezoelectric actuators is compared experimentally to that of an electrodynamic

shaker on a thin beam. The results of these tests a¡e discussed and some of the

measurement difficulties are highlighted.



3

2.0 LITERATURE REVIEW

2.1 Models of structures excited by piezoelectric actuators

A good review of past work on the usage of piezoelectric actuators has been written by

Smits et al. and the constitutive piezoelectric equations which describe the three

dimensional strain and electrical field within piezoelectric materials, can be found in texts

such as Kino (1987). In the published models reviewed here, and in the model presented

here, the simplified one dimensional version of these constitutive equations is used, and

these will be discussed in Section 3.0.

The first important study concerned with modelling the performance of piezoelectric

actuators bonded to a beam was a static analysis (Crawley and de Luis, 1987) in which

four assumed piezoelectric-substructure sffain distributions, were used. Two of these

distributions were static elastic models describing beam extension using embedded and

surface mounted piezoelectric actuators. The other two disributions described beam

bending using embedded and surface mounted piezoelectric actuators. The model,

describing beam bending using surface mounted piezoelectric actuators, assumed a uniform

strain distribution across the actuator thickness, and thus did not account for actuator

bending. The loading mechanism was found to be a linear function of the actuator stress-

free strain. A shear lag mechanism was identified as being responsible for force transfer

between the piezoelectric actuator and the beam. The static analysis was then further

extended to dynamic analysis using the Rayleigh-Ritz approach.
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Crawley and Anderson, 1990, rectified the problems with the assumed uniform strain

model by presenting a Bernoulli-Euler static model (which neglects the effects of

transverse shear and rotary inertia) of the beam/actuator system which did take the

actuator bending into account, and hence had a strain distribution across the actuator

thickness which varied linearly with distance from the cental axis of the beam. A finite

element static model showed that the new assumption was correct. Further, this FE model

showed the extensional strain distributions on the top of the actuator, on the top of the

beam, and at the centre of the beam. Unfortunately, the experimental results presented

failed to confirm the predicted distributions. The authors also discussed some non-linear

characteristics of piezoelectric crystal actuators, such as the lack of linearity between the

developed strain and the input field voltage, and hysteretic losses during loading and

unloading of the piezoelectric actuators.

Another important model (Burke and Hubbard, 1987) examined the dynamic behaviour of

a beam by applying a spatially distributed constant strain, using step functions, onto a

modal expansion of the beam response. Later they extended their theoretical work, using

spatially-varying discontinuity functions, to include spatially-varying actuator distributions

on beams to achieve modal vibration control (Burke and Hubbard, 1988). However, this

work did not consider the actual force transfer mechanism between actuator and beam.

Clark et aL, 1991, also considered the use of step moment excitation and a modal

representation of the bearn response to achieve a dynamic prediction of the beam response.

Their model used a similar approach to Crawley and Anderson, 1990, to define the

extensional strain distribution at the crystaVbeam interface, but the incorrect assumption
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that the linear variation of stress across the beam thickness has the same slope as the

variation across the actuator thickness limited the usefulness of the model.

A simila¡ modelling approach, with the same incorrect assumption, has also been used by

Dimitriadis et aL (1991) to predict the dynamic response of a two dimensional thin plate

excited by a pair of piezoelectric actuators.

Kim and Jones, 1991, extended the work of Dimitriadis ¿f al. by correcting the assumption

of identical stress slopes across the beam and actuator thicknesses, and allowing for the

effect of a glue layer between the plate and the actuators.

Pan et al. (1992) attempted to obtain a valid, oxact, classical model for the response of a

beam excited in pure bending by a pair of piezoelectric actuators. In this paper, this work

is corrected and extended to obtain a theoretical solution to this problem, and experimental

data to support and extend this work are also presented.

2.2 Power flow measurements in beams

The idea of measuring the vibrational intensity (power flow per unit width) in plates and

beams was first presented by Noiseux, 1970, who introduced the idea that there exists a

far and near-field of intensity. The near-field intensity is in the region of the actuator, and

contains a reactive and .active component. A purely reactive intensity component is a

component where the particle force and velocity are out of phase, and a purely active

intensity component is where the tbrce and velocity are in phase, and thus is a real
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quantity. The reactive intensity component decays rapidly away from the region of force

input, although in reverberant fields, ie. in the presence of standing waves, there will be a

large component of reactive intensity. The active intensity has two components, a force

component which is due to shea¡ waves and a moment component which is due to flexural

waves. Noiseux, 7970, showed that in the fa¡-field the intensity contributions from the

force component and the moment component are equal and are each exactly half of the

total intensity.

Techniques for the measurement of surface intensity, using accelerometers, were presented

by Pavic (197.6) who showed, using finite difference approximations, that all quantities

relating to intensity flows in both one and two-dimensional flexural wave models can be

calculated. The finite difference scheme developed by Pavic enabled an estimation to be

made of the third order spatial derivative, necessary for near field measurement of active

intensity, using four measurement points. Thus four accelerometers were required for near-

field power estimation. In the far-field it was shown that, since the force and moment

components are equal, and the moment component is only a second order spatial

derivative, power estimation only requires two accelerometers. Time integrals and

multiplication of signals were achieved using analog equipment.

As the signal processing capabilities of spectmm analysers improved, the time integration

and multiplication of signals could be carried out in the frequency domain (Verheij, 1980).

As shown by Verheij, all Pavic's power relationships have frequency domain equivalents

which can be evaluated using the cross-spectrum capability of a two channel spectrum

analyser.

Y
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Ca¡les et al. showed that accelerometers and strain gauges could be used to estimate near-

field power flow in beams (Carles et aI., 1983). This was achieved using a finite

difference scheme based on two measurement points. Thei¡ far-field scheme was the same

as that of Pavic (1976).

Further finite difference schemes were highlighted by Hayek et al., 1990. To try to isolate

the mass loading effects of accelerometers, this group used a scanning laser to measure the

required quantities. It was also shown that if a measurement point separation of a

twentieth of a wavelength was used, then less than a0.3 dB error in the near-field and0.1

dB error in the far-field existed between the results of Pavic's scheme and the results of

all their other more sophisticated schemes (some of which were 7 point schemes).

Importantly, errors due to both random phase and amplitude shifts were presented, and

shown to be significant.

Practical limitations of the four measurement point finite difference scheme were

investigated by Taylor, 1990. In this paper, the one dimensional beam equation was solved

and from this solution the exact power flow in the beam could be calculated and compared

to simulated results using the four point scheme. Four parameters were found to have

significant effects on the results obtained using the finite difference scheme. These were

the finite difference approximation itself, the relative phase accuracy between transducers,

the achievable accuracy in transducer spacing, and the reverberation level of the structure.

Taylor showed that the finite difference approximation error was minimised for small

transducer separations (approximately a twentieth of a wavelength), but that the enors due

þ
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to the other parameters were in fact maximised for small transducer separations (Taylor,

1990). Another important finding was that for structures with high reverberation and/or

high measurement phase errors, the error in the power flow measured by the four point

scheme may in fact be so large as to be opposite in sign to the tn¡e power flow (Taylor,

1990).
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3.0 RESPONSE OF BEAMS EXCITED BY PIEZOELECTRIC ACTUATORS

3.1 Review of existing models

Any voltage applied to piezoelectric actuators bonded to the upper and lower surfaces of a

beam will generate surface extensions, the direction of which will be determined by the

poling direction of the piezoelectric actuators and the polarity of the applied voltage.

Should both the lower and upper actuators undergo positive or negative extensions then

the beam will undergo, respectively, positive or negative longitudinal extensions. Should

the upper actuator undergo a positive extension while the lower actuator undergoes a

negative extension or vice versa, the beam will bend (Figure 1).

An equivalent system can be obtained if the actuators are replaced by a pair of

counteracting line moments as shown in Figure 2.

Constitutive equations describe piezoelectric materials using five independent elastic

constants, and three piezoelectric constants. Three dimensional constitutive equations can

be reduced to the following one dimensional form, which for an actuator polarised across

its thickness tc can be written as:

u

'1

'J

Ec
.V oc

--cl-+-
tc Ec

(1)

I v
!

t

l

p= T
e

C
c

do, (2)
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where:

tc = actuator strain, d = piezaelectric stress constant, Ec = Young's modulus, V = voltage

across actuator, Oc = actuator stress, D = electriC displacement, 
"T, = stress free

permittivity.

In low frequency (typically below a few kilohertz) usage, a voltage applied in the z

direction of a three dimensional crystal (Figure 3) induces three normal strains (in terms of

$j and dj), as follows:

Âr
Direct strain

Transverse strain

tc

M, _Lb, =vLc bc tc

c
= Ion

(3)

(4)dzt
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In considering the dynamic response of a beam to which piezoelectric actuators have been

bonded, the constitutive equations can be further simplified, by only considering the strain

equation, equation (1), and rewriting it in terms of stress:

o, = Er(er-L) (5)

where

L=v
tc

dzt (6)

Considering pure bending deformation in the region of the actuators, the strain and stress

disributions are linear as shown in Figure 4. Thus, the actuator/beam force transfer

mechanism could be thought of as an applied strain distribution to each of the beam

surfaces with the distribution on one surface 1800 out of phase to that on the other

surface.

It is apparent that there are two possible equivalent force transfer mechanisms

Uniform out of phase surface strain distribution (eso) applied over the top

and bottom surfaces of the actuator field

Two counteracting external line moments (Mr) at each end of the

actuator

It can be argued that the postulated equivalent transfer mechanisms are one ancl the same
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and ignoring near-field effects, they can be used to predict far-field dynamic strain

distributions (Kim and Jones, l99l; Clark et aL, 1991; Dimitriadis et al., 1991; and Pan et

al., 1992). The externally induced surface strain on the beam acts to rotate a plane

perpendicular to the x-axis, generating in the beam an internal moment M* oveÍ the width

of the actuator, given by:

t6

T

erÍ
b (7)Mx b o*zdz

2

This internal moment M* can also be generated by an equivalent external line moment Mz

acting at the edge of the actuator and controlled by a similar moment acting in the

opposite direction at the other edge. And thus the postulated transfer mechanisms are seen

to be equivalent.

The model presented in this thesis uses a uniform extensional strain distribution, tso, over

the specific actuator area to calculate the beam response. Furthermore, the model presented

in this thesis does not reconsider the modelling of the applied strain distribution; rather,

the model uses the results obtained by Crawley and Anderson (1990), although results

from this model are compared to results obtained from Clark et al. (1991). The value

obtained for the uniform extensional strain distribution, Es a, will vary from model to

model, mainly due to the underlying assumptions.

b
2b

J
(oå) = !¡ ,î øø,î

b

The assumption made by Clark et al. that the stress slope through the beam is the same as
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that through the crystal, results in this model slightly underestimating (in the worst case,

by less than 4Vo for one of the cases presented here) the applied strain distribution, eso.

This is corrected in other models (Crawley and Anderson, 1990, and Kim and Jones,

1e91).
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v Beom
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t

xl

Actuotors out of phosc

Figure 1. Simply supported beam with and without actuation
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Lx

)\ x
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Figure 2. Equivalent system with distributed bending moments
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Figure 4. Strain and stress disrributions across the beam and actuator system
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The expressions for calculating the uniform strain eso applied to the beam using the

various published models can be compared, by using the equivalence of the applied

mechanisms defined by equation (7). In some cases, two dimensional plate models are

reduced to one dimensional models to enable this comparison.

Crawlev and de Luis (1987)

J
Eo

(8)

(e)

(10)

where:

Crawlev and Anderson (1990)

s
Eo

E6b6t6
Yb

E ,b rt,

6(t6+tr¡¡¡

Wø),].n,øt,*8t?
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Kim and Jones (1991)

For the special case, where the bonding layer is disregarded, where the two dimensional

plate model is reduced to a one dimensional beam model, and.where the beam wídth b6

and actuator width b, ue the same:

3 Ec I
6+t r)t 6t tÌt

s
Eo

4 Eb 1-vc)
(r1)

3

bt .r'*wlt
[t-u, ) t, \ o

2*t,
8

Clark. Fuller and rü/icks (1991)

where:

J
Eo =- P 

^(1-P)
(12)

(13)

(14)

E^
P = - -K

Eb

3(t 6+t ,)t 6t,K
3

tb

-+t8
+3tbtc

3

c
2
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Dimitriadis and Fuller (1991)

where:

and

Pan. Hansen. and Snyder (1992)

J
Eo

-(1+vr)P

1*vå-(1+vàP

út6tf;

(ls)

(16)

(L7)

(18)

nr !-vl¡
P

[(=

Eo (t

3t rt 6$ 6+t,)

s
Eo =[
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It should be noted that out of the above expressions, only equation (10) from Crawley and

Anderson can be utilised when the beam and piezoelectric widths are not equal. The

expressions derived by Clark, Fuller and Wicks (equations (12), (13), and (14)) can be

extended to take the beam and actuator widths into account, as follows:

where

J
Eo =- P L

(1-P)

E^b^
P = - " "K

Eabø

3(t 6+t r)t 6t,

t 3*t,

(1e)

(20)

(2r)
[(=

3

b

8
*zt6t2,
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3.2 Corrected dynamic system model

Figure 5 shows a Bernoulli-Euler beam (for which the effects of transverse shear and

rotary inertia are neglected) with an identical piezoelectric actuator mounted on opposite

sides of the beam. In the model in Figure 5, the actuators are driven by a pair of electric

fields with the same amplitude but of opposite phase. The actuators are perfectly bonded

to the beam, and as discussed in the introduction, it is possible to replace their effect by a

uniform strain distribution over their areas. The beam system can be analysed as three

sep¿ìrate beams.

The Bernoulli-Euler beam equation is (Thompson, 1981):

^'b = p6b6t6

0 (22)

(23)

(24)

where:

The angular displacement e of the cross section plane normal to the beam axis can be

calculated by:

s

b
2u

Q= ày

-dx t6
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where r/, is the beam surface longitudinal displacement, which is related to the beam

surface strain by:

s
eb

^.sdub

E
(2s)

(26)

(27)

(28)

Therefore,

For single frequency excitation:

-1d'y

æ

Thus, a fourth order partial differential equation in terms of the surface strain of a

Bernoulli-Euler beam can be obtained by differentiating both sides of equation (26) twice

with respect to .r, substituting the result into equation (22), differentiating the resulting

equation twice with respect to r, and substituting equation (26) in the result to give:

arrt,
E -p =Q

arri
-&ri-,)òt'
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and equation (27) becomes:

(2e)

The beam system shown can be split into three separate beams and if the stiffness and

weight contributions from the actuators are ignored, then it is possible to describe the

dynamic system with three separate differential equations and use appropriate boundary

conditions at the ends of each beam to obtain the required solutions. Thus the equations in

telms of es¡7, 8s62, and ts¿3, âfo respectively:

2^¿s
tr+#*p6aze'u=o

tb
2 ðorL

bnæ * p6a2etu, -- o

,s
Pb{ù-eO,

(30)

(31)

(32'¡

E

2^¿s
t b d'eb2

L--u 12 àx4
E

E

+ =Q

=0
2
b

t a4
s

eb3
L--

" 12 òx4
* p6a2es6j
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The solutions for d6¡, ë62, and€r63 are rcspectively:

ef,r(x,rrl) = areifu*are -ik*a3eb*o4, -b for xcxl

el,r{x,co) = 4sê
jbc

+Ct6ê -jkx'+47ê +ag€ for x1løcl.r,2kx -kx

elrlx,rrr) = ageib+arge -ik*a1¡rb *o12, -b for x>x2

where the wave number k is defined as:

0p6tÊ

(33)

(3c¡

(3s)

t/4

þ= (36)
2

Lbt b
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The boundary conditions in terms of surface strains can be derived from boundary

conditions in terms of vertical displacements. From equation (26) we can derive the

following relationships :

dispracemenr =) = -lllri**

angular displacement = o = -llri*

curyature = R = -2 s

,O'O

(32¡

(38)

(3e)

2E 6 ðelu

tbE
(40)

shea¡ force = .S = -

For the three sub-beams outlined in Figure 5, a total of ten (10) boundary conditions can

be derived.

There are two full boundary conditions at x=0 and two at x=L*, which are that there is no

strain nor any displacement at these locations.

There are four (4) partial boundary conditions at x=xl and four at x=x2, which are that

there is continuity in strain, slope, curvature, and shear.

a
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The boundary conditions are as follows:

At x=0:

At x=xll

s
ebI lrq =Q

Íl',;'r,--o = o

èxl*--*t lx=xr

(41)

(42)

(43)

(44)

(4s)

(46)

I þit** rx=xt - | þit**r"=,, = o

fri,tu t-_*, - Ir'rra* á-_*, = o

s
Ebl

s
-c "b2

l*--*y lx=xt

^.çdebr

-ãr

s
Eo

^sdeb2
=Q
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ü
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I

Ãt x=x2

At )c=Lxi

T
^sdEb3

T

26

(47)

(48)

(4e)

(s0)

(s1)

I lrr** tx=x2 - [ |¿urtutu t,=,,

frlrtuÇ_*, - [¿rrtut,=a

=Q

=Q

J
Ebz

.t- Eø3
s

-e4
lx=xz lx=tc2

^sdEb2
=Q

l*=*z l*=*2

s
eb3 =Q

lx=L*

lþ ìt t*--r*= 
o (s2)

The boundary conditions, equations (41) to (42), can be used together with equations (33)

to (35) to solve for the unknown coefficients dl to a12. These can then be substituted back

into equations (33) to (35) to calculate the strain at any location x in any of the three sub-

beams. This procedure is well documented by Pan et al. (1992) and will not be repeated

here.

I
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Figure 5. Beam and sub-beam system
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3.3 Comparison of experimental and analytical results for a thin beam

3.3.1 Experimental set-up and computation of data

The overall dimensions of the instrumented simply supported beam (see Figures 6 and 7)

are as shown in Table l. Strain gauges were mounted above and beneath the actuator (see

Figure 8) in an attempt to quantify the effects of the free edge of the actuator/beam

interface.

0.2r, (mm)Actuator thickness

40b, (mm)Actuator width

33L. (mm)Actuator length

206x2 (mm)Second actuator

edge location

173x7 (mm)First actuator edge

location

1.9816 (mm)Beam thickness

40á¿ (mm)Beam width

345L, (mm)Beam length

þ

Table l. Be am and actuator dimensions
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Material constants for the PZT G-1195 material actuator and mild steel beam system are

as listed in Table 2. Damping is represented by using the complex form of Young's

modulus (E(1+jnÐ for both materials.

Table 2. Actuator and beam material parameters

From the various theoretical models outlined in Section 3.1, and the physical dimensions

and material values for this particular test beam, it is possible to determine eso from

equations (8) to (18) conesponding to each of the theoretical models. Values of Poisson's

ratio for both beam and piezoelectric actuators were taken as zero in the models which

considered plate equations to enable this comparison. These results are shown in Table 3.

i

þ

0.0r\6

Beam Young's modulus

Beam loss factor

2ü) x 109E6 @a)

7860o6 (ks/m3)Beam density

0.01251'lcActuator loss factor

1.9 x 10-104t (mN)Piezoelectric constant

63 x 109Ec
(Pa)Actuator Young's modulus

7275P, (kc/m3)Actuator density
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Figure 8. Cross section through experimental instrumented beam

^
Pan et al. (1992)

0.t&2 LDimitriadis and Fuller (1991)

o.t642 LClark et al. (1991)

0.1706 
^

Kim and Jones (1991)

0.1706 
^

Crawley and Anderson (1990)

0.1603 
^

Crawley and de Luis (1987)

esaMODELS

Table 3. Values of eso corresponding to each theoretical model for the test beam
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The dynamic model postulated here is compared to a modified version of the model

proposed by Clark et aL, (1991). The beam vertical displacement has been converted into

beam surface strain by equation (26). The converted results of the Cla¡k et al. (1990)

model can be expressed as:

s ^ : n3 - nD4 nllcz_ nÍx,
Eb = Lo L 

- 

[cos--cos-l srn-
n=l 1(o'n-.UiL) ux ux ux

(s3)

(s4)

where es, is the beam surface strain at any point -r, and:

2
nú)

g arî
I2Pø

TEN

Lx

and

(ss)

where P is defined by equation ( l3)

The value of the interface strain Ëru in the corrected model presented in this comparison of

results is based on the interface strain value obtained by Crawley and Anderson (1990).

The results obtained from the Clark et ul. (1990) model are based directly upon equations

from their paper, and. thus as mentioned previously due to their assumed stress

distribution, their results underestimate the applied strain distribution by around 4Vo or

equivalently are in error by 0.35 dB.

co -- -Eb 6å:íî
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The experimental arangement used for the tests was as shown in Figure 9. The HP3562A

frequency analyser was used in a slow swept frequency mode which was preferred as it

closely matched the model condition of single frequency excitation (see equation (28)).

Furthermore, the feedback control capability of this analyser was also used as it enabled

the control of the input voltage using the output strain value. This feature enabled the

extension of the dynamic range to well beyond 80 dB, while still providing adequate

signal to noise ratio. All presented data a¡e ffansfer functions, between resultant strain and

input actuator voltage in dB (re I strain/V), where the sinusoidal voltage applied to the

actuator was lçss than 100 V rms, which is shown to be well within the linea¡ range of the

piezoelectric actuator (see Section 5.2).
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3.3.2 Results and discussion

Figure 10 shows the strain values recorded at three different positions across the beam at

x=240 mm. The uniformity of these results, from one position to another show that the

beam is indeed behaving as a beam, rather than as a narrow plate. Further, the results

demonstrate the repeatability of the experiment, as these measurements where not taken

concunently.

There is also very good agrcement between both the Cla¡k et al. (1990) model, the model

postulated here and the experimental data at all measurement points (see Figures ll, 12,

and 13). Indeed, there is little if no difference between the dynamic models. The small

differences between the models can be attributed to the fact that only the first 100 modes

are used to calculate the resulting strain for the Clark et aI. (1990) model, and not an

infinite sum as in equation (53). It must also be pointed out that the stiffness or weight

contribution of the piezoelectric actuator are not considered in either models. If the

stiffness contribution was included, in a similar fashion to Pan et al., (1992), by including

the actuator stiffness within the wave number for the beam portion containing the actuator,

the effect is negligible. Thus, it may be concluded that piezoelectric stiffness and inertia

effects can be disregarded.

Both analytical models accurately predict the resonant mode shapes and resonance

frequencies. However at.non-resonant frequencies corresponding to beam forced response,

there are discrepancies between measured and predicted levels, with the analytical models

consistently over predicting the measured response levels. However, coincidently at some
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discrete frequencies, the theoretical models and experimental results do agree (eg. 42O

Hz). The resonant mode response shapes calculated from the models, and shown in

Figures 14 to 16, agree well with the experimental results. From the above observations, it

is apparent that the models generally over predict the beam response at non resonance

frequencies, although at some frequencies (420 Hz, for example) the measured and

predicted strain levels agree, and hence the non rcsonant response is well predicted (Figure

1 8).

The comparison of the resonant and non resonant response (Figures 16 and 17) of the

piezoelectric actuator is very enlightening. At a beam resonance frequency, the strain on

the top surface of the actuator is just an amplification of the strain at the actuator/beam

interface. Indeed, from purely geometrical considerations, the amplification is

approximately 2 dB. (ie, 20 loçl0((tO+2tr)ltl). This agrees very well with experimental

results (Figure 16). Thus the assumption that the strain distribution is linear across the

actuator/beam interface, over the whole actuator/beam sub section, is validated. The

actuator/beam force transfer mechanism in this case can be thought of being either a

distributed applied strain do or a pair of applied line moments Mr.

On the other hand, the measured non resonant response does not support this assumption.

Indeed, the strain distribution across the top of the piezoelectric actuator (Figure 17) is

reminiscent of the results derived by Crawley and de Luis, (1987). Away from resonance

the impedance of the beam is high, and the actuator/beam force transfer mechanism

changes. In this case the transfer mechanism is more likely to be the shear lag mechanism

described by Crawley and de Luis (1987), and since experimentally measured strains are
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smaller than predicted strains, this mechanism is obviously less efficient than the

distributed applied strain or line moment mechanisms. This conclusion is supported by the

results given in Figures 18 and 19 which show that:

. Away from resonances, the force nansfer mechanism becomes less efficient

. Away from the actuator edge, the shear lag effect becomes less pronounced

Equation (7) defrnes the moment in the beam at any location beneath the actuator,

assuming that the actuator is inducing pure bending in the beam. This assumption implies

that the strain at the actuator/beam interface is uniform over the whole actuator/beam sub

section. However, at the beam surface just prior to the actuator edge the applied strain will

in practice tend to zero (see Figure 20), and this is true no matter what length the actuator

might be (even if it is the entire. length of the beam). Thus in the limit, there will be no

applied strain right at the very edge of the actuator-beam interface. However, due to the

stress free edge condition somewhere on the free edge, the strain must be 
^ 

(by equation

(5) setting oc=O, sc=Ä). This rapid change in applied strain results in a large increase in

shear stress at the actuator/beam interface near the edge of the actuator, a phenomenon

commonly referred to as shear lag (Crawley and de Luis, 1987). For stiff bonding layers

or perfectly bonded actuators, the increased shear will effectively occur just prior to the

edge of the crystal-beam inrerface. The rate of change of strain is lçss for less stiff

bonding layers (Crawley and de Luis, 1987) resulting in a smaller shear stress peak at the

edge of the actuato¡ but with a finite shear stress extending further in towards the centre

of the actuator. This shear lag effect acts to reduce the accuracy of the predicted beam

response obtained using the ideal excitation model consisting of the two counteracting line

moments, or the uniformly distributed applied snain.
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Although the shea¡ lag effects were recognised in the Crawley and de Luis model (1987),

lack of other considerations (such as bending of the actuators) limit its usefulness.

Nevertheless, this model is valuable because of its ability to give some idea of the force

transfer mechanism in the nea¡ field.

A second inaccuracy, in the traditional modelling approach of assumed pure bending, is

that for pure bending, the moment must be produced by end tensions and compressions

having magnitudes in proportion to their distance from the neutral axis. Applying srains

to the top and bottom surfaces of the beam can only approximate this ideal condition,

resulting in further errors in beam response calculations.

The approximation of replacing the effect of the piezoelectric pair by a pair of

counteracting line moments Mz or a uniformly distributed strain êd gives accurate

predictions of the beam response at resonant frequencies and at locations far from, and

relatively close to, the free edge of the actuator. This would be justified by using a

dynamic equivalent of the static Saint Venant's principle which states that any forces

acting on a small portion of a body may be replaced by another statically equivalent

system of forces acting on the same poilion of a body, which produces significant changes

within the local stress field, but has no significant effect at distances which are large

compared to the dimension of the portion upon which the forces have been changed

(Timoshenko and Goodier, 1951). Thus, the replacement of the action of the piezoelectric

actuators by an equivalent line moment Mz or the uniformly distributed srrain eso is only

valid at resonant frequencies. In this regime, the free edge condition of the piezoelectric

actuator does not affect the associated strain field, and hence the assumptions made when
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modelling Mz or da are substantiated. But the replacement of the force Eansfer

mechanism of the âctuator by an equivalent mechanism at non resonant frequencies is not

validated. In that regime, the stress fîeld local to the free edge condition of the

piezoelectric actuator means that the force transfer mechanism is markedly different, and

hence Mror tso are no longer equivalent force Eansfer mechanisms.
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3.4 Comparison of experimental and analytical results for a thick beam

3.4.1 Experimental set-up and computation of data

The overall dimensions of the instn¡mented simply supported aluminium beam (see Figure

2I) are as shown in Table 4.

Material constants for the PZT G-1195 material actuator and beam system are as listed in

Table 5. Damping is represented by using the complex form of Young's modulus

(E(I+jn)) for both materials.

In this experiment with a thick beam, the beam and piezoelectric actuator widths are not

the same (the beam width was 50 mm and the actuator width was 32 mm), yet only the

expression from Crawley and Anderson (1990) (equation (10)) and the modified theory of

Clark et aI. (equations (19) to (21)) in Section 3.1 actually account for this.

5 mm and 2 mm strain gauges, at the locations listed in Table 3, were bonded to the top

surface of the beam. Gauges of 2 mm length were located around the piezoelectric

actuator in an effort to increase the measurement resolution at that location.

The experimental arrangement used for the tests was as shown in Figure 9. Again, the

HP3562A frequency analyser was used in the swept frequency mode for the reasons stated

I

in section 3.3.1
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0.2r, (mm)Actuator thickness

32b, (mm)Actuator width

39L, (mm)Actuator length

2150x2 (mm)Second actuator edge

location

2ttlx,¡ (mm)First actuator edge

location

25.4r¿ (mm)Beam thickness

50å¿ (mm)Beam width

3900L, (mm)Beam length

,_1

rl
'¡ti
í

Table 4. Beam and actuator dimensions

I

!
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il
tii
I

0.01\6Beam loss factor

69 x 109E6 Qa)Beam Young's modulus

27r0o¡ (ks/m3)Beam density

0.0125TìcActuator loss factor

1.9 x 10- l04r (mN)Piezoelectric constant

63 x 109E, (Pa)Actuator Young's modulus

7275P, (kc/m3)Actuator density

I

Table 5. Actuator and beam material parameters

t
I

;I

I
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3.4.2 Results and discussion

Figure 22 shows the result from strain gauges A and B located &t X = 2111 mm. Again

despite the beam thickness, it appears that the beam is acting as a beam and not a thin

plate, at least close to the actuator.

There is good agreement between the model and the experimental results close to the

actuator (Figures 3 and 4). At regions far from the actuator, at low frequencies there is

good agreement also; however, at higher frequencies, in between the resonance peaks, the

agreement is poor (Figures 25 and 26). This is due to the presence of longitudinal waves

which show that at higher frequencies, any small errors in actuator placement or response

mean that the actuators are not truly 180' out phase which results in the excitation of

longitudinal waves and their detection by the strain gauges,

It also appears that the resonance frequencies of the higher modes ¿ìre over predicted by

the model presented in this thesis. The model is based upon Bernoulli-Euler beam and

hence does not account for shear deformation and rotily inertia. A model based upon the

Timoshenko beam is required to predict these higher modes. Using a scheme presented by

Craig, Jr. (1981), where the cross coupled shear deformation and rotary inertia terrns a.re

decoupled, it is possible to see the effects on the prediction of the resonance frequencies

of the higher order modes (Table 7).
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738738.67 48.9I4

638638.0645.713

54r544.6550.2t2

459458.4462.311

380379.4382.r10

308307.7309.59

244243.4244.5I

190186.6r87.27

EXPERIMENTTIMOSFIENKOBERNOULLI

EULER

MODE

NO

Table 4. Comparison of higher order modes, Bernoulli-Euler and Timoshenko beam

models, and experimental results.

It is interesting to note that even for a beam as thick as the one used in this experiment,

the shea¡ deformation and rotary inertia effects are not significant until around the eighth

mode.
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At low frcquencies, both rcsonant and non-resonant mode shapes are well predicted by the

model. As well, for these frequencies, the dynamic response of the beam is also well

predicted at points both close to and far from thc piezoelectric actuator, see Figures 7, 8,

and 9.

For higher order modes, and at frequencies between these higher order modes (Figure l0),

the comparison between the model predictions and the experimental results is not as good.

This is due to the presence of longitudinal waves in the experimental data and the

frequency underestimation of the modal resonance frequencies modes by the model based

on a Bernoulli-Euler beam.
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4.0 POWER FLOW AND COUPLING EFFICIENCY FOR A THIN BEAM

4.1 Theory of power flow measurements in beams

4.1.1 Flexural wave power flow measurements

For one-dimensional flexural wave propagation, the instantaneous potü/er flow, Pr(x,t), in

terms of the displacements normal to the beam surface, w, can be described by the

following:

P *(x,t) = E bl b

where

(s6)

represents the force component of the intensity and

la3,la't-t-

[a'rJar

( az*l a2,t-

[ax 
z 

Jarax

represents the moment component.



Equation (56) can be further reduced into measurable quantities using finite difference

approximations and averaged over time, and thus becomes:

60

(se)

(s7)

Where <A>t is the time average value of A,G is the first derivative of G with respect to

time, and À is the spacing between the accelerometers.

Thus the time averaged one dimensional power flow can be measured at one point using a

linear array of four accelerometers and suitable analog components, such as summators

and integrators. Equation (57) is further reduced in the far-field since, as shown

previously, the force or moment components of intensity are each equal to half of the total

intensity (Noiseux, 1970). Thus, the total intensity can be found using finite difference

approximations to calculate the moment component of intensity, and doubling the result.

Hence equation (57) becomes:

(E bt bmbt) frttu2>t
(s8)

4x)t =
Aol

Since:

.p*),- 
Tlþ2(4w, 

- -l), - (*,,r)J

ò'* = -k2w_aòx'



where the wave number, ft is:

dfl

61

dÍl
(61)

(62)

(60)
k=@

Hence the time average one dimensional far-field power flow can be measured at one

point using a linear array of two accelerometers and suitable analog components (Pavic,

re76).

Cross spectral density measurements enable the evaluations of the time average products

contained in equations (57) and (58) (Verheij, 1980). Further advantages of spectral based

analysis is that time averaged time derivatives and integrals become either the real or the

imaginary part of the cross spectrum multiplied by a constant. Thus, for broadband

signals, equations (2) and (3) become respectively:

l+l

æ
Im{iG(a2,a3,fl\ Im{G(a2,a4,fl\ Im{rG(a1,a3,fl\

(,)"
dÍ-

o3
df-

(Ð-

çn 6t 6m6t) Im{G(a2,apfll

æ æ

4*)t -
Eøla

13_
t4

æ

4x)t =

0 ,t?
^

Where G(a2,aj,Í) is the cross specral density of the product o3 o2* where 
* 

defines the

complex conjugate, and Re{G(..)J and Im{G(..)} Íìre respectively the real and imaginary

parts of the cross spectral density
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And for sinusoidal signals:

<Px
Eala

Iã_
4rm{G(a2,a3,fl1 rm{G(a2,a4,fl1 rm{G(a1,a3,fl1

(63)

o3 (Ù3 (ù3
t

<P
çn,616m6t)

,f)l

The quantities in equation (56) can also be estimated by using two strain gauges and two

accelerometers, (Carles et al., 1983). This approach is possible since strain is already the

second spatial derivative of displacement, as shown in equation (26). Hence for sinusoidal

signals:

(6t¡
tx,

(6s)
(D 0)

4.1.2 Power flow in electrical devices

The instantaneous electrical power flow into the piezoelectric actuator can be evaluated by

using the measured values of voltage and current, according to the following:

Pr=VIcosQ (66)

4*'r = ":Å'
rm{G1e1,a2,f)l lm{G(e2,ayfll

where Q is the phase angle between the voltage, V, and the current, 1.
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The value of time averaged or active power, using cross spectrum analysis can be

determined using:

4 r)t = Re G(VLf) (67)

4.1.3 Mechanical power flow using a force transducer and an accelerometer

The instantaneous mechanical power flow can also be measured by using force and

velocity measurements, and by definition is:

(68)

where Q is the phase angle between the force, F, and the velocity, v.

The value of time averaged or active power, using cross spectrum analysis can be

evaluated by:

1P m>r = Re G(F,v,/) (6e)

4.1.,{ Coupling efficiency

The coupling efficiency for an actuator can be def,rned as the ratio of output to input

power. Thus, coupling efficiency, ç., is

4 
^)t 

<Pr)t

cosQP^ = F v

(. =-or- (70)
tP r', 4 r',
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4.2 Power flow measurements in a thin beam excited by piezoelectric actuators

4.2.L Experimen tal set-u p

For a beam such as the one shown in Figure 7, the power flow field is very reactive and

the whole beam can be shown to be significantly affected by near-field effects, since the

length of the beam is comparable to the wavelength of the vibration of interest. For this

beam the flexural wave-speed at 600 Hz is approximately 100 m/sec and the wavelength is

approximately 180 mm. Thus the beam was instrumented with two four accelerometer

spatial ¿urays as shown in Figure 31. It has been shown by Hayek et al. that the

magnitude enor in a power measure is minimised when accelerometer spacings are equal

to a twentieth of a wavelength. Thus, an accelerometer spacing of 9 mm was chosen for

the measurement array, as at this value represents a twentieth of the wavelength.

Although the measurement array will have it least magnitude error around 600 Hz,

frequency sweeping was again used to obtain some idea of power flow in a broad range of

frequencies. The ability of the analyser to control the input actuator voltage from the

resulting output strain values, enabled the extension of the experimental dynamic range to

beyond 80 dB, while maintaining adequate signal to noise ratio. To measure the power

flow through the beam a total of six cross spectra need to be measured. Initial experiments

showed the results to be stable and repeatable. Thus the following methodology was used.

At any one time an accelerometer pair were selected, and the cross spectrum measured.

This data was stored in the personal computer, and another accelerometer pair was chosen.

The process was repeated until all the required data had been obtained. Power flow at any
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frequency could be calculated by manipulating the data stored within the personal

computer.

Total mechanical power flow can be defined as the power measured leaving the actuator

from its left side plus the power measured leaving the actuator from its right side (see

Figure 32). The power provided to the actuator has to be measured before the

amplification stage through the step-up transformer, because after the voltage step-up

transformer (ratio 38.1:1) the current levels are much too low for accurate measurements.

A 0.1 Ohm precision resistor was placed in series with the power circuit, and current

measurements were obtained by measuring the voltage drop across the resistor (see Figure

33).

4.2.2 Results and discussion

Figure 34 shows the results of power measurements obtained during a number frequency

sweeps, each lasting approximately 5 minutes, from 300 to 800 Hz. Power flow is greatest

at resonances, and much less at frequencies away from resonances. This is to be expected,

as real or active power implies that a nett power flow must exist, and in such a reactive

system, the only significant energy dissipation will occur at frequencies with large

displacements, hence at resonant frequencies.
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Coupling efficiency, shown in Figure 35, is defined as the ratio of oulput mechanical

power flow divided by input electrical power. Results of this calculation shows maximum

coupling efficiency levels for the third and fourth vibration modes of 487o and l37o

respectively. Elsewhere the coupling efficiency is low (from 0.0004Vo to O.SVo).
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4.3 Power flow measurements in a thin beam excited by an electromagnetic shaker

4.3.1 Experimental set-up

To compare the performance of piezoelectric actuators with that of electromagnetic shaker,

the piezoelectric actuators of the beam shown in Figure 3l wete replaced by an

electromagnetic shaker, as shown in Figure 36. In addition, a force transducer and

accelerometer arrangement was located directly behind the shaker/beam attachment point.

This enabled the measurement of mechanical power flow into the beam using a well

proven, well understood moasurement system. The accelerometer spatial ¿urays werc the

same as those used in power flow measurements with the piezoelectric actuators.

4.3.2 Results and discussion

Unlike the piezoelectric actuators, the attachment of the shaker to the beam has major

effects on the dynamic response of the beam. The mass loading effects result in the

shifting of some of the natural frequencies, while the added armature damping results in

larger modal damping. These effects can be seen in the strain results measured at

x=150mm shown in Figure 37.

Figure 38 shows the power flow from 200 to 800 Hz. Again active power flows are larger

at resonances than at other frequencies. There is good agteement between total mechanical

power flow measured using the two four accelerometer arrays and the beam input power

measured using the force transducer and accelerometer. There is however more spurious

I

k
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data in the results obtained using the four accelerometer arrays. Indeed, if the direction of

the power flow is taken into account there are regions where the real power flow, although

of a level comparable with the results from the force transduçer and accelerometer, is

flowing out of the beam rather than into the beam (Figure 39). This of course has no real

physical meaning, but indicates effors of the sort mentioned by Taylor, 1990.

The results shown have been repeated a number of times and the following observations

can be made:

Although the measurements were not conducted instantaneously the

measured phase between accelerometers was stable and repeatable.

Coherence in all measurements was good and gteater than 0.9

There ale no doubts that phase elrors are a big source of overall effors

(Taylor, 1990). The best phase effor measured between accelerometers and

charge amplifiers in this experiment was 0.2 degtees at 150 Hz.

The second signihcant source of errors comes from the fact that at various

frequencies, modal nodes or antinodes will be located somewhere within the

measurement array. This leads to a lafge approximation error in the slope

estimations required for power flow measurements. These errors again have

been shown by Taylor, 1990, not to be negligible.
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Lastly, since the reflection coefficient (defined as the ratio of the travelling

wave amplitude to the reflected wave amplitude) for this beam is close to

one, or sincè the reverberation time is long, the presence of standing waves

(large reactive power flow) will tend to obscure the lower active power

flow (Taylor, 1990).

Despite these errors, it can be seen from Figures 38 and 39 that, broadly

speaking, the power measurements obtained by the two different methods

are in agreement. Some frequency smoothing could perhaps improve the

results.

The coupling efficiency, for this experiment (Figure 40), has efficiencies reaching II-ISVo

at resonance and 0.0l%o to lTo off resonance. Thus coupling at resonance is highest for the

piezoelectric actuators, with efficiencies reaching 48Vo compared to l57o maximum

reached by the shaker. Off-resonance, the shaker efficiencies although small (from 0.0l%o

to I7o), are larger than those achieved by the piezoelectric actuators (from 0.00047o to

0.5Vo).
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5.0 OTHER CONSIDERATIONS

5.1 Piezoelectric actuator failures

Throughout the experimental program continual failure of the piezoelectric actuators

caused considerable difficulty, and the following anecdotal notes are intended for future

users.

A total of eleven (11) actuators were used throughout the experiments of this study. Out of

those eleven (11), seven (7) failed: two (2) deliberately, three (3) on installation, and two

(2) during what should be classified as normal usage. Generally, the voltage provided to

the actuators was kept well below the upper limit ranges of the coercive voltage (the

voltage at which the poling or depoling occurs and for PZI G-I195 approximately equals

240 Volts rms at 60 Hz), in the range of 30 to 120 Volts rms within the frequency range

10 to 1000 Hz. Furthermore, the feedback control capability of the IfP3562A analyser

allowed the output strain levels on the beams to be kept to within safe bounds. Hence, the

actuators where not subjected to any worse conditions that they would be subjected to in

the field.

The two (2) deliberately failed ûcruûtors were subjected to a level exceeding 400 Volts

rrns at 550 Hz (see Figures 4l antl -12). This frequency was chosen as it did not coincide

with a resonant mode, hence klrver strain levels would be reached for a given voltage

input. The main .failure mechanisnr tbr these actuators were surface cracks, which then

lead to electrical break-down. During the electrical break-down, a miniature lightning
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storm could be observed over the surface of the failed actuators.

Three (3) actuators failed on installation. They all had some response at low voltage inputs

but then tended to behave erratically at the required higher input voltage levels. Their

behaviour was reminiscent of the high voltage break-down effect, and it was felt (but not

proven) that the break-down was either somewhere around the perimeter of the

piezoelectric actuator or between the base layer of the actuator and the beam.

Two actuators failed during what can only be classified as normal usage. The first failure

occurred after about six months of intermittent but regular use. A lateral crack appeared

on the actuator and its performance was badly affected. It was felt (not proven) that the

failure represented a mechanical failure of the actuator, somewhat like the actuator had

been bent too far. The progress of the second failure, by luck, was observed quite closely.

A small longitudinal crack appeared on one edge of the crystal. This crack could be seen

quite easily due to the electrical sparks spanning that crack. Slowly at first and then quite

rapidly the longitudinal crack grew the full length of the crystal. The team at the

University of Adelaide had been trying different "on-the-run" methods of repair. A

promising method was to coat the cracks with a high conductive paint, Electrodag-9l5.

This appeared to allow the elecrrical connection between the piezoelectric segments on

either side of the cracks, without shorting the connection between the layers. This crystal

was successfully repaired and worked at pre-cracking performance levels. That is until

quite abruptly, something exploded with a flash and a bang. This was most perturbing,

particularly as the.actua.tor at the time was not actually being used, although connected to

the power source. Closer inspection of the actuator surface revealed that the silver patch
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had scorched in a localised region on top of the existing crack. The conclusion reached

was that some continuous charging (but no discharging) of some localised part of the

crystal had been taken place over a period of time, until some sort of saturation was

reached and exceeded. The actuator was cleaned, repaired and observed to work. However,

closer measurements showed that its performance had deteriorated, for its phase response

had shifted by some 20o. The actuator had been instantly depoled and repoled to some odd

poling direction. This actuator was hence replaced.

The above testimonies are not meant to be taken as an in-depth performance survey of

piezoelectric devices and materials, but remain purely the observations of what actually

took place during the various experiments undertaken. Only one batch of PZT G-1195

material was used though the experiments. Although other experimental rigs have suffered

similar fates.

5.2 Actuator voltage linearity

Tests have shown that over a range the piezoelectric actuator force output is linear with

the input voltage. Both input power (Figure 42) and output strain levels (Figure 43) ue

essentially linear with the input voltage within the range 0 to 200 V rms, but become

increasingly non-linear above this voltage, as is expected since this value approaches the

coercive field.
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5.3 Actuator leakage

During some of the calibration measurements, an interesting phenomenon was noted. The

calibration measurements involved using some calibrated weights to deflect an

instrumented thin beam. The strain values registered by the strain gauges on the top

surface of the beam were compared to values obtained by classical Bernoulli-Euler beam

theory. For gauges on the beam surface, the application of the weights was registered as a

DC shift on the chart recorder (see Figure 44). Figure 45 shows that for gauges on top of

the piezoelectric actuator, the initial peak strain value which was reached decayed

exponentially over time, the reverse effect was observed with the load removed. This was

despite the piezoelectric actuator being open circuit, thus leading to the conclusion that

some of the charge developed must leak away. This does not pose a threat to any high

frequency operation of piezoelectric actuators, but for any operation below 5 Hz it may

have serious consequences, such as large time lags between the applied voltage and the

force response.

5.4 Actuator non-linearities

Despite the linear behaviour exhibited by the piezoelectric actuator over the voltage input

range shown in Section 5.2, piez<rlectric actuators do exhibit non-linear characteristics in

the frequency spectrum of their <lutput for any given input. Generally, the frequency

content of the input and. the output was the same. On occasions, however, the frequency

content of the output iñcluded high level harmonics of the fundamental, which became

more noticeable as the piezoelectric actuator was driven at higher levels.
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5.5 Shear lag - strain singularity

Figure 46 duplicates a previous figure showing the point where the strain singularity

occurs. As mentioned in Section 3.3, this singularity is responsible for the increase

actuator strain near to the end of the actuator. The shear lag mechanism is sometimes

described in advanced mechanics texts (Peery, 1950) and has been alluded to by Crawley

and de Luis, 1987.

The free edge condition of the piezoelectric actuator necessitates the stress free boundary

condition. Then by equation (5), the applied strain at the free edge must equal r\. However

as mentioned previously the applied strain, just on the beam side of the actuator, is zoro,

hence the strain singularity. Thus there must be relative displacement, and hence shearing

strain, between the beam and the actuator at the interface. At distances further and further

removed from the free edge, the shear strain reduces more and more, until there will not

be any shear srain between the piezoelectric actuator and the beam. This is the only

manner by which the strain singularity can be explained. Timoshenko and Goodier, 1951,

tried to solve what is a similar problem, albeit a static analogy: a three (3) dimensional ba¡

hanging loaded by its own weight. At the boundary, with no displacements allowed, there

exists a strain singularity between the bar and its support. Timoshenko's solution to this

problem, although correct at some distance away from the strain singularity, is not correct

at the boundary, for the solution allows displacements to occur at the boundary.

With this particular problem in mind, a solution for a two (2) dimensional bar hanging

under static self weight was sought after. It was felt that such a solution would go a long
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way towards explaining the strain singularity - shear lag mechanism. Although finding an

exact solution to the two dimensional differential equations describing the stress field

throughout the bar was unlikely, it was felt that a polynomial approximation might be

found to satisfy the differential equations of equilibrium, together with the compatibility

equation and the boundary conditions. This proved difficult as with all the boundary

conditions equal to zero, all the polynomial coefficients soon trivialised to zero. Lastly, it

was thought that some of the boundary conditions should be changed to a minimum rather

an absolute zero, to try and stop the trivialisation of the answer. Thus, the strain energy on

the surface away from the surface of interest was minimised. Initial results from this

solution method were discouraging, and with time running short the solution to this

problem was regrettably abandoned. It is believed that a simila¡ approach or perhaps one

based on the calculus of variation may be able to solve this interesting problem.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

A new model, based upon work reported by Pan et al. (1992), which calculates the

response of a simply supported beam excited by a pair of piezoelectric actuators bonded to

opposite sides has been presented in Section 3.2, and theoretical predictions have been

verified experimentally. It has been shown that the results of this model (which divides the

beam into three separate segments) are equivalent to those obtained using the model of

Clark et al. (1991). It was also found that the stiffness and inertia added to the beam by

the actuators had a negligible effect on the results.

Two different mechanisms for ransferring the force from the actuator to the beam were

shown to exist. The first mechanism involves force transfer by way of either equivalent

line moments or a uniform strain distribution over the actuator/beam interface. Results

obtained with a theoretical model using this mechanism as a basis agree well with

experiment at beam resonance frequencies, but not at frequencies between resonances.

This lack of agleement at non resonance frequencies is due to the domination of the force

transfer by a second mechanism in which the strain field at the free edge of the

actuator/beam system affects the dynamic behaviour of both systems. In this mode, the

actuator strain field is markedly different to that of the beam and is clearly dependent on

the impedance of the sub-system on which it is acting. The actuator strain f,reld in this

mode is reminiscent of the shear lag mechanism identified by Crawley and de Luis (1987),

where the rapid change. in strain near the free edge of the actuator results in a large

increase of shea¡ strain.'This force rransfer mechanism is obviously less efhcient than the

first. Therefore, the free edge condition of the piezoelectric actuator does not affect the



86

beam's dynamic response at resonance, but the free edge condition does affect its dynamic

response at other frequencies. Thus the free edge condition of the piezoelectric actuator

does affect the dynamic response of the actuator and the beam, and this effect must be

taken into account.

The existing one dimensional model of the beam section containing the actuator is clearly

inadequate to describe the near-field actuator/beam response and the beam response at

non-resonance frequencies. A better model could use a similar approach as used in this

paper (dividing the beam into three sub-systems) but a two or three dimensional model of

the actuator/beam sub-system will be required.

The strain values under the actuators are shown to exceed values elsewhere in the

structure, but that strain value will never exceed the value of the calculated applied strain

assumed pure bending for that is the more efficient transfer mechanism. Yet, the value of

strain reached on the surface of the actuator has been shown to vary considerably

depending upon the force transfer mechanism, and this must be taken into account when

designing active control systems.

The power flow experiments (Section 4.0) clearly show that the piezoelectric actuator is

by far more efficient (approximately -ttl7o) in converting electrical energy into mechanical

energy (definition for coupling efficiency) than the electromagnetic shaker (approximately

I57o) at beam resonances. In this case, the force transfer mechanism from the piezoelectric

actuators, is efficient. Away fionr resonances, the coupling efficiency of both methods

drops rapidly to small values with the electrodynamic shaker (from 0.0l%o to l7o) yet far
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more efficient than the piezoelectric actuator (from 0.00047o to 0.5Vo). The force transfer

mechanism for the piezoelectric actuators is thus far less efficient away from resonance.

It was found difficult to obtain accurate power flow measurements. There are a number of

factors (the accelerometer spacing itself, accelerometer spacing tolerance, phase matching

between accelerometers and indeed between measurement channels, and reverberation time

of the structure being measured) which act together to compound the error, and

furthermore as the error resulting from one factor is minimised, the error component for

another factor increases. Further, the finite difference anays utilised are designed to

operate accurately only over a limited specific frequency range, and the mass loading of

the accelerometers is not negligible for light structures.
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LIST OF SYMBOLS

bb beam width

cb

D

d

dss

Lb,. change in actuator width

actuator width

dst

electric displacement

piezoelectric stress constant

piezoelectric sfress constant - ransverse charge coefficient

piezoelectric stress constant - axial charge coefficient

Eb Young's modulus of beam

Young's modulus of piezoelectric crystalEc

beam second moment of a¡ea

bending wave number in beam

coefficient defined by equations (14), (17) or (21)

change in actuator length

actuator length

beam length

Ib

k

K

AT.,

Lc

Lx

m6 mass per unit length of beam
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Mx internal beam moment

Mz applied external line moment

P coefficient defined by equations (13), (16) or (20)

electrical power flow as measured using curïent and voltage

mechanical power measured using force and acceleration transducers

power flow in beam using accelerometers

P
e

Pm

Px

beam curvature

beam internal shear force

R

s

t

tb

LI,,

tc

usb

V

time

beam thickness

change in actuator thickness

actuator thickness

beam surface displacement in x direction

Voltage applied to piezoelecric crystal

beam vertical displacement

xy z coördinate system

w

xI x2 actuator locations
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b

c

Subscripts

beam

bI b2 b3 sub beams I 2 3

actuator (crystal)

accelerometer spacing in finite difference schemes

actuator strain at any .r

beam surface strain

distributed strain applied to the beam surface

coupling efficiency

beam loss factor

actuator loss factor

angular rotation of the beam plane perpendicula¡ to the beam axis (x-axis)

^

Greek

Ec

ttb

,to

Ç,

\a

nc

0

^
actuator strain due to the electric field only
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vb

vc

beam Poisson's ratio

actuator Poisson's ratio

beam density

crystal density

beam stress at any point

beam surface stress

actuator stress at any point

beam stress in x direction

Beam to actuator sriffness ratio

angular frequency

A6

Qc

ob

db

a,

cx

Yb

(ù



: Errata - Thesis: Dynumic Response of simply supported Beams by

Piezoelectric Actuatot's - By: J. Rivory

ERRATA

P.5 Line 10

p.24 Line 4

"thesis" should replace "paper"

"ten (10) boundary conditions" should read "twelve (12) boundary

conditions"

"equations (41) to (42)" should read "equations (41) to (52)"

"Je" should be replaced bY "Je"

"where" should be replaced by "were"

the Clark et al.
xPerimental data
13)."

p.26

p.26

p. 36

p. 36

Line 1

Equation (52)

Line 4

2nd para

.l

rr.f

p. 36 2nd para

should read

"There is also very good agreement between both the Clark et al.

(1990) model, and the model postulated here at all measurement

points (see Figures 11, 12, and 13)."

The following should be read as being inserted between the second

and third paragraph.

Furthermore, it can be shown using transformed section theory, that the EI of the beam section is

increased by 23vo with the addition of the actuator stiffness. But that at the same time, the linear

mass of the beam section is increasedby l9lo. Since the Bernoulli beam equation consists of a

stiffness plus a mass tsrm, substitution óf stiffness and mass increases into equation (29), qiu-tt

rise ro a negligible mass/stiffness loading of approximately 37o (about 0'3.dB)' It should be

noted that this is valid for the beam sysõm unããr shdy, but that for other beam systems, the

mass/stiffness loading may not be negligible.

p.37 Line I "(eg.420 Hz)" should be amended to read "(eg.420 Hz in

Figures lI, 12,13, and l7)"

p.37 LineT "18)" should read "17)"

I

!

p.37 Line 12 "log10" should read "log1g"



ITY OF

57368

a.2

"There is good agreement the model and the experimental
results close to the actuator (Figures 3 and 4). At regions fa¡ from
the actuator, at low frequencies there is good agreement also;
however, at higher frequencies, in between the ¡esonance peaks,
the agreement is poor (Figures 25 and26)."

has been amended to read

"In terms of magnitude, there is a degree of agreement at all
frequencies between the model and the experimental results close
to the actuator (Figures 23 and24),butonly at low frequencies at
regions away from the actuators. In these regions at high
frequencies and between the resonance peaks, there is no
agreement (Figures 25 and26)."

"out phase" should read "out of phase"

Figures 7 ,8,9, l0 should read Figures 27,28,29,30

"frequency underestimation" should read "frequency
overestimation"

Reference should be made to Pavic (1976) who clerives the
equation

"using finite difference approximations" should be amended to
"using finite difference approximation such as that used by pavic
(1976)"

"using finite difference approximations" should be amended to
"using the finite difference approximation such as that used by
Pavic (1976) and Noiseux (1970)".

"É =" should read "¡2 -"

"Hayek et al." should read "Hayek et al. (1990)"

"as at this" should read "as this"

"it" should rgad "its"

"number frequencies" should read "number of frequencies"

"where" should read "wgre"

Cl<) Ës_\S
Ru:-t"
o -->

p.52 2ndPara

p.52 Line 9

p.57 Lines 3 to 5

p.57 Line 8

p. 59 Equation (56)

p.60 Line I

p. 60 Line 9

p. 61 Equation (60)

p.64 Line 6

p.64 Line 9

p.64 Line l0

p.66 Line 11

p.76 Line 12




