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Abstract

High frequency combustion instabilities in liquid propellant rocket engines are spon-
taneously occurring pressure fluctuations that are coupled with unsteady combustion
processes. Under the right conditions the unsteady fluctuations can grow to a point where
they affect the operation of the combustion chamber. The cause of combustion instabilities,
including which processes are responsible and under what conditions they arise, are not yet
fully understood. The ability to predict and prevent combustion instabilities during the
design of new combustion chambers, through better understanding, would dramatically
reduce the uncertainty and risk in the development of new engines.

An experimental combustor, designated BKH, is used to conduct high frequency com-
bustion instability experiments. BKH operates with liquid oxygen and gaseous hydrogen
propellants at supercritical conditions analogous to real rocket engines. The chamber
features an acoustic excitation system that imposes an acoustic disturbance representative
of a high frequency instability upon a cluster of five coaxial injection elements in the
center of the chamber. The response of the elements to the imposed acoustic disturbance
is observed using high speed optical diagnostics.

The main aim of this project is to develop methods for predicting the flame response to
high frequency acoustic forcing representative of combustion instability phenomena. BKH
is employed as an experimental and numerical test case for investigating the flame response.
Modelling and complementary data analysis methods are developed and applied to model
the chamber flow field, identify and predict the excited acoustic disturbance, identify the
flame response using optical data, and to predict the flame response numerically.

The BKH experiments are first characterised by modelling the chamber numerically
and determining the local acoustic disturbance acting upon the flame. A steady state
chamber model with supercritical oxygen-hydrogen combustion was computed using a
specialised CFD code. The model results indicate the secondary injection in BKH has a
strong influence on the resulting flame distribution.

A method for reconstructing the acoustic field from dynamic pressure sensor data was
developed to determine the local acoustic disturbance acting upon the combustion zone
over a range of excitation frequencies. A low-order acoustic modelling approach is also
shown to predict the resonant mode frequencies and the evolution of the acoustic field.

The flame response to the imposed acoustic disturbance is identified by analysing optical
data from BKH experiments and unsteady CFD modelling. Multi-variable dynamic mode
decomposition (DMD) analysis is used to isolate the flame response to the imposed acoustic
disturbance in shadowgraph and OH* imaging data. Wave-like structures propagating
along the surface of the liquid oxygen (LOx) jet and a phase difference of 45° between
acoustic pressure and observed intensity fluctuations were identified.

An unsteady model of an injection element subjected to representative acoustic forcing
is used to predict the flame response for a range of excitation amplitudes. Velocity ratio
fluctuations caused by acoustic coupling with the oxidiser post in a pressure antinode are
identified. The trend of exponential decay of the length of the LOx core with increasing
transverse acoustic amplitude excitation is reproduced numerically and the flattening and
flapping motion of the flame was further investigated using the numerical results.
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CVRC Continuously Variable Research Combustor, operated by Purdue University
CRC Common Research Chamber, operated by DLR

DLR German Aerospace Center (Deutsches Zentrum fir Luft und Raumfahrt)
DMD Dynamic Mode Decomposition

DNS Direct Numerical Simulation

EM2C Energetics and combustion lab at CentraleSupélec

FEM Finite Element Methods

FFT Fast Fourier Transform

FTF Flame Transfer Function

HF High Frequency

IFPEN French public-sector research, innovation and training center

JAXA Japanese Aerospace Exploration Agency

LEE Linearised Euler Equations

LES Large Eddy Simulation

LE-TA Mitsubishi LE-7(A) rocket engine

LF Low Frequency

LOx Liquid Oxygen

MIC Multiple-Injector Combustor, operated by ONERA

ONERA  French national aerospace research center

P8 European Test Facility for Cryogenic Rocket Propulsion

PCCDYN Dynamic pressure sensors installed in BKH

POD Proper Orthogonal Decomposition

RANS Reynolds Averaged Navier Stokes

RMS Root Mean Squared

ROF Ratio of Oxidizer to Fuel mass flow rate

SSME Space Shuttle Main Engine

TAU CFD solver developed by the DLR

TIC Transverse Instability Combustor, operated by Purdue University
TUM Technical University of Munich (Technische Universitat Minchen)

URANS Unsteady Reynolds Averaged Navier Stokes
VHAM Very High Amplitude Modulator, operated by ONERA
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