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Abstract

Compared with low-level features, mid-level representations of visual objects con-
tain more discriminative and interpretable information and are beneficial for im-
proving performance of classification and sharing learned information across object
categories. These benefits draw tremendous attention of the computer vision com-
munities and lots of breakthroughs have been made for various computer vision
tasks with mid-level representations. In this thesis, we focus on the following prob-
lems regarding mid-level representations: 1) How to extract discriminative mid-level
representations from local features? 2) How to suppress noisy components from
mid-level representations? 3) And how to address the issue of visual-semantic dis-
crepancy in mid-level representations? We deal with the first problem in the task of
action recognition and the other two problems in the task of zero-shot learning.

For the first problem, we devise a representation suitable for characterising hu-
man actions on the basis of a sequence of pose estimates generated by an RGB-D
sensor. We show that discriminate sequence of poses typically occur over a short
time window, and thus we propose a simple-but-effective local descriptor called a
trajectorylet to capture the static and kinematic information within this interval. We
also show that state of the art recognition results can be achieved by encoding each
trajectorylet using a discriminative trajectorylet detector set which is selected from a
large number of candidate detectors trained through exemplar-SVMs. The mid-level
representation is obtained by pooling trajectorylet encodings.

For the second problem, we follow the attractive research topic zero-shot learning
and focus on classifying a visual concept merely from its associated online textual
source, such as a Wikipedia article. We go further to consider one important factor:
the textual representation as a mid-level representation is usually too noisy for the
zero-shot learning tasks. We design a simple yet effective zero-shot learning method
that is capable of suppressing noise in the text. Specifically, we propose an l2,1-norm
based objective function which can simultaneously suppress the noisy signal in the
text and learn a function to match the text document and visual features. We also
develop an optimization algorithm to efficiently solve the resulting problem.

For the third problem, we observe that distributed word embeddings, which be-
come a popular mid-level representation for zero-shot learning due to their easy
accessibility, are designed to reflect semantic similarity rather than visual similar-
ity and thus using them in zero-shot learning often leads to inferior performance.
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xii

To overcome this visual-semantic discrepancy, we here re-align the distributed word
embedding with visual information by learning a neural network to map it into a
new representation called the visually aligned word embedding (VAWE). We further
design an objective function to encourage the neighbourhood structure of VAWEs to
mirror that in the visual domain. This strategy gives more freedom in learning the
mapping function and allows the learned mapping function to generalize to zero-
shot learning methods and different visual features.
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Chapter 1

Introduction

Classification or categorization lays the foundation of computer vision and pattern

recognition. The task is to classify an object into one or more categories by drawing

the connection from the features of the object to the definitions of categories. One

of the key issues in classification is the feature representation of the objects. Given

appropriately represented features, classification tasks can be performed on any kind

of objects: images (pixel values, CNN activations, etc.), videos (pixel values, CNN

activations, etc., over time), actions (optical flow, skeleton joints coordinates, etc., over

time), speeches (auditory signals), etc.. Despite significant recognition results these

low-level representations produced over the past 20 years, they often lack meaningful

and interpretable descriptions for human beings to understand the objects. Being

the global and explicit descriptors of objects, low-level representations make strong

assumptions on the training samples, e.g. well-aligned faces or even-paced actions.

However, in real-world applications those assumptions are mostly violated and this

limits the generalization ability of low-level representations.

Attributes (Ferrari and Zisserman [2008]; Farhadi et al. [2009]), on the other hand,

are mid-level semantic descriptions of objects that are close to human interpretation.

Compared conventional category-level classification, the attributes are adjectives that

describe the nouns (category). In some cases such as attribute discovery (Rastegari

et al. [2012]; Yu et al. [2013]), however, attributes do not need be explicitly seman-

tic, but rather be some discriminative mid-level representations. Typical attributes

can be either binary (presence or absence of a property) or continuous (strength of a

1



2 Introduction

property) vectors, but other general structures (text descriptions, wordnet hierarchy,

learned discriminative patterns) can still serve as the purpose of attributes. Because

attributes co-occur across different categories, they are beneficial for improving per-

formance of classification and for transferring learned information between object

categories. Given a sufficiently rich dataset of learned adjectives, new categories of

objects can be recognized simply from a verbal description consisting of a list of the

attributes with just a few or even no training examples.

With their two major benifits, attributes are usually applied in two fields: 1) im-

proving classfication results as more discriminative mid-level representations (Torre-

sani et al. [2010]; Rastegari et al. [2012]; Yu et al. [2013]); 2) enabling zero/few-shot

learning as informative media that are transferable between seen and unseen cate-

gories (Lampert et al. [2009]; Farhadi et al. [2009]). Both approaches are made possi-

ble by the connection from low-level representations to attributes and the connection

from attributes to categories. Although the recent use of attributes has led to exciting

advances in both areas (Zhang and Saligrama [2015]; Escorcia et al. [2015]), the an-

notation cost of attribute constrains its further applications large-scale environments

since extensive human labours are required to define the attribute vector for each

category.

To bypass the limitation of human-defined attributes, most recent works have ex-

plored alternative mid-level representations which are learned from data other than

hand-crafted. These include automatically mined mid-level representations from an

auxiliary source (semantic attribute) or the training data itself (discriminative pat-

terns) and learning category-level representations (word embeddings, document,

etc.) from auxiliary sources.

1.1 Problem Formulation

In this thesis we focus on two topics heavily related to the alternatives of hand-crafted

attributes in two applications: action recognition and zero-shot learning.
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1.1.1 Action Recognition with Discovered Discriminative Mid-level Rep-

resentation

The advent of low-cost RGB-D sensors, and their ability to rapidly capture sequences

of human pose estimates, has promoted a large amount of research interest in skeleton-

based human action recognition. Intuitively, a temporal sequence of 3D skeleton joint

locations captures sufficient information to distinguish between actions, but record-

ing such skeleton sequences was previously very expensive with the traditional mo-

tion capture technology Moeslund et al. [2006]. Recently, the advent low-cost of

RGB-D cameras such as Microsoft Kinect Han et al. [2013] and their ability to rapidly

capture sequences of human pose estimates, has promoted a large amount of re-

search interest in skeleton-based human action recognition Shotton et al. [2011]. This

advance has promoted the development of a range of skeleton-based action recog-

nition approaches (Vemulapalli et al. [2014]; Gowayyed et al. [2013]; Wu and Shao

[2014b]). Devising a representation suitable for characterising human actions on the

basis of a sequence of pose estimates generated by an RGBD sensor remains a re-

search challenge.

In contrast to the previous approaches which either represent an action with the

whole sequence or extract local features at the frame level, we argue that the dis-

criminative information regarding an action is better captured by a short interval

of trajectories. We here provide two insights into this challenge. First, we show

that discriminative sequence of poses typically occur over a short time window, and

thus we propose a simple-but-effective local descriptor called a trajectorylet to cap-

ture the static and kinematic information within this interval. Second, we design

the mid-level representation by encoding each trajectorylet using a discriminative

trajectorylet detector set which is selected from a large number of candidate detec-

tors trained through exemplar-SVMs. The action-level representation is obtained by

pooling trajectorylet encodings.
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1.1.2 Zero-shot Learning with alternatives of Attributes

Unlike traditional object classification tasks in which the training and test categories

are identical, zero-shot learning aims to recognize objects from classes not seen at the

training stage. It is recognized as an effective way for large scale visual classification

since it alleviates the burden of collecting sufficient training data for every possible

class. The key component ensuring the success of zero-shot learning is to find an

intermediate semantic representation to bridge the gap between seen and unseen

classes. In a nutshell, with this semantic representation we can first learn its connec-

tion with image features and then transfer this connection to unseen classes. So once

the semantic representation of an unseen class is given, one can easily classify the

image through the learned connection.

Attributes, which essentially represent the discriminative properties shared among

both seen and unseen categories, have become the most popular semantic represen-

tation in zero-shot learning. Although the recent use of attributes has led to exciting

advances in zero-shot learning, the creation of attributes still relies on much human

labour. This is inevitably discouraging since the motivation for zero-shot learning is

to free large-scale recognition tasks from cumbersome annotation requirements.

1.1.2.1 Zero-shot Learning with On-line Documents

To remedy this drawback and move towards the goal of fully automatic zero-shot

learning, one possible choice is to directly use online textual documents, e.g., those

found in Wikipedia, to build such a representation (Elhoseiny et al. [2013]; Ba et al.

[2015]). This is promising because online text documents can be easily obtained and

contain rich information about the object. To conduct zero-shot learning with textual

documents, existing works (Akata et al. [2015]; Fu et al. [2015]) develop various ways

to measure the similarity between text and visual features. Our work is also based

on this idea. We take a step further, however, to consider one additional important

factor: the document representation is much more noisy than the human specified
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semantic representation and negligence of this fact would inevitably lead to inferior

performance. For example, when the bag-of-words model is adopted as the doc-

ument representation, the occurrence of every word in a document will trigger a

signal in one dimension of the document representation. However, it is clear that

most words in a document are not directly relevant for identifying the object cate-

gory. Thus it is necessary to design a noise suppression mechanism to down weight

the importance of those less relevant words for zero-shot learning.

1.1.2.2 Zero-shot Learning with Distributed Word Embeddings

Recently, several works have explored to use distributed word embeddings (DWE)

(Mikolov et al. [2013]; Pennington et al. [2014]) as the alternative to attributes in

zero-shot learning (Frome et al. [2013]; Norouzi et al. [2014]). In contrast to human

annotated attributes, DWEs are learned from a large-scale text corpus in an unsuper-

vised fashion, which requires little or no human labour to collect.

Different to existing work, the method proposed in this thesis directly learns a

neural network to map the semantic embedding to a space in which the mapped

semantic embeddings preserves a similar neighbourhood structure as their visual

counterparts. In other words, we do not require the mapped semantic embeddings

to be comparable to visual features but only impose constraints on their structure.

This gives more freedom in learning the mapping function, and this could potentially

enhance its generalizability. Moreover, since our approach is not tied to a particular

zero-shot learning method, the learned mapping can be applied to any zero-shot

learning algorithm.

1.2 Main Contribution

We propose several novel algorithms that are applied to the different tasks (action

recognition and zero-shot learning) as introduced in the previous section and con-

duct in-depth analyses on them. These works serve as the main contributions of this
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thesis and they are listed as follows:

• We design a novel local descriptor called a trajectorylet to capture the static

and dynamic pose information within the short interval of joint trajectories. A

novel framework is proposed to generate robust and discriminative representa-

tion for action instances from a set of learned template trajectorylet detectors.

The action-level representation is obtained by pooling trajectorylet encodings.

Evaluating on standard datasets acquired from the Kinect sensor, it is demon-

strated that our method obtains superior results over existing approaches under

various experimental setups.

• We consider one important factor for zero-shot learning with online documents:

the textual representation is usually too noisy for the zero-shot learning appli-

cation. This observation motivates us to design a simple yet effective zero-shot

learning method that is capable of suppressing noise in the text. Specifically,

we propose an l2,1-norm based objective function which can simultaneously

suppress the noisy signal in the text and learn a function to match the text

document and visual features. We also develop an optimization algorithm to

efficiently solve the resulting problem. By conducting experiments on two large

datasets, we demonstrate that the proposed method significantly outperforms

those competing methods which rely on online information sources but with

no explicit noise suppression. Furthermore, we make an in-depth analysis of

the proposed method and provide insight as to what kind of information in

documents is useful for zero-shot learning.

• Compared with human defined attributes, distributed word embeddings (DWEs)

are more scalable and easier to obtain. However, they are designed to reflect

semantic similarity rather than visual similarity and thus using them in ZSL

often leads to inferior performance. To overcome this visual-semantic discrep-

ancy, this work proposes an objective function to re-align the distributed word

embeddings with visual information by learning a neural network to map it
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into a new representation called visually aligned word embedding (VAWE).

Thus the neighbourhood structure of VAWEs becomes similar to that in the

visual domain. Note that in this work we do not design a ZSL method that

projects the visual features and semantic embeddings onto a shared space but

just impose a requirement on the structure of the mapped word embeddings.

This strategy allows the learned VAWE to generalize to various ZSL methods

and visual features. As evaluated via four state-of-the-art ZSL methods on four

benchmark datasets, the VAWE exhibit consistent performance improvement.

1.3 Thesis Outline

The strucutre of this thesis is outlined as follows.

In chapter 1, we give a brief overview and background on object classification

and attributes. We introduce two main topics of this thesis, and summarise its main

contributions.

In Chapter 2, we give a literature review of the background of our study. This in-

volves action recognition methods, attribute-based methods for object classification,

zero-shot learning, and alternatives of hand-crafted attributes for zero-shot learning.

In Chatper 3, We propose an action recognition approach with discriminative

mid-level representations. A novel local descriptor called a trajectorylet is designed

to capture the static and dynamic pose information. And a novel framework is pro-

posed to generate robust and discriminative representation for action instances from

a set of learned template trajectorylet detectors.

In Chapter 4, we propose a zero-shot learning method which particularly caters

for the need for noise suppression of text documents as a substitution for attributes.

We also develop an optimization algorithm to efficiently solve the resulting problem.

We then conduct an in-depth analysis of the proposed method which provides an

insight as to what kinds of information within a document are useful for zero-shot

learning.
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In Chapter 5, we provide a meta-method that aids the performance of word vector

based zero-shot learning methods. We first empirically demonstrate that the inferior

ZSL performance of DWE is caused by the discrepancy between visual features and

semantic representations. We align the distributed word embedding with visual in-

formation by learning a neural network to map it into a new representation called

the visually aligned word embedding (VAWE). We further design an objective func-

tion to encourage the neighbourhood structure of VAWEs to mirror that in the visual

domain.

In Chapter 6, we conclude this thesis and discuss the potential research direction

in the future.



Chapter 2

Literature Review

In this chapter, we will firstly review the conventional approaches to action recogni-

tion. Then, we will introduce the attributes and their applications to object classifica-

tion and zero-shot learning. Finally, we will look beyond attributes and review some

alternatives of attributes in zero-shot learning.

2.1 Approaches for Action Recognition

2.1.1 Overview

Traditionally, the object to be identified in action recognition tasks resides in a set of

video clips. As a result, in video-based action recognition, multiple tracking points

of an action performer needs to be estimated first before the feature representation

and classification process. With the advance of technology, motion capture sensors

and RGB-D cameras provide the explicit 3D coordinates of the space-time evolution

of marked or estimated skeletal joints of the action performer. This review will

cover the input sources of action recognition as well as methods for building action

representation.

2.1.2 Input Sources

2.1.2.1 Video clips

Video clips record raw information of pixel intensity variations in space-time. How-

ever, mere pixel intensity is not able to provide enough information to understand

9
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and identify the action performed in the video. Therefore low-level features need to

be extracted firstly before further steps and here we briefly describe three popular

choices.

• Optical flow Beauchemin and Barron [1995]: Optical flow defined as the appar-

ent motion of individual pixels on the image plane. It often serves as a good

approximation of the true physical motion of objects that is projected onto the

image plane. The methods to determine optical flow try to calculate the mo-

tion between consecutive image frames at each pixel position. The accuracy of

estimated optical flow is affected by noise and illumination changes.

• Trajectories of interest points Sethi and Jain [1987]: Trajectories of moving ob-

jects have popularly been used as features to infer the activity of the object. The

trajectory in 2D image plane is not very useful as it is sensitive to translations,

rotations and scale changes. Alternative representations such as trajectory ve-

locities, trajectory speeds, spatio-temporal curvature, relative-motion etc. have

been proposed that are invariant to some of these variabilities.

• Silhouettes Bobick and Davis [2001]: The shape of the human silhouette plays

a very important role in recognizing human actions, and it can extracted from

background modelling techniques Elgammal et al. [2000]. Visual features based

on global, boundary and skeletal descriptors have been proposed to model the

silhouette actions.

2.1.2.2 Skeleton Squence

As video-based action recognition is conducted on a 2D image plane, it suffers from

loss of depth information. Skeleton-based action recognition, on the other hand,

benefits from the direct modelling of moving 3D points of performers. Here we

briefly introduce two major sources to acquire such moving skeleton sequences.
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• Motion capture Bruderlin and Williams [1995]: Motion capture (or mocap) data

create accurate and realistic motion estimation in the form of 3D points of skele-

ton joints in space-time. The motions are performed by live actors, captured by

a digital mocap system, and finally mapped to an animated skeleton. There are

various ways to generate motion capture data using, e. g., mechanical, mag-

netic, or optical systems. Although the mocap data have the advantage of high

precision and low latency, the mocap devices are expensive and demand spe-

cific environment to record the actions. This limits their application in wider

range.

• RGB-D camera Li et al. [2010]: RGB-D cameras such as Microsoft Kinect cap-

ture both RGB (red, green and blue) video and depth (D) information. This

allows to predict 3D positions of body joints Shotton et al. [2011] from depth

images. In Shotton et al. [2011], a single input depth image is segmented into

a dense probabilistic body part labelling, with the parts defined to be spatially

localized near skeletal joints of interest. The labelled body parts are then pro-

jected into world space as skeletal joints. Compared with mocap data, the ac-

quisition of 3D skeleton data is much easier, faster, and more practical, but less

accurate, since the estimated 3D locations of skeletal joints can be degraded

by occlusion and illumination. Despite the disadvantages, RGB-D data are

widely used in skeleton-based recognition because they are more suitable for

real-world applications.

2.1.3 Action Representation

In both video-based and skeleton-based action recognition, the key challenge is how

to construct the action representation from a sequence of frames in space-time. The

representations are usually depicted with holistic or local spatial-temporal features.

The former uses low-level features directly to depict the whole action, while the latter

mines informative local features to form mid-level representations of action.
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2.1.3.1 Holistic representation

The most straightforward way in action representation is to model the action holis-

tically, either by extracting statistics from the sequence or modelling its generative

process. In Gowayyed et al. [2013], a histogram records the displacements of joint

orientations over the whole trajectory. In Ohn-bar and Trivedi [2013], the action is

modelled with the pairwise affinities trajectories of joint angles. In Xia et al. [2012],

the action sequence is modelled by the Hidden Markov Model with quantized his-

togram of spherical coordinates of joint locations as frame-level feature. In Wu and

Shao [2014a] and Wu and Shao [2014b], deep neural networks such as deep belief net-

works and 3D convolutional neural networks are adopted for spatio-temporal feature

extraction from skeletal and depth data, and then a Hidden Markov Model is used to

infer the action class with the learned representation. In Vemulapalli et al. [2014], 3D

geometric relationships between various body parts are modelled with a Lie group

to represent the whole action.

2.1.3.2 Mid-level Representation from local parts

Besides direct modelling the holistic representation, a natural observation is that

only a small portion of the action is distinctive pattern for the classification, either

spatially or temporally. Mid-level representations can be mined from a collection of

discriminative local spatial-temporal parts.

Regarding spatial dimensions, researchers find that not all body parts can be ac-

tivated from static pose during the action, and a compact representation formed by

the activated body parts only can be constructed. In Ofli et al. [2012] a subset of most

informative joints is selected according to criteria such as mean or variance of joint

angles. In Wang et al. [2012], joints are grouped into actionlets, and the most discrim-

inative collection of them are mined via a multiple kernel approach. In Chaudhry

et al. [2013], a subset of joints during a short-time interval is extracted according to

the spatio-temporal hierarchy of moving skeleton, and a linear combination of them
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are learned via a discriminative metric learning approach. In Du et al. [2015], the

skeleton is divided sub-parts and they are fed into a deep RNN architecture, which

learns the action representation at the fully connected layer. In Moussa et al. [2017], a

technique is proposed to distinguish between different actions using features learned

from global variation in the visual appearance of the subject body.

Temporally, as most of the frames in an action sequence describe non-distinctive

static poses, features at a small number of discriminative temporal locations are in-

formative enough to represent the action. In video-based action recognition, a num-

ber of key frame selection approaches have been proposed. In Zhao and Elgammal

[2008], key frames are selected by ranking the conditional entropy of the codewords

assigned to the frames. In Raptis and Sigal [2013], key frames are encoded as latent

variables and computed by dynamic programming for each action instance. In the

recent work on skeleton-based action recognition, distinctive canonical poses Ellis

et al. [2013] are learned via logistic regression, and discriminative frames Zanfir et al.

[2013] determined by their approximated confidence on specific action classes. In

Yang and Tian [2012], distinctiveness of each frame is calculated by a measurement

of accumulated motion energy.

2.2 Attributes

2.2.1 Definition

Attribute is a special type of mid-level representations. Given a set of attributes

A = {a1, · · · , am}, where each attribute depicts a single semantic or discriminative

associated to the object, and image features X = {x1, · · · , xN} ∈ Rd, the assignment

of attributes to an image is a multi-label classification problem f : Rd → Y , where

Y = {0, 1}m indicates the presence of the attributes in the image. As a result, the

traditional definition of attributes stays in the form of a m-dimensional binary vector

A = (a1, · · · , am) ∈ {0, 1} and attribute classifiers are learned to find attributes of
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images. Besides binary attribute, continuous attributes A = (a1, · · · , am) ∈ Rm marks

the strength of association for each attribute.

Figure 2.1: A typical framework of attribute learning in Farhadi et al. [2009]: the
predicted attributes serve as mid-level representation for describing known objects

and identifying unkown objects

2.2.2 Attribute learning

Because of their rich representation ability, attributes provide deeper understandings

of images than other mid-level representations. The earliest work of predicting at-

tributes for images is by Ferrari and Zisserman [2008]. They use a generative model

to learn simple attributes defined by segments, such as “stripe”, and “ dots". But

these patterns are difficult to learn in natural images, as they assume near-perfect

segmentation of the pattern.

Torresani et al. [2010] are among the first works to define attributes as descriptors

(classmes, in their term) for classification tasks. They learn attribute classifiers with

LP-β kernel combiner, each kernel made of a feature type. The multi-label real-

valued classifier output vector is directly used as descriptor.

Farhadi et al. [2009] are among the first to propose to learn visual attributes

to identify familiar objects, and to describe unfamiliar objects when new images

are provided. They predefine the semantic attributes and generate discriminative

attribute by comparison of random splits of images in different categories. To remove
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irrelevant low-level features, they design a heuristic to select the relevant feature for

specific attribute classifiers by using L1-regularized logistic regression trained for

each attribute within each class, and then pool selected features over all classes.

In the early work of zero-shot learning for novel category classification, Lampert

et al. [2009] introduce another way of learning attribute: instead of learning attribute

labels from the low level features, they first train the multi-class classifiers, and then

estimate the posterior distribution of the training class labels over attributes. This

induces a distribution over the labels of unseen classes by means of the estimated

class-attribute relationship.

Instead of training a classifier for each attribute independently, Rastegari et al.

[2013] argue that training conjunctions of related attributes as whole is more efficient

and effective. Their intuition is when images that contain both attributes occupy

a tight region in the feature space and have enough margin to images that have

only one of the attributes, the merging of the two attributes are more learnable. To

implement this idea, they define a gain function for pairs of attributes to investigate

their joint learnability. And they design an algorithm to recursively combine attribute

pairs with positive gains. To measure the margin and tightness, they map images to

binary spaces and calculate the Humming distances.

Vedaldi et al. [2014] investigate attribute learning in fine-grained part of objects

by introducing Objects in Detail (OID), intended as describing an object and its parts

with a rich set of semantic attributes. They use manually mined attributes, and focus

on a single object category to collect significantly deeper annotations. The attribute

classifiers are learned by restricting visual information to specific parts of the objects

detected by DPM or BOW.

At pixel level, Zheng et al. [2014] formulate the problem of joint visual attribute

and object class image segmentation as a dense multi-labelling problem, where each

pixel in an image can be associated with both an object-class and a set of visual

attribute labels. They develop a hierarchical CRF model in which both objects and
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attributes are labelled at two levels, pixels and region. Their results show that the

joint training with attributes and objects helps semantic image segmentation for both

object classes and attributes.

2.2.3 Attribute discovery

The above section lists works that use predefined fixed number of attributes to aid

computer vision tasks. However, human efforts are usually involved in the attribute

labelling process, making the representation costly to obtain. And the fixed number

of predefined attributes limits the generalization ability of the learned model.

Berg et al. [2010] are the first to investigating on automatically identifying at-

tribute vocabularies without hand labelled training data. Their approach starts with

collecting images and associated text descriptions from the web. This forms a set of

potential/candidate attributes from the noisy web text. They then rank the potential

attributes using the learned classifiers by measuring average labelling precision on

the validation data. Some redundant attributes are merged into attribute synsets.

They also learn to localize an attribute with MILBoost in an image. This work, how-

ever, only focuses on semantic attribute labels from a finite candidate set.

Different from the semantic approach, Rastegari et al. [2012] present a method

that discover arbitrary amount of discriminative attributes as binary code for images.

The codes are learned from category labels on a per-image basis. Each bit in the

codes corresponds to a hyperplane in the feature space space and can be thought

of as a visual attribute whose name is not known. The attributes (hyperplane) are

jointly learned in an SVM formulation to satisfy large inter-class margins and small

intra-class variations. Some of the learned attributes are visually interpretable.

Similar to Rastegari et al. [2012], Feng et al. [2014] propose learn a binary encod-

ing of objects as the presence of attributes, which are firstly learned as a dictionary

of basic visual patterns. The image features are binary combinations of the attributes

in a dictionary. The discriminative dictionary, the binary encoding and the classifica-
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tion weights are jointly learned by alternating optimization. The objective function

are designed based on that related samples should have similar attribute represen-

tations and attribute representations from different categories should be separated

with a large margin.

Another work on arbitrary attributes discovery by Yu et al. [2013] proposes to au-

tomatically design category-level attributes encoded by a compact category-attribute

matrix A ∈ RK×L, where Akl corresponds to the output of the l-th attribute classifier

on the k-th category. The encoding A is learned in an algorithm which greedily adds

new column with criteria to ensure category-separability, attribute-learnability, and

small redundancy. The category-separability is implemented by a proximity matrix

S of different categories, built upon kernels of different categories.

Chen and Grauman [2014], however, argue that category-sensitive attributes are

beneficial to classification by training attributes with an importance-weighted SVM

for in-class and out-class samples. But training all category-specific attribute clas-

sifiers is impractical. So they first train a sparse collection of category-sensitive at-

tributes and construct learned weights into a 3D tensor W ∈ RM×n×D, where Wkld

indicates the d-th dimension of the weights of the n-th attribute classifier for the m-th

category, and a large amount of m-n pairs remain empty. They then use a tensor

factorization method to infer the latent factors. These factors are used to generate

analogous category-attributes pairs.

Shankar et al. [2015] propose discovery to visual attributes in a weakly supervised

setting with deep CNN. The framework trains with objects of a single attribute label

(ground-truth has multiple labels), and predicts with multiple labels (weakly super-

vised scenario). The goal is that the trained feature maps should only fire at specific

attributes so that they are disentangled. They modify the AlexNet architecture by

providing the net with pseudo-labels after some training step. The motivation be-

hind the pseudo-labels is that CNN already learns a set of reasonably disentangled

feature maps during initial stages of training and they start to get befuddled in later
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stages of training due to lack of all correct labels. The generated pseudo-labels to

analyse the responses of the feature maps after every fixed number of iterations, and

the net eventually carves itself for attribute-specific feature maps. The pseudo-label

probabilities are empirically assigned when the chances of co-occurrence of the miss-

ing attributes in the feature map are significantly high. The limitation of this work is

that it can only discover predefined attributes in images.

2.2.4 Relative attributes

So far, the learned and discovered attributes in previous sections only depicts a single

object or category. The relative/comparative attribute is defined by Parikh et al.

Parikh and Grauman [2011] to capture richer semantic relationships between objects

or categories, indicating the strength of an attribute in an image with respect to other

images. They achieve this goal by a ranking function of the m-th attribute rm(·):

rm(xi) > rm(xj), ∀(i, j) ∈ Om (2.1)

rm(xi) = rm(xj), ∀(i, j) ∈ Sm

where Om and Sm are ordered and unordered sets for the m-th attribute. The

linear weights rm(xi) = w>mxi are learned in a rank margin maximization formula-

tion, and the training samples are ordered and unordered object pairs in Om and

Sm. The learned relative attributes are proved to aid zero-shot learning and image

descriptions.

Shrivastava et al. [2012] are the first to combine binary attributes and comparative

attributes to aid semi-supervised learning. The bootstrapping in semi-supervised

learning is constrained by attributes. The classifiers are learned using seed labelled

examples but are updated at each iteration using new labelled data. At each iteration,

the large unlabelled images are jointly labelled under the attribute constraints. The

most confident ones are added as new labelled data.
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Following Parikh and Grauman [2011], Chen et al. Chen et al. [2014] extends its

original formulation to multi-task learning framework with group lasso penalties on

the components of weight matrix W = P + Q, to capture shared features (rows of Q)

among the attributes and outlier attributes (columns of P). It is solved by introducing

slack variableW̃ that is close to W and alternatively optimized in a 2-step approach.

The results show the modified learning process produces better ranking accuracy

and zero-shot learning performance.

As obtaining training pairs in relative attributes are more costly than in binary

attributes, Liang and Grauman [2014] explore an active learning strategy for training

relative attribute ranking functions, requesting human comparisons only where they

are most informative. From a pool of unlabelled visual data, the proposed system re-

quests a set of image samples that is both ambiguous/informative for the system and

visually diverse for human annotator to rank. Human provides informative labels

as the active labelling feedback, and the system updates current ranking function

with the new information and selects a new set of comparisons (setwise, instead of

pairwise).The samples with low ranking margins (high uncertainties) subjected to

different cluster (high visual diversity) are chosen, and the set of comparisons are

made of one sample from a cluster. By repeating the process, informative sets of

comparisons are discovered.

2.3 Zero-shot Learning

2.3.1 Overview

In conventional object classification tasks, the categories in training and testing sets

are identical, leaving the trained model unable to identify novel classes not present in

the training set. Zero-shot learning (ZSL) is thus proposed to overcome this limitation

by bridging the mid-level semantic representions between seen and unseen classes.

Specifically, zero-shot learning is implemented in three steps: 1) assign mid-level
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semantic to each class label; 2) learn the connection from image features to the mid-

level semantic represent ions of seen classes; 3) transfer this learned connection to the

mid-level semantic represent ions of unseen classes. As a result, given the semantic

representation of a novel class, the model is able identify the novel object without

having it in the training classes. Zero-shot learning mimics the process of human

cognition, as humans are able to learn a visual concept by connecting the texual

description from known concepts to the unseen one without ever seeing its actual

appearance. It is recognized as an effective way for large scale visual classification

since it alleviates the burden of collecting sufficient training data for every possible

class.

In this section, we firstly define a general formulation of zero-shot learning, and

then review some influential ZSL methods using various sources of mid-level rep-

resentations, including attributes, documents, distributed word embeddings (word

vectors), etc..

2.3.2 General Formulation

Given a set of class labels Ws and Wu for objects from seen and unseen classes,

where Ws ∩Wu = ∅, and the training set St = {(xn, yn), n = 1, · · · , N}, where the

object descriptors xn ∈ Rd and labels yn ∈ Ws, the general formulation of zero-shot

learning tasks is to learn a model s : Rd → Y :

s(x; θ) = argmax
y∈Y

F(x, φ(y); θ), (2.2)

where F(x, φ(y)) is a compatibility function for the visual feature x and the mid-level

representation φ(·) of class y, and θ are the model parameters. During the training

phase, where Y = Ws, F(·, ·) is learned to measure the compatibility between x

and φ(y). During the testing phase, the learned F(x, φ(y)) is applied to measure the

compatibility between novel classes y ∈ Wu and testing visual samples x ∈ Xunseen.
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Finally, s(x; θ) assign label for x which has the highest compatibility score with it.

As can be seen, the key component ensuring the success of zero-shot learning is

the mid-level semantic representation φ(y) that can describe seen and unseen classes

accurately.

2.3.3 Zero-shot Learning with Attributes

Attribute is the first kind of mid-level semantic representation utilized for zero-shot

learning and they are easily transferable from seen to unseen classes. There two

ways to use attributes in zero-shot learning methods: attribute classifiers and label

embedding. The former explicitly builds the connection from visual features to each

attribute and the latter treats the attribute vectors as the general embeddings for class

labels.

2.3.3.1 Attribute Classifiers

The most intuitive way for using attributes in zero-shot learning is to directly predict

the attributes of unseen classes and infer the class label from predicted attributes.

In Lampert et al. [2009], DIP(Direct Attribute Prediction) learns a set of probabilistic

attribute classifiers from the visual features, p(am|x), and predicts the novel object as

the unknown class with a Bayesian probabilistic inference framework:

s(x) = argmax
y∈Wu

∏
m=1,··· ,M

p(ay
m|x)

p(ay
m)

, (2.3)

where p(ay
m) is the pre-defined attribute prior for class y and the M is the number

of attributes.

Indirect attribute prediction (IAP) is also prposed by Lampert et al. [2009], which

trains the probabilistic classifiers from visual feature to seen class labels p(yk|x), yk ∈

Ws, and p(am|x) is estimated by the posterior distribution of the training class labels

over attributes:
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p(am|x) = ∑
yk∈Ws

p(am|yk)p(yk|x). (2.4)

The estimated attribute prediction is used in the same way as in (2.3) of DAP.

Based on DAP and IAP, several works are proposed improve the way of learning

the connection between attributes and object categories. Rohrbach et al. [2010] im-

prove the quality of class-attribute association by mining from the linguistic knowl-

edge bases. Jayaraman and Grauman [2014] propose a random forest approach to

explicitly accounts for the address the unreliability of attribute predictions.

The above methods are closely related to the topics of attribute learning and

attribute discovery, and more of them are described in Section 2.2.2.

2.3.3.2 Label Embedding

In last section, attribute learning and class inference are two separate processes. This

makes attribute prediction suboptimal for zero-shot learning tasks because it does

not account for the distribution difference for seen objects and unseen objects. To

overcome this issue, recent works re-define attribute vectors as semantic embeddings

for class labels and learn a model that maximizes the compatibility between the

semantic embeddings and the visual embeddings (features). Typically, the matching

function F(x, φ(y)) in (2.2) can be modelled as a bi-linear function which projects the

semantic embeddings and the visual embeddings into a shared space:

F(x, φ(y); Θ) = xTΘφ(y), (2.5)

where Θ ∈ Rd×d̂, and d̂ is the dimensionality of the semantic embedding φ(y).

Attribute Label Embedding (ALE) Akata et al. [2013] is one of the first methods

to utilize this formulation, in which each class is embedded in the space of attribute
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vectors. It uses weighted approximately ranking loss Usunier et al. [2009] to en-

sure the correct classes rank higher than the incorrect ones. In Akata et al. [2015],

Structured Joint Embedding (SJE) learns Θ with structured SVM hinge loss.

Romera-Paredes and Torr [2015] design a new loss function:

min
V
‖X>VS− Y‖2

F + λ‖VS‖2
F + γ‖X>V‖2

F + λγ‖V‖2
F (2.6)

where S denotes the semantic attribute matrix, X denotes the visual feature ma-

trix, V is the parameter matrix to be learned and ‖ · ‖2
F is the Frobenius norm. This

simple formulation allows efficient implementation and regularizes the projections

of visual embedding X>V and semantic embedding VS independently.

Bisides bi-linear function, F(x, φ(y)) has other implementations. In Xian et al.

[2016], a piece-wise linear compatibility function is proposed:

F(x, φ(y); Θi) = max
i=1,··· ,K

xTΘiφ(y), (2.7)

where each projection module Θi is a latent variable for the current image-class

pair. These latent variables factorize different visual aspects. The model is trained

with a ranking based objective function which penalizes incorrect rankings of the

true class for a given image.

In Zhang and Saligrama [2015], Semantic Similarity Embedding (SSE) views the

visual and semantic embeddings as a mixture of seen class proportions and predicts

objects of unseen class by the similarity of the mixture patterns. The similarity func-

tion is learned by sparse coding within a max-margin framework, which aligns visual

embeddings of seen classes with the semantic embeddings of their corresponding la-

bels.

In Changpinyo et al. [2016], a mapping function between the semantic label em-
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bedding space and a model space is learned by constraining consistent neighbour

relationship in both two spaces. In the model space, training classes and a set of

phantom classes form a weighted bipartite graph. Those phantom classes form con-

vex combinations of the coordinates of the real classes in the model space and are

learned by a structured SVM hinge loss. The phantom classes builds the connection

from seen classes to unseen classes.

2.3.4 Beyond Attributes

Although attributes remains the best choice for achieving the state-of-the-art perfor-

mance of ZSL ( Akata et al. [2015]; Zhang and Saligrama [2016]), its good perfor-

mance, however, is obtained at the cost of extensive human labour to label these

attributes. Since attribute vector is merely one type of semantic embedding as noted

in Section 2.3.3.2, many works have explored to apply alternative semantic embed-

dings in zero-shot learning. In fact, as long as those mid-level representations contain

shared information of different categories and thus reflect cross-category relation-

ships, they are applicable to zero-shot learning. Among them, online documents and

distributed word embeddings are mostly widely used since they are much easier to

obtain than attributes.

2.3.4.1 Online documents

Online documents, such as Wikipedia articles, directly describe the concept with

human-interpretable textual information. They can be viewed as an unstructured

form of attributes. So early works such as Berg et al. [2010] attempt to discover the

attribute representation from online document sources. Their main idea is to rank

visual-ness scores of attribute candidates. The visual-ness scores are measured by

labelling precision on the validation images of the learned attribute classifiers. Those

approaches fall into the field of attribute discovery, and they are not applicable to

zero-shot learning since the attribute discovery process requires both images and



§2.3 Zero-shot Learning 25

texts for all classes, where the images are not available for unseen classes.

To deal with this issue, recent works propose to directly use online documents

as mid-level representations for each class. Elhoseiny et al. [2013] is one of the first

works to propose a zero-shot learning approach that only uses the textual description

of categories as alternatives to attributes. The textual features are extracted as tf-idf

vectors of the textual document, followed by a dimension reduction step. They first

learn a domain transfer function that captures the correlation between the textual

and visual domains. Then a set of classifiers on the seen classes and a regressor

which maps the textual features to the learned classifiers are jointly learned. Given

the textual descriptions of an unknown class, the new classifier of the unknown class

is inferred from the learned domain transfer function.

Ba et al. [2015] integrate text features into a deep convolutional neural network

(CNN) and use them to predict the output weights of both the convolutional and the

fully connected layers. A filter layer is learned jointly with the the CNN parameters

using the text features and images of the seen classes. This generates a convolutional

classifier that convolves the visual feature map with a filter predicted by the text

description. The classification score is generated by global pooling after convolution.

Given the text description of unseen classes, the filtered CNN is able to perform

zero-shot learning tasks.

Reed et al. [2016] propose to train a neural language model from scratch with raw

texts for zero-shot learning. The texts describing categories are collected Amazon

Mechanical Turk and are encoded using word-based or character-based RNN/CNN.

The compatibility function of text-visual matching score is defined as the inner prod-

uct of the texual encodings and the image features.The formulation can be factorized

into two prediction models, and can be learned by minimizing both the errors of

assigning image features to the training labels and the errors of assigning texual

encodings to training labels.
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2.3.4.2 Distributed Word Embeddings

Distributed word embeddings or word vectors are continuous vector representations

of words learned from a large-scale text corpus in an unsupervised fashion. DWEs

are firstly introduced in natural language processing tasks as they reflect the rela-

tionships among words in the corpus. In a word embedding space, the distances of

the embeddings of similar words are closer than the distances of the embeddings of

irrelevant words. For example, assuming vec(·) is a learned embedding mapping,

one can observe ‖vec(dog)− vec(wol f )‖ < ‖vec(dog)− vec(car)‖. Arithmetic rela-

tionships can also be found in word embeddings, such as vec(Paris)− vec(France) +

vec(Italy) ≈ vec(Rome). There are two most notable types of DWEs:

• word2vec Mikolov et al. [2013]: word2vec is a two-layer feed-forward neural

network which learns to predict the relationship of a target word and its context

words. The word vector is obtained from the hidden layer parameters of the

predictive model. There are two variations of word2vec models: Continuous

Bag-of-Words and Continuous Skip-gram. The former predicts the target word

with its contexts while the latter predicts the contexts with the target word.

• GloVe Pennington et al. [2014]: Global Vectors for Word Representation is

a count-based model that learns word vectors from aggregated global word

co-occurrence statistics. The approach first constructs a large matrix of co-

occurrence information of word-context pairs in a large corpus. This matrix

is then factorized to yield a lower-dimensional matrix, where each row now

yields a vector representation for each word. The objective is to minimize a

reconstruction loss in the lower-dimensional representations which can explain

most of the variance in the high-dimensional data.

The property of reflecting word relationships equips DWEs with potential to-

wards fully automatic zero-shot learning since their unsupervised training process

does not involve any human intervention. One of the earliest works using DWEs
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is Socher et al. [2013], which propose a regression model that maps image feature

into a semantic space of word embeddings. The regression model is learned with a

neural network with tanh non-linearity:

∑
y∈Ws

∑
x∈Xs

‖φ(y)−W1 tanh(W2x)‖2, (2.8)

where W1 and W2 are the model parameters. A novelty detection mechanism is pro-

posed with thresholds that determine whether the input images belong to the seen

classes or the outliers. To identify objects of unseen classes, an isometric Gaussian

distribution around each of the unseen class word vectors is assumed and class labels

are assigned based on the likelihood of the mapped embeddings.

Frome et al. [2013] learn an bi-linear compatibility function as in (2.7) for image

features and word embeddings with a pairwise hinge rank loss:

loss(x, y) = ∑
ŷ∈Ws−{y}

[margin− F(x, φ(y); θ) + F(x, φ(ŷ); θ)]+ , (2.9)

This visual-semantic embedding model (DeViSE) is initialized from two pre-

trained neural network models: a deep CNN on the visual side and a word2vec

model on the semantic side. During the early stage of training only the parameters

of the bi-linear projection mapping are learned. In the later stages of training the

derivative of the loss function was back-propagated into the deep CNN to fine-tune

visual feature output while the language model is kept fixed.

In contrast to Frome et al. [2013] and Socher et al. [2013] which casts zero-shot

learning as a regression problem from the visual space to the semantic embedding

space, Norouzi et al. [2014] propose Convex combination of semantic embeddings

(ConSE) model, which firstly learns a classifier from training inputs to seen classes,

and transfers the probabilistic predictions of the classifier beyond the seen classes,
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to a set of unseen classes. Assuming p(y|x) as the probability of an unseen image x

assigning to seen label y ∈Ws, one can denote y(x, t) as the t-th most likely training

label for x according to p(y|x). Then the convex combination of semantic embeddings

c(x) is used to predict the image to an unseen class:

c(x) =
1
Z ∑

i=1,··· ,T
p(y(x, t)|x)φ(y(x, t)), (2.10)

where Z is a normalization factor and T is the maximum number of word vectors.

Given the predicted embedding c(x), zero-shot classification is performed by finding

the unseen class labels with embeddings nearest to c(x) in the semantic space.

In Fu and Sigal [2016], a max-margin framework is proposed with similar an

objecive to Socher et al. [2013], but it also incorporates distance constraints on the

projected embeddings of image features, ensuring that labelled samples are projected

closest to their the word embeddings of their correct labels than to others.



Chapter 3

Action Recognition with

Discriminative Mid-level

Representations

3.1 Introduction

Intuitively, a temporal sequence of 3D skeleton joint locations captures sufficient

information to distinguish between actions, but recording such skeleton sequences

was previously very expensive with the traditional motion capture technology, which

limits its application. Recently, the introduction of RGB-D cameras such as Microsoft

Kinect Han et al. [2013], has made the acquisition process of 3D skeleton data much

easier, faster, and more practical Shotton et al. [2011], but less accurate. This advance

has promoted the development of a range of skeleton-based action recognition ap-

proaches (Vemulapalli et al. [2014]; Gowayyed et al. [2013]; Wu and Shao [2014b]).

The key challenge faced by these approaches has been how to extract discriminative

features from the inevitably noisy sequences of pose estimates.

The trajectories of skeletal joints in space-time are a direct representation of the

classes of human action in which we are interested. Earlier works (Wu et al. [2008];

Shao and Li [2013]) model human action trajectory descriptors of variable-lengths

and classify them based on similarity matching between trajectories. In Gowayyed

et al. [2013], for instance,an action representation is encoded in a histogram of the

29
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Figure 3.1: Skeleton sequences from two action classes. Only the red skeletons show
significant differences between the two sequences. In this example, less than 20% of

the frames are required to tell whether the skeleton is clapping or waving.

displacements of joint trajectories with respect to their orientations. Under this ap-

proach a global feature is extracted from the whole trajectory. However, only a short

section of the trajectory is actually distinctive and can provide usable information

about the action being undertaken. For example, as is illustrated by the two real

sequences shown in Figure 3.1, the only distinctive poses are contained in the small

segments when the subject moves their hands. The vast majority of the poses in the

sequences are irrelevant and potentially distracting. The abundant non-informative

local patterns may cause large, but irrelevant, variations between global trajectories,

obfuscating the action in both training and testing.

More recent work (Yang and Tian [2012]; Zanfir et al. [2013]) has focussed on

identifying discriminative patterns to create local descriptors at the frame-level. Sin-

gle pose, frame-level descriptors are indeed robust for the subset of actions for which

there exists a single identifying pose, but this is a small subset of the actions that are

of practical interest. General action recognition, in contrast, requires analysis of the

temporal relationships between individually ambiguous poses.

In contrast to the above-mentioned approaches which either represent an action
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with the whole sequence or extract local features at the frame level, we argue that

the discriminative information regarding an action is better captured by a short in-

terval of trajectories. This interval usually consists of several frames. In other words,

its temporal range is longer than a single frame but much shorter than the whole

skeleton sequence. To extract features at this trajectory interval, we make our first

contribution by designing a novel local descriptor called a trajectorylet to capture the

static and dynamic pose information within the short interval.

Furthermore, as we have observed above, not all trajectorylets in a sequence are

equally important for classification, and recognition performance generally benefits

from focusing on discriminative sub-sequences. In skeleton-based action recognition,

recent works (Zanfir et al. [2013]; Ellis et al. [2013]) directly identify (single) discrim-

inative frames from the training set. Our approach, in contrast, does not explicitly

look for the discriminative trajectorylets, but rather provides a method for creating

a set of detectors that fire on specific template trajectorylets. Our approach firstly

applies exemplar-SVM Malisiewicz et al. [2011] to learn a large number of candidate

detectors and then selects detectors according to their discriminative performance

over the trajectorylets in the training set. We further cluster detectors into multi-

ple clusters, and remove the redundancy between the learned detectors by selecting

one representative detector from each cluster. The selected detectors form a tem-

plate detector set and their detection scores on a trajectorylet form the coding vector

for that trajectorylet. An action level representation is then obtained by pooling all

trajectorylet coding vectors. Temporal pyramid pooling can also be incorporated to

capture long range temporal information within the action sequence. In extensive

experiments, this framework brings significant performance improvement over state-

of-the-art approaches for skeleton-based action recognition.

In summary, our first contribution of this chapter is the trajectorylet, a novel local

descriptor that captures static and dynamic information in a short interval of joint

trajectories. In our second contribution of this chapter, a novel framework is proposed
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to generate robust and discriminative representation for action instances from a set

of learned template trajectorylet detectors.

Following briefly reviewing related literature in Section 3.2, we propose the de-

sign of our local feature and detector learning method in the first half of Section 3.3,

and present the action-level representation of an action instance in the second half of

Section 3.3. Our framework is experimentally evaluated in Section 3.4 and summa-

rized in Section 3.5.

3.2 Background

The key challenge in skeleton-based action recognition is how to construct the ac-

tion representation from a sequence of skeletal joint locations. Some video-based

methods (Messing et al. [2009]; Wang et al. [2011]) extract trajectories of multiple

tracking points, and compute descriptors along them, such as HOG, HOF and MBH.

For skeleton-based methods, trajectories are directly obtained from the space-time

evolution of skeletal joint locations. The most straightforward way is to model the

trajectory holistically, either by extracting statistics from the sequence or modelling

its generative process. In Gowayyed et al. [2013], a histogram records the displace-

ments of joint orientations over the whole trajectory. In Ohn-bar and Trivedi [2013],

the action is modelled with the pairwise affinities trajectories of joint angles. In Xia

et al. [2012], the action sequence is modelled by the Hidden Markov Model with

quantized histogram of spherical coordinates of joint locations as frame-level fea-

ture. In Wu and Shao [2014a] and Wu and Shao [2014b], deep neural networks

such as deep belief networks and 3D convolutional neural networks are adopted for

spatio-temporal feature extraction from skeletal and depth data, and then a Hidden

Markov Model is used to infer the action class with the learned representation. In

Vemulapalli et al. [2014], 3D geometric relationships between various body parts are

modelled with a Lie group to represent the whole action.

Besides directly modelling the trajectory holistically, it has also been noted that
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only a small fraction of patterns of a skeletal sequence are actually distinctive and

thus many approaches have been proposed to identify those discriminative patterns,

whether these patterns are defined spatially or temporally.

It has been found that not all skeletal joints are informative in distinguishing one

action from another, therefore it is beneficial to select a subset of joints. Ofli Ofli

et al. [2012] select a subset of the most informative joints according to criteria such

as mean or variance of joint angles. In Wang et al. [2012], joints are grouped into

actionlets, and the most discriminative collection of such are mined via the multiple

kernel learning approach. In Chaudhry et al. [2013], a subset of joints within a short-

time interval is extracted according to the spatio-temporal hierarchy of the moving

skeleton, and a linear combination of them is learned via a discriminative metric

learning approach. In Wang et al. [2013], the distinctive set of body parts are mined

from their co-occurring spatial and temporal configurations. In Chaaraoui et al.

[2014], an evolution algorithm is employed to select an optimal subset of joints for

action representation and classification is performed by using DTW-based sequence

matching. In Du et al. [2015], the skeleton is divided sub-parts and they are fed into a

deep RNN architecture, which learns the action representation at the fully connected

layer.

As most of the frames in an action sequence typically represent non-distinctive

static poses, features at a few discriminative temporal locations are often informative

enough to represent an action. In video-based action recognition, a number of key

frame selection approaches have been proposed. In Zhao and Elgammal [2008], key

frames are selected by ranking the conditional entropy of the codewords assigned to

the frames. In Raptis and Sigal [2013], the locations of key frames are modelled as

latent variables and estimated for each action instance by dynamic programming. In

recent works on skeleton-based action recognition, distinctive canonical poses Ellis

et al. [2013] are learned via logistic regression, and discriminative frames Zanfir et al.

[2013] are identified by their approximated confidence of belonging to a specific
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action class. In Yang and Tian [2012], distinctiveness of each frame is calculated by a

measurement of accumulated motion energy.

3.3 The proposed action representation

Our model utilizes the relationships between the positions of the J skeletal joints

jj = (xj, yj, zj) ∈ R3, j = 1 · · · J in the current and preceding frames to form a local

trajectorylet. Because human skeleton size varies from different action instances, we

perform a skeleton size normalization on the raw skeletal joints according to Zanfir

et al. [2013]. We also subtract the position of the hip center jhip from each joint and

concatenate them to form a feature column: j = [j1− jhip, · · · , jJ − jhip] ∈ R3J , making

jhip the origin point of the coordinate system across all frames and subjects.

3.3.1 Trajectorylet

Although holistic trajectories of joints depict the movement of human body, distinc-

tive patterns are usually overwhelmed by common ones. For example, in long-term

actions such as draw circle and draw tick, only the last moment of drawing move-

ment distinguishes them, before which both trajectories share the same movement of

raising up hand for a long time. On the other hand, as depicted in Figure 3.2, frame-

level local descriptors record current poses and some local dynamics, but they fail to

capture the movement that spans a long temporal range. To distinguish walk from

run, for instance, we need to examine the displacement and speed of the joints within

a sufficient period of time, rather than the static poses. Based on these observations,

we propose our trajectorylet local descriptor, which captures the static and dynamic

information of trajectories in a short period of time. Compared with frame-level de-

scriptors, trajectorylet depicts richer dynamic information. On the other hand, its

temporal range is much smaller than the whole trajectory sequence and therefore it

is less affected by potentially irrelevant frames.

More specifically, considering a trajectorylet of length L starting from frame t0,
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Figure 3.2: The joint coordinate information at frame-level may provide little infor-
mation to distinguish between some action classes, such as the above drawing ac-
tions. One of the advantages of trajectorylets is their ability to focus on the dynamics

of distinctive sections of individual actions.

we extract the static positions of the joints from each frame occurring before time

t0 + L:

xt0
0 = [jt0>, jt0+1>, · · · , jt0+L−1>]> ∈ R(L×3J). (3.1)

In order to retrieve the dynamic information within this interval, we inspect multiple

levels of temporal dynamics such as displacement and velocity.

xt0
1 = [∆jt0+1>, · · · , ∆jt0+L−1>]> ∈ R((L−1)×3J), (3.2)

∆jt0+i = jt0+i − jt0 , i = 1, · · · , L− 1.

xt0
2 = [∆2jt0+2>, · · · , ∆2jt0+L−1>]> ∈ R((L−2)×3J), (3.3)

∆2jt0+i = ∆jt0+i − ∆jt0+i−1, i = 2, · · · , L− 1.

where ∆jt0+i indicates the relative joint displacements of frame t0 + i from the first

frame; ∆2jt0+i indicates the joint velocities of frame t0 + i from its previous frame

within the trajectorylet. The static positions of xt
0 store the absolute spatial location
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Figure 3.3: Visualization of trajetorylet of length 5 at a single joint (left hand). The
red point is the position at the starting frame, and the green points are its positions
at succeeding frames in this interval. The yellow segments are joint displacements
from the first frame. The black segments are joint velocities at each frame. The left
trajetorylet is part of drawing circle and the right trajetorylet is part of high waving. The
differences between them are clearly distinguished by their positions, displacements

and velocities over a short period of time.

of the trajectorylet. The temporal dynamics xt
1 and xt

2 approximate the relativel kine-

matic evolution within this short time interval. Combining both static and dynamic

information we define the t-th trajectorylet for an action instance with F frames as

x(t) = (xt
0
>, xt

1
>, xt

2
>
)> ∈ R(3L−3)3J . (3.4)

where t = 1, · · · , F− L.

PCA is applied on trajectorylets to reduce the their dimension for our detector

learning module. We still denote the final descriptor as x(t) ∈ Rd, d ≤ (3L − 3)3J.

Figure 3.3 visualizes components in a trajectorylet , including one static component

and two dynamic components.

3.3.2 Learning candidate detectors of discriminative trajetorylet using ESVM

As we have previously discussed, only a small fraction of the trajectorylets from a

sequence contain the information required to identify the associated action. Most of
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Figure 3.4: Overview of our feature learning framework.

the trajectorylets, especially those that describe static postures, are shared by multi-

ple action classes. Our aim is to learn a set of detectors that fire on the distinctive

trajectorylets. To this end, we firstly resort to exemplar-SVM (ESVM) Malisiewicz

et al. [2011] to learn a large set of detectors for a large number of sampled trajecto-

rylets, one for each sampled trajectorylet. Then for each action instance we select a

few discriminative trajectorylet detectors as the candidate detectors of discriminative

trajectorylet.

An ESVM learns a decision boundary that achieves the largest possible margin

between an exemplar sample and a set of negative examples. If we take each trajec-

torylet as a positive exemplar xE of its associated class c, c = 1, · · ·C, and trajecto-

rylets that belong to other action classes as the negative examples, we can train an

exemplar-SVM for it and formally this can be formulated as:

arg min
wE,bE

||wE||2 + λ1h(w>ExE + bE) + λ2 ∑
x∈Nc

h(−w>Ex− bE) (3.5)

where h(x) = max(0, 1− x) is the hinge loss function, and Nc is the negative set

of trajectorylets that do not belong to class c. λ1 and λ2 denote the weights for the

losses corresponding to the positive and negative samples respectively, and λ1 > λ2

ensures that a greater penalty will be applied to the incorrectly classified positive

exemplars.

For each ESVM, the trained detector f (x) = w>Ex + bE returns higher scores on
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trajectorylets that are most similar to xE. If the current exemplar trajectorylet is

common in multiple action classes, the returned trajectorylets will be abundant in

multiple classes. On the contrary, if the current exemplar trajectorylet is unique for

a single class, most returned trajectorylets belong to the same class as the current

exemplar trajectorylet. Thus we can exploit the distribution of action classes of the

returned trajectorylets to estimate the discriminative power of one detector.

Given an action instance A, we extract FA trajectorylet descriptors x(t) , t =

1, · · · FA, and train the associated detectors (w(t)
E , b(t)E ) , t = 1, · · · FA. A selection

method is implemented to find the most discriminative trajectorylet detector among

the candidates. More specifically, we apply each detector (w(t)
E , b(t)E ) to the trajecto-

rylets x(i), i = 1, · · ·N sampled from the whole training set and compute the detection

scores rti = w(t)>
E x(i) + b(t)E . In order to measure the scores on the same scale, we ad-

just the trained parameters with unit norm before computing the scores. From Rt =

{rti}i=1,···N we choose a subset R′t , with the top NA detection scores, corresponding

to the trajectorylets that are most compatible with current detector (w(t)
E , b(t)E ). For

the NA trajectorylets detected by (w(t)
E , b(t)E ), we denote h(c)t as the number of trajec-

torylets belonging to action class c . The histogram Ht = [h(1)t , · · · , h(C)t ]> ∈ RC gives

a clear view of the distinctiveness of detector (w(t)
E , b(t)E ).

If Ht is flat across many classes, x(t) is a common pattern shared by many classes

and its detector is therefore not distinctive. If the Ht is centered mostly at the correct

class, trajectorylet x(t) is a distinctive pattern for this class and hence (w(t)
E , b(t)E ) is

an effective detector of this distinctive pattern. Figure 3.5 visualizes the two typical

cases of Ht and their associated trajectorylets. The pattern of the distinctive tra-

jectorylet clearly matches the human intuition of drawing a circle while the pattern

of the non-distinctive trajectorylet is ambiguous as it can also be seen as a part of

drawing a tick, boxing or many other action classes in the dataset. More examples of

representative trajectorylets are shown in Figure 3.10. In practice, if the correct class

corresponding to (w(t)
E , b(t)E ) is c, we denote Pt = h(c)t /NA as the ratio of correctly
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Figure 3.5: Example of the histogram of class distribution of trajectorylets detected by

(w(t)
E , b(t)E ). In this case we build the histogram from top NA = 50 trajectorylets fired

by (w(t)
E , b(t)E ) in MSR Action dataset, and the total class number is 20. Upper Left: the

trajectorylet is not distinctive as its detector also fires on most trajectorylets of other
classes. Upper Right: a trajectorylet detector fires mostly at Class 9, drawing a circle,
indicating the associated trajectorylet is a distinctive pattern for Class 9. Bottom Left:
the trajectorylet that corresponds to the above non-distinctive detector. Bottom Right:

the trajectorylet associated to the above distinctive detector.

detected trajectorylets and a detector with higher Pt is selected because it fires pri-

marily on trajectorylets with the same class of it, verifying the distinctiveness of this

detector. We summarize this approach in Algorithm 1.

3.3.3 Template detector set

As the detectors are discovered from every action instance, the size of the detector

set grows with the number of training instances, which will lead to a very high-

dimensional action representation and make the computation intractable. On the

other hand, the above method might select similar distinctive detectors multiple



40 Action Recognition with Discriminative Mid-level Representations

Algorithm 1 Find discriminative detectors for an action instance

Input: Training action instance A of class c, trajectorylets within it {x(t)}t=1···FA ; sampled training
trajectorylets X = {x(i)}i=1,···N ; number of trajectorylets to retain: NA; maximum number
of detectors to be selected for the instance: MA.

Initialize: Set of discriminative detectors for instance A: DA = ; number of discriminative
detectors selected for the instance mA = 0.
for t = 1 · · · FA do
· Solve ESVM→ (w(t)

E , b(t)E ).
· Compute detection scores on sampled trajectorylet set
· Compute Ht from the top NA scored samples.
· Compute the ratio of correctness Pt of Ht.

end
· Sort Pt by magnitude, storing the resulting (sorted) indeces in s.
for t in s do
· DA = DA ∪ (w(t)

E , b(t)E ).
· mA = mA + 1.
if mA ≥ MA then
· Break.

end
end
Output: Discriminative detectors for instance A: DA.

times, resulting in a highly redundant detector set. To control the size of detector

set and remove the redundancy of candidate detector set, we perform spectral clus-

tering on candidate detectors and then select one detector from each cluster as the

final detector set used for trajectorylet encoding. To build the affinity graph for spec-

tral clustering, we need to specify the similarity measurement between two detectors.

Here we measure this similarity by considering the “active detection scores” of two

detectors which refer to the detection scores with positive values. We evaluate it by

firstly calculating detection scores on N sampled trajectorylets and setting negative

detection scores to zero. This process gives a N dimensional active detection score

vector rd for each detector and the similarity between two detectors are measured as

follows:

qdd′ =
r>d rd′

||rd|| · ||rd′ ||
(3.6)

where ‖ · ‖ represents the l2 norm, and rd and r′d′ denote the active detection score

vectors for the two compared detectors. The value qdd′ measures the similarity be-

tween two detectors and is used to build the affinity matrix Q for the detector set D,

that is, Q = [qdd′ ]d,d′=1,...,D. We apply spectral clustering to Q and obtain K < D clus-
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ters of detectors. The detectors within the same cluster fire on similar trajectorylets.

From each cluster, we select a representative detector that produces the highest score

on the sampled trajectorylets. In practice, given a sufficient large K, the collection

of representative detectors can cover all discriminative trajectorylets. We call this

collection the template trajectorylet detector set.

torylet and max-pool those detection scores to obtain the action representation.

Formally, let xj
i ∈ Rn be the j-th trajectorylet of the i-th action, and (wk, bk) be the

k-th detector in the template detector set. We define the action representation for the

i-th action Φ(xi) = [Φk(xi)]k=1,...,K as:

Φk(xi) = max
j

(w>k xj
i + bk), k = 1, · · · , K. (3.7)

We use a one-versus-all SVM to classify actions among the C action classes yi ∈

{1, · · · , C}.

The learned feature mapping Φ(·) governed by the template detector set serves

as a global descriptor of the action instance. It maps temporally continuous trajec-

torylets into a higher-level representation. Also, Φ(·) can not only map a complete

sequence of action, but also works for a temporal sub-sequence. This allows us to

build a temporal pyramid representation of the action instance. For a 3-level tem-

poral pyramid, the sub-sequences are F(p), p = 1, · · · , 7, and the k-th dimension of

subfeature Φ(p)(xi) for sub-sequence p is

Φ(p)
k (xi) = max

j∈F(p)
(w>k xj

i + bk). (3.8)

The concatenated Ψ(·) = [Φ(1)(·)>, · · · , Φ(7)(·)>]> incorporates the temporal in-

formation of the skeleton sequence. Therefore we are able to train a one-versus-all

SVM with this feature that takes into account the global temporal information of the

whole action sequence.
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3.4 Experiments

We organize the experimental evaluation in four parts. We first compare our pro-

posed method against other state-of-the-art methods on three standard datasets ob-

tained from the Kinect sensor and one less noisy dataset obtained from motion cap-

ture. Then we analyze the performance of our method under different parameter

settings. Since our method consists of two modules, the trajectorylet descriptor and

the template detector learning based middle-level feature representation, we con-

duct two experiments to separately evaluate their impacts on the classification per-

formance. To examine the first module, we compare our descriptor against the de-

scriptor of Zanfir et al. [2013], which is most related to our trajectorylet descriptor, by

keeping the other settings of the recognition system the same. We also compare our

descriptor with its several alternative variants. To examine the second module, we

compare our method with alternative way to obtain constructed from three state-of-

the-art middle-level feature representation methods: VLAD Jegou et al. [2010], LSC

Liu et al. [2011], and LLC Wang et al. [2010].

Implementation details: The ESVMs are implemented by liblinear Fan et al.

[2008], which produces about 10 candidate detectors per second on an Intel Core

i7 CPU at 3.40GHz. We set the regularization parameters as λ1 = 10 and λ2 = 0.01

for all ESVMs. The training time of all ESVMs depends on the number of trajec-

torylets in each dataset, which varies from 0.5 hour to 5 hours. On average, our

unoptimized MATLAB code trains an ESVM within 0.1 second. The training and in-

ference of global descriptors take around 0.09 to 0.04 second and 0.01 to 0.02 second

respectively. Our unoptimized MATLAB implementation consumes 1.2 GB memory.

As seen, the most time consuming component of our algorithm is the training of

all ESVMs, but it should also be noted that the training process of each ESVM is

completely independent. This means that it is possible to develop a parallel train-

ing scheme to train many trajectorylets simultaneously and reduce the training time

tremendously. We leave this parallel scheme to future work. The dimensionality of
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AS1 AS2 AS3
Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward kick
Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing
Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing
Pickup & throw Side boxing Pickup & throw

Table 3.1: The classes in the three action subsets of the MSR Action3D dataset.

Protocol of Li et al. [2010] AS1 AS2 AS3 Average
3DBag Li et al. [2010] 72.9 71.9 79.2 74.7
HO3DJ Xia et al. [2012] 88.0 85.5 63.5 79.0
EigenJoints Yang and Tian [2012] 74.5 76.1 96.4 82.3
Skeletal QuadsEvangelidis et al. [2014] 88.4 86.6 94.6 89.9
Cov3DJ Hussein et al. [2013] 88.0 89.3 94.3 90.5
HOD Gowayyed et al. [2013] 92.4 90.1 91.4 91.2
Lie Group Vemulapalli et al. [2014] 95.3 83.9 98.2 92.5
EJS Chaaraoui et al. [2014] 91.6 90.8 97.3 93.2
HBRNN Du et al. [2015] 93.3 94.6 95.5 94.5
Moving Pose Zanfir et al. [2013] 96.4 91.6 99.1 95.7
Ours 96.4 97.5 100.0 97.9

Table 3.2: Results on 3 subsets of the MSR Action3D dataset.

trajectorylets is reduced to 50% percent of it by PCA. As the testing data will not be

known in advance, the PCA coefficients µ and covariance matrix are learned from

the training data only. Unless indicated otherwise, the length of trajectory descrip-

tor is set to L = 5. The regularization parameter for the final one-versus-all SVM

is determined by a five-fold cross-validation. We apply a 3-level temporal pyramid

on MSR DailyActivity3D only, because it contains complex actions which involves

several sub-actions and the long-range temporal information can be useful in such a

case.
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3.4.1 MSR Action3D

The MSR Action3D dataset consists of human actions expressed with skeletons com-

posed of 20 3D body joint positions in each frame. The 20 joints are connected by

19 limbs. There are 20 action classes performed by 10 subjects for 2 or 3 times each,

making up 567 action instances. Each action instance contains a temporal sequence of

a moving skeleton, usually in 30-50 frames. As in Wang et al. [2012] and Zanfir et al.

[2013], we drop 10 instances because they contain erroneous data. The experiment

setup is that of a cross-subject test Li et al. [2010], i.e. instances of half of the subjects

are used for training and instances of the other half subjects are used for testing. We

construct Ht with top responding NA = 50 trajectorylets, and select MA = 10 best

detectors for each training instance. We use the clustering method of section 3.3.3 to

obtain the template trajectorylet detector set. The final number of template detectors

is set to K = 500.

In Table 3.2, we compare our approach with other state-of-the-art methods using

the protocol of Li et al. [2010], by which the 20 action classes are grouped into 3

action subsets AS1, AS2, and AS3. The training and testing is performed on each

action set separately. AS1 and AS2 group actions with similar movements while AS3

group complex actions. The action classes of each action subset are listed in Table 3.1.

On average, our proposed method is more accurate than all other methods. On AS2,

all other methods get moderate accuracy and in contrast our method outperforms

the second best by 5.9%. Note that in Table 3.2, we use the code of Zanfir et al. [2013]

to obtain this result, as the original work did not report the results according to the

protocol of Li et al. [2010]. On AS3, our method achieves perfect recognition.

In Table 3.3, a more challenging protocol of Wang et al. [2012] is used. Here the

model is trained and tested over all 20 action classes. The results show that our

method still obtains a highly accurate recognition rate, outperforming the current

best state-of-the-art by a margin of 4.2%. The confusion matrix of our method on this

dataset under the second protocol is displayed in Figure 3.6, where 16 of 20 action
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Protocol of Wang et al. [2012] Accuracy
Recurrent Neural Network Martens and Sutskever [2011] 42.5
Dynamic Temporal Warping Müller and Röder [2006] 54.0
Canonical Poses Ellis et al. [2013] 65.7
DBN+HMM Wu and Shao [2014b] 82.0
JAS (skeleton data only) Ohn-bar and Trivedi [2013] 83.5
Actionlet Ensemble Wang et al. [2012] 88.2
HON4D Oreifej and Liu [2013] 88.9
Lie Group Vemulapalli et al. [2014] 89.5
LDS Chaudhry et al. [2013] 90.0
Pose based Wang et al. [2013] 90.2
Moving Pose Zanfir et al. [2013] 91.7
Ours 95.9

Table 3.3: Results on the entire MSR Action3D dataset.

classes are perfectly classified. The only highly misclassified class is hammer, because

its distinctive pattern involves human-object interaction, which is not captured by

the skeleton data.

3.4.2 MSR DailyActivity3D

In MSR DailyActivity3D, there are 16 action classes performed by 20 subjects twice,

making up 320 action instances. Each subject performs an action class in two variants

(e.g. sitting versus standing, or in front of versus behind an object). This dataset

has longer sequences, usually in 100-300 frames. We still follow the cross-subject

test in protocol of Wang et al. [2012] and Zanfir et al. [2013], where training and

testing are conducted over all action classes. Because this dataset contains more local

information than MSR Action3D, we construct Ht with top responding NA = 50

trajectorylets, select MA = 15 best detectors for each training instance, and reduce

the final number of clustered detectors to K = 500.

We compare our approach with other state-of-the-art methods in Table 3.4. As the

purpose of this experiment is to address skeleton-based action recognition, some best

reported results (Oreifej and Liu [2013]; Wang et al. [2012]) on this dataset using addi-

tional RGB-D data are not comparable to our method, and therefore we cite the result
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Figure 3.6: Confusion matrix of our approach on the MSR Action3D dataset: ex-
cept for the hammer class, all other action classes are classified with more than 80%

accuracy. 16 out 20 action classes are perfectly classified.

of Wang et al. [2012] using only skeleton data. Although MSR DailyActivity3D share

the same data structure as the MSR Action3D, it is much more challenging because:

1) the activities are complex combinations of multiple sub-actions, 2) human-object

interaction information is not available in skeleton data, 3) partial occlusion by in-

teracting objects causes the skeleton data to be highly noisy. However, the results

show that our approach still outperforms all other state-of-the-art methods. Note

that although the reported result in Zanfir et al. [2013] is 73.8%, we never achieved

this accuracy with their code due to environmental factors. For a fair comparison, we

used the result 70.6%, which is the best performance under the same environment

and setting with our approach. As shown in Figure 3.7, most of the poorly classified

actions involves interaction with objects, such as read book, call cellphone, and use lap-

top. On the other hand, non-interactive action classes like cheer up, walk, and sit down,
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Methods Accuracy
Dynamic Temporal Warping Müller and Röder [2006] 54.0
Actionlet Ensemble (skeleton data only) Wang et al. [2012] 68.0
Moving Pose Zanfir et al. [2013] 70.6
Ours 75.0

Table 3.4: Results on the MSR DailyActivity3D dataset.

are recognized with high accuracy. This demonstrates that our method is able to

capture distinctive patterns of actions in terms of “movement”, but may be confused

if some actions share similar “movement” patterns despite the presences of different

interacting objects, because they are not described in the skeleton data.

3.4.3 MSRC-12

MSRC-12 Fothergill et al. [2012] is a much larger scale dataset compared to the first

two datasets. It contains 12 action classes performed by 30 subjects instructed with

different sources (text/image/video). As this dataset is originally designed for detec-

tion tasks, multiple action instances are performed continuously in a single sequence.

We use the annotation of Hussein et al. [2013], which marks the start and end frames

of each action instance, to accommodate MSRC-12 to action recognition tasks. This

ends up with total 6,244 annotated action instances of 100. We apply the same pa-

rameter settings of MSR Action3D for NA, MA and K. We follow two variants of

cross-subject test in Hussein et al. [2013]: leave-one-out and 50% subject split. In the

leave-one-out test, instances of 29 out of the 30 subjects are used for training and

remaining instances are used for testing. The final result is averaged over 30 experi-

ments where each of the subjects is left for test for once. The 50% subject split test is

similar to previous cross-subject tests, where half of the subjects are used for train-

ing and the other half are kept for testing, except that the split is randomly chosen.

Following Hussein et al. [2013], we report the averaged results over 20 random splits.

As seen in results of Table 3.5, on both protocols our method outperforms the

baseline method significantly. This experiment also demonstrates that our method is
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Figure 3.7: Confusion matrix of our approach on the MSR DailyActivity3D dataset:
although this is a challenging dataset for skeleton-based action recognition, 11 out of

16 classes are classified with more 70% accuracy.

able to generalize to large scale action recognition tasks by tuning the parameters in

relatively small datasets.

3.4.4 HDM05

To further test the generalization ability of our method, we now evaluate it on

HDM05 Müller et al. [2007], a motion capture dataset, which is less noisy than the

previous three Kinect datasets. The skeleton is composed of 31 joints instead of 20

joints in the Kinect datasets. We use the subset defined in Ofli et al. [2012], which

contains 11 action classes performed by 5 subjects, totalling 249 action instances. For

computational reasons, we downsample the frame rate from 120 fps to 30 fps and

apply the same parameter settings of MSR Action for NA, MA and K in this exper-

iment. We follow the protocol of Ofli et al. [2012]: 3 subjects (142 instances) are for
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Methods Accuracy
Cov3DJ Hussein et al. [2013] (Leave-one-out) 93.6
ours (Leave-one-out) 95.1
Cov3DJ Hussein et al. [2013] (50% subject split ) 91.7
ours (50% subject split) 94.9

Table 3.5: Results on the MSRC-12 dataset.

training and 2 subjects (109 instances) are testing.

Methods Accuracy
SMIJ Ofli et al. [2012] 84.4
Skeletal QuadsEvangelidis et al. [2014] 93.9
Cov3DJ Xia et al. [2012] 95.4
HOD Gowayyed et al. [2013] 97.3
ours 96.3

Table 3.6: Results on the HDM05 dataset.

Table 3.6 shows that our method achieves the state-of-the-art-results with mo-

tion capture data. Although our method does not significantly outperform all base-

lines on the less nosy motion capture data, the experiment clearly confirms that our

method is applicable to data sources of different skeleton configurations and noise

levels, and is better at handling noisy data. As we downsample the frame rate from

120 fps to 30 fps, it would cause information loss of actions. However, a frame rate

as high as 120 fps is not practically necessary for conventional action recognition. In

our experiment , ultra-high frame rate has little effect on the performance except for

bringing extra computational cost. As for low frame rates such as 15 fps, the perfor-

mance drop is obvious (90.5% at 15 fps vs 96.3% at 30 fps). We believe a frame rate

consistent with normal RGBD devices would be enough for accurate action recogni-

tion. For example, humans can easily recognize actions from normal videos of 24 fps

and this ability does not seem to improve when they see actions from 60 fps videos.
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3.4.5 Parameter analysis

In this section we analyse how the parameter settings affect the performance. Using

the same protocol of Wang et al. [2012], we provide results of MSR Action3D dataset

from other parameter settings. Figure 3.8 illustrates the performances of our method

as K ranges from {25, 50, 100, 200, 300, ... , 1000}, while keeping NA = 50 and

MA = 10. When we set the size of detector set more than 500, the results tend to

converge to a value above 94.5%. Table 3.7 presents results of choosing different pairs

of MA and NA while keeping K = 500.

Size of detector set

0 200 400 600 800 1000

A
c
c
u

ra
c
y

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3.8: Recognition accuracies obtained from varying K on the MSR Action 3D
dataset: when K ≥ 500 the results become stable.

For the MSR DailyActivity3D dataset, Figure 3.9 illustrates the performances of

our method as K ranges from {25, 50, 100, 200, 300, ... , 1000}, while keeping NA = 50

and MA = 15. When K is set to more than 500, the results become stable. The

effect of choosing different pairs of MA and NA is listed in in Table 3.8. When MA

is large enough, the results variation becomes small. It can be observed that, on

both datasets, there are multiple choices of parameters that are able to produce the
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MA

NA 5 10 15 20 30 50

5 91.7
10 92.7 93.4
20 93.1 93.1 94.1 94.8
30 94.8 95.2 94.1 93.8 94.8
50 95.5 95.9 95.9 94.8 94.8 94.2

Table 3.7: Results from different pairs of the MA and NA on MSR Action3D: we can
obtain the best performance from multiple choices.

MA

NA 5 10 15 20 30 50

5 68.7
10 68.1 69.4
20 68.7 71.2 70.0 69.4
30 70.0 73.1 73.8 71.2 71.2
50 73.1 74.3 75.0 75.0 74.3 71.9

Table 3.8: Results from different pairs of the MA and NA on MSR DailyActivity3D.

optimal result and this verifies the robustness of our approach.

Table 3.9 shows the results under different temporal pyramid settings for the three

datasets from Kinect sensors. A typical 3-level pyramid is the best choice for MSR

DailyActivity3D as low level pyramids fail to grasp the temporal information while

higher level ones brings too much noise. On the other hand, when temporal pyramid

is applied to MSR Action3D, the performance is worsened. For MSRC-12, we observe

no significant differences among the temporal pyramid settings. It is interesting to

observe that for sequences that contain a single/simple action like MSR Action3D

and MSRC-12, discriminative trajectorylets are able to accurately recognize actions

without long term temporal information. Only for complex activities composed of

multiple and repetitive actions, a long term temporal modelling is needed.

3.4.6 Power of local trajectorylet descriptor

The moving pose descriptor proposed in Zanfir et al. [2013] captures local informa-

tion at frame-level of human skeleton actions. Our trajectorylet can be seen as a
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Figure 3.9: Recognition accuracy obtained from varying K on the MSR Daily Activity
3D dataset: when K > 400 the results become stable.

TP level 1 2 3 4
Action 95.9 92.4 89.7 N/A
DailyActivity 66.3 70.6 75.0 68.8
MSRC 94.9 95.2 95.2 N/A

Table 3.9: Results obtained from different temporal pyramid levels on MSR Action3D,
MSR DailyActivity3D and MSRC-12 datasets.

natural extension of it in the sense that we extend the dynamic information from

frame-level range to a longer temporal range. In order to demonstrate the power of

our descriptor we now apply our template detector learning framework to moving

pose descriptor and compare its performance with that of trajectorylet.

In order to evaluate the effect of varying L on performance we have varied the

length our trajectorylet from (3, 5, 7). Table 3.10 shows that using the same detec-

tor learning and classification approach, trajectorylets achieve better results on both

datasets for all tested values of L. As seen, this extension of moving pose descriptor

is superior over the original design. It is worth noting that performance does not
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necessarily improve as the length of trajectorylets increases. A moderate length of

trajectorylet (L = 5) leads to the best performance.

We also test the effect of using different components of the trajectorylet descrip-

tor. In our experiment, we examine the performance of single dynamic components,

including static pose x0, relative joint displacement x1, velocity x2, and their combi-

nations. We also further define an acceleration component analogous to (3.2) and

(3.3):

xt0
3 = [∆3jt0+2>, · · · , ∆3jt0+L−1>]> ∈ R((L−3)×3J), (3.9)

∆3jt0+i = ∆2jt0+i − ∆2jt0+i−1, i = 3, · · · , L− 1.

The results of varying settings of a trajectorylet with L = 5 are listed in Table 3.11.

We find that the dynamic components of x1 and x2 alone do not show promising re-

sults, especially on the MSR DailyActicity Dataset. However, when combined with

static x0, the performance is significantly improved. Table 3.11 also shows that the

additional acceleration component in (3.9) does not improve the performance. Ad-

ditionally, we notice that the dynamic components x1 and x2 of MSR DailyActicity

dataset perform much worse than their counterparts in MSR Action dataset. We be-

lieve that the performance discrepancy may be due to two different properties of the

two datasets. (1) As the skeletons are badly captured in MSR DailyActivity dataset,

the positions of joints become more unstable over time. This makes the velocity and

displacement information even noisier than the static positions. (2) The differences

between different categories in MSR DailyActivity is more subtle, e.g. drink vs. call,

than MSR Action. Thus, less discriminative features like x1 and x2 which performed

well on the simple MSR Action dataset may no longer perform as well in the more

challenging MSR DailyActivity dataset.
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Descriptors MSR Action MSR DailyActivity
Moving Pose Zanfir et al. [2013] 91.7 71.3
Ours(L = 3) 93.1 72.5
Ours(L = 5) 95.9 75.0
Ours(L = 7) 95.9 73.1

Table 3.10: Comparison of using different descriptors.

Component MSR Action MSR DailyActivity
x0 92.4 72.5
x1 91.7 50.3
x2 90.3 42.5
(x0, x1) 93.8 73.1
(x0, x1, x2) 95.9 75.0
(x0, x1, x2, x3) 95.9 74.3

Table 3.11: Comparison of different using different components of trajectorylet (L =
5).

3.4.7 Power of template detector learning

Our method generates action representation from learned detector set of discrimina-

tive trajectorylets. In this section, we compare this method with three state-of-the-

art bag-of-feature techniques that learn global feature for the action instance from

the same local trajectorylet features: VLAD (vector of locally aggregated descrip-

tors)Jegou et al. [2010], LLC (locality-constrained linear coding)Wang et al. [2010],

and LSC (localized soft-assignment coding) Liu et al. [2011].

We train codebook of the same size K = 128 with k-means for all three meth-

ods, and set the neighbourhood size of codewords as κ = 10 for LSC and LLC. The

results listed in Table 3.12 show, for the task of action recognition, our proposed

feature learning framework produces the most discriminative action representation,

compared with the state-of-the-art methods. Figure 3.10 illustrates some trajecto-

rylets fired on the template detector set of MSR Action3D. It is clear that they show

representative patterns for the corresponding action classes.
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Method MSR Action MSR DailyActivity
VLAD Jegou et al. [2010] 83.1 51.9
LLC Wang et al. [2010] 90.7 65.6
LSC Liu et al. [2011] 92.1 66.9
Ours 95.9 75.0

Table 3.12: Comparison of feature learning methods.

high wave hori. wave hammer hand catch forward punch high throw draw x draw tick draw circle hand clap

2-hand wave boxing bend forward kick side kick jog t. swing t. serve g. swing pick up & throw

Figure 3.10: Some examples responding on the template detector set of MSR Ac-
tion3D. The black curves represent the velocity components of current trajectorylets
with L = 5. The fact that the our approach identifies discriminative patterns of

movement seems clear.

3.5 Summary

This chapter describes an effective skeleton-based action approach that achieves high

accuracy on the relevant benchmark datasets. The keys to this performance are two

factors. We propose trajectorylet, a novel local descriptor that captures static and

dynamic information in a short interval of joint trajectories. We also devise a novel

framework to generate robust and discriminative representations for action instances

by learning a set of distinctive trajectorylet detectors. On various benchmark datasets

acquired from the Kinect sensor, our method outperforms, to our knowledge, all

existing approaches by a significant margin. We also separately demonstrate the

validity of our local descriptors and template detector learning method.



56 Action Recognition with Discriminative Mid-level Representations



Chapter 4

Zero-shot Learning with Online

Textual Documents

4.1 Introduction

Unlike traditional object classification tasks in which the training and test categories

are identical, zero-shot learning aims to recognize objects from classes not seen at the

training stage. It is recognized as an effective way for large scale visual classification

since it alleviates the burden of collecting sufficient training data for every possible

class. The key component ensuring the success of zero-shot learning is to find an

intermediate semantic representation to bridge the gap between seen and unseen

classes. In a nutshell, with this semantic representation we can first learn its connec-

tion with image features and then transfer this connection to unseen classes. So once

the semantic representation of an unseen class is given, one can easily classify the

image through the learned connection.

Attributes, which essentially represent the discriminative properties shared among

both seen and unseen categories, have become the most popular semantic represen-

tation in zero-shot learning (Farhadi et al. [2009]; Ferrari and Zisserman [2008]; Tor-

resani et al. [2010]; Lampert et al. [2009]; Yao et al. [2011]). Although the recent use of

attributes has led to exciting advances in zero-shot learning (Fu et al. [2015]; Akata

et al. [2015]; Zhang and Saligrama [2015]), the creation of attributes still relies on

much human labour. This is inevitably discouraging since the motivation for zero-
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shot learning is to free large-scale recognition tasks from cumbersome annotation

requirements.

To remedy this drawback and move towards the goal of fully automatic zero-shot

learning, several recent works (Socher et al. [2013]; Frome et al. [2013]; Norouzi et al.

[2014]) have explored the possibility of using the easily accessed online information

sources to create the intermediate semantic representation. One possible choice is to

directly use online textual documents, e.g., those found in Wikipedia, to build such

a representation (Elhoseiny et al. [2013]; Ba et al. [2015]). This is promising because

online text documents can be easily obtained and contain rich information about the

object. To conduct zero-shot learning with textual documents, existing works (Akata

et al. [2015]; Fu et al. [2015]) develop various ways to measure the similarity between

text and visual features. Our work is also based on this idea. We take a step further,

however, to consider one additional important factor: the document representation is

much more noisy than the human specified semantic representation and negligence

of this fact would inevitably lead to inferior performance. For example, when the

bag-of-words model is adopted as the document representation, the occurrence of

every word in a document will trigger a signal in one dimension of the document

representation. However, it is clear that most words in a document are not directly

relevant for identifying the object category. Thus it is necessary to design a noise

suppression mechanism to down weight the importance of those less relevant words

for zero-shot learning.

This mechanism is closely related to feature selection. However, it is not exactly

the same. As will be discussed in the following sections, the solution of our method

does not discard the less relevant dimensions of the document representation but

only suppress their impact for zero-shot learning.

To this end, we propose a zero-shot learning method which particularly caters for

the need for noise suppression. More specifically, we proposed a simple yet effective

l2,1-norm based objective function which simultaneously suppresses the noisy signal
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within text descriptions and learns a function to match the visual and text domains.

Furthermore, we develop an efficient optimization algorithm to solve this problem.

By conducting experiments on two large scale zero-shot learning evaluation bench-

marks, we demonstrate the benefit of the proposed noise suppression mechanism as

well as its superior performance over other zero-shot learning methods which also

rely on online information sources. In addition, we also conduct an in-depth analysis

of the proposed method which provides an insight as to what kinds of information

within a document are useful for zero-shot learning.

4.2 Background

Most zero-shot learning approaches rely on human specified attributes. As one of the

earliest attempt in zero-shot learning, Lampert et al. [2009] adopted a set of attributes

obtained from a psychology study. By learning probabilistic predictors of those at-

tributes, they developed a framework to estimate the posterior of the test class. Later,

a number of works has been proposed to improve the way of learning the connection

between attributes and object categories. For example, the work in Jayaraman and

Grauman [2014] addresses unreliability of attributes by exploring the idea of ran-

dom forest. The work in Akata et al. [2013] converted the zero-shot learning into a

cross-domain matching problem and they proposed to learn a matching function to

compare the attribute and the image feature. Built upon this idea, Romera-Paredes

and Torr [2015] propose a simpler but more effective objective function to learn the

matching function. Zhang and Saligrama Zhang and Saligrama [2015] advocate the

benefits of using attribute-attribute relationships, termed semantic similarity, as the

intermediate semantic representation and they learn a function to match the image

features with the semantic similarity.

To go beyond the human specified attributes, recent works also explore the use of

other form of semantic representations which can be easily obtained (Mensink et al.

[2014]; Akata et al. [2015]; Frome et al. [2013]; Fu et al. [2015]). For example, the
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Figure 4.1: Overview of our zero-shot learning approach. The text representations
are processed by the noise suppression mechanism to generate a classifier to detect
relevant images and the noisy components of text representations are suppressed to

gain better performance.

co-occurrence statistics of words has been explored in (Mensink et al. [2014]; Akata

et al. [2015]) to capture the semantic relevance of two concepts. The distributed word

representation, e.g., word2vec, has been utilized as a substitution of attributes Frome

et al. [2013] and more recently the word2vec representation has been shown to be

complementary to the human specified attributes Fu et al. [2015].

The other information source for creating the semantic representation is the on-

line textual document, such as Wikipedia articles. In an earlier work, Berg et al.

[2010] attempt to discover attribute representation from a noisy web source by rank-

ing the visual-ness scores of attribute candidates. (Rohrbach et al. [2013, 2010]) mine

semantic relatedness for attribute-class association from different internet sources.

More recent works (Elhoseiny et al. [2013]; Ba et al. [2015]) directly learn a function

to measure the compatibility between documents and visual features. However, com-

pared with the state-of-the-art zero-shot learning methods, their performance seems

to be disappointing even though some advanced technologies, such as deep learning,

has been applied Ba et al. [2015].
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4.3 Our approach

4.3.1 Overview

The overview of our method is depicted in Figure 4.1. It starts with a raw document

representation which is simply a binarized histogram of words. This representation

is fed into our zero-shot learning algorithm to generate a classifier to detect relevant

images. In the process of generating this classifier, the noise suppression regular-

izer in our method will automatically suppress the impact of less relevant words

(illustrated as the red words in Figure 4.1).

4.3.2 Text representation

We extract our text representation based on a simple bag-of-words model. We start

by a preprocessing step of tokenizing the words and removing stop words and punc-

tuations. Then a histogram of the remaining word occurrences is calculated and

is subsequently binarized as the text representation. In other words, once a word

appears in a document, its corresponding dimension within the text representation

is set to “1”. One more commonly used choice for the text representation is based

on TF-IDF as in (Elhoseiny et al. [2013]; Ba et al. [2015]). However, we find that it

produces worse performance than directly using the binarized representation. Us-

ing TF-IDF is about 7% and 5% inferior to binarized representations on AwA and

CUB, respectively. This is probably because the weighting calculated of TF-IDF is

not suitable for our zero-shot learning although it is considered to be less noisy for

applications like document classification. In the binarized histogram we essentially

treat each word in a document equally and this inevitably introduces a lot of noisy

signals. However, thanks to our noise suppressing zero-shot learning algorithm, we

can substantially down-weight the less relevant words and achieve good performance

even with a noisy document representation.



62 Zero-shot Learning with Online Textual Documents

4.3.3 Learning to match text and visual features

We first formally define our problem and introduce the notation used in the following

sections. At the training stage, both image features and document descriptions for C

seen categories are available. Let X ∈ Rd×N denote the image features of N training

examples and Z ∈ {0, 1}d̂×C the aforementioned document representations for C seen

classes, where d̂ and d are the dimensionality of the document representation and the

image features respectively. We also define Y ∈ {0, 1}N×C as the indicator matrix for

the C seen classes. Each row of Y has a unique “1” indicating its corresponding class

label. At the test stage, the document representations of the Ĉ unseen classes are

given and our task is to assign Ĉ unseen class labels to the test images.

4.3.4 Formulation

Our method is inspired by a recently proposed zero-shot learning approach Romera-

Paredes and Torr [2015] which has demonstrated impressive performance despite a

very simple learning process. More specifically, it learns a matrix V which optimizes

the following objective function.

min
V
‖X>VS− Y‖2

F + λ‖VS‖2
F + γ‖X>V‖2

F + λγ‖V‖2
F (4.1)

where S denotes the semantic attribute matrix and it can be either a binary matrix or

a real value matrix. The scalars γ and λ are weights controlling the prominence of the

various terms. The underlying idea of this algorithm can be understood as follows.

If the task is to classify X into C categories, we can simply learn a linear classifier by

fitting to Y, that is, minW ‖X>W−Y‖2
F. However, in this case W cannot be transferred

to unseen classes. Thus we further impose that W = VS. In other words, the classifier

of a class is generated from its attributes. With this requirement, the classifier of an

unseen class can be easily obtained and utilized to predict the category of a test

image. Similarly, we can also treat X>V as the classifier operated on the attributes S.
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The above understanding naturally gives rise to the regularization terms λ‖VS‖2
F and

γ‖X>V‖2
F which play the same role of the Frobenius norm regularizer as commonly

introduced in multi-class classification or regression.

Since our document representation can also be seen as an attribute vector, the

method in Romera-Paredes and Torr [2015] can be readily applied to our problem

by simply setting S = Z. However, this naive solution ignores an important fact that

the document representation is much more noisy than the human specified attribute

vectors. To handle this issue, we introduce a noise suppression mechanism into Eq.

(4.1). More specifically, we first decompose V into two terms:

V = Wx
>Wz, (4.2)

where Wx ∈ Rm×d and Wz ∈ Rm×d̂. These two matrices will play different roles in

our method. Wz is used to suppress the noisy components of Z and transform Z into

a m×C intermediate representation. Wx is used to generate the image classifier from

the noise-suppressed intermediate representation. Thus, two different regularization

terms are imposed to suit these two different roles. The first term is the l2,1-norm of

Wz
> which achieves the noise suppression effect. The second term is the Frobenius

norm of Wx
>WzZ which is similar to the λ‖VS‖2

F term in Eq. (4.1). The formulation

of our method is expressed as follows:

min
Wx,Wz

L(Wx, Wz) + λ1‖W>x WzZ‖2
F + λ2‖W>z ‖2,1, (4.3)

L(Wx, Wz) = ‖X>W>x WzZ− Y‖2
F.

The l2,1-norm is defined as ‖WT
z ‖2,1 = ∑d̂

i=1 ‖wi
z‖2, where wi

z denotes the i-th

column of Wz. It is known that the l2,1-norm will encourage the column vectors

of Wz to have few large values, which means that the impact of noisy dimensions

of Z will be substantially suppressed or even completely eliminated. In fact, if λ2

becomes sufficient large, it achieves the effect of feature selection on the document
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representation. However, by cross-validating λ1 and λ2, our method does not lead to

an exactly sparse solution as it seems that the algorithm prefers to keep the majority

of the dimensions in Z for zero-shot learning. This is probably due to the joint reg-

ularization effect of ‖W>x WzZ‖2
F or the fact that dimensions corresponding to lower

values of ‖wi
z‖2 are still useful for zero-shot learning. Therefore we consider the use

of the l2,1-norm here as a noise suppression mechanism rather than a feature selec-

tion mechanism. We drop out the other regularization terms in Eq. (4.1) since we

find them have little impact on performance.

Similar to Romera-Paredes and Torr [2015], once V, in our case V = Wx
>Wz, is

learned, we can infer the class label of a test image x using the following rule:

c∗ = max
c

x>W>x Wzzc, (4.4)

where zc is the document representation for the c-th candidate test class.

4.3.5 Optimization

Eq. (4.3) is convex for Wx and Wz individually but not convex for both of them.

Therefore we can solve it using an alternating method, that is, we first fix Wx and

solve for Wz; then fix Wz and solve for Wx.

(1) Fix Wx and solve for Wz:

Algorithm 2 Fix Wx and solve Wz

Input: Wx; X of seen classes; Z of seen classes; λ1 and λ2; maximum number
of iterations τ.

Initialize D0 as identity matrix I ∈ Rd̂×d̂.
for t = 1 · · · τ do
· Solve Sylvester equation (4.6) for Wt

z with Dt−1.
· Update the diagonal matrix Dt with its i-diagonal element as
1/(2||(wi

z)
(t)||2), where (wi

z)
(t) is the i-th column of Wt

z.
if Converge then
· Break.

end
end
Output: Wz.
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This sub-problem is a regression problem with l2,1-norm regularization. Nie

et al. Nie et al. [2010] proposes an iterative framework to efficiently solve it. It has

been shown that the original problem is equivalent to sequentially solving the fol-

lowing problem until convergence

min
Wz,D

L(Wx, Wz) + λ1‖W>x WzZ‖2
F + λ2Tr(WzDtW>z ), (4.5)

where Dt is a diagonal matrix whose i-th diagonal element is 1/(2‖(wi
z)

(t−1)‖2) at

the t-th iteration, where (wi
z)

(t−1) is the i-th column of the optimal Wz solved at the

(t− 1)-th iteration. In practice, we relax 1/(2||wi
z||2) to 1/(2

√
wi

z
>wi

z + σ), σ → 0,

as the i-th diagonal element to avoid the case of zero columns, and the l2,1 norm is

therefore approximated by ∑d̂
i=1

√
wi

z
>wi

z + σ. It has been proved in Nie et al. [2010]

that this approximation guarantees the convergence and the result approaches to

that of l2,1-norm as σ → 0 . The problem in Eq. (4.5) further reduces to a Sylvester

equation of Wz

AWz + WzB = C, (4.6)

A = λ2(WxXX>W>x + λ1WxW>x )
−1,

B = ZZ>(D)−1,

C =
1

λ2
AWxXYZ>(D)−1.

The Sylvester equation has a unique solution if and only if A and −B do not share

any eigenvalues. Many state-of-the-art toolboxes are able to solve it efficiently. In

our setting, since both A and B are positive definite, A has only positive eigenvalues

and −B has only negative eigenvalues. Therefore Eq. (4.6) has a unique solution. In

summary, the sub-problem of fixing Wx to solve Wz can be solved via the algorithm

listed in Algorithm 2.

(2) Fix Wz and solve for Wx:
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Algorithm 3 Alternating algorithm for solving Eq. (4.3)
Input: X of seen classes; Z of seen classes; λ1 and λ2; maximum number of

iterations τ.
Initialize W0

x with Gaussian distribution.
for t = 1 · · · τ do
· Solve (4.5) iteratively for Wt

z with Wt−1
x according to Algorithm 2.

· Solve (4.7) for Wt
x with Wt

z.
if Converge then
· Break.

end
end
Output: Wx, Wz.

This sub-problem is a conventional least squares minimization problem which

has the following closed-form solution

W>x = (XX> + λ1I)−1XYZ>W>z (WzZZ>W>z )
−1. (4.7)

By alternating between the above two matrices, the overall alternating optimiza-

tion algorithm for Eq. (4.3) is listed in Algorithm 3.

4.4 Experiments

We divide our experiments into two parts. In the first part we evaluate the proposed

method and compare it against both of the methods utilizing online textual sources

and human-specified semantic attributes. In the second part we analyse in-depth the

noise suppression effect of the proposed method and provide insight into what kind

of information in a document is useful for zero-shot learning.

4.4.1 Experimental setting

Datasets: We test our approach on two widely used benchmarks for attribute learn-

ing and zero-shot learning: Animals with Attributes Lampert et al. [2009] (AwA)

and Caltech-UCSD birds-200-2011 Wah et al. [2011] (CUB-200-2011). AwA consists of
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30,475 images of 50 mammals classes with 85 attributes including color, skin texture,

body size, body part, affordance, food source, habitat, and behaviour. CUB-200-2011

contains 11,788 images of 200 categories of bird subspecies with 312 fine-grained at-

tributes such as color/shape/texture of body parts. We follow the train/test split

according to Lampert et al. [2009] and Wah et al. [2011], where 10 and 50 testing

classes are treated as unseen for AwA and CUB-200-2011, respectively.

Textual document sources: We extract the text representation according to scheme

introduced in Section 4.3.2. The raw textual sources are collected from Wikipedia ar-

ticles describing each of the categories. When constructing the vocabulary, we use

the articles of seen classes only. The dimensionality of the text representation is 3506

for AwA and 6815 for CUB-200-2011, respectively.

Image features: To make fair a comparison, two types of image features, the low-

level features in Rohrbach et al. [2010] and the fully connected layer activations from

the “imagenet-vgg-verydeep-19” Simonyan and Zisserman [2014] CNN are used in

our experiments.

Implementation details: The Sylvester equation in Eq. (4.6) is solved by a MAT-

LAB built-in function, which takes only around 5 seconds on an Intel Core i7 CPU

at 3.40GHz. The number of rows of matrices Wx and Wz is equal to the number

of seen classes. We choose the hyper-parameters with a five-fold cross-validation

on the seen classes, where 20% (5 for AwA and 30 for CUB-200-2011) of the seen

classes are held out for validation and the remaining seen classes are used for train-

ing. The hyper-parameters are tuned within the range of all cases of 10b, where

b = {−2,−1, · · · , 5, 6}. Once the hyper-parameters are selected, we use all seen

classes to train the final model. All of our reported results are averaged over 10

trials.
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Method Top-1 Acc Top-5 Acc
Ba et al. [2015] (BCE) 1 17.6
Ba et al. [2015] (Hinge) 0.6 18.2
Ba et al. [2015] (Euclidean) 12 42.8
ESZSL Romera-Paredes and Torr [2015] 23.80 59.90
Ours 29.00± 0.28 61.76± 0.22

Table 4.1: Zero-shot learning classification results on CUB-200-2011, measured by
top 1 and top 5 accuracy. 3 different loss functions are used in Ba et al. [2015]
for their CNN structure: binary cross entropy (BCE), hinge loss (Hinge), and Eu-
clidean distance (Euclidean). All methods in this table use the same text sources

from Wikipedia.

Method Mean Accuracy
Rohrbach et al. [2010] (Wikipedia) 19.7
Rohrbach et al. [2010] (WordNet) 17.8
Rohrbach et al. [2010] (Yahoo Web) 19.5
Rohrbach et al. [2010] (Yahoo Img) 23.6
Rohrbach et al. [2010] (Flickr Img) 22.9
ESZSL Romera-Paredes and Torr [2015] (Wikipedia) 24.82
Ours (Wikipedia) 29.12± 0.07

Table 4.2: Zero-shot learning classification results of AwA, measured by mean ac-
curacy. In Rohrbach et al. [2010], the approach mines attributes names from Word-
Net and additionally mines class-attribute from online sources of Wikipedia, Word-
Net, Yahoo, and Flickr. All methods in this table use the same low-level features in

Rohrbach et al. [2010].

4.4.2 Performance evaluation

We first compare our method against Ba et al. [2015] and Rohrbach et al. [2010]. The

former is most relevant to our work in the sense that it learns a mapping to match

images and textual documents. The work in Rohrbach et al. [2010] is a comprehen-

sive comparison study of various information sources for zero-shot learning. Besides

these two method, we also treat S = Z in Eq. (4.1), and apply the ESZSL method

in Romera-Paredes and Torr [2015] to our zero-shot learning problem. To make a

fair comparison, we use the same low-level features in Rohrbach et al. [2010] when

comparing with it and then use the “imagenet-vgg-verydeep-19” to compare with Ba

et al. [2015]. The comparison results are given in Table 4.1 and Table 4.2. As can be
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Method/Dataset AwA CUB
Rohrbach et al. [2013] 42.7
Jayaraman and Grauman [2014] 43.01
Mensink et al. [2014] 14.4
Akata et al. [2013] 43.5 18.0
Lampert et al. [2014] (attr. real) 57.5
Deng et al. [2014] (hierarchy) 44.2
ESZSL Romera-Paredes and Torr [2015] (attr. bin) 62.85
Akata et al. [2015] (Word2Vec) 51.2 28.4
Akata et al. [2015] (GloVe) 58.8 24.2
Akata et al. [2015] (WordNet) 51.2 20.6
Akata et al. [2015] (attr. bin) 52.0 37.8
Akata et al. [2015] (attr. real) 66.7 50.1
Fu et al. [2015] (attr. & words) 66.0
Zhang and Saligrama [2015] (attr. real) 76.33 30.41
ESZSL Romera-Paredes and Torr [2015] (Wikipedia) 58.53 23.80
Ours (Wikipedia) 66.46± 0.42 29.00± 0.28

Table 4.3: Zero-shot learning classification results on AwA and CUB-200-2011. Blank
spaces indicate these methods are not tested on the corresponding datasets. Contents
in braces indicate the semantic sources which these methods use for zero-shot learn-
ing. Methods in the upper part of the table use low-level features and the remaining

methods in the lower part use deep CNN features.

seen in Table 4.1, the proposed method significantly outperforms the methods in Ba

et al. [2015], although they have used a more complicated deep learning framework.

Also, we find that our baseline ESZSL achieves good performance. However, it is

still 5% inferior to our approach, which clearly demonstrates the advantage of the

noise suppression mechanism introduced in this chapter. The results in Table 4.2

further show that our method is superior over other approaches which rely on auto-

matically mined information from the web. Again, our method achieves a significant

improvement (more than 4%) over ESZSL.

We now compare our work with a few other state-of-the-art approaches on zero-

shot learning, even though some of them are not based on online information sources.

The results are summarized in Table 5.2. Results (Rohrbach et al. [2013]; Jayaraman

and Grauman [2014]; Mensink et al. [2014]; Akata et al. [2013]) listed in the upper

part of the table utilize hand-crafted features and not surprisingly their performance

is much inferior to that of the proposed method. The lower part of Table 5.2 are
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methods with visual features extracted from a pre-trained CNN and thus are more

comparable to our method. In this setting, we find that our method is comparable

to most of the state-of-the-art results on AwA and results better than ours are all

obtained from the methods using cleaner human defined attributes. The work in

Akata et al. [2015] evaluates various semantic representations such as Word2Vec em-

bedding, GloVe word co-occurrence from Wikipedia sources, taxonomy embedding

inferred from WordNet Hierarchy, and pre-defined binary and real-valued attributes.

Our approach outperforms all methods that use online text sources. This shows

that although online text sources provide transferable semantic representations, their

discriminative ability is affected by the inherent noise and our method is better at

handling the noisy information source for zero-shot learning.

Similar results are observed on the CUB-200-2011 dataset. Our approach again

outperforms the methods using online sources and those methods that beat ours

are all based on human specified fine-grained attributes. Note that many of the

bird categories in CUB-200-2011 have very subtle differences which may not be well

captured in Wikipedia articles. However, better performance may be expected by

using a higher quality text corpus, such as bird watching articles.

4.4.3 In-depth analysis of the proposed method

In this section we provide an in-depth analysis of the proposed method by examining

its noise suppression mechanism and the words that are most discriminative in the

view of our method.

4.4.3.1 Effectiveness of the noise suppression method

In our method, the l2,1-norm is expected to allow only a few dimensions of the doc-

ument representation to have large values. The importance of each individual di-

mension of the document representation can therefore be measured by the l2-norm

of each column of learned WZ (we call it the importance weight in the following).
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Figure 4.2: The two subfigures at the top show column-wise l2-norms of Wz learned
with l2,1-norm regularization. The two subfigures at the bottom show column-wise

l2-norms of Wz learned with Frobenius-norm regularization.

We visualize this measurement for each dimension of the document representation

in the top two subfigures in Figure 4.2. As can be seen, most of the importance

weights are not exactly zero as one might expect given that the l2,1-norm is applied.

In fact, there are only 702 zero columns (out of 3506) for AwA and 949 (out of 6815)

for CUB-200-2011. As also mentioned in Section 4.3, this is probably because of the

joint regularization effect of ||W>x WzZ||2F in Eq. (4.3) or because by cross-validation

most dimensions are still identified as being useful although their weighting should

be very low. The second postulate might be supported by the observation that poorer

performance will be obtained if we manually remove the dimensions which have low

importance weights.

Although our formulation does not achieve the feature selection effect, it does

only assign large importance weights to a small number of dimensions. To visually

compare its effect, we replace the l2,1-norm and with the Frobenius norm and carry
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out our learning algorithm again. The resulting importance weights are shown in

the two subfigures at the bottom of Figure 4.2. As can be seen, large importance

weights appear in more dimensions in this case. This observation verifies the noise

suppression effect of the regularizer introduced in Eq. (4.3) and explains the superior

performance of our method over other text-based zero-shot learning approaches.

Seen Class Top Ranked Words/Dimensions
Antelope antler, woodland, fight, stomach, spike, antelope, escape, mate, night, variety, ruminant, ridge, broad, scent, herd
Beaver river, protect, semiaquatic, web, branch, eurasian, american, land, insular, hunt, fur, extant, adult, stream, pond
Blue Whale ton, whale, flipper, kilometre, marine, ocean, belong, mph, shape, dive, earth, worldwide, indian, travel, pacific
Buffalo climate, extant, herd, indian, cattle, dairy, animate, bc, trade, behaviour, human, milk, northern, southeast, field
Cow draft, milk, cattle, widespread, product, meat, domestic, strong, cart, plow, oxen, bullock, cow, animate, india
Deer antler, fight, mate, elk, palmate, moose, wolf, season, bear, woodland, herd, ruminant, deer, stomach, spike
Moose herd, elk, palmate, moose, wolf, fight, deer, compete, alces, temperate, climate, aggressive, sedentary, season
Mouse rodent, house, eat, avoid, burrow, general, genetic, popular, breed, wild, small, tail, vermin, nocturnal, prey
Dolphin flipper, whale, ton, kilometre, indian, dive, mph, earth, shape, blubber, belong, marine, ocean, capture, prevent
Horse draft, strong, milk, meat, ungulate, equip, widespread, loose, past, history, compete, endure, technique, style, flee
Hamster mix, underground, fragile, house, bear, seed, worn, silky, rapid, classify, general, tail, flexible, dwarf, pouch
Killer Whale ton, whale, dolphin, click, dive, killer, pollution, belong, capture, vocal, calf, tail, threat, fish, fin
Otter semiaquatic, branch, eurasian, lake, engage, bed, play, trap, river, deplete, giant, cetacean, mink, weasel, web
Rabbit fragile, house, classify, general, introduce, underground, pad, vegetarian, companionship, defensive, shelf, detect
S. Monkey agile, arm, walk, tropic, rainforest, primate, source, primary, bark, passage, balance, thumb, moist, threaten
Uneen Class Top Ranked Words/Dimensions
Chimpanzee agile, finger, primate, arm, walk, human, forest, similar, occasion, blood, move, ape, lowland, hair, ft
Giant Panda tall, occupy, area, food, white, rare, ft, black, brown, claw, gather, protect, kg, fur, day
Leopard group, great, world, call, ft, common, typic, predator, individual, show, year, increase, member, red, form
Persian Cat fur, active, head, kitten, breed, cat, color, carry, england, state, short, north, popular, nose, extreme
Pig eat, form, plant, species, type, mean, popular, meat, increase, year, ungulate, estimate, remain, large, human
Hippo. eat, large, hunt, remain, people, kill, water, family, species, skin, size, consider, indian, fat, animate
H. Whale ton, whale, ocean, shape, kilometre, dive, hour, pacific, feed, indian, baleen, fin, water, dorsal, hunt
Raccoon tail, bushy, species, long, omnivorous, claw, family, cunning, mammal, skull, solitary, consist, repute, point, part
Rat rodent, genetic, popular, general, predator, characteristic, species, small, typic, pouch, laboratory, wild, breed
Seal marine, ocean, sea, spend, water, size, hunt, time, family, fat, large, blubber, seal, flipper, aquatic

Table 4.4: Category-wisely top ranked words, sorted by average importance weights
within each class. The blue words are generally considered as meaningful attributes
of this class. The green words are concepts somewhat related to this class, but are
less informative to define it. The red words are concepts that are not semantically

related to the corresponding class.

4.4.3.2 Understanding the important dimensions of the document representation

Since each individual dimension of the textual document representation corresponds

to an unique word, we can visualize the dimensions/words with large importance

weights for better understanding our zero-shot learning algorithm. Table 4.4 lists

at most 15 top scored words for 15 out of 40 seen classes and all unseen classes in

AwA and we could make several observations from it: (1) even though the document

representations are extremely noisy, most of the top-ranked words are semantically
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meaningful to describe discriminative properties of a category (an animal in this

case), such as body parts, habitat, behaviour, affordance, taxonomy, and environ-

ment. In fact, we find many top weighted words are consistent with some of the

human specified attributes in AwA. (2) Many top-ranked words are not explicitly

“visualizable” but they imply visual information of a category. For example, the

abstract concept “ruminant” implicitly tells that the creature with this property is

"deer-like" or "cattle-like" and builds a visual connection between antelope and deer

in Table 4.4. This observation has also been made in the literature (Lampert et al.

[2009, 2014]; Osherson et al. [1991]; Berg et al. [2010]; Shao et al. [2015]). (3) Interest-

ingly, we also notice that although some concepts are not commonly considered as

attributes, they exhibit large importance weight as inferred by our algorithm. By tak-

ing a close examination, we categorize these words into two types. The first (labelled

green in Table 4.4) are some concepts that are more likely to co-occur with meaning-

ful attributes. For example, the word “stomach” is only shared by antelope and deer

in Table 4.4, despite its existence in all mammals. This is probably because “stom-

ach” is more likely to be co-occurred with “ruminant”, a discriminative property of

ruminant animals. Another type of words (labelled red in Table 4.4) are not suffi-

ciently meaningful for human interpreter. For example, “belong” and “general” are

assigned with high importance weight for all cetaceans (blue whale, dolphin, killer

whale etc.) and rodents (mouse, rabbit, hamster etc.), respectively. We suspect the

reason is due to the dataset bias of documents. For example, documents of similar

categories may be edited by authors from the same background who prefer a certain

word choice. In sum, we find most of the top ranked words carry weak informa-

tion by their own, but it seems that using them collaboratively produces impressive

discriminative power for zero-shot learning.
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4.5 Summary

In this chapter, we have introduced a noise suppression mechanism to text-based

zero-shot learning. The proposed l2,1-norm based objective function generates classi-

fiers that are robust against textual noise and achieve state-of-the-art zero-shot learn-

ing performance. We have made several findings in the experiments. (1) The inherent

noise within text sources has a significant impact on zero-shot learning performance.

As all the text-methods without noise suppression are inferior to our approach, we

speculate that noise in a component of the mid-level representation decreases its dis-

criminative power. (2) Most noisy components are suppressed rather than completely

eliminated by our mechanism. Some words, although unimportant individually, can

produce meaningful discriminative power when put together. (3) We find three kinds

of words in the de-noised representation that can provide useful information for zero-

shot learning. The first kind are the attribute-like words that explicitly describe the

category. The second are words that are weakly related to the category. They usually

occur with definitive words. The last kind of words is non-informative to humans,

but shows certain distribution patterns among related categories.

Overall, this chapter points out an important factor in text-based zero-shot learn-

ing that has been previously ignored. By dealing directly with the inevitable vari-

ations in human expression, and suppressing words that contain little or no value,

the performance of text-based automatic zero-shot learning can be significantly im-

proved.



Chapter 5

Zero-shot Learning with Word

Vectors

5.1 Introduction

Zero-shot learning (ZSL) aims at recognizing objects of categories that are not avail-

able at the training stage. Its basic idea is to transfer visual knowledge learned from

seen categories to the unseen categories through the connection made by the seman-

tic embeddings of classes. Attribute Farhadi et al. [2009] is the first kind of semantic

embedding utilized for ZSL and remains the best choice for achieving the state-of-

the-art performance of ZSL ( Akata et al. [2015]; Zhang and Saligrama [2015]). Its

good performance, however, is obtained at the cost of extensive human labour to

label these attributes.

Recently, several works have explored to use distributed word embeddings (DWE)

(Mikolov et al. [2013]; Pennington et al. [2014]) as the alternative to attributes in zero-

shot learning (Frome et al. [2013]; Norouzi et al. [2014]). In contrast to human anno-

tated attributes, DWEs are learned from a large-scale text corpus in an unsupervised

fashion, which requires little or no human labour to collect. However, the training

process of DWEs does not involve visual information and thus they only capture the

semantic relationship between different classes. In practice, the semantic similarity

does not necessarily correspond to the visual similarity and this visual-semantic dis-

crepancy may lead to the inferior performance of ZSL. In fact, it has been shown that

75
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Figure 5.1: The key idea of our approach. Given class names and visual features
of the seen classes, we extract the word embeddings from a pre-trained language
model and obtain the visual signatures that summarize the appearances of the seen
classes. The word embeddings are mapped to a new space where the neighbourhood
structure of the mapped embeddings are enforced to be consistent with their visual
domain counterparts. During the inference stage, the VAWEs and visual features of
seen classes are used to train the ZSL model. Then VAWEs of unseen classes are fed

to the trained ZSL model for zero-shot prediction.

when applied to the same ZSL approach, DWE is always outperformed by attribute

(Akata et al. [2015]; Changpinyo et al. [2016]; Xian et al. [2016]). To reduce the visual-

semantic discrepancy, a popular way in ZSL is to map the semantic embeddings and

visual features into a shared space (Frome et al. [2013]; Romera-Paredes and Torr

[2015]; Xian et al. [2016]; Zhang and Saligrama [2016]; Long et al. [2016]) to make

these two domains comparable. However, when a large visual-semantic discrepancy

exists, finding such a mapping can be difficult.

Different to existing work, the method proposed in this chapter directly learns

a neural network to map the semantic embedding to a space in which the mapped

semantic embeddings preserves a similar neighbourhood structure as their visual

counterparts. In other words, we do not require the mapped semantic embeddings

to be comparable to visual features but only impose constraints on their structure.

This gives more freedom in learning the mapping function, and this could potentially

enhance its generalizability. Moreover, since our approach is not tied to a particular

zero-shot learning method, the learned mapping can be applied to any zero-shot
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learning algorithm.

Three contributions are made in this work. First, we experimentally demonstrate

that the inferior ZSL performance of DWE is caused by the discrepancy of visual

features and semantic embeddings. Second, to overcome this issue, we propose the

visually aligned word embeddings (VAWE) which preserve similar neighbourhood

structure with that in the visual domain. Third, we show that VAWE has improved

the word embedding based ZSL methods to state-of-the-art performance and is po-

tentially generalizable to any type of ZSL method.

5.2 Background

Zero-shot learning and semantic embedding: Zero-shot learning was firstly made

possible by attributes (Lampert et al. [2009]; Farhadi et al. [2009]), which describe

the visual appearance of the concept or instance by assigning labelled visual prop-

erties to it, and they are easily transferable from seen to unseen classes. Distributed

word embeddings, most notably word2vec Mikolov et al. [2013] and GloVe Pen-

nington et al. [2014], are recently explored (Socher et al. [2013]; Frome et al. [2013];

Norouzi et al. [2014]) as a promising alternative semantic embedding towards fully

automatic zero-shot learning since their unsupervised training process does not in-

volve any human intervention. ZSL approaches learn a connection between visual

and semantic domains either by directly mapping visual features to semantic space

(Socher et al. [2013]; Norouzi et al. [2014]; Fu and Sigal [2016]) or projecting both

visual and semantic embeddings into a common space (Akata et al. [2013]; Frome

et al. [2013]; Romera-Paredes and Torr [2015]; Akata et al. [2015]; Xian et al. [2016];

Zhang and Saligrama [2016]; Long et al. [2016]; Jetley et al. [2015]; Li et al. [2015]).

It should be noted that specically in (Long et al. [2016, 2017]), similar issues like

visual-semantic ambiguity or visual-semantic structure preservation are proposed

and attribute based ZSL methods are designed to deal with them. Although our

work shares a common goal with Long et al. [2016] and Long et al. [2017], VAWE
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is learned in the semantic domain only which serves as a general tool for any word

embedding based ZSL methods. In other words, we are NOT proposing a particular

ZSL method, and VAWE can be regarded as a meta-method for improving existing

ZSL methods.

Word embedding with visual information: As distributed word embedding is

limited to pure textual representation, a few works have proposed to improve it with

visual cues. Visual word2vec Kottur et al. [2016] is trained by adding abstract scenes

to context. In Lazaridou et al. [2015], the language model learns to predict visual

representations jointly with the linguistic features. Our work is different from those

two works in two aspects: 1) our target is to learn a mapping function which can

be generalized to words in unseen classes while the above works try to learn an

embedding for the words in the training set. 2) the objective of our method is to

encourage a certain neighbourhood structure of the mapped word embedding rather

than applying the context prediction objective across visual and semantic domains

as in (Kottur et al. [2016]; Lazaridou et al. [2015]).

5.3 Motivation

Assume a set of class labels Ws and Wu for images from seen and unseen classes,

whereWs ∩Wu = ∅. Most zero-shot learning approaches can be summarised by the

general form

s(x) = argmax
y∈Y

F(x, φ(y)), (5.1)

where F(x, φ(y)) measures compatibility score of the visual feature x and a semantic

embedding φ(·) of class y. During the training phase, where Y = Ws, F(·, ·) is

learned to measure the compatibility between x and φ(y). During the testing phase,

the learned F(x, φ(y)) is applied to measure the compatibility between novel classes
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y ∈ Wu and testing visual samples x ∈ Xunseen for zero-shot prediction.

This formulation indicates that φ(y) is an important factor of ZSL. It is desirable

that the relationship among φ(y) retains consistency with the relationship among

their visual features, that is, φ(y) of the visually similar classes remains to be similar

and vice versa. Human defined attributes are empirically proven to be qualified φ(y)

because the annotators implicitly infuses the attribute vectors with visual information

based on their knowledge and experience of the concepts. In this chapter, we use

“concept” and “word” interchangeably to denote category names. However, this is

not always the case for semantic embeddings learned from pure text sources, which

are trained to maintain the semantic relation of concepts from large text corpora.

For example, the concepts “violin” and “piano” are strongly related in the semantic

sense even though their appearances are completely different.

To investigate how visual-semantic consistency affects ZSL performance, we con-

duct a preliminary experiment on AwA dataset. We use the state-of-the-art ESZSL

Romera-Paredes and Torr [2015] method to measure the ZSL performance and the

average neighbourhood overlap to measure visual-semantic consistency. To calculate

the latter, we measure the visual distance between two classes as the average distance

between all pairs of visual features within those two classes and this is also equiva-

lent to calculating the distance between their mean feature vectors.That is to say,the

visual distance between two classes i and j are

Di,j = ‖fi − fj‖2 (5.2)

where fi is the mean feature vectors for each class and ‖ · ‖2 is the L-2 norm.

Likewise, the semantic distance between two classes can be calculated in the same

manner by replacing fi and fj with the semantic embeddings of classes i and j.

We define Nv(i, K) and Ns(i, K) as the sets that includes the K most similar classes

to class i in visual and semantic domains respectively. Then for each class i, we cal-

culate its top-K nearest classes in visual domain using (5.2) and put them in Nv(i, K).
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Similarly, we calculate the top-K nearest classes of i in the semantic domain and put

them in Ns(i, K).

Four types of semantic embeddings: word2vec, GloVe, binary attribute (pres-

ence/absence of the attribute for a class) and continuous attribute (strength of asso-

ciation to a class) are tested. The average neighbourhood overlap is defined in (5.3)

as the average number of shared neighbours (out of K=10 nearest neighbours in this

case) for all C classes in semantic and visual domains. A value closer to 10 indicates

that the embedding is more consistent with the visual domain.

Consistancy = ∑
i=1,··· ,C

|Nv(i, K) ∩ Ns(i, K)|/C (5.3)

Method Embedding Consistency Accuracy
ESZSL word2vec 2.88 58.12
ESZSL GloVe 2.84 59.72
ESZSL binary attribute 4.80 62.85
ESZSL continuous attribute 5.66 75.12
ESZSL visual feature mean 10.00 86.34

Table 5.1: Preliminary experiment: ZSL accuracies of ESZSL on AwA dataset with
different semantic embeddings. The visual feature mean summaries the visual ap-

pearance of each seen or unseen class.

The results in Table 5.1 demonstrate that semantic embeddings with more con-

sistent visual-semantic neighbourhood structure clearly produce better ZSL perfor-

mance. Motivated by that, in this chapter we propose to map the semantic word

embedding into a new space in which the neighbourhood structure of the mapped

embeddings becomes consistent with their visual domain counterparts. Hereafter, we

call the mapped word embedding visually aligned word embedding (VAWE) since

the mapped word embedding is re-aligned with visual information in comparison

with its unmapped counterpart.
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5.4 Approach

Notations: Before elaborating our approach, we formally define the notations as

follows. For each visual category i, we denote its semantic word embedding as

si ∈ Rds
and its visual signature as vi ∈ Rdv

, where dv and ds are the dimensionality

of the visual and semantic space, respectively. The visual signature will be used to

define the neighbourhood structure in the visual domain. In the main body of this

chapter, we use the mean vector of the visual features in the ith category as its visual

signature. Certainly, this is merely one way to define the visual neighbourhood

structure, and our method also applies to other alternative definitions.

The to-be-learned mapping function (neural network) is represented by fΘ(·),

where Θ is the model parameters. For simplicity, we omit the parameter Θ in later

notations. This function will be learned on the seen classes and is expected to gen-

eralize to unseen classes. In this way, we can apply the VAWE to any zero-shot

learning methods. We use the notation i∗ ∈ Wu and s∗i to denote an unseen class and

its semantic embedding respectively.

5.4.1 Visually aligned word embedding

To learn f (·), we design an objective function to encourage that f (si) and vi share

similar neighbours. Specifically, we consider a triplet of classes (a, p, n), where a is

more visually similar to p than n. We assume that by examining the consistency of

the neighbourhood of class a in the view of its visual signature, the VAWE of the

class a and p should be pulled closer while the VAWE of the class a and n should be

pushed far part. Hereafter, we call class a, p and n anchor class, positive class and

negative class respectively. The training objective is to ensure the distance between

f (sa) and f (sp) is smaller than the distance between f (sa) and f (sn). Therefore we
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employ a triplet hinge loss function:

∑
∀(sa,sp,sn)∈T

[
‖ f (sa)− f (sp)‖2

2 − ‖ f (sa)− f (sn)‖2
2 + α

]
+

, (5.4)

where []+ denotes the hinge loss and α is an enforced margin between the distances

from anchor class to positive and negative classes. Note that our method does not

map the semantic word embedding into a shared space with visual feature as in

many ZSL methods such as DeViSE Frome et al. [2013]. The mapping function only

applies at the semantic domain. We set α = 1.0 in all experiments.

5.4.2 Triplet selection

The choice of the triplet (a, p, n) plays a crucial role in our method. Our method

encourages the output embedding to share neighbourhood with visual signatures.

Therefore if two classes are close in the visual domain, but distant in the semantic

domain, their semantic embeddings should be pulled closer, and vice versa. Specifi-

cally, for an anchor class a ∈ Ws, if another class p ∈ Ws is within the top-K1 neigh-

bours Nv(a, K1) in the view of visual domain but not within the top-K2 (K2 > K1)

neighbours Ns(a, K2) in the view of semantic domain, then p should be pulled closer

to a and we include p as a positive class. On the other hand, if another class n ∈ Ws

is within the top-K1 neighbours of a in semantic view but not within the top-K2

neighbours in visual view, n should be pushed far away from a and we include n

as the negative class. Note that using K2 > K1 avoids over-sensitive decision on the

neighbourhood boundary. In other words, if j is within the top-K1 neighbourhood of

i, it is deemed “close” to i and only if j is not within the top-K2 neighbourhood of i,

it is considered as “distant” from i.

As noted by Dinu and Baroni [2015], nearest neighbour approaches may suffer

from the hubness problem in high dimension: some items are similar to all other

items and thus become hubs. In our experiment if a positive concept appears in the

neighbourhood of many words during training, the VAWE f (s) would concentrate
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around this hub and this could be harmful for learning a proper f (·). We design

a simple-but-effective hubness correction mechanism as a necessary regularizor for

training by removing such hub vectors from the positive class candidates as the train-

ing progresses. We calculate the “hubness level” for each concept before each epoch.

Concretely, we accumulate the each concept’s times of appearances in the neighbour-

hood of other concepts in the mapped semantic domain f (s). We mark the concepts

that appear too often in the neighbourhood of other concepts as hubs and remove

them from positive classes in the next training epoch. In our experiment the hubness

correction usually brings 2-3% of improvement over the ordinary triplet selection. We

summarize the triplet selection process and hub vectors generation in Algorithm 4

and Algorithm 5, respectively.

Algorithm 4 Dynamic triplet selection at epoch t + 1

Input: Nearest neighbourhood structure sets Nv(i) and Ns(i) in visual and semantic domains for

each seen class computed from semantic and visual signatures (si, vi), i ∈ Ws and K1 and

K2;

Initialize triplet set Tt+1 = ∅ and hub vector set Ht = ∅ at epoch t + 1.

for i = 1 · · · |Ws| do
· Nv(i) = Nv(i)− Ht.

· a = i.

for s ∈ Ns(i) do

if s /∈ Nv(i) then
n = s

end

for v ∈ Ns(i) do
· p = v.

· Tt+1 = Tt+1 ∪ (a, p, n).

end

end

end

· Randomly shuffle the order of triplets in Tt+1.

Output: Tt+1.
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Algorithm 5 Generating hub vector set before epoch t + 1
Input: output embeddings at epoch t ft(si), i ∈ Ws; number of neighbours in

visual and semantic domains M and K;
Initialize Hubs ∈N|Ws| as a zero-valued vector which each of its element count-
ing the hubness level of each vector; hub vector set at epoch t Ht = ∅.
for i = 1 · · · |Ws| do
· Get N( ft(si))[1 : K].
for j = 1 · · · |Ws| do

if j ∈ N( ft(si))[1 : K] then
· Hubsj+ = 1.

end
end

end
for i = 1 · · · |Ws| do

if Hubsi > K then
· Ht = Ht ∪ i

end
end
Output: Ht.

5.4.3 Learning the neural network

We formulate f (·) as a neural network that takes inputs from the pre-trained word

embeddings and outputs new visually aligned word embeddings. During the train-

ing stage, the training triplets are selected from the seen classes according to Algo-

rithm 4, and parameters of f (·) are adjusted by SGD to minimize the triplet loss (5.5).

Note that although the number of training classes is limited, f (·) is trained with the

triplets of classes, which amount up to O(|Ws|3). The inference structure of f (·)

contains two fully-connected hidden layers with ReLU non-linearity, and the output

embedding is L-2 normalized to d′-D unit hypersphere before being propagated to

the triplet loss layer.

min
Θ

∑
∀(sa,sp,sn)∈Tt

[
‖ f (sa)− f (sp)‖2

2 − ‖ f (sa)− f (sn)‖2
2 + α

]
+
+ λ‖Θ‖2

2. (5.5)

where Tt is the set of all selected triplets at epoch t.

During the inference stage, f (·) is applied to word embeddings of both seen and
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unseen classes. The output VAWEs are off-the-shelf for any zero-shot learning tasks.

5.5 Experiments

In order to conduct a comprehensive evaluation, we train the VAWE from two kinds

popular distributed word embeddings: word2vec Mikolov et al. [2013] and GloVe

Pennington et al. [2014]. We apply the the trained VAWE to four state-of-the-art

methods. We compare the performance against the original word embeddings and

other ZSL methods using various semantic embeddings, including attributes, cate-

gory hierarchy, text documents, and distributed word embeddings.

Datasets: We test the methods on four widely used benchmark dataset for zero-

shot learning: aPascal/aYahoo object dataset Farhadi et al. [2009] (aPY), Animals

with Attributes Lampert et al. [2009] (AwA), Caltech-UCSD birds-200-2011 Wah et al.

[2011] (CUB), and the SUN scene attribute dataset Xiao et al. [2014] (SUN). AwA and

aPY are coarse-grained datasets that consist of distinctive animal species or daily life

objects. The CUB dataset is a fine-grained dataset that contains 200 categories of bird

subspecies. The SUN dataset also contains fine-grained categories of scenes. The

train/test split protocols for each dataset are set in accordance with the aforemen-

tioned literature.

Distributed word embeddings: We train the VAWE from two pre-trained dis-

tributed word emedding models: word2vec and GloVe. We pre-train the word2vec

model from scratch on a large combination of text corpus: UMBC Web Base1, the

latest Wikipedia dump 2, and a corpus of English news articles3. The resulted model

generates 1000-D real valued vectors for each concept. As for GloVe, we use the pre-

trained 300-D word embeddings provided by Pennington et al. [2014]4 We only test

GloVe on aPY and AwA datasets because the pre-trained GloVe model does not con-

1http://ebiquity.umbc.edu/redirect/to/resource/id/351/UMBC-webbase-corpus
2http://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
3http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2012.en.shuffled.gz;

http://www.statmt.org/wmt14/training-monolingual-news-crawl/news.2013.en.shuffled.gz
4http://nlp.stanford.edu/projects/glove/glove.6B.zip
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Method Feature Embedding aPY AwA CUB SUN
Lampert et al. [2014] V continuous attribute 38.16 57.23 72.00
Deng et al. [2014] D class hierarchy 44.2
Ba et al. [2015] V web documents 12.0
Akata et al. [2015] V word2vec 51.2 28.4
Akata et al. [2015] V GloVe 58.8 24.2
Akata et al. [2015] V continuous attribute 66.7 50.1
Qiao et al. [2016] V web documents 66.46 29.00
Zhang and Saligrama [2015] V continuous attribute 46.23 76.33 30.41 82.50
Zhang and Saligrama [2016] V continuous attribute 50.35 79.12 41.78 83.83
Long et al. [2016] L continuous attribute 39.42 51.75
SynC G continuous attribute 69.7 53.4 62.8
LatEm G continuous attribute 72.5 45.6
ESZSL V continuous attribute 24.22 75.32 82.10
ConSE V word2vec 21.82 46.80 23.12 43.00
ConSE + Ours V VAWE word2vec 35.29 61.24 27.44 63.10
ConSE V GloVe 35.17 51.21
ConSE + Ours V VAWE GloVe 42.21 59.26
SynC V word2vec 28.53 56.71 21.54 68.00
SynC + Ours V VAWE word2vec 33.23 66.10 21.21 70.80
SynC V GloVe 29.92 60.74
SynC + Ours V VAWE GloVe 31.88 64.51
LatEm V word2vec 19.64 50.84 16.52 52.50
LatEm + Ours V VAWE word2vec 35.64 61.46 19.12 61.30
LatEm V GloVe 27.72 46.12
LatEm + Ours V VAWE GloVe 37.29 55.51
ESZSL V word2vec 28.32 58.12 24.82 64.50
ESZSL + Ours V VAWE word2vec 43.23 76.16 24.10 71.20
ESZSL V GloVe 34.53 59.72
ESZSL + Ours V VAWE GloVe 44.25 75.10

Table 5.2: ZSL classification results on 4 datasets. Blank spaces indicate these meth-
ods are not tested on the corresponding datasets. Bottom part: methods using VAWE
and the original word embeddings as semantic embeddings. Upper part: state-of-
the-art methods using various sources of semantic embeddings. Visual features in-

clude V:VGG-19; G:GoogLeNet; D:DECAF; L:low-level features.

tain the associated word embeddings for too many fine-grained categories in CUB

and SUN. It should be noted that Akata et al. [2015] and Xian et al. [2016] train the

word embeddings for CUB by replacing the category names with unique scientific

names. Since we assume a more realistic ZSL scenario that the names of unseen class

are not known until testing, we do not follow this preprocessing step and simply use
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the word embeddings of the original class names.

Image features and visual signatures: For all the four test methods in our exper-

iments, we extract the image features from the fully connected layer activations of

the deep CNN VGG-19 Simonyan and Zisserman [2014]. As aforementioned, we use

the average VGG-19 features of each seen category as the visual signatures for them.

Test ZSL methods: We apply trained VAWEs on four state-of-the-art methods

denoted as ConSE Norouzi et al. [2014], SynC Changpinyo et al. [2016], LatEm Xian

et al. [2016] and ESZSL Romera-Paredes and Torr [2015] in the following sections. We

use our own implementation of ConSE and ESZSL and the publicly available codes

of SynC and LatEm. For ConSE, the hyperparameter T (top-T nearest embeddings

as the combination embedding for a test image) is set to 10. For ESZSL, the hyper-

parameters are tuned by cross-validation as in Romera-Paredes and Torr [2015]. We

use the same default parameter settings in their codes for SynC and LatEm.

Implementation details: We stop the training when the triplet loss stops decreas-

ing. This usually takes 150 epochs for aPY, 250 epochs for AwA, 50 epochs for CUB

and 20 epochs for SUN. Number of nearest neighbours in visual space is K1 = 10

for all datasets. Number of nearest neighbours in semantic space K2 is set to half

the number of seen classes for each dataset (except for SUN, which has many seen

classes), that is 10, 20, 75 and 200 for aPY, AwA, CUB and SUN, respectively. The

output dimension is set to d′=128. We report the multi-class accuracies averaged over

10 trials of embedding trainings. We follow the same parameter selection or cross-

validation settings as in the literatures of the to-be-tested methods. Note that for

some methods we report different results to those in their original papers by using

the same type of word embeddings. This is because we train the word embeddings

with different text corpus and use different visual features, or the original papers

report average per-class accuracies while we report the multi-class accuracies. For

all to-be-tested methods, we use the same word embeddings and visual features for

a fair comparison. Our unoptimized code based on Tensorflow takes less than 5
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minutes to train.

5.5.1 Performance improvement and discussion

In this section, we test the effect of using VAWE trained from word2vec and GloVe

in various ZSL methods. The main results of VAWE compared against the original

word embeddings are listed in the bottom part of Table 5.2. Except for the fine-

grained dataset CUB, the VAWEs trained from both word embeddings gain overall

performance improvement on all test methods. Most notably on the coarse-grained

datasets, i.e., aPY and AwA, the VAWEs outperform their original counterparts by a

very large margin.

For ZSL methods, we find that the performance improvement is most significant

for ConSE and ESZSL, partly because these two methods directly learns a linear map-

ping between visual and semantic embeddings. A set of semantic embeddings that is

inconsistent with the visual domain would hurt their performance the most. By us-

ing the VAWEs, those methods learn a much better aligned visual-semantic mapping

and earns a great performance improvement. In comparison, SynC benefits less from

the VAWE than other methods on some datasets. because it learns a new semantic

space that can correct some deficiency of original space. Nevertheless, VAWE still

helps it to achieve better accuracies.

The performance improvement is limited on fine-grained datasets CUB and SUN.

Compared to the coarse-grained class datasets, the difference in categories in CUB

and SUN is subtle in both visual and semantic domains. This causes the their visual

signatures and semantic embeddings more entangled and results higher hubness

level. Therefore it is more challenging to re-align the word embeddings of fine-

grained categories by our method.

Overall, the VAWEs exhibit consistent performance gain for various methods on

various datasets (improved performance on 22 out of 24 experiments). This observa-

tion suggests that VAWE is able to serve as a general tool for improving the perfor-
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Method Dim. aPY AwA CUB SUN
ConSE + Ours 64 34.14 60.26 25.21 59.00
ConSE + Ours 128 35.29 61.24 27.44 63.10
ConSE + Ours 256 35.46 62.27 26.18 64.70
ConSE + Ours 512 33.13 61.31 23.94 59.40
SynC + ours 64 34.09 64.21 22.31 70.10
SynC + ours 128 33.23 66.10 21.21 70.80
SynC + ours 256 31.92 61.71 20.11 70.40
SynC + ours 512 30.41 59.43 18.54 69.40
LatEm+ Ours 64 35.11 62.17 20.25 61.00
LatEm + Ours 128 35.64 61.46 19.12 61.30
LatEm + Ours 256 34.41 61.52 20.08 60.50
LatEm + Ours 512 34.01 60.01 20.11 57.80
ESZSL + Ours 64 43.14 75.90 23.88 69.50
ESZSL + Ours 128 43.23 76.16 24.10 71.20
ESZSL + Ours 256 42.91 77.21 22.14 70.50
ESZSL + Ours 512 37.07 74.54 19.09 70.90

Table 5.3: ZSL accuracies of four test methods on four datasets, applied with VAWE
from word2vec with various output dimensionalities.

mance of ZSL approaches.

5.5.2 Comparison against the state-of-the-art

We also compare the improved results of VAWE against the results of recently pub-

lished state-of-the-art ZSL methods using various sources of semantic embeddings

in the upper part of Table 5.2. It can be observed that methods using VAWE beat

all other methods using non-attribute embeddings. Even compared against the best

performing attribute-based methods, our results are still very competitive on coarse-

grained class datasets: only a small margin lower than Zhang and Saligrama [2016]

that uses continuous attributes. The results indicate that VAWE is a potential substi-

tution for human-labelled attributes. The VAWE is not only human labour free but

also provides comparable performance to attributes.
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5.5.3 Dimensionality of output embeddings

The dimensionality of VAWE is a free parameter in our framework. We investigate

its influence by evaluating the ZSL performance of all test methods on all datasets.

Due to space limitation, we only report the results of VAWE obtained from word2vec

in Table 5.3. It can be observed that higher dimensionality 512 may cause a slight

performance drop, especially for SynC and ESZSL. Overall, the VAWE is robust on

dimensionality lower than 256.

5.5.4 The effect of visual features

Visual signature source Low-level DeCAF VGG-19
ConSE + Ours 55.57 60.08 61.24
SynC + Ours 59.06 67.30 66.10
LatEm + Ours 58.43 63.33 61.46
ESZSL + Ours 67.28 73.23 76.16

Table 5.4: ZSL accuracies on the AwA dataset of VAWE trained with visual signatures
from different feature sources. For the ZSL methods, the VGG-19 features are still

used for training and testing.

The learning process of the mapping function relies on the choice of visual fea-

tures which implicitly affects the neighbourhood structure in the visual domain. In

this section, we investigate the impact of the choice of visual features on the quality

of the mapped VAWE. Again, the quality of the VAWE is measured by its perfor-

mance on ZSL. In previous sections, we extracted the visual signature as the mean of

the VGG-19 features of each class. Here we further replace it with low-level features

or DeCAF features provided by Lampert et al. [2009] and use them to obtain the

VAWEs of word2vec. Once the VAWEs is learned we apply the ZSL with VGG-19

features and the experiment is conducted on the AwA dataset. Note that both De-

CAF features and low-level features are weaker image features than VGG-19. The

experiment results are shown in Table 5.4. From the experimental results, we find

that performance of all four ZSL methods do not change too much when we replace
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VGG-19 with DeCAF to learn the mapping function. Using low-level features will

degrade the performance but comparing to the performance of using the original

word2vec the learned VAWE still shows superior performance. These observation

suggests that we may use one type of visual features to train the VAWE and apply

them to ZSL methods trained with another kind of visual features and still obtain

good results.

5.6 Summary

In this chapter, we show that the discrepancy of visual features and semantic embed-

dings negatively impacts the performance of ZSL approaches. Motivated by that, we

propose to learn a neural network with triplet loss to map the word embeddings into

a new space in which the neighbourhood structure of the mapped word embedding

becomes similar to that in the visual domain. The visually aligned word embeddings

boost the ZSL performance to a level that is competitive to human defined attributes.

Besides that, our approach is independent of any particular ZSL method. This gives it

much more flexibility to generalize to more potential applications of vision-language

tasks.
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Chapter 6

Conclusion and Future Directions

In this thesis, we have studied how mid-level representations benefit the tasks of

action recognition and zero-shot learning in computer vision. In this final chapter,

we summarize the key highlights of our work and discuss several future directions

for the two tasks.

6.1 Conclusion

In Chapter 3, we describe an effective skeleton-based action approach that achieves

high accuracy on the relevant benchmark datasets. The keys to this performance are

two factors. We propose trajectorylet, a novel local descriptor that captures static and

dynamic information in a short interval of joint trajectories. We also devise a novel

framework to generate robust and discriminative mid-level representations for action

instances by learning a set of distinctive trajectorylet detectors.

In Chapter 4, we discover an important factor in text-based zero-shot learning

that has been previously ignored. By dealing directly with the inevitable variations

in human expression, and suppressing words that contain little or no value, the

performance of text-based automatic zero-shot learning are significantly improved.

The proposed l2,1-norm based objective function generates classifiers that are robust

against textual noise. We have made an in-depth analysis of important components

within a document that are contributing the performance zero-shot learning.

In Chapter 5, we show that the discrepancy of visual features and semantic em-

beddings causes negative impacts on the performance of ZSL approaches. To over-

93
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come this visual-semantic discrepancy, we here augment the distributed word em-

bedding with visual information by learning a neural network to map it into a new

representation called the visually aligned word embedding (VAWE). We further de-

sign an objective function to encourage the neighbourhood structure of VAWEs to

mirror that in the visual domain. The visually aligned word embeddings boost the

ZSL performance to a level that is competitive to human defined attributes.

Overall, this thesis focuses on learning or improving mid-level representations for

boosting the performance of action recognition and zero-shot learning. To achieve

this goal, these mid-level representations can be learned, de-noised, or re-aligned.

As a result, we believe the approaches proposed in this thesis will bring insights on

object classification tasks.

6.2 Future Directions

Even though this thesis has made considerable contribution to mid-level representa-

tions for the tasks of action recognition and zero-shot learning, we still notice that

several open problems remain. We point out future directions for these problems.

6.2.1 Action Recognition

In Chapter 3, we design a discriminative mid-level representation with local trajec-

torylet for action recognition. One issue remaining is that our model is trained and

tested on completed action sequences with global temporal pyramids. The local tem-

poral information is expected to be utilized for real-time action detection before an

action is completed. This can be implemented via low-latency sequence prediction

models such as RNN.

As noted in the experiments of Chapter 3, the performance of our approach may

be affected by noisy sequences caused by occlusions of interacted objects. An intu-

itive solution is to incorporate other modalities such as RGB videos of human-object

interactions. By identifying the interacted objects which are not present in the skele-
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ton data, our approach could be modified to become more robust against noisy data.

From the visualized discriminative trajectorylets in Figure 3.10, we observe that

semantic information are highly correlated to these patterns. Therefore, we plan

to study how semantic information such as attributes can be extracted from action

sequences in the sense of attribute discovery. This may potentially benefit zero/few-

shot learning tasks for actions.

Since the discriminative trajectorylets are detected from a sequence of action

frames, our approach can be naturally generalized to the classification tasks of other

sequential data. Notable examples include speech recognition and sentence recogni-

tion.

6.2.2 Zero-shot Learning

In Chapter 4 and Chapter 5, we explore the application of two alternative mid-level

representations of attribute to the zero-shot learnig tasks. For the online docu-

ments, we have made several findings in the experiments regarding the words high-

est scores. It is interesting to further extract meaningful semantic information from

those weighted words. These may help attribute discovery tasks.

We also notice that some higher-scored words are non-informative to human in-

terpretations, but show certain distribution patterns among related categories. The

combinations of these words also exhibit discriminative power for defining the cat-

egories. We plan to delve into this observation and exploit it for performance im-

provement of zero-shot learning.

For the distributed word embeddings, except for the fine-grained dataset CUB,

the visually aligned word embeddings gain overall performance improvement on all

test methods. We suspect the lower performance on the fine-grained dataset is due

to the subtle visual and semantic differences among the fine-grained categories. It is

worth incorporating some fine-grained information into our framework, for example,

the local visual features and larger and more detailed text corpus on fine-grained
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concepts.

Since our framework of VAWE is independent of any particular zero-shot learn-

ing method, it is able to generalize to other potential applications of vision-language

tasks, such as sentence-to-image retrieval Hu et al. [2016] or visual question answer-

ing (Wu et al. [2016]; Shih et al. [2016]).
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