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Abstract

Evolutionary multi-objective optimization for the classical vertex cover problem has been anal-
ysed in [12] in the context of parameterized complexity analysis. This paper extends the
analysis to the weighted vertex cover problem in which integer weights are assigned to the
vertices and the goal is to find a vertex cover of minimum weight. Using an alternative mu-
tation operator introduced in [12], we provide a fixed parameter evolutionary algorithm with
respect to OPT , the cost of an optimal solution for the problem. Moreover, we present a
multi-objective evolutionary algorithm with standard mutation operator that keeps the pop-
ulation size in a polynomial order by means of a proper diversity mechanism; and there-
fore, manages to find a 2−approximation in expected polynomial time. We also introduce
a population-based evolutionary algorithm which finds a (1+ ε)−approximation in expected
time O(n ·2min{n,2(1−ε)OPT}+n3).

1 Introduction

The area of runtime analysis has provided many rigorous new insights into the working be-
haviour of bio-inspired computing methods such as evolutionary algorithms and ant colony op-
timization [1, 9, 16]. In recent years, the parameterized analysis of bio-inspired computing has
gained additional interest [11, 12, 20, 21]. Here the runtime of bio-inspired computing is stud-
ied in dependence of the input size and additional parameters such as the solution size and/or
other structural parameters of the given input.

One of the classical problems that has been studied extensively in the area of runtime anal-
ysis is the classical NP-hard vertex cover problem. Here, an undirected graph is given and the
goal is to find a minimum set of vertices V ′ such that each edge has at least one endpoint in
V ′. Friedrich et al. [6] have shown that the single-objective evolutionary algorithm (1+1) EA
can not achieve a constant approximation ratio in expected polynomial time. Furthermore, they
have shown that a multi-objective approach using Global Simple Evolutionary Multi-objective
Optimizer (Global SEMO) gives a factor O(logn) approximation for the wider classes of set
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cover problems in expected polynomial time. Further investigations regarding the approxima-
tion behaviour of evolutionary algorithms for the vertex cover problem have been carried out
in [5, 17]. Edge-based representations in connection with different fitness functions have been
investigated in [10, 18] according to their approximation behaviour in the static and dynamic set-
ting. Kratsch and Neumann [12] have studied evolutionary algorithms and the vertex cover prob-
lem in the context of parameterized complexity [4]. They have shown that Global SEMO, with
a problem specific mutation operator is a fixed parameter evolutionary algorithm for this prob-
lem (for details about fixed parameter evolutionary algorithms, please refer to [12]), and finds
2−approximations in expected polynomial time. Kratsch and Neumann [12] have also intro-
duced an alternative mutation operator and have proved that Global SEMO using this mutation
operator finds a (1+ε)−approximation in expected time O(n2 logn+OPT ·n2 +n ·4(1−ε)OPT ).
Jansen et al. [10] have shown that a 2-approximation can also be obtained by using an edge-
based representation in the (1+1) EA combined with a fitness function formulation based on
matchings.

In this paper, we consider the weighted vertex cover problem where integer weights on
the vertices are given and the goal is to find a vertex cover of minimum weight. We extend the
investigations carried out in [12] to the weighted minimum vertex cover problem. In [12], multi-
objective models in combination with a simple multi-objective evolutionary algorithm called
Global SEMO are investigated. The secondary objective that is studied there is the solution
for the LP relaxation of the problem, which helps the evolutionary algorithm construct LP-
based approximation solutions. One key argument for the results presented for the (unweighted)
vertex cover problem is that the population size is always upper bounded by n+1. This argument
does not hold in the weighted case. Therefore, we study how a variant of Global SEMO using
appropriate diversity mechanisms is able to deal with the weighted vertex cover problem.

The focus of this paper is on the expected time (number of fitness evaluations) of the al-
gorithms to find good approximations of an optimal solution. The time complexity analysis is
performed with respect to n, Wmax, and OPT , which denote the number of vertices, the max-
imum weight in the input graph, and the cost of the optimal solution respectively. We first
study the expected time until Global SEMO with standard mutation operator has found a 2-
approximation in dependence of n and OPT . Afterwards, we analyse the expected time that
Global SEMO requires to find a solution with expected approximation ratio (1+ ε) for this
problem when the algorithm uses an alternative mutation operator. Furthermore, this paper con-
siders DEMO, a variant of Global SEMO, which incorporates ε-dominance [13] as a diversity
mechanism. It is shown that DEMO finds a 2-approximation in expected polynomial time. Fi-
nally, a population-based approach is presented that obtains a solution that has approximation
ratio (1+ ε) in expected time O(n ·2min{n,2(1−ε)OPT}+n3).

This paper extends the conference version [19] by giving complete proofs for a number
of lemmata (Lemmata 4, 5, 11 and 12), that are not contained in the conference version. Fur-
thermore, it analyses the expected time until Global SEMO with standard mutation operator has
found a 2-approximation (Section 3.1), and provides a population-based approach that obtains
a solution that has approximation ratio (1+ ε) in expected time O(n · 2min{n,2(1−ε)OPT}+ n3)
(Section 5).

The outline of the paper is as follows. In Section 2, the problem definition is presented
as well as the classical Global SEMO algorithm and DEMO algorithm. Runtime analysis for
Global SEMO is presented in Section 3 with standard mutation operator investigated in Sec-
tion 3.1 for finding a 2−approximation, and the alternative mutation operator analysed in Sec-
tion 3.2 for finding a (1+ε)−approximation. Section 4 includes the analysis that shows DEMO
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can find 2−approximations of the optimum in expected polynomial time. The population-based
algorithm is defined and investigated for finding a (1+ ε)−approximation in Section 5. At the
end, in Section 6 we summarize and conclude.

2 Preliminaries

We consider the weighted vertex cover problem defined as follows. Given a graph G = (V,E)
with vertex set V = {v1, . . . ,vn} and edge set E = {e1, . . . ,em}, and a positive weight function
w : V →N+ on the vertices, the goal is to find a subset of vertices, VC ⊆V , that covers all edges
and has minimum weight, i. e. ∀e ∈ E,e∩VC 6= /0 and ∑v∈VC

w(v) is minimized. We consider the
standard node-based approach, i.e. the search space is {0,1}n and for a solution x = (x1, . . . ,xn)
the vertex vi is chosen iff xi = 1.

The weighted vertex cover problem has the following Integer Linear Programming (ILP)
formulation.

min
n

∑
i=1

w(vi) · xi

st. xi + x j ≥ 1 ∀ [vi,v j] ∈ E

xi ∈ {0,1} ∀ 1≤ i≤ n

By relaxing the constraint xi ∈ {0,1} to xi ∈ [0,1], the linear program formulation of Frac-
tional Weighted Vertex Cover is obtained. Hochbaum [7] has shown that we can find a 2-
approximation using the LP result of the relaxed weighted vertex cover. This can be done by
including any vertex vi for which xi ≥ 1

2 .

We consider primarily multi-objective approaches for the weighted vertex cover problem.
Given a multi-objective fitness function f = ( f1, . . . , fd) : S→Rn, defined on the solution set S,
where all d objectives should be minimized, we have f (x)≤ f (y) iff fi(x)≤ fi(y), 1≤ i≤ d. We
say that x (weakly) dominates y iff f (x)≤ f (y). Furthermore, we say that x (strongly) dominates
y iff f (x)≤ f (y) and f (x) 6= f (y). A solution x∗ is Pareto optimal if there is no solution that can
strongly dominate it. The set of Pareto optimal solutions is called Pareto front.

We now introduce the objectives used in our multi-objective evolutionary algorithm. Let
G(x) be the graph obtained from G by removing all edges covered by the vertices chosen by
x. Formally, we have G(x) = (V,E(x)) where V (x) = V \ {vi | xi = 1} and E(x) = E \ {e |
e∩ (V \V (x)) 6= /0} (note that to unify the search space, we keep G and G(x) the same vertex
set). Kratsch and Neumann [12] investigated a multi-objective baseline algorithm called Global
SEMO using the LP-value for G(x) as one of the fitness values for the (unweighted) minimum
vertex cover problem.

Our goal is to expand the analysis on behaviour of multi-objective evolutionary algorithms
to the Weighted Vertex Cover problem. In order to do this, we modify the fitness function that
was used in Global SEMO in [12], to match the weighted version of the problem. We investigate
the multi-objective fitness function f (x) = (Cost(x),LP(x)), where

• Cost(x) = ∑
n
i=1 w(vi)xi is the sum of weights of selected vertices

• LP(x) is the value of an optimal solution of the LP for G(x).

We analyse Global SEMO with this fitness function using the standard mutation operator
flipping each bit with probability 1/n. We also investigate Global SEMO using the alternative
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1 Choose x ∈ {0,1}n uniformly at random;
2 Determine f (x);
3 P←{x};
4 repeat
5 Choose x ∈ P uniformly at random;
6 Create x′ by flipping each bit xi of x with probability 1/n;
7 Determine f (x′);
8 if @y ∈ P | f (y)≤ f (x′) then
9 P←{x′};

10 delete all other solutions z ∈ P with f (x′)≤ f (z) from P;
11 end
12 until termination condition satisfied;

Algorithm 1: Global SEMO

1 Choose b ∈ {0,1} uniformly at random;
2 if (b = 1) then
3 foreach i ∈ {1, · · · ,n} do
4 if ∃ j ∈ {1, · · · ,n} | {vi,v j} ∈ E(x) then
5 Flip xi with probability 1/2;
6 else
7 Flip xi with probability 1/n;
8 end
9 end

10 else
11 foreach i ∈ {1, · · ·n} do
12 Flip xi with probability 1/n;
13 end
14 end

Algorithm 2: Alternative Mutation Operator

mutation operator introduced in [12] (see Algorithm 2). By this mutation operator, the vertices
that are adjacent to uncovered edges are included with probability 1/2 in some steps.

In the fitness function used in Global SEMO, both Cost(x) and LP(x) can be exponential
with respect to the input size; therefore, we need to deal with exponentially many solutions,
even if we only keep the Pareto front. One approach for dealing with this problem is using the
concept of ε−dominance [13]. The concept of ε−dominance has previously been proved to be
useful for coping with exponentially large Pareto fronts in some problems [8, 15]. Having two
objective vectors p = (p1, · · · , pm) and q = (q1, · · · ,qm), p ε−dominates q, denoted by p�ε q,
if for all i ∈ {1, · · · ,m} we have (1+ ε)pi ≤ qi. Motivated by this approach, DEMO (Diversity
Evolutionary Multi-objective Optimizer) has been investigated in [14, 15], which we present in
Algorithm 3. In this approach, the objective space is partitioned into a polynomial number of
boxes in which all solutions ε−dominate each other, and at most one solution from each box is
kept in the population. Here we describe the concept of boxes and how we keep one solution for
each box in detail, and in Section 4, we analyze DEMO.

4 Evolutionary Computation Volume x, Number x
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1 Choose x ∈ {0,1}n uniformly at random;
2 Determine b(x);
3 P←{x};
4 repeat
5 Choose x ∈ P uniformly at random;
6 Create x′ by flipping each bit xi of x with probability 1/n;
7 Determine f (x′) and b(x′);
8 if ∃y ∈ P | ( f (y)≤ f (x′)∧ f (y) 6= f (x′))∨ (b(y) = b(x′)∧Cost(y)+2 ·LP(y)≤

Cost(x′)+2 ·LP(x′)) then
9 Go to 4;

10 else
11 P←{x′};
12 delete all other solutions z ∈ P where f (x′)≤ f (z)∨b(z) = b(x′) from P;
13 end
14 until termination condition satisfied;

Algorithm 3: DEMO

To implement the concept of ε−dominance in DEMO, we use the parameter δ = 1
2n and

define the boxing function b : {0,1}n→ N2 as:

b1(x) = dlog1+δ (1+Cost(x))e,
b2(x) = dlog1+δ (1+LP(x))e,

The functions b1 and b2 partition the objective space into horizontal and vertical stripes,
which we name rows and columns, and the whole boxing function partitions the objective space
into boxes. A box can be denoted by B = (a,b), where a and b are values of b1 and b2 for the
solutions in that box, respectively.

Note that two boxes B = (a,b) and B′ = (a′,b′) with a = a′ and b < b′ (or a < a′ and b = b′)
can include search points that do not dominate each other; therefore, we may keep solutions from
different boxes with same values of b1 or b2. But if a < a′ and b < b′, then all search points in B
dominate all search points in B′. Hence, we define dominance among boxes as: box B = (a,b)
dominates box B′ = (a′,b′), denoted by B < B′, if a < a′ and b < b′.

In DEMO only one non-dominated solution can be kept in the population for each box
based on a predefined criteria. In our setting, among two solutions x and y from one box, y
is kept in P and x is discarded if Cost(y)+ 2 ·LP(y) ≤Cost(x)+ 2 ·LP(x). The reason behind
this particular setting is that we aim to work on solutions x under the constraint that Cost(x)+
2 ·LP(x) ≤ 2 ·OPT , because by only adding vertices to these solutions, it is possible to obtain
2-approximate complete vertex covers.

Analysing the runtime of our evolutionary algorithms, we are interested in the expected
number of rounds of the repeat loop until a solution of desired quality has been obtained. We
call this the expected time until the considered algorithm has achieved its desired goal.

3 Analysis of Global SEMO

In this section we analyse the expected time of Global SEMO to find good approximations for
the weighted vertex cover problem in dependence of the input size and OPT. Before we present
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our analysis for Global SEMO, we state some basic properties of the solutions in our multi-
objective model. The following theorem shown by Balinski [2] states that all basic feasible
solutions of the LP relaxation of the weighted vertex cover, which are the extremal points or the
corner solutions of the polyhedron that forms the feasible space, are half-integral.
Theorem 1. Each basic feasible solution x of the LP relaxation of the weighted vertex cover is
half-integral, i.e., x ∈ {0,1/2,1}n. [2]

As a result, there always exists a half integral optimal LP solution for a vertex cover prob-
lem. In several parts of this paper, we make use of this result. We establish the following two
lemmata which we will use later on in the analysis of our algorithms.
Lemma 2. For any x ∈ {0,1}n, LP(x)≤ LP(0n)≤ OPT .

Proof. Let y be the LP solution of LP(0n). The solution 0n contains no vertices; therefore, y is
the optimal fractional vertex cover for all edges of the input graph. Thus, for any solution x, y
is a (possibly non-optimal) fractional cover for G(x); therefore, LP(x)≤ LP(0n). Moreover, we
have LP(0n)≤ OPT as LP(0n) is the optimal value of the LP relaxation. �

Lemma 3. Let x = {x1, · · · ,xn},xi ∈ {0,1} be a solution and y = {y1, · · · ,yn},yi ∈ [0,1] be a
fractional solution for G(x). If there is a vertex vi where yi ≥ 1

2 , mutating xi from 0 to 1 results
in a solution x′ for which LP(x′)≤ LP(x)− yi ·w(vi)≤ LP(x)− 1

2 w(vi).

Proof. The graph G(x′) is the same as G(x) excluding the edges connected to vi. Therefore,
the solution y′ = {y1, · · · ,yi−1,0,yi+1,yn} is a fractional vertex cover for G(x′) and has a cost of
LP(x)− yiw(vi). The cost of the optimal fractional vertex cover of G(x′) is at most as great as
the cost of y′; thus LP(x′)≤ LP(x)− yiw(vi)≤ LP(x)− 1

2 w(vi). �

3.1 2-Approximation

We now analyse the runtime behaviour of Global SEMO (Algorithm 1) with the standard muta-
tion operator, in dependence of OPT. We start by giving an upper bound on the population size
of Global SEMO.
Lemma 4. The population size of Algorithm 1 is upper bounded by 2 ·OPT +1.

Proof. For any solution x there exists an optimal fractional vertex cover which is half-integral
(Theorem 1). Moreover, we are assuming that all the weights are integer values. Therefore,
LP(x) can only take 2LP(0n)+1 different values, because LP(0n) is an upper bound on LP(x)
(Lemma 2). For each value of LP, only one solution is in P, because Algorithm 1 keeps non-
dominated solutions only. Therefore, the population size of this algorithm is upper bounded by
2 ·LP(0n)+1 which is at most 2 ·OPT +1 due to Lemma 2. �

For our analysis, we first consider the expected time of Global SEMO to reach a population
which contains the empty set of vertices. Once included, such a solution will never be removed
from the population as it is minimal with respect to the cost function.
Lemma 5. The search point 0n is included in the population in expected time of
O(OPT ·n(logWmax + logn)).

Proof. From Lemma 4 we know that the population contains at most 2 ·OPT + 1 solutions.
Therefore, at each step, there is a probability of 1

2·OPT+1 that the solution xmin is selected where
Cost(xmin) = minx∈P Cost(x).

6 Evolutionary Computation Volume x, Number x
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If Cost(xmin)> 0, there must be k≥ 1 vertices such as vi in xmin where xi = 1. Let ∆t be the
improvement that happens on the minimum cost in P at step t. If all the 1-bits in solution xmin
flip to zero, at the same step or different steps, a solution 0n will be obtained with Cost(0n) = 0,
which implies that the expected improvement that flipping a randomly chosen 1-bit makes is
∆t = Cost(xmin)

k at each step t. Note that flipping 1-bits always improves the minimum cost and
the new solution is added to the population. Moreover, flipping any 0-bits does not improve the
minimum cost in the population and xmin is not replaced with the new solution in that case.

At each step, with probability at least 1
e only one bit flips. With probability k

n , the flipping
bit is a 1-bit, and makes an expected improvement of ∆t = Cost(xmin)

k , and with probability 1− k
n ,

a 0-bit is flipped with ∆t = 0. We can conclude that the expected improvement of minimum cost,
when only one bit of xmin flips, is at least

k
n
· Cost(xmin)

k
=

Cost(xmin)

n

Moreover, the algorithm selects xmin and flips only one bit with probability at least
1

(2·OPT+1)·e ; therefore, the expected improvement of minimum cost is bounded by

E[∆t | xmin]≥
Cost(xmin)

(2 ·OPT +1) · e ·n

The maximum value that Cost(xmin) can take is bounded by Wmax ·n, and for any solution
x 6= 0n, the minimum value of Cost(x) is at least 1. Using Multiplicative Drift Analysis [3] with
s0 ≤Wmax ·n and smin ≥ 1, we can conclude that in expected time O(OPT ·n(logWmax + logn))
solution 0n is included in the population. �

We now show that Global SEMO is able to achieve a 2-approximation efficiently as long
as OPT is small.

Theorem 6. The expected number of iterations of Global SEMO until the population P contains
a 2-approximation is O(OPT ·n(logWmax + logn)).

Proof. Let x be a solution that minimizes LP(x) under the constraint that Cost(x)+2 ·LP(x)≤
2 ·OPT . Note that this constraint holds for solution 0n since LP(0n) ≤ OPT , and according to
Lemma 5, solution 0n exists in the population in expected time of O(OPT ·n(logWmax + logn)).

If LP(x) = 0, then all edges are covered and x is a 2-approximate vertex cover, because
we have Cost(x)+2 ·LP(x)≤ 2 ·OPT as the constraint. Otherwise, some edges are uncovered
and any LP solution of G(x) assigns at least 1

2 to at least one vertex of any uncovered edge. Let
y = {y1, · · · ,yn} be a basic LP solution for G(x). According to Theorem 1, y is a half-integral
solution.

Let ∆t be the improvement that happens on the minimum LP value among solutions that
fulfil the constraint at time step t. Also, let k be the number of vertices that are assigned at
least 1

2 by y. Flipping only one of these vertices by the algorithm happens with probability at
least k

e·n . According to Lemma 3, flipping one of these vertices, vi, results in a solution x′ with
LP(x′) ≤ LP(x)− 1

2 w(vi). Observe that the constraint of Cost(x′)+ 2 ·LP(x′) ≤ 2 ·OPT holds
for solution x′. Therefore, ∆t ≥ yi ·w(vi), which is on expectation at least LP(x)

k due to definition
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of LP(x). Moreover, at each step, the probability that x is selected and only one of the k bits
defined above flips is at least k

(2·OPT+1)·e·n . As a result we have:

E[∆t | x]≥ k
(2 ·OPT +1) · e ·n

· LP(x)
k

=
LP(x)

en(2 ·OPT +1)

According to Lemma 2 for any solution x, we have LP(x) ≤ OPT . We also know that
for any solution x which is not a complete cover, LP(x) ≥ 1, because the weights are positive
integers. Using the method of Multiplicative Drift Analysis [3] with s0 ≤ OPT and smin ≥ 1, in
expected time of O(OPT ·n logOPT ) a solution y with LP(y) = 0 and Cost(y)+2LP(y)≤ 2OPT
is obtained which is a 2-approximate vertex cover. Overall, since we have OPT ≤Wmax ·n, the
expected time of finding this solution is O(OPT ·n(logWmax + logn)). �

3.2 Improved Approximations by Alternative Mutation

In this section, we analyse the expected time of Global SEMO with alternative mutation operator
to find a (1+ε)-approximation.

Lemma 7. A solution x fulfilling the two properties

1. LP(x) = LP(0n)−Cost(x) and

2. there is an optimal solution of the LP for G(x) which assigns 1/2 to each non-isolated vertex
of G(x)

is included in the population of Global SEMO in expected time O(OPT · n(logWmax + logn+
OPT )).

Proof. As the standard mutation occurs with probability 1/2 in the alternative mutation operator,
the search point 0n which satisfies property 1 is included in the population in expected time of
O(OPT ·n(logWmax+ logn)) using the argument presented in the proof of Lemma 5. Let P′ ⊆ P
be a set of solutions such that for each solution x ∈ P′, LP(x)+Cost(x) = LP(0n). Let xmin ∈ P′

be a solution such that LP(xmin) = minx∈P′LP(x).

If the optimal fractional vertex cover for G(xmin) assigns 1/2 to each non-isolated vertex of
G(xmin), then the conditions of the lemma hold. Otherwise, it assigns 1 to some non-isolated
vertex, say v. The probability that the algorithm selects xmin and flips the bit corresponding to v,
is Ω( 1

OPT ·n ), because the population size is O(OPT ) (Lemma 4). Let xnew be the new solution.
We have Cost(xnew) =Cost(xmin)+w(v), and by Lemma 3, LP(xnew) ≤ LP(xmin)−w(v). This
implies that LP(xnew)+Cost(xnew) = LP(0n); hence, xnew is a Pareto Optimal solution and is
added to the population P.

Since LP(xmin)≤OPT (Lemma 2) and the weights are at least 1, assuming that we already
have the solution 0n in the population, by means of the method of fitness based partitions, we
find the expected time of finding a solution that fulfils the properties given above as O(OPT 2 ·n).
Since the search point 0n is included in expected time O(OPT ·n(logWmax+ logn)), the expected
time that a solution fulfilling the properties given above is included in P is O(OPT ·n(logWmax+
logn+OPT )). �

We now present the main approximation result for Global SEMO using the alternative
mutation operator. The general idea of the analysis given in the following theorem is to partition
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the non-isolated vertices in G(x) into four subsets: S1, S2, T1, and T2, where x denotes a solution
satisfying the two properties given in Lemma 7. The precise definition of these four subsets are
given in the proof of the theorem. For a new vertex cover x′ obtained by the alternative mutation
operator on x, the analysis only considers the probability that all vertices of S1 are chosen and
no vertex of T1 is chosen in the new solution x′. The quality of x′ highly depends on this
property (including all vertices of S1 and no vertices of T1), but it also depends on the vertices
chosen from S2 and T2, where the vertices in S2 and T2 are chosen randomly with probability
1/2 by the alternative mutation operator. Thus the analysis find the expected time until the event
that a solution x′ with the defined property is found, and the expected ratio of that solution is
considered, based on the expectation that half of the vertices in S2 and half of the vertices in T2
are chosen by x′. In the following, we first present the formal definition of sets S1 and T1 and
the mentioned property, and then we state the main theorem of this section.

Definition 8. Let x be a solution that satisfies the two properties given in Lemma 7. Also,
let X be the set containing all non-isolated vertices in graph G(x). Moreover, let S ⊆ X be a
vertex cover of G(x) with the minimum weight over all vertex covers of G(x), and T be the set
containing all non-isolated vertices in X \ S. For a set of vertices, X ′, we define Cost(X ′) =
∑v∈X ′ w(v). Let OPT ′ = OPT −Cost(x). Let s1, . . . ,s|S| be a numbering of the vertices in S such
that w(si)≤ w(si+1), for all 1≤ i≤ |S|−1. And let t1, . . . , t|T | be a numbering of the vertices in
T such that w(ti)≥ w(ti+1), for all 1≤ i≤ |T |−1. We define

• S1 = {s1,s2, . . . ,sρ}, where ρ = min{|S|,d(1− ε) ·OPT ′e}

• T1 = {t1, t2, . . . , tη}, where η = min{|T |,d(1− ε) ·OPT ′e}

Property 9 (High-Quality solutions). We say that a solution x has the property of a High-Quality
solution if all vertices of S1 are chosen and no vertex of T1 is chosen in x.

Theorem 10. The expected time until Global SEMO has obtained a solution with Property 9
(High-Quality solution) is O(OPT ·2min{n,2(1−ε)OPT}+OPT ·n(logWmax+ logn+OPT )). More-
over, the obtained solution has expected approximation ratio of (1+ ε).

Proof. By Lemma 7, a solution x that satisfies the two properties given in Lemma 7 is included
in the population in expected time of O(OPT · n(logWmax + logn+OPT )). Let X , S, T , ρ , η ,
and Cost(X ′) for a vertex set X ′ be as defined in Definition 8. Due to property 2 of Lemma 7,
1
2Cost(S)+ 1

2Cost(T ) = LP(x) ≤Cost(S); therefore, Cost(T ) ≤Cost(S). Also, let OPT ′ be as
defined in Definition 8. Observe that OPT ′ = Cost(S), because S is the minimum vertex cover
of G(x).

With probability Ω( 1
OPT ), the algorithm Global SEMO selects the solution x, and sets b= 1

in the Alternative Mutation Operator. With b = 1, the probability that the bits corresponding to
all vertices of S1 are flipped, is Ω(( 1

2 )
ρ), and the probability that none of the bits corresponding

to the vertices of T1 are flipped is Ω(( 1
2 )

η). Also, the bits corresponding to the isolated vertices
of G(x) are flipped with probability 1

n by the Alternative Mutation Operator; hence, the proba-
bility that none of them flips is Ω(1). As a result, with probability Ω( 1

OPT · (
1
2 )

ρ+η), solution
x is selected, the vertices of S1 are included, and the vertices of T1 and isolated vertices are not
included in the new solution x′. Due to the definition of Property 9, x′ has the property of a High-
Quality solution. Since ρ +η ≤ 2d(1− ε) ·OPT ′e ≤ 2d(1− ε) ·OPTe, and also ρ +η ≤ n; the
expected time until solution x′ is found after reaching solution x, is O(OPT ·2min{n,2(1−ε)OPT}).

Now we show that the second statement of the theorem holds. Note that the bits corre-
sponding to vertices of S2 = S \ S1 and T2 = T \ T1, are arbitrarily flipped in solution x′ with
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probability 1/2 by the Alternative Mutation Operator. Here we show that for the expected cost
and the LP value of x′, the following constraint holds: E[Cost(x′)]+2 ·LP(x′)≤ (1+ ε) ·OPT .

Let S′ ⊆ S and T ′ ⊆ T denote the subset of vertices of S and T that are actually included
in the new solution x′ respectively. In the following, we show that for the expected values of
Cost(S′) and Cost(T ′), we have:

E
[
Cost(S′)

]
≥ (1− ε) ·OPT ′+E

[
Cost(T ′)

]
(1)

Since the bits corresponding to the vertices of S2 and T2 are flipped with probability 1/2,
for the expected values of Cost(S′) and Cost(T ′) we have:

E
[
Cost(S′)

]
= Cost(S1)+

Cost(S2)

2

= Cost(S1)+
Cost(S)−Cost(S1)

2
= 1/2Cost(S)+1/2Cost(S1)

and

E
[
Cost(T ′)

]
= 1/2Cost(T2)

If ρ = |S|, then S1 = S and Cost(S1) =Cost(S) = OPT ′. If ρ = d(1− ε) ·OPT ′e, we have
Cost(S1)≥ (1− ε) ·OPT ′, since each vertex has a weight of at least 1. Using Cost(S) = OPT ′

and the inequality above, we have

E
[
Cost(S′)

]
≥ (1− ε) ·OPT ′+

ε ·OPT ′

2

We divide the analysis into two cases based on the relation between η and |T |.

Case (I). η = |T |. Then T2 = T ′ = /0. Thus, E [Cost(T ′)] = 0 and Inequality (1) holds true.

Case (II). η = d(1− ε) ·OPT ′e < |T |. Since w(ti) ≥ w(ti+1) for 1 ≤ i ≤ |T | − 1 and
Cost(T )≤Cost(S) = OPT ′, we have

Cost(T2) ≤ |T |−η

|T |
Cost(T )

≤ OPT ′−d(1− ε) ·OPT ′e
OPT ′

Cost(T )

≤ OPT ′− (1− ε) ·OPT ′

OPT ′
Cost(T )

≤ ε ·Cost(S) = ε ·OPT ′

Thus for the expected value of Cost(T ′), we have

E
[
Cost(T ′)

]
=

1
2

Cost(T2)≤
ε ·OPT ′

2

Summarizing above analysis, we can get that the Inequality 1 holds. In the following,
using Inequality (1), we prove that, on expectation, the new solution x′ satisfies the inequality
Cost(x′)+2 ·LP(x′)≤ (1+ ε) ·OPT .

E
[
Cost(x′)

]
+2 ·LP(x′)
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=Cost(x)+E
[
Cost(S′)

]
+E

[
Cost(T ′)

]
+2 ·LP(x′)

≤Cost(x)+E
[
Cost(S′)

]
+E

[
Cost(S′)

]
− (1− ε) ·OPT ′+2 ·LP(x′)

≤Cost(x)+2E
[
Cost(S′)

]
− (1− ε) ·OPT ′+2 · (OPT ′−E

[
Cost(S′)

]
)

=Cost(x)+(1+ ε) ·OPT ′ =Cost(x)+(1+ ε) · (OPT −Cost(x))

≤ (1+ ε) ·OPT.

The third inequality holds because the set S1 chosen by x is a subset of the optimal solution for
G(x).

Now we analyze whether the new solution x′ could be included in the population P. If x′

could not be included in P, then there is a solution x′′ dominating x, i.e., LP(x′′) ≤ LP(x′) and
Cost(x′′)≤Cost(x′). This implies Cost(x′′)+2 ·LP(x′′)<Cost(x′)+2 ·LP(x′)≤ (1+ε) ·OPT .
Therefore, after having a solution that fulfils the properties of Lemma 7 in P, in expected time
O(OPT · 2min{n,2(1−ε)OPT}), the population would contain a solution y such that Cost(y)+ 2 ·
LP(y)≤ (1+ ε) ·OPT .

Let P′ contain all solutions x ∈ P such that Cost(x)+2 ·LP(x)≤ (1+ε) ·OPT , and let xmin
be the one that minimizes LP. With similar proof as we saw in Theorem 6 it is possible to show
that at each step, on expectation LP(xmin) improves by LP(x)

en(2·OPT+1) . Using Multiplicative Drift
Analysis, we get the expected time O(OPT ·n logOPT ) to find a solution y for which LP(y) = 0
and Cost(y)+2 ·LP(y)≤ (1+ ε) ·OPT .

Overall, the expected number of iterations of Global SEMO with alternative mutation oper-
ator, for getting a weighted vertex cover with expected approximation ratio (1+ ε), is bounded
by O(OPT ·2min{n,2(1−ε)OPT}+OPT ·n(logWmax + logn+OPT )). �

4 Analysis of DEMO

Due to Lemma 4, with Global SEMO, the population size is upper bounded by O(OPT ), which
can be exponential in terms of the input size. In this section, we analyse the other evolutionary
algorithm, DEMO (Algorithm 3), that uses some diversity handling mechanisms for dealing
with exponentially large population sizes. The following lemmata are used in the proof of
Theorem 14.

Lemma 11. Let Wmax be the maximum weight assigned to a vertex. The population size of
DEMO is upper bounded by O(n · (logn+ logWmax)).

Proof. The values that can be taken by b1 are integer values between 0 and dlog1+δ (1 +
Cost(1n))e and the values that can be taken by b2 are integer values between 0 and dlog1+δ (1+
LP(0n))e (Lemma 2). Since n ·Wmax is an upper bound for both Cost(1n) and LP(0n), the number
of rows and also the number of columns are bounded by

k =
(
1+ dlog1+δ (1+n ·Wmax)e

)
≤

(
1+ d log(1+n ·Wmax)

log(1+δ )
e
)

= O(n · (logn+ logWmax))

The last equality holds because δ = 1
2n .
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We here show that the size of the population is Psize≤ 2k−1. Since the dominated solutions
according to f are discarded by the algorithm, none of the solutions in P can be located in a box
that is dominated by another box that contains a solution in P. Moreover, at most one solution
from each box is kept in the population; therefore, Psize is at most the maximum number of boxes
where none of them dominates another.

Let k1 be the number of boxes that contain a solution of P in the first column. Let r1 be the
smallest row number among these boxes. Observe that r1 ≤ k− k1 + 1 and the equality holds
when the boxes are from rows k down to k− k1 + 1. Any box in the second column with a
row number of r1 + 1 or above is dominated by the box of the previous column and row r1.
Therefore, the maximum row number for a box in the second column, that is not dominated, is
r1 ≤ k−k1+1. With generalizing the idea, the maximum row number for a box in the column i,
that is not dominated, is ri−1 ≤ k− k1−·· ·− ki−1 + i−1, where for 1≤ j ≤ k, k j is the number
of boxes that contain a solution of P in column j.

The last column has kk ≤ rk−1 boxes which gives us:

kk ≤ rk−1 ≤ k− k1−·· ·− kk−1 + k−1

This implies that
k1 + · · ·+ kk ≤ rk−1 ≤ 2k−1

which completes the proof. �

Lemma 12. The search point xz = 0n is included in the population in expected time of
O(n3(logn+ logWmax)

2).

Proof. From Lemma 11 we know that the population contains Psize = O(n · (logn+ logWmax))
solutions. Therefore, at each step, there is a probability of at least 1

psize
that the solution xmin is

selected where b1(xmin) = minx∈P b1(x).

If b1(xmin) = 0, we have Cost(xmin) = 0, which means xmin = 0n since the weights are
greater than 0.

If b1(xmin) 6= 0, there must be at least one vertex vi in xmin where xi = 1. Consider v j the
vertex that maximizes w(vi) among vertices vi where xi = 1. If Cost(x) = C, then w(v j) ≥ C

n ,
because n is an upper bound on the number of vertices selected by xmin. As a result, removing
vertex x j from solution xmin results in a solution x′ for which Cost(x′)≤C · (1− 1

n ). Using this
value of Cost(x′), we have

(1+δ )(1+Cost(x′)) ≤ 1+δ +C(1− 1
n
)(1+δ )

≤ 1+δ +C+C(δ − 1
n
− δ

n
)

≤ 1+Cδ +C+C(δ − 1
n
− δ

n
)

≤ 1+C+C(2δ − 1
n
− δ

n
)

≤ 1+C

The third inequality above holds because C ≥ 1 and the last one holds because δ = 1
2n .

From (1+δ )(1+Cost(x′))≤ 1+C we can observe that

1+ log1+δ (1+Cost(x′))≤ log1+δ (1+C)
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which implies b1(x′)≤ b1(x)−1. Note that x′ is obtained by performing a 1-bit flip on x and is
done at each step with a probability of at least

1
Psize
· 1

n
· (1− 1

n
)n−1

= Ω

(
1

n(logn+ logWmax)
· 1

n

)

Therefore, in expected time of at most O
(
n2(logn+ logWmax)

)
the new solution, x′ is

obtained which is accepted by the algorithm because it is placed in a box with a smaller value of
b1 than all solutions in P and hence not dominated. There are O(n(logn+ logWmax)) different
values for b1; therefore, the solution xz = 0n with b1(xz) = 0 is found in expected time of at most
O
(
n3(logn+ logWmax)

2
)
. �

Lemma 13. Let x ∈ P be a search point such that Cost(x)+2 ·LP(x)≤ 2 ·OPT and b2(x)> 0.
There exists a 1-bit flip leading to a search point x′ with Cost(x′)+ 2 · LP(x′) ≤ 2 ·OPT and
b2(x′)< b2(x).

Proof. Let y= {y1 · · ·yn} be a basic half integral LP solution for G(x). Since b2(x) = LP(x) 6= 0,
there must be at least one uncovered edge; hence, at least one vertex vi has a yi ≥ 1

2 in LP
solution y. Consider v j the vertex that maximizes yiw(vi) among vertices vi, 1 ≤ i ≤ n. Also,
let x′ be a solution obtained by adding v j to x. Since solutions x and x′ are only different in one
vertex, v j, we have Cost(x′) = Cost(x)+w(v j). Moreover, according to Lemma 3, LP(x′) ≤
LP(x)− 1

2 ·w(v j). Therefore,

Cost(x′)+2 ·LP(x′)≤Cost(x)+w(v j)+2
(

LP(x)−
w(v j)

2

)
≤Cost(x)+2 ·LP(x)≤ 2 ·OPT

which means solution x′ fulfils the mentioned constraint. If LP(x) = W , then y jw(v j) ≥ W
n ,

because n is an upper bound on the number of vertices selected by the LP solution. As a result,
using Lemma 3, we get LP(x′)≤W · (1− 1

n ). Therefore, with similar analysis as Lemma 12 we
get:

(1+δ )
(
1+LP(x′)

)
≤ 1+δ +W

(
1− 1

n

)
(1+δ )

≤ 1+W

This inequality implies

1+ log1+δ (1+LP(x′))≤ log1+δ (1+W )

As a result, b2(x′) < b2(x) holds for x′, which is obtained by performing a 1-bit flip on x, and
the lemma is proved. �

Theorem 14. The expected time until DEMO constructs a 2-approximate vertex cover is
O
(
n3 · (logn+ logWmax)

2
)
.
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1 Choose x ∈ {0,1}n uniformly at random;
2 P←{x};
3 repeat
4 Choose x ∈ P uniformly at random;
5 Create x′ by using Alternative Mutation Operator;
6 P←{x′};
7 Let P′ be a set containing all solutions y ∈ P where |y|1 = |x′|1;
8 Find solutions ymin1 and ymin2 from P′ such that ymin1 minimizes Cost(z)+LP(z),

and ymin2 minimizes Cost(z)+2 ·LP(z) among solutions z ∈ P′;
9 P = P\P′;

10 P←{ymin1 ,ymin2};
11 until termination condition satisfied;

Algorithm 4: Diverse Population-Based EA

Proof. Consider solution x ∈ P that minimizes b2(x) under the constraint that Cost(x) + 2 ·
LP(x)≤ 2 ·OPT . Note that 0n fulfils this constraint and according to Lemma 12, the solution 0n

will be included in P in time O
(
n3(logn+ logWmax)

2
)
.

If b2(x) = 0 then x covers all edges and by selection of x we have Cost(x)≤ 2 ·OPT , which
means that x is a 2−approximation.

In case b2(x) 6= 0, according to Lemma 13 there is a one-bit flip on x that results in
a new solution x′ for which b2(x′) < b2(x), while the mentioned constraint also holds for
it. Since the population size is O(n · (logn+ logWmax)) (Lemma 11), this 1-bit flip hap-
pens with a probability of Ω

(
n−2 · (logn+ logWmax)

−1
)

and x′ is obtained in expected time
of O(n3 · (logn + logWmax)

2). This new solution will be added to P because a solution y
with Cost(y)+ 2 · LP(y) > 2 ·OPT can not dominate x′ with Cost(x′)+ 2 · LP(x′) ≤ 2 ·OPT ,
and x′ has the minimum value of b2 among solution that fulfil the constraint. Moreover, if
there already is a solution, xprev, in the same box as x′, it will be replaced by x′ because
Cost(xprev)+2 ·LP(xprev)> 2 ·OPT ; otherwise, it would have been selected as x.

There are at most A = 1+ d logn+logWmax
log(1+δ ) e different values for b2 in the objective space,

and since δ = 1
2n , A = O(n · (logn+ logWmax)). Therefore, the expected time until a solution

x′′ is found so that b2(x′′) = 0 and Cost(x′′)+ 2 ·LP(x′′) ≤ 2 ·OPT , is at most O(n3 · (logn+
logWmax)

2). �

5 Diverse Population-based EA

In this section, we introduce a population-based algorithm (see Algorithm 4) that keeps for each
k, 0 ≤ k ≤ n, at most two solutions. This implies that the population size is upper bounded
by 2n. The two solutions kept in the population are chosen according to different weighing of
the cost and the LP-value. For each solution x, let |x|1 be the number of selected vertices in
x. Algorithm 4 keeps a new solution x′ in the population, if it minimizes Cost(z)+ LP(z) or
Cost(z)+2 ·LP(z) among other solutions x ∈ P where |x|1 = |x′|1. Algorithm 4 gives a detailed
description.

Taking into account that the population size is upper bounded by 2n and considering in
each step an individual with the smallest number of ones in the population for mutation, one can
obtain the following lemma by standard fitness level arguments.
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Lemma 15. The search point 0n is included in the population in expected time of O(n2 logn).

To show the main result for Diverse Population-Based EA, we will use the following
lemma.

Lemma 16. A solution x fulfilling the two properties

1. LP(x) = LP(0n)−Cost(x) and

2. there is an optimal solution of the LP for G(x) which assigns 1/2 to each non-isolated vertex
of G(x)

is included in the population of the Diverse Population-Based EA in expected time O(n3).

Proof. By Lemma 15, solution 0n is contained in the population in expected time O(n2 logn),
which satisfies the property 1 given above. Let P′ ⊆ P be a set containing all solutions in P that
satisfy the property 1 given above.

Let xmax be the solution of P′ with the maximal number of 1-bits. If the optimal fractional
vertex cover for G(xmax) assigns 1/2 to each non-isolated vertex of G(xmax), then the second
property also holds. If the optimal fractional vertex cover for G(xmax) assigns 1 to some non-
isolated vertex, say v, then the algorithm selects xmax and flips exactly the bit corresponding to v
with probability Ω( 1

n2 ). Let x′ be the new solution. By selection of xmax we know that x′ is the
only solution with |xmax|1 +1 one-bits; hence, added to P.

Since the maximum value of |x|1 is n, after expected time of O(n3), there is a solution in
the population that fulfils the properties given in the lemma. �

We now show the main result for the Diverse Population-Based EA.

Theorem 17. The expected time until Diverse Population-Based EA has obtained a solution
that has approximation ratio (1+ ε) is O(n ·2min{n,2(1−ε)OPT}+n3).

Proof. By Lemma 16 we know that after expected time of O(n3), there is a solution, x, in the
population that fulfils the properties given in that lemma. With analysis similar to what we
had in Theorem 10, we can show that a solution x with Cost(x)+ 2 ·LP(x) ≤ (1+ ε) ·OPT is
produced in expected time O(n ·2min{n,2(1−ε)OPT}+n3).

Now we see whether solution x is added to population P. If x could not be added to P, then
there exists a solution y ∈ P such that |y|1 = |x|1 and Cost(y)+2 ·LP(y)≤Cost(x)+2 ·LP(x).
Thus, the population already includes a solution y such that Cost(y)+2 ·LP(y)≤ (1+ε) ·OPT .

Let P′ be a set containing all solutions x ∈ P such that Cost(x)+2 ·LP(x)≤ (1+ ε) ·OPT .
Let xmax ∈ P′ such that |xmax|1 = maxx∈P′ |x|1.

If LP(xmax) = 0, then solution xmax leads to a vertex cover for graph G. If LP(xmax) > 0,
we present a way to construct a (1+ ε)-approximate vertex cover as follows, using xmax. If
LP(xmax)> 0, then there exists at least one vertex v to which the optimal fractional vertex cover
LP(xmax) assigns value at least 1/2. Then the algorithm selects the solution xmax and flips exactly
the bit corresponding to the vertex v with probability Ω( 1

n2 ). Let y be the new solution. We have

Cost(y)+2 ·LP(y)≤Cost(xmax)+2 ·LP(xmax)≤ (1+ ε) ·OPT.
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Suppose that y could not be included in P, then there exists a solution y′ in P such that
|y′|1 = |y|1 and 2 ·LP(y′)+Cost(y′) ≤ 2 ·LP(y)+Cost(y) ≤ (1+ ε) ·OPT , which contradicts
the assumption that |xmax|1 = maxx∈P′ |x|1. Therefore, solution y could be included in P.

Observe that for any solution x, if |x|1 = n, then LP(x) = 0. Thus, after expected time
of at most O(n3), the population P could include a solution y such that Cost(y)+ 2 ·LP(y) ≤
(1+ ε) ·OPT and LP(y) = 0, which is a (1+ ε)-approximate weighted vertex cover.

Overall, the expected time in which Diverse Population-Based EA finds a (1 + ε)-
approximate weighted vertex cover, is bounded by O(n ·2min{n,2(1−ε)OPT}+n3). �

6 Conclusion

The minimum vertex cover problem is one of the classical NP-hard combinatorial optimization
problems. In this paper, we have generalized previous results of Kratsch and Neumann [12]
for the unweighted minimum vertex cover problem to the weighted case where in addition
weights on the vertices are given. Based on the conference version of this paper [19], in sections
3.2 and 4, we have investigated Global SEMO with alternative mutation operator for finding
a (1+ ε)-approximation, and studied the algorithm DEMO using the ε-dominance approach
showing that it reaches a 2-approximation in expected polynomial time. Furthermore, in this
paper we have shown that Global SEMO with standard mutation operator efficiently computes
a 2-approximation as long as the value of an optimal solution is small. We have also pre-
sented a population-based approach with a specific diversity mechanism that reaches an (1+ε)-
approximation in expected time O(n ·2min{n,2(1−ε)OPT}+n3).

Acknowledgements

This research has been supported by Australian Research Council grants DP140103400 and
DP160102401.

References

[1] A. Auger and B. Doerr. Theory of Randomized Search Heuristics: Foundations and Recent
Developments. World Scientific Publishing Co., Inc., 2011.

[2] M. Balinski. On the maximum matching, minimum covering. In Proc. Symp. Math. Pro-
gramming, pages 434–445. Princeton University Press, 1970.

[3] B. Doerr, D. Johannsen, and C. Winzen. Multiplicative drift analysis. Algorithmica,
64(4):673–697, 2012.

[4] R. G. Downey and M. R. Fellows. Parameterized Complexity. New York, U.S.: Springer,
1999.

[5] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Analyses of simple hybrid
algorithms for the vertex cover problem. Evolutionary Computation, 17(1):3–19, 2009.

[6] T. Friedrich, J. He, N. Hebbinghaus, F. Neumann, and C. Witt. Approximating covering
problems by randomized search heuristics using multi-objective models. Evolutionary
Computation, 18(4):617–633, 2010.

[7] D. S. Hochbaum. Efficient bounds for the stable set, vertex cover and set packing problems.
Discrete Applied Mathematics, 6(3):243 – 254, 1983.

16 Evolutionary Computation Volume x, Number x



45-character paper description goes here

[8] C. Horoba and F. Neumann. Benefits and drawbacks for the use of epsilon-dominance in
evolutionary multi-objective optimization. In Proceedings of the conference on Genetic
and evolutionary computation (GECCO), pages 641–648. ACM, 2008.

[9] T. Jansen. Analyzing Evolutionary Algorithms - The Computer Science Perspective. Natu-
ral Computing Series. Springer, 2013.

[10] T. Jansen, P. S. Oliveto, and C. Zarges. Approximating vertex cover using edge-based
representations. In Proceedings of the Workshop on Foundations of Genetic Algorithms
(FOGA), pages 87–96. ACM, 2013.

[11] S. Kratsch, P. K. Lehre, F. Neumann, and P. S. Oliveto. Fixed parameter evolutionary
algorithms and maximum leaf spanning trees: A matter of mutation. In Proceedings of the
Conference on Parallel Problem Solving from Nature (PPSN), pages 204–213. Springer,
2010.

[12] S. Kratsch and F. Neumann. Fixed-parameter evolutionary algorithms and the vertex cover
problem. Algorithmica, 65(4):754–771, 2013.

[13] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and diversity
in evolutionary multiobjective optimization. Evolutionary Computation, 10(3):263–282,
2002.

[14] F. Neumann and J. Reichel. Approximating minimum multicuts by evolutionary multi-
objective algorithms. In Proceedings of the Conference on Parallel Problem Solving from
Nature (PPSN), pages 72–81. Springer, 2008.

[15] F. Neumann, J. Reichel, and M. Skutella. Computing minimum cuts by randomized search
heuristics. Algorithmica, 59(3):323–342, 2011.

[16] F. Neumann and C. Witt. Bioinspired Computation in Combinatorial Optimization: Algo-
rithms and Their Computational Complexity. Springer-Verlag New York, Inc., New York,
NY, USA, 1st edition, 2010.

[17] P. S. Oliveto, J. He, and X. Yao. Analysis of the (1+1)-EA for finding approximate
solutions to vertex cover problems. IEEE Transactions on Evolutionary Computation,
13(5):1006–1029, 2009.

[18] M. Pourhassan, W. Gao, and F. Neumann. Maintaining 2-approximations for the dynamic
vertex cover problem using evolutionary algorithms. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), pages 903–910. ACM, 2015.

[19] M. Pourhassan, F. Shi, and F. Neumann. Parameterized analysis of multi-objective evolu-
tionary algorithms and the weighted vertex cover problem. In Proceedings of the Confer-
ence on Parallel Problem Solving from Nature (PPSN), pages 729–739. Springer, 2016.

[20] A. M. Sutton and F. Neumann. A parameterized runtime analysis of simple evolution-
ary algorithms for makespan scheduling. In Proceedings of the Conference on Parallel
Problem Solving from Nature (PPSN), pages 52–61. Springer, 2012.

[21] A. M. Sutton, F. Neumann, and S. Nallaperuma. Parameterized runtime analyses of evo-
lutionary algorithms for the planar euclidean traveling salesperson problem. Evolutionary
Computation, 22(4):595–628, 2014.

Evolutionary Computation Volume x, Number x 17


