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Abstract

Kinematic Data Fusion:

Sensor Data Fusion involves the entire process of Correlation and Fusion. The thesis

addresses the application of Artificial Neural Networks (ANN), to the correlation problem

of sensor level tracks. A comparison is then made between two track-to-track correlation

techniques for multisensor fusion using simulated and real track data (using DSTOS FPS-

16 Radar and Adelaide Airports Surveillance Rada¡). The techniques are, Classical

Inference using Hypothesis Testing and ART2 (Adaptive Resonance Theory 2 Neural

Network).

Attribute Data Fusion:

The thesis addresses the application of the Backpropagation neural network to Data Fusion

for automatic target recognition using three knowledge sources: a Continuous Wave (CW)

Coherent (X band) Radar, which provides us with high resolution doppler signature

measurements, together with a Surveillance Radar, which provides positional information

of airborne targets, and priori information of flight times of targets flying regular flight

paths, obtained from Adelaide Airport Flight time tables. A comparison is then made

between th¡ee data fusion techniques, on the trial data obtained. They are, backpropagation

neural network, Dempster-Shafer and Fuzzy Reasoning.
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Chapter 1

Introduction

1.1 Outline of the Thesis

In this introductory chapter, I begin by defining and describing some of the operational

benefits and application areas of multiple sensor fusion, and by summarising a number of

the basic techniques used to assist or perform data fusion.

In chapters 2 and 3 I define and discuss some of the principles of kinematic and attribute

data fusion and some of the background theory for the techniques used in the experimental

chapters 4 and 5.

In chapter 4 (Experimental Procedures and Results for Kinematic Data-Fusion) a

comparison is made between two track-to-track correlation techniques for multisensor

fusion using simulated and real track data. They are, Classical Inference using Hypothesis

Testing and the Adaptive Resonance Theory 2 Neural Network. The simulated track data is

generated using matlab software shown in Appendix C and the real track data is obtained

from the Surveillance radu at Adelaide Airport and the FPS-16 tracking radaf at DSTO.

For the real data (in section 4.3) I address the problem of producing a common space co-

ordinate system for both radars, before correlating the tracks.

In chapter 5 (Experimental Procedure and results for Attribute Data Fusion) I address the

application of the backpropagation neural network to data fusion for automatic target

recognition using three knowledge sources. They are, a Continuous 'Wave (CW) radar at

DSTO, which provides us with high resolution doppler signature measurements, together

with a Surveillance radar, which provides positional information of airborne targets, and

priori information of flight times of targets flying regular flights, obtained from Adelaide

Airport flight time tables. A comparison is then made between three data fusion

techniques, on trial data obtained. They are, backpropagation neural network, Dempster-

Shafer andFuzzy Reasoning. I introduce this chapter (section 5.1.1.1) by discussing some

of the differences of jet engine and propeller aircraft modulation obtained from the CW

radar (discussed in more depth in Appendix F). Also an introduction to some of the signal

processing techniques used to process the doppler data for input to the neural network is

discussed in section 5.3 with a more in depth exposition in Appendix A. A numerical

example showing how Dempster-Shafer and Ftzzy reasoning conbine the information

from the three knowledge sources is discussed in sections 5.7 and 5.8 respectively.
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Conclusions on experimental results for both kinematic and attribute data fusion are made

in chapter 6. For the kinematic fusion case I discuss the advantages obtained in using

ART2 over the Classical Inference approach. And for the attribute fusion case I discussed

how objectives were met to achieve automatic allocation of identity of airborne targets with

a neural network data fusion based system. The advantages are listed and a comparison is

made of using the backpropagation neural network over the Dempster-Shafet and fizzy

reasoning data fusion methods.

1.2 Applications, Beneflrts and DefÎnitions for Multisensor Fusion

The application of multiple sensors (and the fusion of their data) to the problems of

detection, tracking and identification offer numerous potential performance benefrts over

t¡aditional single sensor approaches [1],[2],[3]. These performance benefits must of course,

be weighed against additional cost, complexity, and interface requirements introduced for

any given application. Characteristics of multisensor systems that provide operational

benefits include the following:-

Robust Operational Performance is provided because any one sensor has the potential to

contribute information while others are unavailable, denied (ammed), or lacking in

coverage of an event or target.

Extended Spatial Coverage is provided because one sensor can look where another sensor

cannot.

Extended Temporal Coverage is also provided because one sensor can detect or msasure

an event at times that others cannot.

Increased Confidence (a relative measure of an uncertainty in the measured information)

is accrued when multiple independent measurements are made on the same event or target.

Reduced Ambiguity in measured information is achieved when information provided by

multiple sensors reduces the set of hypotheses about the target.

Improved Detection Performance results from the effective integration of multiple,

separate measurements of the same target'

Enhanced Spatial Resolution is provided when multiple sensors can geometrically form a

Sensor aperture capable of greater resolution than that of a single Sensor.

Improved System Operational Reliability may result from the inherent redundancy of a

multisensor suite.

Increased Dimensionality of the measurement space (ie., different sensors measure various

portions of the electromagnetic spectrum) reduces vulnerability to denial (countermeasures'

jamming, weather, noise etc.) of any single portion of the measurement Space.

Kinematic Data Fusion involves the use of kinematic quantities such as position, range

rate, etc. However, with thc usc of advanced radar systems and advances in raclar signal

processing techniques, the efficient use of att¡ibute data fusion is becoming more

I
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important.

Attributes are sensed target quantities that are associated with a particular class of farget.

These may include such quantities as wheel ( or tread) type for ground targets, engine type

for aircraft (ie. propeller or jet), type of emitting radar for either ground or aircraft targets,

or target image shape. Also, the class or type of tunget (ie. truck or tank) may itself be

considered an atüibute. In the next few paragraphs I will consider kinematic and attribute

data fusion sepatately.

\
Ðac€ BaB€d

al.v€l llanc€

f€ ld IFF

Éb 
-;-- .*

.Ê --

Cqmnd Contrcl

coífir¡nl cat f on and lnfornât lotl

cÆntr€

I

Figure 1 Application Areas for Fusion. (Taken from [4]).

In general, Data Fusion techniques seek to combine observational data from multiple

sensors (and types of sensors) to locate and identify both emitting and non-emitting sources

of targets. These sensors may include active sensors such as radars, synthetic aperture radar

,sonar or other devices as well as passive sensors such as imagery, infra-red detectors,

electronics intelligence collectors, and other types of collectors. Generally, fusion systems

aim to combine multi-sensor data to achieve a higher degree of accuracy and identification

k

-t
rt$

Fleet Alr
tÞfênc€

Alr Dþf€nc€

Tactlcal Alr-Al ¿
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I

specificity than can be obtained via a single data source [4]

Direct fusion, is also referred to as local or autonomous fusion, and is defined as the fusion

of all sensors on board a single weapons platform. Indirect fusion, also referred to as

global or regional fusion, is defined as the fusion of widely distributed sensors which may

look at targets from different spatial and temporal aspects. These concepts improve the

effectiveness of both tactical identification and strategic Command, Confol and

Communications (C3) systems for a wide variety of applications. Figure I shows the

primary military application for which fusion solutions have been used or considered' Air

Defence is a candidate for indirect fusion through use of C2 assets of an entire sensor

network composed of ground radars, airborne warning and control systems, and

intelligence sensors. Ocean Surveillance systems use multiple sensor data ( ship, air, space

and underwater) to derive tracking data for ocean traffic. Battlefield IFF (identification

friend or foe) refer to direct fusion on the battlefield. Space-Based Surveillance provides a

wide range of sensor measurements (IR, radar, ESM) for detection and tracking of strategic

th¡eats. In the future the fusion of these sensor inputs from spatially and temporally

separated spacecraft will be a requirement [4].

The basic fusion model (Figure 2) incorporates the aspect of sensing, tracking, and

identification. The model highlights the primary functions :

Sensors may bè located at the fusion node, or may be remotely located, passing

information along a data link. The sensing process may be cooperative (question-answer)

or non-co-operative and active or passive. Sensor reports may not be synchronised in time.

Tracking and Report Correlation is required to correlate the various sensor reports to

determine which sensor reports are associated with distinct targets in space. Once this

correlation is performed, target data sets (or track files for dynamic targets) may be formed

and maintained.

Combination and Classifïcation must be performed on each target data set (or track file)

to determine if the set can be uniquely identified as known target class. This requires an

optimal combination of the data from multiple sensors and a decision process to establish

class and decision confidence.

1.3 Summary of Data Fusion Techniques

The next few paragraphs summarise the basic techniques used to assist in, or perform data

fusion t2),131. These techniques include: classical methods of statistics and inference,

Bayesian inference, Dempster-shafer modification to Bayesian inference, fuzzy-set theory,

cluster analysis, estimation techniques, templating, figure of merit, expert systems and

enÍopy methods. The particular techniques used (in experimentation), will be discussed in

more detail later.

_t

'lj

I
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Classical inference techniques compute the probability of an observed event given an

assumption of a priori probabilities. Hence, classical inference describes the probability of

an observed event given a hypothesis. Typically, however, we seek the probability of a

hypothesised situation given observations of events. Classical inference is well based on

mathematical theory. Strict application requires knowledge of a priori probability

distributions which are clearly unknown in some realistic applications. Disadvantages of

classical inference techniques are: they require a priori sampling disffibution; can only

assess two hypothesis at a time ( the hypothesis H0 versus an alternative hypothesis H1);

complexities can arise for multivariate data; and the classical inference does not take

advantages of prior likelihood assessments, as does the Bayesian inference technique.

The Bayesian inference technique resolves some of the difficulties with the classical

inference methodology. Bayesian inference updates the likelihood of a hypothesis given a

previous likelihood estimate and additional evidence (observations). This methodology

allows the use of subjective probability. The disadvantages of the Bayesian inference

include: the difficulty in defining prior likelihood; complexities when there are multiple

potential hypotheses and multiple conditionally dependent events; the requirement that

competing hypotheses be mutually exclusive; and the lack of an ability to assign general

uncertainty.

Shafer and Dempster created a generalisation of Bayesian theory which allows for general

level of uncertainty. Based on this model of human inference, the Dempster-Shafer (D-S)

method utilises probability intervals and uncertainty intervals to determine the likelihood of

hypothesis based on multiple evidence. In addition D-S methodology computes a likelihood

that any hypothesis is true.( For more detail refer to section 3.1).

Fuzzy set theory applies a generalised set theory to determine membership of entities in

specifred sets. A fiizzy set is one in which membership is not a boolean decision (eg. the

set of tall people clearly contains marginal members- is a person 1.7 metres tall or not-tâll).

Fuzzy set theory supplies an algebra of set manipulations (such as union, disjunction , etc.)

for fuzzy sets and their members. Fuzzy set theory is beginning to be applied in decision

analysis involving imprecise events. (For more detail refer to section 3.3)

Cluster analysis embraces a number of methods for sorting observations into natural goups

based on a prespecified sinilarity measure. Such techniques are useful for fingerprinting

or unit identihcation. Cluster methods are basically ad hoc schemes for data sorting

without underlying statistical theory. Such methods may be useful for identity declarations

and analysing observational data when no theory exists for relating the observations to

assigned identity' or classification.

Estimation theory encompasses the techniques of maximum likelihood, Kalman filtering,

weighted least squares, and Baycsian cstimation. These techniques obtain the best estimate

of a state, given an observation corrupted by noise. An example is the estimation of an
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emitter's location given multiple line-of-bearing observations. Application include tracking

and direction finding.

The Entropy method computes a measure of information content associated with a

hypothesis. Applications exists for systems utilising empirical or subjective assessments of

alternative hypotheses.

The Figure of Merit (FOM) algorithm computes a degree of similarity between two entities

based on observational data and a priori weights. FOMs are frequently used in correlation

schemes to make quantitative declarations of association.

Expert sysûems are computer programs which seek to mimic the ability of human

specialists or experts to make decisions and inferences. Observational data are used to

derive inferences based on a knowledge base which may contain facts, rule of thumb, and

heuristic information. They are used for threat identification, situation assessment and tasks

cunently performed by military analysts.

Templating utilises general data records to perform pattern recognition for complex

associations. Examples include event detection and recoguition of high value targets'

Observational data is matched against a priori template (or patterns) to determine if the

data supports a hypothesis characterised by the templates. A template may contain

parameter lists, Boolean conditions, weighting factors and thresholds to describe conditions

for an event, activity or hypothesis.



Chapter 2

Principtes of Kinematic Data Fusion

2.1 Track-to-Track Correlation for Sensor Level Tracking

Sensor data fusion involves the entire process of Correlation and Fusion . Fundamental to

the problem of combining sensor-level tracks is determining whether two tracks from

different systems (sensors) potentially represent the same track.

In a multiple-sensor tracking system the first major issue is to define the level at which

sensor data will be combined into tracks. The choices are Sensor or Central level tracking

t5l,t6l. Unlike the Central level tracking approach which forms tracks from raw

observations the Sensor level tracking

Observat I ons

Observat i ons Output Tracks
llser

observat lons

Figure 3 Central-level tracking approach forms tracks from raw observations (Taken

from [5]).

Sensor 3

Sensor 2

Sensor 1 o)c
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P
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CJJ

ã
L
+Jc
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Tracks

Tfacks

Tracks

Figure 4 Sensor-level tracking approach forms tracks and then combines them (Taken

from [5]).

approach forms sensor tracks and then combines them (Refer to Figures 3 and 4) Points

cited in favour of sensor-level tracking, over central-level tracking, are reduced data-bus

loading, and higher survivability due to distributed tracking capabilities. Certain

computational advantages may result from the parallel processing that is possible using

sensor-level track approach. Also, if one sensor becomes degraded, its observations do not

affect the sensor-level tracks of other sensors. Finally, the use of sensor-level tracking

allows for filter design that is specifically tailored to the individual sensors.

The problem of track-to-track correlation arises when multiple sensors report tracks from a

cofiìmon surveillance volume. An important question is how to decide whether two tracks

from two different sensors (using sensor-level tracking) represent the same target.

In the following paragraphs I will review the theory for two t¡ack-to-track correlation

techniques for multisensor fusion. They are, Classical Inference using Hypothesis Testing

(as discussed by Bar Shalom in references [6] and [7] ) and ART2 (Adaptive Resonance

Theory 2 Neural Network) renowned for its use in pattern recognition and its ability to

respond in real time. Bar Shalom [6], outlined the Classical Inference technique based

upon the use of the Chi-Squared properties of the difference in state estimation vectors.

Track-toTrack
oorre lat fon

lbtr I c€€

Systern

SerEor N

Systsl

senEor 2

Systmr

Sensor I

Oentral - Level

Track tþdate
vtth Senstr-Level

Tracks and

tÞf ng Trad<

Oorre latlon
lbtrlces
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2.1.L Classical Inference TheorY

2.l.l.l Hypothesis Testing

Many problems require that we decide whether or not a statement about some parameter is

trire or false. The ståtement is usually called a hypothesis, and the decision making

procedure about the truth or falsity of the hypothesis is called hypothesis testing [8].

We a¡e interested in making a decision about the truth or falsity of a hypothesis. A

procedure leading to such a decision is called a "test of a hypothesis". Hypothesis-testing

procedures rely on using the information in a random sample from the population of

interest. If this information is consistent with the hypothesis, then we conclude that the

hypothesis is true; however if the information is inconsistent with the hypothesis, we would

conclude that the hypothesis is false.

To test a hypothesis, we must take a random sample from the sample data, compute an

appropriate test statistic, and then use the information contained in the test statistic to make

a decision. When a decision is made using the information in a random sample, the

decision is subject to error. Two kinds of error may be made when testing hypothesis. If
the null hypothesis is rejected when it is true, then a type 1 error has been made' If the

null hypothesis is accepted when it is false, then a type 2 error has been made' The

situation is described in Table 1.

Table L Decisions in Hypothesis Testing

NO ERRORTYPE 1 ERRORREJECT HO

TYPF;Z ERRORNO ERRORACCEPT HO

HO IS FALSEHO IS TRUE

The probabilities of occurrence of type 1 and type 2 errors are given by the following:

c= P{type 1 enor} = P{reject H0 / H0 is true}

Þ= P{type 2 enotl = P{accept H0 / H0 is false}

Because the results of a test of a hypothesis are subject to error, we cannot "prove" or

"disprovc" a statistical hypothesis. However it is possible to design test procedures that

control the error probabilities c and p to suitably small values.
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The probability of type 1 error is often called the "significance level" or size of the æst.

For example consider the following sensor target track problem used in the experimental

section 4.0. We have two tracks from two independent radars tracking târgets in a common

surveillance volume. In reference [6] Bar Shalom outlines a technique based on the use of

the Chi-Squared properties of the difference in the state estimation vector of Yl a¡dYZ.

Consider two tracks with state estimation vectors Y and covariance matrices P as defined

by:-

TRACKI:Yl(K),Pl(K)
TRACK2:Y2(K),P2(K)

where,

Yl(K) = True state of target by sensorl at time (K)

Y2(K) = True state of target by sensor2 at time (K)

Let Erz = Yl(K)-Y2(K)

The problem of track association can be regarded as the following hypothesis testing

problem

H0 : Etr(K) = Q ---- SAME TARGETS

ul : E,r(k) + O --- DIFFERENT TARGETS

The test statistic used for the problem in section 4.0 is the Mahalanobis distance (which is

a measure of similarity âmong vectors Yl and Y2), calculated and summed for each time

instant of the track. The hypothesis that the two targets are the same is accepted if the

Matralanobis distance is below a certain threshold obtained using the Chi-Squared

distibution. More detail is provided in the next section (2.1.1.2).

We can establish the significance level for the decision rule as being Pr" = 0.01

(probability of false conelation). With Pp;0.01, if H0 is true there is a l%o chance that the

chi-squared statistic "c" (refer to Fig. 5) is above the threshold (or lVo chance of rejecting

H0 ).

2.1.1.2 Track-to-Track Correlation and Fusion for Independent State Estimation

Errors.

The Classical Inlerence techniques compute the probability of an observation given the

assumption of an "a priori" hypothesis. Bar Shalom t6l,t7l , outlined a technique based

upon the use of the Chi-squarcd distribution of the difference in the state estimation

vectors of Yl and Y2.
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Figure 5 Indicates the probability density that the targets are the same for Chi-

sqiared test statistic "c". We are establishing the significance level with testing type 1

erTor.

Consider two tracks with state estimation vectors and covariance matrices of the estimates

as follows.

- Ît1f¡, ÎZ(Ð, Are the estimated positions of a target from sensor 1 &' 2, at time K.

- pl(K), P2(K), Are covariance matrices of estimates (assume independent errors)

Hypothesis Testing: Estimates pertaining to the same target ?

- Ê,r1r¡=f1ß)- Í2(K), the error estimates,

The above denotes estimate of:-
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- Ep(K)=Y1(K)-Y2(K), the true difference of position in multidimensional space.

Where Yl(K) and Y2(K) a¡e the tn¡e states:

The problem of track association can be regarded as the following Hypothesis Testing

problem:

HO:Etr(K)=Q ... same target.

Hl:E,,(K)*O ... different targets

The error in the difference between state estimates:

È,r1K¡=E,r1K)-Êp(K), is zero mean. If the state estimation errors

it6¡=Y11K)-Î1(K)
Ìz1r¡=Y21Ð-Î2(K),
are independent, then the covariance matrix X,r(k) of È,, is:-

rrz(K)=E { Èr2(K).Èr12(K) }

=E{ tÌ I (r)-iz(r)l tÌ t (K)-Ì2G)lr

=P1(K)+P2(K)

Assuming that errors from both radars L & 2 are independent you can add the covariance

matrix estimates.

The Test Statistic is as follows:

e=Ê",r(K).E-t,r1K¡.Ê,r1K¡ < o
e=Êt,r(K).D-l,r1r¡.Ê,rqt<¡ > a

H0 is true

H1 is true

Where "e" iS called the Mahalanobis distance, and the threshold a is such :

Probability (e>odHO) = Pr;P(rejecting H0/H0 is true) = TyPe 1 Error= Level of

Significance or Probability of False Correlation.

The P." may be set to 0.01 for instance (ie. lVo chance we will reject the hypothesis).

The threshold a can be selected by exploiting the fact that the random variable is Chi-

squared distributed with N* (dimension X) degrees of freedom. If H0 is accepted the frack

Îr(t) ano Î26¡'can be combined:

9"=P2. (P 1 +Pz)-l.9 t +p t . @ l+P\t .Î 2

The justification for this formulation is given in [6].
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2.1.2 ART2 Neural Network

2.1.2.1 Art & Pattern Recognition

Neural networks a¡e often used for solving pattern recognition problems. The pattern

recognition is basically a signal processing problem. One of the advanced neural network

structures proposed for pattern recognition is based on Adaptive Resonance Theory (ARÐ.

The ART neural network and its theory was proposed by Grossberg and Carpenter [9].

Art is used for pattern recognition. The network responds in real time to input vectors with

stable, self- organised pattern recognition codes. Recognition occurs with the network

matching invariant properties in the input pattern, with exemplars in a recognition category.

The ART2 neural net uses unsupervised learning to develop pattern categories (ie the

desired ouþut need not be known to train the network). An additional vigilance parameter

determines the degree of recognition between two objects.

There are generally two classes of ART architecture. ART1 is used for classifying binary

input patterns, and ART2 for analogue patterns. ARTI illustrates many of the important

aspects of ART2. ART2 was used in my application, to cluster tracks targets from radars

with overlapping surveillance areas, because the output format from both radars is

analogue. This will be discussed in more detail in the experimental chapters.

2.L.2.2 Operation of Art Network [9], [10], [11]' [12], [13]

Art consists of two interconnected layers of neurons, Fl and F2, (as shown in Fig' 6)'

which comprises the attentional system. The input leads to activity in the feature detector

neurons in Fl (this short term memory activity is represented by the shaded bars over the

neurons, refer Fig. 7). This activity passes through connections (synapses) to the neurons in

F2. Each F2 neuron adds together its input from all the Fl neurons and responds. Neurons

in F2 compete with each other, so that at any instant, at most one neuron is active (winner

take all).

The network gets organised through learning, in the following way. First consider a

network that has already undergone some learning. In this case, the stimulus input leads to

activity in the neurons of Fl, the feature detecting neurons. Such activity represents short-

term memoü, since the neurons regularly relax back to their quiescent state after the

stimulus is removed. The activity in the Fl neurons leads to activity through the

interconnections and synapses to the neurons in F2.
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The set of interconnections from Fl to F2 is called a filte\ since it fransforms the activity

in Fl into a set of inputs to F2. The strengths of these interconnections are represented by

the relative size of the half ovals as shown in Fig. 7. F;ac]l' fieuron of F2 represents a

different category. eg. category for target 7,2,3 etc.

Early network æchitectures of Art were unstable when learning new categories. A

particular neuron in F2 might at one instant represent a category A, whereas at a latter time

(after more learning) it might represent a different category, category B. A ne¡work is of

limited use if it cannot form stable categories.

New architectures of Art solves its instability problem in part through top-down priming,

(also called attentional priming) as shown in Fig. 7 . Activity in the second F2 node

reinforces the activity in the first and third neurons in Fl (Refer to Fig. 7). In general, each

neuron in Fl is connected to every neuron in F2 by a bottom-up pathway, and each neuron

in F2 is connected to every neuron in Fl by a top-down pathway.

AHT SÍRUCTUHE

(A Sli,PLlfflC VIEID

ATTENTIOML STSTBT

FESFT

0RlÊ,lTllG

SíSTEI

vtGtLANCE

ATTENTIO].IAL

GAIN CT,ITML INPIJT

Figure 6 Art pattern classification network (Taken from [13]

+

+

+
PATTERNS

F1

CATEGOR I ES

F2



t6

The top-down signal represents a sort of template or set of critical features in the category.

Any neuron in Fl might be receiving two activities, one due to the bottom-up input, the

other due to the top-down priming. During recall and categorisation, the exchange of

bottom-up and top-down information leads to a resonance in neural activity (resonance

occurs due to exchange of bottom-up and top-down information). Critical features in Fl are

reinforced, and have the greatest activity (refer to Fig. 7).

Activity in category neurons (in F2) leads via a top-down filter to activity in the neurons

of Fl.

2.1.23 Learning

In the previous paragraphs I have discussed the way input data leads to resonance between

the input feature detectors and the categories. I will now describe how the network

organised itself to give this behaviour. As mentioned earlier, the activity in the Fl and F2

ner¡rons represents short-term menory; long term memory is encoded in the synaptic

connections.

In Art, this long term memory is encoded in both the bottom-up and the top-down synaptic

weights. Learning occurs when these synaptic weights are changed in response to the

presentation of input patterns. The precise mathematical form of learning for Art2 is given

latter. Briefly stated, a synapse in the top-down adaptive filter will approach a strength of

1.0 ( in arbitrary units), if it links two active neurons (ie. one Fl neuron and one F2

neuron). If both neurons are inactive, it will remain unchanged. If the (pre-synaptic) F2

ner¡fon is active but the (post-synaptic) Fl neuron is not, then the synaptic weight decays

towards 0.0.

The learning rule for the bottom-up adaptive filter is similar to that just mentioned, except

in the case where both neurons are active. In that case the synaptic weight increases, but

not to a value 1.0. Instead the synapses at the post-synaptic neuron in F2 compete for

resources, and thus reach a value dependent on the number of active neurons. The greater

the number of active pre-synaptic neurons, the lower the asymptotic strength of each

synapse that will be achieved. This learning is called Weber's Law. Such synaptic learning

rules are non-Hebbian, by virtue of associative decay and synaptic competition. During

learning, the synaptic strengths approach a composite or average of those which would be

expected for each pattern presented independently. The composite pattern of synaptic

strengths are weighted by the presentation statistics of those exemplars. Because learning

requires that only one F2 neuron be active, the categories associated with inactive neurons

are not degraded.



17

ATTENTIONAL SYSTEM

Wlnner take al I

F2 Categor I es

F1 Feature Detector

I NPW

Figure 7 Activity in the category neuron (in F2) leads via a top-down Filter activity

in neurons of Fl.(Taken from [13]).

2,1.2.4 Gain Control

Art has an attentional gain control unit that prevents top-down synaptic signals alone ftom

leading to Fl activity. This gain control system permits Fl to distinguish between top-

down (from F2) and bottom-up (input) signals (refer to Fig. 8). As long as the input is

present, the gain is high. If there is no stimulus input but just F2 is active, then the gain is

low, and thus only a small activity can arise in F1.

The gain conúol system has 3 inputs and one ouþut. The inputs afe:-

(a) The stimulus input itself (excitatory)

(b) An activity signal from F2 (inhibiLory)

(c) Intermodal inhibition.
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ATTENT IONAL GA I N CONTHOL

lnttrmo(þl
lnhlbltlon

Èln
Oontro I

I nput

Figure 8 The attentional gain control unit permits F1 to distinguish between purely

bottom-up and top-down signals'

The gain control output acts ÍIs an overall gain or amplification signal for F1 activity' If we

begin with no inputs, but activity in an F2 neuron, the gain control has an uncentered

inhibitory input (refer to Fig. 8), resulting in little or no output. Thus, gain in Fl is low'

Even though there is attentional priming, the activity in Fl is small because of the low

gain. Consequently, the pattern of activity in Fl is insufficient to lead to significant

bottom-up activity and hence no resonance can result. But if there is an input stimulus, the

gain control unit will be excited and the gain in Fl will be high. There will be activity in

Fl. (Note that regardless of the activity in F2, the system will shut down if there is no

input).

To understand the intermodal inhibitory input to the gain control unit, suppose the Art

network is applied to a dinner party example. At a lively dinner party' you aÍe

concentrating on what a new acquaintance is saying to you from across the table rather

than on what you are eating or drinking. Even though you drink your wine, you might not

taste it. This type of behaviour ls duplicaLetl in Al't by lraving an intermodal inhibition

signal to the gain control unit. In the dinner party example, your auditory system (attending

F1

I

I

F2
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to what your acquaintance is saying) decreases (inhibits) the gain control in your taste

system. In general, intermodal competition helps to resüict the signal to the higher stages

of cognition, thereby preventing cognitive overload.

2.1.2.5 Novelty Detector (Vigilance parameter) & Category Size

The novelty detector determines how flne or course a category will be ( ie' how much

different input patterns can vary and still be in the same category). The orientation system

hæ two inputs and one output, (refer to Fig. 9). The 2 inputs a¡e the data input itself and

the overall activity in Fl. The stimulus input is connected to the orienting subsystem with

an excitatory connection. The Fl activity level is comnrunicated to the orienting subsystem

through inhibitory connections. The single output of the orienting system goes to F2 and is

a reset wave. The orienting system acts as a novelty detector by sending a reset wave to F2

whenever the activity pattern in Fl caused by the input pattern differs significantly from

that caused by the top-down readout of a category neuron.

The l*.love lty Detector

Orienting
Systern

Reset

Wave

Vigilance

I nput

Figure 9 The orienting subsystem. (Taken ftom [13]).
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The orienting subsystem sends its reset wave when the new input pattern differs

significantly from any previously coded. The Art orienting system has a single parameter,

called "vigilance parameter (v)" that tells how large a mismatch at F1 (between the top-

down template and the bottom-up activity) can be tolerated before the orienting systems

reset wave is emitted ( refer to Fig. 9).

If "v" is large (high vigilance) only a very slight mismatch will be tolerated before a reset

wave is emitted.'If "v" is small(low vigilance), large mismatch will be tolerated before a

reset wave (and subsequent new coding) will occur. Because category formation is

dependent in this way on the relative similarity or difference in patterns, we say that Art

has the property of self-scaling.

For instance, consider an example involving wine tasting. A novice wine taster may have

only two categories: "good wine" and "bad wine". If the vigilance is set low, implying that

subtle differences between wines is unimportant, then every new wine, regardless of its

"features", will be classified as either good wine or as a bad wine. But suppose the

vigilance is set high and a new wine is presented. The wine differs significantly from the

"good wine" or "bad wine" categories. The Art network may test those categories, but

because of the mismatch and high vigilance, it will ultimately recruit another category

ne¡ron in F2. In this way, for example you can generate a ûew category for "semi-sweet,

fruity wine".

2.1.2.6 ART2 Network Equations & structure using HNC software [14]

The HNC (Hecht-Nielsen Neurocomputers) software implementation of ART2 is a 2 layer

neural network with multiple slabs. The two layers (Fl and F2), ot fields, a¡e shown in

Figures 6 and 7. The F1 field has been subdivided into 7 state vectors which represent the

short- term memory (stm) of the Fl field. The neurosoftware has assigned a slab to each

of these state vectors: the P, Q, R, U, V, W and the X slabs (refer to Fig. 10)' The Fl field

refers to all 7 of the slabs collectively. The F2 field is contained in the F2 slab.

Both Fl and[2 contain a state vector which represents the network's short term memory.

The network's weights represent the long-term memory (ltm). They are maintained by the

p slab and the F2 slab, and are applied at each connection between the 2 fields. Each

processing element (PE) (or neuron) on the P slab is connected to each PE on the F2 slab,

and each PE on the F2 slab is connected to each PE on the P slab'
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Processing Equations:

Data is presented to the network through the input slab. When a pattern is presented to the

network the states of the PE's of the F2 fields (or layer) are set to inactive, and the states

of the "tI" slab are set to zeto. The Fl field is iterated until the states of the R slab change

less than the tolerance parameter (defined later in real time parameter definitions).

The F2 field is then iterated to find an initial choice for the active F2 PE. Next, the Fl
field is iterated until stability is reached. If the F2 choice is close enough to the input

pattern the resonance state is achieved. If a mismatch occurs, the F2 PE is inhibited and

the process is repeated until a match is achieved. If learning is enabled, the long term

memory weights are updated. Figure 10, taken from reference l12l represents the

calculations that take place within the Fl and F2 fields for short term memory processing.

The large filled circles (inhibitory interneurons) in Fig. 10, referred to as "gain control

nuclei" in ref. Í121, (used for the normalisation of activation patterns across Fl)

nonspecifically inhibit target nodes (neurons) in proportion to the L2 norm of the short

term memory activity in their source fields.

Fl Processing:

The Fl field is updated by the following equations.

(a) W slab - The output of the iù W slab PE is given by

wr=Ir+a.fl¿¡

where 1, is the state of the if input slab PE, and ø, is the state of the iù "u" slab PE and
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x

tr'igure 10 ART2 Architecture for Fl (Taken from [12]).

"a" (a positive gain term) is a user parameter.

The Signal Function is false in our application, so 'f is given by

.(r,)=0--- -if ,O<x<O

else

flxr)=x----iÍ t>O

where @ (signal threshold) is a user-specific parameter equal to one over the square of the

number of nodes (neurons) to be normalised.

rp

(b) X slab - The output of the ih X slab PE is given by
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xr

where "¿" (a positive small number used so that you cannot divide by zerc in the above

equation) is a user specific parameter and ll w ll is ttre I" norm of the w slab.

(c) P slab - The ouþut state of the iû P slab PE is given by

pi--ur+l.O).zit
l=r

where y, is the state of the j* F2 slab PF,, Z¡iis the weight associated with the connection

between the ift P slab PE, and the j* F2 slab PE and the function "9" is given by

80)= d
s0)= 0

if the j'h F2 PE is active

otherwise.

I

where "d" ( gain value which limits the maximum value of the winning neuron) is a user -

specific parameter. Since the value of S(yJ is eittler "0" oÍ "d", the output states for the P

slab PE's reduces to

P¿=U¡+&,r,

where "-/"' is the index of the active F2 PF,.

(d) Q slab - The output of the ih q slab PE is given by

4¿=P¿-ut

(e) R slab - The output slab of the iü "R" slab PE is given by

(ufc.ql
tl

(ø+ [zll+c.llqll)

where ll ø ll and ll4 ll are tIrc h norms of the U and Q slabs.

r

t
!J

(Ð U slab - The ouþut state of the iú U slab is given by
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vt
ul

(e+llvll)

where ll v ll is the L, norm of the V slab.

(g) V slab - The output state of the ift V slab is given by

v¡flx)+b'r,

where 4 is the state of the iü X slab PF,, "b" (a positive feedback gain term which

amplifies r,, used for stability) is a user parameter, and "/' is as defined in the W slab

equations.

F2 Processing:

On the F2 slab, each PE calculates the dot product between the P slab vector and its

weight vector. This weight vector represents the Fl to F2 bottom-up long-term memory

values. Only F2 PE that are not in the inhibit state perform this calculation. The PE with

the largest dot product is selected as the active PE. A1l other non-inhibited F2 PE's are set

to inactive. The equations for these calculations are given by

Przüdt=E_,

!¡ = inhibit

!¡ = active

!¡ = inactive

if the cunent value is inhibit

iÍ dj = matc(d,) for all i values

otherwise.

I

After the active F2 PE is selected, the Fl field is iterated. Once the Fl fietd has stabilised,

the following inequality is checked

P>l
(e+llrll)

where p is the vigilance parameter. The vigilance parameter is user-selected and lies

between 0 and 1. This inequality is the reset condition for the F2 slab. If the reset

condition is not met, resonance has occurred and the input pattern is categorised as

belonging to the class associated with the active F2 PE. If the next condition is met, the

:.1

t\!

þ
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selected.
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is set to the inhibit state, the Fl field is cleared, and a new F2 PE is

Learning:

If learning is enabled and resonance state is achieved, the network weights z.¡i (top-down)

and 4 (bottom-up) are updated. Normal learning incrementally moves the weights towards

their asymptotic values. This causes the weights to average over all examples of a

category.

Weights change as follows:

and

,I* =rl'o + a,.d.(L -ô lh=fn

,f* =rl- + a,.d.(l -r r, h-rl'\

t
I

;

where "I is the index of the active F2 PE and o is the learning rate.

Run Time Parameter Definitions using HNC software: [14]

The Tolerance parameter controls the number of iterations needed to reach F1 short-term

memory (STM) stability. Stability occurs on the Fl field STM calculation when the

largest change in activity of an R slab PE is less than the tolerance. The Learn Rate

parameter "c[" controls the rate at which weights are modified.

Parameter "4" is the parameter in the Fl field STM calculations, a.

Pa¡ameter "B" is the parameter in the F1 field STM calculations, b.

Parameter "C" is the parameter in the Fl field STM calculations, c.

Parameter "D" is the parameter in the Fl field STM calculations, d.

Pa¡ameter "E" is the parameter in the Fl field STM calculations, e.

Parameter "T" is the threshold parameter, @, used in the Fl field signal function.

Parameter "V" is the vigilance parameter, p, used in determining when an F2 PE has

reached resonance.

il

!
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The HNC software package suggests the use of the following typical values for the

network parameters ( refer to Table 2 ), which were appropriate for my application, (except

for the vigilance parameter which was adjusted as indicated in the experimental section).

Table 2 ART2 network pafameters used in tâfget track correlation
problems (discussed in the experimental section).

0.995Parameter V

0.05Parameter J

0.000001Parameter E

0.9Parameter D

0.10Parameter C

10.0Parameter B

10.0Parameter A

0.00001Tolerance

0.01Initial weight max.

Typical valuesParameter

I

I
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Chapter 3

Principles of Attribute Data Fusion

3.1 Dempster-shafer (Evidential Reasoning) Method [15], [5]

3.1.1 Background Introduction

Evidential Reasoning requires no prior distribution of the existence of threat types as does

the Bayesian approach. The Dempster-shafer (D-S) method is based on a model of human

inferences; it utilises probability intervals and uncertainty intervals to determine the

likelihood of a hypothesis based on nutual evidence. In addition, the D-S methodology

computes a likelihood that any hypothesis is true. The D-S method can be used for

representing and combining data in a multiple sensor (or knowledge source) fusion

application.

Using this method we have the provision for representing incomplete or uncertain sensor

measurements (ie. D-S is a way of representing exactly what is and is not known). Each

sensor contributes information at its own level of detail. The evidential reasoning structure

is general enough to utilise fully each sensor's information regardless of its form.

The evidential reasoning approach is more general than the Bayesian. A weakness of the

Bayesian approach is the lack of convenient representation for ignorance or uncertainty.

For example, a question arises concerning the representation of an uncertain prior

distribution with the standard Bayesian approach. The evidential reasoning method handles

ttris situation quite simply by allowing the assignments of a probability mass value directly

to uncertainty. It also handles the problem of incomplete or uncertain sensor measurements.

Sensor error can be conveniently represented by a probability mass assignment directly to

uncertainty.

The implementation of Evidential Reasoning is illustrated with the following example. If
sensors contribute information in the following form:

"Sensor 1 indicates that the target is one of the three possible types:'ll,T2, or T3."

"sensor 2 indicates that the target is type T1." However the certainty of this is only 907o'

Because there is no evidence yet to support that the target is of type T4, this type is

ignored in all subsequent processing and only relevant target types are considered.

The process of data ñlsion consists of finding the intersection of two sensor statements. For

instance we know that the intersection of (Tl or T2 or T3) and (T1) is equal to (Tl)'
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However, only a probability of 0.9 is assigned to this product, owing to the 9OVo

confidence on the second sensor report. The remaining probability (0.1) is assigned to the

disjunction or union (Tl or T2 or T3). These statements are stored directly in the computer

in the form of assigned target sets and associated probabilities'

3.1.2 Implementation of Evidential Reasoning (Support and Plausibility)

The method of èvidential reasoning assigns a probability mass m(l) to any of the "n"

propositions (ie. target types Tl,T2 ... T*), or to disjunctions of propositions. For example,

a disjunction is the proposition that the target is of type Tl or T2 (denoted Tl v T2) and

the mass assignments is denoted m(Tl v T2).

The representation of uncertainty is a mass assignment to the disjunction of all the original

propositions and is denoted

m(O)=m(TlvT2v".vT*)

Also mass can be assigned to the negation of a proposition. For example, the maSS

assigned to the negation of T1 (the target is not type T1) is denoted

m(Tt¡=r¡112 v T3 v ...v T*)

The sum of the probability masses mentioned must equal to unity'

The likelihood of a proposition "4" is represented as a subinterval [S(A), P(A)] of the unit

interval [0,1] (which tepresents total ignorance). Referring to Fig. 11, S(A) represents the

support for proposition "4" and sets a minimum value for its likelihood. P(A)' on the other

hand denotes the "plausibility" of proposition "4" and establishes a maximum likelihood.

Support may be interpreted as the total positive effect a body of evidence has on a

proposition, while plausibility represents the total extent to which a body of evidence fails

to refute a proposition. Thus P(A)=l-S(Ã), where the negation of ',4'' (A) is all

propositions which are not "4". The degree of uncertainty about the actual probability

value for a proposition corresponds to the width of its interval (refer to Fig' 11)
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FÍgure 11 The Uncertainty Interval tS(A),P(A)l

Example:

A[0.25,0.85] => The likelihood of "4" is between 0.25 and 0.85; the evidence

simultaneously provides support for "4" and "A "

(ie. S(A)=9'25, S(A)=Q'15)' Theta is 0'6'

To illushate further, again consider the target type example; the support S(Tl) for the basic

proposition that the target is Tl is just the mass associated with Tl(S(Tl)=m(Tl)). For a

more complex proposition such that the talget is either type T1, T2, ot T3 we have

S(Tt v T2 v T3)= m(Tl)+m(T2)+m(T3)+m(Tl v T2)+m(Tl v T3)+m(T2 v T3)+m(T1 v

T2 v T3)

The plausibility of a given proposition is the sum of all mass not assigned to its negation.

Thus
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P(T,) = 1-S(T)

Alternatively, P(T,) can be computed by summing all masses associated with I and all

disjunctions, including @, that contain T'. For example

P(Tl) = m(Tl) + m(Tl v T2) + ... + m(@)

3.13 D-S Rules of Combination of Mass Assignments

D-S rules of combination with the probability mass assignments (of mass vectors ml and

m2 fot the 2 sensors or knowledge sources to form the resulting mass vector) are as

follows.

(a) The product,of mass assignments to two propositions that are consistent leads to an

assignment to another proposition contained within the two original propositions.

For example

ml(T,).m2(T) = m(T,)

ml(Tl v T3).m2(T3 v T4) = m(T3)

(b) Multiplying the mass assignments to uncertainty by the mass assignments to any other

proposition leads to contribution to that proposition.

m1(O).m2(T3 v T4) = m(T3 v T4)

ml(@).m2(T2) = m(T2)

(c) Multiplying uncertainty by uncertainty leads to a new assignment to uncertainty.

ml(O).m2(O) = m(O)

(d) Inconsistency occurs, for example, when one knowledge source assigns mass to T2

(m1(T2)) while á second assigns mass to Tl (m2(T1)). The product of these mass values is

assigned a measure of inconsistency, denoted "k", of the form:

m1(T2).m2(T1) = ¡

The following numerical example illustrates D-S rules of combination, and the manner in

which inconsistertcy ls handled.

or
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Consider an example where there are four target aircraft types aS defined:

Tl = friendly interceptor (fighter aircraft)

T2 = friendly bomber

T3 = hostile interceptor

T4 = hostile bomber

Assume that our first knowledge source indicates that the aircraft behaviour appears to be

that of the class of interceptor. However, this information is not certain so that the

following mass assignments are defined:

m1(O)=0.4

ml(Tl v T3)=Q.S

The assignment of 0.4 to nl(O) represents the uncertainty that the aircraft is of the

interceptor class.

The second knowledge source indicates that the target is probably hostile, but again this is

not certain. Thus we assign to this knowledge source the following mass values:

m2(O)=9.3

m2(T3 v T4)=0.7

Table 3 Application of D-S rules of combination

Table 3 illustratçs how D-S rules were used to combine the fwo knowledge sources to

produce the resulting masses below:

m2(O) = 9.3m2(T3vT4)-0.7

m(TlvT3)=9.13n(T3) = 0.42ml (T1 Y T3) = 0.6

m(@) = 9.12m1(@) = 0.¿ m(T3vT4)=9.29
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m12(O)=0.12

m12(Tl v T3)=0.18

ml2(T3)=0.42

ml2(T3 v T4)=0.28

The above example illustrated D-S's rule for the condition where there was no

inconsistency (or assignment to a null hypothesis) between the knowledge sources. The

manner in which, inconsistency is handled is illustrated by introducing another hypothetical

knowledge source.

Assume that a third knowledge source gives the following target type declaration:

m3(O)=0.2

m3(Tl)=0.1

m3(n)=0.2
m3(T3)=0.3

m3(T4)=0.2

Table 4 A second application of D-S's rule.

Table 4 shows how f)-S's rules is used to combine the previous masses "m12", obtained

from Table 3 , with the third knowledge source masses "m3".

ml2(O)
= 0.L2

ml2
(Tl v T3)

= 0.18

m12(T3)

= 0.42
mL2

(T3 v Ta)

= 0.28

m(T4)=.O24k=0.084 k=0.036m(T4)=0.056m3(T4)=0.2

m(T3)=.036m(T3)=0.054m(T3)=0.126m(T3)=0.084m3(T3)=0.3

m(r2)=.O24k=0.036k=0.084k=0.056

m3(T1)=0.1

rn3(T2)=0.2

m(Tl)=.012m(Tl)=0.018k=0.M2k=0.028

m(O)=O.024m(Tl v T3)=
0.036

m(T3)=0.084m3(@)=0.2 m(T3 v T4)=
0.056
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In order to compute the new masses, we first sum all assignments to k, which for this

example leads to the value k=0.366. Then, the new masses are computed by summing the

appropriate entries in the matrix and dividing by the normalisation factor (l-k=0'634). Thus

the new values are:

m(O) = 0.02410.634 =0.038
m(Tl) = (0.018+0 .012)10.634 = O.M7

m(T2) = (0.02410.634) = 9.633

m(T3) = (0.084+0.084+0. 126+0.054+0.036)/0.634 = 0.606

m(T4) = 10.056+0.024)/0.634 = 0.126

m(TlvT3) = 0.036/0.634 = 0.057

m(T3vT4) = 0.056/0.634 = 0.088

3.2 Backpropagation Neural Network [16]' [17]' [19]

3.2.1 Background Introduction

An Artificial Neural Network is a distributed processing stnrcture. Processing Elements

(pE's) are its fundamental building blocks. They receive multiple input connections and

generate, a single output, which may fan out to many other PE's. Processing Elements may

have local memory and a t¡ansfer function which can use this memory. Links between the

processing elements carry signals between them. Each connection may have a weight

associated with it, for altering the strength of signals passing through (refer to Fig. l8).

The artificial neural network variously known as the Gamba-perceptron, Multilayer

Perceptron (MLP) and very loosely as the Backpropagation Network (BPN)' accepts as

input continuous-valued data, is able to learn complex distributions under supervision and

is able to indicate a classification at its output.

Backpropagation is a learning rule for multilayer feedforward networks, in which the

weights are adjusted by backward propagation of the error signal outputs to inputs. It uses

supervised learning in which the network is presented with a set of input pattern target

pairs. The network compares its output to the target and adapts itself according to the

learning rules. Art2 discussed earlier uses unsupervised leæning, ie' it adapts itself

according to statistical association in the input pattern.
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A typical backpropagation network always has an input layer and an output layer, and at

least one hidden layer. There is no theoretical limit on the number of hidden layers but

typically there will be one or two. Each layer is fully connected to the succeeding layer.

The aüows in Fig. 18 (3 layer backpropagation neural network) indicate flow of

information during recall. During learning, information is also propagated back through the

network and used to update the connection weights. The output of each PE in the network

is the sum of the weights multiplied by its inputs and its transfer-function as shown in Fig.

14.

3.2.2 How the Backpropagation Works Í19,20,21f

Recognition Task: A common task is to divide the input space into several distinct regions

(also called decision regions and domains, refer to Fig. 19). The job of a recognition

system or classifier is to give outputs of I or 0 depending on whether an input vector

x'-(x,,x2 ... x) lies inside a domain (as shown in Figures 19).

Learning the Training Set: A backpropagation network learns a decision region by being

exposed to many training examples. Each training example is known to be inside or

outside the desired region (refer to Fig. 20).

Forming Decision Regions: A backpropagation network can identify vectors in any

arbitrarily shaped decision region in the input space. It does this in two steps (refer to Fig'

l2). Each processing element in the hidden layer (the first processing layer) divides the

input space into two, along a plane. And each processing element in the output stage

(second processing layer) combines one or more planes to form a convex open or closed

region. A large number of training examples are usually required for a close approximation

to the true boundary.

The types of decision regions (as shown in the second column of Fig. 13) that can be

formed using a MLP with one, two and three layers that use hard limiting nonlinearities

are illustrated in Fig. 13. The rightmost column gives examples of the most general

decision region that can be formed. A single layer perceptron forms half-plane decision

regions. A two layer perceptron can form any possible unbounded convex regions in the

space spanned by the inputs. A three layer perceptron can form arbitrarily complex

decision regions. The discussion of Fig. 13 is centred primarily on the multilayer

perceptron with one output when hardlimiting non linearities are used. Simila¡ behaviour is

exhibited by the multilayer perceptron with multiple output nodes when sigmoid non

linearities are used. The behaviour of these nets is more complex because decision regions

are typically boundcd by smooth curves instead of straight line segments.
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Figure 13 Types of decision regions that can be formed by single and multilayer

percepûons with uûe ul two layers of hidden units and two inputs. Nodes in all nets

use hard limiting nonlinearities.
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The Role of Hidden Processing Elements:

A processing element performs the function defined by:

Figure 14 PE.

zr--f,(E n,:,)

Where, /s is the PE activation function (refer to frg. 17,

ie. can be sigmoidal), w¡¡is the weight on the connection

joining the iú neuron to the jù neuron. To simplify the

algorithm, the threshold offset is defined as wr,(ie. =
wox, wherê x¡1, a fixed value inPut).

The equatiorr z=wúÈwñ2+ ... +wnxn+lr' , represents a plane in xnxr... x". (input space).

The slope of the plane is determined by w1,w2...wn, and the height at the origin (/ =0) is

wr. Assuming that the gradient is non-zero, there will be a region of space where z>O and

a region where z<0. The locus of points with z=0 is the decision boundary.

In two dimensions, the equation reduces to z=wfir+wñz+w'

and the locus of points with z=0 is a line (ie. refer to Fig. 15).

"2" caî be regarded as the height (or distance out of the page)

of the plane at each point (xnxr).The direction of the positive

gradient is shown by the arrow (as shown in Fig. 15).

Figure 15
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The Role of the Output Processing Elements:

Each output processing element receives its input from the

hidden processing elements, which indicate whether the input

vector lies on the high or the low side of each plane. By making

a weighted sum of this information, an output processing

element can combine the planes to form a region of input

vectors (as shown in Fig. 16).

Figure 16 Combined
planes form region.

The Role of the Sigmoid Function:

The three types of activation functions possible for use in the backpropagation processing

elements are hardlimiting, piecewise linear and sigmoidal (Fig. 17). Hardlimiting is

discontinuous an non-biological. Piecewise linear is continuous but not differentiable. The

sigmoid is continuous, monotonic and differentiable. The sigmoid function and its

derivative are shown below. Note thatf'(x) can be evaluated from Í,(x) alone.

Í"(x)
I

-sigmoid
(1+eJ

e-r
-dcrivative/"r*>

(l+e-)2

¡/çx¡=¡x¡.1t -flr)

The sigmoid bounds the output of the hidden processing elements to be between 0 and

1.0. On a sigmoidal "plane", the locus of points with z=0 is still a line. However, when

several sigmoids are added together, the locus of points with z=0 becomes a curved

approximation to the planar boundaries. The rate of curvature is determined by the slope of

the planes. A steep sigmoid begins to approximate a hard limiter, and the result is straight

lines with a sharp corner between them.
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Fig. 18 A standard backpropagation network comprises of 3 layers of processing

elements, each PE is connected to all PE's in the following layer and from all PE's in
the preceding layer.
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Training Error: If a training input pattern "r" is presented with its corresponding training

output "t" . The network can process ".x" to give an output "y" (which is likely to differ

from "f"). Given the actual output yo of the kù processing element in the output layer, the

error at that processing element will be

er=(t¡-t)

and the total squared error in the output layer, for this training pattern, is defined as

=l1t;t*)2

E "r'h

Er=

k

The mean square error (MSE) is the average "Er" (individual error) for all training pairs.

The MSE is the function to be minimised, however, this requires evaluation of Er

(individual error) for each pattern on the training set. It is simpler to minimise " Er" for

eaCh training pattern, one at a time. Large numbers of "8r", make A Statistical

approximation to the mean square error (MSE). Gradient descent is a method of finding the

location of a minimum in a function of many dimensions. It locates a minimum by taking

iteration steps down this gradient until the iterations converge to a single point.

3.23 Backpropagation Network Error Equations (Learning Rule) [13]

As mentioned in previous paragraphs, during learning, information is propagated back

tfuough the network and used to update the connection weights.

I will use the upper superscript in square brackets to indicate which layer of the network is

being considered. The rest of the notations are as follows (Ftg. 2l displays a

backpropagation PE using this notation)

xrt'l - Is the current output state of the j" neuron in layer "s".

*,ot - Is the weight on the connection joining the ih neuron in layer (s-1) to the j*
neuron in layer "s".

"/'t"l 
- Is the weighted summation of inputs to the jù neuron in layer "s".

A backpropagation processing element therefore transfers its input as follows:

Where 'f is the sigmoid function (also as shown in Fig. 21). The sigmoid is defined as
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Figure 21 Typical back-propagation processing element (shows notation used for

equations (l) - (10), Taken from [13]).
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3.23.1 The Local Error

Suppose the network has some global error function "8"' associated with it which is a

differentiable function of all the connection weights in the network. The parameter that is

passed back through the layer is

,rr=-4----(3)
ô4u'

The following relationship between the local error at a particular processing element at

level "s" and all the local errors at the level "s+1", is obtained using the chain rule twice in

succession.

"j"1 
=¡r ¡Rir't1. i 1r¡.t'.rug.tt) - - - -(4)

' k l -

In Equation 4, there is a layer above layer "s"; therefore, equation 4 can only be used for

non-output layers.

If 'f is the sigmoid function as defined in equation 2, then its derivative can be expressed

as a simple function of itself as follows

¡\z¡ =fi2).(L0 -¡(z)) - - - - - - -(s)

Therefore, from equation 1, equation 4 can be rewritten as

O

,rt =rrt.tt.o -fl.: crf 'tt.rf; 
.tl¡ 

- - - -(6)

provided the transfer function is a sigmoid. The summation term in equation 6, which is

used to back-propagate enors is analogous to the summation term in equation I which is

used to forward propagate the input through the network. Thus the main mechanism in a

backpropagation network is to forward propagate the input through the layers to the output

layer, determine the error at the output layer, and then propagate the errors back through

the network from the output layer to the input layer using equation 6 or more generally

equation 4. The multiplication of the error by the derivative of the transfer function scales

the error.

I

I
r{
'):
)
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3.23.2 Minimising the Global Error

Based on knowledge of the local error at each processing element, the aim of the learning

process is to minimise the global errof "8"', of the system by modi$ing the weights.

Given the current set of weights wul"/ we use the gfadient descent rule to increment or

decrement them in order to decrease the global error

a.rlo=-o.(ffi1----ø
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a:

lbrdrrr

Figure 22

The partial derivative in equation 7 can be calculated directly from the local error values

discussed in the previous sub-section, by the chain rule and equation 1

where o is the learning coefficient (ie. each weight is

changed according to the size and direction of the negative

gradient on the error surface, refer toFig.22).

Combining equations 7 and 8 together gives

-(8)

='rt'to-u

õE __ õ8. õ&ut ___

ôü,j"1 oqt"t or,[o

t
I

;

r

:{
ru

arrlo = o.rrt*,1'-tt - - - - -çe¡
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3.233 Global Error Function

The global enor, function is needed to define the local errors at the output layer so that

they can be propagated back through the network. Suppose "i" vector is presented at the

input edge layer of the network, and suppose the desired output "d" is specified by a

teacher. Lßt "o" denote the actual output produced by the network with its current set of

weights. Then a measure of the error in achieving that desired output is given by

I

ø=0.5E 11d r-o )2) - -- - - (10)
É{

where the subscript "k" indexes the components of "d" and "o". Here, the raw local enor is

given by do-or. From equation 3, the scaled "local error" at each processing element of the

output layer is given by

õE
(1 1)

ô4')

õE õor
=--.-õor õIr

=(dk-où.Ít(IK)

=qd, r- o ¡.rfr.1 t.o -xj"r)

Equation 10 "¿'' defines the global error of the network for a particúar (i,d). The overall

global error function is the sum of all the pattern specific error functions. Then each time a

particular (ùÐ is shown, the backpropagation algorithm modifies the weights to reduce that

particular component of the overall error function'

,lo)

,r{

!

I
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3.3 Fuzzy Reasoning Í22,231

Fuzzy set theory was developed by Zadeh 124), Í251. The basic concept is that people

frequently deal with concepts that are imprecise because of indistinct boundaries of

definitions (ie. terms such as tall, short, attractive, ugly are imprecise). These imprecision

can be addressed mathematically via an extension of Boolean Set theory.

Fuzzy SetS are defined as follows: A Set "4" has members )ft, Xr, .'. X*. Each element X1,

of set "4" has an associated value ¡rA(Xr), which indicates the degree to which Xt belongs

to set "4". the function is called the "membership function, ¡r(X)", and has a value between

"0" And "1" with FA(X)=O indiCating that element "X" iS not a member Of Set "4", and

FA(X)=l indicating that element "X" is completely a member of set "4". The values of

¡r(X), within this range, must be provided by the person defining the fwzy sets' Hence, in

finzy set theory, sets afe defined by ordered pairs, [X, p(X)] in which "X" is an identified

set element, and ¡r(X) is the associated membership value element "X". By contrast,

Boolean sets are defined by identifying the elements that completely belong to a set (hence

p(X) is either 1 or 0).

Truth values (in fuzzy logic) or membership values (in fuzzy sets) are indicated by a value

in the range [0.0, 1.0], with 0.0 representing absolute Falseness and 1.0 representing

absolute Truth. For example, let us make the statement, "Jane is old". If Jane's age was 75

we might assign to the statement the truth value of 0.8. The statement could be translated

as "Jane is a member of the set of old people", or using fuzzy set symbolically

pOLD(Jane)=0.8. Where "p" is the membership function, operating in this case on a fuzzy

set of old people, which returns a value between 0.0 and 1.0. The probabilistic approach

yields the statement, "There is an 807o chance Jane is old", while the fuzzy terminology

corresponds to "Jane's degree of membership within the set of old people is 0.8". The

differences are significant: the first view supposes that Jane is not old; it is just that we

have an BOTo chance of knowing which set she is in. By contrast, frtzzy tetminology

supposes that Jane is "more or less" old, or corresponding to the value of 0.8. The

statement could be translated as "Jane is a new member of the set of old people", or using

fuzzy symbolically pOLD(Jane)=0.8. Where "Ll" is the membership function, operating in

this case on a fiizzy set of old people, which returns a value between 0.0 and 1'0' The

probabilistic approach yields the statement, " There is an 807o chance Jane is old " , while

the fuzzy terminology correspond to "Jane's degree of membership within the set of old

people is 0.8." The differences are significant: the first view supposes that Jane is not old;

it is just that we have an 807o chance of knowing which she is in. By contrast, fuzzy

terminology supposes that Jane is "more or less " old, or corresponding to the value of 0'8'

I

þ
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Fuzzy logic is also defined by the operations of Empty, Equal, Complement (Not)'

Containment, Union (Or), and Intersection (And), and the following formal definitions:-

Definition 1: Let "X" be some set of objects, with elements noted as "x". Thus X =
{x}.

Definition 2: A fuzzy set rrA'r in ilxrr is characterised by a membership

function pa(x) which maps each point in "x" onto a real interval

t0.0, r.0]. As uA(x) approaches 1.0, the ''grade of membership in A
increases".

Definition 3: rrArr is Empty if for all "x" , pA(x) = 0.0.

Definition 4: A=B if for all "x": ¡rA(x) = ¡rB(x) ( or, ¡rA = t¡B ).

DefÏnition 5: FA' = 1-I¡4.

Defïnition 6: "4" is Contained in "8" if pA < pB.

Definition 7: C = A Union B, where: pC(x) = Max( pA(x)' pB(x)).

Definition 8: C = A Intersection B, where: pC(x) - Min( UA(x)' UB(x)).

Note the last two operations, Union (Or) and Intersection (And), represent the clearest

point of departure from probabilistic theory for sets to fuzzy sets' Operationally, the

differences are as follows:

For example, let us assume x= Bob, "S" is the fuzzy set of smart people and T is the fuzzy

set of tall people. Then, if ¡rS(x) = 0.9 and pT(x) = 0.8, the probabilistic approach result

would be:

pS(x).P:I(x) =0.72

whereas lhe fizzy result of would be:

Min(uS(x)' pT(x)) = 0.80

The real value of the luzzy set theory (developed by Zadch Í241, t25l) to data fusion is the

exûension tofuzzy logic (as described above in definitions 1-8); because of this we classify
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this method in the " cognitive " group. Fuzzy logic deals with approximate modes of

reasoning. In classical two-valued logic, a proposition, P, is either true or false. Classical

logic uses truth tables and manipulative rules to follow a chain of reasoning to determine

the tn¡th (or falseness) of a proposition. By contrast, in fuzzy logic, a proposition has a

membership value range from 0 (completely false) to 1.0 (completely true), representing

membership of proposition in the truth value set.

,t

1

I

I

I

i

,
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Chapter 4

Experimental Procedure and Results for
Kinematic f)ata-Fusion

4.1 Introduction

Sensor data fusion involves the entire process of correlation and fusion. In chapter 4 the

thesis addresses the application of artificial neural networks (ANN), to the correlation

problem of sensor level tracking. A comparison has been made between two track-to-track

correlation techniques for multisensor fusion using simulated and real track data obtained

from Adelaide Airport's Surveillance Radar and the FPS-16 Tracking Radar at DSTO.

Unlike the Central Level Tracking approach which forms tracks from raw observations the

Sensor level tracking approach forms sensor tracks and then combines them. The

advantages Sensor Level Tracking has over Central Level Tracking are:- decreased

transfer load, the computational advantages of parallel processing, and decreased

vulnerability since each tracking system has the ability to track independently [26]' The

problem of Track-to-Track correlation arises when multiple sensors report tracks from a

common surveillance volume. An important question is how to decide whether two tracks

from two different sensors (using Sensor Level Tracking) represent the same target.

4.2 Simulated Track Data Results

The two track-to-track correlation techniques (Classical Inference and ART2 neural

network) were used and compared to each other using the simulated scenario described

below.

Consider two independent radars (since tracks are independent, the covariance matrix is the

sum of covariance matrices Pl and P2 from Radars I and 2 respectively), Radarl and

Radar2 using a sensor level tracking approach to form sensor tracks. Both radars output

data in the format of Range (metres), Azimuth (degrees), and Elevation (degrees). They

have different accuracies with known variances in Range, Azimuth, and Elevation and

corresponding covariance matrices. Both radars are tracking 3 targets each. Two of these

targets are in the common surveillance volume of both radars (refer to Figures n e' 24).

Radarl and Radar2 report 3 tracks each over a time period of ten seconds. Assume tracks

are aligned in space over the time period.
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R2

2

Radar ,1 Fladar 2

Figure 23 Radarl and Radar2 are tracking three targets each. Two of these targets are in

the common surveillance volume of both radars.

Assume the fotlowing variances (as shown in the simulation program in Appendix C) in

Range(metres), Azimuth(degrees), Elevation(degrees) for the two independent Radars

(whose accuracy differs in Range, Azimuth and Elevation.) ie.

Radar I - Standard deviation in Range(m) =
tr rr " Azimuth(deg)=
I' tr " Elevation(deg)=

Radar 2 - Standard deviation in Range(m) =

'r rr " Azimuth(deg)=
rr rt " Elevation(deg)=

Assuming independent Radars the corresponding covariance matrices for Radar 1 and

Radar 2 are:-

lrool lgool
pr=lo 4 ol . pz=lo 16 ol

I'od t'o rl

1

2

3

3

4

1

* T3R

6r1Hr,

@T

We notice that the accuracy of Radar I is better than that of Radar 2. Since both radars
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Rl and R2 tracked three targets each, we have nine possible track-to-track combinations.

ie.

TlRlTlR2 - (Trackl from radarl and trackl from radar2)

TlRlT2R2 - (Trackl from radarl and track2 from radar2)

T1R1T3R2 - (Trackl from radarl and track3 from radar2)

T2R1T1R2 - (Track2 from radarl and trackl from radar2)

T2R1T2R2 - (Track2 from radarl and track2 from radar2)

T2R1T3R2 - (Track2 from radarl and track3 from radar2)

T3RlTlR2 - (Track3 from radarl and trackl from radar2)

T3R1T2R2 - (Track3 from radarl and track2 from radar2)

T3R1T3R2 - (Track3 from radarl and track3 from radar2)

As shown in Fig. 23 two targets are in the common surveillance of both rada¡s, ie. Track-

to-track combination TlRlTlR2 and T2R1T2R2.

Using Matlab I simulated the tracks (as shown in Appendix C, refer to Fig. 24 fot the

plots) with the added noise with standard deviations of 1,2,3 and 3,4,1 in range(m),

azimuth(deg.) and elevation(deg.) for radarl and radar 2 respectively .The Matlab function

"rand", which is a gaussian random number generator was used; ie. I assumed that the

noise errors from radars are gaussian.
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Fig. 24 Displays Azimuth (degrees) and Range (metres) yersus Time (seconds) for

example targets. Radarl and Radar2 report three tracks each (TIR1,T2R1,T2R1 and

T1R2,T2R2,T3R2). The six tracks above (Range and AzÍmuth vs Time) are displayed

in a common space/time co-ordinate graph (elevation not displayed). The dotted plots

represent target tracks from Radarl and the solid plots from Radar2. The asterisk

represents the fused plot.
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Fig. 25 Disptays the Classical Inference results with the Mahalanobis distance (refer

to section 2.l.l.l & 2.1.1.2') between pairs of tracks from Radarl and Radar2'

together with the Level of Significance (threshold value).
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4.2.1 Using Classical Inference on the Simulated Track Data

One wants to test the hypothesis that the 2 estimates YL(K) and Y2(K) correspond to the

same target for the nine t¡ack pair combinations from radarl a¡d 2, (refer to the section

2.1.1 on Classical Inference using hypothesis testing )

ie.

YL(K) = trXt Vector Rangel, Azimuthl and Elevationl

Y2(K) = 3Xl Vector Range2, Azimuth2 and Elevation2.

The Matralanobis distance was calculated and summed over the 10 second time period for

each of the 9 track pair combinations from both radars. Ttvo of the track pairs were found

to be below the threshold value of 50.9 (determined as explained latter),(Refer to Fig. 25)

which was obtained using the Chi-Squared distribution for 3x10 degrees of freedom ,thus

indicating the same târgets from both radars.

An example calculation of the Mahalanobis distance for simulated tracks TlRl and TlR2

( shown in Table 5.) is given below:-

The Mahalanobis distance is defined as follows (Refer to review chapt' 2'l.l)¡

e = ø[1tc'¡.>;). E t2(k),

where, E rr=Yl(k) -Y2(k)

yectors Yl(k), Y2(k) are

t l.r o ol ls o ol'l-1

E,t=et-",,_,=l 
l::l.|: î ïj l

I nexen I
| *r*uru | ¡or radut,z.

lrt"rn o*l

100 0

0200
0 010



54

Table 5 Shows the simulated data for tracks TlRl (trackl from radarl) and T1R2

(tack2 from radar2) over the 10 second time period. Used in example calculations.

88.7t76.799.2588.45t71.795.7510

81.6168.0889.7780.13169.485.89

79.9146.48s.9379.57t4681.68

68.87128.5

71.4

80.568.89129.7577.5

6

7

53.76107.8852.86108.1568.47

42.0280.0170.1241.9180.8266.865

36.655.752.1936.1955.250.24

24.8937.737.1624.638.0834.9

2

3

12.4329.826.7512.6630.0727.67

2.97t.7l3.31.489t.2l 1.571

ELEV.
(Dee.)^ztw.(Dee.)

RÀNGE
(M)

TRACK1 FROM RADAR1
(r1R1)

RANGE
(M)

AZTM,.
(Deg.)

ELEV.
(Dee)

TRÄCKl FROM RADAR2
(r1R2)

TIME
(Sec.)

H0: 812(k)=0- - - - - -s¿me targets
H I : 812(k) +0 - - - - - -different targets

-1
t2

Since there are !0 time instances, s=¿l+¿)+...+el0=LL'3766

We now establish the level, and the acceptance and rejection for the decision rule to be

prc=0.01 @robability of false correlation). (ie. Testing Type 1 error, testing to accept or

reject H0).

I t.z-t.t l'
where for time insønt t, ,r=li.:;;:rr;l

I t.z-g.s I

.l ,.rr-r.rt I

Lt.otr-r.rtl
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o = Threshold ie. probability of rejecting H0 given H0 is true,

e is t' (chi squared) distributed with N.X degrees of freedom,

where, N= The number of time instances =10,

X= The number of dimensions of vector "812" =3-

So if P"" = 0.01 ,this implies H0 is true and there is a lVo chance of rejecting the null

hypotheses H0. Probability (e>odH0)=Prc.

Using tfre t statistical table for P¡c = 0.01 for 30 degtees of freedom, the threshold is

found to be 50.9 (Refer to Appendix G, for Chi squared distribution tables).

eca H0 is true (tracks same)

e>cr Hf is true (tracks not same)

For our example 11.3766 < 50.9 hence H0 is true, and tracks TlRl and T1R2 a¡e the

same.

Table 6 Shows the Mahalanobis distance for each of the 9 üack pair

combinations, summed over the 10 second time period.

s.95E3T3R1T3R2

3.t29E3

3.44683T3R1T2R2

T2R1T3R2

T3R1T1R2

8.1983

8.5057T2R1T2R2

t.5283

T1R1T3R2

T2R1T1R2

1.01E4

t.483T1R1T2R2

11.3766T1R1T1R2

MAIIALANOBIS DIST.
(ovER 10 TrME

INST)

TRACK PAIR
COMBINATION
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Simulated track data results showing the Classical Inference results with the Mahalanobis

distance between the nine pairs of tracks from radar I and radar 2, are shown in Table 6

above.

TlRlTlR2 (trackl from radarl and trackl from radar2) and T2R1T2R2 (track 2 from

radarl and track2 from radar2 ) are below the threshold indicating H0 is true, (ie. targets

the same from radars 1 and 2). Hence the tracks can be fused together using the equations

(assuming independent radars):-

Y c=P2.(P I + P2)-r Y I + P I (P 1 + Pz)-r .Y2

4.2.2 Using ART2 For Simulated Track Data

Consider an ART2 neural net (used because of its pattern recognition and real time

operating capabilities , as discussed in section 2.1.2) wlttch is comprised of 30 processing

elements in the Fl (Input layer) and 4 processing elements in the F2 (Output layer). Range,

Azimuth, and Elevation data over the 10 time instances for each of the six tracks was input

into the Fl layer (Refer to Fig. 26). The vigilance was initially adjusted with training

tracks which were known to be the same from both radars because we need to set the

degree of recognition needed in Art} to cluster the test tracks (unknown) which are the

same from both radars.

ART2 clustered the input tracks from both radars into 4 different category outputs, ie.

category neurons I and 2 for the two track target pairs in the common surveillance volume

of both radars, and the 2 other tracks into category neurons 3 and 4 respectively. Four

processing elements were used in the output layer (F2) because I knew there were four

different tracks from both radars. Similarly, by increasing the number of PE's in the (F2)

output stage (ie. to 5,6...) and using the same vigilance value (0.995), ART2 clustered the 6

tracks into 4 different categories as before.

Hence in a scenario where you don't know the number of tracks to be clustered it is wiser

to have a large number of PE in the ouþut stage in-case the network is forced to cluster a

track to an incorrect category neuron.

The Fl a¡d F2 weights were initialised randomly between plus and minus the maximum

initial weight parameter of 0.01 (input to a weight file using the HNC Neurosoftware

ART2 package). The network parameters used in the Fl field STM (short term memory)

calculations, (ie. parameters A, B, C, D, E, and maximum initial weight, as shown in Table

2), are assigned the values recommended by HNC( Hecht-Nielsen Neurocomputing)

Neurosoftware ART2 manual ll4l , as shown in Table 2 of the review chapter 2.1.2.6.

Normal learning was enabled, this enables the network weights z;r (top-down) and 4,

(bottom-up) to be updated. Normal learning incrementally moves the weights towæds their

asymptotic values.
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The training tracls were created using the same random noise variances (using the Matlab

random noise generator function "rand") in Range, Azimuth and Elevation from rada¡s I
and 2, as were the test üacks. Training tracks from each radar (Rl and R2) which were

known to be from the same or different targets were presented to the network and the

vigilance adjusted to a value of 0.995.

(The vigilance value was adjusted to the value of 0.995 because it was the degree of

recognition needed in ART2 to cluster together the Eaining tracks known to be the same

from both rada¡s.)

I presented the network with the same six tracks (ie. 3 from radarl and 3 from radar2) as

was used for hypothesis testing. The network correctly clustered TlRl , TlR2 to category

neuron l, and T2Rl, T2Ptzß category neuron 2. T3Rl was assigned to category neuron 3

and T3R2 to category nerron 4. (Refer to sections 4.4 and 6.1 for summary of results and

conclusions).

Targetl

TqDown
Pathway

Rançp

urons

(Sympses)

Bottom-þ Pathway

Output

Target2 Target3 Target4 categor Ies

F2

Feature

Detector

F1

Elevat fonAz I muth

I nput

Fig.26 The ART2 Neural Network consists of 30 Processing Elements used in the

input stage and 4 Processing Elements in the output stage. The input consists of

Range (metres), Azimuth (degrees), and Elevation (degrees) over 10 time instances.

O OOOO
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4.3 Real Track Data Results

Consider two radars with different accuracies producing tracks which are independent

(since tracks are independent, the covariance matrix is the sum of covariance matrices Pl

andY2 from both radars). Adelaide Airport's Surveillance radar and Defence Science and

Technology's (DSTOS) FPS-16 Tracking Rada¡ (located at DSTO), using a sensor level

tracking approach to form sensor tracks.

4.3.1 DSTO Radar

The DSTO FPS-16 tracking radar is a C-Band amplitude comparison monopulse tracking

radar . Typical accuracy is +10 metres in X, -r10 meües in Y, and +3 metres in Z (where

X, Y, Z are the cartesian co-ordinates, which will be explained latter). It has a maximum

range of 40 nautical miles.

In summary the program shown in Appendix D which processes DSTO'S FPS-16 Radar

target data, reads 3 binary data hles indicating taryet positions in Range, Azimuth and

Elevation. I convert the data to a real format, and then convert from polar to cartesian co-

ordinates (so that data can be aligned in space from both radars) then finally adjust the

cartesian x,y coordinates (offset) so that the targets position is with respect to Adelaide

Airport's origin reference point (refer to details in Appendix 0).

4.3.2 Adelaide Airports Surveillance Radar

Adelaide Airport has two radars, primary and secondary. The primary Radar is a L Band

(1320 MHz), its peak power is 2M watts and it has a maximum range of 160 nautical

miles. It's antenna has a 1.3 degree azimuth beamwidth and has a 5 revolution per minute

rotation rate. The secondary radar is co-mounted on the primary, it receives transponder

altitude data from airborne tårgets. The primary radar's data format is in slant range(nm)

and azimuth (degrees) with respect to true north.

The accuracy in X, Y, Z for targets at range less than 90nm is + 407 metres in X; t 648

metres in Y, and 20 metres i¡ Z. The output format of the raw target data is: - Track no'

(indicating a target track number ), Slant Range (nm), Azimuth (Degrees), Altitude (feet)

and time (local). The software shown in Appendix D converts the target track data to

cartesian co-ordinates (with respect to its own radar head).
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4.33 Trial Results

Radarl (DSTO'S FPS-16 Radar) and Radar2 (Adelaide Airport's Surveillance Radar)

tracked several targets for several minutes between the time period of 13:51:08 - 13:54:46

(APPENDIX K displays the cartesian plots over the entire tracking period 13:51:28-

13.54.46). The DSTO Radar (R1) being a tracking radar can ftack one target (T1R1) at

any one time instant and Adelaide Airport's Surveillance Radar (R2) tracked five targets

(T1R2, T2B¡2, T3R2,T4R2,T5R2) for the same time period indicated (refer to Appendix E

processed kinematic data).

The two track-to-track correlation techniques (Classical Inference and ART2) were used

and results compared. Consider both radars as being independent using a sensor level

tracking approach to form sensor tracks. After processing (ie. alignment of data in space

and time) both radars output data in the format of X(metres), Y(metres) and Z(metres)

(Cartesian co-ordinate system relative to Adelaide Airport's position). They have different

accuracies with known variances in X, Y, and Z. ie. Thus their corresponding covariance

matrices are:-

Dsro RADAR (Rr) _1i 
å l]
lnt

=l o

lo
ADEUITDE AIRPORT RADAR (R2) P2 648

0

0

The FPS-16 Radar (R1) is tracking one target and Adelaide Airport's Radar (R2) is

tracking five targets. One of these targets is in the common surveillance volume of both

radars (refer to Fig.27)
Radarl reports One target track and rudar2 reports 5 target tracks over the time period

13:51:28 - 13;57..37. (APPENDIX K shows the cartesian X,Y & Z plots for the 10 second

time period selected).

4.3.4 Using Classical Inference Results

As in the section 4.2.1 using simulated track data I want to test the hypothesis that the two

estimates YI(K) and Y2(K) are the same targets for the five track pair combinations from

the DSTO (FPS-16) and Adelaide Airport radars. ie.

0l
ol
201
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R2

DSTO HADAH (R',l) ADELAIDE AIRPORT

HADAH CR2)

Figure 27 Adelude Airport is tracking targets T1R2,T2R2,T3R2,T4R2,T5R2, and

DSTO's radar is tracking türget T1Rl, which is in the common surveillance volume

of both radars.

Yl(k) andY2(k) = 3X1 Vector in x,y,z cartesian co-ordÍnates'

at time "k" over the 10 second time period (from 13:51:28 - 13:51:37)

The Mahalanobis distance was calculated and summed over the 10 second time period for

each of the 5 track pair combinations from both radars. One of the track pairs was found to

be below the threshold value of 50.9 (Refer to log-linear plot Fig. 28) which was obtained

using the Chi squared distribution for 30 (3x10) degrees of freedom, thus indicating the

same târget ffom both radars (Matlab program used to calculate Mahalanobis distance is

similar to the one shown in Appendix C, except for the covariances Pl & P2 values ,

which are as shown above).

T1R 1,
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Targets not aame
( "H0" tr.alse)

1
Threshold= 50.9

I
Targets same
( "H0 " T:rre )

tøø 5 6
1 2 3 4

T1R1T1R2 T1R1T2R2 T1R1T3R2 T1R1T¿R2

TRÀCK PAIRS FROM RÀDAR 1 & RÀDÀR 2

T1RlT5R2

Fig. 28 Displays the Classical Inference results with the Mahalanobis distance between

pairs of tracks from Radarl and Radar2, together with the Level of SignifÏcance

(threshold value).

Table 7 Shows the Mahalanobis distance for track pairs from
Radarl and Radar2.

2.3502VTlRlT5R2

5.1815E4T1R1T4R2

9.8913UT1R1T3R2

r.8424Er'.T1RlT2R2

t.7u7E1T1R1T1R2

MAHALANOBIS DISTANCETRACK PAIRS
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4.3.5 Using ART2 Results

Consider an ART2 neural network which comprised of 30 processing elements in the Fl

(Input Layer) and 5 processing elements in tt¡e F2 (Output layer). X' Y, and Z ca¡tesian

data, over the 10 time instances, for each of the six tracks was input into the Fl layer

(refer to Fig. 29). The vigilance was initially adjusted with training tracks which were

known to be the same from both radæs, (V=0.9998), to set the degree of recognition

needed in Art2 to cluster the unknown test tracks from both radars which are the same.

ART2 clustered the output into 5 different category outputs ie. category neuron 1 for the

track target pairs T1R1T2R2 (T1Rl is trackl from radarl and T1R2 is trackl from rudar2),

and other tracks T2R2, T3R2, T5R2, T4R2 into câtegory neurons 2, 3, 4 and 5

respectively.

Output

(T1R1, TlH2)

Target I

(T2R2)

Targel2

cT3R2)

Target3

crsR2)

Target4

(14R2)

Target5

T+lbrn
Pathny

CEyrnæe)
Botton-tþ htliluY

Categor i es

F2

Feature

Detector

F1

X

NB

Z

I nput

Figure 29 ART2 consists of 30 processing elements in the input stage & 5 in the

output stage. The input consists of cartesian co-ordinates , X, Y &. Z (metres) with

respect to Adelaide Airport over the 10 time instances.

The Fl md F2 weights were initialised randomly between t the maximum initial weight

parameter of 0.01. The network parameters used in the Fl field short term memory (4, B,

C, D, F) are assigned the values shown in Table 2 from the review paragraph 2'l'2'6' The

eeeee
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input track data used is the same as that used for Classical Inference. Input track data is

shown in Appendix E, (Noûe input data was offset to make the track data values from both

rada¡s positive.)

4.4 Summary of Results

The disadvantages of using the Classical Inference technique are derived from the need to

know the accuracy of the sensors or standard deviation of tracks to obtain the covariance

matrices Pl(k) and P2(k). The Level of Significance or threshold has to be calculated

which represents the probability of rejecting the null hypothesis "H0" (Targets Same),

given that "H0" is true.

Time consuming computations (which can be crucial to a real time central computer in a

military environment which is conelating and fusing hundreds of targets at any one time)

are required in the hypothesis testing stage where the test statistic, which is the

Matralanobis distance (a measure of similarity between two vectors), summed at each point

along the track, is compared with the Level of Significance.

The disadvantage of using Art2 is the requirement to adjust the vigilance parameter (

which determines the degree of recognition required) with training tracks which a¡e known

to be the same from both radars.

The advantages of using the ART2 neural network are that there is no need to know the

accuracy of the sensors. The network indirectly obtains this through the adjustment of the

vigilance value when training the network with track data pairs which are the same targets

from both sensofs. No instructions are required to tell the network which category the track

input belongs to it discovers it, on its own, in real-time. Where as in the Classical

Inference case, the tine consuming operation of first finding all possible track-to-track

combinations from both serìsors has to be made before any calculation (to determine if
they are the same) are started. ART2 requires no preprocessing (as long as the data from

both sensors are using the same unit of measure ie. metres) of the track input data from

either sensor. The number of pattern classes or categories (ie. track pairs) need not be

known in advance. ART2 can create new pattern categories that were not in the initial

training set.

I
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Chapter 5

Experimental Procedure and Results for
Attribute Data Fusion

5.1, Introduction

Real-time target'recognition can be achieved by integrating data from dissimilar sensor

systems and priori information using artihcial neural network technology.

Individual sensors, although effective, are limited in their capacity to identify targets' By

selectively integrating knowledge sources, (ie. sensor outputs which provide us with a

target's attributes) together with any priori information, sufficient information can be

obtained to identify an airborne target with greater cenainty.

In chapter 5 the thesis addresses the application of the backpropagation neural network

technology for automatic target recognition fusing target features derived from a

Continuous Wave (CW) Coherent (X band) Radar, which provides us with high resolution

doppler signature measurenents, together with a Surveillance Radar, which provides

positional information of airborne targets, and priori information of flight times of targets

flying regular flight paths, obtained from Adelaide Airport Flight time tables. Dempster-

Shafer @vidential Reasoning), and Fuzzy Reasoning (using the minimum method) data

fusion techniques are compared with the neural network output results, when similar inputs

are present in all three cases.

5.1.1 CW Radar Knowledge Source

From the CW Radar I obtain a high resolution doppler signature measurement. Signal

processing techniques [27] such as Fourier analysis can be used to characterise the Doppler

modulation of radar echoes from the airborne target returns (Refer to Fig. 30 and Fig.32).

The processed signal characteristics will provide an insight into distinguishing features

between airborne targets with jet engines and propellers.

Doppler modulation is not only caused by flight motion (ie. difference in doppler

frequency of each point scatterer around the aircraft), but also by rotating machinery

which is dependent on engine RPM, the motion of the propeller and compressor or turbine

!

-+
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blades. The coherent radar, produces a continuous doppler specüum due to the rate of

phase change of the vector sum of the echoes from scattering points together with a

distinct doppler line which is associated with the average echo due to the radial velocity of

the target.

(Refer to Appendix F section 1.0 for details on the operation of CW Radars).

5.1.1.1 Jet Engine & Propeller Driven Aircraft Modulation

Jet aircraft modulation [28] is produced by the conpressor or turbine blades of the engine.

Since compressors and turbines contain relatively large nunber of blades rotâting at high

angular velocities, the modulation frequencies will be much higher than those of propeller

driven aircraft.

At small aspect angles (0-10 degrees) the propeller doppler spectrum is confined mostly to

the region around the airframe line (Refer to Fig. 32), and at larger angles (11-39 degrees)

it has a much wider spread into the region lower in frequency than the airframe line.

The modulation sidebands produced by the jet engine compressor stage or turbine blades

are spaced at different frequencies about the airframe line (usually more spread out in

frequency than a propeller driven aircraft), (Refer to Fig. 30).

The body doppler (or airframe line) of both jet and propeller aircraft is obtained using the

following Doppler equation:

faoppt",
Q.vel.f)

I

c

where,

v¿I = Radial velocity

"f" = Operating frequency of CW Radar (9.83 GHz)

c = Speed of light.

For example, the commercial jet whose spectrum is shown in Fig. 30 was travelling at a

radial velocity of 140 m/sec, using the above equation the body doppler frequency is

calculated as being 9.174 KHz. You notice (from Fig. 30) that the harmonics are more

spread out than the propeller driven aircraft spectrum (as shown in Fig. 32), due to the jet

engine compressor stages producing different harmonics, spaced at different frequencies

with respect to the body doppler. Similarly the propeller driven target whose spectrum is

l

¿i

.l
i\I

,
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shown in Fig. 32 was travelling at a radial velocity of 50 m/sec, giving a body doppler of

3.27 Kflz. Because of the low aspect angle of 7.7 degrees you notice from Fig. 32 that the

propeller doppler spectrum is confined mostly to the region about the airframe line. (Refer

to Appendix F section 2.0 for more details on Doppler Spectra for jet and propeller driven

aircraft), (Appendix J displays the FFT spectrum of 14 airborne targets).

If the airspeed of commercial and propeller driven targets were different than the ones

recorded in our experiments, the airframe lines would shift hence producing a different

LpC spectrum. Due to the large number of blades rotating at high angular velocities of the

jet engine, the spectrum will still be more spread out and evenly spaced at different

frequencies about the airframe line [28], than that of a propeller driven aircraft whose

propeller spectra will always be lower in frequency than the airframe line, as indicated by

RE Gardner in reference [28] . Producing the characteristic spread of peaks found in the

LPC spectrums, for commercial jet aircraft (shown in Fig. 31 and Appendix I).
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Figure 30 The FFT spectrum (magnitude squared, 4096 samples) of a commercial jet

aircraft at an aspect angle of 20 degrees.( 50 KHz sampling rate used). The calculated

airframe line of the target is at9.ZKHz.
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Figure 32 Tlne FFT spectrum (magnitude squared, 4096 samples) of a propeller driven

aircraft at an aspect angle of 7.7 degrees. The calculated airframe line of the target is at 3.2

KHz.
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5.1.2 Surveillance Radar and Priori Knowledge Source

From Adelaide Airport Surveillance radar I obtain positional information' Range(nm) and

Azimuth(degrees) are converted into cartesian co-ordinates X(nm) and Y(nm) with respect

to Adelaide Airport's position. Priori information on regular flight paths , and

anival/departure times (from flight time tables) can be obtained for selected commercial

flights.

Information from the three knowledge sources (CW radar, Surveillance radar and flight

time table information) can be used to train a neural network to provide a gfeater certainty

(than would otherwise be obtained using fewer knowledge sources) on the identity of the

airborne target in real time.

5.2 Experimental Investigation

Three trials to collect data from sensors were organised on the same day and times of the

week to ensure flight tinetables were consistent (ie. Tuesdays between hours of 3:00 - 5:30

pm). Two types of airborne targets (propeller driven and commercial jets) were tracked

using the CW Rada¡ (located at DSTO Salisbury) at distances not greater than 40nm and at

aspect angles not greater than 60 degrees (with respect to the front of the aircraft)' Six

commercial jets and eight propeller driven aircraft were tracked at various aspect angles.

The type of commercial jets ranged from Ansett Airlines Boeing 727, Aus1úlalian Airlines

737 to British Aerospace BAE-134. The propeller driven aircraft were mainly single and

twin engine cessnas.

Both radars recorded time information of airborne targets being tracked. The Radar used to

collect the doppler records is an X Band (9.83 GHz) CW system developed at Microwave

Radar Division (DSTO) using two six foot diameter antennas. The elevation on the

azimuth mount is slaved with a servo loop to the FPS-16 Tracking Radar which directs the

antennas at the target being tracked. Radar data records were taken from each experiment

which consisted of a combination of FPS-16 Range, Azimuth, Aspect angle , Aspect rate

and time the target is tracked. Each second the radar collected 640k bytes of complex data

(In-phase & Quadrature). The radar frequency was set to 9.83 GHz. An A/D sample rate

of 50 KHz permits an adequate Doppler Spectrum for signal processing without aliasing.



70

5.3 Processing Data from Both Sensors [29]

Slant Range and Azimuth data from the Surveillance Radar is converted to cartesian

coordinates X & Y.

Features associated with propeller or jet engine modulation of the doppler can be identified

in the spectrum by performing a Fast Fourier Transform Cnl on the radar returns. It is

not always possible to extract all features (for input to a neural networþ by the use of a

single digital signal processing tool. A combination of Fourier Transform and Linear

Prediction (LP) was used to process the radar returns from targets.

The idea in using FFT together with LPC comes from a paper [38] by D. Nandagopal,

presented in Radarcon 90 in which he describes an experimental study of the

characterisation of doppler returns from flat rotating blades carried out in the Microwave

Radar Division of DSTO. One of the dominant features of radar echoes from rotating

blades was the presence of a "plateau" in the frequency spectrum. The plateau of the radar

returns is due to the variable doppler contributions of the blades. Signal processing

techniques such as Fourier transforms and Linear Prediction were used to characterise the

doppler modulation of radar echoes from rotating blades. The smoothed LP plots clearly

defined the edges, lengths and heights of the plateau regions in Nandagopals t38l

application (from which the identity of the rotating blade could be determined). Whereas in

my application the smoothed plots were used as inputs into the backpropagation neural

network over a defined frequency period (discussed in section 5.4.1in more detail).

The basic idea in Linear Prediction (LP) t30l,t27l analysis is that a signal sample can be

approximated as a linear combination of past signals by minimising the sum of the squæed

differences (over a finite interval of time) between the actual signal sample and the linearly

predicted ones. A unique set of predictor coefficients can be determined, which

characterises the signal data. Once predictor constants are computed then an all pole model

can be developed to fit the data. (Details on Linear Prediction are discussed in Appendix

A).

The Doppler spectrum of the Radar returns can be modelled using LP. [Refer to Fig. 31

and Fig. 331. In this particular application since I am using a small model order the LPC is

basically acting as a smoother rather than a high resolution spectral estimator [29].
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5.4 Experimental Procedure

Three backpropagation neural networks (NNl, NN2 & NN3) were used (Refer Fig.35) to

fuse the targets attribute data from the sensors together with priori information on arrival

times & flight paths. (APPENDIX N provides an exposition into data fusion of multiple

classifiers).

5.4.1 Backpropagation neural network 1 (NNl)

The first neural'network (NNl) is used to identify targets from the processed doppler

modulation (using CW radar) as being either jet or propeller driven aircraft.

NNI consists of :-
11 neurons in the input laYer,

8 neurons in the hidden laYer &
1 neuron in the outPut laYer.

A backpropagation neural network with 2 (active) layers (ie. one hidden and one output

layer) was chosen for the classification of processed doppler modulation daø primarily

because it should be easier to train than a network with more layers. The reason for using

the 11 input neurons in NNl was to cover the required range of frequencies betwee¡2-LZ

KHz (in I KHz intervals). Eight neurons in the hidden layer produced the shortest time

needed to train the network (using CW radar doppler data as inputs). A single ouþut from

the sensor network NNI is all that was needed to pass it's decision (on the identity of the

processed doppler data), to the fusion neural network NN3.

The real part of the complex data from the CW Radar (doppler modulation) was selected

and processed for the target being tracked by both radars (for nose aspect angles less than

60 degrees). The FFT of the LP coefficients were calculated and plotted (Refer to Fig. 31

and Fig. 33). The use of LP using a small model order (details shown in Appendix A)

produces a smoothing effect hence defining any plateau or peak regions of the spectrum

(as shown in Ref. [38]), and simplifying the input data to the neural network NNl.

Because most of the important modulation information on all the recorded targets was

present between 2000 & 12000 Hz, and radar noise was present for frequencies less than

4N Hz for some targets, eleven data values were selected from the above plot (relative to

the noise floor) between the frequency values of 2000-12000 Hz in 1000 Hz intervals as

inputs to the backpropagation neural network NNI . NNl classifies the input data as either

being that of a jet or propeller driven aircraft.
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Continuous Wave (CW) radar data (obtained from trials I and 2 ) from four commercial

jets and three propeller driven aircraft over the eleven frequencies were used to üain NNl.

CW radar data for two commercial jets and five propeller driven targets (obtained from

trial 3) were used to test NNI (Refer to Appendix H for data tables of training and testing

pre-processed CW data).

In Appendix M,,verification tests performed on NNl are described using the CW radar

data stored in arrayO. To test the integrity of the NN1's output when CW Radar data (real

part, stored in anayO) is input, noise was added before being processed using LP. Also test

and üain data were swapped and results noted.

The output result of NNI is fed into the input of the third neural network NN3 (Refer Fig.

35) which fuses it with data from the other knowledge sources.

Training and test CW Rada¡ data (pre-processed using LP) for NNl is shown in Appendix

H Tables 23 and 24. Tlne FFT and LP plots for the corresponding training and test data for

commercial jets and propeller driven aircraft are shown in Appendix J. The Linear

Prediction spectral estimates, figures 60, 62, 64, 66, 68, 70, and 72 represent the training

plots and Figures 46, 48, 50, 52, 54, 56 and 58 represent the test plots'

5.4.2 Backpropagation neural network 2 (NN2)

Since all three trials were performed on the same day and times of the week, arrival &

deparhrre times of regular flights were consistent. Three regular commercial flights arrive

into Adelaide Airport on that day between the hours of 3:00 to 5:30 pm. They are from

Darwin (at 4:30 and 5:30) and Perth at 4:3O. (Appendix I contains the Darwin & Perth

flight path training data tables, Fig. 34 indicates the flight-paths).

NN2 was trained to identify the targets on Perth and Darwin Flight paths and to identiff

all other flight paths as unknown. "X" and "Y" cartesian coordinates with respect to

Adelaide Airport in Nautical Miles are the inputs to NN2. As shown in Appendix I (Tables

25 and 26) tlttrty four cartesian (X,Y) coordinates (with respect to the origin point at

Adelaide Airport , X=0, Y=0) were used to train NN2 to identify the targets as being on

one of the 3 flightpaths.

NN2 consists of :-
2 neurons in the input laYer

8 neurons in the hidden laYer, and

3 neurons in the output laYer.

The 3 neurons in the output layer represent the three possible flight paths ie. Darwin (1 0
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0), Perth (0 1 0) and unknown (0 0 1). Outputs from NN2 a¡e fed into the input of NN3.

Y

4D

Darwln Fl Ight paths

30

nautlcal mi les

20

10

¡

Perth Fl T

1 a

nautical mï les

Figure 34 Typical Darwin and Perth jet arrival flight paths to Adelaide Airport.

5.43 (Fusion) Backpropagation neural network 3 (NN3)

The inputs to NN3 are the outputs of NNl and NN2 and real time information (ie' time the

target is locked on by the radar). Assuming due to delays and early arrivals, a commercial

flight (Boeing 727/737) from either Perth or Darwin can still be on a flight path (within 35

Nm of Adelaide) t 30 minutes from its scheduled arrival time.

Hence real time data is presented to the input of NN3 in one of the binary forms, as

follows:-

1 0 0 represents any time between the hours of 3:00-4:00 pm'

0 I 0 ,, tt rt rr tr rr " 4:01-5:00 pm,

0 0 I rr ' rr rr rr rr " 5:01-6:00 Pm.

x
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The data used for training NN3 to identify possible target types, reflected the priori

knowledge that Darwin flights are only possible (within 35 Nm of Adelaide Airport)

during the hours of 4:0G5:00 and 5:00-6:00 pm, and Perth flights only possible during the

hours of 4:00-5:00 pm.

NN3 consists of :-
7 neurons in the input laYer,

12 rr rr " hidden layer, and

4 rr rr " ouþut layer.

The output layer represents the certainties associated with target identification, as follows :-

(A) Darwin jet.

(B) Perth jet.

(C) Unknown jet. (ie. jet, on unknown flight path at any time, or known flight path

and unknown time).

(D) Propeller driven aircraft (ie. on any flight path at any time.)

NN3 was trained on the binary truth table (refer Table 8) which reflects the above desired

output (taking into account priori knowledge on flight anival times ) for the ideal inputs

from both sensors .
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Table 8 Is the truth table used to train NN3 back propagatíon neural network.

''A'' INDICATES A JET FROM DARWIN.

''B'' INDTCATES A JET FROM PERTH.

"C" INDICATES AN UNKNOWN JET (ie.Unknown flÍght path & or unknown time)'

''D'' INDICATES A PROPELLER AIRCRAFT (ie. Which can bE ON ANY flightPAth

or time).
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Fig 35 Displays the 3 backpropagation neural nets used to fuse the doppler modulation

attribute data from the CW Radar together with flight positional data from the Surveillance

Radar and time information when the target is locked on by both sensors. Flight path and

arrival time priori information has been used to train NN3'
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5.5 Mass Computations for use with Dempster'shafer and Fuzzy Reasoning

To do the mass computations for use with the D-S and Ftzzy Reasoning methods I first

have to convert sensor measurements into a "probability mass distribution" over

propositions, the propositions in this case being the proposition that the attribute from the

three knowledge sources (CW Radar, Surveillance Radar and priori Flight Time-table

information) have come from one of the following targets:- Darwin jet, Perth jet, Unknown

jet, Propeller driven aircraft.

Since the output of NNl gives us a measure of the certainty that the target is a jelpropeller

driven aircraft (when attribute data from the CW Radar is present). We can derive a

probability mass distribution on the four propositions.

ie. For târget 1 (as shown in Table 10.) NNl's output indicates a 99.98 Vo ptobability that

the target is a jet, this would indicate that the target is equally likely to be either a Darwin

jet, Perth jet, or Unknown jet (ie. 99.987o, 99.987o, 99987o certainty) respectively and

O.O2Vo chance of it being a propeller driven aircraft as shown in Table 15. A set of "basic

numbers" is then computed (for the four propositions) by normalising the resultant to bring

their total value to one. This process is equivalent to computing the probability of the

target being one of the four propositions. The measurement uncertainty "theta" of the

sensor (knowledge source) is accounted for by weighting each basic mass number by a

factor equal to "(l-theta)". This new set of mass numbers then represent the contribution of

the knowledge source to the support of each proposition.

Raw mass assignnrents derived from NNl for the remaining seven targets are shown in

Table 15, with their normalised mass assignments, ( assuming an uncertainty of l7o or 0.01

from the CW Radar Sensor) shown in Table 16 (ie. tafget example 1: 0.33,0.33,0.33,

0.0, for Darwin jet, Perth jet, Unknown jet, Propeller aircraft propositions respectively)

The output from NN2 gives us a measure of the certainty that the target is on either a

Darwin, Perth or Unknown flight path. Using target 1 again (as shown in Table 10), NN2's

output (when positional data is input from the Surveillance Radar) indicates a 99.OlVo

certainty that the target is on a Darwin flight path, this in tern implies that the target is

equally likely to be one of the following propositions, a Darwin iet (99.017o), Unknown jet

(99.OlVo) or Propeller driven (99.017o) aircraft, and a negligible chance of it being a Perth

jet as shown in Table 15. The normalised results for the 8 targets (assuming 17o

uncertainty from the Surveillance Radar) is shown in Table 16 (ie. target example 1:- 0'33,

0.0, 0.33, 0.33, for the 4 propositions)

From Flight Time-table information I derive Figure 36. Thus I know that a Perth jet is

due to arrive into Adclaidc bctwccn the hours of 4:00-5:00 pm and two Darwin jets are

due to arrive between the hours of 4:00-5:00 pm and 5:00-6:00 pm. I also assume that
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propeller driven aircraft are in the air at all times between 3:00-6:00 pm, and that

commercial jets are unlikely to be in the air between the hours of 4:0G6:00, in the

quadrant air space interested in.

Radars started tracking target 1 (within 35nm of Adelaide airport) in the time period of

3:004:00 pm. Using Fig. 36 I derive the following "basic numbefs" 0,0,1,1; for the 4

proposition Darwin jet, Perth jet, Unknown jet and Propeller aircraft respectively. This

indicates equally high likelihood of the target being either an unknown jet or propeller

driven aircraft and negligible chance of it being a Darwin jet or a Perth jet. Normalising

and taking into consideration the uncertainty (assume l%o or 0.01) I obtain the value of

(0,0,0.495,0.495, for the 4 propositions) as shown in table 16'

Tabte 9 Shows the probability (as a percentage value) that the targets' ID is one of the 4

possible outputs from NN3.

5.6 Discussion of Experimental Results using NN3

Data from trials 1 and 2 were used to train NNI and NN2 backpropagation neural

networks. Results from trial 3, together with a simulated scenario input, were used for

testing the neural network structure. For the third trial seven different targets (as shown in

Table 9 & 10), were tracked during various times between the hours of 3:00-5:30 .

Table 11 displays the raw output results from the neural network (NN3) when trial 3 data

is input. Note, that NN1 identifies the first target example as being a jet, and NN2
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Table 10 shows the raw data input to NN3, from NNI & NN2 outputs.

identifies it as a target flying on a Darwin flight path (refer to Table 10). This normally

would indicate a Darwin jet but because I have priori information from a third knowledge

source (ie. timetable), which indicates that no flight from Darwin is possible that time of

day. In consequence NN3 concludes (987o probability) that the target must be an unknown

commercial jet flight, which happens to be flying in a Darwin flight path. The output of

NN3 (fusion backpropagation neural network) will indicate a measure of certainty on the

identity of the four possible target types, ie. (Refer Table 9 ) l.78%o probability that the

first target from trial 3 is a Darwin jet, and 987o that it is an unknown commercial jet.

For the second target example, NNl produces an output of (0.9994) (refer to Table 10)'

which indicates a high likelihood that the target is a jet. An output from NN2 (0.9968' 0.0'

0.0055 ) indicares a high probability that the target is on a Darwin Flight Path' The target

\/as tracked between the hours of 4:00-5:00. For the above input data, NN3 (trained)

output the following results (0.984, 0.018, 0.006, 0.003) as shown in Table 11, indicating a

96Vo probability that the target is a Darwin jet scheduled to arrive into Adelaide at 4:30 (as

shown in Table 9).

For the next five targets (no. 3 - 7 , shown in Table 10), NNl indicates that they æe

propeller driven aircraft ie. (0.0032, 0.0029, 0.0092, 0.05, 0.16) respectively. The output of
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NN2 indicaæs that they are on (Perth, Unknown, Unknown, Unknown, Unknown) flight

paths respectively. Fusing the above outputs from NNI and NN2, together with real time

information, NN3 produces an output (Table 9 e. Í) which indicates a high probability

that the targets are propeller driven, flying on any flight path and at any time.

Target no. 8 was simulated to produce the scenario of a Darwin jet which has strayed a

couple of nautical miles from the known Darwin flight path (during the hours of 4:00-

5:00). ie. Assume NNI indicates a 99.9Vo probability that the target is a jet (ouþut of

0.9998 ), and NN2 indicates a 60Vo probability that the target is on a Da¡win Flight Path'

The output results, from the fusion network NN3, indicate a 72.47o probability that it is a

jet from Darwin and a 22Vo probability that it is an Unknown jet on an unknown flight

path (refer to Table 9).

Table 11 Shows the output from the fusion neural network NN3 when presented with the

inputs of table 10.

0.0069030.1632510.0352420.5163798

o.9844330.0000000.000000o.0545527

o.9959450.0000210.0æ2720.000000

5

6

o.9972300.0000130.0w2230.000000

o.994852o.orll7240.0000000.0000004

0.9968080.0006720.0000s60.0000003

0.0087460.0065110.0182540.9841282

0.002814o.9867250.0002370.0110291

PROP. AIRC.I]NKNOWN JETPERTH JETDARWIN JET

OUTPUT FROM NN3TARGET NO.
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5.7 Discussion of Results using Dempster'Shafer

5.7.1 Numerical Example Target No.l

The normalised inass assignnrents for target example 1 (obtained from Table 16) will be

used to show how the attributes are fused from the 3 knowledge sources to facilitate

automatic processing using Dempster-Shafers combination rules I I 5'5].

From Table 16 I obtain the normalised mass assignments for the 4 propositions or target

types (Darwin jet, Perth jet, Unknown jet, Propeller aircraft ie TL,T2,T3,T4 respectively) of

tafget no. L , which was derived from the outputs of NN1 and NN2 and Fig. 36 ; assuming

an uncertainty of lTo from the 3 knowledge sources, which could be a reflection of

information/sensor error or accuracy.

Mass Function derived from CW Radar (ml.) and Surveillance Radar (m2):-

m1-(Tl,T2,T3,T4)=(033, 0.33, 0.33, 0.0) ; thetaL = 0.01'

m2-(Tl,T2,T3,T4)=(033, 0.0, 0.33, 0.33) ; theta2= 0.01

Dempster's rules of combination a¡e used to obtain the nat¡ix shown in Table 12, with the

probability mass assignments that are to be combined given along the first column (m2)

and the last row (m1). The computed elements (for a given row and column) of the matrix

are the product of the probability mass values in the same row of the first column and the

same column of the first row.

The assignments of the elements in Table L2 ue according to the rules below [15'5]:

(1) The product of mass assignments to two propositions that are consistent leads to

another proposition contained within the original.

ml(Al).m2(41)=m(Al)

(2) The product of the mass assignments to uncertainty and the mass assignment to another

proposition leads to a contribution of that proposition.

m 1 (th e ta).m 2(Ã2) =m (42)

(3) The product of uncertainty and uncertainty leads to a new assignment to uncertainty.

m1(theta).m2(theta)=m(theta)
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(4) When inconsistency occurs between the knowledge sources, we assign a measure of

inconsistency denoted "k" to their products.

m1(a1).m2(a2)=Y

Table 12 Shows how Dempster's rule is used to combine the mass vector ml, with the

mass vector m2. (Note "k" represents a measure of inconsistency).

In order to compute the new mass vector, I first sum all the assignments to k (ie. k=O-7623

in our example. The new mass vector is computed by summing the appropriate entries in

the matrix and dividing by the normalisation factor (l-k=0.2377).

The new entries are:-

theta=0.000110.2377 = 0.00042

T1=(0.0033+0.0033+0. 1089) I 0.237 7 = 0.4859

T2=0.0033/0.2377 = 0.01388

T3=(0.0033+0.1089+0.0033)/0.2377 = 0.4859

T4=0.0033/0.2377 = 0.01388

Plausibility was computed as shown in this example:

mL
theta=0.01.

m1,

T3=033
ml

T2=033
m1

T1.=0.33

K=0.1089 K=0.1089 T1=0.0033T1=0.1089m2 T1=0.33

T3=0.0033T3=0.1089K=0.1089K=0.1089

m2 T4=0.33

m2 T3=0.33

T4=0.0033K=0.1089K=0.1089K=0.1089

theta=.0001T3=0.0033T2=0.0033T1=0.0033m2 theta=0.01

P(Tl)=m(f1)+m(theta) = 0.4859+0.00042 = 0.4863
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Table L3 Shows the resulting support and plausibility for the

propositions listed.

Thus ml and m2 are conbined to produce a new mass m3'

m3 = (Tl,T2,T3,T4)=(0.4859, 0.01388, 0.4859' 0.0138)

with resulting uncertainty of 0.00042

Based on sensor data alone (ie. CW Radar and Surveillance Radar) the method leads to

two primary hypotheses, T1(0.4859, 0.4863) and T3(0.4849, 0.4863). The support and

plausibility values of 0.4859 and 0.4863 for propositions Tl and T3 indicate that the target

is either a Darwin jet or an Unknown jet. Tl and T3 are favoured over the other

propositions. Both propositions at this stage are equally as likely to occur.

The flight timetable knowledge source (Fig. 36) indicates a high likelihood of encountering

an Unknown or a Propeller aircraft target at the radar lockon time (between 3:00-4:00 pm)

for target example 1, and I derive the following priori normalised mass assignments for the

4 propositions (assume an uncertainty of lVo or 0.01).

rtlpriori = (T1,T2,T3,T4) = (0, 0, 0.495, 0.495) ; theta = 0.01

which, when integrated with m3, results in a mass function:-

Incompositc = (T1,T2,T3,T4) = (0.0188, 5E-4,0'952' 0.028)

with resulting uncertaintY, theta= 1.63E-5

o.ot440.0140T4

0.4863

T1 0.4859

T2 0.0r39

T3 0.4859

0.0143

0.4863

PLAUSIBILITYSUPPORT

:.{

!d

ri

!
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0.0280160.028T4

0.9520160.952T3

5.168-45E-4T2

0.0188160.0188T1

PLAUSIBILITYSUPPORT

I

Table 14 Shows new Support and Plausibility for the

propositions after combining the new knowledge Source lrlrimi.

(Note new resultant uncertainty has decreased to 1.63E-5 from
0.00042).

This leads to the following hypotheses. When new priori evidential evidence is brought to

bear, the support for T3[0.952, 0952016] (Unknown jet), becomes significantly greater

than for all others. ie. Proposition 1 (Darwin jet) has a lower support than the previous

combination as shown in Table 13 (0.4859 goes to 0.0188). In fact, as shown in Table 14

all other propositions except T3 drop to very insignificant levels of support.

5.8 Discussion of Results using Fuzzy Reasoning

5.8.1 Minimum Method

Using example targetl, I will discuss an alternative to Dempster-Shafers (which is less

computationaly intensive) of fusing the 3 knowledge sources,

re ¡¡l=(Tl,T2,T3,T4) = (0.33, 0.33, 0.33, 0), thetal= 0.01'

m2=(Tl,T2,T3,T4) - (0.33, 0, 0.33, 0.33), theta2= 0.01

mpriori=(Tl rT2rT3,T4) = (0, 0, 0.495, 0.495), theta3= 0.01

Using the minimum method, I take the mininlunr mass value of propositions T1, T2, T3,

T4, and uncertainty, for the first two knowledge sources ml (CW Radar) and m2

(Surveillance Radar).

ie.

min(mlTl, m2Tl) = 0.33

min(mlT2, m2T2) = 0.0

min(mlT3, m2T3) = 0.33

!

:.,1
rll
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T1
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T3
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Figure 36 The curves (derived from flight timetable information) indicate the

probability that any given target type (or proposition) T1,T2,T3,T4 will be flying
within 40nm of Adelaide Airport at the time indicated on the x axis.

min(mlT4, m2T4) = Q.$

min(thetal., theta2) = 0.01.

Normalising the resultant nass vector, I obtain the combined mass m3

ie. sum of above is 0.67, hence:-

T1 = T3 =0.3310.67 =0.49
T2-T4=0.0
theta = 0.0110.77 = 0.0149

r

I

!d
,t:

I

hence combined mass,



T
tl

{i

86

t¡3 = 10.49, O,0.49,0) theta = 0.0149;

integrating m3 with Ittpriori results in mcomposite (after normalisation)

rtlcomposite = (0, 0, 0.98' 0) theta = 0.02

Hence proposition T3 (Unknown jet) is the most likely target (0.98). Which compares

favowably with the D-S method (0.952), and neural network method (0.9524), except for

the fact that theta has increased in value, ie the uncertainty has increased when fusing m3

with mprior¡ . Also by taking the minimum and normalising the mass vectors continuously

we can lose the resultant masses of the remaining propositions. But the minimum method

has the advantage over D-S in the reduced number of calculations needed. However, as

mentioned, the uncertainty calculation is unsatisfactory. In the next paragraph, I will

introduce and discuss the alternative to uncertainty using Fuzzy Reasoning (called Entropy)

and calculate the'uncertainty (Entropy) for target example 1.

Table 15 Raw mass assignments for 4 propositions (TI,T2,TJ,T4) derived from table 10

and flight timetable information trig. 35).

4
',1

I

L,1 ,0,133.7,0.0,49.79,49.7999.98,99.9 8,99,98,.O28

0,1,0,199.74,0,99.74,99.741 6.08,16.08,1 6.08,83.
92

7

1,1,0,10,0,99.93,99.935.0,5.0,5.0,95.06

0,0,1,1

1,1,0,10.42,0,99.7,99.70.92,O.92,0.92,99.O8

4

5

00.19,0,99.85,99.850.29,0.20,0.20,99.71

0,0,1,143.3,94.7 4,9 4.7 4,94.7 40.32,0.32,0.32,99.683

1,1,0,199.68,0,99.68,99.6899.94,99.94,99.94,.062

0,0,1,199.01,0,99.01,99.0199.98,99.98,99.98,.O21

SIJRV. RADAR FLIGHT
TIMETABLE

CW RADAR

DEMPSTER SIIAFER & FUZZY REASOMNG I]NNORMALISED
INPUTS FOR THE 4 PROPOSITIONS

TARGET
N0.

r
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Table 1.6 Normalised mass assignments for the 4 propositions (ie Darwin jet, Perth jet,

Unknown jet, Propeller Aircraft) derived from the outputs of NNl & NN2 (Table 10) and

flight timetable prior information. And used as input vectors for Dempster Shafer & Fuzzy

Reasoning. (Assuming an initial uncertainty of l%o (.01) from the 3 knowledge sources).

5.8.2 Fnzzy Reasoning (Entropy) [34]

Fuzzy variables are based upon fuzzy set theory of Zadet' Í24,251, which is used to

represent uncertainty. If the field of discourse "Y" has a va¡iable "y" in a fuzzy set "4",

then "y" has a 'membership function p(y) in the unit interval [0,1]. Crisp sets have

membership values that are either 1 or 0. Operations on fuzzy sets corresponding to logical

AND, OR and NOT are defined bY:-

A AND B = AuB = { (y, min(¡ro(y), p¡(y))) },
A OR B = AnB = { (y, nax(¡ro(y), tru(y))) } and

A'= { (y, l-tro(y)) }

t

.33,.33,0,.3325,0,.3698,.3698,33,.33,.33,6.6E-58

o,o,.495,.495.33,0,.33,.3312,.12,.12,.6287

.33,.33,0,.330,0,.495,.495.015,.045,.045,.856

.33,.33,O,.33.0021,0,.494,.494.009,.009,.009,.965

o,o,.495,.4959.48-4,0,.495,.495.003,.003,.003,.984

o,o,.495,.495.13cB,.286,.286,.286.003,.003,.003,.983

.33,.33,0,.33.33,O,.33,.33.33,.33,.33,1.98-42

0,0,.495,.495.33,0,.33,.33.33,.33,.33,01

FLIGHT
TIMETABLE

ST]RV. RÄDARCW RADAR

DEMPSTER SHAFER & FTIZZY REASONING INPUT
VECTORS (normalised) FOR THE 4 PROPOSITIONS

(ASSUME IMTIAL IINCERTAINTY OF l%o FOR TIIE 3

KNOWLBDGE SOURCES).

Target
No.
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Entfopy measures the uncertainty of a system, and fuzzy entropy represents the uncertainty

of the fuzzy set. Entropy is defined as follows l23l ¡

E( A) =¡41 AnA' )/lvl(Au A' )

where M(A) is tjrre fazzy count (= Xpn(y,)). Hence E(A) varies between certainty (=0) and

maximum uncertainty (=l).

The normalised outputs of NNl and NN2 can be used to represent the membership

function for each target type or proposition (Tl, T2, T3, T4). Probability represent a

special case of fuzziness [23]. For example the fuzzy variable (eVpropeller aircraft) range

, can be defined to have a membership of Tl(elpropeller aircraft) given by the normalised

output of NN1 (between 0 and 1). Thus the probability mass values outputs from NNl and

NN2 can also be used for fuzzy reasoning.

For our target type exampl e, fuzzy "rules" can be stated by:-

If jet/propeller aircraft range value from NNI is T*(elpropeller) and flight path range

values (in the flight paths Darwin, Perth or Unknown) from NN2 is T*(flight path) and

flight lockon time range is T*(lockon time) the target is TN.

Where T¡, N=1,2,3,4 represents the membership function to each of the target types'

For the fuzzy rule, T*, has a value range 0-1.

Using example 1:-

¡¡l=jelpropeller ={(T1,0.33), (T2,033), (T3,0.33), (T4'0)} thetal='0I'

m2=flight path = {(T1,033), (T2,0), (T3,0.33), (T4'0.33)} theta2='01

mpriori= lockon time = {(T1,0), (T2,0), (T3,0.495), (T4,0.495)} theta3=0.01

Calculate the entropy of each fuzzy proposition:-

sum of Tl ... T4 for ml = 0.99

sum of T1 ... T4 for m2 = 0.99

sum of T1 ... T4 for mPriori = 0.99

sum of the complement of Tl ... T4 for ml = 3.01'

sum of the complement of T1 ... T4 for m2 = 3.0L

Entropy of ml= 0.99/3.01 = 0.328
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le.

Entropy of m2= 0.9913.01 = 0.328

Using fuzzy rules, we combine ml and m2 to obtain the entropy of m3

Target type = Qet/propeller) n (flight path)

= {(T1,0.33), (T2,0), (T3'033)' (T4'0)}

suml = 0.66

The crisp value is the maximum , and so T1 and T3 are the most likely target types with

an entropy value of 0.1967.

Entropy of m3 = suml/complement of above

= (0.33+0+033+0)/(0.67 +l+0.67 +l) = 0.197 6

Using the prior knowledge we have

Target type = fet/propelter) n (ftight path) n Qockon time)

= {(T1,0), (T2,0), (T3'033)' (T4'0)}

With the crisp value giving T3 as the chosen target type with an Entropy for m*.*,* =

0.0899

re. Entropy of D"on,po"¡r" - (0 + 0 + 0.33 + 0)/(1 + 1 + 0.67 + 1) = 0.0899

When fusing m3'with m"on,po.it", the uncertainty using D-S, reduced from 4.28-4 to 1.63E-

5, and for fuzzy from 0.1976 to 0.0899. So the uncertåinty (using fuzzy reasoning) of the

combinaton has also been shown to reduce in a consistent manner as in D-S' (Appendix L'

shows the results in a table of uncertainty and entropy for the remaining seven targets

using both D-S and Fuzzy methods).
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5.9 Summary of Results

Examining the results of fusing the target attribute data from the 3 knowledge sources

using the 3 data fusion methods (ie. refer to Table 9 using NN3, Table 17 using D-S and

Table 18 using fuzzy reasoning) you notice that they all reach the same result on which

target (proposition) is most likely for each of the 8 examples.

The obvious advantage of using the fuzzy reasoning (minimum) method is the reduced

number of calculations needed. The disadvantage with the fuzzy reasoning method is that

in some cases we can lose the resultant nÌasses of the remaining propositions, due to the

continuous minimisation and normalisation of the mass vectors, which may not necessarily

represent the magnitude of the resultant proposition accurately. A problem with fuzzy

reasoning (stated in ref.[34]) is when combining information about a particular hypothesis,

the fuzzy reasoning AND wilt represent it by the one low value despite the existence of a

number of larger values. The D-S method has a similar problem, for example, a

proposition of mass of 0.9 repeated n times causing in the worst case assignment of 0.9,

which can be quite small, when different sets of evidence are combined.

As mentioned in Kewley [34], the disadvantage of using D-S method is its reliability.

Zadeh [39] questions D-S's use of normalisation to remove ûlass assignments to the null

set. He shows that for:-

ml(a)=Q.Q, nl(b)=Q. 1, m1(c)=Q.9

m2(a)=Q.!, m2(b)=Q. l, m2(c)=Q.g

the combined result is

m3(a)=Q.Q, m3(b)=1.9, ni3(c)=0'0

This is not consistent with the low mass assignments to proposition "b", in both probability

assignments. The norn'ralisation has concealed the contradictory aspect of the sets of

evidence. Shafer'.s counter example [40], slightly nodifies ml and m2 so that :-

ml'(a)=Q.Ql, ml' (b)=Q. 1, m1' (c)=Q.$!

m2'(a)=Q.$p, m2' (b)=Q.1, m2'(c)=0.01

with the new combined result of

m3'(a)=Q.l/, m3'(b)=Q.36, m3' (c)=0.32

Kewley [34], statcd that from these examples, there is great danger in assignment of zero

or very low values to a probability due to the normalisation procedure.
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Also the disadvantage of using the D-S method is the number time consuming

computations needed in combining mass vectors. For both D-S and Ftzzy reasoning there

exists the problem of how to obtain the initial mass assignments for each of our target

types, (propositions T1 ... T4), and what initial uncertainties to assign to our knowledge

sources ( in our example we assumed an uncertainty of l7o ).
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Chapter 6

Conclusion

6.1 Kinematic Data Fusion

Even though the same results were achieved in the end using both techniques (Classical

Inference and ART2) with kinematic data obtained from both radars, ART2 has the

following advantages over the Classical Inference technique :

It can be trained and implemented into a real time environment very quickly without

knowledge of the accuracy of the sensors. Radar data can be input to the neural net in

parallel to obtain a quick result. Also, as the number of targets changes, continuously in an

ever changing real time environntent, a new pattern category can be formed quickly that

was not in the initial training set.

Strict application of the Classical Inference technique requires knowledge of an 'a priori'

probability distribution which is clearly unknown in a realistic application. Thus the

threshold value used (50.9) is not necessarily the best in the real world and so there might

arise a situation where the same target being tracked in the common surveillance volume of

both radars is identified incorrectly as being two different target tracks (ie. tracks are not

the same, the alternative hypothesis H0 is accepted). ARTZ does not require knowledge of

any 'a priori' probability distribution.

In conclusion the ART2 neural network technique is better than the Classical Inference

approach using Hypothesis testing as first outlined by Bar Shalom [6], because we not

only avoid the time consuming computations required in the hypothesis testing stage,

where the test statistic (which is the Mahalanobis distance) is summed at each point along

the track and compared with the level of significance (as shown in the example

calculations of the Mahalanobis distance for simulated tracks in section 4.2.1)' But also the

need to find thp accuracy of the sensors is avoided because the network indirectly obtains

this from the training data through the adjustment of the vigilance value' The vigilance

determines the degree of recognition between the two tracks when the network is trained

with track pairs which are known to be from the same targets. Even though the vigilance

value was adjusted manually when training ART2 with tracks from both rada¡s which were

known to be the same, it wouldn't be hard to write an algorithm to adjust the vigilance

value automatically.

Also to find out if there is any correlation between track pairs when using the Classical
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Inference approach one has to find the possible track pair combinations (ie. trackl from

radarl with trackl from radar2, trackl from radarl with track2 ftom ndat2, etc, refer to

Table 6). This tedious and time consuming procedure of pairing tracks is avoided using the

ART2 neural network because all we do, once the network is trained, is input the tracks

into the network one at a time , and the network clusters the input tracks into one of the

appropriate target categories as shown in Fig. 29, in real time.

Time consuming computations as discussed previously can be crucial in a military scenario

with hundreds of targets being correlated and fused by a central computer whose data is

sent to weaponry (ie. Rapier missiles) used to intercept the required targets in real time.

6.2 Attribute Data Fusion

The objective was to develop and evaluate a neural network based Data Fusion system for

automatic allocation of identity of airborne targets using all available information, and

compare the results using trial data with the D-S and finzy reasoning methods. Even

though the target classifications were restricted to jet or propeller driven in NNl, and to

Darwin/Perth/Unknown Flight paths in NN2, the fusion of the outputs, with flighttime

information, in NN3, effected a considerable improvement in the final classifications over

NNI or NN2's target classification on their own.

To achieve the objective a neural network based Data Fusion system conrprising of 3

backpropagation neural networks NNl, NN2 and NN3 was evaluated (as shown in Fig.

35). NNl and NN2 produced classifications on the identity of target types (when presented

with data from a CW radar and Surveillance radar respectively). NNI successfully

identified airborne targets as either jet or propeller driven from their doppler modulation

(processed using LP), and achieved a recognition accuracy of l00Vo for the 7 airborne

targets presented. (ie. Refer to the bar graphs in figures 74 and 75, Appendix M). Results

from NNl using the limited target numbers (as shown in Appendix H, Tables 23 and 24)

are very promising. However, further investigations are necessary using large number of

targets before drawing definitive conclusions. Also NN2 successfully identified the 7

airborne targets as being on Perth, Darwin or unknown flight paths from their cartesian

coordinates, "X" and "Y" (with respect to Adelaide Airport). The fusion centre NN3 made

the overall classification based on the outputs of NN1, NN2 and flight timetable

information (refer Fig. 36). As discussed in section 5.6 using the eight target examples I

conclude that combining the knowledge sources gives us a better assessment of the identity

of the target (in real time).

One advantage neural networks have over the other data fusion methods is that, due to a

massivc systcm of parallel processing elements, it is possible for them to process the inpttt

data relatively rapidly (after they are trained) which nrakes them attractive in an Automatic
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Target Recognition System working in Real Time. While D-S evidential reasoning can

reach a useful conclusion for the identity att¡ibute problem, it gets there with time

consuming and tedious computations, which can effect the performance of an Automatic

Target Recognition system working in Real Time.

In comparing the D-S and fiizzy reasoning data fusion methods with the backpropagation

neural network method NN3 (as discussed in section 5.7 and 5.8), I used input vectors

obtained from the normalised mass assignments for the four propositions (ie. Darwin jet,

perth jet, unknown jet, propeller aircraft) derived from the outputs of NNl, NN2 and flight

time table priori information (as shown in Table 16). From the results of fusing the tafget

attribute data from the three knowledge sources (ie. CW radar, Surveillance radar and time

table information) using the three data fusion methods (as shown in Table 9, l'7, and 18

using the NN3, D-S and fuzzy reasoning methods respectively), you notice that they all

reach the same final hypothesis on which target (proposition) is most likely for the eight

target examples. The main difference is the slight variations in magnitude for some of the

propositiorrs, as shown in Tables g, 17,18. But that's not su¡prising because for example,

using the fuzzy ntethod, by taking the mininium and normalising the mass vectors

continuously we can lose the resultant nìasses of the remaining propositions, hence obtain

zero values as shown in Table 18. Since D-S and fuzzy methods have calculated

uncertainties and entropy measurements (as shown in Appendix L), the magnitude values

of the resultant propositions are not a measure of the likelihood of one occurring on its

own. As in the neural network method which reflects the Bayesian approach, you have to

take into account the uncertainties.

Hence I also conclude that the backpropagation neural network method is better than D-S

or Fuzzy Reasoning (in the cases studied) because there is no need to know or calculate

the uncertainty of your knowledge source, the network indirectly obtains this through the

training data. Also by training NN1 and NN2 to classify the target's attributes directly

from the sensors (CW and Surveillance radars) into simpler weighted variables (ie'

jet/propeller targets; Darwin, Perth and Unknown flightpaths), which correspond to their

probabilities, you can directly feed these outputs into the input of NN3 in real time- For D-

S and fuzzy reasoning I use the outputs of NNl, NN2 and timetable infornation to derive

the initial mass assignments for the 4 propositions (T1...T4). Otherwise I would have had

to calculate or derive curves or data tables for the target atftibutes coming from the CV/

and Surveillance radars, which would indicate the probability that any given target type

(proposition T1...T4) will have a specified value of the variables (etlpropeller;

Darwin,Perth,Unknown fl i ghtpaths).
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Table 17 Indicates the support for the propositions using Dempster-Shafers @vidential
Reasoning) on the normalised outputs of NN1 & NN2 (table 3) and priori information

(Aight timetables).

3.843.813.4188.938

98.60.40.59

12

,47
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99.86.056.o379.04595
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DEMPSTER-SHÄFER (as a percent¿ge)

TARGET
N0.

00097

7

8

9800

0

0

97006

95.9001.195

96.91.1004

961.9600

,,

3

00097

09800I

PROP. AIRUNKNOWN
JET

PERTH JETDARWIN JET

TARGET DECISION ON WIIICH TARGET IS LIKELY USING FIIZZY
REASONING (MINIMUM METHOD)

NO.

Table 18 Indicates the likelihood for the propositions using Fuzzy Reasoning (Minimum

method) on the normalised outputs of NN1 & NN2 & flight timetable priori information.
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AppendiX A Gtn.ur Prediction)

Introduction

Linear Prediction is an aspect of time series analysis also known as least squares estimation

(prediction), (dates back to 1795). The basic idea of Linear Prediction (LP) t301, t29l

analysis, is that a signal sample can be approximated as a linear combination of past

signals by minimising the sum of the squared differences (over a finite interval of time)

between the actual signal and the linearly predicted data. Once predictor constants are

computed then an all pole model can be developed to fit the data (refer to Fig. 37 ).

Doppler spectra of radar returns (from the CW (continuous wave) radar can be modelled

using LP. In my particular application, the LP is basically acting as a smoother rather than

a high spectral estimator, since I am using a small model order.

A close relationship exists between a linear prediction filter and an autoregressive process.

Consider the linear prediction estimate, of sample x[n], whete a[k] (square brackets are

used for sampled signals) is the linear prediction coefficient at time index k.

xtÍnl---Ealklfln-kl

e[n]
m

f [n]
aIk]

-(12)
t=1

is the error between predictor and actual sample'

is the model (predictor) order

is the predictor samPle

is the predictor constants.

The " ' " is used to denote an estimate, and the prediction is forward in the sense that the

estimate at time index n is based on n? samples indexed earlier in time. The complex

forward linear prediction error is:

elnl--xlnl-x'lnl- - - - - - - - -(13)
m

elnl -- xlnl +\ alk'l $n - kl - - - ( 14)
,t=1

Expressi¡g the error equation (14) in thc "2" domain ( z is the complex operator) we have:-
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m

E(Ò =x, 
t (z)lL -E alkl.z-l - - - - - -(ts)

þl

If tfp predictor ordet m is sufficiently large, then substantially all correlation is removed

from the enor e[n], and this yields a white (constant specfum) signa| l[n]

E(z) X'(z)

Figure 37 All pole model developed to fit data.

I ------(16)
-k

As m becomes large the variance p of the enor e[n] becomes small, so I/H(z)

approximates the.signal spectrum. H(z) is also known as the signal model; the denominator

ot H(z)

L-Ealkl.z-t----(17)
t=1

is called the inverse filter. The structure of such a filter is given by the fbllowing t'igure

38.

Hd)=#

H(z)

alkl.zË
þ=l

1

HCz)
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I
I nput 0utput

De lay

De lay

arn

De lay

Figure 38 : Digital structure of Generating Filter

2.0 Relationship of the ReaI Variance (p) to LP Analysis

The complex forward linear prediction error show in equation 13 has real va¡iance :

p =E l¿[n] 12---------(18)
nErr denotes expectation. Substituting equations tZ and 13 into equation 18 yields

expression 19 .

p =E le[n] l2=E(xlnl *E alk)*ln-kl)2
m

k--l

p =E((¡[n] +l aþ-!gn-jl.(x[n]. +! alkl' tln-k)'))
m

l=r Ë=1
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,n ,n m

p=(r[n]-x[n¡-+!x[n].a[k]'*[n -É]' +laþ'!.xln-/;[n]'+f aþ'!-xtn-il.Dalkl'¿ln-kl')
e=t l=t t=r ¿=l

=r*[0] *f afkl..rofkj+i a¡k].r-Í-, .Ë | aþl.alkl*.rofk-i!
k=r t=L t=t k=r

feaffangrng

P

,n

p =r= [0] + | alkl.r =l-jl 
+l afkl' .r *tkl *E I aþ'|alkl' . r o,lk -il

J--l ¡t=l t=l k=l

assuming x[n] is a wide sense stationary process so ç[-k/ =r*[k]*

aþ).alkl'rolk-il

Rewriting above in a matrix format (getting rid of summation (sigma) terms)

p=r*lll*rl,.a+(a)H.r^ +aH.R^_r.a-- - - - - -(19)

Where a, /Tt, and R.-, are as follows (I1is the complex transpose)

m mm

o =r-[0] *f alkl.r oþ'!' +i a¡k1' .r *t4 -Ë Ë
t=r t=l t=L k=t

¿[u
alzl

r*[11

r*l2l
ro[0] . rofm-ll'

a Rt-t

rolml
r=lm-ll ro[OJ

The expression (19) is identical to the quadratic equation shown in equation (3.68) of Ref

[5] page 69. Therefore the linear prediction coefficient vector a that minimises the variance

p is found as the solutionto the normal equation (Refer to ReferenceÍ29) chapt. 3.5 pages

69-71, for theory into "least squares normal equations") is given by :-
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Or

1

¿[u

p

0

0

----Qo)

0

Note in equation (20) as shown above a[0]=1 in the "a" vector ie.

4[0]

¿uI

a so p(z) I
,it
i{

¡

and not as shown in equation (15), ie.

atu
4l2l

p(z) , with a
L-la,.z-t

i=l

3.0 Steps used to Formulate Matlab Program used to Process Doppler Data

We fit a filter to the Continuous Wave Doppler Radar Data stored in array 0' ie. we null

out the noise spikes to find where the frequencies are (refer to Fig. 39).

(Anay 0 is a matlab file, obtaincd from the CW Radar, containing 32k bytes or one tenth

of a second of Real data at a certain aspect angle of the target in question).

I t=, ro[1]*, rolml'

f rJU, ro[o), . roÍm-l)

[tt.t, r,'lm-ll, .. r*[ol

4t'z

1



I nput

Data from C:V Radar

stored in Array o

Low Pass FI lter (al I zero f f lter)

IÍEAL CI'TPIJT

ITIIE

lr4ü8,

Noise

tots t FREcLElúY

9tGi

Figure 39 Fit a filter to the CW radar data.

We are calculating the coefhcients of the linear prediction coding a=R'l.rm

Now that we have a filter we generate a spectrum of the filter

And if we plot p(z) we get the following (nulls or zeroes, get rid of spikes, Fig. 40).

PCw)

FREGIJEIúY

RESFONSE

v/

PCz)

Figure 40

Zeroes
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We want the poles where the zeroes are, so the peaks correspond to the sinusoids of the

input data, so we take the inverse of p(z), which gives us poles (refer to Fig. 41). The

spectrum of the all pole filter (l/p(z)) is an estimate of the spectn¡m of the data. (ie. FFT

of the LPC).( The impulse response of P(z) in the z domain is the LP coefficients "4", so

to get the frequency region of P({ we take the fourier transform.)

1/P(z) is the TmPulse response

lrb ise
Signal Data

(slclsl lFll¡G To GET ESTInTE

ft 'rlc sPEcfru¡ tf 'Il€ fxfA)

Figure 41 Taking the inverse of p(z).

Note, since in my application I am using a small model order the LPC is basically acting

as a smoother rather than a high resolution estimator.

4.0 Matlab Programming StePs

Step 1: ArrayQ is a 4096 x 1 array vector containing the real part of the doppler

modulation data (32k bytes, 1/10 th. of a second) obtained from the CW Radar for the

target being tracked at a certain aspect angle. Anay0 has to be arranged in the form

accepted by the "COV(X)" Matlab function. COV(X) computes the covariance matrix of
t'X', ie.

1/ P(z)

(al I pole fi lter)
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x1

x2
xl x2 X3 X/tæ5

x

X13XI4 ..X/r096

þr i=l:72
x(i,;)--array0(¡z&96-t2+Ð;

etd

Step 2: Calculate the covariance (where ./ , is the transpose of x), and deftne rm

(where rm is the variance vector as shown below). The number of zeroes in rm is

proportional to the number of points you want to use as the history of your input data (to

predict the next point, ie. to get 5 output peaks in the output spectrum you need 10

zeroes). Since a small model order of ten was used (to produce the smoothing effect) to

suit my application the LPC is basically acting as a smoother rather than a high

resolution estimator (the results of the processing can be seen in the plots Appendix H)'

rI=cov(x\.,
¡¡¿ = [l ;0;0;0;0;0;0;0¡0;0;0;0] ;

Step 3: Fitting a filter to the data by calculating the linear prediction coefficients in

afiay, "a". Where "inv(rl) " is the inverse of vector "r,1".

a=inv(rl).rmi

Step 4: The spectrum of the filter is an estimate of the spectrum of the data (ie.

Plotting FFT of LP coeffrcients).

p -- plot ( - Io g I O(abs (ffi (a.'m96) ))) ;

Note the reason why the equation above is "(ffi(a,4096)..." and not "(1-ffi(a,409ó)"'" is

shown in the last few lines of paragraph 2 (it depends on how you define your "a" vector,

in our case a0=1).

Step 5: Shift the LPC data by subtracting by its minimum , so that all that all plots

can be compared on a common relative scale.

q=p_mn(p);

I

!

,'I
Li
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AppendiX B (s¡-olured track data tables)

Table 19 Simulated track data results (in range, azimuth & elevation) for the track pairs

(T1R1, T1R2), (T1R1, T2F(2), (TlRl, T3R2), and (T2R1, TlR2) over the 10 second time

period.

88.781.679.968.8853.7642.O336.6324.89t2.43

l.7l

2.89EL

T1
R2

r76.168.1t40.4128.5107.880.0255.737.729.8LZ

99.289.7785.9380.57t.4570.r252.1937.1626.753.31R

6t.660.8959.5550.7539.9637.537.5330.0329.825.57EL

T2
R1

156.92.O281.775.6L64.4652.7744.9923.4519.47

t2.49

16.25

^z

78.550.960.2767.3853.545.0736.9532.0924.26R

12.030.848.051.5567.1855.2645.4256.4277.3289.68EL

T3
R2

38.170.171L6.2r22.4130.5r39.4t48.2154.8166.4175.8AZ

13.325.439.648.6256.1463.8568.871.2582.789.32R

L77

88.380.379.2468.1752.764L.4336.2724.88L2.631.07
^z
EL

T1
R1

168.1t46.5L29.5108.881.455.8338.3129.t82.O5

95.085.0281.877.568.3866.3850.6734.6822.O4L.2LR

61.060.0259.050.5539.1837.2638.4330.4229.3126.68BL

T2
R2

155.91.188t.2975.O64.5451.4143.2722.8418.4115.8AZ

88.3

82.353.M60.0767.6357.1448.8539.832.2528.7t4.3

EL

R

80.2279.2368.L752.764t.4336.2724.88t2.6L.O7

T1
R1

L17.160.1146.5129.5108.881.455.8338.329.182.O5

^z

95.085.0381.8377.5268.3866.3850.6734,6722.O41.219R

88.781.679.968.853.7642.O236.624.8912.432.97EL

T1
Ri¿

99.2

176.168.0146.4128.5107.880.0155.737.729.8t.7t

R

^z

89.7785.980.57L.470.L252.1937.t626.753.3

88.480.1479.568.8952.864t.9L36.t924.6L2.671.489EL

T1
R1

177169.4r4ó.8L29.7108.180.8255.238.0230.07t.57AZ

95.785.881.677.568.4766.8650.234.922.67t.2IR

109I764 5321

TrME (SECONDS)

'T

!'i

',

t
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I
'r{f''';

,)

61.060.859.050.5539.1837.2630.43304229.3226.68EL

T2
R2

155.91.1881.29754764.55SlAt43.2722.U18.41r5.85

^z

82353.460.0867.6357.7448.8539.8132.2528.714.32R

26327.1737.U304728.7624.4316.2712.887.633.07EL

T3
R1

L78.17t.1166.5159.5146.8tu.498.8386.3182.1849.05

^z

2t.t33.044.E59.5382.3867.9455.6846.6938.06

2.98

18.2R

80.781.6179.9368.8853.7642.0336.6324.89t2A3EL

T1
R2

176.168.1t46A128.5107.880.0255.737.729.8tJ2
^z

99.289.7785.98057rA70.1252.1937.7626.763.31R

26327.L73t.u30A728,7624/'316.2712.887.63.07EL

T3
R1

178.l7t.t166.5159.5146.8tuA98.8386.3182.L849.05

R

^z

2t.o33.0344.8359.5282.3867.9455.6846.6838.0518.22

t2.o30f'248.051.5467.1855.245A3s6.42773289.68EL

T3
R2

38.170.18t16.2t22A130.5739'/r48.2154.8t66A175.8

^z

13325.439.0748.6256.1363.8668.87t.2582.789.32

^z
EL

R

156.

61.660.0759.5550.7439.9537.4937.5330.0329.825.57

T2
R1

92.0381.775.6164.4652.7744.9923.4574A716.26

78.550.9160.2267.3853.545.0736.9432.0924.2612A9R

62.960.&60.0351.040.8137.1230.8231.7929.9725.33EL

T2
R2

155.91.758tJ275.9864.25513643.9922.7518.631533LZ

82.254.6562.9470,/'355.08453337.9232.M273514.65R

61360.27s9.usoAT39.7632/'337.2730.8829.6325.07EL

T2
R1

156.91.(x)81.5276.5265f.252/,43.83233118.1816.05

^z

78.0s0.0360.0367.553345,9336.6732.6724.M12.2R

1098765432I
TrME (SECONDS)

I
I

Table 20 Simulated track data results (in range, azimuth & elevation) for the track pairs

(T2R1, T2R2), (T2Rl, T3R2), (T3R1, TlR2), and (T3R1, T2R2) over the 10 second time

period.

r
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L2.O30.848.051.5467.1855.2645.456.4277.389.68EL

T3
R2 38.170.17116.2t22.5130.5t39.4148.3154.8t66.4175.8

^z

L3.325.4434.0848.6256.1463.8568.87t.282.789.32R

26.327.t73t.2330.4728.7624.4616.2712.887.633.07EL

T3
R1

178.171.016ó.5159.5146.8t24.498.8386.3182.1849.05

^z

2t.o33.0344.8359.5382.3867.9455.6846.6738.05t8.22R

109I764 532I
TrME (SBCONDS)

Table 21 Simulated track data results ( in range, azimuth and elevation) for track pairs

(T3R1, T3R2) over the ten second time period.

¡

t
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Appendix C (".o*ru- used to simulate tracks T1R1,T1R2 & T2R1,T2R2)

1.0 Matlab Program

The following matlab program was used to simulate track pairs ftom the two radars (radarl

Rl, and ndar2 R2), with the noise variances indicated in range, azimuth and elevation .

Assume the radars are independent and are tracking the same targets in an overlapping

surveillance volume for a time period of ten seconds. Assume simulated úacks from both

radars have a common space/time co-ordinate graph system as shown inFig.24.

Radar I has the following variances:

standard deviation in Range for Radar I - I metre

standard deviation in Azimuth for Radar I = 2 degrees

standard deviation in Elevation for Radar 1 = 3 deg¡ees

and Radar 2 has the following variances:

standard deviation in Range for Radar 2 - 3 metres

standard deviation in Azimuth for Radar 2 = 4 degtees

standard deviation in Elevation for Radar 2 = I degtee.

Corresponding covariance matrices for Radar 1 & Radar 2 respectively :-

[rool [gool

"'=¡; : f' "'=|: i i]

Matlab Program is as follows:-

¡=fl 23 34 50 66 68 77 81 85 951 7o Range track data for 10 time intervals.

a=ll 29 37 55 80 lO7 128 146 168 1761 7o Azimuth tr r,I rr rr rr

s=fl 12 24 36 41 52 68 79 80 881 Vo F]evatton " " rr rr rr rr

rand('normal') 7o Normal distribution

7o Assuming normal distribution (using random number generator "rand")
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Vo Adding noise to Range, Azimuth & Elevation, creating new tracks from radar 1 (rl, al,

Vo ell) and radar 2 (r2, a2, el?).

noisel=l *rand(1,10)

noise2=3 *rand( 1 , 1 0)

noise3=2*rand(1, l0)
noise4=4*rand( 1 , 1 0)

noise5=3*rand(l,10)

noise6=1 *rand(1,10)

r1= r+noisel

12= r+noise2

al= a+noise3

a2= a+noise4

ell=e+noise5

el2=e+noise6

Vo We are creating noise with standard deviations shown below'

Vo noisel used for range, radarl

Vo noise? used for Íange, raduZ

7o nolse3 used for azimuth, radarl

Vo noise4 used for azimuth, tadar2

Vo noise1 used for elevation, radarl

Vo noiseí used for elevation, rudar2

7o Adding noise to Range, creating a new track from radar 1.

7o Adding noise to Range, creating a new track from ¡adar 2.

Vo Adding noise to Azimuth, creating a new track from radarl-

Vo Addrng noise to Azimuth, creating a new track from radar2.

7o Adding noise to Elevation, creating a new track from radarl.

7o Adding noise to Elevation, creating a new track from rudu2

p1=[1 00;040;009]

p2=[9 0 0;0 16 0;0 0 1]

7o CovaÅarce matrices for radarl and rada{2 (for simulated

7o scenario),

% assuming independent radars, with different accuracies in range

Vo azin'l;uT}r and elevation.

s1)=pl+p2
is12=inv(s12)

prl=10
eold=0

for i=l:prl
r=r1(1,i)-r2(1,i)

da=a1(1,i)-a2(1,i)

de=el1(1,i)-el2(l,i)
g=[dr;da;de]

s1=1g)'*is12+(g)

eold=eold+e1

end

i

Vo Covæiances can be added if radars independent.

7o Get the inverse of the sum of the covariances.

Vo We are summing the "e" quadratic term (Mahalanobis distance)

Vo for the 10 time instances. The Mahalanobis distance is a

7o meâsure of similarity between two tracks ( ie. the more

Vo similar the tracks are , the smaller the "e" value.

Vo Co¡verling the "g" vector into a scalar

Vo lf the null hypothesis H0 is true (two tracks are the same)

7o Tracks fused together using equation below [37].

70 Y c=Y2.(P1 +P2)-t.Y 1 +P 1 @ 1 +P2)-1.Y2

for j= 1;pt1
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Vo Yc below, is a 3xl vector containing fused range, azimuth & elevation.

'Yç=p2*isl2*lr1(1j);al(l j);el1(1j)l+p1*is12*[r2(1j);az(lj);el2(1i)] 7o Combirc'd track.

rlc(1j)=Ys(1,1¡
a1c(1j)=Yç12,1¡

end

7o fiæed range vector over 10 second period

7o fused azimuth vector over 10 second period

Vo Plotttng range tracks 11 and 12 from rada¡s I EL 2, and the fused range track also

Vo plotttng azimuth tracks a1 and a2 from radars | &. 2, and the fused azimuth track

Vo avet 10 second time period.

¡=1123456789101
subplo(2 1 1 ), plot(t,r 1,' t',t,12,' -' ¡,Í tc,' *' )
ylabel('RANGE')

subplot(212), plot(t,a1,' i' 1.,a2,' -' ,t,alc,'x'¡
ylabel('AZIMUTH')
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AppendÍx f) 1,,g,, program used to process raw data from the Fps-16

Radar)

The following software written in "C" reads three raw data files containing :-

Slant Range (in lO's metres), Azimuth (as a binary fraction of 360 deg¡ees, where 800

IIEX= 180 Degrees with respect to true north) and similarly for elevation (8000 Hex =180

Degrees) with a 45 degree offset due to the position of the DSTO FPS-16 Tracking Radar.

We then perform the polar to cartesian conversions necessary to align the tracks from both

radars to bring them into a common space/time co-ordinate system, so they can be

correlated and eventually fused, if found to be the same track from both radars. Note, since

each kinematrc range,azimuth and elevation value of the track is logged into the raw files

every second, ws need only know the "start logging time" to calculate the local time of

each track value (this aids in time alignment for tracks from both radars).

#include <stdio.h>

#include <io.h>

#include <string.h>

#include <dos.h>

#include <math.h>

#include <stdlib.h>

#define hex_float_range 10.0 /* Range conversion =10 metres */

#define hex-float-az 180.0/32768.0 /* Azimuth float conversion from hex, 180.0/21s

degrees) */

#define hex float el 180.0/32768.0 /* Elevation float conversion from hex, 180/215

degrees) */

#define pion180 3.14159265/180

#define rlxp 7464.17 /* Position of DSTO Radar in X & Y wrt Adelaide Airport

Radar */

/* position in metres. x/#define úyp 25248.13

#define rlzp 0.0

mainQ

{

unsigned ac,rc,ee,i;

long int rcf,acf,ecf;

float range,az,el;
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float rlazrd,rlelrd,rlx,rly,rlz,rlxout,rlyout,rlzout,rlgndra,rltgtht;
float rlrg;
int hr=O,min=0,sec=O;

FILE *rinfp,*fopen0,*ainþ,*einfp,*stream;

rinþ=fgperi("b: 1 6range.033","rb");

ainfp=fopen("b: I 6a2.033","rb");

einfpfopen("b : I 6e1.033 ", "rb") ;

/*Slant Range input binary file */

/*Azimuth rr rr " *l

/+Elgvation rt rr " */

stream=fopen("b:razel4.dat","w"); /* Output flJe * |

for(i=0;i<256;++i)

{

rc=getc(rinfp);
pnntf(" Voc",rc);

¿ç=getc(ainfp)i

printf(" 7oc",ac);

ec=getc(einfp)i

pnntf("Voc",ec);

Ì

/* Skip range, azimuth & elevation file headers */

fprintf(srream, "x co-oRD(m) Y co-oRD(m) z co-oRD(m) HEIGHT DATA

TIME ")

/* Initialise the time in hours, minutes & seconds */

hr=13;

min=51;

sec=00;

for(i=0;i<400;++i)

{
l* Get Range & do conversion to float. */

rc=getw(rinfp);

rcf=f0l
range=rc *hex_fl oat_range ;

l* Get Azimuth & do conversion to float */

¿c=getw(ainþ);

acf=aci

az=ac*hex-float-az;
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/* Get Elevation & do conversion to float */

sç=getw(einfp);

ecf=ec;

el=(ec*hex-float_el)+45.0-360; /* Add 45 degree offset */

/* t t{ ¡ß {. t * ** * {. * * * * * t t<t< t {< * * * * * * * * * * * * * t t * * d( {< {. *tl. t/

/* Polar to Cartesian Conversions */

/t( * t * t i. {+* * * * * {< * * * t *t< * i. {< i< t * * * * * t< * t< d. {. * t * + * * * * t */

/* Convert Azimuth and Elevation from degrees to radians */

rTazrd-(az-1.4)*pion180; /* Azimuth is converted to radians,

/* and the angle is corrected by 1.4 degrees */

/* for true north to grid north correction. *l

rlelrd=el*pion180; /* Elevation is converted to radians *l

/* Polar to Cartesian Conversion */

*l

r1.z=range*sin(rlelrd) ;

r lrg=¡¿¡g.*cos(r1 elrO ;

r1x=rlrg*sin(r1 azrd) ;

r1y=rl¡g*.os(rl azrd);

/* Z co-ordinate *l
/* Ground range *l
/* X co-ordinate */

/* Y co-ordinate */

/* Correct positions wrt origin point (Adelaide Airport) */

rlxout=r1x+rlxp;
rlyout=rly+r1yp;
rlzout=rlz+tlzpi

/* X, Y, Z positions wrt origin point (Adelaide Airport) */

fprintf(stream,"\îVof, %of, %of, %of, Vod",tlxout,rlyout,rlzout,rltgtht,i);/* PnntX,Y,Z*l
/* & height value to output flJe *l

/* d. * :1. * t * * {. t * * * * * * * ** * {< d. {< t * * * d< * * {. i< r( * t /

l* Time calculations *l

/* * * {. * * * * * * * * * * * {< d< ** * * {< 8 t t * * * * * * t< * * */

++sec;

if(sec>59)

{
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++min;

sec=0;

)

if(miu59)
{

++hr;

min=O;

)

fprintf(stream," Vod: Vod :Vod" hr,min,sec); /* Print local time to output file *l

Ì
fclose(stream);

)
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AppendiX E (*." track data in cartesian co-ordinates)

Table 22 Real track data from the DSTO Radar (TlRl), and from Adelaide Airports
Surveillance Radar (T1R2, T2Ft2, T3R2, T4R2, T5R2). T1R1 and TlR2 are tracks , are the

same target being tracked by both radars.

.914.9t4.914.914.914.9t4.914.9t4.914.914z

T5
Rj¿

22.622.6L22.5722.5322.4922.4522.4122.3722.3322.29Y

13.513.52t3.47L3.4LL3.3613.3t3.2513.2013.1413.09

x
.Y

z

x

r.49L.49t.491.49t.491.49t.491.49L.4931.493

T4
R2

2r.82t.822r.8521.882t.9t2r.9421.9722.0r22.0422.07

25.425.4525.4925.5325.5725.625.6425.6825.7t25.75

.947.9s5.964.972.98.988.9961.0051.0071.01z

T3
Ri¿

65.865.7565.765.665.6165.5665.5165.M65.465.36Y

58.558.5758.5658.5558.5458.5358.5258.558.4958.48x

.539-536.533.53.527.524.521.518.515.5t2z

T2
R2

39.239.2839.3139.3439.2739.4039.4439.4739.539.53Y

8.258.238.218.198.168.148.t28.18.088.059-x

1.01t.N2.994.986.977.969.96.952.944.936z

T1
R2

6.686.5316.3736.2166.055.95.745.585.4285.271Y

t4.7t4.6714.5714.4714.37t4.2714.L714.0713.97r3.87

z

-x

1.01.996.989.988.987.970.963.952.9M.936

T1
R1

6.636.496.3376.2566.1766.035.885.735.595.MY

15.515.4515.3515.315.2615.1615.07t4.9614.8714.78-x

109I764 5321

Time (seconds)
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AppendiX F tc* Doppler Radar and spectra)

1.0 CW Radar [35]

When a radw signal is reflected off a moving target the frequency is changed. This is

called the Doppler effect which allows the velocity to be estimated but, more significantly,

it means that returns from unwanted stationary objects such as ground, vegetation,

buildings can be filtered out. This process of clutter rejection leads to the radar's strong

capability to detect moving tårgets. The very different characteristic Doppler signature of

various types of tatgets such as marching men, jet engines, propeller driven aitctaft.,

helicopters etc., allows target classification to be carried out'

High resolution spectrum analysis of received doppler signals can reveal a family of

modulation sidebands around the airframe line with significant components as far as 10

kHz from the airftame line. The modulation components, which are symmetric about the

airframe line in ftequency but asymmetric in amplitude, are caused by rotating machinery

and are dependent upon engine rpm, and the number of propeller, compressor or turbine

blades.

rfl 1A
+-

**E:

f f fc c
c

f f+ f-f fc
cdg d

Figure 42 Doppler frequency principle . (Taken from [35])
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Figure 42 shows that an approaching target will increase the radar frequency Í" by ¡he

Doppler frequency /, whilst a target receding at the same velocity will reduce it by the

same amount. For a target moving circumferentially around the rada¡ with no radial

component the Doppler frequency is zero. The Doppler frequency is given by:

- 2-v
I¿= 

),

Where v is the target velocity radially inwards and î, is the radar wavelength. For a radar

with ).=30mm (coresponding to ¿=10 Hz), a vehicle moving ûowards the radar at 13.4 m/s

gives a Doppler frequency of about 900 Hz. An aircraft flying at 660 m/s gives a Doppler

shift of 44 kJlz on the same radar.

To extract the moving target Doppler frequency from the stationary clutter returns, the

radar echo must be mixed with a signal at the original radar frequency. Figure 43 shows

how this is done in a continuous wave radar. The radar transmits at f continuously by use

of a circulator. The circulator passes radar energy from one connection to that on its right

whilst leaving that on its left isolated. Thus the energy from the oscillator goes direct to

the antenna and not to the receiver where its high poìver levels would damage the receiver.

The radar return is passed from the antenna direct to the receiver. The rada¡ return

consists of the incoming target echo at f"+fo together with energy reflected from the

stationary ground or rain clutter at ¿.
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c I utter
fî lter

'o (target)

Figure 43 CW Radar.(Taken ftom [35])

These signals are received and pass to the mixer. The mixer effectively subtracts the

frequencies of the two signals. The output thus consists of (f"+f)-f"--fo for the target signal

aîd f"í,=0. Thus the clutter is suppressed whilst the target signal can be measured to

establish the speed or to classify the target type. Figure 44 shows the transmission

characteristic of a typical high pass filter. It is clear that it only passes the high Doppler

ffequencies and has a gradual cut off down to zero Doppler. In fact clutter will posses a

range of Doppler frequencies due to, for example, a wind blown tree movement or the

motion of rain. The filter suppresses these whilst passing target Doppler.

The rich content of harmonics in Doppler spectrum from moving talgets makes

identification possible. Figures 30 &. 32, (obtained in trials from an X Band CW Radar)

illustrate this by comparing the spectra ftom a propeller aircraft" and a jet. The Doppler

frequency due to the airframe motion is clearly seen in both cases. However, the Doppler

tones due to the propellers and compressor blades are clearly different. The automation of

this classification (after processing) has been illustrated using neural networks.

mtxer
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fi lter transmission

ler frequency<+
c I utter target frequencies
frequenc I es

Figure 44 Transmission characteristics of a typical HP Filter.(Taken from [35])'

2.0 Doppler Spectra from Jet and Propeller Aircraft 136,281

The motion of an aircraft target's propellers, in addition to causing some amplitude

modulation of the airframe doppler signal, produces doppler signals of its own. Since the

return from a propeller is periodic at the blade rotational ftequency (speed at which the

blade was rotating), and the blade tip velocity approaches Mach 1.0, the spectrum of the

propeller doppler signal at most aspect angles is quite complex and is separate from that of

the airframe doppler signal.

In the case of a jet aircraft, modulation is produced by the compressor or turbine blades of

the engine. Even though the engines are usually totally enclosed, except for intake and

exhaust ducts some times 16 feet in length, there is sufficient propagation down the ducts

at microwave frequencies to allow ample amounts of rf energy to be modulated by the

blades. Since the compressors and turbines contain relatively large numbers of blades

rotating at high angular velocities, the modulation frequencies will be much higher than

those of a propeller-driven aircraft ( refer to Fig 30 &. 32 experimental specfra results of jet

and propeller driven aircraft). The modulation sidebands produced by the blades are easily

distinguished, and, depending upon aspect angle and transmitter frequency, can be quite

strong compared to the aircraft doppler return.
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A typical doppler frequency spectrum of a propeller-driven aircraft, is shown in Figure 32.

The most prevalent spectral line, of course, is the doppler return from the airframe,

denoting its radial velocity. Some amplitude modulation sidebands at the propeller blade

frequency appear around the airframe. This amplitude modulation can be caused by the

propeller blade chopping a ponion of the reflected radar energy from the airframe, thereby

periodically modulating the received echo.

Also in the propeller driven aircraft case another group of spectral lines can be found at a

lower frequency than that of the airframe line (refer to Figure 32). These are the result of

reflected energy from the rotating propeller blades themselves, thus creating doppler

frequencies proportional to the vector sum of the radial components of the airframe

velocity and the propeller tangential velocity at the radius of the reflected surface. Since a

propeller has a varying blade angle along its length, the position of the reflecting area on

the blade depends upon the viewing angle and the blade angular position. Thus, the

propeller doppler return is modulated at the blade frequency, and the centre frequency of

its spectnrm is dependent upon aspect angle.

For approaching targets with small aspect angles the major portion the propeller doppler

spectrum is confined mostly to the region around the airframe (refer to Fig. 32) line, and at

larger angles it has a much wider spread into the region lower in frequency than the

airframe line [36].



t20

AppendiX G (cnt-snuared DistributÍon Tables, taken from [8])

Percentage Polnts ol the x2 Dlstrlbul¡on'
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'v = dcg¡ees of freedom
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AppendiX II f cw Radar, rest & rraining Data for NNI)

Table 23 Trial l&2 Continuous Wave Radar target data (consisting of 4 jets & 3

propeller driven light aircraft at various aspect angles) used to train neural network NNl,

the data has been pre-processed using a Linear Prediction filter (smoother); as shown in the

matlab program in Appendix A section 4.

o.020/.0.177o.2747o.12480.20250.2030.0321t2

0.0078o.19790.3327o.02260.20190.30140.t7361l

0.01520.1630.30150.0112o.2020.39930.369610

0.04510.1970.3t290.1s570.2820.4137o.22589

0.08290.350.430.51370.499r0.4u20.0685

7

I
0.1156o.670.6965o.3460.9040.46180.029

0.1590.787.to640.1680.7660.60830.0846

0.248o.67841.OlO20.180.6534o.74060.20885

o.4llo.7425o.97360.25760.7319o.69250.31334

0.65o.82331.03320.2t730.8s260.6528o.25023

o.840.8169r.03480.170o.779o.t23l o.70392

Pro. C
7.7 Deg

Prop. B
-20 Deg

JEt D
-58 Deg

Prop. A
0 Deg.

Jet C
-60 Deg

Jet B
55 Deg.

Jet A
20 Deg.

TRIAL 1&2 CW RADAR TARGET DATA (AT ASPECT ANGLE
rNDrcaTED) OVER THE 11 FREQUENCTES USED TO TRArN NNl. (PRE.PROCESSED USING LINEAR PRED. NLTER)

FREQ
(KHz)
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Table A Trial3 Continuous Wave Radar target data (consisting of 2 jets & 5 propeller

aircraft at aspect angles indicated) used to test neural network NNl, the data has been pre-

processed using a Linear Prediction Filter (smoother); refer to Appendix A for matlab

progfÍIm.

0.06160.0510.1020.2130.1680.17190.095512

o.M220.0728o.02590.17590.08560.27340.250911

o.02250.0949o.M220.12070.08320.36290.s36910

0.0430.1010.10890.11640.12210.4203

o.6754

o.67139

o.t3l20.10380.1313o.t9570.1420.4612I

0.240.1388o.125o.3970.16970.345o.64967

o.26120.2180.1850.7670.2770.220.39756

0.25190.307o.3460.73050.5040.206o.24675

0.3270.3690.54960.6150.77170.3160.22714

0.50030.44880.60710.ó990.6870.5400.32953

0.7031o.54ø¡9o.6312o.75490.7233o.7246o.57282

Target 7
Propeller
Aircraft
(-31Des)

Target 6
Propeller
Aircraft
G33 Dee)

Target 5
Propeller
Aircraft
(3s Dee)

Target 3
Propeller
Aircraft

G16 Dee.)

Target 4
Propeller
Aircraft
(43 Deg.)

Target 2

Jet
G32 Dee.)

larget I
Jct

G31Dee.)

Freq.
( KHz)

TRIAL 3 CW RADAR TARGET DATA OVER THE 1I
FREQUENCTES, USED TO TEST NN1 (ASPBCT ANGLE SrrOWl\I)

(Data pre-processed using Linear Prediction Filter)
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AppendiX I lsurveittance Radar Training Data for l'IN2)

Table 25 Training data for NN2 backpropagation neural network obtained from Adelaide

Airport showing positional X & Y flight path data for Perth & Darwin jets.

0I01035

0I0930

010720

0I

0

0515

01410

01045

00I3930

00I3025

001

16

2320

001l5

00I1010

00175

0II40

DESIRED OUTPUT

PERTH

CARTESIA S

INPUT,

Y(KM) T]NKNOWNDAR\ryINx(KM)

TRAIMNG NN2 WITH POSITIONAL X&Y FLIGHT PATH DATA FOR
PERTH & DARWIN FLIGHTPATHS
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I001520
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I00

40

3020

I0015

I003515

1002515

I00

23

20

4010

100

10

10

I00

I00405

100155

I00

10

305

I000

I00250

I00390

TINKNOWNPERTHDARWINYx

DESIRED OUTPUTCARTESIAN CO-ORDS
rNPUr (KM)

TRAIMNG DATA ITIONAL X&Y POSSIBLE
PATHS

:.'l
It!
tr!
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Table 26 Training NN2 with positional possible unknown flight-paths in cartesian co-

*

1l

ordinates X & Y.
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AppendiX J O"r Spectrum & Linear Prediction Spectral Estimate Ptots

of Jet & Propeller Aircraft)
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586 tøøf, 15øø zøøFt
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Figure 45 The FFT spectrum (magnitude squared, 4096 samples) of a commercial jet
aircraft (Target 1) at an aspect angle of -31 degrees. ( Sample rate = 50KHz)
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Figure 46 Tt'rc linear prediction spectral estimate of a commercial jet (Target 1)

shown above.
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Figure 47 'I\e FFT spectrum (magnitude squared, 4096 samples) of a commercial jet
aircraft (Target 2) at an aspect angle of -45 degrees.
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Figure 48 The linea¡ prediction spectral estimate of a commercial jet shown above.
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Figure 49 The FFT spectrum (magnitude squared) of a propeller driven aircraft
(Target 3) at an aspect angle of -16 degrees.
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Figure 51 The FFT spectrum (magnitude squared) of a propeller driven aircraft
(Target 4) at an aspect angle of 43 degrees.
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Figure 52 The linear prediction spectral estimate of the propeller driven aircraft
shown above.
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Figure 53 The FFT spectrum (magnitude squared) of a propeller driven aircraft
(Target 5) at an aspect angle of -35 degrees.
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Figure 54 The linear prediction spectral estimate of a propeller driven aircraft shown

above.
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Figure 55 The FFT spectrum (magnitude squared) of a propeller driven aircraft
(Target 6) at an aspect angle of -33 degrees.
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Figure 56 The linea¡ prediction spectral estimate of a propeller driven aircraft shown
above.
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shown above.
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Figure 59 The FFT spectrum (magnitude squared) of a commercial jet aircraft at an

aspect angle of 20 degree (training example 1 for NNl).
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Figure 60 The linear prediction spectral estimate of a commercial jet shown above
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Figure 61 The FFT spectrum (magnitude squared) of a commercial jet aircraft at an

aspect angle of 55 degrees (training example 2 for NNI).
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Figure 62 Ttre linear prediction spectral estimate of a commercial jet shown above.
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Figure 63 The FFT spectrum (magnitude squared) of a commercial jet aircraft at an

aspect angle of 60 degrees (training example 3 for NNl).
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Figure 64 The linear prediction spectral estimate of a commercial jet shown above.



135

Ieøøa

96øg

E6øA

?øø6

6øf,8
ú
ÉlB 5688
o
A

4Aøø

3øøø

2øø6

tø96

ø
sø6 168ø

Frequency (x10 Hz)

1568 zgetø

Figure 65 The FFT spectrum (magnitude squared) of a commercial jet aircraft at an

aspect angle of -58 degrees (training example 4 for NNI).
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Figure 66 The linear prediction spectral estimate of a commercial jet sown above
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Figure 67 Ttre FFT spectrum (magnitude squared) of a propeller d¡iven aircraft at an

aspect angle of 58 degrees (training example 5 for NNl).
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Figure 69 The FFT spectrum (magnitude squared) of a propeller driven aircraft at an

aspect angle of -20 degrees (training example 6 for NNl).
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Figure 71 The FFT spectrum (magnitude squared) of a propeller driven target at an

aspect angle of 7.7 degrees (training example 7 for NNl).
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AppendiX K l,La.ruide airport & DSTo Radar x,Y & Z Plots)
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AppendiX L (nr,,.ony & uncertainty using D-S &Fuzzy Methods)

Table 27 Shows & compares the reduction of uncertainty/entropy using Dempster Shafer
(D-S) & Fuzzy Reasoning methods when combining two and then a third knowledge

source.

0.06682.88-40.r6794.48-4
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AppendiX M ryerincation rests on NrNl )

To verify that NN1 was classifying the data correctly the following tests were performed

(as shown below) on processed trial data obtained from the CW Radar (ie. Jet or Propeller

driven Aircraft). Random noise was added (using matlab software) to the CW radar (real)

data stored in Array 0 as discussed in (section 4) Appendix A .(Note the maximum real

magnitude value is 12).

The following output results are shown in Table 28 when noise (0.5, 1.0 and 2.0) is added

to array0 and processed using the linear predictive filter, and then input to NNl. The

neural network NNI was trained on data shown in Appendix H, Table 23 and tested on

data shown in Table 24 (output results with noise shown in Table 28).

Table 28 The output of NNl when varying amounts of noise is added to the input data in
Array0, and processed using LPC.

Test and training data were swapped and the results noted from the output of NNl.

NNl was initially trained on the data shown in Table 23 a¡d tested on data from Table 24

Appendix H, the output results from NNl are shown in Table 29 (Fig.74).Then NNI was

trained on the data shown in Table 24 and tested on data shown in Table 23 Appendix H,

the output results from NNI are shown in Table 30 (Fig. 75).

0.035 0.0360.017690.16080.07

0.060.0450.0360.050.0

4
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6

o.23o.0260.016750.0w20.0

0.00590.00480.0085o.00240.0

0.070.00470.0070.00320.03

o.7280.99010.997o.99941.02

0.9990.999690.99980.99981.01

2.00.5 1.0None

Noise Added to Array0Correct
Classifrcat.

Target
N0.

The overall conclusion is that input noise generated (max. l6Vo of input signal), didn't
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make significant changes to the ouþut of NNl as shown in Table 28. And NN1 classified

the input data conectly (et or propeller targets) even when testing and training data for the

network were swapped, (refer to Bar Graphs).

Table 29 The output data from neural network NNI when fained on data shown in table

23 nd tested on data shown in table 24 Appendix H.
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Figure 74 NNl output when trained on processed data

from table 23 and tested on data ftom table 24

Appendix H.
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Table 30 The output of NNI when trained with data from table 24 and tested with data

from table 23 Appendix H (processed CW Radar data).
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Figure 75 Bar graph showing the results from NNl
when trained with processed CW Radar data from table

24 and tested with data from table 23 Appendix H.
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AppendiX N (o"* Fusion or multiple classifïers [32])

One of the problems in data fusion is the combination of "opinions" of multiple classifiers

as to the identity of a target. Such a situation arises for my experimental case, for example,

a number of knowledge sources (ie sensors, priori knowledge) outputs can reach a

conclusion about the identification of a proposition ( ie target type , Darwin jet, Perth jet,

Unknown jet, Própefler driven aircraft). It is desirable to combine these knowledge sources

to give a better assessment of the identity of the target.

The Bayesian approach to classification of an observation (ie. vector x) of the identity of a

target for example is to find the class "c" \ryhich maximises P(c/x). ie From Bayes rule we

have:-

P(clx)=P1¡¡t¡.
P(c)

P(x)

In data fusion sensors (or knowledge sources) can be of different types ie. a Surveillance

Radar gives us positional attributes of targets and a CW Radar gives us doppler

modulation and flight timetables give us arrival flight times of possible targets. The

approach used is to perform initial processing on partial information, and then attempt to

fuse the resulting reduced data , ie. make separate classification based on information from

each knowledge source and integrate these decisions. For example consider the general

case where we can break the classification problem into separate parts as shown in Fig. 76.

Each of the sensors processors Si (refer to Fig. 76) could attempt either "hard" or "soft"

classifications, producing decisions on the identity of a target type for example. The fusion

centre "F" makes an overall classification on the basis of the information supplied to it.

Adaptive feedforward neural networks can give appropriate probabilistic outputs, and these

can be used to estimate the class probabilities t321. The architecture shown in Fig. 76 is

similar to that used for multisensor data fusion (shown in Fig. 35) which consists of a set

of independent sensor neural nets (NNl and NN2) one for each sensor (CW radar and

Surveillance radar) coupled to a fusion net NN3.
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Figure 76 The integration of classifier modules.
(Taken from [32]).
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AppendiX O 1rotr. to Cartesian Conversion of Radar Data)

The raw data received from the FPS-16 Radar is in the following format (stored in three

separate files for'range, azimuth and elevation):-

Slant Range (in 10's of metres), Azimuth (as a binary fraction of 360 degrees, where 80(D

Hex = 180 Degrees with respect to true north) and similarly for Elevation (8000 Hex =180

Degrees) with a 45 degree offset due to the position of the radar. (Refer to Appendix D for

"C" software used to process the data) .

The data from both radars has to be aligned in space (as shown below in steps I and 2)

and time (local time was recorded every second from both radars) before any fusion can

occur . The raw data from the FPS-16 Radar was converted to polar and then to cartesian

X(m), Y(m), Z(m) co-ordinate system relative to Adelaide Airports position (origin

X=0,Y=0,2=0) (Refer to Appendix D for software written in "C" used to process the raw

rada¡ data to the format mentioned above).

The FPS-16 Radar Polar to Cartesian conversion sums for the program shown in Appendix

D, are as follows :-

Step L Convert Azimuth and Elevation from Degrees to Radians (correct the angle from

true north to gdd nonh (subtract 1.4 Degrees)).

AZ I M UTH ß/iDI,{NS ; ¡7 p14þ 
= (AZI MUTH - 1.4) * !- -' 180

ELEVAWON ßADUNS ; ELRAD=(ELEVAWO$ * !' 180

Step 2 Polar to Ca¡tesian conversion (note, slant range is the distance from the radar to

the target in the air, whereas ground range is the ground distance, ie. refer to Fig.77).

t
I

;

,l
i¡¿
:11

*
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(Z co - ordirute) Z = (S LANT RAI'I G E) * S IN (E LRAD)

GROUND RANG E--(S IÀNT R/t NGE),¡ COS (ELRAD)

(X co -ordlrctQ X= (GROUND RANGÐ * SIN(AZtu4D)

Y -- (GRo U N D RAN G þ + C O S (Az RAD)

cx1,Y1.Z1)

z1

Adelal

Al rport

Cç Isl n) Northz

DSÏO X

Figure 77 Convefitng polar coordinates from the radars to cartesian, with respect to
Adelaide Airports Grid map position which is used as the origin (ie. x, y, z =O).

DSTO'S Rada¡ grid nap position (in Eastings and Northings) are as follows:-

East 282 088.78 meffes

North 6 154 616.49 metres.

Adelaide Airport's Radar grid map position (in Eastings and Northings) are:-

z

iu

r
I

;

r

East 274 626.1metres
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North 6 129 373.4 metres

Some of the measurement corrections that have to be noted and adjusted for are as follows:

Taking into consideration the point scale factor (which is the ratio of an infinitesimal

distance at a point on the grid to the corresponding distance on a spheroid) . For example,

I metre on the ground is equal to 1.0002 metres on a grid map showing Easting and

Northings measurements, the difference is negligible for small distances. Also Azimuth

(with respect to true north) measurements taken from the radar have to be adjusted to gfid

north (which is a difference of 1.4 degrees) as shown in the softwa¡e in Appendix D.

Since I am making Adelaide Airport the cartesian reference point, the new adjusted

cartesian co-ordinates are as follows (in metres):-

Adelaide Airport Radar X = 0, Y = 0; DSTO'S FPS-16 Radar position ( point scale factor

adjusted, with respect to Adelaide Airport) X = 7,4614.17 metres, Y = 25,248.13 meûes.



149

Bibliography

tll Dr. Robert Popoli "MULTIPLE SENSOR TRACKING" Course Manual provided by

Technology Training Corporation, Pty Ltd, Suite 101, 275 Alfred St., North Sydney, NSW

[2] Edward Waltz, James Llinas, "MULTISENSOR DATA FUSION" Artech House, 1990.

[3] James Llinas "A SURVEY OF TECHNIQUES FOR CIS DATA FUSION" IEE Second

International Conference on Command, Control, Communications and Management

Information Systems, 1987, Publication Number 275.

l4l Edward L. V/altz "COMPUTATIONAL CONSIDERATION FOR FUSION IN

TARGET IDENTIFTCATION SYSTEMS'' 1981 IEEE.

t5l S S Blackman, "MULTIPLE TARGET TRACKING WITH RADAR APPLICATIONS"

1986 380-393.

[6] Bar-Shalom, Y.,"ON THE TRACK-TO-TRACK CORRELATION PROBLEM," IEEE

Transactions on Automatic Control, AC-26, April 1981, pp.57l-572.

[7] Samuel S. Blâckman "MULTIPLE-TARGET TRACKING V/ITH RADAR

APPLICATIONS",pp. 363-3æ.

[8] William W. Hines, Douglas C. Montgomery, "PROBABILITY AND STAISTICS IN

ENGINEERING AND MANAGEMENT SCIENCE " Second Edition, John Wiley & Sons,

1980.

[9] Carpenter, Gail 4., Grossberg, Stephen, "THE ART OF ADAPTIVE PATTERN

RECOGNITION BY A SELF ORGANISING NEURAL NETWORK". Computer, pp. 77-

88, March, 1988.

[10] Grossberg, Stephen, "ADAPTIVE PATTERN CLASSIFICATION AND UNMRSAL
RECORDING" Biological Cybernetics, Vol. 23, 197 6.

tlll stork, David. G., "$ELF-QRGANISATION, PATTERN RECOGNITION, AND

ADAPTIVE RESONANCE NETWORKS", Journal of Neural Network Computing'

[12] Carpenter, Gail A. and Grossberg, Stephen, "ART 2: SELF-ORGANIZATION OF

STABLE CATEGORY RECOGNITION CODES FOR ANALOG INPUT PATTERNS'"

Applied Optics, Vol. 26 No. 232, pp 4919-4930, 1987.



150

[13] "NEURAL WORKS PROFESSIONAL 2 SOFIWARE MANUAL" 1987, Volumel,

pp.l79-209 Neural-Ware, Inc. USA.

[14] "HNC ÐPLORENET 3000 SOFTWARE MANUAL" April 1991, Chapter 18, ART2,

HNC Inc. USA.

l15l G. Shafer, "A MATmMATICAL THEORY OF EVIDENCE", Princeton Universal

Press, 1975, ChapL3.

t16l Keiúr Godfrey (University of Western Australia, Nedlands rW.A. 6C09), Martin Keye

(Unitronics Pty L,td Technology Park W.A. 6102) "ARTIFICIAL NEURAL NETWORKS

WORKSHOP MANUAL".

t17l E. Domany J. L. Van Hemmen, K. Schulten (Eds.) "MoDELS OF NEURAL

NETWORKS", Springer-Verlag, 1991.

[18] Jones, William P., Hoskins, Josiah, "BACKPROPAGATION, A GENERALIZED

DELTA LEARNING RLILE" Byte Magazine, Oct. 1987.

t19l Igor Aleksander and Helen Morton, "AN INTRODUCTION TO NEURAL

COMPUTING" Chapman & Hall, 1991.

l2}l Richard P. Lippmann, "PATTERN CLASSIFICATION USING NEURAL

NETWORKS" November 1989, IEEE Communications Magazine.

[21] Richard P. Lippmann, "AN INTRODUCTION TO COMPUTING WITH NEURAL

NETS" IEEE ASSP Magazine April 1987.

Í22) Bezdick, Sankar K Pal, editors,"FUZZY MODELS FOR PATTERN

RECOGNITION'" IEE PRESS, 1991.

t23l Kosko B, "FUZZINESS VS PROBABILITY" International Journal of General

Systems, 17, N0. 2-3,1990.

l24l Zadeh L A, "MAKING COMPUTERS THINK LIKE PEOPLE", IEEE Spectrum,2l,

26-32, 1984.

125) ZadelnL A"FtJZZY SETS", Information & Control, 8, 338-353, 1965.

[26] Bar-Shalom, Y.,"MI.ILTITARGET-MULTISENSOR TRACKING : ADVANCED

^PPLICATIONS", 
pp. 19 I -193.



151

Í271 Dr. Martin, Dr. Nandagopal, "TT{E APPLICATION OF ARTIFICIAL NEURAL

NETWORKS TO RADAR SIGNAL PROCESSING'' Presented At ISSPA92, TiItOTiAI

Program.

t28l R. E. Gardner, "DOPPLER SPECTRA OF AIRBORNE TARGETS " Report from

Naval Research Laboratory, Washington DC, March 1962 issue

t29l S. Lawrence Marple, "DIGITAL SPECTRAL ANALYSIS", Chapt. 7 , Prentice-Hall

Inc.

l30l John Makfioul; "LINEAR PREDICTION: A TUTORIAL REVIEW" IEE Proceedings

Vol. 63, April 1975.

[31] Sam P. Chaundhuri, Som Das, "NEURAL NETWORKS FOR DATA FUSION",

IEEE, Sensor Data Integration, Inc. 342 Caterina Heights, Concord, MA 01742.

Í321 A.J.R. fleading, M.D. Bedworth, "DATA FUSION FOR OBJECT

CLASSIFICATION" IEEE Systems, Man and Cybernetics Conference, Charlottesville VA'

October 1991.

t33l S.P. Luttrell, "TTIE USE OF BAYESIAN AND ENTROPIC METHODS IN NEURAL

NETWORK TT{EORY", in Maximum entropy and Bayesian methods, pp. 363-370, J.

Skilling, ed., Kluwe Academic Publishers, 1989.

t34l Dr. D. J. Kewley, IIF Radar Division DSTO, "NOTES ON USING DEMPSTER

SHAFER & FUZZY REASONING TO FUSE IDENTITY ATTRIBUTE DATA'" SRL

pO Box 1500, Salisbury SA 5108, Technical Memorandum SRL-0094-TM, Unpublished,

August 1992.

t35l P S Hall, T K Garland-collins, R s Picton, R G Lee, "RADAR" 1990 pp 32-40.

t36l R Hynes, R E Gardner, " DOPPLER SPECTRA OF S-BAND AND X-BAND

SIGNALS 1968.tl

t37l A Farina, " SIGNAL AND DATA PROCESSING FOR RADAR NETTING", IEEE

International Conference Tutorial B-2, Washington, DC May 1990.

t38l D. Nandagopal, D.J Heilbronn, N.M Martin, I.C Potter and R.M Hawkes

''CHARACTERISTICS OF DOPPLER MODULATION ASPECTS OF RADAR ECHOS

FROM MOVING TARGETS" Radar Con 90, Adelaide, Australia 18-20 April 1990.



152

Í391Zadetrl A, " A REVIEW OF SHAFER',S ("4 MATI{EMATICAL THEORY OF

EVIDENCE"), AI mrgazine,5, 81-83, 1984.

t40l Prade H, " A COMPUTATIONAL APPROACH TO APPROXIMATE AND

PLAUSIBLE T{E¡SONING WITH APPLICATIONS TO EXPERT SYSTEMS'" IEEE

Trans. Pattern and Machine Intelligetrce,'1, 260-283, 1985.




