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The Neuroimmunology of Chronic Pain: From Rodents to
Humans
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Chronic pain, encompassing conditions, such as low back pain, arthritis, persistent post-surgical pain, fibromyalgia, and neu-
ropathic pain disorders, is highly prevalent but remains poorly treated. The vast majority of therapeutics are directed solely
at neurons, despite the fact that signaling between immune cells, glia, and neurons is now recognized as indispensable for
the initiation and maintenance of chronic pain. This review highlights recent advances in understanding fundamental neuro-
immune signaling mechanisms and novel therapeutic targets in rodent models of chronic pain. We further discuss new tech-
nological developments to study, diagnose, and quantify neuroimmune contributions to chronic pain in patient populations.
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Introduction
Acute pain serves an adaptive purpose to warn the organism of
actual or impending tissue injury. Noxious mechanical, thermal,
and chemical stimuli activate primary sensory neurons that
transmit nociceptive information to the spinal and medullary
dorsal horns. Here, peripheral sensory input is integrated in a
complex network of secondary nociceptive neurons that project
to supraspinal sites, interneurons, and inhibitory descending pro-
jections from brainstem sites (Peirs and Seal, 2016). Secondary
projection neurons synapse with tertiary neurons in thalamic and
parabrachial nuclei that project to cortical and subcortical regions
that encode and perceive pain (Peirs and Seal, 2016). Persistent acti-
vation or malfunction of this nociceptive system gives rise to
chronic pain. While chronic pain is generally considered to be mal-
adaptive, this concept has recently been challenged (Crook et al.,
2014; Lister et al., 2020).

Chronic pain is a pervasive problem affecting;20% of adults
in developed nations (Breivik et al., 2013; Fayaz et al., 2016;
Dahlhamer, 2018; Australian Institute of Health and Welfare,
2020). While not fatal, such disorders remain poorly treated and
account for the greatest societal burden of disability and disease
(Institute for Health Metrics and Evaluation, 2017; James et al.,
2018). Some chronic pain conditions, such as arthritis, are char-
acterized by ongoing peripheral nociceptive input related to pe-
ripheral inflammation, whereas others, such as neuropathic pain,
are a consequence of abnormal functioning of the nervous sys-
tem because of injury or disease. Yet other chronic pain condi-
tions, such as persistent postsurgical pain, fibromyalgia, and low
back pain, may result from a combination of processes. All forms
of chronic pain are believed to be maintained, to varying extents,
by peripheral sensitization (increased responsiveness and reduced
spiking threshold of peripheral nociceptive neurons to stimulation
of their receptive fields) (International Association for the Study of
Pain, 2017) and central sensitization (increased responsiveness of
nociceptive neurons in the CNS to their normal or subthreshold
afferent input) (International Association for the Study of Pain,
2017). Research over the past three decades has revealed that such
sensitization is not solely the result of direct neuronal communica-
tion, but requires cross-talk between neurons, glia, and immune
cells (for comprehensive review, see Beggs et al., 2012; Grace et al.,
2014, 2016; McMahon et al., 2015; Ji et al., 2016; Kato et al., 2016;
Inoue and Tsuda, 2018; Haight et al., 2019; Malcangio, 2019). The
field of pain neuroimmunology has nearly tripled its share of all
pain research over the past 20years (Fig. 1). This growth has been
led in part by work published in the Journal of Neuroscience (Table
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1). In this review, we summarize recent and select advances that will
be covered in a mini-symposium on the neuroimmunology of
chronic pain.

Immune phenotyping after injury: a focus on sex differences
Orthopedic injury or surgery presents a unique challenge
because the initiating event may result in polytrauma to muscle,
bone, and nerves (Beswick et al., 2012; Mehta et al., 2015).

Moreover, it is estimated that each year in the United States
100,000 bone fractures heal poorly. Accordingly, persistent limb
pain is common after such injuries. Because high levels of acute
pain increase the risk of developing chronic pain (Hah et al.,
2019), likely because of phenomena, such as hyperalgesic pri-
ming of primary afferent neurons (Parada et al., 2003; Reichling
and Levine, 2009), effective treatment to improve recovery from
injury is imperative. Unfortunately, the key components of the
multicellular response to injury and how these components can
be manipulated to improve outcomes remain unclear (Kehlet
and Dahl, 2003).

One important contributor to the development of chronic
pain after injury is activation of the immune system. Peripheral
injury mobilizes both innate and adaptive branches of the
immune system to resolve tissue damage, but persistent immune
activation can be detrimental and contribute to delayed healing
(Grace et al., 2014; Loi et al., 2016). Notably, immune-system
contributions to chronic pain may differ in males and females.
Indeed, males are more susceptible to infection from diverse
pathogens, reflecting in part a hypoactivation of the innate
immune system in males (vom Steeg and Klein, 2016). In con-
trast, women have a higher prevalence of autoimmune diseases
resulting from inappropriate activation of the adaptive immune
system (Jacobson et al., 1997). It is therefore crucial to under-
stand sex differences in postinjury immune responses that may
result in increased vulnerability to chronic pain, and may carry
important treatment implications.

There are some indications from the literature that there are
sex-specific immune mechanisms contributing to chronic pain.
For example, several studies have highlighted that microglia, the
innate immune cells of the CNS, may only maintain pain in
males (Sorge et al., 2011, 2015; Agalave et al., 2020). However,
not all groups have observed this sexual dimorphism (Peng et al.,
2016). Moreover, peripheral macrophage inhibition seems to
specifically reverse pain behaviors in male, but not female, mice
(Rudjito et al., 2020), suggesting that the immune contribution
to pain is likely cell- and location-specific (Lopes et al., 2017).

To evaluate sex differences more comprehensively in the
whole-system immune response to injury and its relation to pain
progression, Tawfik et al. (2020b) recently characterized a mouse
model of orthopedic trauma. The model consists of unilateral
tibial fracture with internal fixation and associated injury to the
tibialis anterior muscle. These mice exhibit mechanical hyper-
sensitivity in the hindpaw that lasts for .5weeks after injury,
making it an appropriate model for studying pain mechanisms.
High-dimensional immune profiling was performed at various
time points using cytometry by time-of-flight mass spectrometry
(Tawfik et al., 2020a). Intracellular signaling pathways in 21
immune cells spanning all major innate and adaptive cell types,
as well as individual cell type frequency were assessed, for a total
identification of 273 unique immune features. In order to probe
this complex, high-parameter dataset, we performed multivariate
modeling of the innate and adaptive immune cell responses
using a regression method that minimized false positives (Tawfik
et al., 2020a). Results suggested that males and females exhibit
unique immune profiles: females had a greater neutrophil and
dampened T regulatory cell response in the acute postinjury pe-
riod, as well as heightened CD4 T memory cell mitogen-acti-
vated protein kinase responses in the subacute postinjury period
(Tawfik et al., 2020a). T regulatory cells function as a brake on
the immune system, specifically limiting autoimmune reactions
(Sharma and Rudra, 2018), whereas CD4 T memory cells
become activated after antigen presentation and ensure a more

Table 1. Top 25 research journals publishing articles related to pain neuroim-
munology (2000–2019)a

Name Publications Average citation rate

Journal of Neuroscience 952 81.05
Scientific Reports 884 13.19
Pain 723 52.71
Experimental Neurology 704 39.29
Brain, Behavior, and Immunity 659 42.19
Journal of Neuroinflammation 651 30.37
British Journal of Pharmacology 488 65.59
Molecular Neurobiology 463 24.00
Neurology 409 52.59
Glia 404 51.09
Frontiers in Pharmacology 394 17.13
Journal of Neuroscience Research 383 29.34
Neurobiology of Disease 320 44.33
Anesthesiology 304 39.79
Annals of Neurology 294 78.81
Proceedings of the National Academy of
Sciences of the United States of America

286 81.93

Progress in Neurobiology 269 124.14
Journal of Pain 252 39.74
Frontiers in Immunology 249 26.68
Anesthesia and Analgesia 248 24.37
Pharmacological Research 219 32.11
Journal of Physiology 210 48.62
Neuron 203 142.13
FASEB Journal 201 62.19
Brain 195 95.65
aResearch journals ranked in the top quartile(s) of their categories are included (web of science). Search
terms are provided in Figure 1.

Figure 1. Annual publications on pain and pain neuroimmunology (2000-2019). Total
numbers of publications related to pain (pain OR hyperalgesia OR allodynic OR allodynia OR
hypernociception OR hypernociceptive OR nociception OR neuropathic) and pain neuroimmu-
nology ((pain OR hyperalgesia OR allodynic OR allodynia OR hypernociception OR hypernoci-
ceptive OR nociception OR neuropathic) AND (astrocyte OR astrocytic OR astroglia OR
microglia OR oligodendrocyte OR neuroimmune OR neuroimmunology OR neuroinflamma-
tion)), between 2000 and 2019, were tabulated from Dimensions using a PubMed limited fil-
ter. The pain neuroimmunology publications are expressed as a percentage of the total
number of publications related to pain.
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efficient secondary immune response (Gasper et al., 2014). In
combination, these findings indicate an enhanced adaptive
immune response to injury in females, with a specific role for T-
cell subsets.

A recent comprehensive review highlights several studies in
both mice and humans that support a contribution of T cells to
pain (Laumet et al., 2019). The causative role of T-cell subsets in
sex-specific responses to injury, and ultimately vulnerability to
chronic pain, has been investigated in one prior preclinical study
(Sorge et al., 2015). In this study, the PPARg agonist pioglita-
zone reversed nerve injury-induced pain behaviors only in
females, presumably through suppression of interferon-g , a
cytokine produced in greater amounts by female T cells (Zhang
et al., 2012). In contrast, other groups have found that pioglita-
zone attenuates neuropathic pain behaviors in males (Griggs et
al., 2015; Lyons et al., 2017; Khasabova et al., 2019). Therefore,
this remains an area of active research.

The details of the immune response to injury and how it con-
tributes to the transition from acute to chronic pain are a com-
plex and exciting area for future inquiry. As such research moves
from preclinical to clinical studies, future results will open new
avenues for the exploration of sex-specific treatment paradigms
for patients with chronic pain.

Regulatory role of nuclear factor erythroid 2-related factor 2
(Nrf2) in neuroimmune–nitro-oxidative stress interactions
Neuroinflammatory signaling is intertwined with other patho-
logic processes underlying neuropathic pain, including overpro-
duction of reactive oxygen and nitrogen species (ROS/RNS)
(nitro-oxidative stress) and mitochondrial dysfunction (Salvemini
et al., 2011; Janes et al., 2012; Little et al., 2012; Bennett et al., 2014;
Symons-Liguori et al., 2016). For example, danger-associated mo-
lecular patterns can activate pattern recognition receptors, such as
Toll-like receptors, to drive transcription of inducible nitric oxide
synthase and activation of NAPDH oxidases that produce nitric ox-
ide and ROS (Grace et al., 2016; Kato et al., 2016; Lacagnina et al.,

2018). Reciprocally, ROS/RNS induce expression of proinfla-
mmatory mediators by activating mitogen-activated protein kinases
and nuclear factor kB (NFkB), both directly and via receptors like
TRPM2 expressed by glia and leukocytes (Grace et al., 2016).
Injury-induced ROS/RNS can damage mitochondria in nociceptive
pathways, causing the organelles to leak ROS and danger-associated
molecular patterns that activate inflammasomes and Toll-like recep-
tors (Grace et al., 2016, 2018; Kato et al., 2016; Próchnicki et al.,
2016; Lacagnina et al., 2018). Collectively, inflammatory mediators
and ROS/RNS promote sensitization through direct activation of
neuronal ion channels, as well as neuromodulation and dys-
functional synaptic plasticity via well-characterized mecha-
nisms, described previously in detail (Salvemini et al., 2011;
Beggs et al., 2012; Grace et al., 2014, 2016; McMahon et al.,
2015; Ji et al., 2016; Inoue and Tsuda, 2018; Haight et al.,
2019; Malcangio, 2019). Simultaneously resolving neuroinflam-
mation and nitro-oxidative stress could be an improved strategy for
relief of neuropathic pain.

Nrf2, also known as NFE2L2, is a potential therapeutic target
to alleviate neuroinflammation and nitro-oxidative stress (Fig.
2). The transcription factor increases expression of a suite of
antioxidant and cyto-protective genes in response to oxidants
(Dodson et al., 2018; Cuadrado et al., 2019). Subsequent detoxifi-
cation of ROS/RNS reduces downstream inflammatory signaling.
In addition, Nrf2 exerts direct anti-inflammatory actions by
attenuating NFkB activity (Wardyn et al., 2015). While this en-
dogenous regulator normally buffers nitro-oxidative stress, for
unknown reasons, the Nrf2 pathway fails to adequately detoxify
pathologic levels of ROS/RNS after injury.

Notably, there is evidence that pharmacological activation of
Nrf2 can alleviate neuropathic pain in preclinical models. For
example, using a model of peripheral nerve injury, Grace and
colleagues recently showed that dimethyl fumarate reverses allo-
dynia and hyperalgesia in reflex and operant assays (Li et al.,
2020). At the same time, dimethyl fumarate induced nuclear
translocation (activation) of Nrf2 in the DRGs, which contains

Figure 2. Nrf2 activation alleviates nitro-oxidative stress and neuroinflammation. Pharmacological agents, such as dimethyl fumarate and sulforaphane, can induce nuclear translocation of
Nrf2 by disrupting its cytosolic complex with Kelch-like ECH-associated protein 1 (Keap1). Nrf2 binds to DNA, aided by small musculoaponeurotic fibrosarcoma (sMAF) proteins, increasing
expression of a suite of antioxidant genes, for example, those encoding heme oxygenase-1 (HO-1), superoxide dismutase (SOD) 1 and 2, catalase (CAT), and others. Antioxidants scavenge ROS/
RNS that otherwise facilitate IkBa phosphorylation, inducing NFkB-dependent proinflammatory gene expression. NFkB p65 subunit-DNA binding is further prevented through competition
with Nrf2 for CREB-binding protein (CBP). Antioxidants also scavenge ROS/RNS generated by dysfunctional mitochondria. Although not depicted, antioxidants further reduce neuroinflammation
by scavenging ROS/RNS that otherwise activate mitogen activated protein kinases.
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the cell bodies of sensory neurons, and increased expression of
antioxidant target genes and enzyme activity (superoxide dismu-
tase, glutathione) (Li et al., 2020). Confirming Nrf2 as a major
therapeutic target in both sexes, the antinociceptive effects of di-
methyl fumarate were lost in male and female Nrf2�/� mice or
when dimethyl fumarate was coadministered with the Nrf2 in-
hibitor trigonelline (Li et al., 2020). These results complement
previous work showing another well-known Nrf2 activator,
sulforaphane, both prevented and dose-dependently reversed
mechanical allodynia and thermal hyperalgesia induced by pe-
ripheral nerve injury or the chemotherapy, oxaliplatin (Kim et
al., 2010; C. Wang and Wang, 2017; Ferreira-Chamorro et al.,
2018; Yang et al., 2018), and that the antinociceptive efficacy of
sulforaphane was lost in Nrf2�/� mice (Yang et al., 2018).

Nrf2 activators may alleviate neuropathic pain by normalizing
mitochondrial and microglial function. Dimethyl fumarate and
sulforaphane reversed mitochondrial dysfunction in sensory
neurons caused by peripheral nerve injury and by the chemo-
therapeutic agent, oxaliplatin, respectively (Yang et al., 2018; Li
et al., 2020). While the mechanisms linking mitochondrial dam-
age to increased neuronal excitability or spontaneous activity are
not yet fully understood, normalizing mitochondrial function
attenuates evoked and ongoing pain (Bennett et al., 2014).
Dimethyl fumarate and sulforaphane also attenuated injury-
induced microglial activation and increases in proinflammatory
cytokines and ROS in the pain neuraxis (Kim et al., 2010; C.
Wang and Wang, 2017; Ferreira-Chamorro et al., 2018; Li et al.,
2020). These pharmacological data from several groups indicate
that Nrf2 activation alleviates neuropathic pain and underlying
mechanisms in preclinical models.

The protective role of Nrf2 in neuropathic pain is an emerg-
ing area of investigation, with several questions to be addressed
in future studies. Evidence is mixed regarding whether Nrf2 is
appreciably activated after peripheral nerve injury (Yang et al.,
2018; Li et al., 2020). However, Nrf2 still serves a protective role,
as mechanical allodynia induced by oxaliplatin treatment was
exacerbated in Nrf2�/� mice compared with WT mice (Yang et
al., 2018). Spatiotemporal analysis of the endogenous role of
Nrf2 after injury is still required. The cells for whom Nrf2 activa-
tion is protective, and the neuroanatomical locations in which
they reside, are still to be identified. Such investigation could
support Nrf2 as a therapeutic target, as it sits at the nexus of sev-
eral major mechanisms that underlie neuropathic pain.

Contributions of autoantibodies and neuronal Fcc receptors
to joint pain in arthritis
Pain is one of the most problematic symptoms for patients with
rheumatoid arthritis (RA). Pain in RA has traditionally been
attributed to the inflammatory process in the joint, but it is
becoming increasingly clear that other mechanisms are also at
play. During the period immediately before diagnosis, individu-
als frequently suffer from joint pain, often without signs of joint
inflammation (de Hair et al., 2014). Furthermore, pain still per-
sists in a sizable proportion of RA patients for whom other RA
symptoms, including joint inflammation, are medically con-
trolled (Taylor et al., 2010). Thus, joint pain uncoupled from
apparent disease activity is a pervasive problem and represents a
fundamental gap in our mechanistic understanding of pain in
autoimmune disorders.

A joint pathology similar to human RA can be induced in
rodents by immunizing animals with collagen Type II, a struc-
tural protein mainly found in articular cartilage, or by transfer-
ring monoclonal anti-collagen II antibodies (Holmdahl et al.,

1986; Terato et al., 1992; Lindh et al., 2014). Using the collagen-
antibody-induced arthritis model (Nandakumar et al., 2003),
Svensson and colleagues observed that pain-related behaviors de-
velop before any signs of joint inflammation and remains for
weeks after the inflammation has subsided (Bas et al., 2012;
Agalave et al., 2014; Su et al., 2015). Other antibodies binding to
cartilage, such as cartilage oligomeric matrix protein, were also
found to elicit mechanical hypersensitivity uncoupled from visual,
histologic, and molecular indications of inflammation in mice
(Bersellini Farinotti et al., 2019). Because cartilage is not innervated,
the anti-cartilage antibodies must act on other targets to mediate
pronociceptive effects in the pre-inflammatory stage. Mice lack-
ing functional complement 5 or treated with a complement 5
receptor antagonist still developed pain behaviors induced by
anti-collagen II antibody. This suggests that cartilage-antibody-
induced pain-related behaviors do not depend on joint
inflammation or complement 5 (and thereby terminal/lytic
complement), but instead on tissue antigen recognition, local
immune-complex formation, and activation of neuronally
expressed Fcg receptors.

Fcg receptors are bound by immunoglobulin G (IgG) anti-
body and may activate (e.g., Fcg receptors I, III, and IV) or in-
hibit (e.g., Fcg receptor IIb) cells based on the cytoplasmic
tyrosine-based motif associated with the receptor. Recent work
from several groups has demonstrated that nociceptors express
Fcg receptor I that are activated by IgG after they have bound
antigen and formed an antibody-antigen complex (immune
complex) (Qu et al., 2011, 2012; L. Wang et al., 2019). Svensson
and colleagues discovered that not only the activating Fcg recep-
tor I, but also the inhibitory Fcg receptor IIb, are present in the
peripheral terminals of primary afferents in uninjured mice.
Focusing on the phase before inflammation, preformed collagen
II antibody-antigen immune complexes directly activated cul-
tured DRG WT neurons, but not neurons lacking activating
FcgRs. In line with this observation, anti-collagen II antibodies
and collagen II immune complexes did not induce mechanical
hypersensitivity in Fc receptor g -chain�/� mice (which lack cell
surface expression and signaling of all activating Fcg receptors),
or mice lacking activating Fcg receptors in neurons. Furthermore,
anti-collagen II antibodies that retain their ability to bind collagen II
but either lack the Fc region or have a reduced affinity for Fcg
receptors were not pronociceptive, indicating that the Fc-Fcg re-
ceptor interaction is critical for development of collagen II anti-
body-induced pain-related behaviors. Fcg receptor III and IV
deficiency did not prevent collagen II antibody responses, which
supports an important role of Fcg receptor I in the direct action of
immune complexes on nociceptors. It is unlikely that Fcg receptor
IIb is coupled to enhancement of neuronal excitability because Fc
receptor g -chain deficient mice were protected against the pronoci-
ceptive actions of cartilage-associated antibodies despite expression
of Fcg receptor IIb (Bersellini Farinotti et al., 2019). Nevertheless,
the presence of Fcg receptor IIb in sensory neurons is interesting
and warrants further investigation, as the receptor could be linked
to inhibitory mechanisms in neurons during established disease.

In summary, studies from Svensson and colleagues show that
cartilage antibody immune complexes, which are highly corre-
lated with early RA and joint pathology, serve as key triggers for
pain behavior in the early phase of the disease via activation Fcg
receptor I on nociceptors, without generating histologic or bio-
chemical signs of inflammation. These studies point to a func-
tional coupling between autoantibodies and pain transmission,
which may be at play before and subsequent to flares of active
disease. Together, the identification of novel contributions of
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autoantibodies to persistent pain may aid in the development of
new treatment strategies, not only for pain in RA, but also for
pain in other diseases associated with autoantibody production,
such as Sjögren’s syndrome, systemic lupus erythematosus, and
Guillain–Barré syndrome.

Cannabinoid receptor Type 1 (CB1R) as a neuroimmune
therapeutic target for chronic pain
Preclinical studies in the neuroimmunology of chronic pain have
revealed numerous potential therapeutic targets. Among these,
CB1R has been identified as a viable candidate in controlling
pain and inflammation (Kunos et al., 2009; Milligan et al., 2020).
Global CB1R KO studies have demonstrated the necessity of
CB1R action for both endogenous and therapeutically induced
pain inhibition (Sideris et al., 2016; Bajic et al., 2018). Although
these studies have established the analgesic function of CB1R,
they have failed to distinguish the most critical loci for analgesic
action. CB1R is one of the most abundantly expressed GPCRs in
the entire nervous system, and studies are mixed regarding the
loci of CB1R analgesic action (Martin et al., 1995; Fox et al.,
2001; Meng and Johansen, 2004; Agarwal et al., 2007; Pernía-
Andrade et al., 2009; Skaper and Di Marzo, 2012; Lu and
Mackie, 2016). Indeed, the function of cannabinoids is governed
by their site of action, and overlapping expression patterns in the
nervous system make it difficult to tease out the analgesic, meta-
bolic, and psychoactive sites of actions of cannabinoids.

How CB1R specifically modulates pain processing is an
ongoing area of study and there is intense debate regarding whether
peripheral or CNS activation of CB1R is more critical to produce
analgesic effects (Milligan et al., 2020). In the periphery, CB1R is
expressed on DRG neurons and various other cell types (Mackie,
2005; Ständer et al., 2005), while in the CNS, GABAergic interneur-
ons in the dorsal horn of the spinal cord, brainstem, and amygdala
are putative sites of CB1R action (Navarrete et al., 2020). While sen-
sory neurons have the capacity to powerfully regulate immune
responses (Pinho-Ribeiro et al., 2017), it is unclear whether CB1R
expression by sensory neurons or macrophages regulates inflamma-
tion after injury (Amaya et al., 2006). This is an important distinc-
tion, as the anti-inflammatory effects of CB1R through expression
on immune cells is a recent finding (Cinar et al., 2017; Jourdan et
al., 2017; Joffre et al., 2020).

The identity of the peripheral cell that is responsible for
immune modulation is a major source of contention in transla-
tional studies (Kunos et al., 2009; Pacher and Kunos, 2013).
Despite the fact that cannabinoids have a long history in medi-
cinal use, major drawbacks, including psychotropic effects,
have led to extended lines of enquiry aimed at parsing central
effects from peripheral analgesic actions (Pacher et al., 2006).
Interestingly, the debate has led to the development of peripher-
ally restricted cannabinoids, designed to circumvent various
unwanted central effects (Seltzman et al., 2016). However, pe-
ripherally restricted synthetic CB1R agonists have not produced
analgesia in clinical trials (Kalliomäki et al., 2013a,b). To date,
the outcome of clinical and preclinical studies is mixed with an
overwhelmingmajority of clinical trials of cannabinoid agonists fail-
ing because of analgesic efficacy, kidney damage, and absence of
longitudinal data (Kunos et al., 2009; Kunos and Tam, 2011; Pacher
and Kunos, 2013; Finnerup et al., 2015). Identifying the CB1R cell
types that mediate the analgesic actions of cannabinoids is impera-
tive to realizing the anti-inflammatory and analgesic potential of
CB1R agonists (DeMarco and Nunamaker, 2019).

Neuroinflammation in human chronic pain states
Despite a large preclinical literature demonstrating a key role of
neuroinflammation in the CNS in animal pain models (glial

activation and attendant production of proinflammatory media-
tors) (Beggs et al., 2012; Grace et al., 2014; McMahon et al., 2015;
Ji et al., 2016; Inoue and Tsuda, 2018; Malcangio, 2019), the role
of neuroinflammation in human pain is still unknown. Sampling
of CSF and analysis of postmortem spinal cord samples suggest
that glial activation may occur in patients with various types of
chronic pain (Brisby et al., 1999; Del Valle et al., 2009; Kadetoff
et al., 2012; Shi et al., 2012; Kosek et al., 2015; Bäckryd et al.,
2017), but the ability to “visualize” neuroinflammation in living
patients long remained elusive. In the last few years, the use of
PET with radioligands targeting the 18 kDa translocator protein
(TSPO) has begun to fill this gap. TSPO is a five-transmembrane
domain protein expressed on mitochondria (Papadopoulos et al.,
2006) and thus is found in cells in addition to glia (Batarseh and
Papadopoulos, 2010; Wei et al., 2013). Nevertheless, TSPO can
serve as a marker of neuroinflammation because this protein, for
reasons that are not fully understood, is dramatically upregulated
in activated microglia and astrocytes. Indeed, a strong colocaliza-
tion between TSPO upregulation and activated glial cells has
been found across multiple preclinical and human studies of var-
ious disorders, including neurodegeneration. Hence, TSPO is
intensively used to image neuroinflammation (Banati et al., 2000;
Ji et al., 2008; Cosenza-Nashat et al., 2009; Alshikho et al., 2018;
Lois et al., 2018; Barletta et al., 2020).

In preclinical studies of arthritis, complex regional pain syn-
drome, and lumbar radiculopathy, TSPO was upregulated con-
comitantly with glial activation (Hernstadt et al., 2009; Wei et al.,
2013; Cropper et al., 2019; Guilarte, 2019), supporting the use of
TSPO as a marker of glial activation. Using a second-generation
TSPO radioligand ([11C]PBR28), Loggia et al. have demonstrated
increased TSPO signal in the brains of patients with chronic low
back pain, fibromyalgia, migraine and veterans suffering from
Gulf War Illness, as well as in the spinal cord of patients with
lumbar radiculopathy (Fig. 3) (Loggia et al., 2015; Albrecht et al.,
2018, 2019a,c; Alshelh et al., 2020). The signal appears to exhibit
specific spatial distribution across disorders. For instance, tha-
lamic signal elevation is the most consistent finding for chronic
low back pain (an observation that was recently replicated in an
independent cohort) (Torrado-Carvajal et al., 2020), whereas
cortical regions are mainly involved in other conditions,
such as fibromyalgia (Loggia et al., 2015; Albrecht et al.,
2019a). Furthermore, along with the primary somatosen-
sory cortex (S1), the TSPO signal was elevated in the lumbar
spine cortical representation in chronic low back pain, in a
ventrolateral aspect of S1 compatible with the face area in
migraine, and in a large portion of the sensorimotor strip in
patients suffering from widespread body pain (fibromyal-
gia) (Loggia et al., 2015; Albrecht et al., 2019a,c). Together,
these observations suggest that neuroinflammation, as
assessed by TSPO signal elevation (1) might be a pervasive
phenomenon observed across multiple, etiologically hetero-
geneous human pain disorders and (2) might present itself
in disorder-specific spatial distributions, paralleling the
specific body distribution of the pain experienced by each
patient group.

Certainly, the biological and clinical significance of the
observed TSPO signal elevations in chronic pain disorders
remains to be elucidated. First, while this signal might correlate
“spatially” with the body distribution of pain disorders, to date,
the relationship between TSPO signal elevations and disorder se-
verity has been inconsistent. For instance, brain TSPO signal was
found to be positively correlated with frequency of migraine
attacks in migraineurs, with fatigue severity in patients with
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fibromyalgia, and with depressive scores in chronic low back
pain patients with comorbid negative affect (Albrecht et al.,
2019a,b,c). At the same time, this signal was reported to be
either not associated with, or even inversely related to, pain se-
verity in chronic low back pain and arthritis (Loggia et al., 2015;
Forsberg et al., 2019). Moreover, while TSPO upregulation
in neuroinflammatory responses consistently colocalizes with
microglia, an accompanying astrocytic component has been
observed in some cases (Rupprecht et al., 2010; Wei et al., 2013;
Liu et al., 2016). Furthermore, TSPO does not appear to dif-
ferentiate immune phenotypes (i.e., proinflammatory vs
anti-inflammatory), although some evidence suggests that
TSPO upregulation may favor the resolution of neuroinflammation,
possibly through the stimulation of steroidogenesis (Batarseh and
Papadopoulos, 2010; Wei et al., 2013; Bae et al., 2014; M. Wang et
al., 2014).

While many questions remain to be answered, a growing lit-
erature nonetheless suggests that neuroinflammation occurs in
clinical chronic pain states, adding further weight to the precli-
nical support of glial modulation as a therapeutic strategy.
Importantly, because pain-related TSPO upregulation has been
described in both human and preclinical pain studies, the study
of this protein potentially offers major reverse-translational
opportunities, whereby human imaging results can inform
mechanistic evaluations of the role of TSPO in animals. These
approaches, together with the development of novel radioligands
targeting more specific immune cell subtypes and phenotypes
(Narayanaswami et al., 2018), are likely to lead to significant
advances in our understanding of the role of neuroinflammation
in human chronic pain.

Development of neuroimmune biomarkers of pain
Chronic pain has a complex, multisystem etiology, involving
interactions between genes and environment. The advent of pre-
cision medicine that allows personalization of treatments in
fields, such as cancer based on mechanistic biomarkers of com-
plex phenotypes, have not yet been applied to the treatment of

chronic pain. Major technological advances have already
occurred to aid in the management of other disorders of the
nervous system. For example, imaging platforms, such as fMRI,
PET, and measurements from EEG, have changed the way dis-
eases, such as epilepsy, are diagnosed and treated (Patel et al.,
2019). However, these advances are somewhat isolated, and the
identification and quantification of pain are still reliant on sub-
jective diagnosis and empirical treatment selection. This clinical
predicament creates a significant burden on the individual and
profound health economic waste, with patients waiting up to
1 year after experiencing symptoms before presenting to a physi-
cian, and then taking .2 years and presenting to up to four dif-
ferent physicians before receiving a diagnosis for some complex
chronic pain conditions (Choy et al., 2010).

The research activities of the Australian Research Council
Centre of Excellence for Nanoscale BioPhotonics have sought to
identify novel biomarkers of pain and to create measurement
technologies that will allow pain diagnosis and direct precision
medicine treatment of chronic pain. The criteria for such tech-
nologies are sensitivity and precision but must also deliver
actionable information within a clinically meaningful timeframe
and cost-effective strategy. Such measurements of chronic pain
need to account for the sensory and emotional dimensions of
chronic pain in addition to the aforementioned gene-environ-
ment-multisystem biology etiology of diseases of the CNS. The
team rationalized that the pain state of an individual could be

Figure 3. TSPO ([11C]PBR28) signal increases in chronic pain patients. A, Brain TSPO signal elevation in chronic low back pain (cLBP) patients (median images and group comparison). B,
Individual data showing consistently higher thalamic [11C]PBR28 signal in patients, compared with sex-, age-, and binding affinity-matched controls (Loggia et al., 2015). C, [11C]PBR28 signal
elevations in the lower spinal cord segments in patients with radicular LBP (“Pain target”) compared with reference region (“Pain reference”) and healthy controls (“Control”) (Albrecht et al.,
2018). D, [11C]PBR28 signal elevation in patients with fibromyalgia (Albrecht et al., 2019a).

Table 2. Ratio of publications to patents and clinical trials for pain neuroim-
munology and pain (2000–2019)a

Pain (neuroimmunology) Pain (all)

Total
numbers

Ratio of
publications to X

Total
numbers

Ratio of
publications to X

Publications 201,683 1.00 4,422,911 1.00
Patents 43,198 4.66 435,852 10.15
Clinical trials 111 1816.96 12,284 360.05
aSearch terms are provided in Figure 1. Data were tabulated from dimensions using a PubMed limited filter.
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quantified from peripheral blood because a priori, peripheral
blood represents the accumulated environmental and genetic
state of the individual. These collective changes in cellular state
and proteome content of the blood are impacted by the emo-
tional and physiological state of the individual causally linked to
the sensory and emotional dimensions of chronic pain, given
that peripheral immune cells support pain mechanisms in the
CNS (Grace et al., 2011a,b; Wohleb et al., 2013; Sawicki et al.,
2018). The hypothesis is supported by work showing that the ex
vivo activity of peripheral immune cells can be used to stratify
patients into chronic pain and healthy populations (Kwok et al.,
2012; Evans et al., 2020).

Hyperspectral imaging of biology is emerging as an analytical
tool that can be harnessed to improve research efficiency,
lead to novel discoveries, and guide point-of-care decisions.
Simultaneous integration of the emission spectra from multi-
ple excitation wavelengths can provide substantial quantita-
tive information about native fluorophores in individual
cells in a mixed cell population. This analytical approach can
then be used to rapidly phenotype entire cell populations in a
label-free approach. For example, markers of mitochondrial
oxidative stress/mitochondrial function/dysfunction (free
NADH, bound NADH, flavoproteins, including flavin ade-
nine dinucleotide-containing flavoproteins pyruvate dehydro-
gensase, ketoglutumate dehydrogenase, and electron transfer
flavoproteins, retinoids, e.g., A2E, lipofuscin, and cytochrome
c) can be quantified using hyperspectral analysis and linked to
pain behaviors (Staikopoulos et al., 2016; Mahbub et al., 2019;
Habibalahi et al., 2020) Alternatively, unsupervised analysis can
be used to explore the n-dimensional data frames for spectral
features that are predictive of pain states with nonlinear
machine learning used to extract the clinically relevant signal.
Preclinical and clinical trials are identifying hyperspectral sig-
natures from a simple blood sample or a complex spinal cord
tissue that can delineate healthy patients from those with
chronic pain. Importantly, the technology and consumables
can be produced at a very cost-effective unit per measurement;
and owing to the ability to use microfluidics within sample
processing, the test results can be available within minutes.
Excitingly, this approach is also allowing the identification of
the discrete subpopulations of cells, both centrally and periph-
erally, that are driving the spectral diagnosis and could be asso-
ciatively and/or mechanistically linked to the exaggerated pain
state.

In conclusion, since the first publications linking neuroin-
flammation to chronic pain more than two decades ago
(Garrison et al., 1991; Svensson et al., 1993; Meller et al., 1994;
Watkins et al., 1997; Colburn et al., 1999), the dividing line
between the nervous and immune systems has become increas-
ingly blurred. Sensory neurons express classical immune recep-
tors, such as Fcg receptors, that enable them to directly
transduce signals from immune cells. Secreted immune media-
tors, such as ROS/RNS, directly activate ion channels that are
classically expressed by sensory neurons. Sensory neurons can
reciprocally regulate immune cell activity following stimulation
of a variety of receptors, including CB1Rs. Connecting all of
these discoveries is an increasing appreciation for how the
immune response to injury is differentially regulated between the
sexes.

Despite these continuing advances, the field of pain neuroim-
munology is not yet translating basic science to the clinic at the
same rate as the pain field in general; there is a fivefold difference
in the ratio of publications to clinical trials (Table 2). This could

be explained by the relative immaturity of the subfield.
Excitingly, however, patents related to pain neuroimmunology
have been filed at more than double that of the broader pain field
over the past 20 years (Table 2). Facilitated by the recent insights
afforded by PET imaging into how central neuroinflammation is
manifested in patients with chronic pain, together with the
promise of peripherally accessible neuroimmune biomarkers of
pain, we may be on the cusp of exciting discoveries. This decade
may see an explosion in translational activity through active
recruitment of clinicians and technologists into the field of
chronic pain neuroimmunology.
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