
 

 

Imprinted Gene Expression and Phenotype 

of Bovine Concepti with Bos taurus and 

Bos indicus Genetics 

 

By 

Mani Ghanipoor Samami 

 

A thesis submitted to the University of Adelaide in fulfilment 

of the requirement of the degree of doctor of philosophy 

(PhD) in Science 

 

 

 

 

The University of Adelaide 

School of Animal and Veterinary Sciences 

Discipline of Animal Science 

July 2013





i 

Table of Contents 

 

Index of Figures ......................................................................................................................................iv 

Index of Tables ...................................................................................................................................... vii 

Index of Appendices ............................................................................................................................ viii 

Declaration ..............................................................................................................................................ix 

Dedications............................................................................................................................................... x 

Acknowledgements .................................................................................................................................xi 

Abstract ............................................................................................................................................... xiii 

Chapter 1 Introduction and literature review ..................................................................................... 1 

1.1 Introduction .................................................................................................................................... 2 

1.2 Epigenetics ..................................................................................................................................... 4 

1.3 Genomic imprinting ....................................................................................................................... 5 

1.4 The insulin like growth factor family: General overview .............................................................. 7 

1.5 Insulin-like growth factor 2 ............................................................................................................ 8 

1.5.1 Regulation of expression ......................................................................................................... 8 

1.5.1.1 Transcriptional regulation: Genomic imprinting .............................................................. 8 

1.5.1.1.1 Differentially methylated regions.............................................................................. 9 

1.5.1.1.2 Imprinting control region ........................................................................................ 10 

1.5.1.2 Posttranscriptional regulation ......................................................................................... 12 

1.5.2 Tissue, developmental stage, and promoter-specific expression and imprinting .................. 13 

1.5.2.1 Tissue and developmental stage-specific expression of IGF2 global transcripts ........... 13 

1.5.2.2 Tissue and developmental stage-specific expression of IGF2 promoter-specific 

transcripts ................................................................................................................................... 14 

1.5.2.3 Tissue, developmental stage, and promoter-specific imprinting .................................... 16 

1.5.3 Role of IGF2 in development ............................................................................................... 18 

1.5.3.1 Prenatal development ..................................................................................................... 18 

1.5.3.2 Postnatal growth ............................................................................................................. 20 

1.6 H19 expression and role in development ..................................................................................... 27 

1.7 Insulin-like growth factor 2 receptor ............................................................................................ 30 

1.7.1 Mechanisms underlying genomic imprinting ........................................................................ 30 

1.7.2 Expression and imprinting status in prenatal development ................................................... 32 

1.7.3 Role in prenatal development ................................................................................................ 36 

1.7.4 Expression and role in postnatal growth ............................................................................... 38 

1.8 Imprinted genes and genetic programming of postnatal performance: Implications for heterosis

 ............................................................................................................................................................ 39 

1.9 Hypothesis and research objectives ............................................................................................. 43 

References .......................................................................................................................................... 44 



ii 

Chapter 2 Comparative in silico analysis of IGF2 promoter-specific transcript variants and 

AIRN transcripts in bovine ................................................................................................................. 61 

2.1 Introduction ................................................................................................................................. 62 

2.2 Materials and methods ................................................................................................................. 65 

2.3 Results ......................................................................................................................................... 66 

2.4 Discussion .................................................................................................................................... 77 

References ......................................................................................................................................... 82 

Chapter 3 Tissue and developmental stage-specific expression of the imprinted IGF2, IGF2R, 

H19 and AIRN genes in bovine .......................................................................................................... 86 

3.1 Introduction ................................................................................................................................. 87 

3.2 Materials and methods ................................................................................................................. 89 

3.2.1 Animals and tissue ................................................................................................................ 89 

3.2.2 RNA isolation and reverse transcription ............................................................................... 90 

3.2.3 Quantitative real time RT-PCR ............................................................................................ 93 

3.3 Results ......................................................................................................................................... 96 

3.3.1 IGF2, global transcript .......................................................................................................... 96 

3.3.2 IGF2R ................................................................................................................................... 96 

3.3.3 H19 ....................................................................................................................................... 97 

3.3.4 AIRN ..................................................................................................................................... 98 

3.3.5 IGF2 P0 ................................................................................................................................ 98 

3.3.6 IGF2 P1 ................................................................................................................................ 99 

3.3.7 IGF2 P2 .............................................................................................................................. 100 

3.3.8 IGF2 P3 .............................................................................................................................. 100 

3.3.9 IGF2 P4 .............................................................................................................................. 101 

3.3.10 Expression ratio of IGF2/H19, IGF2R/AIRN and IGF2/IGF2R ....................................... 102 

3.4 Discussion .................................................................................................................................. 104 

References ....................................................................................................................................... 109 

Chapter 4 Genetic effects on transcript abundances of the imprinted IGF2, IGF2R, H19 and 

AIRN genes in fetal tissues and their associations with growth-related phenotypes ................... 113 

4.1 Introduction ............................................................................................................................... 114 

4.2 Materials and methods ............................................................................................................... 116 

4.2.1 Animal model, fetuses and tissues ...................................................................................... 116 

4.2.2 RNA extraction and cDNA synthesis ................................................................................. 118 

4.2.3 Quantitative real time RT-PCR .......................................................................................... 119 

4.2.4 Statistical analysis ............................................................................................................... 122 

4.3 Results ....................................................................................................................................... 124 

4.3.1 Genetic effects on fetal body weight, relative and absolute weights of fetal tissues .......... 124 

4.3.2 Genetic effects on expression of IGF2, H19 and IGF2/H19 in fetal tissues and associations 

with fetal tissue weights .............................................................................................................. 126 



iii 

4.3.3. Genetic effects on expression of IGF2 promoter-specific transcripts, their ratio to H19 

expression, and associations with fetal tissue weights ................................................................. 129 

4.3.4. Genetic effects on expression of IGF2R, AIRN, IGF2R/AIRN and IGF2/IGF2R, and 

associations with fetal tissue weights ........................................................................................... 130 

4.4 Discussion .................................................................................................................................. 139 

References ........................................................................................................................................ 146 

Chapter 5 Maternal and paternal genomes differentially affect myofibre characteristics and 

muscle weights of bovine fetuses at midgestation ............................................................................ 150 

Abstract ............................................................................................................................................ 155 

5.1 Introduction ................................................................................................................................ 156 

5.2 Materials and Methods ............................................................................................................... 159 

5.2.1 Cattle and fetuses ................................................................................................................ 159 

5.2.2 Muscle dissection and weights ............................................................................................ 159 

5.2.3 Muscle immunohistochemistry ........................................................................................... 160 

5.2.4 Myofibre classification and morphometry .......................................................................... 161 

5.2.5 Expression of H19 in skeletal muscle ................................................................................. 162 

5.2.6 Statistical estimation of effects and means ......................................................................... 163 

5.3 Results ........................................................................................................................................ 167 

5.3.1 Proportion of variation explained by parental genomes, fetal sex and non-genetic effects 167 

5.3.2 Specific effects of Bt and Bi genomes, fetal sex and maternal weight ............................... 170 

5.3.3 Expression of the H19 lincRNA ......................................................................................... 173 

5.4 Discussion .................................................................................................................................. 177 

Acknowledgments ............................................................................................................................ 183 

References ........................................................................................................................................ 184 

Chapter 6 General discussion ........................................................................................................... 188 

6.1 Developmental changes in transcript abundance of imprinted genes in bovine tissues ............. 189 

6.2 Genetic effects on transcript abundance of imprinted genes: Implications for mammalian 

heterosis ........................................................................................................................................... 193 

6.3 Imprinted genes as molecular drivers of parent-of-origin effects on fetal growth-related 

phenotypes ....................................................................................................................................... 197 

6.4 B. taurus / B. indicus polymorphisms in the imprinting control region (ICR) of H19: Plausible 

mechanisms for differential expression of H19 ............................................................................... 199 

6.5 General conclusions ................................................................................................................... 201 

6.6 Future works .............................................................................................................................. 202 

References ........................................................................................................................................ 204 

Appendices .......................................................................................................................................... 212 

 

  



iv 

Index of Figures 

 

Figure 2.1 Comparative exon-intron organisation of insulin (INS) and insulin-like growth factor 2 

(IGF2) genes in human, porcine, bovine and mouse. ............................................................................ 67 

Figure 2.2 Schematic scale diagram of insulin-like growth factor 2 (IGF2) transcripts originating from 

distinct functional promoters in human. ................................................................................................ 68 

Figure 2.3 Schematic scale diagram of insulin-like growth factor 2 (Igf2) transcripts originating from 

distinct functional promoters in mouse. ................................................................................................. 69 

Figure 2.4 Schematic scale diagram of insulin-like growth factor 2 (IGF2) transcripts originating from 

distinct functional promoters in pig. ...................................................................................................... 70 

Figure 2.5 Schematic scale diagram of insulin (INS) and insulin-like growth factor 2 (IGF2) hybrid 

transcripts in human. .............................................................................................................................. 71 

Figure 2.6 Schematic scale diagram of insulin-like growth factor 2 (IGF2) antisense transcripts 

(IGF2AS) in human, mouse and pig. ..................................................................................................... 72 

Figure 2.7 Schematic view of the bovine expressed sequence tags (ESTs) corresponding to the 

insulin-like growth factor 2 (IGF2) intron 3. ......................................................................................... 73 

Figure 2.8 Schematic scale diagram of insulin-like growth factor 2 (IGF2) transcripts originating from 

distinct functional promoters in bovine. ................................................................................................ 74 

Figure 2.9 Four antisense Igf2r (insulin-like growth factor 2 receptor) RNA noncoding (Airn) splice 

variants. ................................................................................................................................................. 75 

Figure 2.10 Schematic view of the expressed sequence tags (ESTs) corresponding to the insulin-like 

growth factor 2 (IGF2R) intron 2 in bovine. ......................................................................................... 75 

Figure 2.11 Comparison of the sequences of seven CTCF binding sites (CTCF-BS1-7) between Bos 

taurus and Bos indicus. .......................................................................................................................... 76 

 

Figure 3.1 Means for transcript abundances of IGF2, IGF2R, H19 and AIRN in tissues of three 

developmental stages, including embryo, fetus and juvenile. ............................................................... 97 

Figure 3.2 Means for transcript abundances of transcript abundances of IGF2 promoters, P0 and P1, 

and splice variants, P1 exon 2 and P2 exon 3, in tissues of three developmental stages, including 

embryo, fetus and juvenile. .................................................................................................................... 99 

Figure 3.3 Means for transcript abundances of IGF2 promoters, P2, P3 and P4, and splice variants, P2 

exon 4 and P2 exon 5, in tissues of three developmental stages, including embryo, fetus and juvenile.

 ............................................................................................................................................................. 101 

Figure 3.4 Means for ratio of IGF2/H19, IGF2R/AIRN and IGF2/IGF2R transcript abundance in 

tissues of three developmental stages, including embryo, fetus and juvenile. .................................... 102 

 



v 

Figure 4.1 Effect of heterosis, fetal genetics and sex on fetal weight and absolute and relative weights 

of fetal tissues. ...................................................................................................................................... 125 

Figure 4.2 Effect of heterosis, fetal genetics and sex on transcript abundance of IGF2 and H19, and 

the ratio of IGF2 to H19 transcript abundance in fetal tissues. ............................................................ 127 

Figure 4.3 Regression of absolute weight of fetal liver, lung, heart, kidney and placenta, and relative 

weight of liver and skeletal muscle on H19 transcript abundance in overall (including fetuses with 

purebred and hybrid genetics), purebred and hybrid genetic groups. .................................................. 128 

Figure 4.4 Effect of heterosis, fetal genetics and sex on transcript abundance of IGF2 promoter-

specific transcripts, P2, P3 and P4 in fetal tissues. .............................................................................. 132 

Figure 4.5 Effect of heterosis, fetal genetics and sex on the ratio of transcript abundance of IGF2 

promoter-specific transcripts, P2, P3 and P4, to H19 in fetal tissues................................................... 133 

Figure 4.6 Effect of heterosis, fetal genetics and sex on transcript abundance of IGF2 promoter-

specific transcripts, P0, P1e2, P1e3, and P2e4, and their ratio to H19 transcript abundance in fetal 

muscle and liver. .................................................................................................................................. 134 

Figure 4.7 Effect of heterosis, fetal genetics and sex on transcript abundance of IGF2R and AIRN, and 

the ratio of IGF2R to AIRN transcript abundance in fetal tissues. ....................................................... 135 

Figure 4.8 Effect of heterosis, fetal genetics and sex on the ratio of IGF2 to IGF2R transcript 

abundance in fetal tissues. .................................................................................................................... 136 

Figure 4.9 Regression of (a) fetal placental weight and (b) placental efficiency on transcript 

abundance of IGF2R, AIRN and the ratio of IGF2/IGF2R expression in cotyledon. .......................... 137 

Figure 4.10 Regression of absolute/relative weight of fetal tissues on transcript abundance/expression 

ratio of imprinted genes significantly affected by genetics, in overall (including fetuses with purebred 

and hybrid genetics), purebred and hybrid genetic groups. ................................................................. 138 

 

Figure 5.1 Relative contributions of parental genomes, fetal sex and non-genetic maternal effects to 

explained variation in fetal myofibre characteristics, absolute and relative muscle weights, and H19 

transcript abundance. ........................................................................................................................... 169 

Figure 5.2 Relative contributions of maternal and paternal genome to genetic variation in fetal 

myofibre characteristics, absolute and relative muscle weights, and H19 transcript abundance. ........ 170 

Figure 5.3 Specific effects of maternal genomes, paternal genomes and fetal sex on fetal myofibre 

characteristics of M. semitendinosus at midgestation. ......................................................................... 171 

Figure 5.4 Specific effects of maternal genomes, paternal genomes and fetal sex on fetal absolute 

muscle weights at midgestation. .......................................................................................................... 172 

Figure 5.5 Effects of final maternal weight nested within maternal genomes on fetal absolute muscle 

weights at midgestation. ....................................................................................................................... 174 

Figure 5.6 Specific effects of maternal genomes, paternal genomes and fetal sex on fetal relative 

muscle weights at midgestation. .......................................................................................................... 175 



vi 

Figure 5.7 Effects of interaction of maternal and paternal genomes, fetal sex and final maternal weight 

nested within maternal genetics on H19 transcript abundance in fetal M. semitendinosus at 

midgestation. ....................................................................................................................................... 176 

Figure 5.8 Regressions of fetal muscle mass at midgestation on H19 transcript abundance. (A) 

Absolute muscle mass and (B) relative muscle mass. ......................................................................... 176 

 

  



vii 

Index of Tables 

 

Table 1.1 Tissue and developmental stage-specific imprinting and expression of IGF2 global 

transcripts, consisting of all promoter-specific transcripts and splice variants, in different species ...... 21 

Table 1.2 Tissue and developmental stage-specific imprinting and expression of IGF2 promoter-

specific transcripts in different species .................................................................................................. 24 

Table 1.3 Imprinting status of IGF2R in tissues of different developmental stages across species ...... 34 

 

Table 5.1 Summary of the final general models (type III sums of squares) for myofibre characteristics, 

muscle weight parameters and H19 gene expression with adjusted R2 values and significance levels 

(P-values) of models and variables. ..................................................................................................... 168 

 

  



viii 

Index of Appendices 

 

Appendix 1 Protocol of RNA extraction using AllPrep™ DNA/RNA Micro (Qiagen GmbH, Inc., 

Hilden, Germany). ............................................................................................................................... 213 

Appendix 2 Details of primers used for amplification of transcripts of target genes. ........................ 214 

Appendix 3 Details of primers used for amplification of transcripts of housekeeping genes. ........... 215 

Appendix 4 Amplification efficiency and coefficient of determination for quantitative real time PCR 

runs for target transcripts in the studied fetal (Day-153) tissues. ........................................................ 216 

Appendix 5 Amplification efficiency and coefficient of determination for quantitative real time PCR 

runs for housekeeping genes in the studied fetal (Day-153) tissues. ................................................... 217 

Appendix 6 Amplification efficiency and coefficient of determination for quantitative real time PCR 

runs for analysis of expression of target transcripts in the tissues of three developmental stages. ..... 218 

Appendix 7 Summary of distribution of maternal and paternal genomes and sex of fetuses. ............ 218 

Appendix 8 Supplementary figures .................................................................................................... 219 

 

Figure S1 Transcript structure and location of forward (F) and reverse (R) primers for amplification of 

IGF2 promoter-specific transcripts and splice variants (SP). .............................................................. 219 

Figure S2 Contribution of IGF2 promoter-specific transcripts to the variation in global IGF2 

transcript abundance in the studied fetal (Day-153) tissues. ............................................................... 220 

Figure S3 Example of immunohistochemical staining for fetal slow and fast myofibres in M. 

semitendinosus at midgestation. (A) and (B) show serial stained sections of muscle tissue from one 

fetus against slow and fast myosin heavy chain isoforms, respectively. ............................................. 220 

Figure S4 Fetal carcass weights for the four different combinations of maternal and paternal genomes 

and fetal sex at midgeststion. ............................................................................................................... 221 

Figure S5 Quadratic effects of final maternal weight nested within maternal genomes on absolute 

weight of fetal M. quadriceps femoris at midgestation. ...................................................................... 221 

Figure S6 Daily weight gain and final weight for Bos taurus taurus and Bos taurus indicus dams. . 222 

 

  





x 

 

 

 

 

 

 

 

 

Dedications 

 

I dedicate this work to my parents and my wife, Banafsheh Ashoordehi Noveir, 

for their great support with love during my life and the period of this study. 

  



xi 

Acknowledgements 

 

During my PhD, I have learnt a lot from many people. It is with great pleasure that I 

acknowledge the assistance provided by people who supported and helped me. 

I would sincerely like to thank my principal supervisor, Prof. Stefan Hiendleder for his 

excellent supervision, guidance, trust and criticism over the course of my years of study. He 

encouraged me to always strive to improve the quality of my project. I would also like to 

thank Prof. Stefan Hiendleder for reviewing and commenting on the thesis chapters and 

components.  

I am very grateful for the help from my co-supervisor, Dr. Karen Kind, who was always 

willing to understand, discuss, listen and encourage. Our discussions on analyses and writing 

were very beneficial. I would also like to thank Dr. Karen Kind for reviewing and 

commenting on the thesis chapters and components. 

To the members of our laboratory group: Ali Javadmanesh, Ruidong Xiang, Dr Dana 

Thomsen and Ying Liu, thank you for your support and help with the laboratory work, and for 

your friendship. Dr. Dana Thomsen kindly read and edited the thesis. 

I am very grateful for the J.S. Davies Bequest project funding. My sincere thanks also 

extend to Iran’s Ministry of Science, Research and Technology for providing the PhD 

scholarship, without which this work would not have been possible. I thank the University of 

Adelaide for providing the opportunity for this project and support through university staff in 

particular the Graduate Centre. 

My deepest gratitude goes to my mum and dad for being generous supporters over the 

past years. It was your love, support and strength that got me through the toughest time. 

Thank you for always being proud of my achievements.  

I also thank my mother-in-law who supported my wife and I during our stay in Australia, 

and took care of our baby, allowing me to focus on my study. Most importantly, special 

thanks are given to my dear wife Banafsheh, who has constantly motivated me and 



xii 

encouraged me in every way. You sacrificed sleep time to take care of our newborn girl and it 

was your support and hard work following my scholarship expiration that allowed me to 

continue and finish my study. Thank for all your support even during the most emotionally 

challenging time. It is your understanding and your love that enabled me to complete this 

work.  



xiii 

Abstract 

 

Epigenetic parent-of-origin effects contribute significantly to phenotypic variation in 

animals. Imprinted genes, which show differential allelic expression in a parent of-origin 

dependent manner, are critical regulators of prenatal development. Altered epigenetic 

modifications of imprinted genes in response to maternal environmental stimuli are believed 

to impact on prenatal development with long-term consequences for postnatal phenotype, a 

process which is known as fetal programming. Most studies in the area of fetal programming 

have focused on the epigenetic link between intrauterine environment and fetal phenotype, 

and genetic programming of variation in pre- and postnatal growth traits remains largely 

unexplored. 

We hypothesised that heterosis, i.e., the superiority of F1 hybrids compared to their 

parents, in growth traits is programmed prenatally through changes in expression patterns of 

imprinted genes. The purpose of this thesis was (i) to perform a comparative in silico analysis 

of promoter-specific transcripts and splice variants of the imprinted IGF2 and IGF2R genes as 

well as their imprinted regulatory non-coding RNAs, H19 and AIRN, (ii) to analyse 

expression patterns of all identified transcripts in bovine pre- and postnatal tissues, and (iii) to 

investigate fetal genetic effects on gene expression and their association with heterotic 

phenotype. 

To this end, a bovine model was employed using two genetically and phenotypically 

distinct subspecies of domesticated cattle, Bos taurus and Bos indicus, and their reciprocal 

crosses. Real time quantitative PCR was used to quantify expression of IGF2 promoter-

specific transcripts, IGF2R, H19 and AIRN, in liver, brain, heart, cotyledon, skeletal muscle, 

kidney, lung and testis at three developmental stages, Day-48 embryo, Day-153 fetus and 12-

month juvenile. Heterotic effects on transcript abundances and expression patterns of 

imprinted genes and their correlations with fetal body weight and weights of fetal tissues were 

estimated with general linear models. 



xiv 

All studied imprinted genes were subject to developmental control of gene expression 

with the transcript abundance being downregulated in postnatal tissues. We identified IGF2 

promoter-specific transcripts and the bovine orthologue of human P0 promoter, and found a 

developmental shift in tissue specificity of P0 from fetal skeletal muscle to postnatal liver. 

Fetal body weight and absolute weights of fetal tissues, except brain, were subject to 

significant parent-of-origin effects, and were higher in fetal groups with B. taurus maternal 

genetics compared to B. indicus maternal genetics. Fetal placental weight, lung weight and 

relative muscle mass showed significant heterosis. Heterosis in fetal placental weight was 

associated with a polar overdominance imprinting pattern of IGF2R and AIRN in cotyledon 

with highest expression in B. indicus (sire) × B. taurus (dam) group, whereas the transcript 

abundance in the other reciprocal was close to purebred groups. In hybrid genetic groups, 

expression of IGF2R and AIRN in cotyledon was positively correlated with weight of fetal 

placenta and negatively correlated with placental efficiency, defined as fetal to placental 

weight ratio. H19 expression in skeletal muscle was significantly affected by the interaction 

between parental genomes. With respect to significant negative association between H19 

expression and muscle mass, the negative heterotic effect on H19 expression may explain the 

positive heterosis in relative muscle mass. Fetal genetics consistently influenced H19 

expression, which in B. indicus was between 1.5 to 2.2-fold higher than in B. taurus in all 

examined tissues, except brain. A negative relationship was observed between transcript 

abundance of H19 and weights of fetal tissues, except brain. These results suggest that H19 

could be a molecular driver for differential subspecies-specific fetal phenotypes. By in silico 

search, we found B. indicus-specific nucleotide polymorphisms at CpG sites of the consensus 

sequence for the first CTCF binding site within the imprinting control region (ICR) located 

upstream of H19 promoter. This led us to speculate that higher expression of H19 in B. 

indicus tissues could be attributable to partial or complete relaxation of imprinting resulting 

from epigenetic changes in the ICR. 



xv 

In conclusion, our results provide insight into the interplay between genetics and 

epigenetics and its consequences for genetic programming of phenotypic variation and 

heterosis. Significant interaction between parental genomes on expression of H19, a miRNA 

precursor and master regulator of an imprinted gene network, and negative relationship 

between H19 expression and fetal muscle mass suggested imprinted genes and miRNA 

interference as mechanisms for differential effects of maternal and paternal genomes on fetal 

muscle. 
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Chapter 1                                         

Introduction and literature review
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1.1 Introduction 

Prenatal development consists of a series of orchestrated processes which leads to 

differentiation of multiple specialised tissues from a single-cell zygote. Gene expression 

patterns in the specialised cells during the process of differentiation are controlled by fetal 

genetics and epigenetics (Reik et al., 2001; Surani, 2001). Gene transcription at the genetic 

level is regulated by tissue-specific availability of transcription factors which bind specific 

regulatory DNA sequences and are thereby implicated in regulation of gene expression (Reik 

et al., 2001; Reik, 2007). Epigenetics is defined as stable transmission of cell information 

determined by gene expression patterns across cell division which occurs independent of 

DNA sequence (Nafee et al., 2008). The heritable epigenetic marks, including DNA 

methylation and histone modification, which create the epigenome, partition chromatin into 

active and inactive domains, and serve to store information as an epigenetic memory to 

regulate gene expression (Li, 2002). Genomic imprinting is the best example of epigenetic 

regulation of gene expression, which infringes Mendelian rules of inheritance, and is 

described as an imbalance in expression of alleles depending on parent-of-origin (Reik and 

Walter, 1998; Tilghman, 1999). 

It is well known that epigenetic parent-of-origin effects significantly contribute to 

phenotypic variation of postnatal growth traits in animals (Cockett et al., 1996; Van Laere et 

al., 2003; Kim et al., 2004; Neugebauer et al., 2010a; Neugebauer et al., 2010b; Imumorin et 

al., 2011). Therefore, epigenetics imposes a source of non-additive genetic variation on the 

phenotype, which is unidentified in the classic genetic models for genetic evaluation of 

animals leading to reduced accuracy of estimated genetic parameters. It has been 

demonstrated that the use of inappropriate quantitative genetic models for deriving breeding 

values and population (co)variances between relatives may result in biased estimation of 

genetic parameters for traits controlled by imprinted genes (Engellandt and Tier, 2002; 

Santure and Spencer, 2006). On the other hand, epigenetic modifications are strong 

candidates for the interaction between genetics and environment, which compromise genetic 
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evaluation and improvement programs of farm animals. Any changes in environmental 

conditions, including maternal factors and fetal nutrition, result in developmental adaptations 

through transient alterations in epigenetic status of the epigenome, which have a permanent 

impact on postnatal growth and development, a process termed “fetal programming” (Barker 

and Clark, 1997). Although the concept of fetal programming has the most implications in the 

context of human disease, there is growing evidence that animal postnatal performance has its 

origin in prenatal development and is affected by maternal environmental conditions (Young 

et al., 1998; Bell, 2006; Foxcroft et al., 2006; Wu et al., 2006; Gardner et al., 2007; Funston 

et al., 2010; Hill et al., 2010). While studies in the area of fetal programming have focused on 

the epigenetic link between intrauterine environment and fetal phenotype, genetic effects on 

epigenetic regulation of gene expression and its association with phenotypic variation in 

prenatal development and consequences for postnatal growth traits and heterosis remain 

largely unexplored. 

The insulin like growth factor 2 (IGF2) and insulin like growth factor 2 receptor 

(IGF2R) genes are the first identified imprinted genes, and have been studied extensively in 

many species. IGF2 and IGF2R are expressed from the paternal and maternal allele, 

respectively, and are vital regulators of prenatal development. The imprinted expression of 

IGF2 and IGF2R is regulated by the long non-coding RNA genes, H19 and AIRN, 

respectively. Several lines of evidence demonstrated that epigenetic status and expression of 

the imprinted genes changes in response to prenatal environmental conditions and these 

effects persist into postnatal life, suggesting that these genes are implicated in developmental 

programming of postnatal performance (Young et al., 2001; Micke et al., 2011a; Micke et al., 

2011b). However, expression pattern of these genes and their contribution to phenotypic 

variation and heterosis in hybrids remains unexplored. 

The focus of this research was to exploit an experimental model for the systematic 

analysis of fetal genetic and heterotic effects on tissue-specific transcript abundance of the 

genes controlled by genomic imprinting, and their link to prenatal phenotypic variation and 
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heterosis in the bovine. Additionally, this model facilitates analysis of the phenotypic patterns 

associated with the parent-of-origin (epi)genetic effects and their link to imprinted gene 

expression. Development of this model was achieved using reciprocal crosses of two 

phenotypically and genetically distinct subspecies of domesticated cattle, commonly known 

as Bos taurus (Angus) and Bos indicus (Brahman), in an attempt to attain maximum genetic 

diversity between parents. This model could be utilised to investigate the interplay between 

genetics and epigenetics to diversify prenatal phenotypes. 

 

1.2 Epigenetics 

Epigenetics describes the modifications and mechanisms beyond DNA sequence that 

cause heritable changes in gene expression patterns, and persist for one or more generation. 

(Bernstein et al., 2007). DNA methylation and histone posttranscriptional modifications are 

key components of the epigenetic machinery, which interplay with each other, and with 

chromatin remodelling complexes and non coding RNAs, to regulate vital biological 

processes, including differentiation (Delcuve et al., 2009). 

DNA methylation occurs on the 5’-cytosine of CpG dinucleotides across the genome. 

Methylation of CpG sites in the promoters is usually associated with reduced gene expression 

(Kass et al., 1997; Siegfried and Cedar, 1997; Bird, 2002). There are unmethylated CG-rich 

regions (CpG islands) in the genome that co-localise with the promoter of most constitutively 

expressed genes (Bird, 1986; Larsen et al., 1992; Antequera, 2003; Zhu et al., 2008). 

Although, the majority of CpG islands remain unmethylated, a small proportion acquire 

methylation during development, some of which play an essential role in X chromosome 

inactivation and genomic imprinting (Edwards and Ferguson-Smith, 2007; Reik, 2007). 

Genomic DNA methylation patterns are dynamic during development. There are two 

major cycles of epigenetic reprogramming, in which genome wide demethylation and de novo 

methylation occurs: during germ cell development and after fertilisation (Monk et al., 1987; 

Sanford et al., 1987; Howlett and Reik, 1991; Kafri, 1992; Rougier et al., 1998; Surani, 
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1998). A number of DNA methyltransferases (Dnmt) which transfer methyl group from s-

adenosyl methionine onto C5 position of cytosine residues in the CpG dinucleotides have 

been identified in mammals (Bestor, 2000). 

Histones are subject to posttranslational modifications, including acetylation (Sterner 

and Berger, 2000) and methylation of lysines (K) and arginines (R) (Zhang and Reinberg, 

2001). Histone acetylation is always associated with transcriptional activation (Sterner and 

Berger, 2000), whereas methylation of lysines may result in gene activation or repression 

(Bannister and Kouzarides, 2005). It is believed that histone modifications are associated with 

changes in the structure, position and composition of nucleosomes. This process which is 

termed chromatin remodelling influences accessibility of DNA to transcriptional machinery 

(Peterson and Laniel, 2004). 

Genome wide patterns of DNA methylation are the consequence of the interplay 

between DNA methyltransferases and chromatin remodelling machinery, including histone 

modifications (Dennis et al., 2001; Meehan et al., 2001; Geiman and Robertson, 2002; Klose 

and Bird, 2006). It is evident that histone methylation, which is thought to be affected by 

chromatin remodelling complexes, and other histone modifications such as acetylation and 

phosphorylation, is a prerequisite for proper DNA methylation patterns (Geiman and 

Robertson, 2002).  

 

1.3 Genomic imprinting 

Genomic imprinting is the best example of epigenetic regulation of gene expression 

which results in an imbalance in expression levels of alleles depending on their parent-of-

origin, and thus, violates Mendelian rules of inheritance (Sha, 2008). So far, a group of 70 

genes in human, 130 genes in mouse, 15 genes in ovine, 19 genes in bovine and 20 genes in 

porcine have been identified as imprinted (http://igc.otago.ac.nz/, www.geneimprint.com, 

www. mgu.har.mrc.ac.uk). In silico studies have predicted that 2.5% of mouse genes and 1% 

of human genes are subject to genomic imprinting (Luedi et al., 2005; Luedi et al., 2007). A 
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recent study has uncovered more than 1300 candidate imprinted loci with parent-of-origin-

specific allelic expression in mouse (Mus musculus castaneus/Mus musculus domesticus) 

brain (Gregg et al., 2010). 

In mammals, most imprinted genes are in close proximity on the chromosome and 

organised into clusters (Reik and Walter, 2001; Verona et al., 2003). Expression of imprinted 

genes within a cluster is co-ordinately controlled by regulatory sequences referred to as 

imprinting control regions (ICRs), which are differentially methylated regions (DMRs) or 

domains (DMDs) (Sutcliffe et al., 1994; Wutz et al., 1997; Thorvaldsen et al., 1998; Arima et 

al., 2001; Kanduri et al., 2002; Reinhart et al., 2002; Yatsuki et al., 2002; Williamson et al., 

2006; Lin et al., 2007; Shin et al., 2008). These regions, which act in cis, are sites of 

differential methylation in a parent-of origin-dependent manner (Holmes and Soloway, 2006). 

There are two types of DMRs: primary DMRs, which acquire methylation imprints in the 

germ cells during gametogenesis and maintain it during development, and secondary DMRs, 

which undergo erasure and establishment of new methylation imprints during embryogenesis 

(Kobayashi et al., 2006). The DMRs harbour binding sites for transcription regulatory 

proteins, such as methyl-CpG binding domains (MBDs), which target methylated DNA (Sha, 

2008). 

All ICRs in known imprinted clusters act in cis to repress expression of genes when 

unmethylated through different mechanisms (Koerner and Barlow, 2010). In the first 

mechanism, which has been observed in the Igf2/H19 imprinted cluster, the unmethylated 

ICR acts as an insulator that binds the zinc finger transcription factor CTCF to block Igf2 

promoter access to its enhancer located downstream of H19 gene (Hark et al., 2000). In the 

second model, which is represented in two imprinted clusters, Igf2r and Kcnq1, the 

unmethylated ICR contains an active promoter for the long non-coding RNAs, Airn and 

Kcnq1ot1, respectively, expression of which is associated with cis-silencing of the flanking 

genes (Sleutels et al., 2002; Sleutels et al., 2003; Mancini-DiNardo et al., 2006). 

 



7 

1.4 The insulin like growth factor family: General overview 

The insulin-like growth factor (IGF) family is part of a complex cell signalling system 

composed of ligands (IGF1 and IGF2, insulin), cell surface receptors (IGF1R and IGF2R, 

insulin receptor) and a group of six binding proteins (IGFBP1-6) in addition to IGFBP 

degrading proteases (Roith, 2003).  

IGF1 and IGF2 are single-chain peptides of 70 and 67 amino acids, respectively, which 

are organised into four domains designated as B, C, A and D (in order from N- to C-

terminus). Precursor forms of IGF1 and IGF2 contain the C-terminal E domain as well as N-

terminal signal peptide, which are cleaved off before secretion. IGF1 and IGF2 are involved 

in a number of vital biological processes, including mitogenesis, anti-apoptosis, cell growth 

and differentiation, cell migration and metabolism. Their functions are mediated through 

binding to the insulin-like growth factor type 1 receptor (IGF1R).  

Mechanisms of action and signal transduction pathways for IGF1R and the insulin 

receptor (IR) show significant similarities (Cheatham and Kahn, 1995; Leroith et al., 1995). 

These heterotetrameric glycoproteins belong to the tyrosine kinase subfamily of 

transmembrane receptors (Leroith et al., 1995). Two insulin receptor variant forms (IR-A and 

IR-B) resulting from alternative splicing of IR transcript have been identified (Sesti, 2000; 

Denley et al., 2003; Denley et al., 2005). As a result of the high level of similarity in 

structure, IGF1 αβ hemireceptor and insulin αβ hemireceptor are joined together to make up 

hybrid receptors in the tissues, but their functional roles in cell signalling are still unclear 

(Federici et al., 1997a; Federici et al., 1997b). 

IGF2R serves as a scavenger receptor which binds IGF2 at the cell surface and 

internalises it for lysosomal degradation (Scott and Firth, 2004). On the other hand, IGF2R 

acts as a dual purpose receptor which binds proteins containing mannose-6-phosphate (M6P) 

recognition sites, including lysosomal enzymes in the trans-Golgi network, and transports 

them to lysosome (Kornfeld, 1992).  
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So far, a group of six IGF-binding proteins (IGFBP1-6) have been described. The 

IGFBPs have different affinity for IGF1 and IGF2 (Firth and Baxter, 2002) and carry most 

(99%) of the IGF1 in the bloodstream. The majority of serum IGF1 and IGF2 (70-80%) 

during human postnatal life are bound to a 150 kDa ternary complex consisting of IGFBP3 

and a glycoprotein, acid labile subunit (ALS) (Frystyk, 2004). Ninety percent of IGFBP3 and 

55% of IGFBP5 circulate in heterotrimeric complexes containing ALS in human adults. All 

IGFBPs also circulate in the free form or in binary complexes with IGFs. Free and IGF-bound 

IGFBPs are able to pass across the endothelium and diffuse into tissues, while ternary 

complexes are believed to remain in blood vessels (Baxter et al., 2002; Firth and Baxter, 

2002). IGFBPs prolong the half-life of plasma IGF ligands and regulate their bioavailability 

to the receptors. IGFBPs bind IGFs with higher affinity than IGF receptors and so can 

compete with IGF receptors in binding IGFs and prevent receptor access to IGF1 and IGF2 

(Baxter, 2000; Firth and Baxter, 2002). This constitutes a mechanism to control IGF release in 

tissues and normal cell growth (Rajah et al., 1999). IGFs are released from IGFBPs and 

delivered to their receptors following degradation of IGFBPs by specific proteases or binding 

of IGFBPs to the extracellular matrix (ECM) (Hwa et al., 1999). 

 

1.5 Insulin-like growth factor 2 

1.5.1 Regulation of expression 

1.5.1.1 Transcriptional regulation: Genomic imprinting 

The Igf2 gene in mouse (Mus musculus domesticus) shows imprinted expression and is 

predominantly expressed from paternal allele, whereas expression from the maternal allele is 

repressed (DeChiara et al., 1991). Mouse Igf2 is part of a conserved imprinted cluster which 

consists of five imprinted genes. The gene is flanked 5’ by Ins2 and 3’ by H19. The H19 

gene, which encodes a long non-coding RNA, is located 90 kb downstram of Igf2 and is 

maternally expressed (Bartolomei et al., 1991). IGF2 and H19 imprinted expression is 

conserved in human (Rachmilewitz et al., 1992; Giannoukakis et al., 1993; Ohlsson et al., 



9 

1993), rat (Overall et al., 1997), porcine (Li et al., 2008), ovine (Ovis aries) (Feil et al., 1998; 

McLaren and Montgomery, 1999; Young et al., 2003) and bovine (B. taurus/B. gaurus) 

(Dindot et al., 2004a; Dindot et al., 2004b; Zhang et al., 2004). Observations on nascent RNA 

levels at the initial transcription sites in mouse (Mus musculuc domesticus) embryonic liver 

cells revealed numerous transcription patterns for Igf2 and H19, including monoallelic and 

biallelic expression. This suggests that imprinted monoallelic expression of Igf2 and H19 is 

likely to be controlled at both transcriptional and post-transcriptional levels (Jouvenot et al., 

1999).  

 

1.5.1.1.1 Differentially methylated regions 

In mouse (Mus musculus domesticus/Mus spretus), there are three DMRs within the 

imprinted domain encompassing Igf2, two of which (DMR1 and DMR2) lie within the Igf2 

gene with extensive paternal methylation (Feil et al., 1994; Moore et al., 1997). DMR1 is a 

CpG-rich element with tandem repeat sequences that lies 3 kb upstream of mouse (Mus 

musculus domesticus) Igf2 P1 promoter and reveals mosaic patterns of methylation in sperm-

derived DNA. DMR1 is believed to have a role in silencing the maternal allele, since deletion 

of this region led to biallelic expression of Igf2 in mesodermally derived tissues, except 

muscle, without changing H19 imprinting status or expression (Constancia et al., 2000). 

Differential methylation of DMR1 on the transcriptionally active paternally-derived allele 

gives rise to the proposal that DMR1 contains repressor binding sites interacting with trans-

acting repressors when unmethylated. A possible role for the protein GCF2 as a trans-acting 

repressor interacting with DMR1 has been elucidated (Eden et al., 2001). However, the role 

of DMR1 in primary imprinting control of Igf2 remains controversial by the fact that targeted 

deletion of mouse (Mus musculus domesticus/Mus musculus castaneus) H19 causes loss of 

imprinting of Igf2 (Leighton et al., 1995a). DMR2, which is predominantly methylated in 

sperm-derived DNA, is situated close to the downstream part (last exon) of Igf2 and appears 

to be involved in tissue-specific repression of the maternal allele. The methylation intensity of 
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DMR2 in fetal tissues changes depending on the expression level of Igf2 in the tissues (Feil et 

al., 1994). DMR2 does not appear to have a primary role in Igf2 imprinting, as disruption of 

maternal DMR2 does not influence imprinting of Igf2. The third DMR (DMR0), located 

upstream of DMR1, is differentially methylated on the maternal allele in the mouse (Mus 

musculus domesticus/Mus spretus) placenta, whereas it is heavily methylated in both alleles in 

fetal tissues. Differential parental methylation of DMR0 in placenta is linked to the expression 

of H19 in cis, whereas H19 knockout does not have any effect on the placental DMR1 and 

DMR2 methylation. This can be interpreted as a tissue-specific mechanism involved in the 

regulation of imprinting (Moore et al., 1997). The differentially methylated regions 

homologous to the mouse DMR0 and DMR2 with the same differential methylation pattern 

were identified in human (Reik et al., 1995; Sullivan et al., 1999; Cui et al., 2002). Moreover, 

a region homologous to mouse DMR1 containing CpG island but without tandem repeats was 

identified in human. This region that spans exons 2 and 3 shows complete demethylation 

(Moore et al., 1997). The presence of DMR2 and also DMR1 with the differential 

methylation on the paternal allele, has been elucidated in porcine (Han et al., 2008a). 

However, IGF2 imprinting in adult porcine liver, muscle and kidney was not dependent on 

methylation status of the DMR1 and DMR2 (Braunschweig et al., 2011). In addition, an 

intragenic DMR within exon 10 of bovine IGF2, homologous to the mouse DMR2, has been 

found with significant difference in methylation between oocyte (16%) and sperm (99%) 

(Gebert et al., 2006).  

 

1.5.1.1.2 Imprinting control region 

A paternally methylated DMR is located upstream of H19 in mouse (Mus musculus 

domesticus/Mus musculus castaneus). This conserved DMR which acts as a cis-acting 

imprinting control region (ICR) is one of the major elements determining IGF2 and H19 

imprinting as its deletion abolishes both Igf2 and H19 imprinted expression (Bartolomei et al., 

1993; Thorvaldsen et al., 1998). The ICR harbours binding sites for the CTCF, a zinc-finger 
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transcription factor, which acts as an insulator (Kurukuti et al., 2006). The conserved DMR 

upstream of the H19 gene has been identified in ovine (Ovis aries) (Young et al., 2003), 

porcine (Sus scrofa) (Braunschweig et al., 2011), bovine (B. taurus/B. indicus) (Curchoe et 

al., 2009; Hansmann et al., 2011; Robbins et al., 2012) and human (Jinno et al., 1996; Vu et 

al., 2000). 

Several models have been suggested to explain the mechanisms underlying imprinting of 

the Igf2/H19 gene domain. In the boundary model (Katharine, 2003), imprinting of Igf2 in 

endoderm-derived tissues is believed to be controlled by interplay between tissue-specific 

enhancers, which are located downstream of H19 (Yoo-Warren et al., 1988), and ICR. The 

unmethylated ICR on the maternal allele functions as a boundary which blocks the interaction 

between downstream enhancers and the Igf2 promoter by binding to CTCF. Methylation of 

CTCF binding sites on the paternal allele prevents CTCF binding and allows transcription of 

Igf2 induced by the enhancers (Bell and Felsenfeld, 2000; Hark et al., 2000; Kanduri et al., 

2000; Szabu et al., 2000; Pant et al., 2003). Paternal and maternal transmission of the 

enhancer deletion leads to loss of expression of Igf2 and H19, respectively, in tissues of 

endodermal origin (Leighton et al., 1995b). 

A chromatin model has been suggested to explain mechanisms underlying imprinted 

expression of Igf2 and H19. In this model, allelic expression of the Igf2 and H19 is regulated 

by the interaction between promoters and the enhancers which takes place possibly by 

forming loop-like structures along chromatin and is determined by the methylation status of 

H19 DMR (ICR). The paternally derived methylated DMR suppresses expression of H19 by 

spreading inactive chromatin state on its promoter allowing Igf2 promoter to access its 

enhancer. The maternally derived unmethylated DMR prevents interaction between the Igf2 

promoter and the enhancers probably by forming a complex with insulator proteins leaving 

enhancers accessible to the H19 promoter (Sasaki et al., 2000). 

Preferential interaction of the unmethylated H19 DMR with Igf2 DMRs, which are 

influenced by the epigenetic modifications of DMRs involving binding of protein factors, 
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partitions Igf2 and H19 into active and silent chromatin loops (Murrell et al., 2004; Kurukuti 

et al., 2006; Qiu et al., 2008). In the enhancer tracking model, enhancers move over the length 

of chromosomes to recognise the promoters of relevant genes. In this model, insulator 

sequences located between enhancer and promoters stop the enhancer tracking along the 

chromosome (Engel et al., 2008). There is evidence that cohesion, a protein involved in the 

cohesion of chromatids during cell division, co-localises with the CTCF at the ICR and plays 

an important role in facilitating and stabilizing CTCF-mediated chromatin looping. Gene 

depletion of cohesion in human abolished the chromatin conformation and was associated 

with the alteration in IGF2 expression (Nativio et al., 2009). 

 

1.5.1.2 Posttranscriptional regulation 

Although the complex patterns of IGF2 transcription are thought to be involved in the 

regulation of expression at the transcription level, it is speculated that alternative 5’ 

untranslated regions (5’UTRs) may be involved in the posttranscriptional regulation of gene 

expression, which influence mRNA translation (van der Velden and Thomas, 1999). A family 

of three IGF2 mRNA binding proteins (IMP1, IMP2, IMP3) have been found in human that 

bind to the 5’UTR of the P3 derived mRNA (Nielsen et al., 1995). The IGF2 mRNA binding 

proteins have been found in both human and mouse and are thought to play an important role 

in temporal and spatial regulation of gene expression during late mammalian development. 

The P4 derived transcripts are constitutively translated and maintain IGF2 generation at 

a basal level in all tissues, whereas translation of P3 derived transcripts is regulated in a 

tissue- and developmental stage-specific manner (Nielsen et al., 1999). It has turned out that 

translation of human P2 derived transcripts is carried out in an eukaryotic translation initiation 

factor 4E (eIF4E) independent fashion which involves an internal ribosome entry site (IRES) 

allowing for translation initiation in the middle of the messenger RNA. Since cap-dependent 

translation may be compromised during cell division, the P2 derived transcripts may maintain 

IGF2 generation in the growing tissues of the embryo (Pedersen et al., 2002). These data 
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show that the measurement of mRNA level per se does not necessarily reflect the total IGF2 

protein expression in tissues. Further studies are required to show mechanisms controlling 

promoter-specific translation of IGF2 in different tissues and developmental stages. 

 

1.5.2 Tissue, developmental stage, and promoter-specific expression and 

imprinting 

1.5.2.1 Tissue and developmental stage-specific expression of IGF2 global 

transcripts 

Developmental stage and tissue-specific imprinted expression of IGF2 in a number of 

species is shown in Table 1.1. The mouse Igf2 transcript is first seen at the two-cell stage of 

the embryo (Mizuki Ohno, 2001) and is frequently expressed shortly after implantation in the 

primitive endoderm, extraembryonic mesoderm, the anterior-proximal and lateral mesoderm 

cells and then in the mesoderm-derived tissues, including heart and somites (Lee et al., 1990). 

In bovine, IGF2 mRNA is present in mature oocytes and in the embryo throughout 

preimplantation and implantation period (Watson et al., 1992; Wang et al., 2009). In bovine 

fetuses, IGF2 expression increases substantially by Day-180 of gestation. In bovine Day-150 

fetuses, expression is higher in heart, liver and muscle than in brain (Kawase et al., 2000). 

Several lines of evidence have demonstrated tissue-specific and developmental 

regulation of IGF2 with highest expression level in prenatal tissues of rat (Adams et al., 1983; 

Brown et al., 1986; Soares et al., 1986; Gray et al., 1987), bovine (Boulle et al., 1993), ovine 

(Stylianopoulou et al., 1988a; O'Mahoney et al., 1991; Delhanty and Han, 1993) and human 

(Schofield and Tate, 1987). In a study to analyse the quantitative expression level of IGF2 in 

bovine fetal tissues using northern blot and dot blot, it has been demonstrated that although 

liver IGF2 expression level does not significantly change, muscle IGF2 transcripts declined 

steadily after Day-150 of gestation. Also, the quantity of IGF2 transcripts in bovine liver and 

muscle was remarkably reduced in postnatal, compared to prenatal developmental stage, with 

the postnatal decrease in expression being more severe in muscle compared to liver (Boulle et 
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al., 1993). In human, the level of IGF2 transcripts during the first and second trimester of 

pregnancy was higher in muscle, compared with placenta, and was the lowest in fetal brain 

(Goshen et al., 1993). Dot blot analysis of total RNA in ovine fetal tissues has revealed 

reduction of IGF2 from Day-80 to Day-135 of gestation in liver, heart, spleen, skeletal 

muscle, kidney, and lung, whereas expression in placenta remained constant (O'Mahoney et 

al., 1991). Expression of IGF2 mRNA in ovine liver and kidney showed an increase from 

Day-50 to Day-100, then a decrease in late gestation (Day-120 to 145), while the mRNA level 

in muscle and choroid plexus declined as prenatal age advanced (Delhanty and Han, 1993). 

The relative abundance of rat IGF2 transcripts was highest in fetal muscle, lung and liver and 

lowest in brain, heart and kidney (Brown et al., 1986). 

In human placenta, IGF2 is transcribed in chorionic mesoderm and first trimester villous 

cytotrophoblast (Han, 1996), whereas in rhesus monkey placenta, IGF2 is expressed in 

syncytiotrophoblast but not in chorionic mesoderm (Coulter and Han, 1996b; Coulter and 

Han, 1996a). In rodents, Igf2 is detectable in the fetal mesodermal part of placenta and the 

trophoblast of labyrinth (Han and Carter, 2000). In ovine, IGF2 mRNA is found in the fetal 

mesoderm close to trophoblast and also in the stroma of maternal caruncles (Reynolds et al., 

1997). 

Igf2 is downregulated after birth in rodents (DeChiara et al., 1991). IGF2 in human 

continues to be expressed after birth with liver as the main source of IGF2 (de Pagter-

Holthuizen et al., 1987).  

 

1.5.2.2 Tissue and developmental stage-specific expression of IGF2 

promoter-specific transcripts 

Expression of IGF2 promoter-specific transcripts at different developmental stages and 

in different tissues of the studied species is summarized in Table 1.2. In most species, 

including human, mouse, rat, porcine, ovine and bovine, IGF2 is transcribed from distinct 

promoters which initiate transcription from different 5’ non-coding exons. This complex 
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promoter-specific transcription, which involves alternative splicing and polyadenylation, is 

believed to play an important role in regulation of transcription of IGF2 in a tissue and 

developmental stage-specific manner. In human (Holthuizen et al., 1990), bovine (Curchoe et 

al., 2005; Goodall and Schmutz, 2007), porcine (Amarger et al., 2002) and ovine (Ohlsen et 

al., 1994), transcription from four promoters (P1-4) gives rise to a family of mRNA 

transcripts with different untranslated exons. In mouse, four distinct promoters (P0, P1, P2 

and P3) initiate transcription from alternative untranslated exons, all of which splice onto the 

common protein-coding exons (Rotwein and Hall, 1990; Moore et al., 1997). Recently, a 

novel mesoderm-specific promoter (Igf2 Pm) has been identified in mouse whose 

transcription is initiated from a novel untranslated exon which is located downstream of exon 

U2 (Giang Tran et al., 2012). A novel IGF2 promoter which appears to be equivalent to the 

mouse placental-specific P0 promoter (Moore et al., 1997) has been found to be active 

specifically in skeletal muscle of the human fetus (Monk et al., 2006b). 

In human, P2, P3 and P4 promoters are actively transcribed and drive transcripts in 

tissues during prenatal development, whereas P1 promoter is only active in human adult liver 

(Pedersen et al., 2002). Expression patterns of IGF2 alternative transcripts in bovine display 

considerable changes depending on the tissue and developmental stage. Three splice variants 

derived from P1 promoters were solely seen in the pre-term and postnatal liver, which is in 

agreement with the observation of a 4.4 kb adult liver-specific transcript reported previously 

(Boulle et al., 1993), and the transcripts derived from P2, P3 and P4 promoters were observed 

in the liver and other tissues from newborn calves to 19 month old steers (Goodall and 

Schmutz, 2007). Contrary to these observations, in a later study, it was demonstrated that P1 

derived transcripts are expressed in all bovine pre- and postnatal tissues, including liver, heart, 

lung, brain and kidney (Curchoe et al., 2005). These contrary results can be explained by the 

utilisation of different primer pairs for amplification of different exonic regions of P1 derived 

transcripts. Curchoe et al. (2005) used primers inside exon 3, whereas Goodall and Schmutz 

(2007) utilised the forward primer in exon 1 and the reverse primer in exon 8. It appears that 
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primers spanning exons 1 and 8 specifically amplify P1 derived transcripts, which display 

evolutionarily conserved expression in postnatal liver. On the other hand, the primers located 

in exon 3 are supposedly able to amplify any putative transcripts containing exon 3. 

 

1.5.2.3 Tissue, developmental stage, and promoter-specific imprinting 

Developmental stage and tissue-specific imprinting of IGF2 global and promoter-

specific transcripts are shown in Tables 1.1 and 1.2. It is evident that monoallelic expression 

of the Igf2 gene in mouse (Mus musculuc domesticus/Mus musculus molossinus) is 

established at the blastocyst stage, while both alleles are transcriptionally active in the morula 

(Mizuki Ohno, 2001). In mouse (Mus musculuc domesticus), the Igf2 gene displays biallelic 

expression in choroid plexus and leptomeninges of brain (DeChiara et al., 1991). Monoallelic 

expression of ovine (Ovis aries) IGF2 occurs only after the blastocyst stage, before which 

both paternal and maternal copies can be detected (Thurston et al., 2008). Conserved 

imprinted expression of ovine (Ovis aries) IGF2 and H19 has been documented at Day-25 of 

gestation (Young et al., 2003). The IGF2 gene is imprinted in ovine (Ovis aries) fetal kidney, 

spleen and liver, and also in the kidney of juveniles but is biallelically expressed in fetal brain 

and adult liver (McLaren and Montgomery, 1999). In domestic pig, monoallelic paternal 

expression of IGF2 was demonstrated using pyrosequencing in Day-30 embryos (Bischoff et 

al., 2009). 

Promoter-specific imprinting of IGF2 has been studied in several species. In mouse 

(Mus musculus/Mus spretus), Igf2 P1, P2 and P3 drive monoallelic paternal expression in all 

tissues, except the central nervous system (CNS), where biallelic expression from all 

promoters is observed (Hu et al., 1995). In human, P2, P3 and P4 promoters direct 

monoallelic expression in fetal tissues. Biallelic expression of four promoters of IGF2 in brain 

(leptomeninges and choroid plexus) has been reported in human (Ohlsson et al., 1994; Zhan 

et al., 1998). Moreover, the P1 promoter in human directs biallelic expression in postnatal 

liver (Vu and Hoffman, 1994; Ekstrom et al., 1995). Monoallelic expression from P1 and 
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biallelic expression from other promoters was observed in tissues (heart, liver, brain, lung, 

kidney and muscle) of 1 week old porcine (Li et al., 2008). Analysis of imprinted expression 

of IGF2 during ovine (Ovis aries) development has demonstrated that expression of imprinted 

fetal transcripts in liver switches to biallelic expression after birth, which mimics the prenatal 

and postnatal imprinted expression pattern of IGF2 in human and bovine (McLaren and 

Montgomery, 1999). IGF2 monoallelic gene expression was seen in all examined fetal tissues 

of bovine (B. taurus), including liver, kidney, heart, lung and placenta, with the exception of 

brain, which showed biallelic expression, while more leaky expression from maternal allele or 

biallelic expression was observed in adult tissues (Curchoe et al., 2005). Loss of imprinting 

(LOI) of P1 derived transcripts was observed in bovine (B. taurus) fetal liver at term and 

postnatal liver (Goodall and Schmutz, 2007). A study of promoter-specific loss of imprinting 

in heterozygous calves using the single nucleotide polymorphism (SNP) in exon 3 showed 

biallelic expression of the P1 derived transcript in liver and monoallelic expression in 

placenta, lung and heart (Curchoe et al., 2005). The difference in imprinting status of 

transcripts containing exon 3 between liver and other tissues may result from tissue-specific 

differences in transcripts containing exon 3 and, as a result, their imprinting status. The 

majority of transcripts containing exon 3 in postnatal liver likely belong to IGF2 P1 promoter, 

whereas in other tissues and developmental stages, they may derive from other overlapping 

genes and/or IGF2 promoters. 

Biallelic expression of the P3 derived transcript was observed in brain of fetus, heart of 

calf, and adult heart and liver, whereas loss of imprinting of P4 derived transcript occurred in 

brain of fetus, kidney of calf and adult liver and lung, suggesting that in bovine (B. taurus), 

P3 and P4 promoters direct loss of imprinting (Curchoe et al., 2005). Evaluation of allelic 

expression of IGF2 in a Bos taurus and Bos gaurus intercross, revealed paternal expression of 

IGF2 in both placental and fetal tissues, including liver, lung and brain at Day-72 of gestation 

(Dindot et al., 2004b). Preferential expression of IGF2 from the paternal allele was also 

observed at Day-40 of gestation in nuclear transfer derived fetuses generated from an 
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interspecies cross between Bos taurus and Bos gaurus (Dindot et al., 2004a). Further 

quantitative studies are needed to confirm promoter-specific loss of imprinting at different 

developmental stages. 

 

1.5.3 Role of IGF2 in development 

1.5.3.1 Prenatal development 

Evidence for the importance of Igf2 in prenatal development has been provided by 

mouse gene knockout models. The crucial role of Igf2 in mouse (Mus musculus domesticus) 

embryonic development has first been described by targeted disrupted of the gene on the 

paternal chromosome, which led to a significant reduction in birth weight (Dechiara et al., 

1990). Mouse (Mus musculuc domesticus) offspring that inherited a paternally disrupted Igf2 

allele were stunted in growth after birth, whereas transmission of a deleted maternal allele had 

no significant effects on progeny (DeChiara et al., 1991). Studies in human demonstrated 

significant association of polymorphisms in the IGF2 gene with birth weight (Sayer et al., 

2002; Nagaya et al., 2009; Adkins et al., 2010). 

The role of Igf2 in mesoderm differentiation has been documented in mouse (Morali et 

al., 2000). Extensive studies have indicated the important role of IGF2 in muscle development 

during embryogenesis. Using a fusing skeletal muscle cell line in mouse, it was demonstrated 

that a switch takes place from low expression levels during myoblast proliferation to 

remarkably high expression levels over differentiation into myotubes. Disruption of Igf2 

mRNA by RNA interference, has blocked differentiation of multinucleated myofibers from 

myocytes and generation of muscle structural proteins (Wilson et al., 2003). Suppression of 

Igf2 expression results in downregulation of the genes targeted by MyoD via inhibition of the 

recruitment of transcriptional coactivators to the specific promoter elements of the muscle-

specific genes, including myogenin. This suggests IGF2-induced signalling influences 

differentiation by regulating transcription factors involved in myogenesis (Wilson and 

Rotwein, 2006). Igf2 is co-expressed with the fast myosin in the majority of myotubes and is 
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essential for proper specification of development of fast skeletal muscle fibers (Merrick et al., 

2007). 

Studies on how changes in IGF2 expression affect bovine prenatal development are 

limited. Bovine embryos produced by in vitro procedures may suffer from developmental 

abnormalities such as large offspring syndrome, which may be caused by dysregulation of the 

genes critical for prenatal development as a consequence of aberrant epigenetic alterations, 

including DNA methylation and histone modification (Niemann and Wrenzycki, 2000; 

Niemann et al., 2002; Wrenzycki et al., 2004). Expression level of IGF2 transcripts increased 

dramatically at Day-63 of gestation in bovine fetuses generated by in vitro fertilisation (IVF) 

compared with their in vivo counterparts (Blondin et al., 2000). Aberrant expression of IGF2 

was also observed in tissues of calves derived from somatic cell nuclear transfer (SCNT) that 

died shortly after birth (Yang et al., 2005). It is known that IGF2 imprinting is conserved in 

B. gaurus/B. taurus hybrids (Dindot et al., 2004b). A differentially methylated region 

corresponding to mouse DMR2 was identified in the last exon of bovine IGF2, which is 

methylated in sperm but not in oocytes (Gebert et al., 2004; Gebert et al., 2006). Methylation 

pattern of this DMR was shown to be reprogrammed in a sex-specific manner in in vivo 

produced and SCNT-derived embryos (Gebert et al., 2009). Insufficient methylation 

reprogramming of the DMR could be associated with developmental abnormalities in 

embryos derived by SCNT (Rideout et al., 2001). 

Several lines of evidence show a critical role for Igf2 in structural and functional 

development of placenta. One of the Igf2 transcripts derived from the P0 promoter is 

specifically expressed in the mouse labyrinthine trophoblast, which acts as an exchange 

barrier in placenta (Moore et al., 1997). Placental-specific P0 derived Igf2 transcript is 

responsible for regulation of placental growth, and mice lacking this transcript exhibit 

decreased placental size and, as a consequence, retarded fetal growth in late gestation. 

Increased placental efficiency, which most likely results from elevated transport of glucose 

and amino acids as a consequence of an upregulated transporter genes, including Slc2a3 and 
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Slc38a4, was also observed in P0-deficient mice (Constancia et al., 2005). Such an increased 

expression of placental transporter genes is not observed in knockout fetuses that lack fetal 

Igf2 and therefore have lower demand for nutrients. The P0 transcript was proposed to 

determine transfer capacity of the mouse placenta for nutrient exchange by regulating the 

development of the exchange barrier and therefore placental permeability (Constancia et al., 

2002; Constancia et al., 2005). At embryonic Day-19, a reduction in diffusing capacity by 

40%, in placental weight by 66%, and in birth weight by 76% has been reported in knockout 

mice for P0 promoter. Furthermore, there is a decrease in passive diffusion capacity of 

placentas lacking the P0 promoter, due to a reduced surface area and thickened exchange 

barrier (Sibley et al., 2004).  

 

1.5.3.2 Postnatal growth 

Imprinted quantitative trait loci (iQTL) effects linked to IGF2, on postnatal growth 

related phenotypes, including body composition (de Koning et al., 2000), heart weight and 

skeletal muscle growth (Jeon et al., 1999), muscle mass and fat deposition (Nezer et al., 1999; 

Nezer et al., 2003), have been detected in porcine intercross experiments. A mutation in a 

CpG island located in intron 3 of IGF2 explains the QTL effect of IGF2 as a quantitative trait 

nucleotide (QTN). Individuals carrying the mutant copy derived from the sire, display a 3-

fold higher expression level of IGF2 in skeletal muscle after birth, and consequently have a 

significantly increased muscle mass (Van Laere et al., 2003). Further experiments in porcine 

have revealed an association of IGF2 polymorphisms with postnatal growth traits (Kolarikova 

et al., 2003; Hou et al., 2010). 

In bovine, QTL effects associated with meat traits have been mapped to IGF2 (MacNeil 

and Grosz, 2002; Casas et al., 2003). Furthermore, single nucleotide polymorphisms within 

the IGF2 gene have been associated with bovine carcass and meat traits (Zhao et al., 2002; 

Goodall and Schmutz, 2003; Han et al., 2008b; Sherman et al., 2008; Magee et al., 2010; 

Zwierzchowski et al., 2010), and grip strength in adult man (Sayer et al., 2002). 
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Table 1.1 Tissue and developmental stage-specific imprinting and expression of IGF2 global 

transcripts, consisting of all promoter-specific transcripts and splice variants, in different 

species 

Species 
Developmental 

stage 
Tissue Method Expression 

Imprinting 

status 
Reference 

Human Embryo Trophoblast Insitu 

hybridisation 

High steady state in trophoblast after 

implantation 

ND (Ohlsson et al., 

1989b) 

       
Human Embryo (first 

trimester) 

Placenta Insitu 

hybridisation 

Proliferative cytotrophoblasts, 

villous cytotrophoblasts (low) 

ND (Ohlsson et al., 

1989a) 

       
Human Embryo Placenta Insitu 

hybridisation, 

Northern blot 

Expressed Biallelic (till 10 

weeks), 

monoallelic 
(after 10 weeks) 

(Jinno et al., 

1995) 

       

Human Embryo (first 
trimester) 

Embryo, 
placenta 

Nuclease 
protection 

assay 

Expressed Paternal 
expression 

(Ohlsson et al., 
1993) 

       
Human Embryo Trophoblast, 

kidney, 

liver, lung 

Insitu 

hybridisation 

- Kidney: High in metanephric 

blastema (6 weeks) 

- Cytotrophoblast: Increased between 
18-69 days 

- Liver: Constant within the period 

- Lung: Low in airway epithelia 
before 12 weeks 

ND (Brice et al., 

1989) 

       
Human Fetus (first and 

second 

trimester) 

Kidney Insitu 

hybridisation 

Reduced from 6 till 15 weeks ND (Brice et al., 

1989) 

       

Human Fetus (8-18 

weeks) 

Brain, liver, 

lung, 

muscle, 

placenta 

Northern blot Expressed ND (Monk et al., 

2006b) 

       
Human Fetus (8-12 

weeks) 

Liver, lung, 

kidney, 

brain, heart 

Nuclease 

protection 

assay 

Expressed ND (Schofield and 

Tate, 1987) 

       

Human Fetus (term) Umbilical 

cord blood 
cells 

PCR-RFLP Expressed Polymorphic 

imprinting 

(Giannoukakis 

et al., 1996) 

       

Human Postnatal (10 
years old) 

Liver, lung, 
kidney, 

brain, heart 

Nuclease 
protection 

assay 

- Postnatal decline  
- Developmental shift in promoter 

usage in adult liver 

ND (Schofield and 
Tate, 1987) 

       
Human Postnatal Brain, heart, 

kidney, 

placenta, 

liver 

PCR based 

assay 

Expressed Monoallelic 

(except liver) 

(Wu et al., 

1997) 

       

Ovine 
(Ovis 

aries) 

Embryo (Day-
14-35) 

Placenta In situ 
hybridisation 

& OD 

quantification 

Increased by Day-35 ND (Reynolds et al., 
1997) 

       

Ovine 

(Ovis 
aries) 

Fetus(Day-50 

to term) 

Lung, heart, 

liver, 
kidney, 

muscle, 

brain 

Northern blot - Decreased with fetal age ND (Delhanty and 

Han, 1993) 

       

Ovine 

(Ovis 
aries) 

Fetus (80, 105, 

135 days) 

Muscle, 

kidney, 
lung, heart, 

liver, 

placenta 

Northern/dot 

blot 

- Expressed 

- Adult liver-specific transcript 
- Decreased from Day-80 to 135 of 

gestation in tissues except placenta 

ND (O'Mahoney et 

al., 1991) 

       

Ovine 

(Ovis 
aries) 

Fetus (Day-35-

55) 

Placenta In situ 

hybridisation 
& OD 

quantification 

Decreased after Day-35 in fetal 

mesoderm of placenta 

ND (Reynolds et al., 

1997) 
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Table 1.1 continued 

Species 
Developmental 

stage 
Tissue Method Expression 

Imprinting 

status 
Reference 

Ovine (Ovis 

aries) 

Fetus (Day-

121, 130, 150) 

Liver RT-PCR Expressed Monoallelic (McLaren and 

Montgomery, 

1999) 
       

Ovine (Ovis 

aries) 

Postnatal 

(Newborn, 
Day-7, Adult) 

Muscle, 

kidney, 
lung, 

heart, 

liver, 
placenta 

Northern/dot 

blot 

- Adult liver-specific transcript 

- Postnatal decrease 

ND (O'Mahoney et 

al., 1991) 

       

Ovine (Ovis 
aries) 

Postnatal (3 
days, 4 days, 8 

weeks, adult) 

Lung, 
heart, 

liver, 

kidney, 

muscle, 

brain 

Northern blot - Postnatal decrease 
- Specific transcript in adult liver 

ND (Delhanty and 
Han, 1993) 

       
Ovine (Ovis 

aries) 

Postnatal (6-

months old) 

Liver RT-PCR Expressed Biallelic (McLaren and 

Montgomery, 

1999) 
       

Bovine Embryo (2 cell, 

16 cell, 
blastocyst)  

- RT-PCR Expressed ND (Watson et al., 

1992) 

       
Bovine Embryo 

(blastocyst) 

- RT-PCR Low 

 

ND (Kawase et al., 

2000) 

       
Bovine (Bos 

taurus) 

Fetus (113-280 

days) 

Liver, 

muscle 

Dot blot - Constant in liver 

- Increased at Day-150 then 

decreased 

ND (Boulle et al., 

1993) 

       

Bovine Fetus (30-

180days) 

Brain, 

liver, 
muscle, 

heart 

RT-PCR High ND (Kawase et al., 

2000) 

       
Bovine (Bos 

gaurus/Bos 

taurus) 

Fetus (Day-72) Chorion, 

allantois, 

liver, lung, 
brain 

RT-PCR Expressed Paternal 

expression 

(Dindot et al., 

2004b) 

       

Bovine (Bos 
taurus) 

Postnatal (40-
100 days, 

adult) 

Liver, 
muscle 

Dot blot Downregulation ND (Boulle et al., 
1993) 

       
Mouse (Mus 

musculus/Mus 

spretus) 

Fetus (E14-17) Brain RFLP, 

Northern blot 

Influence of parental species 

background on allelic expression 

Biallelic (Hemberger et 

al., 1998) 

       

Mouse Fetus Lung RT-PCR and 

In situ 
hybridisation 

Expressed ND (Maitre et al., 

1995) 

       

Mouse Postnatal (1, 4, 
8 weeks) 

Different 
tissues 

Microarray, 
qPCR 

Downregulation with age ND (Lui et al., 
2008) 

       

Mouse Postnatal 
(early, adult) 

Lung RT-PCR and 
In situ 

hybridisation 

Not expressed ND (Maitre et al., 
1995) 

       
Rat (Rattus 

norvegicus) 

Fetus (Day-10-

16) 

Different 

tissues 

In situ 

hybridisation 

- Mesoderm (Muscles and 

chondrocytes) 

- Endoderm (liver and bronchial 
epithelium) 

- Ectoderm: (choroid plexus) 

ND (Stylianopoulou 

et al., 1988a) 

       
Rat Fetus (Day-16-

22) 

Lung Northern blot Decreased in late gestation ND (Moats-Staats et 

al., 1995) 
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Table 1.1 continued 

Species 
Developmental 

stage 
Tissue Method Expression 

Imprinting 

status 
Reference 

Rat Fetus (Day-17-

20) 

Lung, liver Northern blot 

and RNAse 

protection 
assay 

- Higher in liver than lung (Day-

20) 

- Decreased in late gestation (lung) 

ND (Batchelor et 

al., 1995) 

       

Rat (Rattus 
norvegicus) 

Fetus (Day-8.5-
20.5) 

Heart, 
kidney, 

lung, liver, 

muscle 

RT-PCR & 
southern blot 

Expressed Paternal 
expression 

except in 

leptomeninges 
and choroid 

plexus 

(Overall et al., 
1997) 

       
Rat (Rattus 

norvegicus) 

Fetus (Day-16, 

21) 

Brain, 

liver, lung, 

kidney, 

muscle 

Northern blot 

& 

densitometry 

Higher in fetal muscle, lung, liver, 

and lower in brain, kidney, heart 

ND (Brown et al., 

1986) 

       

Rat Fetus (Day-18, 
20) 

Liver, 
muscle, 

heart, 

brain, lung 

Northern blot Multiple transcripts in fetal tissues ND (Soares et al., 
1986) 

       

Rat Postnatal (Day-

2-13, 6 weeks) 

Liver, 

muscle, 
heart, 

brain, lung 

Northern blot - Multiple transcripts in neonatal 

tissues 
- Repression in adult tissues except 

brain 

ND (Soares et al., 

1986) 

       

Rat (Rattus 

norvegicus) 

Postnatal (Day-

2, 11, 22, 75) 

Brain, 

liver, lung, 
kidney, 

muscle 

Northern blot 

& 
densitometry 

- Higher in neonatal muscle, lung, 

liver, and lower in brain, kidney, 
heart 

- Lower postnatal expression in 

lung, kidney, brain stem 
- Continuous high level through 

Day-22 after birth in muscle, liver, 

heart 

ND (Brown et al., 

1986) 

       

Rat (Rattus 

norvegicus) 

Postnatal 

(adult) 

Brain, 

spinal cord 

In situ 

hybridisation 

Choroid plexus/leptomeninges ND (Stylianopoulou 

et al., 1988b) 
       

Rat Postnatal (60 

days) 

Lung Northern blot Suppressed ND (Moats-Staats et 

al., 1995) 
       

Rat Postnatal (Day-

2, adult) 

Brain, 

heart, 
liver, lung 

muscle 

Northern blot Different transcript lengths ND (Soares et al., 

1985) 

       
Rat Postnatal (Day-

9) 

Lung Northern blot 

and RNAse 

protection 
assay 

Low ND (Batchelor et 

al., 1995) 

       

Rat (Rattus 
norvegicus) 

Postnatal 
(newborn) 

Heart, 
kidney, 

lung, liver, 

muscle 

RT-PCR & 
southern blot 

Expressed Paternal 
expression 

except in 

leptomeninges 
and choroid 

plexus 

(Overall et al., 
1997) 

       
Rhesus Fetus (Day-65 

till term) 

Placenta In situ 

hybridisation 

No change with gestational age ND (Coulter and 

Han, 1996b) 

* ND: not determined 
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Table 1.2 Tissue and developmental stage-specific imprinting and expression of IGF2 

promoter-specific transcripts in different species 

Species Promoter 
Developmental 

stage 
Tissue Method Expression 

Imprinting 

status 
Reference 

Human P0 Fetus (8-18 

weeks) 

Placenta, 

heart, brain, 
lung, liver, 

muscle, 

kidney 

Northern blot Specific in muscle Maternally 

imprinted 

(Monk et 

al., 
2006b) 

        

Human P1 Fetus Liver Northern blot Not expressed ND (Depagter

holthuizen 
et al., 

1987) 

        
Human P2 Fetus Liver, 

placenta 

Semi-qPCR Transcript containing exon 4b 

in liver and placenta 

ND (Mineo et 

al., 2000) 

        

Human P1-4 Fetus (18 weeks, 

prematurely 

born) 

Liver Nuclease 

protection 

assay 

- P1-3: Peaking after birth (2 

months) 

- P4: Peaking in fetus 

ND (Li et al., 

1996) 

        

Human P1-4 Fetus (11-17 

weeks) 

Brain PCR-RFLP All promoters in brain Biallelic (Zhan et 

al., 1998) 
        

Human P1-4 Fetus (19-22 

weeks) 

Liver, 

chondrocyte 

PCR-RFLP All promoters in brain Biallelic 

(P1),  
Monoallelic 

(P2-4) 

(Vu and 

Hoffman, 
1994) 

        
Human P1-4 Fetus (first 

trimester) 

Different 

tissues 

RNase 

protection & 

In situ 
hybridisation 

- P1 in choroid 

plexus/leptomeninges and 

liver 
- P3: the most active promoter 

ND (Ohlsson 

et al., 

1994) 

        

Human P1-4 Fetus (7 weeks) Liver Nuclease 

protection 

assay 

All promoters Monoallelic 

(P2, P3, 

P4), 

Biallelic 
(P1) 

 

(Ekstrom 
et al., 

1995) 

        
Human P1, P3 Fetus (6-12 

weeks) 

Brain RT-PCR P3 (predominant) Biallelic 

(P3)  

(Pham et 

al., 1998) 

        
Human P2-4 Fetus Placenta Nuclease 

protection 

assay 

- P3: Higher compared to P4 

- All promoters expressed 

Imprinted 

(placenta) 

(Ekström 

et al., 

1995) 
        

Human P0 Postnatal (20-46 

years) 

Placenta, 

heart, brain, 
lung, liver, 

muscle, 
kidney 

Northern blot All tissues except brain ND (Monk et 

al., 
2006b) 

        

Human P1 Postnatal (20-46 
years) 

Placenta, 
heart, brain, 

lung, liver, 

muscle, 
kidney 

Northern blot Specific in liver ND (Monk et 
al., 

2006b) 

        

Human P1 Postnatal (adult) Liver Northern blot Postnatal specific ND (Depagter
holthuizen 

et al., 

1987) 
        

Human P1-4 Postnatal (2 

months-3 years, 
21-92 years) 

Liver Nuclease 

protection 
assay 

- P1, P2, P4: Postnatal 

decrease after 2 months, 
constant level after 18 months 

- P3: Postnatal rapid decline 

after 2 months, no expression 
at 18 months 

ND (Li et al., 

1996) 

        

Human P1-4 Postnatal (adult) Brain PCR-RFLP All promoters in brain Biallelic (Zhan et 
al., 1998) 
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Table 1.2 continued 

Species Promoter 
Developmental 

stage 
Tissue Method Expression 

Imprinting 

status 
Reference 

Human P1-4 Postnatal 

(adult) 

Liver, 

chondrocyte 

PCR-RFLP All promoters in brain Biallelic (P1), 

Monoallelic 
(P2-4) 

(Vu and 

Hoffman, 
1994) 

        

Human P1-4 Postnatal (16 
weeks, 9-18 

months) 

Different 
tissues 

RNase 
protection & 

In situ 

hybridisation 

- P2, P3, P4 in early 
postnatal: liver, 

choroid plexus and 

paraganglia 
- P1 in choroid 

plexus/leptomeninges 

and liver 

Biallelic 
(choroid 

plexus/ 

leptomeninges) 
and monoallelic 

(other tissues) 

in early 
postnatal 

(Ohlsson et 
al., 1994) 

        

Human P1-4 Postnatal 
(neonatal, 9-18 

months, 3 

years, 21-62 
years) 

Liver Nuclease 
protection 

assay 

All promoters Monoallelic 
(P2, P3, P4 in 

infant), 

Biallelic (P1 in 
postnatal) 

(Ekstrom 
et al., 

1995) 

        

Human P1, P3 Postnatal 
(adult) 

Brain RT-PCR - P3 (predominant) 
- P1 (less abundant) 

Biallelic (P3), 
monoallelic 

(P1) 

(Pham et 
al., 1998) 

        
Human P2-4 Postnatal (9 

months old) 

Liver Nuclease 

protection 

assay 

- P3: Higher compared 

to P4 

- All promoters 
expressed 

ND (Ekström 

et al., 

1995) 

        

Mouse 
(Mus 

musculus 

domesticus
/Mus 

spretus) 

P0 Fetus (E10-
E18) 

Placenta Northern 
blot, RT-

PCR 

Specific in labyrinthine 
trophoblast 

Maternally 
imprinted 

(Moore et 
al., 1997) 

        
Bovine 

(Bos 

taurus) 

P1 Fetus Liver, heart, 

lung, brain, 

kidney, 
placenta 

RT-PCR Expressed ND (Curchoe 

et al., 

2005) 

        

Bovine 
(Bos 

taurus) 

P2 Fetus Liver, heart, 
lung, brain, 

kidney, 

placenta 

RT-PCR - Truncated form in 
most tissues 

- Full length transcript 

in liver, lung, kidney 

Maternally 
imprinted in 

fetus 

(Curchoe 
et al., 

2005) 

        

Bovine 

(Bos 
taurus) 

P2 (exon 

4) 

Fetus (preterm) Liver RT-PCR Expressed ND (Goodall 

and 
Schmutz, 

2007) 

        
Bovine 

(Bos 

taurus) 

P2 (exon 

4-5) 

Fetus (preterm) Liver RT-PCR Expressed ND (Goodall 

and 

Schmutz, 

2007) 

        
Bovine 

(Bos 

taurus) 

P3 Fetus Liver, heart, 

lung, brain, 

kidney, 
placenta 

RT-PCR Truncated form in 

brain and placenta 

ND (Curchoe 

et al., 

2005) 

        

Bovine 
(Bos 

taurus) 

P4 Fetus Liver, heart, 
lung, brain, 

kidney, 

placenta 

RT-PCR - Truncated form in 
brain 

ND (Curchoe 
et al., 

2005) 

        

Bovine 

(Bos 
taurus) 

P1-4 Fetus (113-280 

days) 

Liver Northern blot - P1: Specific in 

preterm  

ND (Boulle et 

al., 1993) 
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Table 1.2 continued 

Species Promoter 
Developmental 

stage 
Tissue Method Expression 

Imprinting 

status 
Reference 

Bovine 

(Bos 
taurus) 

P1 Postnatal 

(newborn, adult) 

Liver, heart, 

lung, brain, 
kidney 

RT-PCR All tissues except newborn heart ND (Curchoe 

et al., 
2005) 

        

Bovine 
(Bos 

taurus) 

P1 Postnatal (5 
weeks, 19 

months) 

Brain, lung, 
heart, kidney, 

liver, muscle 

RT-PCR Specific in liver Biallelic (Goodall 
and 

Schmutz, 

2007) 
        

Bovine 

(Bos 
taurus) 

P2 Postnatal 

(newborn, adult) 

Liver, heart, 

lung, brain, 
kidney, 

placenta 

RT-PCR - Truncated form in most tissues 

- Full length transcript in 
newborn liver, lung, kidney 

ND (Curchoe 

et al., 
2005) 

        
Bovine 

(Bos 

taurus) 

P2 (exon 

4) 

Postnatal (5 

weeks, 19 

months) 

Brain, lung, 

heart, kidney, 

liver, muscle 

RT-PCR - 19 months: Brain, kidney, liver, 

muscle 

- 5 weeks: Heart, kidney, liver, 
muscle 

ND (Goodall 

and 

Schmutz, 
2007) 

        

Bovine 
(Bos 

taurus) 

P2 (exon 
4-5) 

Postnatal (5 
weeks, 19 

months) 

Brain, lung, 
heart, kidney, 

liver, muscle 

RT-PCR 5 weeks: Expressed ND (Goodall 
and 

Schmutz, 

2007) 
        

Bovine 

(Bos 
taurus) 

P3 Postnatal 

(newborn, adult) 

Liver, heart, 

lung, brain, 
kidney 

RT-PCR Adult liver and brain (weak) ND (Curchoe 

et al., 
2005) 

        

Bovine 
(Bos 

taurus) 

P3 Postnatal (5 
weeks, 19 

months) 

Brain, lung, 
heart, kidney, 

liver, muscle 

RT-PCR 5 weeks: Expressed ND (Goodall 
and 

Schmutz, 

2007) 
        

Bovine 

(Bos 
taurus) 

P4 Postnatal 

(newborn, adult) 

Liver, heart, 

lung, brain, 
kidney, 

placenta 

RT-PCR - Truncated form in adult brain 

and liver 
- Adult kidney (weak) 

ND (Curchoe 

et al., 
2005) 

        
Bovine 

(Bos 

taurus) 

P4 Postnatal (5 

weeks, 19 

months) 

Brain, lung, 

heart, kidney, 

liver, muscle 

RT-PCR 5 weeks: Expressed ND (Goodall 

and 

Schmutz, 
2007) 

        

Bovine 
(Bos 

taurus) 

P1-4 Postnatal (40-100 
days, adult) 

Liver Northern 
blot 

- P1-4: Newborn to 19-months  
- P1: Specific in postnatal liver 

ND (Boulle et 
al., 1993) 

        
Porcine P1 Fetus Liver, 

muscle, 

kidney, ham, 
heart, brain, 

placenta, lung 

RT-PCR - Exons 1, 3: Brain and placenta 

- Exons 1, 2, 3: Ham and liver 

(strong), brain 

ND (Amarger 

et al., 

2002) 

        

Porcine P2 Fetus Liver, 

muscle, 
kidney, ham, 

heart, brain, 

lung 

RT-PCR Exon 4 and exons 4-4b: 

Expressed 

ND (Amarger 

et al., 
2002) 

        

Porcine P3, P4 Fetus Liver, 

muscle, 
kidney, ham, 

heart, brain, 

placenta, lung 

RT-PCR Expressed ND (Amarger 

et al., 
2002) 

        

Porcine P1 Postnatal (adult) Liver, 

muscle, 
kidney, ham, 

heart, brain, 

lung 

RT-PCR - Exon 1: Liver (strong) 

- Exons 1, 3: Liver (strong), 
muscle and kidney 

- Exons 1, 2, 3: Liver 

ND (Amarger 

et al., 
2002) 
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Table 1.2 continued 

Species Promoter 
Developmental 

stage 
Tissue Method Expression 

Imprinting 

status 
Reference 

Porcine P2 Postnatal (adult) Liver, 

muscle, 
kidney, ham, 

heart, brain, 

lung 

RT-PCR Exon 4 and exons 4-4b: 

Expressed 

ND (Amarger 

et al., 
2002) 

        

Porcine P3, P4 Postnatal (adult) Liver, 

muscle, 
kidney, ham, 

heart, brain, 

lung 

RT-PCR Expressed ND (Amarger 

et al., 
2002) 

        

Porcine 

(Sus 
scrofa) 

P1-4 Postnatal (1 

week) 

Different 

tissues 

SSCP P2-P4 (Predominant)  Biallelic 

(P1), 
monoallelic 

(P2-4) 

(Li et al., 

2008) 

        
Ovine 

(Ovis 

aries) 

P1-4 Fetus (Day-75) Liver RT-PCR - P1: Not expressed 

- P2 (exon 4-5), P3 and P4: 

Expressed 

ND (Ohlsen et 

al., 1994) 

        

Ovine 

(Ovis 
aries) 

P1-4 Postnatal (adult) Liver RT-PCR - P1, P2 (exon 4-5), P3 and P4: 

xpressed 

ND (Ohlsen et 

al., 1994) 

* ND: not determined 

 

Taken together, these observations suggest that the IGF2 significantly influences 

postnatal productive traits in domestic animals, however, it remains to be understood whether 

IGF2 directly affects postnatal growth, or postnatal manifestation of growth traits results from 

the effect of IGF2 on prenatal development and fetal programming. 

 

1.6 H19 expression and role in development 

The H19 gene is located downstream to the IGF2 gene being part of an imprinted cluster 

and organised into 5 exons with a total length of 2373 bp in bovine. The sequence of H19 

shows high conservation between bovine, ovine and porcine (Zhang et al., 2004). The gene 

encodes a long RNA of 2048 bp length (in bovine), which is exported to the cytoplasm and 

shows common features of RNA polymerase 2 derived mRNAs undergoing polyadenylation 

and splicing, however, the transcript lacks a conserved open reading frame (ORF) (Brannan et 

al., 1990; Hurst and Smith, 1999). 

The gene is imprinted on the paternal chromosome and expressed from the maternal 

allele in human (Rachmilewitz et al., 1992; Zhang and Tycko, 1992; Kalscheuer et al., 1993), 
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mouse (M. m. domesticus/M. m. castaneus/M. m. musculus/M. spretus) (Bartolomei et al., 

1991), bovine (B. taurus/B. indicus) (Zhang et al., 2004; Robbins et al., 2012), porcine (Li et 

al., 2008) and ovine (Ovis aries) (Young et al., 2003). A considerable variation in H19 allelic 

expression was observed in human placenta ranging from 1-25%, which was higher in the 

first trimester compared to term placenta (Buckberry et al., 2012). Results of an earlier study 

revealed that H19 loss of imprinting in human placenta is cell-type-specific and occurs in the 

extravillous cytotrophoblasts without affecting IGF2 imprinting status (Adam et al., 1996). 

The imprinted expression of IGF2/H19 domain is regulated by a differentially methylated 

ICR which lies upstream of H19 promoter (Tremblay et al., 1995; Tremblay et al., 1997; 

Thorvaldsen et al., 1998). 

High expression of H19 in fetal tissues derived from mesoderm and endoderm followed 

by postnatal downregulation has been documented in mouse (Pachnis et al., 1984; Poirier et 

al., 1991), which is closely linked to the expression pattern of the adjacent Igf2 (Lee et al., 

1990). Similar tissue-specific and developmental expression patterns have been reported in 

ovine (Lee et al., 2002) and bovine (Khatib and Schutzkus, 2006). Results from human 

studies have postulated that the expression pattern of H19 changes depending on the tissue 

and prenatal developmental stage (Goshen et al., 1993; Lustig et al., 1994). 

The conserved structure and sequence of H19 across species suggests a functional role 

for non coding RNA (Juan et al., 2000). It has been demonstrated that H19 serves as a 

miRNA precursor (miR-675) (Cai and Cullen, 2007) which is also conserved in marsupials 

(Smits et al., 2008), suggesting its possible involvement in posttranscriptional regulation of 

gene expression. The H19 was shown to be associated with polysomes in numerous cell types 

in human and mouse, suggesting a trans-functional role for H19 in regulation of IGF2 

translation (Li et al., 1998). This strongly argues against the hypothesis that H19 transcription 

serves to silence expression of IGF2 in cis (Webber et al., 1998). Another clue to the 

involvement of H19 in posttranscriptional regulation of IGF2 comes from the observation that 

H19 has binding sites for the oncofetal IGF2 mRNA binding proteins (IMPs) (Runge et al., 
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2000). This is further supported by the evidence that H19 functions as a trans regulator of the 

newly described imprinted gene network (IGN) in mouse skeletal muscle and is involved in 

downregulation of the growth regulatory imprinted genes in the IGN (Gabory et al., 2009). 

Processing of the miR-675 from H19 was shown to be developmentally regulated and 

exclusive expression of miR-675 in placenta coincides with ceased placental growth. 

Furthermore, in the mouse lacking H19, placental growth persists and the miRNA targets, 

including Igf1r, show upregulation (Keniry et al., 2012). Further evidence of a growth 

inhibitory role of H19 in placenta has come from the observation that H19 suppresses 

trophoblast proliferation via miR-675 mediated targeting of the Nodal Modulator 1 (NOMO1) 

and its downregulation (Gao et al., 2012). 

An antisense to H19 transcript (91H) with the potential length of 120 kb has been 

identified in mouse and human. This transcript, which is unstable and nuclear localised, is 

predominantly expressed from the maternal allele and is implicated in regulation of IGF2 

expression, since its downregulation results in reduced expression of IGF2 (Berteaux et al., 

2008). Upregulation of the mouse Igf2 by 91H occurs in trans through activation of a novel 

mesodermal-specific promoter (Igf2 Pm) which is located downstream of Igf2 exon U2. 

Enhanced expression of Igf2 by 91H is countered by overexpression of H19 (Giang Tran et 

al., 2012). 

Evidence for the importance of H19 in embryonic development came from the 

demonstration that H19 knockout mice (Mus musculus domesticus/Mus musculus castaneus) 

displayed over expression of Igf2 due to activation of the maternal allele, and a 27% rise in 

birth weight, when the disrupted H19 allele belongs to the mother. However, it was not clear 

whether loss of H19 function or gain of Igf2 maternal allele expression contributes to somatic 

overgrowth (Leighton et al., 1995a; Ripoche et al., 1997). Although it is known that H19 is a 

negative regulator of growth in human and mouse, there is no evidence for the effect of 

variation in H19 expression on growth of tissues during prenatal development and its 

programming potential for postnatal performance in animals. A splice variant of H19 lacking 
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exon 4 has been described in human with the spatial expression being subject to genetic 

background and its parent-of-origin (Lin et al., 1999). Significant association of maternal 

genetics genotyped by the SNPs in H19 gene with offspring birth weight was shown in 

human. Also, a significant association of SNPs with birth weight was found depending on 

whether the allele is paternally or maternally transmitted (Adkins et al., 2010). 

 

1.7 Insulin-like growth factor 2 receptor 

1.7.1 Mechanisms underlying genomic imprinting 

Igf2r is part of an imprinted cluster that comprises several imprinted genes, including 

Slc22a2 and Slc22a3, extending over 400 kb (Sleutels et al., 2002). In mouse (Mus musculus 

domesticus), there are two differentially methylated regions (DMRs) in this domain; DMR1, 

which lies within the promoter of Igf2r sense transcript, contains a secondary imprint with its 

paternal hypermethylation pattern being established after implantation, and DMR2, located in 

intron 2, which is within a CpG island and acts as an imprinting control region (ICR), and 

contains the primary imprint with a maternally-derived hypermethylation pattern established 

during oogenesis (Stoger et al., 1993). The DMR2 encompasses the promoter for a long non-

coding RNA gene which is transcribed in an antisense direction to Igf2r, designated as 

antisense Igf2r non-coding RNA (Airn) (Sleutels et al., 2002). The CpG island within intron 2 

of Igf2r is essential for Airn transcript initiation and elongation and retains an unmethylated 

state of the Airn promoter on the paternal allele (Koerner et al., 2012). 

As in the mouse, two CpG islands have been found in human IGF2R. Unlike the mouse, 

the region 1 located in the promoter of the sense IGF2R is not methylated on both parental 

alleles, while the region 2, which is located within intron 2, is differentially hypermethylated 

on the maternal allele and can explain biallelic expression of IGF2R in human (Riesewijk et 

al., 1996). Conservation of the ICR within intron 2 of IGF2R has been shown in bovine with 

high sequence homology to mice and ovine (Long and Cai, 2007). Expression of AIRN 

transcript has been postulated in all bovine fetal tissues (Suteevun-Phermthai et al., 2009). 
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Igf2r and Airn show reciprocal imprinted expression patterns in mouse (Mus 

musculus/Mus spretus) fetal, placental and adult tissues with maternal expression of Igf2r and 

paternal expression of Airn (Barlow et al., 1991). Two other genes in the imprinted cluster, 

Slc22a2 and Slc22a3, display monoallelic maternal expression only in extraembryonic tissues 

and are biallelically expressed in embryonic and fetal tissues (Regha et al., 2006). In mouse 

(Mus musculus domesticus), Igf2r is expressed from both alleles before implantation from the 

two-cell stage onwards (Harvey and Kaye, 1991), but imprinted expression of Igf2r arises 

during implantation (Lerchner and Barlow, 1997). It is now evident that expression of Airn is 

required for silencing of Igf2r, Slc22a2 and Slc22a3 paternally derived alleles (Sleutels et al., 

2002). In the central nervous system of the neonatal mouse (Mus musculus domesticus/Mus 

musculus musculus) and of the mouse fetus, Igf2r is biallelically expressed notwithstanding 

the imprinted expression of Airn and presence of the differentially methylated ICR. There is 

evidence that Igf2r relaxation of imprinting in the CNS occurs in a tissue-specific manner and 

is associated with neuron-specific histone modifications in the DMR1 and absence of the 

Airn, whereas reciprocal imprinted expression of Igf2r and Airn takes place in glial cells and 

fibroblasts (Yamasaki et al., 2005). 

Studies on expression of Igf2r in mouse ES cells revealed initially low expression from 

both paternal and maternal alleles. During differentiation of ES cells, the maternally-derived 

allele exhibits a 10-fold increase in expression, while expression of the paternally derived 

allele remains at the same initial low level, suggesting an expression bias as the cause of 

imprinted expression of Igf2r (Latos et al., 2009). 

The DMR2 on the paternal allele is marked by H3K4 methylation and H3 acetylation, 

but on the maternal allele is marked by H3K9 methylation (Fournier et al., 2002). It has been 

proposed that histone modifications specific to the promoters of IGF2R and AIRN are more 

critical than differentially methylated regions and AIRN non-coding RNA to determine 

imprinted expression of IGF2R in human and mouse (Mus musculus domesticus/Mus spretus) 

(Vu et al., 2004). 
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The Airn in mouse shows the characteristics of messenger RNAs that is, it is capped and 

polyadenylated, is transcribed by RNA polymerase II and undergoes alternative splicing 

resulting in four splice variants all of which originate from a promoter located within intron 2 

of Igf2r. The majority of the Airn escape from splicing leading to a mature 108 kb noncoding 

RNA which is not able to enter the cytoplasm. These observations raise the possibility that the 

act of transcription, not the RNA itself, may play a role in silencing of the maternal alleles in 

cis (Seidl et al., 2006). Recent evidence confirms that Igf2r silencing results from 

transcriptional overlapping with Airn which interferes with recruitment of RNA polymerase II 

to Igf2r promoter and does not require splice variants or full length nuclear localised RNA 

product (Latos et al., 2012). 

 

1.7.2 Expression and imprinting status in prenatal development 

IGF2R expression is first detected in the bovine blastocyst but is expressed at very low 

levels. However, a number of studies showed the presence of IGF2R transcript in all stages of 

bovine preimplantation embryos from mature oocyte (Watson et al., 1992; Wang et al., 2009). 

IGF2R protein was detected in the cytoplasmic membrane of immature and matured oocytes, 

and two-cell stage embryos. In the bovine blastocyst stage, IGF2R protein is distributed in the 

trophectoderm whereas is less abundant in the inner cell mass (Wang et al., 2009). IGF2R 

mRNA has been detected in the mesodermal tissues of ovine placenta at Day-40 of gestation, 

and its abundance was reduced towards late gestation (Day-140) (Lacroix et al., 1995). 

IGF2R expression occurs in the microvillous and plasma membrane of human trophoblast 

(Fang et al., 1997). 

Analysis of IGF2R expression in bovine fetal tissues by RT-PCR showed that this gene 

is highly expressed between the Day-30 and Day-180 of gestation with less expression 

obtained in brain than in liver, heart and muscle at Day-150 of gestation (Kawase et al., 

2000). In bovine fetuses, IGF2R mRNA expression was shown to be higher in liver, lung, 

kidney and placenta compared with brain and heart (Suteevun-Phermthai et al., 2009). 
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However, immunoblotting revealed that IGF2R protein is highly expressed in tissues of 

bovine fetuses at midgestation with the highest expression in heart (10-28 weeks) (Pfuender et 

al., 1995). In human, IGF2R expression is present during preimplantation stages of 

development, including the oocyte (Lighten et al., 1997). Study of tissue-specific expression 

of IGF2R in rat revealed highest expression of transcript and protein in embryonic heart 

(Senior et al., 1990). In contrast, quantitative analysis of IGF2R expression in bovine Day-75 

of gestation showed higher expression in liver, lung, kidney and cotyledon compared with 

heart and brain (Suteevun-Phermthai et al., 2009). The IGF2R concentration in rat fetal 

tissues was highest in heart, placenta, lung, muscle, kidney, liver and brain, respectively 

(Sklar et al., 1989). This corresponds to expression level of mRNA in fetal rat tissues which 

was highest in heart, muscle, lung, kidney, liver, brain, respectively (Sklar et al., 1992). 

Imprinting status of IGF2R in different tissues and developmental stages of the studied 

species has been summarised in Table 1.3. In mouse (Mus musculus/Mus spretus), Igf2r is 

paternally imprinted in peripheral tissues but shows biallelic expression in the CNS (Hu et al., 

1998). Imprinting status of the human IGF2R remains ambiguous. An early investigation of 

imprinting status of human IGF2R using a polymorphic dinucleotide repeat and a 

tetranucleotide insertion/deletion within the 3’UTR has revealed biallelic expression of the 

gene in the fetal tissues of lung, kidney, brain, liver, heart and muscle (Kalscheuer et al., 

1993). Because the reverse transcriptase PCR (RT-PCR) was employed in this study, the 

quantitative differences in expression between paternal and maternal alleles could not be 

determined. Also, a number of other investigations have demonstrated that human IGF2R is 

not imprinted (Ogawa et al., 1993; Treacy et al., 1996; Killian et al., 2001a). However, 

further studies in human showed that IGF2R imprinting is a polymorphic trait, and IGF2R is 

imprinted in some individuals (Xu et al., 1993; Xu et al., 1997; Oudejans et al., 2001; Monk 

et al., 2006a). Polymorphic imprinting of IGF2R suggests that epigenetic regulation of this 

gene is modified as a consequence of genetic background and/or environmental conditions. 
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Table 1.3 Imprinting status of IGF2R in tissues of different developmental stages across 

species 

Species 
Developmental 

stage 
Tissue Marker Method Imprinting status Reference 

Human Fetus (11-24 

weeks) 

Lung, kidney, 

brain, liver, heart, 

muscle 

Dinucleotide 

repeat, 

tetranucleotide 
In/Del in 3’UTR 

PCR and gel 

electrophoresis 

Biallelic (Kalscheuer et 

al., 1993) 

       

Human Fetus (12-17 
weeks) 

Muscle, kidney Tetranucleotide 
In/Del in 3’UTR 

PCR and gel 
electrophoresis 

Biallelic (Ogawa et al., 
1993) 

       

Human Fetus (1st and 
2nd trimester, 

term placenta) 

Placenta, lung, 
heart, kidney 

CA repeat 
polymorphism 

PCR and gel 
electrophoresis 

Polymorphic 
imprinting 

(Xu et al., 1993) 

       
Human Fetus (7-20 

weeks, term 

placenta) 

Kidney, placenta CA repeat 

polymorphism 

PCR and gel 

electrophoresis 

Polymorphic 

imprinting in 

fetus, loss of 
imprinting in term 

placenta 

(Xu et al., 1997) 

       
Human Fetus (6-8 

weeks) 

Placenta ACAA In/Del in 

3’UTR 

PCR and gel 

electrophoresis 

Polymorphic 

imprinting 

(Oudejans et al., 

2001) 

       
Human Fetus (first 

trimester) 

Kidney SNPs in exons 6, 9, 

12, 16, 34, 40, 

ACAA In/Del in 
3’UTR 

Sequencing, PCR 

and gel 

electrophoresis 

Biallelic (Killian et al., 

2001a) 

       

Human Fetus (6-12 
weeks, 37-42 

weeks) 

Placenta SNPs Pyrosequencing Biallelic (Buckberry et 
al., 2012) 

       
Human Postnatal 

(juvenile) 

Kidney Tetranucleotide 

In/Del in 3’UTR 

PCR and gel 

electrophoresis 

Biallelic (Ogawa et al., 

1993) 

       
Human Postnatal (24-

years old) 

Blood 

lymphocyte 

Chromosomal 

translocation (one 

gene copy) 

Semi-qPCR, gene 

dosage and protein 

measurement 

Lower expression 

(50 %) compared 

with control 

(Treacy et al., 

1996) 

       

Human Postnatal White blood cell CA repeat 

polymorphism 

PCR and gel 

electrophoresis 

Polymorphic 

imprinting 

(Xu et al., 1993) 

       

Porcine 

(Sus 
scrofa) 

Fetus (8 weeks) Brain, liver, 

muscle, kidney 

SNPs in exon 37 

and 3’UTR 

PCR-RFLP, 

sequencing 

Biallelic (Braunschweig, 

2012) 

       

Porcine Fetus Liver SNP in exon 48 PCR-sequencing Monoallelic (Killian et al., 
2001a) 

       

Porcine 
(Sus 

scrofa) 

Postnatal (1 
day, 8-10 

months) 

Brain, liver, 
muscle, kidney 

SNPs in exon 37 
and 3’UTR 

PCR-RFLP, 
sequencing 

Biallelic (Braunschweig, 
2012) 

       

Porcine Postnatal 

(piglet, hog) 

- SNP in exon 48 PCR-RFLP-SSCP Maternal 

expression 

(Li et al., 2010) 

       

Ovine 

(Ovis 
aries) 

Embryo (Day-

21) 

- Parthenogenesis Northern blot Higher expression 

in parthenogenetic 
samples 

(Young et al., 

2003) 

       

Ovine 
(Ovis 

aries) 

Embryo (Day-
21) 

Blastocyst, 
chorioallantois 

Parthenogenesis Semi-qPCR Higher expression 
in parthenogenetic 

fetus 

(Thurston et al., 
2008) 

       
Ovine 

(Ovis 

aries) 

Fetus Liver SNP in exon 19 PCR-sequencing Monoallelic (Killian et al., 

2001a) 

       

Bovine 

(Bos 
taurus) 

Embryo (Day-

25, 45) 

Trophectoderm G/A SNP in 

3’UTR 

Single stranded 

conformational 
polymorphism 

Monoallelic (Suteevun-

Phermthai et al., 
2009) 
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Table 1.3 continued 

Species 
Developmental 

stage 
Tissue Marker Method 

Imprinting 

status 
Reference 

Bovine (Bos 

taurus) 

Fetus (Day-75, 

250-280) 

Brain, 

cotyledon, heart, 

liver, lung, 
kidney 

G/A SNP in 

3’UTR 

Single stranded 

conformational 

polymorphism 

Monoallelic in 

fetal tissues, 

biallelic in near 
term brain 

(Suteevun-

Phermthai et 

al., 2009) 

       

Bovine Fetus Liver SNP in exon 48 PCR-sequencing Monoallelic (Killian et al., 
2001a) 

       

Mouse (Mus 
musculus 

domesticus) 

Pre- (E4.5) and 
post- (E 6.5) 

implantation 

embryo  

- Igf2r-LacZ 
expression 

Localisation of -
galactosidase 

activity on 

cryosections 

Biallelic before 
implantation and 

monoallelic after 

implantation 

(Lerchner and 
Barlow, 1997) 

       

Mouse (Mus 

musculus/Mus 

spretus) 

Fetus (Day-15) - Deletion on 

maternal 

chromosome 

Northern blot Maternal 

expression 

(Barlow et al., 

1991) 

       

Mouse (Mus 
musculus 

domesticus) 

Fetus (E13.5) Heart, choroid 
plexus, tongue, 

small intestine 

Igf2r-LacZ 
expression 

Localisation of -
galactosidase 

activity on 

cryosections 

Monoallelic (Lerchner and 
Barlow, 1997) 

       

Mouse (Mus 

musculus 
domesticus/Mus 

musculus 

musculus) 

Fetus (E10, 

E15) 

Cerebral 

cortices, cortical 
neurons, glial 

cells, embryonic 

fibroblasts 

RFLP PCR-RFLP and 

gel 
electrophoresis 

Biallelic in 

neurons, 
maternal 

expression in 

glial cells 

(Yamasaki et 

al., 2005) 

       

Mouse (Mus 

musculus/Mus 
spretus) 

Fetus (E15) Liver, kidney, 

heart, lung, 
muscle, CNS 

RFLP PCR-RFLP and 

gel 
electrophoresis 

Biallelic in CNS 

and maternal 
expression in 

peripheral tissues 

(Hu et al., 

1998) 

       

Mouse (Mus 

musculus/Mus 

spretus) 

Postnatal 

(newborn, 1-

month old) 

Brain, heart, 

lung, liver, 

kidney 

RFLP PCR-RFLP and 

gel 

electrophoresis 

Maternal 

expression in 

tissues, biallelic 
in brain 

(Hu et al., 

1999) 

       

Mouse (Mus 
musculus 

domesticus/Mus 

musculus 
musculus) 

Postnatal (Day-
1, 42) 

Cerebral 
cortices, cortical 

neurons, glial 

cells, embryonic 
fibroblasts 

RFLP PCR-RFLP and 
gel 

electrophoresis 

Biallelic in 
neurons, 

maternal 

expression in 
glial cells 

(Yamasaki et 
al., 2005) 

       

Mouse (Mus 
musculus/Mus 

spretus) 

Postnatal (Day-
1, 2, 3, week-2, 

month-2) 

Liver, kidney, 
heart, lung, 

muscle, CNS 

regions 

RFLP PCR-RFLP and 
gel 

electrophoresis 

Biallelic in CNS 
and maternal 

expression in 

peripheral tissues 

(Hu et al., 
1998) 

 

The discrepancy in imprinting status of IGF2R in human studies may be due to different 

experimental methods or different markers used for imprinting analysis. For example, it was 

shown that the results of imprinting analysis of the IGF2R employing the CA repeat 

polymorphism at the 3’ untranslated region of IGF2R (Goto et al., 1992) are not reliable since 

one of the primers to amplify the DNA fragment flanking this SNP was located on the ACAA 

In/Del. Also, it has been speculated that stochastic amplifications in PCR cycles beyond 35 

cycles due to low amounts of the template may render the imprinting results difficult to 

interpret (Killian et al., 2001b). 
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Recently, a pyrosequencing approach to quantify allelic expression of IGF2R revealed 

equal transcript abundance of paternal and maternal alleles in the first trimester and term 

placenta (Buckberry et al., 2012), which is consistent with previously reported biallelic 

expression of IGF2R in human term placenta (Daelemans et al., 2010). Biallelic expression of 

IGF2R observed in porcine fetal and adult tissues (Braunschweig, 2012) is in contrast to the 

previously reported monoallelic IGF2R expression in fetal liver of porcine (Killian et al., 

2001a) and tissues of piglets (Li et al., 2010). Since the fetal and postnatal age is not clear in 

the latter (Killian et al., 2001a), the conflicting results obtained in these studies may be the 

outcome of different developmental stages at which allelic expression of IGF2R was 

measured. 

Imprinted maternal expression of IGF2R was found to be conserved in the ovine (Ovis 

aries) fetus (Killian et al., 2001a; Young et al., 2003). In this species, IGF2R is biallelically 

expressed in the blastocyst, while monoallelic imprinted expression is observed in concepti 

from Day-21 (Thurston et al., 2008). Monoallelic expression of IGF2R was shown in fetal 

liver of ovine (Ovis aries), bovine and porcine (Killian et al., 2001a). Apart from biallelic 

expression of IGF2R in the brain of newborn calves, predominant monoallelic expression of 

IGF2R in all tissues (heart, brain, liver, spleen, lung, cotyledon, intercotyledon) of fetuses at 

different developmental stages (Days-25, 45 and 75 of gestation) and neonatal calves was 

observed, though the parental origin of the expressed allele was not determined due to lack of 

parental tissues (Suteevun-Phermthai et al., 2009).  

 

1.7.3 Role in prenatal development 

IGF2R is a multifunctional protein that is known to be implicated in multiple cellular 

processes in addition to regulation of IGF2 bioavailability. Some of the known cellular 

pathways involving IGF2R include T-cell induced apoptosis through granzyme B uptake 

(Motyka et al., 2000), endocytosis and trafficking lysosomal enzymes (Kornfeld, 1992; Hille-

Rehfeld, 1995; Le Borgne and Hoflack, 1998; Dahms and Hancock, 2002), endothelial-cell 
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migration and angiogenesis through binding proliferin (Groskopf et al., 1997), growth 

inhibition and apoptosis induced through binding retinoid acid (Kang et al., 1999), proteolytic 

activation of latent form of transforming growth factor-1 (TGF-β1), which is a growth 

inhibitor (Dennis and Rifkin, 1991; Ghahary et al., 1999; Godár et al., 1999; Leksa et al., 

2005), control of cell invasion and migration through binding urokinase-type plasminogen 

activator receptor (uPAR) as well as targeting uPAR to lysosomes for degradation (Nykjær et 

al., 1998; Godár et al., 1999; Leksa et al., 2002; Schiller et al., 2009), regulation of 

plasminogen activation (Godár et al., 1999; Leksa et al., 2002), T-cell activation via binding 

dipeptidyl peptidase IV (CD26) on the cell surface (Ikushima et al., 2000) and inducing 

transendothelial cell migration by binding soluble CD26 released from T-cells (Ikushima et 

al., 2002). Although the mitogenic function of IGF2 is believed to be exerted through IGF1R 

(Nakae et al., 2001) and insulin receptor isoform A (Frasca et al., 1999), a number of 

researchers have raised the controversial suggestions that IGF2R is involved in cellular IGF2 

signalling (Murayama et al., 1990; Kornfeld, 1992; Minniti et al., 1992; Nishimoto, 1993; 

Ikezu et al., 1995; Groskopf et al., 1997; Zhang et al., 1997; Ikushima et al., 2000; Tsuruta et 

al., 2000; McKinnon et al., 2001; Zygmunt et al., 2005; Chu et al., 2008; Sferruzzi-Perri et 

al., 2008; Maeng et al., 2009; Harris et al., 2011). The functions of IGF2R are more 

complicated considering different cell types that have been exploited in these studies. In fact, 

specific roles of the IGF2R may be more complex and vary with tissue and developmental 

stage. Therefore, it is necessary to investigate tissue-specific association of IGF2R transcript 

abundance with organ growth at specific stages of development. 

A significant association of polymorphisms within IGF2R with birth weight was 

observed in human (Kaku et al., 2007; Adkins et al., 2010), whereas inconsistent results were 

obtained in other studies (Kukuvitis et al., 2004; Petry et al., 2005). The critical role of Igf2r 

gene in prenatal development has been documented in knockout mouse experiments and by 

the observation of aberrant expression of the gene in some growth-related disorders. Mice 

with a disrupted Igf2r gene suffer from overgrowth syndrome and die shortly after birth (Lau 
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et al., 1994; Wang et al., 1994; Ludwig et al., 1996), whereas mosaic mice with tissue-

specific disruption (liver, skeletal and cardiac muscle) in Igf2r possess no obvious 

abnormality (Wylie et al., 2003). Death before birth accompanied by organomegaly and 

congenital heart defects, hyperdactyly and kinky tail have been shown in the mice lacking 

functional Igf2r, suggesting a key role for Igf2r in differentiation and organogenesis during 

prenatal development, a function that needs to be further investigated (Lau et al., 1994; Wang 

et al., 1994). Heart failure as a result of cardiac hyperplasia is the major cause of death in the 

Igf2r null mice, suggesting a critical role for Igf2r in heart.  

A soluble type of IGF2R (sIGF2R) comprising the extracellular domain of cellular 

IGF2R has been reported in the serum and amniotic fluid of rat (Kiess et al., 1987), ovine 

(Gallaher et al., 1994), bovine (Li et al., 1991), monkey (Gelato et al., 1988) and human 

(Causin et al., 1988). This isoform which is a truncated form resulting from proteolytic 

cleavage of transmembrane and intracellular domains of the cell membrane IGF2R has been 

shown to block IGF2-induced DNA synthesis (Scott and Weiss, 2000). Soluble IGF2R 

(sIGF2R) appears to take part in regulating bioavailability of IGF2, as it accounts for 50% of 

total IGF2 binding in fetal ovine blood but is dramatically downregulated in adults (Gelato et 

al., 1989; Gallaher et al., 1994). The ratio of cord blood IGF2 to soluble IGF2R was shown to 

be positively related to placental and birth weight (Ong et al., 2000). Transgenic mice which 

express a mutated Igf2r complementary DNA encoding a soluble receptor showed decreased 

size of organs (Zaina et al., 1998). It has been suggested that reduction of organ size as a 

result of increased levels of sIGF2R occurs through both IGF2-dependent and IGF2-

independent pathways (Zaina and Squire, 1998). 

 

1.7.4 Expression and role in postnatal growth 

IGF2R expression is downregulated in rat postnatal tissues (Kiess et al., 1987; Sklar et 

al., 1989; Senior et al., 1990; Sklar et al., 1992). Developmental downregulation of soluble 

IGF2R protein was reported postnatally in human, bovine, ovine and monkey serum (Gelato 
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et al., 1988; Gelato et al., 1989; Li et al., 1991; Xu et al., 1998; Costello et al., 1999). Igf2r 

was shown to be expressed throughout mouse growth plate and is postnatally upregulated 

with age in the growth plate, perichondrium and bone, whereas Igf2 expression is 

downregulated with age (Parker et al., 2007; Andrade et al., 2010). 

Studies of the association between polymorphisms in IGF2R and phenotypic traits are 

rare and the results are inconsistent. In an attempt to examine single nucleotide 

polymorphisms in IGF2R affecting beef performance traits in the bovine, none of the studied 

SNPs were significantly associated with meat production traits (Magee et al., 2010). The 

reliability of these results may be questioned since the imprinting effects were not included in 

the model used for association analysis. In a subsequent study, the SNPs located in the 

intronic regions of IGF2R were shown to be associated with body size traits and carcass 

weight and angularity (Berkowicz et al., 2012). A polymorphism resulting in a missense 

mutation has been reported in human which was associated with height and weight gain in 

children (Petry et al., 2005). 

 

1.8 Imprinted genes and genetic programming of postnatal 

performance: Implications for heterosis 

It has been documented that postnatal growth and health is largely determined by 

prenatal development, which is in turn subject to fetal genetics, epigenetics and maternal 

factors, a process termed “fetal programming” (Barker and Clark, 1997). What was initially 

known as fetal programming is now believed to occur throughout development and includes 

oocyte programming (Gilchrist et al., 2004; Krisher, 2004; Sirard et al., 2006; Doblado and 

Moley, 2007; Jungheim et al., 2010; Parry and Singson, 2011; Tian and Diaz, 2013), embryo 

(fetal) programming (Barker, 2004; Simmons, 2006) and early postnatal programming (Neu 

et al., 2007; Nilsson et al., 2008; Baum, 2010; Wright, 2010). In addition, there is increasing 

evidence of intergenerational programming and paternal influence on intrauterine 

development (Godfrey et al., 2001; Drake and Walker, 2004; Veena et al., 2004; Drake et al., 
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2005; Temple et al., 2006; Whitaker et al., 2010). Although the concept of fetal programming 

has long been developed in human epidemiological research there is growing evidence that 

animal postnatal performance has its origin in prenatal development and is affected by 

maternal environmental conditions (Young et al., 1998; Bell, 2006; Foxcroft et al., 2006; Wu 

et al., 2006; Gardner et al., 2007; Funston et al., 2010; Hill et al., 2010). Altered epigenetic 

modifications of imprinted genes, including those in IGF system, in response to maternal 

environmental stimuli are believed to impact on prenatal development with long-term 

consequences for postnatal phenotype (Dean et al., 1998; Brameld et al., 2000; Khosla et al., 

2001; Young et al., 2001; Wu et al., 2004; Dong et al., 2005; Kwong et al., 2006; Igwebuike, 

2010; Micke et al., 2011a; Micke et al., 2011b). 

Most studies in the area of fetal programming have focused on the epigenetic link 

between intrauterine environment and fetal phenotype, and the role of imprinted genes in 

genetic programming of variation in pre- and postnatal growth traits remains largely 

unexplored. There is evidence that genetics impacts on expression of imprinted genes 

(Hemberger et al., 1998; Van Laere et al., 2003). Further evidence for genetic effects on 

imprinted genes comes from association of genetic polymorphisms within imprinted gene loci 

and phenotypes (Zhao et al., 2002; Han et al., 2008b; Sherman et al., 2008; Zwierzchowski et 

al., 2010; Berkowicz et al., 2012) and also imprinted QTL effects mapped to IGF2 on 

growth-related phenotypes in porcine (Jeon et al., 1999; Nezer et al., 1999; Van Laere et al., 

2003). 

Changes in (epi)genetic mechanisms implicated in regulation of gene expression as 

caused by intra-species hybridisation are likely to be significant contributors to postnatal 

phenotype, including heterosis. Heterosis is defined as superiority of hybrids in a trait 

compared to the average of their parental purebreds (Veitia and Vaiman, 2011). Mendelian 

genetic models have been used to describe non-additive gene expression and heterosis 

(Davenport, 1908; Shull, 1908; Bruce, 1910; Keeble, 1910; Jones, 1917; Powers, 1944; Crow, 
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1948; Hochholdinger and Hoecker, 2007) and models with non-Mendelian (epi)genetic 

effects, including parent-of-origin imprinting effects, have not yet been viewed. 

A model of reciprocal crosses between two genetically distant groups has been used in 

most studies to examine parent-of-origin (iQTL) effects on phenotypes. In such models, the 

parent-of-origin effects on phenotypes are analysed based on the difference between two 

reciprocal groups, which is interpreted as the effects of parent-of-origin dependent gene 

expression associated with genomic imprinting (Wolf et al., 2008b). Significant heterosis for 

birth weight (Brown et al., 1993) and significant differences between reciprocal hybrids for 

growth and carcass characteristics of calves (Rohrer et al., 1994; Amen et al., 2007a; Amen et 

al., 2007b) have been detected in a bovine model using Bos taurus × Bos indicus crosses. 

Accumulating evidence suggests that the difference between reciprocals could be attributed to 

non-Mendelian epigenetic inheritance of imprinted genes (Jiang et al., 2007; Loschiavo et al., 

2007; Cheverud et al., 2008; Hager et al., 2008; Wolf et al., 2008a). However, the role of 

imprinted genes in driving heterotic phenotypes has not been investigated. 

Reciprocal intra-species hybridisation models enable the study of associations of parent-

of-origin imprinting patterns and heterotic phenotypes at the molecular and phenotypic level. 

This can provide insights into the molecular basis of natural phenotypic variation and is 

relevant not only in studies aimed at understanding molecular mechanisms involved in 

heterosis, but is also likely to shed light on the (epi)genetic architecture and prenatal 

programming of complex traits associated with growth and disease in human. 

Bovine provide a unique animal model for studying parent-of-origin epigenetic effects 

on complex traits in human because of generally outbred genetics, similar reproductive 

characteristics, including singleton pregnancies, similar gestation length and lifetime 

reproductive performance. Bovine are one of the most important agricultural species 

providing foods for nearly 6.6 billion humans globally (Elsik et al., 2009). The bovine has 

become an important model organism for assisted reproductive technologies, including in 

vitro fertilization (IVF) (Ménézo and Hérubel, 2002). There are two genetically and 
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phenotypically distinct subspecies of bovine (Lin et al., 2010), which provide an excellent 

source of genetic diversity for the study of genomic imprinting, the interplay of genetics and 

epigenetics, and its effect on pre- and postnatal growth.  
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1.9 Hypothesis and research objectives 

The IGF2 and IGF2R belong to the insulin like growth factor system and are the best 

known imprinted genes in ruminants. Although it is understood that imprinted genes are 

implicated in environmental programming of postnatal growth little is known about their role 

in (epi)genetic programming of phenotypes, and effect of genetics on expression of imprinted 

genes and its consequence for non-additive heterotic gene expression and phenotypic 

variation of growth-related traits in prenatal development has not been examined. 

In this thesis, we hypothesised that 

i) Expression of imprinted genes in tissues of B. taurus/B. indicus prenatal 

development is subject to fetal genetics. 

ii) Heterosis, i.e., the superiority of F1 hybrids compared to their parents, in 

B. taurus/B. indicus growth traits is (epi)genetically programmed in prenatal 

development through changes in expression patterns of imprinted genes. 

 

The objectives of this work were: 

i. to perform a comparative in silico analysis of promoter-specific transcripts and 

splice variants of the imprinted IGF2 and AIRN genes. 

ii. to evaluate tissue-specific changes in transcript abundance of imprinted genes, IGF2 

global and promoter-specific transcripts, IGF2R, and their regulatory long non-

coding RNA imprinted genes, H19 and AIRN across pre- and postnatal 

developmental stages. 

iii. to analyse the effect of fetal genetics and heterosis on fetal weight and weight of 

fetal tissues and also on tissue-specific expression of the imprinted genes. 

iv. to investigate association of transcript abundance of imprinted genes with heterotic 

phenotypes. 
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2.1 Introduction 

The bovine insulin-like growth factor 2 gene (IGF2) spans 18606-bp on the distal end of 

chromosome 29 (Schmutz et al., 1996; Goodall and Schmutz, 2003). IGF2 is a major 

regulator of prenatal development (Dechiara et al., 1990; Vrana et al., 1998; Sayer et al., 

2002; Nagaya et al., 2009; Adkins et al., 2010) and a QTL affecting postnatal performance 

(Jeon et al., 1999; Nezer et al., 1999; de Koning et al., 2000; Nezer et al., 2003; Van Laere et 

al., 2003). The gene is subject to a complex transcription regulation through genomic 

imprinting, promoter-specific transcription, differential splicing and alternative 

polyadenylation (Ikejiri et al., 1991; Hu et al., 1996; Li et al., 1996; Overall et al., 1997; Yun 

et al., 1998; Constancia et al., 2005; Curchoe et al., 2005; Thurston et al., 2008; Buckberry et 

al., 2012). 

The IGF2 gene is part of an evolutionarily conserved domain that is linked to INS and 

H19 genes on its upstream and downstream sides, respectively. These three genes cover a 

region of approximately 150 kb on human chromosome 11 and mouse chromosome 7 (Zemel 

et al., 1992; Onyango et al., 2000). In mouse, the gene comprises upstream exons U1 and U2, 

previously known as pseudo-exons, followed by six exons (Rotwein and Hall, 1990). The 

IGF2 gene is composed of 10 exons in human (Mineo et al., 2000), bovine (Goodall and 

Schmutz, 2007) and porcine (Amarger et al., 2002). In all species, the IGF2 protein is 

translated from the last three exons.  

In all species studied, including human, mouse, rat, porcine, ovine and bovine, IGF2 is 

transcribed from distinct promoters which initiate transcription from different 5’ non-coding 

exons. This complex promoter-specific transcription, which involves alternative splicing and 

polyadenylation, is believed to play an important role in regulation of transcription of IGF2 in 

a tissue and developmental stage-specific manner (Davies, 1994; Vu and Hoffman, 1994; 

Ekstrom et al., 1995; Li et al., 1996; Curchoe et al., 2005; Li et al., 2008a; Giang Tran et al., 

2012). In human (Holthuizen et al., 1990), bovine (Curchoe et al., 2005; Goodall and 

Schmutz, 2007), porcine (Amarger et al., 2002) and ovine (Ohlsen et al., 1994), transcription 
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from four promoters (P1-4) gives rise to a family of mRNA transcripts with different 

untranslated exons. A developmental switch in IGF2 promoter usage occurs in bovine (Boulle 

et al., 1993), ovine (O'Mahoney et al., 1991; Ohlsen et al., 1994), porcine (Amarger et al., 

2002) and human (Depagterholthuizen et al., 1987; Pedersen et al., 2002; Monk et al., 2006) 

in which transcription from the P2, P3 and P4 promoters falls sharply after birth and the P1 

promoter becomes active in liver at the time of birth. Furthermore, a fifth promoter (P0) has 

been characterised upstream of human IGF2 exon 2 (Monk et al., 2006). In mouse, 

transcription of IGF2 is initiated by three promoters (P1-3) in fetal tissues as well as a 

promoter (P0) that is only active in placenta (Rotwein and Hall, 1990; Moore et al., 1997). 

Bovine IGF2R is located on the distal end of chromosome 9 at position 9q26. It is a 

large gene with 48 exons spanning 102612 bp. The transcript length is 9075 bp with 7500 bp 

encoding the mature IGF2R protein. The IGF2R/Igf2r shows imprinted expression and is 

expressed from maternal allele in the studied animal species (Barlow et al., 1991; Killian et 

al., 2001; Young et al., 2003; Bebbere et al., 2013). In mouse (Mus musculus domesticus), 

imprinted expression of Igf2r is regulated by the reciprocally imprinted paternally expressed 

long non-coding RNA, Airn. The promoter of Airn is located in intron 2 of Igf2r gene and is 

transcribed in an antisense direction to Igf2r (Sleutels et al., 2002). Although, AIRN was 

shown to be expressed in bovine prenatal development (Suteevun-Phermthai et al., 2009; 

Farmer et al., 2013), its gene and transcript structure and regulatory effect on IGF2R 

imprinted expression remains unclear. 

Several sense and antisense transcripts have been characterised in the region 

encompassing INS/IGF2 in mouse, human and porcine (Moore et al., 1997; Braunschweig et 

al., 2004; Monk et al., 2006). Many of these transcripts, which overlap exonic regions of 

IGF2 transcripts, have not been identified in bovine and therefore complicate analysis of 

expression of IGF2 promoter-specific transcripts. In order to be able to identify the putative 

previously unknown transcripts in bovine and to design appropriate primers for specific 

amplification of IGF2 promoter-specific transcripts, we performed a comprehensive 
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comparative analysis of sequence and exon/intron structures of the known transcripts 

surrounding the INS/IGF2 gene domain in bovine, human, porcine and mouse using previous 

findings from literature and sequence information available in public databases.  
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2.2 Materials and methods 

Sequences and exon/intron structures of the studied genes and transcripts, including 

IGF2 promoter-specific transcripts, INSIGF2 hybrid transcripts, IGF2 antisense transcripts 

for human (Homo sapiens), bovine (Bos taurus), mouse (Mus musculus) and porcine (Sus 

scrofa) were retrieved from literature and the public databases, National Center for 

Biotechnology Information (NCBI) GenBank database (www.ncbi.nlm.nih.gov/genbank/) and 

Ensembl project database (http://www.ensembl.org). Sequence similarity search between 

bovine and other species was carried out using Basic Local Alignment Search Tool (BLAST) 

at http://blast.ncbi.nlm.nih.gov/ (Altschul et al., 1990). The dbEST of NCBI GenBank 

(Boguski et al., 1993) was used to explore the Expressed Sequence Tags (ESTs) 

corresponding to the putative IGF2R antisense transcript (AIRN) and IGF2 antisense 

transcript (IGF2AS) in bovine. The corresponding ESTs were identified using sequence 

similarity search by BLAST against bovine EST database (http://blast.ncbi.nlm.nih.gov/). 

CTCF-binding sites within the ICR upstream of H19 gene, were predicted with 

CTCFBSDB (Bao et al., 2008). Comparison of the sequences of seven CTCF binding sites 

between Bos taurus and Bos indicus was performed using BLAST with Bos indicus genome, 

in NCBI (http://www.ncbi.nlm.nih.gov/genomes/geblast.cgi?taxid=9915). 
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2.3 Results 

Comparative exon/intron structure of INS/IGF2 for human, bovine, porcine and mouse is 

shown in Figure 2.1. The IGF2 gene shows structural homology in the studied species. The 

gene shows more similarity between human, bovine and porcine as compared with mouse and 

is composed of 10 exons (exons 1 to 9 in human and porcine with exon 4b corresponding to 

exon 5 in bovine). In human, bovine and porcine, the first upstream seven exons are not 

translated and are part of the 5’UTR in the transcripts derived from different promoters. In 

human, bovine and porcine, four promoters (P1, P2, P3 and P4) drive transcription from the 

leading exons 1, 4, 5 (exon 6 in bovine) and 6 (exon 7 in bovine), respectively. A novel 

promoter (P0) has been found in human that drives transcription from a region upstream to 

exon 2 in fetal skeletal muscle. Despite the complexity in transcription, all promoter-specific 

transcripts possess the protein coding exons 7, 8 and 9 (8, 9 and 10 in bovine) and lead to the 

same protein. A conserved microRNA (MIR483) is in intron 7, 8 and 4 of human, bovine and 

mouse, respectively. The respective microRNA has not been reported in pig. 

In mouse, promoters P1, P2 and P3 drive transcription from untranslated exons 1, 2 and 

3, respectively, which are extended to the protein coding exons 4, 5 and 6. Furthermore, a 

transcript consisting of the upstream exons U1 and U2 and the last three protein coding exons 

is derived from promoter P0 located upstream of exon U1 (Figure 2.1). 

Sequence information of IGF2 transcripts in the studied species was extracted from 

public databases. For human, the transcript containing exon 1 derived from P1 promoter was 

not found in NCBI and Ensembl databases. Two transcripts initiating from upstream region to 

exon 2 and containing exon 3, as well as two transcripts initiating from the leader exon 3, 

were found in human with different polyadenylation sites (Figure 2.2). Three transcripts with 

different transcription initiation and polyadenylation sites are derived from the P2 promoter in 

human and contain exons 4 and 4b. The P2 derived splice variant with the leading exon 4 (but 

not exon 4b) is not available in the databases. Five transcripts derived from the P3 promoter 

in human were found with different transcription initiation and polyadenylation sites. 
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CTCF-BS1:  GCGGCCGCGAGGCGGCAGTGCAGGCTCATGCATCA Bos taurus 

CTCF-BS1:  GCGGCCAAAAGGCGGCAGTGCAGGCTCATGCATCA Bos indicus 

 

CTCF-BS2:  GCGGCCGCGGGGCGGCAGTGTGGGCTCACACATCA Bos taurus 

CTCF-BS2:  GCGGCCGCGGGGCGGCAGTGTGGGCTCACACATCA Bos indicus 

 

CTCF-BS3:  GCGGCCGCGAGGCGGCAGTGCAGGCTCATGCATCA Bos taurus 

CTCF-BS3:  GCGGCCGCGAGGCGGCAGTGCAGGCTCACACATCA Bos indicus 

 

CTCF-BS4:  GCGGCCGCGGGGCGGCGGTGTGGGCTCACACATCA Bos taurus 

CTCF-BS4:  GCGGCCGCGGGGCGGCGGTGTGGGCTCACACATCA Bos indicus 

 

CTCF-BS5:  GCGGCCGCGAGGCGGCAGTGCAGGCTCACACATCA Bos taurus 

CTCF-BS5:  GCGGCCGCGAGGCGGCAGTGCAGGCTCACRCATCA Bos indicus 

 

CTCF-BS6:  GCGGCTGCGAGGTGGCAGTGCAGGCTCACACATCA Bos taurus 

CTCF-BS6:  GCGGCTGCGAGGTGGCAGTGCAGGCTCACACATCA Bos indicus 

 

CTCF-BS7:  GCGGCCGCGAGGCGGCGGTGCAGGCGCCAACATCA Bos taurus 

CTCF-BS7:  GCGGCCGCGAGGCGGCGGTGCAGGCGCCAACATCA Bos indicus 

 
Figure 2.11 Comparison of the sequences of seven CTCF binding sites (CTCF-BS1-7) between Bos taurus and 

Bos indicus. 

The boxed sequences depict the consensus sequences which are conserved across species. The single nucleotide 

polymorphisms are marked in red. Sequence similarity searches were performed using the Basic Local 

Alignment Search Tool (BLAST) with Bos indicus genome, in National Center for Biotechnology Information 

(NCBI) database (http://www ncbi.nlm.nih.gov/genomes/geblast.cgi?taxid=9915). 
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2.4 Discussion 

Despite the complex patterns of transcription, all IGF2 transcripts are translated into the 

same protein (Li et al., 1997; Curchoe et al., 2005). However, truncated forms of IGF2 

mRNA missing the major portion of exon 10 have been found in bovine tissues where full-

length transcripts are not present (Curchoe et al., 2005). Exon 10 translates the major part of 

E domain of the IGF2 precursor protein which is cleaved off to form the mature IGF2 protein 

(Curchoe et al., 2005). The truncated forms of mouse Igf2 transcripts missing exon 6 are 

present in Ensembl (Figure 2.3). It is speculated that truncation of IGF2 transcripts is a 

mechanism for control of IGF2 protein levels in tissues via translational regulation of IGF2 

protein and E-domain. This is supported by data in rat in which the level of E-domain peptide 

changes during development (Hylka and Straus, 1990). 

Variant forms of the IGF2 protein have been identified in human blood (Hampton et al., 

1989; Straczek et al., 1990; Vandenbrande et al., 1990) and placenta (De Ceuninck et al., 

1995). Furthermore, higher molecular weight forms of the IGF2 (unprocessed proIGF2s) have 

been found in human plasma (Zumstein et al., 1985; Gowan et al., 1987) and cerebrospinal 

fluid (Haselbacher and Humbel, 1982). Presence of variant forms of IGF2 in human tissues 

implies that regulatory mechanisms which are active at the translation level may be linked to 

the transcriptional regulation as the result of differential splicing, which influence IGF2 

bioavailability and binding affinity to its receptors and binding proteins. For example, a 

variant isoform of IGF2 has been shown to have a 2 to 3-fold lower affinity for IGF1R 

compared to the IGF1 and IGF2 (Hampton et al., 1989). Although, the biological role of 

IGF2 transcript variants is poorly understood, their tissue and developmental stage-specific 

regulation of transcription and association of these variants with the protein levels needs to be 

investigated. There are no reports of bovine proIGF2 protein variants, however, based on the 

information in human and rodents, they are also likely to be present in bovine. The 

identification of putative IGF2 protein variants in bovine tissues and their association with 

IGF2 transcript variants can be of particular interest. 



78 

In mouse, three distinct promoters, P1, P2 and P3, which are equivalent to human P2, P3 

and P4 promoters, respectively, regulate IGF2 expression in fetal tissues (Rotwein and Hall, 

1990). Furthermore, a unique promoter (P0) drives a transcript containing exons U1 and U2 

specifically in mouse placenta which is necessary for placental growth (Moore et al., 1997).  

A novel IGF2 transcript has been found in human that appears to be equivalent to the 

mouse placental-specific transcript derived from P0 transcript (Monk et al., 2006). The 

human exons 2 and 3 exhibit sequence similarity of 81% and 53% to the mouse exons U1 and 

U2 respectively (Rotwein and Hall, 1990). The promoter for the human P0 transcript is 

located within intron 1 which initiates transcription from a unique sequence 5’ to exon 2 

extending 256 bp towards upstream of intron 1 (Figure 2.1). The transcript is subsequently 

spliced onto exon 3 as well as the last three coding exons of the IGF2 gene (Monk et al., 

2006) (Figure 2.2). These results show an evolutionary shift in tissue specificity of P0 

promoter from placental-specific activity in rodents to fetal skeletal muscle-specific activity in 

other mammals. 

P1 transcripts containing exon 1 in human and bovine are not present in the databases. 

We found transcripts in human and mouse whose leader exon is exon 3 and U2, respectively, 

raising the possibility of a new as yet unknown promoter upstream of exons 3 in human and 

U2 in mouse. The sequence information on promoter-specific transcripts in human, bovine, 

mouse and porcine is not complete in NCBI. For example, human P4 and P1 sequence, mouse 

P0 sequence and porcine P2, P3 and P4 are not available in NCBI. In bovine, there is a 

transcript beginning from exon 2 splicing onto exon 3. This transcript appears to be P0 

transcript with an alternative transcription start site or P1 transcript whose exon 1 is missing 

in the database.  

Hybrid transcripts (INSIGF) which originating from the upstream insulin exonic regions 

and splice to the downstream IGF2 exons have been identified in human pancreas (Monk et 

al., 2006). Two long and short isoforms of INSIGF2 mRNA result from alternative splicing of 

the hybrid transcripts. The INSIGF short transcript is composed of INS exon1, IGF2 exons 2, 
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3 as well as a specific exonic region downstream of exon 3 (Figure 2.5). This region, which is 

also present in the human IGF2 antisense transcript, is highly conserved in bovine (data not 

shown), suggesting that hybrid INSIGF transcripts may exist in bovine. There is no evidence 

regarding the presence of the hybrid transcripts in mouse and other species. The INSIGF2 

transcript contains an open reading frame (ORF) which extends to IGF2 exon 3. Translation 

of this ORF results in a novel protein that includes the insulin leader sequence and B-chain 

peptide as well as an additional peptide at the C-terminal end (Monk et al., 2006). 

An IGF2 antisense transcript has been detected in human (Okutsu et al., 2000), mouse 

(Rivkin et al., 1993) and porcine (Braunschweig et al., 2004). Human IGF2AS lies within the 

IGF2 gene and shares some exonic regions (exons 2, 3, 4), exhibiting about 50% homology 

with the mouse Igf2as (Okutsu et al., 2000). In mouse, three Igf2as transcripts encompassing 

DMR0, which overlap P0- and P1- derived transcripts, have been detected (Moore et al., 

1997). Notwithstanding, there is no evidence of a link between Igf2as and Igf2 expression. 

Human IGF2AS is imprinted and exclusively expressed from the paternal allele. There is no 

information on the possible regulatory effects of IGF2AS on IGF2 expression and imprinting. 

IGF2 and IGF2AS are overexpressed in human Wilms’ tumors at levels over 10 and 100 

times higher than that in normal fetal tissues, indicating their expression is co-regulated 

(Okutsu et al., 2000). Human IGF2AS has an ORF encoding a putative peptide, while the 

corresponding mouse Igf2 does not have such an ORF. Although no relevant proteins for 

IGF2AS have been identified this gene can affect tumorogenesis by its protein products or 

acting as a non-coding RNA (Okutsu et al., 2000). Analysis of the expression pattern of IGF2 

and IGF2AS in human fetal tissues has revealed that IGF2AS is ubiquitously expressed in 

most tissues at levels similar to P2-derived transcripts, so it is possible that both transcripts 

are under control of the same regulatory elements (Vu et al., 2003). This can be explained by 

the locations of IGF2 and IGF2AS promoters which are adjacent to each other and may share 

the same regulatory mechanisms. Dissociation of imprinting of IGF2 and IGF2AS was 

inferred from the study of loss of imprinting (LOI) of IGF2AS in Wilms’ tumors (Vu et al., 



80 

2003). No IGF2 antisense transcripts were reported in bovine, but our current knowledge on 

IGF2AS in human, mouse and porcine can postulate a putative antisense transcript with the 

potential for a regulatory role in pre and postnatal development. Investigation of the bovine 

EST database revealed evidence for the existence of the putative IGF2AS. These ESTs 

matched the sequences in intron 3 of bovine IGF2 and show splicing patterns. Interestingly, 

the corresponding region in porcine harbours exons 2 and 3 of IGF2AS. 

Results from an early study of cross-hybridisation of bovine mRNA using human-

derived probes covering different IGF2 exons revealed seven transcripts of different size from 

P3 (5.2, 3.4, 2.8, 2.1 kb), P4 (4, 1.1 kb) and a liver-specific transcript of 4.4 kb (Boulle et al., 

1993). According to the known sequence lengths of bovine IGF2 exons/introns, sizes of the 

transcripts obtained in this study differ from the expected sizes of different transcripts (4 kb 

for P1 promoter; 4.4 kb for P3 promoter; 3.6 kb for P4 transcript). This raises the possibility 

of alternative functional polyadenylation signals located downstream to the distal 

polyadenylation signal of 3’UTR. An alternative explanation is that the measurement of 

transcript length based on size markers might not be accurate. 

Some IGF2 exons overlap exonic regions of the putative sense and antisense transcripts, 

including INSIGF2 and IGF2AS. Therefore, primers for amplification of IGF2 promoter-

specific transcripts must be designed considering the overlapping exons. Postnatal liver-

specific expression of P1 transcript in bovine was demonstrated by PCR-amplification of the 

transcript containing exon 1 (Goodall and Schmutz, 2007). Curchoe et al. (2005) used exon 3, 

which is shared between P0 and P1 transcripts, to analyse expression of P1 transcript and 

reported non-specific expression of transcripts containing exon 3 in bovine fetal and adult 

tissues, including liver, heart, lung, brain and kidney, although the developmental stage of 

fetuses was not clear in this work (Curchoe et al., 2005). The ubiquitous expression of P1 

transcript in adult tissues using primers within exon 3 (Curchoe et al., 2005) likely results 

from amplification of IGF2AS which entirely overlaps IGF2 exon 3 (Figure 2.6). 
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We investigated the bovine expressed sequence tag (EST) database for the putative 

AIRN transcript and found 12 ESTs corresponding to intron 2 of IGF2R, two of which show 

splicing patterns (Figure 2.11). These data support the existence of AIRN in bovine which 

originate from the CpG island within intron 2. Therefore, primers located within IGF2R 

intron 2 in a region close to the CpG island likely amplify all putative variants of AIRN. The 

putative AIRN transcript was previously amplified in bovine fetal tissues by placing primers 

in IGF2R intron 2 (Suteevun-Phermthai et al., 2009) and intron 1/exon 2 (Farmer et al., 

2013). 

Single nucleotide polymorphisms were identified in the consensus sequence of the first 

CTCF binding site, which is conserved across species (Young et al., 2003). These SNPs, 

which disrupted two CpG dinucleotides, are likely to affect regulation of imprinting and 

expression of IGF2 and H19. Several studies demonstrated that mutations in the CTCF 

binding sites and ICR influence epigenetic state and imprinted expression of H19 and IGF2 

with consequent effects on growth (Szabó et al., 2002; Engel et al., 2004; Pant et al., 2004; 

Han et al., 2008; Li et al., 2008b; Lee et al., 2010; Matsuzaki et al., 2010; Quenneville et al., 

2011; Singh et al., 2012) 

In conclusion, the bovine IGF2 expression pattern may be much more complicated than 

previously thought. A number of sense and antisense transcripts found in human, mouse and 

porcine IGF2 gene region have not been identified in bovine. These antisense transcripts share 

exonic regions with the IGF2 gene. The discrepancies in results of expression analyses of 

IGF2 promoter-specific transcripts in bovine likely result from amplification of different 

IGF2 exons which overlap exonic regions of other sense and/or antisense transcripts. Further 

studies are required to elucidate complete sequence and exon/intron structure of different 

IGF2 transcripts and their tissue-specific and developmental expression in bovine. The high 

sequence homology between human and bovine and the intron-exon structure demonstrate 

that the human IGF2 gene is closer to bovine than mouse. Thus, the bovine could provide a 

suitable model for studying the role of this gene in human prenatal development. 
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Chapter 3                                                   

Tissue and developmental stage-specific 

expression of the imprinted IGF2, IGF2R, 

H19 and AIRN genes in bovine
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3.1 Introduction 

The imprinted IGF2 and IGF2R genes play a key role in regulating prenatal growth and 

development (Dechiara et al., 1990; Lau et al., 1994; Wang et al., 1994; Ludwig et al., 1996). 

Furthermore, several lines of evidence showed that they are associated with postnatal growth 

(Jeon et al., 1999; Petry et al., 2005; Berkowicz et al., 2012). This requires that expression of 

these genes is controlled in a developmental stage-specific manner. The imprinted expression 

of IGF2 and IGF2R is regulated by the reciprocally imprinted H19 and AIRN long non-

coding RNA genes (Steenman et al., 1994; Ripoche et al., 1997; Sleutels et al., 2002). 

IGF2 is a potent growth promoter and essential for prenatal development. The IGF2 

gene is subject to genomic imprinting and paternally expressed in mouse (Mus musculuc 

domesticus), human, ovine (Ovis aries) and bovine (B. taurus/B. gaurus) (DeChiara et al., 

1991; Giannoukakis et al., 1993; McLaren and Montgomery, 1999; Dindot et al., 2004). 

Postnatally, IGF2 has a significant role in muscle growth and fat deposition in porcine (Jeon 

et al., 1999; Nezer et al., 1999; Van Laere et al., 2003) and bovine (Zhao et al., 2002; Goodall 

and Schmutz, 2003; Sherman et al., 2008; Zwierzchowski et al., 2010). In human, bovine, 

ovine and porcine, four promoters (P1-4) are involved in regulation of IGF2 transcription in a 

manner depending on tissue and developmental stage (Ohlsen et al., 1994; Amarger et al., 

2002; Curchoe et al., 2005; Goodall and Schmutz, 2007).  

The IGF2R is a cell surface receptor possessing multiple functions. It acts as a scavenger 

receptor which binds and internalises IGF2 for lysosomal degradation, thus, regulating its 

bioavailability to cells (Braulke, 1999). The IGF2R gene is imprinted and expressed from the 

maternal allele in Mus musculus/Mus spretus (Barlow et al., 1991), ovine (Ovis aries) (Young 

et al., 2003), bovine and porcine (Killian et al., 2001), whereas it is likely polymorphically 

imprinted in human (Xu et al., 1993; Xu et al., 1997; Buckberry et al., 2012). Associations of 

polymorphisms in IGF2R with postnatal growth-related traits in bovine also suggest a role for 

IGF2R in postnatal growth (Berkowicz et al., 2012). Imprinted expression of the IGF2R is 

controlled by the reciprocally imprinted long non-coding RNA gene, AIRN. While expression 
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of IGF2R was shown to be under developmental regulation, evidence of tissue-specific 

developmental expression of AIRN is lacking. 

The H19 gene is located downstream of IGF2 being part of an imprinted cluster. The 

gene encodes a long RNA which shows common features of RNA polymerase II derived 

mRNAs undergoing polyadenylation and splicing but lacks a conserved open reading frame 

(Brannan et al., 1990). The gene is imprinted on the paternal chromosome and expressed from 

the maternal allele in human (Rachmilewitz et al., 1992; Zhang and Tycko, 1992; Buckberry 

et al., 2012), mouse (Bartolomei et al., 1991), bovine (Zhang et al., 2004), porcine (Li et al., 

2008) and ovine (Ovis aries) (Young et al., 2003). The conserved structure and sequence of 

H19 across species suggests a functional role for the non coding RNA (Juan et al., 2000). H19 

is highly expressed during embryogenesis in mouse mesoderm and endoderm-derived tissues 

and its expression is fully suppressed in postnatal tissues, except skeletal muscle and heart 

(Poirier et al., 1991). 

Several lines of evidence in different species showed that expression patterns of the 

imprinted genes belonging to the IGF system are developmentally regulated (Brown et al., 

1986; Soares et al., 1986; Gray et al., 1987; Schofield and Tate, 1987; Sklar et al., 1989; 

Ballesteros et al., 1990; Senior et al., 1990; O'Mahoney et al., 1991 ; Sklar et al., 1992; 

Boulle et al., 1993; Delhanty and Han, 1993a; Moats-Staats et al., 1995; Pfuender et al., 

1995). However, quantitative tissue-specific expression of IGF2, IGF2R and their regulatory 

transcripts across key developmental time points has not been systematically examined in any 

species. 

The aim of the present study was (i) to investigate the distribution of transcript 

abundance of IGF2, IGF2R, H19 and AIRN genes in different tissues of bovine and (ii) to 

compare developmental changes in expression of these genes between Day-48 embryos, Day-

153 fetuses and 12-month old juvenile calves. 
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3.2 Materials and methods 

3.2.1 Animals and tissue 

All animal experiments and procedures described in this study were approved by the 

University of Adelaide Animal Ethics Committee (No. S-094-2005 and S-094-2005A). Dams 

and sires of the Angus and Brahman breeds were used to generate purebred and crossbred 

offspring at three developmental stages, Day-48 embryo, Day-153 fetus and 12-month-old 

juvenile. Angus and Brahman females, which had not given birth previously and were 

approximately 16–20 months of age received standard commercial estrous cycle 

synchronization (e.g. http://www.absglobal.com/aus/resources/beef-resources/synchronisation 

-programs---cue-mate-1/). Cidirol - Heat Detection & Timed Insemination (HTI) and Cidirol -

Timed Insemination (TI) was used. Briefly this consisted of an initial injection of 1 ml of 1 

mg/ml estradiol benzoate (Cidirol, Genetics Australia Co-operative Ltd., Bacchus Marsh, 

Australia) and insertion of a progesterone-releasing vaginal insert (Eazi-Breed CIDR, DEC 

International, Hamilton, New Zealand). The vaginal inserts were removed after 7–9 days and 

heifers injected with 2 ml of a prostaglandin analogue (0.26 mg of cloprostenol sodium/ml 

(Estrumate), Schering-Plough Animal Health, Baulkam Hills, Australia). Estrus detection 

devices (Kamar, Agrigene, Wangaratta, Australia) were placed on all animals. In HTI, 

animals that showed estrus two days later were inseminated, while animals not in estrus 

received an additional 0.5 ml injection of estradiol benzoate and were inseminated 24 h later. 

In TI, animals received 0.7 ml estradiol benzoate the day after removal of vaginal inserts and 

were inseminated 24 h later. Synchronization/insemination was repeated in HTI and TI with 

estradiol benzoate injection of all animals after removal of vaginal inserts, followed by a final 

round of insemination and natural breeding in HTI animals without further synchronization 

measures. Angus and Brahman paternal genetics were used in HTI and Ti. Animals were 

pregnancy tested by ultrasound scanning (Anand-Ivell et al., 2011).  

Embryos, fetuses and offspring were generated using at least two sires of each breed. 

Dams were pregnancy tested by ultrasound scanning, and embryos and fetuses recovered in 
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an abattoir. Embryos and fetuses were removed from the uterus, eviscerated, vacuum packed 

and stored frozen at -20C until further processing. 

Tissues were collected from 60 Day-48 embryos, 100 Day-153 fetuses (term ~ 283 

days), with both sexes represented, and 23 calves recovered by cesarian section (Day-278 of 

gestation) and 12-14-month old heifers and steers. At Day-48 of gestation, all organs have not 

yet formed and embryos still have a mesonephros, but some organs (heart, brain, liver) are 

clearly visible and could be sampled. The amount of tissue available was another criterion to 

opt for Day-48 rather than earlier stages that often require pooling of individual samples or 

amplification procedures that can impact on the quality of data obtained. Dissected tissues 

were immediately placed into RNA-later
®
 (Qiagen, Chadstone Centre, VIC, Australia) and 

stored at -80C after equilibration for 24 hours at 2–4C. Heart, brain, and liver samples were 

collected from Day-48 embryos. Heart, brain, liver, lung, kidney, skeletal muscle (M. 

semitendinosus) and testis were collected from Day-153 fetuses and the same tissues, with the 

exception of testis, were collected at 12 months of age. Cotyledon (placenta fetalis) was 

collected at Day-48, Day-153 and following delivery by caesarean section at Day-278 term. 

All tissue samples were provided by Prof. Stefan Hiendleder. 

 

3.2.2 RNA isolation and reverse transcription 

Tissue specimens (40-50 mg of each tissue) were homogenised by PRECELLYS
®
24 

lyser / homogeniser (Bertin Technologies, Saint Quentin en Yvelines Cedex, France). 

Homogenisation of samples was carried out in 1 ml of TRIzol reagent (Ambion, Life 

Technologies™, Inc., Carlsbad, CA, USA) in tubes containing 1.4 mm ceramic beads (Mo 

Bio Laboratories, Inc., Carlsbad, CA, USA) (for embryonic liver, fetal lung, liver, kidney and 

brain, and juvenile brain) or 2.8 mm ceramic beads (for fetal heart and cotyledon, juvenile 

muscle, kidney, heart, liver and lung, and term cotyledon). Homogenisation runs were 

performed at the speed of 6500 rpm in one (embryonic liver, fetal brain, kidney and lung, and 

juvenile liver, lung and brain) or two (fetal liver, heart and cotyledon, term cotyledon, and 
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juvenile muscle, kidney and heart) cycles, with a cycle duration of 7 seconds (fetal brain), 10 

seconds (fetal heart and cotyledon), 12 seconds (fetal kidney and lung, embryonic liver, near-

term cotyledon, juvenile muscle, kidney, heart and brain), or 15 seconds (fetal liver and 

juvenile liver and lung). In cases where tissue samples underwent two cycles of 

homogenisation, the waiting time between two cycles was 10 seconds (fetal heart and 

cotyledon) or 12 seconds (fetal liver, term cotyledon, and juvenile muscle, kidney and heart). 

Total RNA was extracted from fetal tissues using TRI Reagent
® 

(Ambion, Life 

Technologies™, Inc., Carlsbad, CA, USA). After removing insoluble materials from the 

homogenate by centrifugation at 12000 g for 10 minutes at 2 to 8 °C and incubation of the 

supernatant on ice for 5 minutes, 0.2 ml of chloroform was added, followed by incubation on 

ice for 3 minutes and centrifugation for 20 minutes at 12000 g (4°C). The aqueous phase was 

separated and mixed with 0.6ml of isopropyl alcohol and incubated for overnight at -20° C, 

followed by centrifugation at 13000 g (4°C). After removing the supernatant, the pellet was 

washed by adding 1.2 ml of 75% ethanol and re-pelleted by centrifugation at 12000 g for 5 

minutes (4°C). After removing the supernatant, the RNA pellet was dissolved in 50-100 µl of 

nuclease-free water (GIBCO UltraPure
TM

 Distilled Water, Invitrogen
TM

, Inc., Auckland, NZ). 

Due to small sample size, AllPrep™ DNA/RNA Micro (Qiagen GmbH, Inc., Hilden, 

Germany) was used for extraction of RNA from embryonic heart and brain tissues according 

to the manufacturer’s instructions (Appendix 1). 8-10 mg of embryonic heart and brain was 

used for DNA/RNA extraction. RNA quality and integrity was assessed by a NanoDrop ND-

1000 spectrophotometer (Thermo Scientific, Inc., Wilmington, DE, USA) and Agilent RNA 

6000 Nano Kit with Bioanalyzer 2100 (Agilent Technology, Inc., Santa Clara, CA, USA) and 

RIN (RNA Integrity Number) values averaged 7.16 and 8.21 for skeletal muscle in juvenile 

and fetus, 7.43 and 8.85 for lung in juvenile and fetus, 4.16 and 7.03 for kidney in juvenile 

and fetus, 7.66, 9.00 and 8.45 for heart in juvenile, embryo and fetus, 7.54, 8.93 and 8.05 for 

liver in juvenile, embryo and fetus, 6.74 and 8.38 for brain in juvenile and fetus, 5.49, 6.35 

and 7.16 for cotyledon in calf, embryo and fetus, and 5.85 for testis in fetus, respectively. The 
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integrity of RNA molecules is a major concern in gene expression studies, which can affect 

the results. RIN values are based on an algorithm which is a user-independent, automated and 

reliable procedure for standardisation of RNA quality control (Schroeder et al., 2006). RNA 

samples were provided by Ali Javadmanesh. 

Prior to RT-PCR, the extracted RNAs were treated by DNase (RQ1-DNase, Promega, 

Inc., Madison, WI, USA). Reactions were performed in a total volume of 10 l containing 

RNase-Free DNase 10X reaction buffer (1 l), RNase-Free DNase (1 U/g RNA), RNA 

solution and nuclease-free water incubated at 37C for 30 minutes. 1 l of DNase stop 

solution was added to the mixture, followed by incubation at 65 C for 10 minutes. 

Complementary DNA (cDNA) was synthesised from 500 ng of total RNA using 

SuperScript™ III First-Strand Synthesis System (Invitrogen, Life Technologies™, Inc., 

Carlsbad, CA, USA) and random hexamer oligonucleotides according to the manufacturer’s 

instructions. Briefly, 10 l of a mixture containing total RNA, 1 l of 50 ng/l random 

hexamers, 1 l of 10 mM dNTP mix and nuclease-free water was incubated at 65 C for 5 

minutes and placed on ice for 1 minute. The mixture was mixed with 10 l of a cDNA 

synthesis mix containing 2 l of 10X RT buffer, 4 l of 25 mM MgCl2, 2 l of 0.1 M DTT, 1 

l of 40 U/l RNaseOUT
TM

 and 1 l of 200 U/l SuperScript
TM

 III RT, and incubated at 25 

C for 10 minutes, followed by 50 C for 50 minutes. The reaction was terminated at 85 C 

for 5 minutes and then chilled on ice. The mixture was incubated at 37 C for 20 minutes after 

adding 1 l of RNase H. Equal quantities of 60 embryonic cDNA samples, 100 fetal cDNA 

samples and 23 juvenile cDNA samples were mixed to create a pooled representive cDNA 

sample for each tissue and developmental stage. The pooled cDNA samples were then used as 

templates to run quantitative real time RT-PCR reactions in three technical replicates. 
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3.2.3 Quantitative real time RT-PCR 

Relative abundance of the following transcripts was analysed: IGF2 global and 

promoter-specific transcripts, including P0, P1 (two transcripts, P1e2 and P1e3), P2 (two 

splice variants, P2e4 and P2e5), P3 and P4; IGF2R, H19 and AIRN. Details of primers used 

are summarised in Appendix 2. Schematic location of primers for amplification of IGF2 

promoter-specific transcripts is presented in Figure S1 (Appendix 8). We amplified two splice 

variants of P2 transcripts. The splice variant containing leader exon 4 was amplified by 

forward primer located at the junction of exons 4 and 8 and reverse primer within exon 8. The 

other splice variant with leader exons 4 and 5 was amplified by forward and reverse primers 

placed in exons 5 and 8, respectively. Forward and reverse primers for amplification of P3 

transcript were placed in exons 6 and 8, and for amplification of P4 transcript were located in 

exons 7 and 8, respectively. IGF2 global transcripts were amplified by placing primers in 

exons 8 and 9, which are found in all known IGF2 transcripts. Although all RNA samples 

were DNase I treated we designed most primers spanning an intron to avoid potential 

amplification of genomic DNA. 

Quantitative real time PCR reactions were performed using Fast Start Universal SYBR 

Green Master (Roche Diagnostics GmbH, Mannheim, Germany) in an Eppendorf 

Mastercycler
®
 pro S thermal cycler (Eppendorf, Inc., Hamburg, Germany). The pooled 

sample from each tissue and developmental stage was used as a cDNA template in the 

reactions in triplicate and the mean of the three CTs used to calculate the mean amount of 

target transcript and standard error for three technical replicates. Reactions were performed in 

a total volume of 12 µl containing 6 µl of SYBR master mix (2×), 4 µl of cDNA (40-time 

diluted from stock cDNA, equivalent to 12.5 ng of starting RNA), 0.8 µl of primers (5 

pmol/l) and 1.2 µl of double distilled nuclease-free water (ddH2O). A non-template control 

was included in all experiments to check for DNA contamination of reagents used for 

amplification. Thermocycling reactions were carried out with a 10-minute initial 

denaturation/activation step at 95C, followed by 40 cycles of 95C for 20 seconds 
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(denaturation), 57-62C for 30 seconds (annealing, depending on the primer pair) and 72C 

for 20 seconds (extension). Product specificity and integrity was confirmed via sequencing on 

a 3730xl DNA Analyzer (Applied Biosystems, Inc., Foster City, CA, USA), plots of the 

melting curve derived by Mastercycler
®
 ep Realplex software (Eppendorf, Inc., Hamburg, 

Germany), and electrophoresis on a 2% agarose gel (Agarose low EEO, AppliChem GmbH, 

Darmstadt, Germany) stained with GelRed™ Nucleic Acid Stain (Biotium, Inc., Hayward, 

CA, USA) and visualised under UV with Gel Doc
TM

 1000 Single Wavelength Mini-

Transilluminator, using Quantity One image analysing software (Bio-Rad Laboratories, Inc., 

Hercules, CA, USA). 

An equal proportion of cDNA from all tissues and developmental stages was pooled to 

generate a cDNA template for standard curve analysis. The standard curve included a 3-fold 

serial dilution of initial pooled cDNA template over eight data points. Three replicates were 

used for each dilution of the cDNA template. The CT (threshold cycle) values of the standards 

were used to derive a standard curve which shows the CT values as a linear function of 

natural logarithm of the specified arbitrary amounts of cDNA. The relative abundance of each 

target transcript was calculated by the relative standard curve method with determination of 

PCR amplification efficiency using the following equation: 

                                                    
            

     
  

where, “exp” indicates the exponential function, CT is threshold cycle for each sample, 

intercept is the point at which the standard curve intersects with the Y-axis and slope is the 

increase in standard curve. PCR amplification efficiencies (E) were calculated by the 

following equation: 

    
 

  
     

 
   

CT values and transformed quantities (relative transcript abundances, in terms of 

standard curve), as well as standard curve parameters, including amplification efficiency and 

coefficient of determination (R-squared), were automatically calculated by Mastercycler
®
 ep 
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Realplex software (Eppendorf, Inc., Hamburg, Germany). Amplification efficiency and 

coefficient of determination for the experiments are shown in Appendix 6. Since pooled 

cDNA was used in the quantitative real time RT-PCR reactions, there was no need to 

normalise the expression data using housekeeping gene expression. In addition, we deemed it 

not appropriate to perform statistical significance tests on technical replicates to compare the 

average transcript abundances between tissues and developmental stages. Rather, we 

presented means and their respective standard errors. 
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3.3 Results 

3.3.1 IGF2, global transcript 

Transcript abundance of global IGF2 was lowest in brain at all developmental stages 

(Figure 3.1). In Day-48 bovine embryos, highest abundance of IGF2 transcript was in liver, 

with expression levels 330-fold higher than in brain. Expression of IGF2 in embryonic heart 

and cotyledon was 77- and 30-fold higher than in brain, respectively. In the fetus, highest 

IGF2 mRNA transcript abundance was observed in fetal lung, muscle and liver, followed by 

kidney. Despite a 4-fold decrease in global IGF2 transcript abundance in postnatal liver, when 

compared to mid gestation, liver displayed the highest expression of IGF2 compared with 

other postnatal tissues, i.e., approximately 13-fold higher than IGF2 expression in postnatal 

skeletal muscle. The expression level of IGF2 fell markedly after birth in all other tissues, 

with the highest fold decrease between pre and postnatal developmental periods being 

observed in lung (356-fold), kidney (122-fold) and muscle (60-fold). In general, expression 

levels of global IGF2 transcript are higher at the fetal stage in all examined tissues. In 

cotyledon, a slightly higher transcript abundance was observed in embryos compared with 

fetuses, and IGF2 expression was down-regulated 2-fold at term. 

 

3.3.2 IGF2R 

IGF2R expression was detected in all tissues studied at all three developmental stages 

(Figure 3.1). Expression of IGF2R in embryonic liver was (more than 2-fold) higher than in 

other embryonic tissues, whereas in the fetus, expression of IGF2R in heart, lung and kidney 

was comparable to liver. Fetal skeletal muscle, cotyledon and brain showed the lowest mRNA 

abundance of IGF2R compared to all other fetal tissues.  

Relative expression level in brain as compared to other tissues for IGF2R (around 10 

fold less than liver) was substantially higher than that for IGF2 (around 300-fold less than 

liver). Postnatal expression of IGF2R was highest in liver, followed by skeletal muscle. The 

transcript abundance of IGF2R was highest in the fetus and decreased dramatically after birth. 
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The highest fold change from fetal to postnatal developmental stage occurs in lung (67-fold 

decrease), heart (35-fold decrease) and kidney (25-fold decrease). 

 

 
Figure 3.1 Means for transcript abundances of IGF2, IGF2R, H19 and AIRN in tissues of three developmental 

stages, including embryo, fetus and juvenile. 

Standard errors of means for each tissue were calculated on three technical replicates of pooled cDNA made 

from 60 embryonic cDNA samples, 100 fetal cDNA samples and 23 juvenile cDNA samples. Cotyledon was 

taken from Day-48 embryo, Day-153 fetus and Day-278 calves. Transcript abundance was calculated by the 

standard curve method and expressed in arbitrary logarithmic units (ND: not determined). 

 

3.3.3 H19 

The abundance of H19 transcript was highest in liver and lowest in brain, with more than 

500-fold difference during prenatal development (Figure 3.1). In the current study, skeletal 

muscle displayed the highest expression of H19 at the postnatal developmental stage 

compared with other tissues. 

In all examined tissues, expression of H19 declined with advancing developmental age. 

The relative expression of H19 in cotyledon from C-section delivered calves was 2.5-fold 

lower compared to cotyledons sampled at Day-48 gestation. Transcript abundance of H19 
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decreases in all tissues after birth with highest and lowest postnatal fold change occurring in 

kidney (100-fold decrease) and skeletal muscle (9-fold decrease), respectively. 

 

3.3.4 AIRN 

We showed expression of AIRN in all tissues of each developmental stage (Figure 3.1). 

Liver displayed the highest mRNA abundance of AIRN at all developmental stages, which in 

embryos was at least 21-fold higher than other tissues. The transcript abundance of AIRN in 

liver of fetuses and juveniles was more than seven times higher than in other tissues at these 

developmental stages. 

Expression of AIRN was highest in tissues obtained at midgestation compared with the 

other developmental stages. Expression of AIRN increased from Day-48 to Day-153 in liver, 

brain and heart by 2, 3 and 7-fold, respectively. The level of AIRN mRNA in cotyledon was 

relatively constant across embryonic and fetal stages but decreased by 6-fold in late gestation. 

AIRN expression declined postnatally, with the postnatal fold decrease being highest in 

kidney (58-fold) and lowest in brain (3-fold).  

 

3.3.5 IGF2 P0 

By performing a sequence similarity search, we identified a region upstream of bovine 

IGF2 exon 2 that corresponded to the human P0 promoter with the upstream sequence highly 

conserved in bovine (data not shown). Therefore, we hypothesised the existence of a putative 

orthologous promoter in bovine and were able to amplify the corresponding transcript by 

specifically designed primers. We demonstrated P0-specific expression in skeletal muscle and 

testis during fetal development (Figure 3.2), with 30-fold lower expression in testis compared 

to muscle. We also demonstrated for the first time, a developmental shift in tissue specificity 

of IGF2 P0 activity. During the postnatal period, the promoter is turned off in bovine skeletal 

muscle and becomes active specifically in liver. The transcript is expressed in postnatal liver 

at levels resembling those observed in fetal muscle.  
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Figure 3.2 Means for transcript abundances of transcript abundances of IGF2 promoters, P0 and P1, and splice 

variants, P1 exon 2 and P2 exon 3, in tissues of three developmental stages, including embryo, fetus and 

juvenile. 

Standard errors of means for each tissue were calculated on three technical replicates of pooled cDNA made 

from 60 embryonic cDNA samples, 100 fetal cDNA samples and 23 juvenile cDNA samples. Cotyledon was 

taken from Day-48 embryo, Day-153 fetus and Day-278 calves. Transcript abundance was calculated by the 

standard curve method and expressed in arbitrary logarithmic units (ND: not determined). 

 

3.3.6 IGF2 P1 

We used two pairs of primers located in exons 3 and 8 (P1e3) and also exon 2 (P1e2) of 

the bovine IGF2 gene as specific amplification of P1 transcript failed using primers located in 

exon 1. As exons 2 and 3 are found in P0 and P1 transcripts, the P1e3 and P1e2 amplicons 

could potentially belong to both P0 and P1 transcripts depending on tissue and developmental 

stage. In the fetus, expression level for IGF2 transcripts containing exon 3 (P1e3) and exon 2 

(P1e2) was highest in skeletal muscle (Figure 3.2). Both P1e3 and P1e2 are expressed in fetal 

liver, while only P1e3 transcript is present in embryonic liver. Expression of P1 transcripts 

amplified by P1e3 and P1e2 primers is substantially elevated in postnatal liver, which was 

more than 200 times the transcript abundance in fetal liver. 
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3.3.7 IGF2 P2 

Two splice variants are derived from P2 promoters which comprise exon 4 (IGF2 P2e4) 

and exons 4 and 5 (IGF2 P2e5) as well as protein coding exons of 8, 9 and 10. The transcript 

that includes exons 4 and 5 was amplified by placing forward and reverse primers within 

exons 5 and 8, respectively. The forward primer for specific amplification of the splice variant 

that includes only exon 4 was located at the junction of exons 4 and 8 with the reverse primer 

placed within exon 8. 

The IGF2 P2e5 is expressed in liver, cotyledon and heart at Day-48 of gestation but was 

not detected in embryonic brain (Figure 3.3). The transcript was also expressed in all fetal 

tissues studied, with lowest expression in brain. Highest expression of the IGF2 P2e5 

transcript was in liver, with expression in embryos, fetuses and juveniles being at least 13, 3 

and 8-fold higher than in other tissues, respectively. Decreased activity of P2 promoter was 

observed after birth in all studied tissues with the highest fold decrease in lung (177-fold), 

muscle (34-fold) and liver (11-fold). No expression was detected in juvenile brain, heart and 

kidney. 

Transcript abundance of IGF2 P2e4 in liver of embryos, fetuses and juveniles was at 

least 75, 10 and 5-fold higher than other tissues, respectively. The transcript is completely 

absent in brain, is repressed in postnatal heart, lung and kidney, and is dramatically 

downregulated in postnatal liver (70-fold decrease) and muscle (32-fold decrease).  

 

3.3.8 IGF2 P3 

Expression of IGF2 P3 transcripts was present in all embryonic tissues studied, with 

highest expression in liver and heart and lowest expression in brain (Figure 3.3). In the fetus, 

P3 transcript was also expressed in all studied tissues, with the highest activity in lung and 

lowest in brain. Expression of P3 transcripts in cotyledon displayed a progressive decline with 

gestational age, with transcript abundance in embryos being 3 and 76-fold higher than in 

fetuses and at term, respectively. Postnatally, P3 transcripts were detected only in muscle, 
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heart and liver, with abundance declining sharply by 225, 140 and 90-fold, respectively. 

Expression of P3 transcript in liver, heart and cotyledon was highest in the embryo compared 

with other developmental stages. 
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Figure 3.3 Means for transcript abundances of IGF2 promoters, P2, P3 and P4, and splice variants, P2 exon 4 

and P2 exon 5, in tissues of three developmental stages, including embryo, fetus and juvenile. 

Standard errors of means for each tissue were calculated on three technical replicates of pooled cDNA made 

from 60 embryonic cDNA samples, 100 fetal cDNA samples and 23 juvenile cDNA samples. Cotyledon was 

taken from Day-48 embryo, Day-153 fetus and Day-278 calves. Transcript abundance was calculated by the 

standard curve method and expressed in arbitrary logarithmic units (ND: not determined). 

 

3.3.9 IGF2 P4 

The transcript derived from P4 promoter was expressed in all studied tissues of all three 

developmental stages (Figure 3.3). In the fetus, expression of P4 transcript was highest in 

liver and skeletal muscle, and lowest in brain. In embryonic tissues, P4 transcript abundance 

in liver was 8, 23 and 300-fold higher than heart, cotyledon and brain, respectively, and in 

juvenile, expression level in liver was at least 4-fold higher than in other tissues, and lowest 

expression was observed in brain. Expression from P4 was highest in fetal tissues compared 

with embryonic tissues, except cotyledon, and decreased dramatically in postnatal tissues. The 
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fold decrease was highest in lung (195-fold), muscle (95-fold) and kidney (70-fold). The 

developmental expression pattern of P4 in cotyledon was similar to that of global IGF2 

transcripts. 

 

3.3.10 Expression ratio of IGF2/H19, IGF2R/AIRN and IGF2/IGF2R 

Since imprinted expression of IGF2 and IGF2R is known to be controlled by H19 and 

AIRN, we examined relative transcript abundance of IGF2 to H19 and IGF2R to AIRN and 

showed that these parameters change in a manner depending on the tissue and developmental 

stage (Figure 3.4). 

 

 

Figure 3.4 Means for ratio of IGF2/H19, IGF2R/AIRN and IGF2/IGF2R transcript abundance in tissues of three 

developmental stages, including embryo, fetus and juvenile. 

Cotyledon was taken from Day-48 embryo, Day-153 fetus and Day-278 calves. Transcript abundance was 

calculated by the standard curve method and expressed in arbitrary logarithmic units (ND: not determined). 

 

Relative expression of IGF2 to H19 was higher in tissues of Day-153 compared with 

Day-48 of gestation. The IGF2/H19 ratio was highest in postnatal liver and heart but declined 
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in brain, lung and skeletal muscle of juveniles. Liver and brain displayed the lowest ratio of 

IGF2R/AIRN at all developmental stages. The relative transcript abundance of IGF2R to AIRN 

was highest in embryonic heart. The ratio of IGF2/IGF2R was lowest in brain at all 

developmental stages and was higher in embryos compared with fetuses. The IGF2/IGF2R 

ratio was highest in fetal skeletal muscle and substantially declined in postnatal lung, kidney 

and skeletal muscle, whereas it did not change markedly in liver and heart of the juvenile 

compared with the fetus. 
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3.4 Discussion 

In the present study, the use of pooled cDNA revealed drastic differences in transcript 

abundances between tissues and developmental stages. The magnitude of differences in 

transcript abundances between genetic groups and sexes, analysed by individual cDNAs, was 

much smaller (see chapter 4) compared with the differences in expression levels between 

tissues and developmental stages, analysed by pooled cDNA. 

The five studied IGF2 promoters showed differential expression patterns depending on 

tissue and developmental stage. Global IGF2 expression in bovine fetal tissues was consistent 

with relative abundance of IGF2 in rat fetal tissues (Brown et al., 1986). Overall, expression 

of total IGF2 transcripts in juvenile liver and other tissues decreased compared with those in 

prenatal developmental stages. A postnatal decrease in IGF2 expression level has been 

previously reported in tissues of bovine (Boulle et al., 1993), ovine and human (Schofield and 

Tate, 1987; O'Mahoney et al., 1991; Delhanty and Han, 1993b), and rat (Brown et al., 1986; 

Soares et al., 1986; Gray et al., 1987). 

In cotyledon, abundance of IGF2 transcript was relatively constant across embryonic 

and fetal developmental stages, followed by a slight decrease at term. IGF2 expression level 

in placenta was higher at term compared with midgestation in human (Gray et al., 1987), 

whereas did not change after midgestation in ovine (O'Mahoney et al., 1991; Reynolds et al., 

1997) and rhesus monkey (Coulter and Han, 1996). 

Specific expression of IGF2 P0 in bovine fetal skeletal muscle is in agreement with 

results obtained in human (Monk et al., 2006), whereas specific expression of P0 in fetal testis 

has not been previously reported in bovine or any other species. Whether expression of P0 in 

testis is developmentally controlled or whether it plays a role in testis development and 

function remains to be elucidated. In contrast to specific expression of P0 in bovine postnatal 

liver, ubiquitous expression of P0 in adult human (20-46 years old) tissues has been observed 

(Monk et al., 2006). The discrepancy between the postnatal expression pattern of IGF2 P0 in 
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human and bovine may relate to the different developmental ages, with bovine offspring 

studied as juveniles.  

Since transcripts derived from P0 are expressed in fetal muscle, and exons 2 and 3 are 

present in both P0 and P1 derived transcripts, the P1e3 and P1e2 amplicons detected in 

skeletal muscle could be derived from both P0 and P1 promoters. The amplicons containing 

exons 2 and 3 in fetal liver most likely belong to P1 splice variants, as P0 is not active in 

prenatal liver. These results demonstrate that the P1 promoter is active throughout the prenatal 

stage in liver and is upregulated postnatally, which is in agreement with the observations in 

porcine (Amarger et al., 2002). A postnatal developmental switch in IGF2 promoter usage has 

been reported in human (Depagterholthuizen et al., 1987; Monk et al., 2006), porcine 

(Amarger et al., 2002), ovine (O'Mahoney et al., 1991; Ohlsen et al., 1994) and bovine 

(Boulle et al., 1993), when P2-4 transcription drops sharply and P1 transcription becomes 

predominant in liver. Our results provide further evidence for a developmental shift in 

promoter usage in the IGF2 gene in bovine. 

The two splice variants derived from the IGF2 P2 promoter showed similar patterns of 

expression, with the exception that relative transcript abundance in liver compared with other 

tissues was higher for P2e4 compared with P2e5. Furthermore, they exhibited different 

expression patterns in embryonic and fetal cotyledon. Both P2 derived splice variants were 

previously detected in tissues of bovine and porcine fetuses (Amarger et al., 2002; Curchoe et 

al., 2005). The transcript that includes exons 4 and 5 has also been identified in ovine fetal 

and adult liver (Ohlsen et al., 1994) and in human liver and placenta (Ikejiri et al., 1991; 

Mineo et al., 2000). Expression of P2 derived splice variants in postnatal tissues has been 

analysed in bovine (Curchoe et al., 2005; Goodall and Schmutz, 2007), porcine (Amarger et 

al., 2002), human (Li et al., 1996) and ovine (Ohlsen et al., 1994). 

The high expression level of total IGF2 transcripts in fetal lung was consistent with 

highest transcript abundance of IGF2 P3 in fetal lung, suggesting that P3 is the most active 

promoter in fetal lung. Expression of IGF2 P3 transcripts was reported in a range of tissues 
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from bovine, porcine and human fetal and postnatal tissues (Li et al., 1996; Amarger et al., 

2002; Curchoe et al., 2005). Results of tissue-specific expression of IGF2 P3 in postnatal 

tissues were not consistent in different studies (Curchoe et al., 2005; Goodall and Schmutz, 

2007). Amplification of low abundant transcripts in postnatal tissues is highly variable 

depending on the experimental conditions and may lead to inconsistent results in different 

studies. Transcript abundance of IGF2 P3 was highest in embryonic tissues, except brain, 

compared with other studied developmental stages, whereas expression of the IGF2 P2 and 

P4 promoters was highest in fetal tissues. P3 was shown to be the most active promoter in 

tissues during human prenatal development (Holthuizen et al., 1993; Ohlsson et al., 1994). 

In agreement with our results, a postnatal decrease in IGF2 P4 transcript was reported in 

human liver (Li et al., 1996). The transcript was shown to be expressed in bovine and porcine 

fetal tissues (Amarger et al., 2002; Curchoe et al., 2005) but was not found in juvenile bovine 

lung and heart (Goodall and Schmutz, 2007). 

Consistent with the results presented here, a high level of IGF2R expression in fetal 

heart has been shown in rat (Sklar et al., 1989; Ballesteros et al., 1990; Senior et al., 1990; 

Sklar et al., 1992), human (Funk et al., 1992) and bovine fetuses (Pfuender et al., 1995), 

whereas in another study, expression of IGF2R in fetal heart was lower than other tissues 

(Suteevun-Phermthai et al., 2009). We demonstrated that IGF2R expression changes across 

pre and postnatal developmental stages. Developmental regulation of IGF2R has been shown 

in rat with highest expression in fetal tissues (Sklar et al., 1989; Ballesteros et al., 1990; 

Senior et al., 1990; Sklar et al., 1992; Moats-Staats et al., 1995). 

In the bovine fetus, liver exhibited a higher level of H19 expression compared with other 

tissues. Studies on tissue-specific expression of H19 during bovine development are limited. 

In bovine fetuses, the highest expression of H19 was detected in amnion, chorion, and 

allantois, and the lowest expression was in brain (Khatib and Schutzkus, 2006). In the current 

study, transcript abundance of H19 was highest in skeletal muscle of juveniles compared with 

other postnatal tissues, which agrees with previous data from bovine (Khatib and Schutzkus, 
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2006) and mouse (Gabory et al., 2009). These observations suggest that H19 may be 

important in postnatal growth of skeletal muscle. H19 expression in cotyledon decreased from 

Day-48 to Day-153 of gestation and did not change significantly until term. H19 is expressed 

at a constant level throughout prenatal development in human placenta (Goshen et al., 1993). 

Expression of the H19 gene is dramatically downregulated in the investigated postnatal 

tissues and is fully repressed in brain, which is consistent with the observation in human adult 

brain (Pham et al., 1998). A postnatal decrease in H19 expression has previously been 

reported in bovine (Khatib and Schutzkus, 2006) ovine (Lee et al., 2002) and mouse (Pachnis 

et al., 1984; Poirier et al., 1991) tissues. The higher expression level of H19 in embryonic 

tissues, compared with fetal tissues, implies that H19 may be more important in regulation of 

earlier stages of prenatal development. 

We demonstrated for the first time that expression of AIRN is developmentally 

controlled and is highest in fetal tissues. Transcripts of AIRN were previously detected in 

brain, cotyledon, kidney, liver and lung of bovine Day-75 fetuses (Suteevun-Phermthai et al., 

2009), and fetal liver at Day-35-55 and 70 of gestation (Farmer et al., 2013). Higher relative 

transcript abundance of IGF2R and AIRN in brain, compared with the relative expression 

level of IGF2 and H19 in brain, suggests that the IGF2R/AIRN system may play an important 

role in brain development and/or function. 

We demonstrated that relative expression of IGF2 to H19, IGF2R to AIRN and IGF2 to 

IGF2R is controlled in a tissue and developmental stage-specific manner. Highest relative 

transcript abundance of IGF2 to H19 in postnatal liver is attributed to the upregulation of the 

IGF2 P1 promoter transcript, which is biallelically transcribed with dissociated expression 

from H19 (Vu and Hoffman, 1994; Ekstrom et al., 1995; McLaren and Montgomery, 1999; 

Goodall and Schmutz, 2007). The highest expression ratio of IGF2R/AIRN in embryonic heart 

suggests that specific co-regulation of IGF2R and AIRN expression in heart may be important 

at the embryonic stage. The importance of IGF2R in heart development was shown in IGF2R-

deficient mice which showed abnormal heart growth and perinatal death, due to heart failure 
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secondary to cardiac hyperplasia (Lau et al., 1994; Wang et al., 1994; Ludwig et al., 1996). 

Relative expression of IGF2 to IGF2R, which is interpreted as an indicator of free IGF2 

available to the tissues, was highest in fetal skeletal muscle, suggesting that IGF2 is important 

in prenatal muscle development. This is supported by several lines of evidence that show 

importance of IGF2 in skeletal muscle differentiation and development (Florini et al., 1996; 

Stewart and Rotwein, 1996; Coolican et al., 1997; Morali et al., 2000; Prelle et al., 2000; 

Wilson et al., 2003; Wilson and Rotwein, 2006; Alzhanov et al., 2010). 

In conclusion, our findings provide further evidence that developmentally important 

imprinted genes are subject to significant spatial and temporal regulation of gene expression. 

We used quantitative real time PCR to examine expression patterns of the imprinted genes 

across bovine development. Most studies in bovine and other species have exploited northern 

blot or semi-quantitative RT-PCR techniques for studying expression patterns of imprinted 

genes which may produce conflicting results depending on experimental conditions. The 

results of the present study enhance our understanding of how expression patterns of 

functionally linked imprinted genes and their regulatory non-coding RNAs change during pre- 

and postnatal development. Further studies are required to elucidate the imprinting status of 

the studied genes at different developmental stages and association of alterations in imprinting 

with changes in overall expression of the genes and phenotype during pre and postnatal 

development.   
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4.1 Introduction 

Fetal growth is a complex process governed by the interplay of genetic, epigenetic and 

environmental factors. Any changes in environment, including maternal factors and fetal 

nutrition, result in developmental adaptations which have a permanent impact on postnatal 

growth and development, a process termed “fetal programming” (Barker and Clark, 1997). 

Although the concept of fetal programming has the most implications in the context of human 

disease there is growing evidence that animal postnatal performance has its origin in prenatal 

development and is affected by maternal environmental conditions (Young et al., 1998; Bell, 

2006; Foxcroft et al., 2006; Wu et al., 2006; Gardner et al., 2007; Funston et al., 2010; Hill et 

al., 2010). Changes in genetic and epigenetic mechanisms and effects as caused by intra-

species hybridisation are likely to be significant contributors to postnatal phenotype, including 

heterosis. 

Heterosis is defined as superiority of hybrids in a trait compared to the average of their 

parental purebreds (Veitia and Vaiman, 2011). A number of agricultural systems, including 

the beef industry, benefit from heterosis. There are two subspecies of domesticated cattle, Bos 

taurus and Bos indicus (Hiendleder et al., 2008; Elsik et al., 2009), which have been widely 

used in crossbreeding programs to improve performance via heterosis (Franke, 1980; Koger, 

1980; Huffman et al., 1990; Johnson et al., 1990; Brown et al., 1993). 

Classical genetic models, including dominance (Davenport, 1908; Bruce, 1910; Keeble, 

1910; Jones, 1917), overdominance (Shull, 1908; Crow, 1948) and more recently epistasis 

(Powers, 1944; Hochholdinger and Hoecker, 2007), have been proposed to explain heterosis, 

but molecular mechanisms underlying this phenomenon remain enigmatic and the role of the 

genes conferring non-Mendelian (epi)genetic effects is largely unexplored. 

Several lines of evidence suggested epigenetic parent-of-origin effects as part of 

molecular mechanisms that explain phenotypic variation of complex traits and heterosis 

(Cubas et al., 1999; Manning et al., 2006; Shindo et al., 2006; Ni et al., 2009; He et al., 2010; 

Groszmann et al., 2011). Alteration in gene expression as a result of changes in methylation 
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of differentially methylated regions may play a role in heterosis (Shen et al., 2012). Imprinted 

genes, whose expression is regulated by epigenetic mechanisms in a parent-of-origin 

dependent manner (Reik and Walter, 2001), significantly contribute to phenotypic variation of 

complex traits (de Koning et al., 2000; Mantey et al., 2005; Wolf et al., 2008b) and are likely 

to be candidate genes underlying heterosis and differences between reciprocal hybrids. 

However, the significance of parent-of-origin dependent gene expression associated with 

genomic imprinting in heterosis has not been studied. Genomic imprinting can mimic the 

effects that arise from hybrid vigor (Chakraborty, 1989). Loss of imprinting of imprinted 

genes under genetic influence has been shown in mouse interspecific hybrids of Mus 

musculus domesticus/Mus musculus castaneus and Peromyscus polionotus/Peromyscus 

maniculatus (Jiang et al., 1998; Vrana et al., 1998). Parent-dependent loss of gene silencing 

has also been documented in Arabidopsis interspecies hybrids (Josefsson et al., 2006).  

It is evident that the imprinted IGF2, IGF2R and their regulatory noncoding genes have 

an indispensable function in prenatal development and are subject to epigenetic regulation in 

response to changes in prenatal environment, suggesting involvement in fetal programming 

(Dean et al., 1998; Sinclair et al., 2000; Khosla et al., 2001; Young et al., 2001; Holt, 2002; 

Igwebuike, 2010; Micke et al., 2011b; Micke et al., 2011a). However, genetic effects on 

tissue-specific expression patterns of imprinted genes and their contribution to prenatal 

phenotypic variation and programming of postnatal performance and heterosis are largely 

unexplored. 

We hypothesised a major role for IGF2/H19 and IGF2R/AIRN in prenatal programming 

of heterosis. The objective of this study was to explore non-additive expression of the 

imprinted genes in tissues of hybrid fetuses and its link to heterosis in phenotype. Therefore, 

we sought to examine genetic and heterotic effects on tissue-specific expression patterns of 

these imprinted genes at Day-153 of gestation in a bovine model of two genetically and 

phenotypically distinct subspecies, Bos taurus (Angus, A), Bos indicus (Brahman, B) and 

their reciprocal cross hybrids (BA and AB, sire indicated first). 
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4.2 Materials and methods 

4.2.1 Animal model, fetuses and tissues 

All animal experiments and procedures described in this study were approved by the 

University of Adelaide Animal Ethics Committee (No. S-094-2005 and S-094-2005A). Angus 

(A) and Brahman (B) breeds were used to study differential expression of imprinted genes at 

midgestation. These two breeds represent two subspecies of domesticated cattle, Bos taurus 

(Bt) and Bos indicus (Bi) (Elsik et al., 2009), which have also been classified as Bos 

primigenius taurus and Bos p. indicus based on ancestral wild subspecies (Hiendleder et al., 

2008). Forty-five Angus and 28 Brahman females which had not given birth previously and 

were approximately 16–20 months of age received standard commercial estrous cycle 

synchronization (e.g. http://www.absglobal.com/aus/resources/beef-resources/synchronization 

-programs---cue-mate-1/). Cidirol - Heat Detection & Timed Insemination (HTI) was used. 

Briefly this consisted of an initial injection of 1 ml of 1 mg/ml estradiol benzoate (Cidirol, 

Genetics Australia Co-operative Ltd., Bacchus Marsh, Australia) and insertion of a 

progesterone-releasing vaginal insert (Eazi-Breed CIDR, DEC International, Hamilton, New 

Zealand). The vaginal inserts were removed after 7–9 days and heifers injected with 2 ml of a 

prostaglandin analogue (0.26 mg of cloprostenol sodium/ml (Estrumate), Schering-Plough 

Animal Health, Baulkam Hills, Australia). Estrus detection devices (Kamar, Agrigene, 

Wangaratta, Australia) were placed on all animals. Animals that showed estrus two days later 

were inseminated, while animals not in estrus received an additional 0.5 ml injection of 

estradiol benzoate and were inseminated 24 h later. Synchronization/insemination was 

repeated with estradiol benzoate injection of all animals after removal of vaginal inserts, 

followed by a final round of insemination and natural breeding without further 

synchronization measures. Angus (n = 3) and Brahman (n = 2) paternal genetics of average 

breeding value for birth weight were used to generate fetuses. Animals were pregnancy tested 

by ultrasound scanning (Anand-Ivell et al., 2011; Xiang et al., 2013). 
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Fetuses were sired by three Angus and two Brahman bulls. Dams were pregnancy tested 

by ultrasound scanning, and fetuses were recovered at Day-153 ± 1 in a commercial abattoir. 

Fetuses were removed from the uterus, eviscerated, vacuum packed and stored frozen at -

20C until further processing. A total of 73 fetuses, including 23 Bt×Bt (11 males and 12 

females), 22 Bi×Bt (5 males and 17 females), 13 Bt×Bi (7 males and 6 females) and 15 Bi×Bi 

(4 males and 11 females) genetics (sire breed indicated first), were used in this study. 

Therefore, 45 and 28 fetuses were representative of Bt and Bi maternal genetics, respectively, 

and 36 and 37 fetuses were representative of Bt and Bi paternal genetics, respectively 

(Appendix 7). 

Fetal phenotype, including fetal weight and weights of individual fetal tissues (liver, 

heart, brain, kidney, lung), was recorded immediately after collection and fetal placenta 

weight was recorded as weight of the fetal membranes. Musculus supraspinatus, M. 

longissimus dorsi, M. quadriceps femoris (consisting of M. rectus femoris, M. vastus medialis, 

M. vastus intermedius and M. vastus lateralis) and M. semimembranosus were dissected from 

both sides of the fetus. M. longissimus dorsi was defined from the 7th rib to the natural caudal 

end of the muscle, at the apophysis of the lumbosacral. Dissected muscles from both sides of 

the fetus were weighed, and absolute muscle weight was recorded as the mean weight for 

each muscle. Combined muscle weights were calculated as the sum of mean weight of each 

dissected muscle. Relative muscle weights, reflecting fetal muscle proportions, were 

calculated as muscle weight divided by the fetal body weight. Samples of fetal tissues, 

including brain, cotyledon (placenta fetalis), heart, kidney, liver, lung and skeletal muscle (M. 

semitendinosus), were collected in RNA-later
®
 (Qiagen, Chadstone Centre, VIC, Australia) 

immediately after recovery of fetuses in the abattoir and stored at -80C after equilibration in 

RNA-later
®
 for 24 hours at 2–4C. All fetal samples and phenotypes were provided by 

Professor Stefan Hiendleder. 
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4.2.2 RNA extraction and cDNA synthesis 

Tissue specimens (40-50 mg of each tissue) were homogenised by PRECELLYS
®
24 

lyser / homogeniser (Bertin Technologies, Saint Quentin en Yvelines Cedex, France). 

Homogenisation of samples was carried out in 1 ml of TRIzol reagent (Ambion, Life 

Technologies™, Inc., Carlsbad, CA, USA) in tubes containing 1.4 mm ceramic beads (Mo 

Bio Laboratories, Inc., Carlsbad, CA, USA) (for lung, liver, kidney and brain) or 2.8 mm 

ceramic beads (for heart and cotyledon). Homogenisation runs were performed at the speed of 

6500 rpm in one (brain, kidney and lung) or two (liver, heart and cotyledon) cycles with cycle 

duration of 7 seconds (brain), 10 seconds (heart and cotyledon), 12 seconds (kidney and lung) 

and 15 seconds (liver). In cases where tissue samples underwent two cycles of 

homogenisation, the waiting time between two cycles was 10 seconds (heart and cotyledon) 

or 12 seconds (liver). Total RNA was extracted from fetal tissues using TRI Reagent
® 

(Ambion, Life Technologies™, Inc., Carlsbad, CA, USA). After removing insoluble materials 

from the homogenate by centrifugation at 12000 g for 10 minutes at 2 to 8 °C and incubation 

of the supernatant on ice for 5 minutes, 0.2 ml of chloroform was added, followed by 

incubation on ice for 3 minutes and centrifugation for 20 minutes at 12000 g (4°C). The 

aqueous phase was separated and mixed with 0.6ml of isopropyl alcohol and incubated for 

overnight at -20° C, followed by centrifugation at 13000 g (4°C). After removing the 

supernatant, the pellet was washed by adding 1.2 ml of 75% ethanol and re-pelleted by 

centrifugation at 12000 g for 5 minutes (4°C). After removing the supernatant, the RNA pellet 

was dissolved in 50-100 µl of nuclease-free water (GIBCO UltraPure
TM

 Distilled Water, 

Invitrogen
TM

, Inc., Auckland, NZ). RNA quality and integrity was assessed by a NanoDrop 

ND-1000 spectrophotometer (Thermo Scientific, Inc., Wilmington, DE, USA) and Agilent 

RNA 6000 Nano Kit with Bioanalyzer 2100 (Agilent Technology, Inc., Santa Clara, CA, 

USA) and RIN (RNA Integrity Number) values averaged 8.21 for skeletal muscle, 8.85 for 

lung, 7.03 for kidney, 8.45 for heart, 8.05 for liver, 8.38 for brain and 7.16 for cotyledon. 

RNA samples were provided by Ali Javadmanesh. 
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Prior to RT-PCR, the extracted RNAs were treated by DNase (RQ1-DNase, Promega, 

Inc., Madison, WI, USA). Reactions were performed in a total volume of 10 l, containing 

RNase-Free DNase 10X reaction buffer (1 l), RNase-Free DNase (1 U/g RNA), RNA 

solution and nuclease-free water incubated at 37C for 30 minutes. 1 l of DNase stop 

solution was added to the mixture, followed by incubation at 65 C for 10 minutes. 

Five hundred ng of total RNA was reverse transcribed to cDNA using SuperScript™ III 

First-Strand Synthesis System (Invitrogen, Life Technologies™, Inc., Carlsbad, CA, USA) 

and random hexamer oligonucleotides according to the manufacturer’s manual. Briefly, 10 l 

of a mixture containing total RNA, 1 l of 50 ng/l random hexamers, 1 l of 10 mM dNTP 

mix and nuclease-free water was incubated at 65 C for 5 minutes and placed on ice for 1 

minute. The mixture was mixed with 10 l of a cDNA synthesis mix containing 2 l of 10X 

RT buffer, 4 l of 25 mM MgCl2, 2 l of 0.1 M DTT, 1 l of 40 U/l RNaseOUT
TM

 and 1 l 

of 200 U/l SuperScript
TM

 III RT and incubated at 25 C for 10 minutes, followed by 50 C 

for 50 minutes. The reaction was terminated at 85 C for 5 minutes and then chilled on ice. 

The mixture was incubated at 37 C for 20 minutes after adding 1 l of RNase H. For each 

tissue, equal quantities of all individual cDNAs were then combined to generate a pooled 

representative cDNA sample. 

 

4.2.3 Quantitative real time RT-PCR 

Expression of IGF2R, AIRN, IGF2, H19 as well as IGF2 promoter-specific transcripts 

(P0, P1, P2, P3, P4) and two splice variants derived from IGF2 P2 promoter (P2e4 and P2e5) 

were analysed in fetal tissues by quantitative real time PCR using gene-specific primers. 

Sequences, locations and annealing temperatures of the primers are listed in Appendix 2. 

Schematic exon/intron structure of the bovine IGF2 gene and locations of the primers 

designed for amplification of the IGF2 promoter-specific transcripts and splice variants are 

shown in Figure S1 (Appendix 8). We amplified two splice variants of P2 transcripts. The 



120 

splice variant containing leader exon 4 was amplified by forward primer located at the 

junction of exons 4 and 8 and reverse primer within exon 8. The other splice variant with 

leader exons 4 and 5 was amplified by forward and reverse primers placed in exons 5 and 8, 

respectively. Forward and reverse primers for amplification of P3 transcript were placed in 

exons 6 and 8, and for amplification of P4 transcript were located in exons 7 and 8, 

respectively. IGF2 global transcripts were amplified by placing primers in exons 8 and 9 that 

are found in all known IGF2 transcripts. We designed most primers spanning an intron to 

avoid amplification of genomic DNA. 

Quantitative real time PCR reactions were performed using Fast Start Universal SYBR 

Green Master (Roche Diagnostics GmbH, Mannheim, Germany) in an Eppendorf 

Mastercycler
®
 pro S thermal cycler (Eppendorf, Inc., Hamburg, Germany) using 4µl of cDNA 

(40-time diluted from stock cDNA, equivalent to 12.5 ng of starting RNA), 0.8 µl of primers 

(5 pmol/l) and 1.2 µl of double distilled nuclease-free water (ddH2O) in a final volume of 12 

µl. A non-template control was included in all experiments to check for DNA contamination 

of reagents used for amplification. Thermocycling reactions were carried out with a 10-minute 

initial denaturation/activation step at 95C, followed by 40 cycles of 95C for 20 seconds 

(denaturation), 57-62C for 30 seconds (annealing, depending on the primer pair) and 72C 

for 20 seconds (extension). Product specificity and integrity was confirmed via sequencing on 

a 3730xl DNA Analyzer (Applied Biosystems, Inc., Foster City, CA, USA), plots of melting 

curve derived by Mastercycler
®
 ep Realplex software (Eppendorf, Inc., Hamburg, Germany), 

and electrophoresis on a 2% agarose gel (Agarose low EEO, AppliChem GmbH, Darmstadt, 

Germany) stained with GelRed™ Nucleic Acid Stain (Biotium, Inc., Hayward, CA, USA) and 

visualized under UV with Gel Doc
TM

 1000 Single Wavelength Mini-Transilluminator using 

Quantity One image analysing software (Bio-Rad Laboratories, Inc., Hercules, CA, USA). 

Each qPCR experiment was performed in duplicate and the mean of both CTs used to 

calculate the amount of target transcript. 
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An equal proportion of cDNA from all fetuses in each tissue was pooled to generate a 

cDNA template for standard curve analysis. The standard curve included a 2-fold serial 

dilution of initial pooled cDNA template over eight data points. Three replicates were used 

for each dilution of the cDNA template. The CT (threshold cycle) values of the standards 

were used to derive a standard curve which shows the CT values as a linear function of 

natural logarithm of the specified arbitrary amounts of cDNA. The relative abundance of each 

target transcript was calculated by the relative standard curve method with determination of 

PCR amplification efficiency using the following equation: 

                               
                  

     
  

where, TBSample is relative transcript abundance of the gene of interest in each sample, 

“exp” indicates the exponential function, CTSample is threshold cycle for each sample, intercept 

is the point at which the standard curve intersects with the Y-axis, and slope is the increase in 

standard curve. PCR amplification efficiencies (E) were calculated by the following equation: 

    
 

  
     

 
   

CT values and transformed quantities (relative transcript abundances, in terms of 

standard curve), as well as standard curve parameters, including amplification efficiency and 

coefficient of determination (R-squared), were automatically calculated by Mastercycler
®
 ep 

Realplex software (Eppendorf, Inc., Hamburg, Germany). Amplification efficiency and 

coefficient of determination for transcripts of target and housekeeping genes are shown in 

Appendix 4 and 5. 

We determined expression levels of seven putative housekeeping genes, including actin 

beta (ACTB), ribosomal protein S9 (RPS9), ubiquitin B (UBB), H3 histone family 3A 

(H3F3A), TATA box binding protein (TBP), vacuolar protein sorting 4 homolog A (VPS4A) 

and cyclin G associated kinase (GAK) (Appendix 3), in each fetal tissue. In cotyledon, 

expression level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was determined 

instead of H3F3A. The geNorm program version 3.5 (Vandesompele et al., 2002) was used to 
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identify RPS9 and VPS4A in brain and cotyledon, and GAK and VPS4A in heart, kidney, liver, 

lung and skeletal muscle as the most stable genes for normalisation of the target genes. 

Expression levels of the genes in each tissue were normalised to the geometric mean of the 

expression levels of the selected housekeeping genes (TBHK), referred to as “normalisation 

factor” (Vandesompele et al., 2002): 

                    
        

                           
 

The qPCR reactions and data analysis for the housekeeping genes in fetal liver, brain, 

heart, muscle and cotyledon, and also data analysis for housekeeping genes in lung and 

kidney, were performed by Ali Javadmanesh. 

 

4.2.4 Statistical analysis 

The normalised expression data were checked for normality. Logarithmic transformation 

was performed on the data which were not normally distributed. When transformation was 

needed, the results for least square means and standard errors of means were presented after 

back-transformation. Gene expression data and fetal phenotype, including fetal weight and 

tissue weights, were analysed by Univariate Analysis of Variance (ANOVA) using the 

general linear model procedure of SPSS 19 (SPSS Inc, an IBM Company). Data were fitted 

into the following linear model to analyse the effects of fetal genetics and sex: 

yijk = Gi + Sj + eijk 

where yijk is the normalised relative gene expression level or fetal phenotype, Gi is fetal 

genetic effect (i = AA, BA, AB, BB), Sj is fetal sex effect (j = male, female) and eijk is the 

residual effect. 

The following model was used to analyse heterotic effects on gene expression and fetal 

phenotype: 

yijkl = Hi + Gj(Hi) + Sk + eijkl 

where yijkl is the normalised relative gene expression level or fetal phenotype, Hi is 

heterotic effect (i = purebred, crossbred), Gj(Hi) is fetal genetic effect nested within heterotic 
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effect (j = AA, BB nested within purebred, j = BA, AB nested within crossbred), Sk is fetal 

sex (k = male, female) and eijkl is the residual effect.  

Coordinate expression of genes in each tissue was analysed using Pearson’s correlation 

coefficients with the two-tailed tests of significance. Associations between fetal phenotypic 

traits and relative gene expression levels were analysed using simple linear regression models. 

Dependent and/or independent variables were subjected to logarithmic transformation in order 

to meet assumptions of regression analysis, including linearity, normality and 

homoscedasticity. 

The following linear models were used to estimate relative contribution of each 

promoter-specific transcript (P0, P2, P3 and P4) to the total IGF2 expression in each tissue: 

 

IGF2 (skeletal muscle) = IGF2 P0 + IGF2 P2e4 + IGF2 P2e5 + IGF2 P3 + IGF2 P4 

IGF2 (liver) = IGF2 P2e4 + IGF2 P2e5 + IGF2 P3 + IGF2 P4 

IGF2 (cotyledon, heart, lung, kidney) = IGF2 P2e5 + IGF2 P3 + IGF2 P4 

 

Where IGF2 is the relative expression (normalised to the housekeepers) of global IGF2 

and IGF2 P2e4 (transcript with untranslated leader exon 4) IGF2 P2e5 (transcript with 

untranslated leader exons 4 and 5) are relative expression of the splice variants derived from 

P2 promoter. IGF2 P0, IGF2 P3 and IGF2 P4 are relative expression of the transcripts 

derived from P0, P3 and P4 promoters, respectively. The contribution of each promoter-

specific transcript to total IGF2 variation was calculated from the type III sums of squares 

(SSIII) of relative transcript abundance for the promoter divided by total SSIII for all 

covariates included in the model. 
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4.3 Results 

We analysed the effects of fetal genetics and estimated heterosis effects on body weight 

as well as absolute and relative organ weights in Day-153 fetuses of Angus (AA), Brahman 

(BB), and reciprocal cross hybrids (BA and AB, sire given first) (Figure 4.1). Moreover, we 

examined heterotic and fetal genetic effects on tissue-specific transcript abundances of the 

IGF2 promoters, IGF2R, H19, AIRN and expression ratios of IGF2 promoters to H19, IGF2R 

to AIRN and IGF2 to IGF2R, and their correlations with weights of the relevant tissues in 

Day-153 fetuses. 

 

4.3.1 Genetic effects on fetal body weight, relative and absolute weights of 

fetal tissues 

Fetal weight and absolute weights of all the examined fetal tissues, except brain, were 

significantly affected by fetal genetics, (P<0.001) with higher fetal weight observed in AA 

compared with BB fetuses. Significant differences were observed between reciprocal hybrids 

in fetal body and organ weights, which were higher in the BA compared with AB fetuses. 

Absolute lung and fetal placental weight displayed significant heterosis (P<0.05). Fetal 

weight and absolute weights of fetal tissues, except placenta, were significantly higher in 

male fetuses compared with females (Figure 4.1.a). 

Relative weights of liver, skeletal muscle, heart and brain were significantly influenced 

by fetal genetics. Relative liver and brain weight was higher in BB compared with AA 

fetuses, whereas relative muscle and heart weight was higher in AA compared with BB fetal 

groups. A significant fetal genetic effect (P<0.001) was observed on placental efficiency 

(defined as the ratio of fetal weight to fetal placental weight), which was lowest in BA 

fetuses. 
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Relative skeletal muscle, heart and brain weight was higher in female fetuses compared 

with males, whereas placental efficiency was significantly (P<0.05) higher in male fetuses 

compared with females. Relative weights of liver and skeletal muscle were significantly 

(P<0.05) affected by negative and positive heterosis, respectively (Figure 4.1.b). 

 

4.3.2 Genetic effects on expression of IGF2, H19 and IGF2/H19 in fetal 

tissues and associations with fetal tissue weights 

Fetal genetics, sex and heterosis did not impact on transcript abundance of IGF2 global 

transcript in the examined fetal tissues, with the exception of lung. Expression of IGF2 in 

lung was significantly (P<0.001) affected by fetal genetics and negative heterosis and was 

lower in BA compared with the other genetic groups (Figure 4.2). 

Transcript abundance of H19 in the examined tissues, with the exception of brain, was 

significantly (P<0.001) influenced by fetal genetics and was higher in BB compared with AA 

fetuses. Expression of H19 in liver and lung showed a significant difference between 

reciprocals and was higher in AB compared with BA fetuses, whereas in the other tissues, 

H19 expression was not different between reciprocals. A negative heterotic effect (P<0.05) 

was observed on transcript abundance of H19 in fetal lung and skeletal muscle (Figure 4.2). 

H19 expression was negatively correlated with fetal tissue weight in all examined tissues 

(P<0.01), except cotyledon and brain (Figure 4.3). Independent regression analyses in 

purebred (AA and BB) and hybrid (BA and AB) fetal groups showed that H19 transcript 

abundance was significantly correlated with lung, muscle mass, heart, kidney and fetal 

placental weight in purebreds only. H19 expression was negatively correlated with absolute 

and relative liver weight in hybrids (P<0.01) and also with absolute liver weight in purebred 

fetuses (P<0.05) (Figure 4.3). 
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Figure 4.2 Effect of heterosis, fetal genetics and sex on transcript abundance of IGF2 and H19, and the ratio of 

IGF2 to H19 transcript abundance in fetal tissues. 

Least square means and standard errors of means for relative transcript abundance of (calculated by standard 

curve method, normalised to the housekeeper genes and expressed in arbitrary units) IGF2 and H19, and the 

ratio of IGF2 to H19 transcript abundance in liver, lung, skeletal muscle (M. semitendinosus), heart, kidney, 

brain and cotyledon of Day-153 fetuses with Angus (AA), Brahman (BB) and reciprocal crossbred genetics (BA 

and AB, sire given first), as well as purebred (P, consisting of AA and BB) and crossbred (F1, consisting of BA 

and AB) genetics. The means were also shown for male (M) and female (F) fetal groups. Effects of genetics, 

heterosis, and sex were shown where significant (F-test). Statistical tests were considered significant at the levels 

of P<0.05 (*), P<0.01 (**) and P<0.001 (***). 
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Figure 4.3 Regression of absolute weight of fetal liver, lung, heart, kidney and placenta, and relative weight of 

liver and skeletal muscle on H19 transcript abundance in overall (including fetuses with purebred and hybrid 

genetics), purebred and hybrid genetic groups. 

P-values and correlation coefficients are shown above each graph. Logarithmic transformations (ln) were 

performed for dependent and/or independent variable where necessary to meet assumptions of regression 

analyses. 
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The relative expression level of IGF2 to H19 was affected by fetal genetics (P<0.01) in 

all studied tissues, except brain, and was higher in AA compared with BB fetuses. The 

IGF2/H19 expression ratio in liver was significantly higher in fetuses from the BA compared 

with AB group. The IGF2/H19 expression ratio was significantly influenced by positive 

heterosis (P<0.05) in heart and by fetal sex (P<0.05) in kidney (Figure 4.2). The IGF2/H19 

ratio in heart was positively correlated with heart weight (P<0.01) in all fetuses combined, 

and in the purebred genetic groups (Figure 4.10). IGF2/H19 was significantly positively 

correlated with weights of fetal tissues, except cotyledon (data not shown). 

 

4.3.3. Genetic effects on expression of IGF2 promoter-specific transcripts, 

their ratio to H19 expression, and associations with fetal tissue weights 

We analysed tissue-specific expression of the IGF2 promoter-specific transcripts, 

including P0, P1 (two transcripts P1e2 and P1e3 which may derive from putative P0 and/or 

P1 promoters), P2 (two splice variants P2e4 and P2e5), P3 and P4. We also analysed relative 

expression of IGF2 promoters to H19. Analysis of regression of global IGF2 transcript 

abundance on expression levels of promoter-specific transcripts revealed that P4 is the most 

abundant transcript in most tissues accounting for 66 % (in skeletal muscle), 84 % (in heart), 

92 % (in cotyledon), 82 % (in lung), 88 % (in kidney), and 42 % (in liver) of global IGF2 

transcripts. P2 is the most abundant transcript in liver which accounts for 53 % of global 

IGF2 transcripts and the second most abundant transcript in heart (14 %), lung (17 %), and 

kidney (10 %) (Figure S2, Appendix 8). Transcript abundances of P2 (P2e5) and P4 in lung 

and P3 in liver were significantly affected by fetal genetics (P<0.01) being higher in AB 

compared with BA reciprocal fetuses. P4 transcript abundance in cotyledon and P2e4 

transcript abundance in liver were significantly affected by fetal genetics (P<0.01) and were 

higher in fetuses with paternal Brahman genetics (BA and BB) compared to those with 

paternal Angus genetics (Figures 4.4 and 4.6). Significant negative heterosis affected P4 

transcript abundance in liver (P<0.05), lung (P<0.01) and kidney (P<0.05). P3 transcript 
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abundance in kidney was higher (P<0.05) in male fetuses compared with females (Figure 

4.4). 

Fetal genetics affected the expression ratios of IGF2 promoter-specific transcripts to 

H19 in all examined tissues (except for IGF2 P3/H19 in liver), with the expression ratios 

being higher in AA compared with BB fetuses (with the exception of IGF2 P2e4/H19 in liver, 

which did not differ significantly between purebred fetal groups). A substantial difference 

between BA and AB reciprocals was observed for IGF2 P2/H19 in heart and cotyledon, IGF2 

P3/H19 in muscle and heart, IGF2 P4/H19 in liver and heart (Figure 4.5) and IGF2 P2e4/H19 

in liver (Figure 4.6). The IGF2 P2/H19 in kidney (Figure 4.5), and IGF2 P0/H19 (Figure 4.6) 

and IGF2 P1e3/H19 (Figure 4.6) in muscle were significantly higher in females compared 

with males (P<0.05). Furthermore, positive heterotic effects were significant on IGF2 

P2e4/H19 in muscle (P<0.01), IGF2 P3/H19 in kidney (P<0.05), IGF2 P4/H19 in muscle 

(P<0.05) and also the expression ratio of skeletal muscle-specific transcripts (P0, P1e2 and 

P1e3) to H19 (P<0.01) (Figures 4.5 and 4.6). The ratio of expression of IGF2 skeletal muscle-

specific promoter to H19 was positively correlated (P<0.001) with relative muscle mass. 

Analysis within genetic subgroups revealed that the correlation was significant (P<0.01) only 

for purebred fetuses (Figure 4.10). 

 

4.3.4. Genetic effects on expression of IGF2R, AIRN, IGF2R/AIRN and 

IGF2/IGF2R, and associations with fetal tissue weights 

Expression of IGF2R in lung was significantly influenced by fetal genetics and negative 

heterosis (P<0.001) with the lowest transcript abundance observed in BA group. Furthermore, 

relative transcript abundance of IGF2R to AIRN in lung was subject to significant fetal genetic 

and negative heterotic effects (P<0.01). IGF2R and AIRN in cotyledon showed similar 

patterns of expression with transcript abundances being higher (P<0.001) in BA compared 

with the other three genetic groups (Figure 4.7). AIRN expression in cotyledon was positively 

related to placental weight and was negatively related to placental efficiency (P<0.01). 
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Regression analysis within the genetic subgroups showed that these correlations were only 

significant in hybrid fetuses (P<0.05). IGF2R expression in cotyledon displayed a positive 

correlation (P<0.05) with fetal placental weight only in the hybrid fetal group (Figure 4.9). 

Relative expression of IGF2 to IGF2R in cotyledon was affected by fetal genetics 

(P<0.05) and was lower in BA fetuses compared with the other fetal groups (Figure 4.8). The 

IGF2/IGF2R expression ratio in cotyledon was negatively correlated with fetal placental 

weight (P<0.05) and positively correlated with placental efficiency (P<0.01) in overall 

(including fetuses with purebred and hybrid genetics), and hybrid genetic groups (Figure 4.9). 

Expression of AIRN in liver was significantly impacted by fetal genetics (P<0.05) and 

was higher in fetal groups with maternal Brahman genetics (AB and BB) compared to those 

with maternal Angus genetics. AIRN transcript abundance in brain was higher in BA 

compared with the other three genetic groups (P<0.001) and was subject to heterosis (P<0.05) 

(Figure 4.7). Expression of AIRN was positively correlated with relative brain weight in 

hybrid fetuses (P<0.05) (Figure 4.10). Fetal genetics and negative heterosis had significant 

effects on IGF2R/AIRN expression ratio in brain (P<0.001), which was lower in BA 

compared with the other fetal groups (Figure 4.7). Significant positive heterosis was also 

observed (P<0.05) for IGF2/IGF2R expression ratio in brain (Figure 4.8). 

The relative expression of IGF2R to AIRN in heart was influenced by fetal genetics 

(P<0.01) and sex (P<0.05) and was higher in fetuses with maternal Brahman genetics 

compared to those with maternal Angus genetics (Figure 4.7). Regression analysis showed a 

negative correlation of IGF2R/AIRN expression in heart, with heart weight (P<0.05) in 

overall, and also purebred genetic groups (Figure 4.10). 
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Figure 4.4 Effect of heterosis, fetal genetics and sex on transcript abundance of IGF2 promoter-specific 

transcripts, P2, P3 and P4 in fetal tissues. 

Least square means and standard errors of means for relative transcript abundance (calculated by standard curve 

method, normalised to the housekeeper genes and expressed in arbitrary units) of IGF2 transcripts derived from 

promoters P2, P3 and P4 in liver, lung, skeletal muscle (M. semitendinosus), heart, kidney and cotyledon of 

Day-153 fetuses with Angus (AA), Brahman (BB) and reciprocal crossbred genetics (BA and AB, sire given 

first), as well as purebred (P, consisting of AA and BB) and crossbred (F1, consisting of BA and AB) genetics. 

The means were also shown for male (M) and female (F) fetal groups. Effects of genetics, heterosis, and sex 

were shown where significant (F-test). Statistical tests were considered significant at the levels of P<0.05 (*), 

P<0.01 (**) and P<0.001 (***). The IGF2 P2 transcript (IGF2 P2e5) is the splice variant consisting of non 

protein coding exons 4 and 5 plus protein coding exons 8, 9 and 10. 
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Figure 4.5 Effect of heterosis, fetal genetics and sex on the ratio of transcript abundance of IGF2 promoter-

specific transcripts, P2, P3 and P4, to H19 in fetal tissues. 

Least square means and standard errors of means for the ratio of IGF2 P2 (P2e5), P3 and P4 to H19 transcript 

abundance (calculated by standard curve method, normalised to the housekeeper genes and expressed in arbitrary 

units) in liver, lung, skeletal muscle (M. semitendinosus), heart, kidney and cotyledon of Day-153 fetuses with 

Angus (AA), Brahman (BB) and reciprocal crossbred genetics (BA and AB, sire given first), as well as purebred 

(P, consisting of AA and BB) and crossbred (F1, consisting of BA and AB) genetics. The means were also shown 

for male (M) and female (F) fetal groups. Effects of genetics, heterosis, and sex were shown where significant 

(F-test). Statistical tests were considered significant at the levels of P<0.05 (*), P<0.01 (**) and P<0.001 (***). 

The IGF2 P2 transcript (IGF2 P2e5) is the splice variant consisting of non protein coding exons 4 and 5 plus 

protein coding exons 8, 9 and 10. 
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Figure 4.6 Effect of heterosis, fetal genetics and sex on transcript abundance of IGF2 promoter-specific 

transcripts, P0, P1e2, P1e3, and P2e4, and their ratio to H19 transcript abundance in fetal muscle and liver. 

Least square means and standard errors of means for relative transcript abundance (calculated by standard curve 

method, normalised to the housekeeper genes and expressed in arbitrary units) of IGF2 promoter-specific 

transcripts, including (a) P0, P1e2, P1e3 in skeletal muscle (M. semitendinosus), and (b) P2e4 in skeletal muscle 

(M. semitendinosus) and liver of Day-153 fetuses with Angus (AA), Brahman (BB) and reciprocal crossbred 

genetics (BA and AB, sire given first), as well as purebred (P, consisting of AA and BB) and crossbred (F1, 

consisting of BA and AB) genetics. The ratios of transcript abundances of IGF2 promoters to H19 were also 

shown. The means were also shown for male (M) and female (F) fetal groups. Effects of genetics, heterosis, and 

sex were shown where significant (F-test). Statistical tests were considered significant at the levels of P<0.05 

(*), P<0.01 (**) and P<0.001 (***). Expression of the splice variant (IGF2 P2e4) comprising exon 4 plus exons 

8, 9 and 10 is confined to skeletal muscle and liver. Relative expression levels of all transcripts to H19 were 

shown. 
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Figure 4.7 Effect of heterosis, fetal genetics and sex on transcript abundance of IGF2R and AIRN, and the ratio 

of IGF2R to AIRN transcript abundance in fetal tissues. 

Least square means and standard errors of means for relative transcript abundance (calculated by standard curve 

method, normalised to the housekeeper genes and expressed in arbitrary units) of IGF2R and AIRN, and the ratio 

of IGF2R to AIRN transcript abundance in liver, lung, skeletal muscle (M. semitendinosus), heart, kidney, brain 

and cotyledon of Day-153 fetuses with Angus (AA), Brahman (BB) and reciprocal crossbred genetics (BA and 

AB, sire given first), as well as purebred (P, consisting of AA and BB) and crossbred (F1, consisting of BA and 

AB) genetics. The means were also shown for male (M) and female (F) fetal groups. Effects of genetics, 

heterosis, and sex were shown where significant (F-test). Statistical tests were considered significant at the levels 

of P<0.05 (*), P<0.01 (**) and P<0.001 (***). 
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Figure 4.8 Effect of heterosis, fetal genetics and sex on the ratio of IGF2 to IGF2R transcript abundance in fetal 

tissues. 

Least square means and standard errors of means for the ratio of IGF2 to IGF2R transcript abundance (calculated 

by standard curve method, normalised to the housekeeper genes and expressed in arbitrary units) in liver, lung, 

skeletal muscle (M. semitendinosus), heart, kidney, brain and cotyledon of Day-153 fetuses with Angus (AA), 

Brahman (BB) and reciprocal crossbred genetics (BA and AB, sire given first), as well as purebred (P, consisting 

of AA and BB) and crossbred (F1, consisting of BA and AB) genetics. The means were also shown for male (M) 

and female (F) fetal groups. Effects of genetics, heterosis, and sex were shown where significant (F-test). 

Statistical tests were considered significant at the levels of P<0.05 (*), P<0.01 (**) and P<0.001 (***). 
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Figure 4.9 Regression of (a) fetal placental weight and (b) placental efficiency on transcript abundance of 

IGF2R, AIRN and the ratio of IGF2/IGF2R expression in cotyledon. 

Placental efficiency was defined as the ratio of fetal body weight to fetal placental weight. The regressions were 

analysed in overall (including fetuses with purebred and hybrid genetics), purebred and hybrid genetic groups. P-

values and correlation coefficients are shown above each graph. Logarithmic transformations (ln) were 

performed for dependent and/or independent variable where necessary to meet assumptions of regression 

analyses. 
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Figure 4.10 Regression of absolute/relative weight of fetal tissues on transcript abundance/expression ratio of 

imprinted genes significantly affected by genetics, in overall (including fetuses with purebred and hybrid 

genetics), purebred and hybrid genetic groups. 

P-values and correlation coefficients are shown above each graph. Logarithmic transformations (ln) were 

performed for dependent and/or independent variable where necessary to meet assumptions of regression 

analyses. 
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4.4 Discussion 

Fetal body weight, absolute weights of fetal tissues, with the exception of brain, and 

relative brain weight showed phenotypic patterns with parent-of-origin (maternal) genetic 

effects. Genomic imprinting is a plausible mechanism that may explain phenotypic 

manifestation of the difference between two reciprocals (Wolf et al., 2008b). However, 

parent-of-origin phenotypic patterns caused by maternal effects may be confounded by 

genomic imprinting (Hager et al., 2008). A genome-wide analysis of the imprinted QTLs 

revealed a complex phenotypic pattern of genomic imprinting, including dominance 

imprinting (Wolf et al., 2008a). A phenotype-based approach has been exploited in this study 

to describe the phenotypic patterns associated with genomic imprinting according to the 

difference between two reciprocals. Although the underlying molecular mechanisms that lead 

to a specific expression pattern, e.g. miRNA interference, are disregarded, this approach can 

also be applied to quantitative data on transcript abundances to characterise imprinting 

patterns of gene expression and their link to manifestation of parent-of-origin dependent 

phenotypes and heterosis. 

Analysis of phenotypic data at Day-153 of gestation revealed positive heterosis for fetal 

lung and placental weight and relative muscle mass, and negative heterosis in relative liver 

weight. Heterosis in fetal placenta, with the highest placental weight in BA fetuses, is in 

agreement with heterosis reported on birth weight, which was higher in the BA hybrid 

(Brown et al., 1993). This is consistent with the significant role of the placenta in 

programming pre and postnatal growth (Godfrey, 2002; Jansson and Powell, 2007; Fowden et 

al., 2008). 

Expression of H19 in cotyledon was significantly affected by fetal genetics with 

differential B. taurus and B. Indicus-specific expression. Spatial expression of a splice variant 

of H19 in human placenta was shown to be associated with genetic polymorphism and was 

affected by fetal genetics (Lin et al., 1999). A negative relationship was found between fetal 

placental weight and H19 expression in only purebreds. A negative role of H19 in placental 
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growth has been documented in mice with targeted disruption of the H19 gene, which showed 

increased fetal and placental weight (Leighton et al., 1995; Ripoche et al., 1997; Esquiliano et 

al., 2009; Angiolini et al., 2011; Keniry et al., 2012). Transcript abundance of H19 in 

cotyledon was not significantly different between the two reciprocals and was not subject to 

heterotic effects. Lack of significant correlation between H19 expression and placental weight 

in hybrids implies that H19 could not explain the heterotic phenotypic pattern of fetal 

placenta. 

The expression level of IGF2R in cotyledon was higher in the BA group, which could 

account for the higher placental weight observed in this fetal group. This is supported by the 

observation that transcript abundance of IGF2R in hybrid genetics was positively correlated 

with fetal placental weight, raising the possibility that IGF2R may be implicated in cellular 

pathways that lead to increased placental weight. The traditional role of IGF2R in suppressing 

placental growth has been documented in mouse gene knockout experiments (Wylie et al., 

2003). However, several lines of evidence have suggested that IGF2R is involved in 

signalling pathways mediating IGF2 function in stimulation of trophoblast cell migration, 

mitogenesis and survival of trophoblast (McKinnon et al., 2001; El-Shewy et al., 2006; El-

Shewy et al., 2007; Harris et al., 2011).  

Expression of AIRN was higher in the BA group and was positively correlated with fetal 

placental weight in hybrids. The role of AIRN in placental growth remains to be explored. 

Airn in mouse (Mus musculus domesticus) placenta is engaged in regulation of imprinted 

expression of Igf2r and transporter genes within an imprinted domain (Sleutels et al., 2002; 

Nagano et al., 2008).  

Placental efficiency, which is indicative of placental capacity to provide nutrients to the 

growing fetus and is defined as the ratio of fetal weight to placental weight (Wilson and Ford, 

2001), fell sharply in the BA group. Our data showed that expression of IGF2R and AIRN, 

which is affected by fetal genetics, is negatively correlated with placental efficiency in the 

hybrid fetuses. 



141 

Relative transcript abundance of IGF2/IGF2R, which may be interpreted as an indicator 

of the relative level of free IGF2 protein available to the tissue, was lowest in the BA group. 

The IGF2/IGF2R ratio was positively correlated with placental efficiency and negatively 

correlated with placental weight. The negative correlation of IGF2/IGF2R with placental 

weight is not consistent with the generally accepted function of IGF2R in growth suppression 

by reducing cellular bioavailability of IGF2 raising the possibility that IGF2R in placenta may 

also be involved in mediating growth stimulatory pathways. This speculation is in agreement 

with previous findings on the potential signalling role of IGF2R in placenta (Harris et al., 

2011). However, a positive correlation between the molar ratio of cord blood IGF2 to soluble 

IGF2R, and placental and birth weight, has been observed in human (Ong et al., 2000). 

The positive correlation of IGF2/IGF2R with efficiency of fetal placenta could be 

indicative of increased placental efficiency as a consequence of elevated bioavailability of 

IGF2. Gene ablation studies in mouse demonstrated that Igf2 is involved in regulation of 

expression of glucose and amino acid transporter genes (Matthews et al., 1999; Constancia et 

al., 2005). Disruption of Igf2 and Igf1r similarly altered expression patterns of amino acid 

transporters in mouse placenta (Matthews et al., 1999). However, null mutation of mouse Igf2 

resulted in decreased placental weight, while null mutation of Igf1r did not display such an 

effect, suggesting that IGF2 function in placental growth is mediated by receptors other than 

the Igf1r (Baker et al., 1993). In guinea pig, Leu
27

-IGF2, an IGF2 analogue which can bind 

IGF2R but not IGF1R influenced placental efficiency and fetal weight, suggesting that the 

role of IGF2 in enhancing placental functional development and nutrient transfer is also 

mediated in part by IGF2R (Sferruzzi-Perri et al., 2008). 

According to imprinting patterns described previously (Wolf et al., 2008a), absolute and 

relative muscle mass showed partial imprinting (with difference between reciprocals) and 

dominance non-imprinting (with no difference between reciprocals) phenotypic patterns, 

respectively. The significant negative correlation of H19 transcript abundance with muscle 

mass phenotypes in purebreds suggests that H19 could be a major determinant of skeletal 
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muscle phenotype. The importance of H19 in prenatal growth has been shown by the 

associations of the genetic polymorphisms within the human H19 gene with birth weight 

(Petry et al., 2005; Petry et al., 2011). 

Positive heterosis on relative muscle mass could be attributed to a negative heterotic 

effect on H19 transcript abundance in skeletal muscle, although the correlation between H19 

expression and muscle mass was not significant in the hybrid group. The relative expression 

of the skeletal muscle-specific promoter, IGF2 P0 to H19 exhibited positive heterosis, which 

was consistent with the heterotic phenotypic pattern of relative muscle mass with respect to 

positive relationship between IGF2 P0/H19 ratio and relative muscle mass. Relative 

expression of IGF2 P4 and IGF2 P2e4 to H19 was also subject to positive heterotic effects. 

This suggests that fetal genetics differentially impacts on relative expression of IGF2 

promoter-specific transcripts to H19. 

Absolute liver weight showed a phenotypic pattern of maternal expression, as described 

previously (Wolf et al., 2008a). The negative correlation of H19 expression with absolute 

liver weight in both purebred and hybrid fetal groups suggests that H19 could be a driver of 

the parent-of-origin effect on absolute liver weight. Relative liver weight was higher in 

fetuses with BB genetics compared with AA genetics, which could not be explained by the 

molecular data produced in this study. The significant negative correlation of H19 expression 

with relative liver weight in only hybrids suggests that the negative heterosis on relative liver 

weight, which was lowest in the AB group, could be driven by H19 with highest transcript 

abundance in the AB group. Furthermore, the negative heterosis on relative liver weight was 

consistent with the negative heterotic effects on IGF2 P4 expression in liver, which was 

lowest in the AB group, but this was not supported by the regression data. Although global 

IGF2 expression in liver was highly stable and was not affected by fetal genetics, sex or 

heterosis, the abundance of IGF2 P3 and P2e4 transcripts was influenced by fetal genetics, 

suggesting that genetics differentially drives expression of IGF2 promoters. Expression of 

AIRN in liver was affected by fetal genetics and was higher in fetuses with maternal Brahman 



143 

genetics, which is against the accepted imprinting status of a maternally imprinted gene. 

Further studies are required to elucidate imprinting status of AIRN in liver. 

Considering the negative relationship between H19 expression and lung weight, positive 

heterosis in lung weight could be explained by the negative heterotic effect on H19 

expression. However, no significant correlation was observed between H19 expression and 

lung weight in hybrids and the phenotypic difference between reciprocals may not be caused 

by H19. Despite a genetic and negative heterotic effect on IGF2 and IGF2R expression in 

fetal lung, which showed a significant difference between reciprocals, correlation of lung 

weight with IGF2 and IGF2R expression was not significant. This could be explained by the 

indication that relative expression of IGF2 to IGF2R in lung did not significantly change 

across genetic groups.  

Heart weight showed a phenotypic pattern of maternal expression associated with partial 

imprinting, as described previously (Wolf et al., 2008a). H19 expression in heart did not 

exhibit a significant difference between reciprocals and was negatively related to heart weight 

in purebred fetuses. Heterotic effect on expression ratio of IGF2 to H19 is not related to the 

phenotypic pattern of heart in hybrids, and IGF2/H19 had a positive relationship with heart 

weight only in purebreds. This could indicate that phenotypic manifestation of the altered 

expression ratio of IGF2/H19 in favour of heterosis in heart does not occur at mid-gestation 

developmental stage. Relative expression of IGF2R to AIRN was under the influence of fetal 

genetics and was negatively correlated with heart weight in purebreds. These observations 

suggest that both IGF2/H19 and IGF2R/AIRN imprinted gene systems could be implicated in 

differential manifestation of heart weight in Angus and Brahman. A critical role of Igf2r in 

heart development has been postulated in mice (Mus musculus domesticus) carrying a 

disrupted maternal allele of Igf2r which show phenotypes of heart enlargement and heart 

failure (Lau et al., 1994). The molecular systems studied here do not explain the phenotypic 

appearance of heart in hybrids.  
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According to the imprinting patterns classified previously (Wolf et al., 2008a), kidney 

weight showed a phenotypic pattern of maternal expression associated with partial imprinting. 

Differential expression of H19 in Angus and Brahman and negative correlation of H19 

expression with kidney weight in purebreds could explain breed (genetic) effect on kidney 

weight. 

Although absolute brain weight did not change significantly across genetic groups 

relative brain weight was significantly under fetal and parent-of-origin genetic effects. 

Significance of parent-of-origin effects on brain development has been previously postulated 

(Keverne et al., 1996; Gregg et al., 2010). In brain, AIRN displayed a polar overdominance 

imprinting pattern of expression with elevated transcript abundance in the BA group and 

consequently a heterotic effect. Despite a negative correlation between AIRN transcript 

abundance and relative brain weight in hybrids, a negative heterosis on IGF2R/AIRN in fetal 

brain, and a positive heterosis on IGF2/IGF2R in fetal brain, heterotic effects at molecular 

level in brain are not phenotypically manifested at Day-153 of gestation raising the possibility 

that such effects on imprinted gene expression may manifest in brain phenotype at subsequent 

stages of prenatal development or after birth. Our molecular data, including H19 expression, 

are not consistent with the phenotypic pattern of relative brain weight in purebreds. Further 

studies are required to elucidate imprinting status of imprinted genes and their role in 

programming brain development. 

In the present study, we showed that transcript abundance of H19 was consistently 

influenced by fetal genetics in all examined tissues, except brain. These observations along 

with the demonstration of negative correlations between H19 expression and weights of fetal 

tissues, except brain, in the purebred genetic group suggest that H19 is associated with the 

differential prenatal phenotypes in B. indicus and B. taurus and could be involved in 

developmental programming. H19 is a master regulator involved in downregulation of the 

genes in the newly described imprinted gene network (IGN), including Igf2 and Igf2r in 

mouse skeletal muscle (Gabory et al., 2009). Regression analysis revealed that correlation of 
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H19 expression with tissue weight was highest in skeletal muscle compared with other 

tissues, suggesting that a similar regulatory role for H19 exists in bovine skeletal muscle. 

To our knowledge, this is the first study to examine genetic effects on tissue-specific 

expression of imprinted genes and their relationship with growth-related phenotypes in 

prenatal development. We demonstrated that fetal genetics affects fetal weight, weights of 

fetal tissues and tissue-specific expression of imprinted genes. Furthermore, we showed that 

transcript abundances of imprinted genes are correlated with weight of the corresponding 

tissues in a manner depending on fetal tissue and genetic background. This is the first 

demonstration that imprinted genes are subject to non-additive heterotic expression and could 

be implicated in genetic programming of heterosis. 
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Abstract 

Postnatal myofibre characteristics and muscle mass are largely determined during fetal 

development and may be significantly affected by epigenetic parent-of-origin effects. 

However, data on such effects in prenatal muscle development that could help understand 

unexplained variation in postnatal muscle traits are lacking. In a bovine model we studied 

effects of distinct maternal and paternal genomes, fetal sex, and non-genetic maternal effects 

on fetal myofibre characteristics and muscle mass. Data from 73 fetuses (Day-153, 54% term) 

of four genetic groups with purebred and reciprocal cross Angus and Brahman genetics were 

analysed using general linear models. Parental genomes explained the greatest proportion of 

variation in myofibre size of Musculus semitendinosus (80-96%) and in absolute and relative 

weights of M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. 

semimembranosus (82-89% and 56-93%, respectively). Paternal genome in interaction with 

maternal genome (P<0.05) explained most genetic variation in cross sectional area (CSA) of 

fast myotubes (68%), while maternal genome alone explained most genetic variation in CSA 

of fast myofibres (93%, P<0.01). Furthermore, maternal genome independently (M. 

semimembranosus, 88%, P<0.0001) or in combination (M. supraspinatus, 82%; M. 

longissimus dorsi, 93%; M. quadriceps femoris, 86%) with nested maternal weight effect (5-

6%, P<0.05), was the predominant source of variation for absolute muscle weights. Effects of 

paternal genome on muscle mass decreased from thoracic to pelvic limb and accounted for all 

(M. supraspinatus, 97%, P<0.0001) or most (M. longissimus dorsi, 69%, P<0.0001; M. 

quadriceps femoris, 54%, P<0.001) genetic variation in relative weights. An interaction 

between maternal and paternal genomes (P<0.01) and effects of maternal weight (P<0.05) on 

expression of H19, a master regulator of an imprinted gene network, and negative correlations 

between H19 expression and fetal muscle mass (P<0.001), suggested imprinted genes and 

miRNA interference as mechanisms for differential effects of maternal and paternal genomes 

on fetal muscle. 
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5.1 Introduction 

Skeletal muscle accounts for up to half of mammalian body mass (Du et al., 2010b) and 

has important functions in metabolic homeostasis (Daniel et al., 1977; Wolfe, 2006). It is a 

major source of endocrine factors, including insulin-like growth factors -I (IGF1) and -II 

(IGF2), key components of the insulin-like growth factor (IGF) system and growth hormone – 

IGF axis, which are major regulators of pre- and postnatal muscle development and growth 

(Adams, 2002; Chang, 2007; Pedersen and Febbraio, 2008; Sawitzky et al., 2012). Skeletal 

muscle is composed of two major fibre types, type I (slow oxidative) fibres and type II (fast) 

fibres (Daniel et al., 1977). Myofibres originate from mesenchymal stem cells which 

differentiate into myoblasts during embryonic development (Relaix, 2006). Myoblasts fuse to 

form myotubes which develop into myofibres at the fetal stage (Picard et al., 2002). In 

ruminants, myofibres differentiate during late fetal development into type I, type IIA (fast 

oxidative-glycolytic) and type IIX (fast glycolytic) myofibres (Scott et al., 2001; Greenwood 

et al., 2009). Thus, myofibre number is established during fetal development and postnatal 

skeletal muscle mass is largely determined prenatally (Picard et al., 2002; Du et al., 2010a) by 

the interplay of a complex network of genetic and epigenetic factors (Brand-Saberi, 2005; 

Baar, 2010; Ge and Chen, 2011; Bentzinger et al., 2012). 

Studies on postnatal muscle tissue of human, porcine and bovine revealed that genetics 

explained up to 45% of variation in slow myofibre percentage (Simoneau and Bouchard, 

1995), up to 58% of variation in myofibre number (Larzul et al., 1997) and 74% of variation 

in myofibre size (Rehfeldt et al., 1999), respectively. Similarly, using proxies such as lean 

body mass and lean tissue percentage, studies in human (Seeman et al., 1996; Arden and 

Spector, 1997) and porcine (Larzul et al., 1997) demonstrated that genetics accounted for 

approximately 50-80% of variation in postnatal muscle mass. Apart from genetic factors that 

follow Mendelian rules of inheritance, prenatal muscle development and postnatal muscle 

phenotype may be affected by genetic and epigenetic factors with Non-Mendelian modes of 

inheritance. This includes effects of mitochondrial genome (Mannen et al., 1998), X- and Y-
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chromosomes (Engellandt and Tier, 2002; Amen et al., 2007a), non-random X-inactivation 

(Amen et al., 2007b), microRNA (miRNA) interference (Clop et al., 2006) and genomic 

imprinting (Engellandt and Tier, 2002; Boysen et al., 2010; Neugebauer et al., 2010a; 

Neugebauer et al., 2010b). Genomic imprinting, i.e., parent-of-origin dependent allele-

specific gene expression (Reik and Walter, 2001), has been described for genes with pivotal 

roles in myogenesis, including IGF2 and its receptor IGF2R (Nezer et al., 1999; Young et al., 

2001). In porcine, mapping and gene expression studies demonstrated that IGF2 alleles 

explained up to 30% of variation in postnatal muscle mass (Van Laere et al., 2003). The ovine 

callipyge (CLPG) mutation has provided an example of complex genetic and epigenetic 

effects on postnatal muscle phenotype. The CLPG mutation causes postnatal muscle 

hypertrophy only in heterozygous offspring and only when inherited through the paternal 

germline (Cockett et al., 1996). This polar overdominance changes imprinted gene 

expression, presumably by miRNA interference (Caiment et al., 2010), and affects absolute 

and relative weights of specific muscles and muscle groups of the torso (e.g. M. longissimus 

lumborum) and pelvic limb (e.g. M. semimembranosus, M. quadriceps femoris), but not of the 

thoracic limb (e.g. M. supraspinatus) (Koohmaraie et al., 1995; Jackson et al., 1997). The 

increased muscle mass of CLPG sheep is due to fast myofibre hypertrophy and results in 

higher glycolytic metabolism of affected muscles (Carpenter et al., 1996; Jason et al., 2008). 

A similar paternal polar overdominance effect on postnatal myofibre characteristics, muscle 

mass and growth has been described in porcine (Kim et al., 2004). Furthermore, the ovine 

Carwell locus, which exerts paternal effects on weight of M. longissimus dorsi and a shift 

from type IIA to type IIX myofibres, was mapped to the same chromosome region as the 

CLPG mutation (Nicoll et al., 1998; Cockett et al., 2005; Greenwood et al., 2006). More 

recently, statistical modelling revealed significant parent-of-origin effects attributed to 

genomic imprinting on postnatal absolute and relative weights of specific muscles in porcine 

(Neugebauer et al., 2010a) and bovine (Neugebauer et al., 2010b). 
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Nutritional effects on prenatal myogenesis are well documented (Dwyer et al., 1994; 

Greenwood et al., 1999; Zhu et al., 2004; Du et al., 2010a), but data on parental genetic and 

epigenetic effects are lacking. To our knowledge, only one previous study investigated 

genetic effects on mammalian prenatal muscle. This report described significant individual 

sire effects on bovine fetal biceps weight in the last trimester of gestation (Anthony et al., 

1986). However, the study was designed to test only for effects of different sires and did not 

address differential effects of maternal and paternal genomes. In the present study, we 

generated the largest fetal resource to date for the study of (epi)genetic effects on mammalian 

prenatal muscle development. This collection of defined bovine fetuses consists of both 

purebreds and reciprocal hybrids with Angus and Brahman genetics. The taurine (Angus) and 

indicine (Brahman) breeds are subspecies of the domestic cattle, currently named Bos taurus 

taurus and Bos taurus indicus, respectively (Sequencing et al., 2009). Both subspecies 

originated from the wild aurochs (Bos primigenius) and are commonly referred to as Bos 

taurus and Bos indicus (Linnaeus, 1758; Bojanus, 1827; loc. cit. http://www.itis.gov) 

(Hiendleder et al., 2008). This unique intra-species model with well defined divergent 

parental genomes allowed us to dissect maternal and paternal genome effects on fetal 

myofibre characteristics and absolute and relative muscle weights at midgestation (Day-153, 

54% term). We show, for the first time, significant differential effects of parental genomes, 

independently or in combination with non-genetic maternal effects, on specific fetal muscles. 

Furthermore, we correlated expression of the imprinted non-coding RNA H19, which harbors 

miRNAs and is involved in regulation of IGF2 and IGF1R, with fetal muscle mass, 

demonstrating that imprinted genes and miRNA interference provide plausible mechanisms 

for observed differential effects of parental genomes on fetal muscle phenotype. 
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5.2 Materials and Methods 

5.2.1 Cattle and fetuses 

All animal experiments and procedures described in this study were approved by The 

University of Adelaide Animal Ethics Committee (No. S-094-2005 and S-094-2005A). We 

used animals and semen of the Angus and Brahman breeds to study differential parental 

genome effects on fetal muscle phenotype at midgestation. The two breeds are subspecies of 

domestic cattle, commonly referred to as Bos taurus and Bos indicus, respectively 

(Hiendleder et al., 2008; Sequencing et al., 2009). Nulliparous Angus and Brahman dams 

which were approximately 16–20 months of age were purchased from farms in South 

Australia and Queensland and transferred to, and maintained at, Struan Agricultural Centre, 

South Australia. Animals were on pasture supplemented by silage. After an adjustment period 

of 3-4 weeks the animals received standard commercial estrous cycle synchronization as 

described previously (Anand-Ivell et al., 2011). All fetuses were sired by two Brahman and 

three Angus bulls. Dams were pregnancy tested by ultrasound scanning and fetuses recovered 

in an abattoir at Day-153±1 of gestation. Fetuses were removed from the uterus, eviscerated, 

vacuum packed and stored frozen at ‒20ºC until further processing. Final maternal weight 

(FMW) was recorded and average maternal daily weight gain (MDG) was calculated as FMW 

minus weight at conception divided by gestation length (Figure S6, Appendix 8). We 

analysed 73 fetuses in total, including 23 Bt × Bt, 22 Bi × Bt, 13 Bt × Bi and 15 Bi × Bi 

(paternal genetics listed first) with both sexes represented in each genetic group. The 

distribution of Bt and Bi maternal and paternal genomes, and of females and males, are shown 

in Appendix 7. 

 

5.2.2 Muscle dissection and weights 

Fetuses were thawed and the head removed by disarticulation between the Os occipitale 

and first cervical vertebra atlas. Musculus supraspinatus, M. longissimus dorsi, M. 

semimembranosus and M. quadriceps femoris (consisting of M. rectus femoris, M. vastus 
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medialis, M. vastus intermedius and M. vastus lateralis) were dissected from both sides of the 

fetus. M. longissimus dorsi was defined from the 7
th 

rib to the natural caudal end of the 

muscle, at the apophysis of the lumbosacral. The dissection protocol was based on Budras and 

Habel (Budras and Habel, 2003) and muscle nomenclature according to Tucker (Tucker, 

1952). M. semimembranosus was obtained from 61 fetuses due to damage to some specimens 

from sampling adjacent M. semitendinosus for immunohistochemistry, described below. 

Dissected muscles from both sides of the fetus were weighed and absolute muscle weight was 

recorded as the mean weight for each muscle. Combined muscle weights were calculated as 

the sum of mean weight of each dissected muscle. Relative muscle weights, reflecting fetal 

muscle proportions, were calculated as muscle weight divided by the weight of the 

decapitated eviscerated fetus (see Figure S4, Appendix 8). 

 

5.2.3 Muscle immunohistochemistry 

At the time of fetus collection, a section of M. semitendinosus was cut from the centre of 

the muscle and mounted using gum tragacanth (Sigma Chemical Company, St. Louis, MO; 

prepared 5% wt/vol in distilled, deionized H2O) onto a cork block, with muscle fibres running 

perpendicular to the cork block. Samples were frozen by immersion in iso-pentane cooled to 

approximately −160°C in liquid nitrogen, before storage at −80°C. Muscle tissue preparation 

and immunohistochemical staining followed the protocol by Greenwood et al. (Greenwood et 

al., 2009). Briefly, 10-µm-thick, serial cross-sections were cut from each frozen sample using 

a cryostat microtome (ThermoShandon AS 620 Cryostat SME, Thermotrace Ltd., Noble Park, 

Victoria, Australia). After air-drying, cross-sections were stained against type I (slow) (clone 

WBMHC, Novocastra, Newcastle upon Tyne, UK; diluted 1:100 in PBS) and type II (fast) 

(clone MY-32, Sigma; diluted 1:400 in PBS) myosin heavy chain isoforms. Staining using 

these antibodies was previously shown to discern these myofibre types in ruminant fetal 

muscle (Greenwood et al., 1999). They were revalidated in bovine fetal muscle using 

myofibrillar ATPase staining for the present experiment. The stained sections were 
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dehydrated and cleared using graded ethanols and xylenes to produce slides using a xylene-

based mounting medium. 

 

5.2.4 Myofibre classification and morphometry 

Microscopic image analysis was used to classify and measure myofibres on stained 

slides. A Zeiss AxioPlan2 microscope fitted with Plan-Neofluar objectives (Carl Zeiss Pty. 

Ltd., Goettingen, Germany) and a Fujix colour digital camera (FUJIFILM Australia Pty. Ltd.) 

were used to produce images. Images were generated using a 40 × objective, and were 

captured using Analysis FIVE software (Soft Imaging System Corp. 12596 W. Bayaud Ave. 

Suite 300 Lakewood CO 80228, USA) and analysed using Image Pro Plus 6.0 software 

(Media Cybernetics, Inc. 4340 East-West Hwy, Suite 400 Bethesda, MD 20814-4411 USA). 

Fibre type was identified based on staining characteristics (Picard et al., 1998). Myotubes 

were defined as cells that appeared hollow in cross-section, the remainder were considered 

myofibres (Picard et al., 1994; Picard et al., 2002). Myofibres and myotubes were classified 

as type I (slow) myofibre, type I (slow) myotube, type II (fast) myofibre and type II (fast) 

myotube (Figure S3, Appendix 8).  

Morphological measurements were conducted by manually tracing anti-laminin-stained 

(rabbit anti-laminin, affinity isolated antibody: Sigma; diluted 1:500 in PBS) margins of cells 

using the draw/merge object function of Image Pro Plus 6.0. For each fetus, the serial slow or 

fast stained myosin heavy chain slide with highest contrast was chosen to measure myofibre 

characteristics. Three fields (40 × objective) of each chosen slide were analysed. For each 

field, cross-sectional area (CSA) and number of type I (slow) myotubes and myofibres, type II 

(fast) myotubes and myofibres were measured. Furthermore, number and CSA were measured 

irrespective of cell type. All counted cells in the field comprised total cell number, and CSA 

of counted cells in the field was total cell CSA. For each myofibre characteristic an average 

was calculated of the three fields measured. For each fetus the average number of cells 

measured was 369, ranging from 152 to 705 cells. The average standard deviation between 
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replicated fields for myofibre number was 1.3 for slow myotubes, 0.9 for slow myofibres, 5.1 

for fast myotubes and 16.9 for fast myofibres. The average standard deviation between 

replicated fields for CSA was 43.3µm
2
 for slow myotubes, 38.3µm

2
 for slow myofibres, 

19.7µm
2
 for fast myotubes and 10.7µm

2
 for fast myofibres.  

 

5.2.5 Expression of H19 in skeletal muscle 

Samples from M. semitendinosus were collected into RNA later (Qiagen, Chadstone 

Centre, VIC, Australia) immediately after recovery of fetuses in the abattoir and stored at 

−80°C after equilibration for 24 hours at 2-4°C. Total RNA was extracted from M. 

semitendinosus of all fetuses by TRI Reagent
® 

Solution (Ambion, Life Technologies™ Inc., 

Carlsbad, CA, USA) according to the manufacturer’s instructions and RQ1-DNase treated 

(Promega, Madison, WI, USA). Reverse transcription was carried out using SuperScript™ III 

First-Strand synthesis system for RT-PCR (Invitrogen, Life Technologies™ Inc., Carlsbad, 

CA, USA) on 500 ng of total RNA with random hexamer oligonucleotides according to the 

manufacturer’s instructions. Amplification of H19 from cDNA was performed using a 

forward primer located at the junction of exons 3 and 4, and a reverse primer located within 

exon 5 (Appendix 2). Total length of this amplicon was 171 bp. Real time quantitative PCR 

(qPCR) reactions were performed using Fast Start Universal SYBR Green Master (Roche 

Diagnostics GmbH, Mannheim, Germany) in an Eppendorf Mastercycler
®

 pro S thermal 

cycler (Eppendorf Inc., Hamburg, Germany) on 4µl of 40-fold diluted cDNA in a final 

volume of 12 µl with 6 µl of SYBR master mix (2×) at an annealing temperature of 60 ºC. 

Product specificity and integrity were confirmed using plots of melting curve and 

electrophoresis on a 2% agarose gel stained with GelRed™ Nucleic Acid Stain (Biotium Inc., 

Hayward, CA, USA). All qPCR experiments were performed in duplicate and the mean of 

both Cts used to calculate the amount of target transcript. We used the standard curve method 

with determination of PCR amplification efficiency. A two-fold serial dilution over eight data 

points was produced on a mixture of pooled cDNAs from all fetuses with equal proportions. 
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Three replicates were used for each dilution of the cDNA template. Non-template control was 

included in all experiments. We determined relative expression levels of seven putative 

housekeeping genes including actin beta (ACTB), ribosomal protein S9 (RPS9), ubiquitin B 

(UBB), H3 histone family 3A (H3F3A), TATA box binding protein (TBP), vacuolar protein 

sorting 4 homolog A (VPS4A) and cyclin G associated kinase (GAK) and used geNorm 

program version 3.5 (Vandesompele et al., 2002) to identify GAK and VPS4A (see Appendix 

3) as the most stable genes for normalisation of the target gene. Expression levels of H19 

were normalised to the geometric mean of the expression levels of the selected housekeeping 

genes. As the normalised expression data were not normally distributed, we performed 

statistical analysis after logarithmic transformation of the data. The results for least square 

means and standard errors of means were presented after back -transformation. 

 

5.2.6 Statistical estimation of effects and means 

All data were analysed by Univariate Analysis of Variance (ANOVA) using the general 

linear model (GLM) procedure of SPSS 17.0 (SPSS Inc., Chicago, IL, USA). Initially, data 

were fitted to the following full linear model: 

       
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where yijk were myofibre characteristics, muscle weights and transcript abundance, Mi 

was maternal genome effect (j = Angus, Brahman), Pj was paternal genome effect (i = Angus, 

Brahman), Sk was fetal sex effect (k = male, female), gain was post-conception daily weight 

gain and weight was final maternal weight. Mi, Pj and Sk were fitted as fixed factors (F) and 

gain and weight were fitted as covariates (C). The covariates fitted in the model were nested 

within maternal genome (Mi) in order to adjust for effects of gain and weight within each of 

the two dam breeds. Interactions between factors and covariates were tested as follows: F×F 

was 2-way interaction between factors, Mi ×Pj, Mi×Sk and Pj×Sk, F×F×F was the 3-way 
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interaction between factors, Mi×Pj×Sk; C×C(Mi) was the 2-way interaction of covariates 

nested within maternal genome, gain×weight(Mi); C
2
(Mi) was the quadratic term of covariates 

nested within maternal genetics, gain
2
(Mi) and weight

2
(Mi); F×C(Mi) was the 2-way 

interaction between factors and covariates nested within maternal genetics, Pj×gain(Mi) and 

Sk×gain(Mi), Pj×weight(Mi) and Sk×weight(Mi); F×C×C(Mi) was the 3-way interaction 

between factors and the two covariates nested within maternal genetics, Pj×gain×weight(Mi) 

and Sk×weight×gain(Mi); F×C
2
 was the interaction between factors and quadratic terms of 

covariates nested within maternal genetics, Pj×gain
2
(Mi), Sk×gain

2
(Mi),

 
Pj×weight

2
(Mi) and 

Sk×weight
2
(Mi). 

Backward stepwise elimination was used to reduce the model for each measured 

parameter based on type III sums of squares (SSIII) at significance level (P) of 0.05. Type III 

sums of squares are independent of the order that effects are fitted in the model (Shaw and 

Mitchell-Olds, 1993). Specifically, elimination started with the least significant (largest P-

value) interaction or effect. Insignificant variables were removed stepwise according to 

marginality rules (Nelder, 1994) i.e. independent variables cannot be eliminated until after the 

interaction is eliminated due to insignificance, and lower order interactions cannot be 

eliminated until after the corresponding higher order interaction is eliminated. Main effects 

were also considered to be marginalized by corresponding nested effects of covariates. 

Elimination continued until only significant effects and interactions remained, or had to be 

retained to maintain the marginality requirements. Main effects of Mi, Pj and Sk were retained 

in the final model, irrespective of the significance levels. This approach retained factors of the 

experimental design and produced models with relatively large coefficients of determination 

(R
2
). R

2 
values, model significance levels and significance levels of factors and nested 

covariates in the final model for each measured parameter are shown in Table 5.1. Means for 

effects of factors and interactions (with P-values from t-tests of the contrast, Figures 5.3, 5.4, 

5.6, 5.7) and regression slopes for nested effects of covariates (Figure 5.5, 5.7 and Figure S5, 

Appendix 8) were plotted according to marginal means and estimated parameters obtained 
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from the final model. P-values of maternal and/or paternal genome effects on fast myotube 

CSA, absolute weights of M. supraspinatus, M. longissimus dorsi and M. quadriceps femoris, 

and H19 transcript abundance were not determined. The significant effects of final maternal 

weight nested within maternal genetics and/or significant interaction effects of maternal and 

paternal genome, would have biased P-values for corresponding main effects estimated with 

type III sums of squares (Table 5.1., Figure 5.3, 5.4, 5.7). 

Only one nested quadratic effect was significant when tested; weight
2
(Mi) explained a 

significant (P = 0.007) amount of variation in absolute M.quadriceps femoris weight. 

However, examination of plotted curves with individual data points revealed that this effect 

was dependent upon two heavy dams with high leverage. Therefore, this quadratic effect was 

removed from the model and the linear effect retained. The graph for the initial quadratic 

effect is presented in Figure S5, Appendix 8. 

The contribution of maternal genome (Mi), paternal genome (Pj), fetal sex (Sk) and 

significant interaction and nested effects (P<0.05) to explained variation in myofibre 

characteristics, muscle weights and H19 transcript abundance, was calculated from type I 

sums of squares (SSI). Type I sums of squares are dependent on the order in which effects are 

fitted in the model and sum to the total model SS (Shaw and Mitchell-Olds, 1993; Nelder, 

1994) (Figures 5.1, 5.2). 

Final maternal weight (FMW) may contain both genetic and non-genetic effects as a 

function of breed and permanent environmental effect from origin of dam. Dams were 

sourced from different properties and had, therefore, been subject to different environments 

prior to recruitment for the experiment. By using SSI and fitting the maternal genome effect 

before weight in the model, we apportioned all the maternal genetic effect to maternal breed 

(Mi) and left only environmental effects attributable to weight. Specifically, variables and/or 

interactions were fitted into the final SSI model in the following order: 

 
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The SSI values of Pj and Mi were averaged from both models, assuming equal 

importance of maternal and paternal genomes. SSI values of other variables and interactions 

were identical for models 1 and 2. The SSI contribution of an interaction was apportioned 

equally to each component of the interaction. The contributions of maternal genetics (Mi), 

paternal genetics (Pj), fetal sex (Sk) and final maternal weight (weight) to myofibre 

characteristics, muscle weights and transcript abundance were calculated from the SSI of Mi, 

Pj, Sk and weight as a percentage of total SSI, respectively (Figure 5.1). The contribution of 

weight was defined as the non-genetic maternal effect, since the estimation of SSI values of 

weight were independent of maternal genome. The relative proportions of maternal and 

paternal genomes to total genetic variation in myofibre characteristics, muscle weights and 

transcript abundance were calculated by totalling respective contributions (Figure 5.2). 

The regressions and Pearson correlation coefficients (r) for absolute and relative 

combined muscle weights and H19 transcript abundance were estimated in SPSS 17.0 (SPSS 

Inc., Chicago, IL, USA). 
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5.3 Results 

5.3.1 Proportion of variation explained by parental genomes, fetal sex and 

non-genetic effects  

Myofibre characteristics determined in M. semitendinosus samples included number and 

cross-sectional area (CSA) of type I (slow) and type II (fast) myotubes and myofibres and 

total cell number and total cell CSA (Figure S3, Appendix 8). Wet weights were determined 

for M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. semimembranosus. 

Since the four fetal groups with specific combinations of Bos taurus taurus (Bt) and Bos 

taurus indicus (Bi) genomes showed significant differences in carcass weights (Figure S4, 

Appendix 8), relative muscle weights were analyzed in addition to absolute muscle weights to 

identify effects of parental genomes on muscle mass independent of fetal size. 

Significant final statistical models for studied muscle parameters with adjusted R
2
 values 

and significance levels of retained variables are presented in Table 5.1. Parental genomes, 

fetal sex, and effects of maternal weight, caused by non-genetic variation and nested within 

maternal genomes (see methods), each contributed differentially to muscle parameters (Figure 

5.1). Parental genome was the most important source of variation for all studied traits with 

significant final statistical models. Maternal and paternal genomes together explained most of 

the variation in myofibre size (80-96%), absolute muscle weights (82-89%) and relative 

muscle weights (56-93%). Fetal sex contributed less to variation in myofibre characteristics 

(4-20%) and absolute (2-13%) and relative muscle weights (7-44%). Non-genetic maternal 

effects of final maternal weight accounted for some variation in absolute weights of M. 

supraspinatus, M. longissimus dorsi and M. quadriceps femoris (5-6%). Combined absolute 

and relative muscle weight showed parental genome contributions of 94% and 72%, 

respectively (Figure 5.1). 

The relative contributions of maternal and paternal genomes to total explained 

(epi)genetic variation in myofibre size and muscle weights are shown in Figure 5.2 Maternal 
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genome explained most of the (epi)genetic variation in fast myofibre CSA (93%) whereas the 

 

Table 5.1 Summary of the final general models (type III sums of squares) for myofibre 

characteristics, muscle weight parameters and H19 gene expression with adjusted R2 values 

and significance levels (P-values) of models and variables. 

Only P-values for factors, interactions and nested effects retained in the final model are 

shown. 

Myofibre 

characteristics 
R2 

 
P-values 

Model 
Maternal 

genome 

Paternal 

genome 

Fetal 

sex 

Maternal×Paternal 

genome b 

Final maternal 

weight (Maternal 

genome)c 

Fast myotube CSAa 0.152 0.0043 ND ND 0.4337 0.0129 
 

Fast myofibre CSAa 0.111 0.0117 0.0031 0.7345 0 1390 
  

Total cell CSAa 0.101 0.0160 0.0076 0.4280 0 1434 
  

Absolute muscle 

weights 
 

      

M. supraspinatus 0.689 8.7E-17 ND 2.3E-07 7.0E-04 
 

0.0112 

M. longissimus dorsi 0.649 1.2E-15 ND 6.9E-08 0 2828 
 

0.0420 

M. quadriceps femoris 0.666 1.0E-14 ND 2.1E-05 0.0457 
 

0.0256 

M. semimenbranosus 0.595 7.2E-12 5.1E-12 0.04974 0.0026 
  

Combined muscles  0.667 2.9E-14 5.0E-13 3.3E-05 0.0095 
  

Relative muscle weights  
      

M. supraspinatus 0.210 3.3E-04 0.5294 2.7E-05 0 2327 
  

M. longissimus dorsi 0.441 4.8E-09 0.0014 9.8E-08 1.6E-04 
  

M. quadriceps femoris 0.332 1.6E-06 0.0048 1.2E-04 1.4E-04 
  

M. semimenbranosus 0.136 0.0115 0.0176 0.4209 0.0637 
  

Combined muscles 0.517 2.1E-09 2.3E-04 2.2E-06 5 9E-06 
  

H19 expression 0.350 4.0E-06 ND ND 0 1288 0.0051 0.0296 

aTotal cell CSA: Average cross-sectional area of muscle cells irrespective of cell type. 
bMaternal × paternal genome: Effect of maternal and paternal genome interaction. 
cFinal maternal weight (maternal genome): Effect of final maternal weight nested in maternal genome. ND: Not 

determined because of significant interaction and/or nested effect of final maternal weight. 

 

paternal genome accounted for most of the variation in fast myotube CSA (68%). Maternal 

genome again explained most of the variation in total cell CSA (82%). Maternal genome also 

explained most of the genetic variation (59-88%) in all absolute muscle weights. Paternal 

genome, in contrast, explained most of the genetic variation (54-97%) in relative weights of 

M. supraspinatus, M. longissimus dorsi and M. quadriceps femoris. However, maternal 

genome accounted for 82% of genetic variation in relative weight of M. semimembranosus. 

Combined absolute muscle weight was predominantly affected by maternal genome (73%) 

while combined relative muscle weight showed a stronger effect of paternal genome (63%). 
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Overall, the data clearly showed a distinct pattern of effects of maternal and paternal genomes 

with an increase of maternal genome contributions (or conversely, a decrease of paternal 

genome contributions) to variation in absolute and relative weights of muscles from the 

thoracic limb (M. supraspinatus) to muscles from the torso (M. longissimus dorsi) and pelvic 

limb (M. quadriceps femoris and M. semimembranosus) (Figure 5.2). 

 

 
Figure 5.1 Relative contributions of parental genomes, fetal sex and non-genetic maternal effects to explained 

variation in fetal myofibre characteristics, absolute and relative muscle weights, and H19 transcript abundance. 

Myofibre characteristics were determined in M. semitendinosus. Maternal and paternal genome, fetal sex and 

other significant effects were retained in the final general linear models as presented in Table 5.1. Non-genetic 

maternal effect: Final maternal weight at mid-gestation. CSA: Cross-sectional area. Total cell: All myofibres 

measured regardless of cell type. Combined muscle weights: Sum of M. supraspinatus, M. longissimus dorsi, M. 

semimembranosus and M. quadriceps femoris weight. Relative muscle weight: Absolute muscle weight divided 

by decapitated and eviscerated fetal carcass weight. 
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Figure 5.2 Relative contributions of maternal and paternal genome to genetic variation in fetal myofibre 

characteristics, absolute and relative muscle weights, and H19 transcript abundance. 

bre characteristics were determined in M. semitendinosus. CSA: Cross-sectional area. Total cell: All myofibres 

measured regardless of cell type. Combined muscle weights: Sum of M. supraspinatus, M. longissimus dorsi, M. 

semimembranosus and M. quadriceps femoris weight. Relative muscle weight: Absolute muscle weight divided 

by decapitated and eviscerated fetal carcass weight. 

 

5.3.2 Specific effects of Bt and Bi genomes, fetal sex and maternal weight 

Least square means for specific effects of Bos taurus taurus (Bt, Angus) and B. taurus 

indicus (Bi, Brahman) maternal and paternal genomes, fetal sex and non-genetic maternal 

effects of final maternal weight, as detailed in statistical models for myofibre characteristics 

and muscle weights (Table 5.1.), are presented in Figure 5.3-5.6 Fast myotube CSA was 

affected by a significant interaction between maternal and paternal genomes (P<0.05). 

Fetuses with Bt × Bt genomes had larger CSA (P<0.05 – 0.01) than fetuses of other genetic 

combinations (Figure 5.3 A). Maternal genome significantly affected fast myofibre CSA and 

total cell CSA (both P<0.01) with Bt genomes causing larger CSA than Bi genomes (Figure 

5.3 B,C). 
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Figure 5.3 Specific effects of maternal genomes, paternal genomes and fetal sex on fetal myofibre 

characteristics of M. semitendinosus at midgestation. 

Least square means with standard errors of means are shown and P-values for significant differences (t-test) 

between means for fast myotube CSA (A), fast myofibre CSA (B) and total cell CSA (C) are indicated. CSA: 

Cross-sectional area. Total cell: All myofibres measured regardless of cell type. Bt: Bos taurus taurus, Angus. 

Bi: Bos taurus indicus, Brahman. 

 

Maternal genome significantly affected absolute weights of all muscles (Figure 5.4 A-

D), but M. supraspinatus, M. longissimus dorsi and M. quadriceps femoris also showed 

significant non-genetic effects of final maternal weight nested within maternal genome (all 

P<0.05, see below). Maternal genome effects, independent of maternal weight, were detected 

for M. semimembranosus (P<0.0001). Paternal genome, in contrast, independently and 

strongly affected absolute weights of M. supraspinatus, M. longissimus dorsi and M. 
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quadriceps femoris (all P<0.0001), but not M. semimembranosus, a muscle strongly affected 

by maternal genome (see above). 

 

 
Figure 5.4 Specific effects of maternal genomes, paternal genomes and fetal sex on fetal absolute muscle 

weights at midgestation. 

Least square means with standard errors of means are shown and P-values for significant differences (t-test) 

between means for M. supraspinatus (A), M. longissimus dorsi (B), M. quadriceps femoris (C), M. 

semimembranosus (D) and combined muscle weight (sum of weights of dissected muscles) (E) are indicated. 

ND: Not determined because of significant nested effect of final maternal weight (see Figure 5.5). Bt: Bos taurus 

taurus, Angus. Bi: Bos taurus indicus, Brahman. 
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Combined muscle weights showed significant effects of maternal and paternal genome 

that were stronger for the maternal genome. Irrespective of maternal or paternal origin Bt 

genome always increased, and Bi genome always decreased, absolute muscle weights. Fetal 

sex significantly affected absolute weights of M. supraspinatus (P<0.001), M. quadriceps 

femoris (P<0.05) and M. semimembranosus (P<0.01) with heavier muscles in males than in 

females (Figure 5.4 A,C,D). Non-genetic effects of final maternal weight, nested within 

maternal genome, on absolute weights of M. supraspinatus, M. longissimus dorsi and M. 

quadriceps femoris (P<0.05) indicated positive linear relationships for Bi and Bt, but with a 

higher intercept and less slope in Bt (Figure 5.5 A-C). Only one of the quadratic maternal 

weight effects tested yielded a significant result (M. quadriceps femoris, P<0.01). 

Examination of plotted curves with individual data points revealed that this was dependent 

upon two heavy dams with high leverage (see methods and Figure S5, Appendix 8). 

Therefore, we fitted linear effects throughout. Nested effects of post conception maternal 

daily weight gain were not significant for any of the investigated muscle parameters. 

Maternal genome had moderate effects on relative weights of M. longissimus dorsi 

(P<0.01), M. quadriceps femoris (P<0.01) and M. semimembranosus (P<0.05), but not M. 

supraspinatus. Paternal genome showed strong effects on M. supraspinatus (P<0.0001), M. 

longissimus dorsi (P<0.0001) and M. quadriceps femoris (P<0.001), but not M. 

semimembranosus. Combined relative muscle weight showed stronger effects of the paternal 

genome. Again, as for absolute muscle weights, Bt genome increased relative muscle weights 

irrespective of parental origin (Figure 5.6 A-D). Strong fetal sex effects were present for 

relative weights of M. longissimus dorsi (P<0.001) and M. quadriceps femoris (P<0.001), 

with greater weights in females than in males (Figure 5.6 B,C). 

 

5.3.3 Expression of the H19 lincRNA 

Expression of the H19 large intergenic non-coding RNA (lincRNA) was measured by 

real-time quantitative PCR in M. semitendinosus samples. Transcript abundance was 
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significantly affected by an interaction between maternal and paternal genomes (P<0.01) 

(Table 5.1.). Fetuses with Bi × Bi genome showed higher levels of H19 transcript (P<0.01) 

than fetuses of other genetic combinations (Figure 5.7 A). Transcript abundance was also 

affected by final maternal weight (P<0.05) nested within maternal genome (Figure 5.7 B). 

Subsequent regression analyses revealed significant negative relationships (P<0.001) between 

H19 transcript abundance and combined absolute and relative muscle weight (Figure 5.8 

A,B). 

 

 
Figure 5.5 Effects of final maternal weight nested within maternal genomes on fetal absolute muscle weights at 

midgestation. 

P-values (ANOVA) of significant linear regressions within Bt and Bi maternal genetics on absolute weights of 

M. supraspinatus (A), M. longissimus dorsi (B) and M. quadriceps femoris (C) are indicated. Bt: Bos taurus 

taurus, Angus. Bi: Bos taurus indicus, Brahman. 
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Figure 5.6 Specific effects of maternal genomes, paternal genomes and fetal sex on fetal relative muscle weights 

at midgestation. 

Relative muscle weights were calculated as absolute muscle weight divided by fetal carcass weight. Least square 

means with standard errors of means and P-values for significant differences (t-test) between means for M. 

supraspinatus (A), M. longissimus dorsi (B), M. quadriceps femoris (C) and M. semimembranosus (D) are 

indicated. Combined relative muscle weight is the sum of relative weights of dissected muscles. Bt: Bos taurus 

taurus, Angus. Bi: Bos taurus indicus, Brahman. 
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Figure 5.7 Effects of interaction of maternal and paternal genomes, fetal sex and final maternal weight nested 

within maternal genetics on H19 transcript abundance in fetal M. semitendinosus at midgestation. 

Least square means with standard error of means and P-values for significant differences (t-test) between means 

(A) and significant regressions of final maternal weight nested within Bt and Bi maternal genomes (B) are 

shown. Bt: Bos taurus taurus, Angus. Bi: Bos taurus indicus, Brahman. 

 

 
Figure 5.8 Regressions of fetal muscle mass at midgestation on H19 transcript abundance. (A) Absolute muscle 

mass and (B) relative muscle mass. 

Muscle mass is combined absolute and relative weights of M. supraspinatus, M. longissimus dorsi, M. 

quadriceps femoris and M. semimembranosus. P-values and Pearson correlation coefficients (r) are indicated. 
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5.4 Discussion 

To our knowledge, this is the first study to examine effects of maternal and paternal 

genome on fetal myofibre characteristics and muscle mass. Our results showed that 

differential effects of parental genomes were the most important determinants of fetal muscle 

phenotype at midgestation. Fetal sex and non-genetic effects of final maternal weight had a 

significant but lesser impact on some investigated muscle parameters (Figure 5.1). 

Considering the fetal programming of skeletal muscle development (Picard et al., 2002; Du et 

al., 2010a), these findings are consistent with generally medium to high heritabilities reported 

for postnatal myofibre size and muscle mass in mammals, including bovine (Larzul et al., 

1997; Rehfeldt et al., 1999; Engellandt and Tier, 2002; Smith et al., 2007; Mansan Gordo et 

al., 2012). Since myotubes are immature myofibres that decrease in size as myogenesis 

progresses (Martyn et al., 2004), both the predominant contribution of the paternal genome to 

variation in fast myotube cross sectional area (CSA), and the predominant contribution of the 

maternal genome to variation in fast myofibre CSA (Figure 5.2), indicate specific roles of 

maternal and paternal genomes in myofibre differentiation and maturation. 

The observed differences between Bos taurus taurus (Bt) and Bos taurus indicus (Bi) 

genomes likely result from allelic differences in genes with parent-of-origin effects 

controlling myofibre development. Evidence for subspecies differences in postnatal fibre type 

ratios and size, and in absolute postnatal muscle weights of Bt and Bi breeds has been 

reported previously (Whipple et al., 1990; Ferrell, 1991; Strydom and Smith, 2010). 

Differential parental effects were masked in total cell CSA, which was predominantly affected 

by maternal genome (Figure 5.2). Muscle specific differences in fibre type composition and 

size (Totland and Kryvi, 1991) could explain some of the varying contributions of maternal 

and paternal genomes to different muscles. The present data suggest that maternal genes are 

important determinants of myofibre development and muscle mass. 

Variation in the maternally inherited mitochondrial genome has been associated with 

effects on postnatal muscle mass (Mannen et al., 1998), but specific effects of maternal genes 



178 

in myogenesis remain, to our knowledge, unexplored. The present results are in agreement 

with recent data obtained by statistical modelling and imprinted quantitative trait loci (QTL) 

analyses which suggested significant maternal parent-of-origin effects for postnatal muscle 

traits (Boysen et al., 2010; Neugebauer et al., 2010a; Neugebauer et al., 2010b). In contrast, 

paternally expressed genes with effects on myogenesis have been identified previously and 

were studied in detail. This includes the imprinted Delta-like 1 homolog (DLK1), which has 

been implicated in the commitment and/or proliferation of fetal myoblasts (Jason et al., 2008) 

and in increased postnatal myofibre diameter and muscle mass (Davis et al., 2004; Jason et 

al., 2008). Further examples of gene-specific genetic and epigenetic regulatory mechanisms 

that could explain effects of maternal and paternal genomes on fetal muscle phenotype 

observed in the present study are found in the IGF1-AKT/PKB pathway (Schiaffino and 

Mammucari, 2011). In the mouse embryo, paternally expressed IGF2 is required for fibre type 

specification (Merrick et al., 2007). This imprinted gene has been identified as a QTL for 

postnatal muscle mass (Jin-Tae Jeon, 1999; Nezer et al., 1999) and encodes a miRNA in 

intron 2 that targets transcripts of the non-imprinted IGF1 gene (Wang, 2008). Several other 

genes in this pathway, including PTEN, a gatekeeper for the accretion of muscle mass 

(Sawitzky et al., 2012), are also targeted by miRNAs (Crist and Buckingham, 2009; Ge and 

Chen, 2011). The significance of allelic differences in miRNA target sequences for regulation 

of muscle mass by epistatic miRNA interference has been demonstrated with myostatin 

alleles in the ovine model (Clop et al., 2006). Genome sequences of Bos taurus taurus and 

Bos taurus indicus revealed genomic variation (Sequencing et al., 2009; Canavez et al., 2012) 

that provides a basis for maternal and paternal (epi)genetic effects on myogenesis described in 

the present study. 

The imprinted long intergenic non-coding (linc) RNA H19 is maternally expressed at 

high levels in embryonic and fetal tissues, including skeletal muscle (Lee et al., 2002; Gabory 

et al., 2006). The H19 gene is located immediately downstream of IGF2 and involved in 

regulation of IGF2 expression. More recently, H19 has been identified as the master regulator 
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of an imprinted gene network with important roles in growth and development (Gabory et al., 

2010). The H19 transcript was further shown to harbor a miRNA that suppresses IGF1R 

expression and prenatal growth (Cai and Cullen, 2007; Keniry et al., 2012). Gene expression 

data generated in the present study demonstrated significant differences in H19 transcript 

abundance of M. semitendinosus from fetuses with different parental combinations of Bt and 

Bi genomes (Figure 5.7). In human, H19 expression is also affected by genetic background 

(Lin et al., 1999). Furthermore, H19 expression was significantly negatively correlated with 

absolute and relative fetal muscle mass (Figure 5.8). This is consistent with the previously 

reported role of H19 as a negative regulator of prenatal growth and development (Keniry et 

al., 2012). Thus, imprinted gene expression and miRNA interference are plausible 

mechanisms for differential effects of maternal and paternal genomes observed in the present 

study. 

Our data indicated predominant contributions of the maternal genome to variation in 

absolute fetal muscle weights and predominant contributions of the paternal genome to 

variation in relative fetal muscle weights (Figure 5.2). With respect to maternal genome, these 

results are in agreement with data available from an analysis of parent-of-origin effects on 

postnatal bovine muscle, where absolute muscle weights were predominantly affected by 

imprinted maternal genetic factors (Neugebauer et al., 2010b). The genetic conflict hypothesis 

of genomic imprinting states that paternally expressed genes promote, and maternally 

expressed genes limit, fetal growth (Moore and Haig, 1991). Accordingly, maternal genes are 

expected to control fetal size to avoid detrimental effects for the mother that are associated 

with higher nutrient transfer to the fetus and increased birthweight (Moore and Haig, 1991). 

In the present study, fetuses with different maternal and paternal combinations of Bt and Bi 

genomes showed significant differences in carcass weight (Figure S4, Appendix 8) that are 

consistent with a phenotypic pattern of genomic imprinting for maternally expressed genes 

(see Figure 1 in (Wolf et al., 2008)) affecting fetal size. Correlations between absolute muscle 

weights and fetal carcass weight ranged from r = 0.88 (M. longissimus dorsi, P<0.0001) to 
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r = 0.95 (M. quadriceps femoris, P<0.0001). Effects of the maternal genome on absolute 

muscle weights are, therefore, likely to be primarily correlated effects of maternal 

(epi)genetics on fetal size, presumably via imprinted genes (Moore and Haig, 1991; Wolf et 

al., 2008) and/or epistatic interaction of miRNAs and their target sites (see above). However, 

mitochondrial DNA (Mannen et al., 1998; Hiendleder et al., 2004b), or X-chromosome 

effects (Amen et al., 2007a; Amen et al., 2007b) could also contribute to Bt and Bi maternal 

(epi)genetic effects on muscle phenotype (Figure 5.3, 5.4). 

Predominance of parental genomic contributions to muscle weights varied from maternal 

for absolute weights to paternal for relative weights. An exception was M. semimembranosus, 

which showed only a weak maternal (P<0.05) and no paternal genome effect (Figure 5.2, 5.4, 

5.6). Considering the genetic conflict hypothesis (Moore and Haig, 1991), it appears that the 

full extent of paternal genome effects on muscle mass and shape should manifest postnatally, 

without causing detrimental effects to mother or fetus at parturition. Such effects could 

nevertheless be expected to be programmed prenatally (Picard et al., 2002; Du et al., 2010a) 

and to be independent of absolute fetal muscle weights. This interpretation is consistent with 

the imprinting status of major regulators of fetal muscle development and growth in bovine 

e.g. paternally expressed growth promoting IGF2 and maternally expressed growth inhibiting 

IGF2R (Dindot et al., 2004; Hiendleder et al., 2004a). Imprinted gene effects with paternal 

mode of expression responsible for increased muscle mass in ovine (DLK1) and porcine 

(IGF2) manifest postnatally (Jin-Tae Jeon, 1999; Nezer et al., 1999; Davis et al., 2004; 

Cockett et al., 2005). 

Analyses of the proportion of parental contributions to muscle traits revealed that 

contributions of the maternal genome to absolute and relative fetal muscle mass increased (or 

conversely, contributions of the paternal genome decreased) from thoracic limb to torso and 

pelvic limb. This novel spatial effect of the maternal genome mirrored paternal effects on 

muscle mass observed in sheep with the polar overdominant callipyge mutation (Koohmaraie 

et al., 1995; Cockett et al., 1996; Jackson et al., 1997). Consistent with our findings, a recent 
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study in porcine identified a quantitative trait locus (QTL) with maternal polar overdominance 

that affected postnatal pelvic limb muscle mass (Boysen et al., 2010). Moreover, statistical 

modelling of parent-of-origin effects on postnatal muscle mass in porcine and bovine also 

showed a preponderance of maternal effects attributed to genomic imprinting (Neugebauer et 

al., 2010a; Neugebauer et al., 2010b). The significant switch in gene expression, including 

imprinted transcripts from the DLK1-DIO3 region, in ovine M. longissimus dorsi from fetus 

to neonate (Byrne et al., 2010), could indicate developmental stage specific roles of maternal 

and paternal genomes in myogenesis. Interestingly, the imprinting status of genes can change 

from monoallelic to non-imprinted biallelic expression during development (Davies, 1994; 

McLaren and Montgomery, 1999; Goodall and Schmutz, 2007). Statistical analyses of 

experimental data for postnatal growth and development in mouse identified multiple 

imprinted QTL with complex temporal patterns of parent-of-origin effects (Wolf et al., 2008). 

It is tempting to speculate that such effects could also be spatial. 

Significant effects of sex on postnatal muscle mass of mammals, including bovine, have 

been reported (Seideman and Crouse, 1986; Fortin et al., 1987; Uttaro et al., 1993; Larzul et 

al., 1997), but the present study is the first to examine sex effects in prenatal myogenesis. In 

agreement with fetal programming of postnatal muscle mass discussed above (see maternal 

and paternal genomes), sex explained greater proportions of variation in relative fetal muscle 

weights than in absolute muscle weights (Figure 5.1). Male fetuses had higher absolute 

muscle weights but lower relative muscle weights than females (Figure 5.4, 5.6). The latter 

findings are in agreement with results for postnatal muscle weights in porcine (Fortin et al., 

1987) and ovine (Santos et al., 2007). In the present study, fetal sex had no effect on relative 

weight of M. supraspinatus, a shoulder muscle, but significantly affected the relative weights 

of M. longissimus dorsi (loin) and M. quadriceps femoris (pelvic limb) (Figure 5.6). This is 

again similar to results obtained for postnatal muscle mass in ovine (Santos et al., 2007), 

where sex had no effect on shoulder muscle percentage but significantly affected loin muscle 

percentage, with greater muscle percentage in females than in males. An explanation for these 
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results could be that fetal shoulder muscle mass is under strong selection because of its 

relevance for birthing difficulties and thus survival. The loin and pelvic limb region of 

females may require a higher relative muscle weight to maintain sex-specific postnatal 

proportions and reproductive functions, which may be programmed during fetal development. 

Our analyses identified significant contributions of final maternal weight (FMW) to 

variation in absolute fetal muscle weights and H19 expression at midgestation (Figure 5.1). 

These non-genetic maternal effects were estimated as nested effects within maternal genetics 

using type I sums of squares in the final linear models, allowing the removal of maternal 

genetic contributions from effects of FMW (see methods). Non-genetic maternal components 

can be explained by differences in environmental factors acting on dams before they were 

recruited for the experiment. These environmental effects could not be erased during several 

weeks of adjustment under a controlled environment prior to the start of the experiment. To 

our knowledge, pre-conception non-genetic maternal contributions to variation in fetal muscle 

mass have not been reported previously. The estimated regression coefficients suggested that 

the same mechanisms affect fetal muscle mass in dams with Bt and Bi genomes (Figure 5.5, 

5.7). 

In conclusion, we have shown for the first time, that fetal muscle development is 

differentially affected by maternal and paternal genome, independently, or in combination 

with non-genetic maternal effects. Our statistical analyses of effects of parental genomes, and 

molecular data for the imprinted maternally expressed lincRNA H19, suggested that 

imprinted gene networks (Gabory et al., 2010) and epistatic miRNA interference (Clop et al., 

2006) could be major drivers of the observed parental effects on fetal muscle traits. Our 

conclusions are supported by results from statistical modelling of postnatal muscle traits 

(Engellandt and Tier, 2002; Neugebauer et al., 2010a; Neugebauer et al., 2010b) which 

identified parent-of-origin effects attributed to imprinted genes as a major source of variation. 

Detailed molecular profiles are now required to elucidate genetic, epigenetic and non-genetic 

components and interactions that control variation in prenatal muscle traits. Our data further 
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suggest that specific combinations of (epi)genetic and non-genetic factors can be used to 

optimise fetal, and therefore, postnatal muscle development and phenotype. Non-Mendelian 

(epi)genetic and non-genetic maternal effects can help understand unexplained variation in 

postnatal muscle traits. These traits may be highly variable within populations, even when 

genetics and environment are well controlled (Reverter et al., 2003; Greenwood et al., 2007). 
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6.1 Developmental changes in transcript abundance of imprinted 

genes in bovine tissues 

In the present study, we have characterised tissue-specific quantitative changes in 

expression of the imprinted genes IGF2, IGF2R, and their regulatory lincRNA genes, H19 

and AIRN, in key stages of bovine prenatal development and postnatal life. We also analysed 

tissue and developmental stage-specific expression patterns of alternative IGF2 promoters. To 

our knowledge, this is the first comprehensive study to examine developmental changes in 

transcript abundance of these imprinted genes using a quantitative method, real time qPCR. 

We confirmed that the studied genes are highly active during bovine prenatal development 

and are downregulated after birth. The genes studied here belong to the IGF system, which is 

essential in prenatal development (Heyner et al., 1989; Rappolee et al., 1992; Adamson, 

1993; Baker et al., 1993; Heyner et al., 1993; Schultz et al., 1993; Oksbjerg et al., 2004; 

Randhawa and Cohen, 2005). The IGF2 global transcripts displayed a similar tissue-specific 

pattern of expression as IGF2R, with the exception of brain and cotyledon. The highest level 

of IGF2 transcription in cotyledon was observed in the embryo and persisted to the fetal 

stage, and expression of IGF2R in cotyledon peaked in midgestation. The relative expression 

level of IGF2/IGF2R in the studied fetal tissues, which can be interpreted as an indicator of 

the relative level of free IGF2 protein available to the tissues, was subject to developmental 

change and was lower in tissues from midgestation fetuses compared with the embryonic 

stage. This could indicate that more free IGF2 is required by fetal tissues at the earlier stage of 

prenatal development compared with midgestation. Differential relative expression of IGF2 

and IGF2R at embryonic and fetal stages could be linked to their functions at different stages 

of prenatal development. Accumulating evidence suggests that IGF2 plays a key role in 

placental development and function particularly at earlier stages of gestation (Kanai-Azuma et 

al., 1993; Kniss et al., 1994; Irving and Lala, 1995; Hamilton et al., 1998; McKinnon et al., 

2001; Hills et al., 2004). It has been shown that IGF2 affects placental growth via interaction 
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with IGF2R, which activates signal transduction pathways (McKinnon et al., 2001; Sferruzzi-

Perri et al., 2008; Harris et al., 2011). 

Relative IGF2R transcript abundance in brain, compared with other tissues, was higher 

than that for IGF2, which is compatible with a widespread distribution of Igf2r 

transcript/protein observed in rat brain (Hawkes and Kar, 2004). Several lines of evidence 

demonstrated that IGF2 can promote growth, proliferation and differentiation of a variety of 

neuronal cell types (Lenoir and Honegger, 1983; Lim et al., 1985; Recio-Pinto et al., 1986; 

Knusel et al., 1990; Liu and Lauder, 1992; Neff et al., 1993; Konishi et al., 1994; Sondell et 

al., 1997; Pu et al., 1999; Silva et al., 2000). Our results revealed the lowest ratio of 

IGF2/IGF2R transcript abundance in brain compared with other tissues. The significance of 

the relatively high level of IGF2R transcripts and specific functions of IGF2R in brain 

remains unclear. Several studies suggest different functions for IGF2R in brain. For example, 

IGF2R is involved in internalisation and degradation of LIF (leukemia inhibitory factor) 

(Blanchard et al., 1999), activation of TGF-β precursor form (Dennis and Rifkin, 1991; 

Ghahary et al., 1999; Villevalois-Cam et al., 2003) and mediating the growth-inhibitory effect 

of retinoic acid (Kang et al., 1997; Kang et al., 1998; Kang et al., 1999) all of which are 

known to modulate the functions of the nervous system (Murphy et al., 1997; Zetterström et 

al., 1999; Böttner et al., 2000; Malik et al., 2000; Turnley and Bartlett, 2000; Krieglstein et 

al., 2002; Thompson Haskell et al., 2002; Bauer et al., 2003; Maden and Hind, 2003; 

McCaffery et al., 2003; Luo et al., 2004; Haskell and LaMantia, 2005; Lane and Bailey, 

2005; Clagett-Dame et al., 2006; McCaffery et al., 2006; Aoto et al., 2008). However, the 

importance of the Igf2/Igf2r system in brain development has been challenged by the 

observations that mutant mice carrying disrupted Igf2 or Igf2r, and also transgenic mice 

overexpressing Igf2 show normal brain size and morphology (Rogler et al., 1994; Wolf et al., 

1994; van Buul-Offers et al., 1995; D'Ercole et al., 2002). One interpretation for such a result 

is that activity of these genes may be compensated by the action of other gene systems. In 

addition, ontogenetic changes may occur in growth of specific cell types in brain. 
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The ratio of IGF2/IGF2R decreased considerably in postnatal lung, kidney and muscle, 

which coincides with reduced growth rate. Nevertheless, the ratio of IGF2/IGF2R did not 

change significantly in heart, brain and liver at the postnatal compared with fetal stage. The 

significance of IGF2/IGF2R transcript ratio remaining at high levels in some tissues during 

postnatal development is unclear. 

In this thesis, we investigated developmental and tissue-specific changes in IGF2 

expression from alternative promoters. IGF2 is a complex gene which is expressed from 

distinct promoters overlapping a number of sense and antisense transcription units (Moore et 

al., 1997). The bovine orthologues for some human and mouse IGF2 promoters and 

overlapping transcripts are unknown. Expression analysis of IGF2 promoter-specific 

transcripts, without prior knowledge of their exon/intron structure, can yield misleading 

results. Therefore, we performed in silico comparative sequence analysis of IGF2 promoter-

specific transcripts in bovine, human, mouse and porcine to identify evolutionarily conserved 

regions which may belong to putative, as yet unknown, transcripts in bovine. A sequence 

similarity search showed that the promoter and first exon of the human P0 transcript is 

conserved in bovine. In agreement with the observation in human (Monk et al., 2006b), we 

found that bovine IGF2 P0 promoter is specifically active in skeletal muscle during prenatal 

development. In contrast, the equivalent P0 promoter in mouse is only active in placenta 

(Moore et al., 1997). Our finding gives further evidence for an evolutionary shift in tissue-

specific activity of P0 promoter from placenta in mouse to skeletal muscle in human and 

bovine prenatal development and indicates that the bovine IGF2 transcription unit is 

evolutionarily closer to its human orthologue compared with mouse. Thus, the bovine 

provides a suitable model for studying the role of IGF2 in prenatal development. 

The significance of the P0 promoter in skeletal muscle development remains enigmatic. 

Since we could not obtain skeletal muscle tissue from the embryo, further research is required 

to elucidate dynamic changes in P0 expression across prenatal development and role of P0 

expression in skeletal muscle differentiation and growth. Interestingly, IGF2 P0 becomes 
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inactive in postnatal skeletal muscle and is specifically expressed in postnatal liver. Our 

results provide evidence for developmental shift in tissue-specific expression of an IGF2 

promoter. Developmental changes in tissue-specific expression of a gene were previously 

reported (Yoon et al., 1987; Schmidt-Ullrich et al., 1996).  

Transcription of IGF2 from distinct promoters is thought to be engaged in regulation of 

gene expression at multiple layers, including transcription and post-transcription. Different 

isoforms of IGF2 protein are derived from different promoters in human and mouse (see 

chapter 3). However, the functional significance of these isoforms remains unexplored. It is 

evident that IGF2 expression is also controlled at the translational level so that IGF2 

promoter-specific transcripts display different translational efficiency (Nielsen et al., 1990; 

De Moor et al., 1994; Moor et al., 1994; Teerink et al., 1994; Nielsen and Christiansen, 1995; 

Pedersen et al., 2002; Polesskaya et al., 2007; Dai et al., 2011). It is interesting to note that 

translational efficiency of IGF2 promoter-specific transcripts is developmentally controlled 

(Newell et al., 1994; Teerink et al., 1994; Nielsen et al., 1995; Nielsen et al., 1999). 

Differential regulation of mRNA stability by site-specific endonucleolytic cleavage provides 

another layer of tissue- and developmental stage-specific posttranscriptional regulation of 

IGF2 promoter-specific expression (Meinsma et al., 1991; Meinsma et al., 1992; Nielsen and 

Christiansen, 1992; Christiansen et al., 1994; Scheper et al., 1995; Scheper et al., 1996a; 

Scheper et al., 1996b; Van Dijk et al., 1998; van Dijk et al., 2000; van Dijk et al., 2001). 

Transcriptional regulation of IGF2 promoters occurs at the genetic level via differential 

interaction with tissue and developmental stage-specific transcription factors (Vandijk et al., 

1991; van Dijk et al., 1992; Holthuizen et al., 1993; Rietveld et al., 1997; Rodenburg et al., 

1997; Rietveld et al., 1999) and enhancer elements (Yoo-Warren et al., 1988; Leighton et al., 

1995; Ishihara et al., 2000; Kaffer et al., 2001; Eun et al., 2013) and at the epigenetic level via 

genomic imprinting. 

Changes in imprinting status resulting from epigenetic modifications are plausible 

mechanisms involved in tissue and developmental stage-specific expression of imprinted 
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genes (Latham, 1995; Jaenisch and Bird, 2003). Changes in imprinting of H19 in human 

placenta during development has been associated with DNA methylation levels in the 

imprinting control region upstream of H19 (Buckberry et al., 2012). Furthermore, in human 

placenta, higher rates of loss of imprinting have been observed during the first trimester of 

pregnancy compared with term (Jinno et al., 1995; Yu et al., 2009; Pozharny et al., 2010). It 

is interesting to note that IGF2 imprinting in liver of human, bovine (B. taurus) and ovine 

(Ovis aries) is developmentally regulated and shifts from monoallelic paternal expression 

during prenatal development to non-imprinted biallelic expression after birth (Vu and 

Hoffman, 1994; Ekstrom et al., 1995; McLaren and Montgomery, 1999; Goodall and 

Schmutz, 2007). Further evidence for developmental regulation of imprinting came from 

developmental stage-specific relaxation of imprinting of Kvlqt1 in mouse interspecific model 

of Mus musculus domesticus/Mus musculus castaneus (Jiang et al., 1998). Further 

investigation of the quantitative differences between expression of parental alleles are 

required to determine the extent to which tissue and developmental stage-specific changes in 

gene expression are caused by alterations in imprinting status. 

 

6.2 Genetic effects on transcript abundance of imprinted genes: 

Implications for mammalian heterosis 

In this thesis, we analysed fetal genetic and heterotic effects on expression of imprinted 

genes which are known to be involved in prenatal development and their associations with 

fetal body and tissue weight and heterosis in a bovine intraspecies model at midgestation. 

Significant genetic effects and heterosis was observed on fetal placental weight, which was 

highest in Bos indicus (Brahman) × Bos taurus (Angus) group (sire listed first). Evidence for 

parent-of-origin and fetal genetic influence on placental growth came from the interspecific 

crosses in the mouse (Peromyscus polionotus/Peromyscus maniculatus and Mus 

musculus/Mus spretus/Mus macedonicus) (Rogers and Dawson, 1970; Zechner et al., 1996; 

Zechner et al., 1997; Zechner et al., 2002) and equids (Equus asinus/Equus caballus) (Allen, 
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1975; Allen et al., 1993), which showed altered placental growth in hybrids and a striking 

difference between reciprocals in placental weight and size. 

Accumulating evidence demonstrates that placental adaptive responses to intrauterine 

environment, including changes in placental size and capacity for nutrient transport, occur 

through epigenetic changes in regulatory regions of imprinted domains and subsequently 

altered expression of imprinted genes which influences prenatal development with long term 

consequences for postnatal growth, suggesting a key role for placenta in fetal programming 

(Godfrey, 2002; Fowden et al., 2006a; Fowden et al., 2006b; Myatt, 2006; Jansson and 

Powell, 2007; Fowden et al., 2008; Coan et al., 2011; Fowden et al., 2011; Vaughan et al., 

2011; Burton and Fowden, 2012). 

Considering a positive correlation between placental and birth weight (Thomson et al., 

1969; Echternkamp, 1993; Jiang et al., 2009; Mericq et al., 2009), the heterosis observed in 

placenta at midgestation is likely to program birth and early postnatal weight. This is 

consistent with the heterosis reported for birth weight that was higher in the BA hybrid 

(Brown et al., 1993). The heterotic effect observed in placental weight was not yet manifested 

in fetal weight, which could be explained by reduced placental efficiency in the BA group. It 

is evident that adaptive changes in placental efficiency take place in response to alterations in 

placental size to regulate fetal nutrient acquisition (Frank et al., 2002; Angiolini et al., 2006; 

Coan et al., 2008a; Coan et al., 2008b; Fowden et al., 2009). H19-deficient mice with 

placental and fetal overgrowth displayed decreased expression of transporter genes and 

placental efficiency, whereas reduced placental growth in mice by downregulation of the Igf2 

P0 promoter resulted in increased transport capacity and placental efficiency (Angiolini et al., 

2011). 

The finding that highest placental weight is countered by lowest placental efficiency in 

the BA group could be evolutionarily explained by the parent-offspring conflict theory 

(Trivers, 1974; Haig, 1992) where changes in placental efficiency take place probably by the 
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effects of maternally expressed genes like IGF2R (Moore and Haig, 1991) to protect the 

mother from detrimental effects of fetal overgrowth. 

Our results suggested that IGF2R and AIRN could be involved in phenotypic variation of 

placental weight in hybrids, and heterosis in placental phenotype is likely to be caused by an 

expression pattern of polar overdominance imprinting (Wolf et al., 2008). Results from this 

study provide evidence for genetic effects on transcript abundances of imprinted genes which 

impact on placental weight and efficiency with possible consequences for fetal programming. 

Placental overgrowth observed in mouse interspecific crosses (Peromyscus 

polionotus/Peromyscus maniculatus and Mus musculus/Mus spretus) was shown to be 

associated with changes in transcript abundances of imprinted genes, including Igf2, and 

relaxation of imprinting (Vrana et al., 1998; Vrana et al., 2000; Zechner et al., 2002). The 

molecular (epi)genetic mechanisms underlying the specific expression pattern of 

IGF2R/AIRN in cotyledon remain to be understood. One possibility for the phenotypic polar 

overdominance expression pattern of IGF2R and AIRN is relaxation of imprinting in the B. 

indicus (sire) × B. taurus (dam) reciprocal. This speculation is supported by the observation in 

mouse that IGF2R imprinting is disrupted and IGF2R is biallelically expressed in placenta of 

one of the reciprocals in the interspecific Peromyscus polionotus/Peromyscus maniculatus 

hybrids (Vrana et al., 1998). Further evidence in support of our hypothesis comes from 

genetic background-dependent relaxation of imprinting of Kvlqt1 in the mouse interspecific 

model of Mus musculus domesticus/Mus musculus castaneus (Jiang et al., 1998). Biallelic 

expression of IGF2R (Buckberry et al., 2012), polymorphic imprinting of IGF2R (Xu et al., 

1993; Monk et al., 2006a) and loss of imprinting for a panel of imprinted genes (Monk et al., 

2006a; Diplas et al., 2009; Pozharny et al., 2010) have been shown in human placenta.  

Relative muscle weight displayed significant heterosis. The phenotypic pattern for 

relative muscle mass differed from that for placental weight. Relative muscle mass was not 

different between reciprocal fetuses and showed a phenotypic expression pattern of 

dominance (Wolf et al., 2008), whereas the reciprocal fetuses varied considerably in placental 
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weight. Therefore, the molecular mechanisms causing heterosis in skeletal muscle may be 

different from those in placenta. Notwithstanding the negative heterotic effect on H19 

expression, skeletal muscle weight was not significantly correlated with H19 expression in 

hybrids. Therefore, it is unclear whether our studied molecular systems can explain heterosis 

in muscle mass.  

Our results suggest that imprinted genes in the IGF system could be implicated in 

prenatal programming of heterosis in brain. Our molecular data suggest a change in brain 

gene expression in favour of a heterotic pattern which could manifest in phenotype at later 

stages of development. The observation of overexpression of AIRN in one of the reciprocals 

and correlation of AIRN expression with relative brain weight in hybrids implies that AIRN 

could have a role in programming hybrid brain phenotypes. It has been postulated that genetic 

programs predominantly direct early stages of brain development (Rubenstein and Rakic, 

1999). To our knowledge, heterosis in bovine pre and postnatal brain weight has not been 

explored. Several studies in mouse have investigated heterosis in brain weight. Heterosis in 

mouse body and brain weight has been shown at Days-42 and 100 after birth (Henderson, 

1973; Seyfried and Daniel, 1977; Bulman-Fleming et al., 1991), while no heterosis 

(overdominance effect) was seen at Day-70 of mouse postnatal life (Hahn and Haber, 1978). 

To our knowledge, this is the first study indicating that imprinted genes could be 

involved in prenatal programming of heterosis. Our results suggest that heterosis is 

programmed at the (epi)genetic level via changes in transcript abundance of imprinted genes 

in hybrids. In contrast to the heterosis previously reported for birth weight in a cross between 

B. taurus and B. indicus (Brown et al., 1993), no heterosis was observed for fetal body weight 

at midgestation. As midgestation is the beginning of the exponential phase of bovine fetal 

growth (Evans and Sack, 1973; Eley et al., 1978; Prior and Laster, 1979), it is reasonable to 

deduce that heterotic effects programmed at the molecular level in early stages of 

development, are manifested in phenotype in the exponential phase of prenatal growth or after 

birth. The study of heterosis at different developmental stages in the rat revealed that heterotic 
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responses become more pronounced during the rapid growth phase of postnatal development 

and with increasing age (Naso et al., 1975). 

 

6.3 Imprinted genes as molecular drivers of parent-of-origin 

effects on fetal growth-related phenotypes 

Fetal body weight and absolute weights of fetal tissues, except brain, were higher in 

fetuses with maternal B. taurus genetics compared with those with B. indicus maternal 

genetics. Although absolute brain weight did not change significantly across genetic groups 

relative brain weight was higher in fetuses with maternal B. indicus genetics compared with 

those with maternal B. taurus genetics. A maternal effect on adult brain weight has previously 

been reported in the mouse (Mus musculus) (Henderson, 1973; Hahn and Haber, 1978; 

Wahlsten, 1983). While absolute weights of fetal tissues, except brain, were correlated with 

H19 expression, relative brain weight did not show significant relationship with H19 

expression. This suggests that (epi)genetic systems which drive the differential parent-of-

origin effect on relative brain weight, are different from those affecting fetal weight and 

weights of other studied fetal tissues.  

Maternal effects on fetal phenotypes may be caused by parent-of-origin effects of 

imprinted genes (Amen et al., 2007a) or epistatic interaction of miRNAs and their target sites 

(Clop et al., 2006). Moreover, mitochondrial DNA variations (Schutz et al., 1994; Mannen et 

al., 1998; Mannen et al., 2003; Hiendleder et al., 2004) or X chromosome effects (Amen et 

al., 2007a; Amen et al., 2007b) may contribute to Bt × Bi maternal (epi)genetic effects on 

phenotypes. It has been shown that at the phenotypic level, parent-of-origin effects resulting 

from maternal effects can be confounded by genomic imprinting (Hager et al., 2008). 

The parent-of-origin effects on fetal phenotypic traits studied here are consistent with a 

phenotypic pattern of genomic imprinting for maternally expressed genes (Wolf et al., 2008). 

Therefore, we hypothesised a role for imprinted genes in causing parent-of-origin effects on 
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phenotypes and studied expression of the genes which are known to be paternally (H19 and 

IGF2R) and maternally (IGF2 and AIRN) imprinted in bovine prenatal development. 

We did not find a phenotypic pattern of genomic imprinting associated with transcript 

abundances for paternally expressed genes (Wolf et al., 2008). This may be explained by lack 

of fetal genetic effects on transcript abundance of the paternally expressed IGF2 gene in most 

fetal tissues. Also, in most fetal tissues, IGF2 expression was not correlated with fetal 

phenotypes. In agreement with the parental genetic conflict hypothesis (Moore and Haig, 

1991), the paternally expressed IGF2, which is a growth enhancer, did not contribute to 

prenatal phenotypic variations, which is to be expected to protect the mother from detrimental 

effects caused by fetal overgrowth, and IGF2 effects on phenotype are likely to be manifested 

postnatally. A genome wide scan of the mouse genome for imprinted QTL revealed that 

effects of most iQTLs are manifested in the traits expressed at later stages of postnatal life 

(Wolf et al., 2008). Several studies in porcine have revealed that IGF2 is a candidate QTL 

with a major effect on postnatal muscle mass and other growth related phenotypes (Jeon et 

al., 1999; Nezer et al., 1999). 

Surprisingly, the results of the current study indicated that differences in fetal body and 

tissue growth between B. taurus and B. indicus could be attributed to differential expression 

of the maternally expressed gene, H19. In addition, the parent-of-origin phenotypic patterns 

were consistent with the expression pattern of the maternally expressed H19 gene for all the 

studied tissues, except brain. With respect to the negative relationship of H19 expression with 

fetal body weight and weights of fetal tissues, including skeletal muscle, liver, lung, heart, 

kidney and placenta, our results suggest that maternal effects on fetal phenotypes are likely to 

be mediated by H19. H19 might exert its effect through fine-tuning of an imprinted gene 

network (Gabory et al., 2009) and regulation of growth-suppressing miRNA (Keniry et al., 

2012). Expression of H19 in skeletal muscle was significantly influenced by the interaction 

between paternal and maternal genomes. Interestingly, final maternal weight of B. taurus and 

B. indicus, which represents maternal environmental conditions, was differentially correlated 
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with H19 expression in fetal skeletal muscle. H19 expression in fetal skeletal muscle was 

positively correlated with B. indicus final maternal weight and negatively correlated with B. 

taurus final maternal weight. The evolutionary explanation for these observations may be that 

B. indicus has evolved to survive in poor environmental conditions with restricted food supply 

and therefore signals to enhance activity of fetal growth suppressing genes to protect the 

mother from detrimental effects of fetal overgrowth and consequently increased fetal nutrient 

demand. These observations suggest an important role of H19 in developmental programming 

of fetal growth.  

 

6.4 B. taurus / B. indicus polymorphisms in the imprinting control 

region (ICR) of H19: Plausible mechanisms for differential 

expression of H19 

Analysis of H19 expression revealed that H19 transcript abundance in B. indicus was 

between 1.5 to 2.2-fold higher than in B. taurus in all examined tissues, except brain. We 

sought to find plausible molecular mechanisms underlying genetic effects on differential B. 

taurus / B. indicus H19 expression. The observations that (epi)genetic mutations in the 

IGF2/H19 ICR have been implicated in aberrant imprinting and developmental abnormalities 

(Hark et al., 2000; Pant et al., 2003; Schoenherr et al., 2003; Pant et al., 2004; Sparago et al., 

2004; Szabó et al., 2004; Li et al., 2005) led us to hypothesise that genetic polymorphisms in 

the regulatory sequences of H19 imprinted domain could account for the varying transcript 

abundances between subspecies. We performed a B. taurus / B. indicus sequence similarity 

search in the H19 ICR and found major polymorphisms within the conserved consensus 

sequence of the first CTCF binding site (the most upstream to H19 promoter) where two CpG 

sites are disrupted in B. indicus. This CTCF binding site resides within an evolutionarily 

conserved region and reveals sequence homology with human CTCF binding site 6 

(Hansmann et al., 2011). In human, only CTCF binding site 6 is differentially methylated on 

the paternal allele and its methylation status is linked to H19 expression (Takai et al., 2001). 
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This suggests an important functional role for the bovine CTCF binding site 1. Different 

theories could be postulated to explain how polymorphisms in the CTCF binding site are 

linked to the altered H19 expression. One hypothesis is that polymorphisms in the CpG sites 

may cause reduced methylation of the CTCF binding site on the paternal chromosome 

without changing their CTCF binding properties that result in biallelic expression of H19 in 

B. indicus but does not change allelic expression of IGF2. In support of this hypothesis, there 

are two lines of experimental evidence. In mouse (Mus musculus castaneus), the paternal ICR 

was substituted by two copies of chicken beta globin insulator (ChβGI)2 which had two 

CTCF binding sites and was of similar size to ICR with sufficient number of CpG 

dinucleotides (Szabó et al., 2002; Lee et al., 2010). The (ChβGI)2 on the paternal 

chromosome was prevented from de novo methylation in the male germ cells and acted as an 

insulator through binding the CTCF. This led to reduced IGF2 expression, overactivation of 

paternal H19 allele and reduced fetal growth by 44-61% of normal fetal size. This model does 

not explain the stable expression of IGF2 in all genetic groups, which was observed in our 

results. Hypomethylation of the H19 differentially methylated region has been shown to be 

correlated with biallelic H19 expression in cloned bovine (B. taurus/B. indicus), but was not 

associated with IGF2 allelic expression (Zhang et al., 2004; Curchoe et al., 2009; Suzuki et 

al., 2011). An alternative theory is that polymorphisms in the consensus sequences change 

binding ability of the CTCF-binding site resulting in epigenetic modification in the imprinted 

domain and subsequently altered H19 expression. This is supported by several lines of 

evidence that suggest CTCF is the major epigenetic organiser of the maternal H19 imprinted 

domain (Han et al., 2008; Li et al., 2008; Singh et al., 2010a; Singh et al., 2010b; Singh et al., 

2011). It is also possible that mutation in one of the CTCF binding sites interacts with other 

CTCF binding sites and change their methylation status (Pant et al., 2004). Another 

possibility is that the polymorphism may occur in the binding site for another regulatory 

protein that overlaps CTCF binding motifs and subsequently changes epigenetic status of 

chromatin in the ICR and leads to activation of the paternal H19. It has been shown that 
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mutations in the Zfp57-Trim28-Setdb1 repressor complex binding site, which overlaps CTCF 

binding motifs, without affecting CTCF binding sites result in CTCF binding and induced 

insulation on the paternal ICR due to reduced ICR methylation (Engel et al., 2004; Matsuzaki 

et al., 2010; Quenneville et al., 2011; Singh et al., 2012). Further studies are needed to 

elucidate B. taurus- and B. indicus-specific differential methylation of parental alleles in the 

H19 ICR and promoter and its association with H19 overall expression and imprinting.  

Together, these findings led us to speculate that higher expression of H19 in B. indicus 

tissues could be attributable to partial or complete relaxation of imprinting resulting from 

epigenetic changes in the ICR. In this scenario, changes in DNA methylation patterns are the 

consequence of gene regulation rather than being its cause. Recently, it has been suggested 

that sequence polymorphisms in regulatory regions of genes alter their methylation status and 

consequently lead to changes in binding characteristics (Schübeler, 2012). The interplay 

between genetics and epigenetics has been shown to affect spatial expression pattern of H19 

(Lin et al., 1999). 

 

6.5 General conclusions 

Our results demonstrate that fetal genetics significantly influences tissue-specific 

transcript abundance of imprinted genes and induces specific expression patterns that cause 

heterotic effects on gene expression. This suggests that imprinted genes could be implicated 

in prenatal programming of postnatal heterosis in phenotypes. Our findings suggest that the 

imprinting pattern of polar overdominance, as described previously (Wolf et al., 2008), could 

explain the phenotypic patterns associated with heterosis. We identified a key role of H19 as a 

driver of differential parent-of-origin phenotypic patterns in prenatal development, suggesting 

that imprinted gene networks and epistatic miRNA interference could be the molecular basis 

for observed parent-of-origin effects on fetal growth related traits. We posited that the 

sequence variation in the functional regulatory intergenic CTCF binding site may be 

responsible for the differential subspecies-specific expression pattern of H19 by causing 
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altered epigenetic status in the imprinted domain. Taken together, our findings significantly 

enhance understanding of the interplay between genetics and epigenetics and its contribution 

to variations in prenatal growth-related phenotypes with possible consequences for postnatal 

performance and heterosis. These results have significance in animal breeding and can help 

realise the unexplained sources of variations in muscle traits attributed to non-Mendelian 

(epi)genetic effects and interactions, which lead to improved efficiency of selection programs. 

 

6.6 Future works 

 Tissue-specific DNA methylation studies of regulatory elements of IGF2/H19 (i.e. 

CTCF binding sites located within H19 ICR) and IGF2R/AIRN (i.e. DMR1 and DMR2) in the 

genetic groups and developmental stages. Altered DNA methylation patterns of DMR2 in 

bovine embryos produced by somatic cell nuclear transfer (SCNT) were correlated with 

altered IGF2R expression (Long and Cai, 2007). In another study, DNA methylation of 

DMR2 and allelic expression of IGF2R did not alter in bovine fetuses derived from in vitro 

fertilisation (IVF) (Bebbere et al., 2013). In addition, the intergenic ICR containing putative 

CTCF binding sites with differential DNA methylation patterns have been characterised 

upstream of bovine (B. taurus/B. indicus) H19 (Curchoe et al., 2009; Hansmann et al., 2011; 

Robbins et al., 2012). 

 Identification of subspecies-specific genetic polymorphisms in regulatory sequences of 

IGF2/H19 and IGF2R/AIRN. 

 Study of the link between genetic polymorphisms and DNA methylation differences in 

regulatory sequences of IGF2/H19 and IGF2R/AIRN. 

 Detailed studies of IGF2/H19 and IGF2R/AIRN tissue-specific imprinting in the 

genetic groups and developmental stages. 

 Study of correlation between differences in tissue-specific imprinting status and 

overall expression of IGF2/H19 and IGF2R/AIRN. 
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 Study of correlation between differences in tissue-specific DNA methylation and 

overall expression of IGF2/H19 and IGF2R/AIRN. 

 Study of correlation between differences in tissue-specific DNA methylation and 

imprinting status of IGF2/H19 and IGF2R/AIRN. 

This will link changes in epigenetric modification and mechanisms with differences in 

gene expression and phenotype. 
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Appendix 1 Protocol of RNA extraction using AllPrep™ DNA/RNA Micro (Qiagen GmbH, 

Inc., Hilden, Germany). 

1. Add 350 μl Buffer RLT Plus to the tissue (maximum 10 mg). 

2. Perform homogenisation using ceramic beads, as optimised. 

3. Centrifuge the lysate for 3 min at full speed. Carefully remove the supernatant by 

pipetting, and transfer it to an AllPrep DNA spin column placed in a 2 ml collection 

tube (supplied). Close the lid gently, and centrifuge for 30 s at ≥8000 x g (≥10,000 

rpm). 

4. Place the AllPrep DNA spin column in a new 2 ml collection tube (supplied), and 

store at room temperature (15–25ºC) or at 4ºC for later Genomic DNA purification. 

5. Add 1 volume (usually 350 μl) of 70% ethanol to the flow-through from step 4, and 

mix well by pipetting. 

6. Transfer the sample, including any precipitate that may have formed, to an RNeasy 

MinElute spin column placed in a 2 ml collection tube (supplied). Close the lid gently, 

and centrifuge for 15 s at ≥8000 x g (≥10,000 rpm). Discard the flowthrough. 

7. Add 700 μl Buffer RW1 to the RNeasy MinElute spin column. Close the lid gently, 

and centrifuge for 15 s at ≥8000 x g (≥10,000 rpm) to wash the spin column 

membrane. Discard the flow-through. 

8. Add 500 μl Buffer RPE to the RNeasy MinElute spin column. Close the lid gently, 

and centrifuge for 15 s at ≥8000 x g (≥10,000 rpm) to wash the spin column 

membrane. Discard the flow-through. 

9. Add 500 μl of 80% ethanol to the RNeasy MinElute spin column. Close the lid gently, 

and centrifuge for 2 min at ≥8000 x g (≥10,000rpm) to wash the spin column 

membrane. Discard the collection tube with the flow-through. 

10. Place the RNeasy MinElute spin column in a new 2 ml collection tube (supplied). 

Open the lid of the spin column, and centrifuge at full speed for 5 min. Discard the 

collection tube with the flow-through. 

11. Place the RNeasy MinElute spin column in a new 1.5 ml collection tube (supplied). 

Add 14 μl RNase-free water directly to the centre of the spin column membrane. Close 

the lid gently, and centrifuge for 1 min at full speed to elute the RNA. 
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Appendix 2 Details of primers used for amplification of transcripts of target genes. 

 

 

 

  

Target 

transcript 
Primer sequence 

Annealing 

temperature 

(C) 

Fragment 

length (bp) 
Exon/intron Accession No. 

IGF2R (F) GATGGTAATGAGCAGGCTTACC 60 123 IGF2R (Exon 47) NM_174352.2 

IGF2R (R) ATCTCCTCCATCAGCCACTC 60 123 IGF2R (Exon 48) NM_174352.2 

AIRN (F) AATCTCTTGCGGAGTGTTCAT 57 136 IGF2R (intron 2) DQ835615.1 

AIRN (R) CTCTGTTGTATCGTGTCTTTCG 57 136 IGF2R (intron 2) DQ835615.1 

IGF2 (F) CTTCGCCTCGTGCTGCTATG 60 134 IGF2 (Exon 8) NM_174087.3 

IGF2 (R) GTCGGTTTATGCGGCTGGAT 60 134 IGF2 (Exon 9) NM_174087.3 

H19 (F) TCAAGATGACAAGAGATGGTGCTA 60 171 H19 (Exons 3_4) NR_003958.2 

H19 (R) GGTGTGGGTCGTCCGTTC 60 171 H19 (Exon 5) NR_003958.2 

IGF2 P0 (F) CACGCTCTAAAAATGCCCTTCA 60 103 IGF2 (intron 1) EU518675 1 

IGF2 P0 (R) TGCTCTGGCTGTGGTGCTCA 60 103 IGF2 (Exon 2) EU518675 1 

IGF2 P1e2 (F) CCTCAGCCTCATCCCCTCCTTTGC 60 217 IGF2 (Exon 2) EU518675 1 

IGF2 P1e2 (R) CTGTGCTCTATTTGCTGTGTTGTCT 60 217 IGF2 (Exon 2) EU518675 1 

IGF2 P1e3 (F) GGTCAGCCCTTTGCCCAG 62 179 IGF2 (Exon 3) NM_174087.3 

IGF2 P1e3 (R) CACCAGCACCGACTTTCCT 62 179 IGF2 (Exon 8) NM_174087.3 

IGF2 P2e4 (F) TCCAGCCTCGCGACATCA 61 66 IGF2 (Exons 4-8) DQ298749.1 

IGF2 P2e4 (R) CAAGAAGGCAAGAAGCACCA 61 66 IGF2 (Exon 8) DQ298749.1 

IGF2 P2e5 (F) TACGCAAGTCCAACGCATAGA 60 160 IGF2 (Exon 5) DQ298745.1 

IGF2 P2e5 (R) CAAGAAGGCAAGAAGCACCA 60 160 IGF2 (Exon 8) DQ298745.1 

IGF2 P3 (F) AGACAGCCCGTCCTCCCTA 60 246 IGF2 (Exon 6) BC116039 1 

IGF2 P3 (R) CACCAGCACCGACTTTCCT 60 246 IGF2 (Exon 8) BC116039 1 

IGF2 P4 (F) CAGCGAGCCTCCTGTCCA 60 64 IGF2 (Exon 7) AY957981.1 

IGF2 P4 (R) CACCAGCACCGACTTTCCT 60 64 IGF2 (Exon 8) AY957981.1 
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Appendix 3 Details of primers used for amplification of transcripts of housekeeping genes. 

 

 

 

 

  

Target gene Primer sequence 

Annealing 

temperature 

(C) 

Fragment 

length (bp) 
Accession No. 

VPS4A (F) GAAGACAGAAGGCTACTCGGGTG 60 106 NM_001046615.1 

VPS4A (R) ACAGACCTTTTTGAAGTGTGTTGCT 60 106 NM_001046615.1 

GAK (F) CACGACCATCTCACACTACCCA 60 128 NM_001046084.2 

GAK (R) AGTTTGAGTACAAGTCCACAATTTCC 60 128 NM_001046084.2 

TBP (F) GCAACAGTTCAGTAGTTATGAGCCAG 60 164 NM_001075742.1 

TBP (R) GAATAGGGTAGATGTTCTCAAAGGCT 60 164 NM_001075742.1 

H3F3A (F) ACTGCTACAAAAGCCGCTC 60 231 XM_003586223.1 

H3F3A (R) ACTTGCCTCCTGCAAAGCAC 60 231 XM_003586223.1 

UBB (F) AGATCCAGGATAAGGAAGGCAT 62 198 NM_174133.2 

UBB (R) GCTCCACCTCCAGGGTGAT 62 198 NM_174133.2 

ACTB (F) CTCTTCCAGCCTTCCTTCCT 62 245 NM_173979.3 

ACTB (R) CCAATCCACACGGAGTACTTG 62 245 NM_173979.3 

RPS9 (F) TAGGCGCAGACGGGCAAACA 60 136 NM_001101152.2 

RPS9 (R) CCCATACTCGCCGATCAGCTTCA 60 136 NM_001101152.2 

GAPDH (F) GGGTCATCATCTCTGCACCT 62 173 NM_001034034.2 

GAPDH (R) CATAAGTCCCTCCACGATGC 62 173 NM_001034034.2 
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Appendix 4 Amplification efficiency and coefficient of determination for quantitative real 

time PCR runs for target transcripts in the studied fetal (Day-153) tissues. 

Target transcript Tissue 
Amplification 

efficiency 

Coefficient of 

determination (R
2
) 

IGF2R Muscle 0.88 0.992 

IGF2R Heart 0.97 0.993 

IGF2R Liver 0.99 0.993 

IGF2R Brain 0.99 0.990 

IGF2R Cotyledon 0.92 0.992 

IGF2R Lung 0.92 0.996 

IGF2R Kidney 0.95 0.993 

IGF2 Muscle 0.96 0.999 

IGF2 Heart 0.96 0.995 

IGF2 Liver 0.96 0.997 

IGF2 Brain 0.90 0.991 

IGF2 Cotyledon 0.97 0.996 

IGF2 Lung 0.98 0.993 

IGF2 Kidney 0.88 0.99 

H19 Muscle 0.95 0.997 

H19 Heart 0.96 0.994 

H19 Liver 0.97 0.996 

H19 Brain 0.96 0.991 

H19 Cotyledon 0.95 0.996 

H19 Lung 0.99 0.993 

H19 Kidney 1.00 0.994 

AIRN Muscle 0.88 0.992 

AIRN Heart 0.87 0.993 

AIRN Liver 0.96 0.995 

AIRN Brain 1.00 0.990 

AIRN Cotyledon 0.96 0.993 

AIRN Lung 0.98 0.992 

AIRN Kidney 0.96 0.992 

IGF2 P0 Muscle 0.80 0.988 

IGF2 P1e2 Muscle 0.94 0.987 

IGF2 P1e3 Muscle 0.88 0.992 

IGF2 P2e5 Muscle 1.00 0.994 

IGF2 P2e5 Heart 0.95 0.99 

IGF2 P2e5 Liver 0.98 0.993 

IGF2 P2e5 Cotyledon 0.98 0.993 

IGF2 P2e5 Lung 0.95 0.995 

IGF2 P2e5 Kidney 0.94 0.989 

IGF2 P2e4 Muscle 0.90 0.990 

IGF2 P2e4 Liver 1.00 0.996 

IGF2 P3 Muscle 1.09 0.990 

IGF2 P3 Heart 1.06 0.992 

IGF2 P3 Liver 1.03 0.995 

IGF2 P3 Cotyledon 1.00 0.997 

IGF2 P3 Lung 1.03 0.994 

IGF2 P3 Kidney 1.08 0.996 

IGF2 P4 Muscle 0.97 0.993 

IGF2 P4 Heart 0.96 0.995 

IGF2 P4 Liver 0.98 0.994 

IGF2 P4 Cotyledon 0.91 0.993 

IGF2 P4 Lung 0.96 0.991 

IGF2 P4 Kidney 0.94 0.991 
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Appendix 5 Amplification efficiency and coefficient of determination for quantitative real 

time PCR runs for housekeeping genes in the studied fetal (Day-153) tissues. 

Target transcript Tissue 
Amplification 

efficiency 

Coefficient of 

determination (R
2
) 

ACTB Muscle 0.83 0.995 

RPS9 Muscle 0.87 0.998 

UBB Muscle 0.95 0.983 

H3F3A Muscle 0.82 0.997 

TBP Muscle 1.00 0.981 

VPS4A Muscle 0.88 0.993 

GAK Muscle 0.72 0.989 

ACTB Heart 0.88 0.997 

RPS9 Heart 0.93 0.998 

UBB Heart 0.89 0.995 

H3F3A Heart 0.89 0.995 

TBP Heart 1.10 0.989 

VPS4A Heart 0.91 0.99 

GAK Heart 0.78 0.993 

ACTB Liver 0.89 0.997 

RPS9 Liver 0.90 0.998 

UBB Liver 0.87 0.994 

H3F3A Liver 0.94 0.995 

TBP Liver 0.92 0.99 

VPS4A Liver 0.93 0.995 

GAK Liver 0.72 0.991 

ACTB Brain 0.89 0.998 

RPS9 Brain 0.94 0.998 

UBB Brain 0.95 0.989 

H3F3A Brain 0.92 0.984 

TBP Brain 1.04 0.981 

VPS4A Brain 0.91 0.991 

GAK Brain 0.78 0.985 

ACTB Cotyledon 0.85 0.994 

RPS9 Cotyledon 0.97 0.996 

UBB Cotyledon 0.93 0.994 

GAPDH Cotyledon 0.98 0.998 

TBP Cotyledon 0.95 0.988 

VPS4A Cotyledon 0.94 0.996 

GAK Cotyledon 0.78 0.990 

ACTB Lung 0.85 0.993 

RPS9 Lung 0.88 0.996 

UBB Lung 0.85 0.992 

H3F3A Lung 0.90 0.995 

TBP Lung 0.88 0.990 

VPS4A Lung 0.94 0.995 

GAK Lung 0.77 0.992 

ACTB Kidney 0.90 0.994 

RPS9 Kidney 0.91 0.994 

UBB Kidney 0.85 0.992 

H3F3A Kidney 0.86 0.995 

TBP Kidney 0.97 0.986 

VPS4A Kidney 0.90 0.993 

GAK Kidney 0.76 0.992 
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Appendix 6 Amplification efficiency and coefficient of determination for quantitative real 

time PCR runs for analysis of expression of target transcripts in the tissues of three 

developmental stages. 

Target transcript Amplification efficiency Coefficient of determination (R
2
) 

IGF2R 0.89 0.990 

IGF2 0.96 0.998 

H19 1.00 0.997 

AIRN 0.94 0.991 

IGF2 P0 0.78 0.986 

IGF2 P1e2 0.96 0.988 

IGF2 P1e3 0.94 0.989 

IGF2 P2e5 0.98 0.992 

IGF2 P2e4 1.11 0.986 

IGF2 P3 1.16 0.987 

IGF2 P4 0.88 0.992 

 

Appendix 7 Summary of distribution of maternal and paternal genomes and sex of fetuses. 

  Number of fetuses 

Maternal genome 
Angus 45 

Brahman 28 

Paternal genome 
Angus 36 

Brahman 37 

Fetal gender 
Male 27 

Female 46 
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Figure S4 Fetal carcass weights for the four different combinations of maternal and paternal genomes and fetal 

sex at midgeststion. 

Least square means with standard errors of means and P-values for significant differences (t-test) between means 

are indicated. Data were analyzed with a general linear model in SPSS 17.00 that included the factors fetal 

genetic group i, i = Bt × Bt, Bt × Bi, Bi × Bt, Bi × Bi (paternal genetics given first) and fetal sex j, j = male, 

female. The interaction between fetal genetic group and fetal sex was included in the model but removed as it 

was not significant (P>0.05). 

 

 
Figure S5 Quadratic effects of final maternal weight nested within maternal genomes on absolute weight of fetal 

M. quadriceps femoris at midgestation. 

The P-value (ANOVA) of this nested effect is indicated. Bt: Bos taurus taurus, Angus. Bi: Bos taurus indicus, 

Brahman. 
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Figure S6 Daily weight gain and final weight for Bos taurus taurus and Bos taurus indicus dams. 

(A) Post-conception maternal daily gain: Final maternal weight – weight at conception divided by days of 

gestation. (B) Final maternal weight: Weight before slaughter on Day-153 of gestation. P-values for significantly 

different means (t-test) are indicated. Bt: Bos taurus taurus, Angus. Bi: Bos taurus indicus, Brahman. 




