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Abstract

This thesis deals with active flutter suppression (AFS) on aerofoils via adaptive

nonlinear optimal control using neural networks (NNs).

Aeroelastic flutter can damage aerofoils if not properly controlled. AFS not only
ensures flutter-free flight but also enables the use of aerodynamically more efficient
lightweight aerofoils. However, existing optimal controllers for AFS are generally
susceptible to modelling errors while other controllers less prone to uncertainties
do not provide optimal control. This thesis, thus, aims to reduce the impact of the
dilemma by proposing new solutions based on nonlinear optimal control online

synthesis (NOCOS) according to online updated dynamics.

Existing NOCOS methods, with NNs as essential elements, require a separate
initial stabilising control law for the overall system, an additional stabilising tuning
loop for the actor NN, or an additional stabilising term in the critic NN tuning law,
to guarantee the closed-loop stability for unstable and marginally stable systems.
The resulting complexity is undesired in AFS applications due to computational
concerns in real-time implementation. Moreover, the existing NOCOS methods are
confined to locally nonlinear systems, while aeroelastic systems under consideration
are globally nonlinear. These make all the existing NOCOS algorithms inapplicable
to AFS without modification and improvement. Therefore, this thesis solves the

aforementioned problems through the following step-by-step approaches.

Firstly, a four degrees-of-freedom (4-DOF) aeroelastic model is considered, where
leading- and trailing-edge control surfaces of the aerofoil are used to actively sup-

press flutter. Accordingly, a virtual stiffness-damping system (VSDS) is developed

XXV



XXVi Abstract

to simulate physical stiffness in the aeroelastic system. The VSDS, together with
a scaled-down typical aerofoil section placed in a wind tunnel, serve as an exper-
imental 4-DOF aeroelastic test-bed for synthesis and validation of proposed AFS

controllers that follow.

Secondly, a Modified form of NN-based Value Function Approximation (MVFA),
tuned by gradient-descent learning, is proposed for NOCOS to address the closed-
loop stability in a compact controller configuration suitable for real-time implemen-
tation. Its validity and efficacy are examined by the Lyapunov stability analysis and

numerical studies.

Thirdly, a systematic procedure based on linear matrix inequalities is further
proposed for synthesising a scheduled parameter matrix to generalise the MVFA to
to globally nonlinear cases, so that the new NN controller suits AFS applications. In
addition, the extended Kalman filter (EKF) is proposed for the new NN controller
for fast parameter convergence. An identifier NN is also derived to capture and
update aeroelastic dynamics in real time to mitigate the impact of modelling errors.

Wind-tunnel experiments were conducted for validation.

Finally, a non-quadratic functional is introduced to generalise the performance
index to tackle the problem where control inputs are constrained. The feasibility
of including the non-quadratic cost function under the proposed control scheme
based on the MVFA is examined via the Lyapunov stability analysis and was also

experimentally evaluated through the wind-tunnel testings.

The proposed NN controllers are compact in structure and shown capable of
maintaining the closed-loop stability while eliminating the need for a separate initial
stabilising control law for the overall system, an additional tuning loop for the actor
NN, and an additional stabilising term in the critic NN tuning law. Under the
new control schemes, online synthesised nonlinear control laws are optimal in the
cases with and without constraints in control. Comparisons drawn with a popular
linear-parameter-varying (LPV) controller in the form of the widely used linear

quadratic regulator (LQR) in experiments show that the proposed NN controllers



XXVii

outperform the LPV-LQR algorithm and improve AFS from the optimal control
perspective. Specifically, the proposed NN controllers can effectively mitigate the
impact of modelling errors, successfully solving the mentioned dilemma involved
in AFS. The results also confirm that the proposed NN controllers are suitable for

real-time implementation.
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Chapter 1

Introduction

1.1 Motivation

Aerofoil flutter is a type of self-feeding oscillation due to the interaction between
aerodynamic loads and non-rigid aerofoil structures, occurring at and above a
certain airflow velocity depending on the aerofoil structural characteristics. Such
dynamic aeroelastic instability can develop dramatically in a short instance and may

cause structure fatigue and eventually catastrophic failure if not controlled properly.

To prevent aerofoil flutter from happening within an aircraft’s flight envelope,
traditional practice relies on stiffness distribution optimisation, mass balancing, or
geometry modification performed at design stage (Haftka et al., 1975; Markowitz
and Isakson, 1978; Reed et al., 1980). These are known as passive approaches
for aerofoil flutter suppression, which are effective but on the other hand lead to
heavier aerofoil designs (Karpel, 1981). To further postpone the onset of aerofoil
flutter to a higher airspeed without excessive structure modification and weight
penalty, one may apply proper control efforts (such as generating structural forces
via piezoelectric actuation or changing aerodynamic loads through aerofoil control
surfaces) to counteract flutter once it happens. This is categorised as an active
approach, which emerged since the 1970s and has been proven effective theoretically

and experimentally in numerous leading research projects (Mukhopadhyay, 2003).
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More importantly, active flutter suppression (AFS) renders it possible for more
efficient flexible lightweight aerofoils to be used to achieve weight reduction and
aerodynamic improvement, as successfully demonstrated in the US Active Flexible
Wing Program (Perry et al., 1995). These achievements through AFS are of great
significance to the aviation industry because modern and future aircraft are desired
to be more efficient than ever before (NSTC, 2010).

Despite some success in AFS by various means in past studies, challenges
remain, especially in seeking better control algorithms to treat nonlinearities and
uncertainties in time-varying aeroelastic systems. As to be detailed in the literature

review in Chapter 2, the challenges are:

(1) Existing model-based optimal controllers for AFS applications are susceptible
to modelling errors, while other methods less prone to uncertainties do not
consider optimal control. This has become a dilemma of AFS controller

synthesis hindering further improvement of AFS performance.

(2) In addition, the available control authority for AFS is subjected to constraints
in practice, for instance, actuator saturation. Saturated control, being one of
the nonlinearities involved in AFS, has nevertheless not been addressed in an

optimal sense.

Therefore, deriving new control schemes to improve AFS performance from
the optimal control perspective is of particular significance. To address the AFS
controller synthesis dilemma, this thesis suggests an approach based on synthesising
nonlinear optimal control in real time. Despite the availability of techniques under
the theory framework of nonlinear optimal control online synthesis (NOCOS) to be
detailed in Chapter 2, none of the existing approaches are applicable to AFS without
modification and improvement, due to realistic problems in relation to stability,

application scope, and real-time implementation. To be specific, the problems are:

(1) Aeroelastic dynamics are generally nonlinear for a constant airspeed (i.e.

locally nonlinear) and also vary nonlinearly against the airspeed (i.e. globally



1.2 Aims and objectives

nonlinear). However, available NOCOS methods are all confined to locally
nonlinear cases, and thus, not capable of AFS without modification and

improvement.

Stability during controller online self-learning is one of the major concerns
among the existing NOCOS algorithms, in which sophisticated structures with
various stabilising mechanisms are used to maintain the closed-loop stability.
In the interests of real-time implementation, a compact NOCOS method in
place of the existing ones is desired. In particular, Chapter 2 points out that
existing studies all share a common form of value function approximation
(VFA) as a fundamental element of synchronous policy iteration (SPI) involved
in NOCOS. Could the SPI configuration be further simplified for AFS in the
interests of reliable and efficient real-time implementation? Would a different

form of VFA give a different stability result under the SPI framework?

Accordingly, deriving methods to tackle these NOCOS related problems for AFS

applications are deemed necessary.

1.2

Aims and objectives

The primary aim of the research in this thesis is to derive new control schemes to

address the AFS controllers synthesis dilemma and improve AFS performance from

the optimal control perspective. Associated objectives include:

(1)

()

Developing an experimental test-bed based on the concept of the virtual
stiffness-damping system (VSDS) to facilitate testing and validation of AFS

controllers in wind-tunnel experiments;

Deriving a novel NOCOS scheme with a compact configuration without
compromising the closed-loop stability, for locally nonlinear systems, assuming

no constraints in control;
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(3) Deriving a new adaptive nonlinear optimal controller for AFS, by generalising
the novel NOCOS scheme to globally nonlinear scenarios. At this stage, it is
assumed that there are no constraints in control. The proposed control is to be

validated in wind-tunnel experiments using the developed VSDS;

(4) Deriving a new adaptive nonlinear optimal controller for AFS under control-
input constraints (CICs), by generalising the proposed NOCOS scheme to take
CICs into account, from the optimal performance perspective. The proposed
control is to be validated in wind-tunnel experiments using the developed

VSDS;

1.3 Methodologies in general

Methodologies developed to accomplish the aim and objectives are given in detail
in Chapters 3, 4, 5, and 6. This section describes the methodologies in general,
and also sets out the methodology-related context in support of the discussions in

subsequent chapters.

1.3.1 Mechanical mechanism for active flutter suppression on

aerofoils

AFS can be realised by using existing control surfaces such as leading-edge slats
and trailing-edge flaps or ailerons on wings, which has been numerically and
experimentally shown effective in an extensive amount of studies as given in
the review by Livne (2018). Proper deployment of control surfaces can change
aerodynamic forces exerted on aerofoils accordingly to counteract and alleviate
aerofoil oscillatory motions. Well established experimental test-beds include but
are not limited to the benchmark active control technology (BACT) (Farmer, 1982,
1984), active flexible wing (AFW) wind-tunnel prototype (Miller, 1988), nonlinear
aeroelastic test apparatus (NATA) (O’Neil and Strganac, 1998), and the newly
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developed Lockheed Martin X-56A demonstrator (Burnett et al., 2016). Depending
on the physical configuration of these test-beds, the control surfaces utilised for
flutter suppression consist of trailing-edge flaps, ailerons, upper spoilers, or leading-
edge slats, functioned solely or jointly (Pendleton et al., 2000; Perry et al., 1995;
Waszak, 2001). Associated merits of this class of solution include: (1) little or no
modifications to existing aerofoil mechanical structures, and hence no considerable
additional hardware investments; (2) improved ride quality as a result of direct
aerodynamic treatment.

As the work in this thesis focuses on improving AFS performance by making
scientific and technical breakthroughs from the control aspect instead of the me-
chanical mechanism, the control-surface actuation method, given its well established

basis, is adopted as the mechanical mechanism for AFS studied in this research.

1.3.2 Aeroelastic model

Aerofoil flutter is generally studied and characterised by a typical rigid wing
section of a finite span with two-degrees-of-freedom (2-DOF) motions: plunge
and pitch (Fung, 1955). For studies in this thesis, the 2-DOF aeroelastic system
with leading- and trailing-edge control surfaces based on the NATA test-bed is
selected given its well-established theoretical and experimental basis and that it
captures representative nonlinearities in real aeroelastic systems (Ko et al., 2002;
O’Neil and Strganac, 1998; Platanitis and Strganac, 2004). The experimental test-bed
developed in this thesis is based on this 2-DOF model and details are given in
Chapter 3. When the dynamics of both control surfaces are taken into account, this
2-DOF model is improved and extended to the four-degrees-of-freedom (4-DOF) one
developed in Prime (2010). This 4-DOF model not only describes the first plunge
and first pitch mode oscillations of a rigid wing section under linear unsteady
aerodynamic loads in subsonic flow, but also captures the delay in control-surface
responses to corresponding commands. As the 4-DOF model allows better AFS

results as validated in wind-tunnel experiments using the NATA test-bed (Prime
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et al., 2010; Prime, 2010), it is adopted for controller synthesis in this thesis. More
details of the model are presented in Chapters 5 and 6. Nonlinear transnational
(plunge) and torsional (pitch) stiffness can be introduced in a polynomial form
up to specified order in both the 2-DOF and 4-DOF aeroelastic models. The AFS
controllers proposed in this thesis, although derived by referring to the 4-DOF

aeroelastic model, can be easily extended to more complicated aeroelastic systems.

1.3.3 Controller verification and validation

The research in this thesis seeks theoretical breakthroughs in controller synthesis to
accomplish the aim, which necessitates stability analysis in the form of establishing
new theorems and giving corresponding proofs. In addition, numerical studies
are deemed appropriate for verification of the proposed novel NOCOS scheme
using representative dynamic systems that allow convincing comparison, while
wind-tunnel experiments were performed to validate the proposed AFS controllers.

The VSDS used in experiments is based on the NATA test-bed, but replaces the
physical plunge and pitch springs each with an electric drive. It offers advantages
over NATA in that the stiffness and damping of the plunge and pitch DOFs can be
adjusted conveniently without frequent change of mechanical components. However,
whether the VSDS can precisely mimic the behaviour of the NATA test-bed highly
depends on how well the electric drives track the desired plunge force and pitch
torque calculated from the assumed physical stiffness and damping. This requires
the high-performance force/torque tracking of the developed VSDS, which was
addressed first (in Chapter 3) before the VSDS was used for AFS controller testing

in the wind-tunnel experiments.

1.4 Thesis format and publications

This thesis is presented in publication format according to the “Academic Program

Rules’ of the University of Adelaide and contains four papers published or submitted
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for publication by peer-reviewed journals. These papers serve as main chapters
of the thesis, with slight amendments made for concise, consistent and coherent

presentation, which include:
¢ British English spelling is used throughout the thesis;
* Manuscript titles are changed to chapter headings of a shorter form;

* Bibliography of each paper are converted uniformly to the Harvard referencing

style, and integrated at the end of the thesis;

¢ Figures and tables are renumbered and renamed, with repetition in different

papers omitted;
¢ Equations are renumbered;

* Repeated mathematical assumptions and definitions from later papers are

removed;

¢ Additional notes are given where necessary in chapters based on publications,

to enhance the overall coherence.

All publications arising from the research in this thesis are included in the List
of Publications on Page v, where the four journal papers are identified as, and

hereafter referred to as, Article-1, Article-2, Article-3, and Article-4, respectively.

1.5 Thesis Outline

From this Chapter onward, the thesis is organised as follows.

Past and recent studies as well as latest advances in the fields of AFS and NOCOS
are reviewed in Chapter 2, where a summary of identified research gaps is given at
the end.

As this research elects to validate the proposed AFS controllers via wind-tunnel

experiments, Chapter 3, which is based on Article-1, introduces the experimental
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test-bed specially developed for subsequent AFS tests. It is essential that the test-
bed is reliable in providing trustful results, and therefore, this chapter describes
how the VSDS was developed, presents and explains special approaches taken to
ensure reliable performance. The test-bed also sets out the aeroelastic model as well
as associated parameters used in the AFS controller derivation and synthesis in
Chapters 5 and 6 that follow. The first objective (Page 4) of the research is completed
on successful development of the VSDS.

To derive the AFS controllers that accomplish the aim, the two realistic problems
of the existing NOCOS algorithms (Page 3) are required to be solved first. The
NOCOS algorithm structure problem under the locally nonlinear setting is addressed
in Chapter 4 based on Article-2, by proposing a novel NOCOS scheme that is
compact in configuration without compromising the closed-loop stability. This
chapter provides detailed derivation, stability analysis, and numerical verification
of the proposed compact NOCOS scheme for locally nonlinear systems, completing
the second objective (Page 4) of the research.

On completion of the second objective, the research moves on to generalising
the novel NOCOS scheme to globally nonlinear scenarios so that it suits AFS
applications. This work completes the third objective (Page 4), contributes to Article-
3, and forms Chapter 5, where details of the proposed adaptive nonlinear optimal
controller based on the novel NOCOS scheme are given, together with wind-tunnel
experiment results obtained using the VSDS in Chapter 3. The research aim is
partially accomplished at this stage, assuming no CICs.

By further generalising the novel NOCOS scheme in Chapter 4 and the new AFS
controller in Chapter 5 to treat CICs from the optimal control perspective, a new
adaptive nonlinear optimal controller for AFS under CICs is derived. This work
completes the fourth objective (Page 4), delivers Article-4, forms Chapter 6, and
most importantly, accomplishes the primary aim of the research in this thesis.

Finally, Chapter 7 gives concluding remarks regarding contributions and signifi-

cance of the overall project and also suggests possible directions of future work.



Chapter 2

Literature review

The literature review first looks into the basic mechanism of aerofoil flutter in Sec-
tion 2.1, providing a background of the control problems discussed in sections that
follow. A review on advances in various controllers for active flutter suppression
(AFS) on aerofoils is then given in Section 2.2. With the potential to further improve
AFS performance, methods for solving nonlinear optimal control problems are dis-
cussed in Section 2.3. Research gaps to be addressed in this project are summarised

in Section 2.4.

2.1 Basic mechanism of aerofoil flutter

Aerofoil flutter is a type of self-feeding oscillation due to the interaction between
aerodynamic loads and non-rigid aerofoil structures, occurring at and above a certain
airflow velocity depending on structural characteristics of the aerofoil (Balakrishnan,
2012; Fung, 1955). With linear stiffness in structure, flutter develops rapidly into
infinitely large amplitude that can cause immediate damage. For aeroelastic systems
with nonlinear stiffness generating a ‘hardening’ effect, the oscillation may not
infinitely grow in amplitude but maintains at a certain level, termed as ‘limit-cycle
oscillation (LCO)'.

Aerofoil flutter can be initiated by any off-equilibrium state, which may be either

because of aerofoil self-excitation during control surfaces deployment or more com-
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monly, caused by unsteady airflow (Kimberlin, 2003), as tiny variation/perturbation
in airflow velocity can result in disequilibrium of an aeroelastic system (Marzocca
et al., 2001). In fact, aerofoil flutter only occurs at and above a particular airspeed
which is called the ‘flutter boundary’. Prior to an aircraft reaching its flutter bound-
ary, the damping in the aeroelastic system reduces both its kinetic and elastic energy
and brings down any excited oscillations. On reaching or exceeding the flutter
boundary, the total energy dissipated from the aeroelastic system becomes less than
or equal to the total energy absorbed, resulting in the amplitude of any excited
oscillations continuously growing until reaching the LCO state or structure failure.

An aerofoil in flutter can have several degrees of freedom referred to as ‘flutter
modes’, the dominant two of which are the first plunge mode (bending) and first
pitch mode (torsion), respectively (Kimberlin, 2003). The aerofoil structure and
aerodynamic forces together contribute to coupled damping of each mode, and the
damping ratio of the critical flutter mode may start to decrease beyond some point
with increasing airspeed (Heeg, 1993; Wright and Cooper, 2008). When the damping

ratio of the critical flutter mode reaches zero, flutter occurs.

2.2 Controllers for active flutter suppression on
aerofoils

In light of the basic mechanism of aerofoil flutter, practically preventing such
aeroelastic instability means to move the flutter boundary to a higher airspeed so
that flutter does not occur within the operation envelop of an aircraft. This applies
to both passive and active approaches for aerofoil flutter suppression. Among the
active control approaches, there have been enormous studies on solutions involving
actuation of structures embedded with piezoelectric materials and deployment of
aerofoil control surfaces. Despite different AFS solutions in terms of mechanical
realisation, the underlying control algorithms play a crucial role in successful

implementation. Specifically, the AFS controllers are required to properly utilise the

10



2.2 Controllers for active flutter suppression on aerofoils

available actuator authority to counteract oscillations and contribute to a closed-loop
system with positive damping ratio of the critical flutter mode at the airspeed where
an open-loop (uncontrolled) system goes unstable. This thus moves the flutter

boundary of an aerofoil to a higher airspeed.

Suppressing LCOs and even bifurcations can be achieved via various control
methods, such as the hybrid linear and nonlinear-velocity feedback control proposed
by Chen et al. (2009) and the position feedback controller in Yabuno et al. (2012).
Similarly in terms of AFS, a wide variety of control techniques are available. As ex-
ploratory attempts and for ease of implementation, non-adaptive control laws with
constant gains were employed in early studies. Some are single-input single-output
(SISO) classical controllers designed in frequency domain (Edwards, 1983; Schmidt
and Chen, 1986; Waszak and Srinathkumar, 1992). Although being effective in early
studies and useful in latest research (Schmidt, 2016), these methods are inconvenient
for multiple-input multiple-output (MIMO) systems as a well-functioning design
may need excessive trials, which can be costly and time-consuming. Alternatively,
modern control theory in state space provides some relatively more convenient
solutions to both SISO and MIMO cases. Under this category a wide range of
variations in controller synthesis exist. For example, aerodynamic energy eigen-
values assignment (Nissim, 1971), suboptimal reduced-order control law synthesis
(Mukhopadhyay et al., 1981), internal model control (Viswamurthy and Ganguli,
2008), linear-quadratic-Gaussian (LQG) algorithms (Newsom and Mukhopadhyay,
1985; Vipperman et al., 1998), singular-value-gradient based robustness optimisa-
tion (Newsom and Mukhopadhyay, 1985), eigenvalue placement with eigenvector
shaping (Ghiringhelli et al., 1990; Liebst et al., 1986), Hx and u-synthesis robust
control design methods (Waszak, 2001), etc. Regardless of these various forms of
optimisation and robustness recovery techniques used, very limited expansion of the
flutter boundary were achieved because the controllers mentioned were designed
with constant parameters. The resulting control laws are not adaptive to change

of system parameters such as airspeed, and may have poor performance if there
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are off-design variations in system parameters. Moreover, aeroelastic systems are
generally nonlinear, thus a linear optimal controller is actually suboptimal given
that it does not take nonlinearities into account. In order to go beyond these limita-
tions, AFS controllers are desired to be nonlinear and adaptive to varying factors

throughout the entire flight envelope.

A direct way of enabling adaptive control in nonlinear systems is to put the
linear quadratic regulator (LQR) design online (Friedmann et al., 1997; Guillot
and Friedmann, 2000; Pak et al., 1995). This is basically a discrete procedure that
operates on a series of linear models estimated in real time at small enough intervals
technically allowed and solves the algebraic Riccati equation at every time step.
A major limitation is, identified system parameters need to be passed on to the
LOR routine online, requiring some forms of transformation that are not simple in
most cases, even though the auto-regressive-moving-average model is employed.
In addition, since the LOR itself is solved via an iterative approach, such online
implementation is computationally intensive. Reducing the iteration number to one
as in Pak et al. (1995) can reduce the computation time to some extent but leads to

approximation errors of the Riccati matrix and degraded performance.

Instead of running control synthesis online, methods of gain scheduling pre-
define a set of control laws offline and choose an appropriate one according to
specific operating conditions (Leith and Leithead, 2000). In particular, advanced
gain scheduling can be accomplished via systematic procedures based upon linear
parameter-varying (LPV) techniques (Rugh and Shamma, 2000). Specifically for AFS
applications, Prime et al. (2010) synthesise a gain-scheduled LQR controller via lin-
ear matrix inequalities (LMIs) as a generalised LPV control problem. The resulting
LPV-LQR controller can self-schedule with airspeed and can effectively suppress
developed LCOs at post-flutter-boundary airspeeds in wind tunnel experiments.
In the work of Fazelzadeh et al. (2014) the time-domain finite element concept is
employed as a special LPV formulation to address aeroelastic nonlinearities. The

obtained controller is also shown effective in numerical studies. It is worth noting
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that for controller synthesis, aeroelastic models are required to be known a priori,
and the modelling quality directly affects the controller performance. Though a
high-fidelity reduced-order model can be used to reduce the impact of modelling
errors while facilitating controller synthesis (Chen et al., 2012), building a suitable
LPV model that balances accuracy and simplicity remains a challenge because of the
presence of uncertainties in aeroelastic systems in reality (Marcos and Balas, 2004).
It is also worth noticing that aeroelastic systems possess a complicated combination
of structural and aerodynamic nonlinearities (Li et al., 2012; Sheta et al., 2002), some
of which vary as fast as aeroelastic dynamics, posing significant challenges for gain
scheduling. When all or most of these nonlinearities are to be accounted for by
the controller, LPV techniques are still capable but may face other realistic issues
related to implementation due to increased complexity in computing automatically

scheduled control laws.

To cope with nonlinearities in aeroelastic systems more effectively, the control
law itself can be nonlinear, giving rise to a variety of more sophisticated methods.
Ko et al. (1997) utilise partial and full feedback linearisation to derive locally and
globally stabilising adaptive nonlinear controllers for an aeroelastic system of known
dynamics with known structural nonlinearities. The associated stability and bifurca-
tion structure of the resulting closed-loop systems are discussed in Ko et al. (1998).
In the work of Ko et al. (1998), the need for explicit knowledge of the nonlinear
pitch stiffness is exempted by employing high-order polynomial approximation
with corresponding coefficients updated online. To gain global stability using only
one control surface, the partial feedback linearisation scheme is integrated with
a different form of parameterisation for the structural nonlinearity using a linear
combination of transformed system states, coefficients of which are tuned online
(Ko et al., 1999; Strganac et al., 2000). The case with one control surface is further
extended to the configuration with two control surfaces as in Platanitis and Strganac
(2004), by using a similar online tuning scheme to approximate the nonlinear tor-

sional stiffness. Note that not all nonlinear systems can be completely linearised,
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and other nonlinearities not included in the mathematical approximation can also
pose stability risks (Ko et al., 1999). Moreover, although feedback linearisation yields
direct cancellation of undesired nonlinearities and allows implementation of optimal
control designed on the basis of the linearised model, the nonlinearities are not

treated by considering optimal performance.

Compared with non-adaptive control laws, online tuning of some prescribed
parameters enables synthesising control laws that are adaptive and robust. Instead
of parameterised approximation, Zhang and Singh (2001) treat model uncertainties
as a completely unknown function. The resulting adaptive controller is in the
form of feedback linearisation but has the unknown function compensated by an
estimate via a high-gain observer. This method is effective as demonstrated in
experiments, but has a major drawback in that it is prone to sensor noises due to
the use of the high-gain observer. Ko et al. (2002) apply model reference adaptive
control (MRAC) method to update a pre-defined control law in real time according
to the performance measure in the form of the error between desired and actual
system outputs. Although being theoretically robust and valid for a wide range
of airspeeds allowed by the actuator authority, the MRAC controller is unable
to suppress LCOs at high airspeeds in experiments due to modelling errors not
handled by the control law. Following the similar principle but being different
in mathematical representation, direct adaptive controllers (DACs) are able to
synthesise adaptive control laws online in a model-free manner with measurements
of only the plunge displacement and pitch angle (Singh and Wang, 2002; Xing
and Singh, 1999, 2000). Parameters of these controllers are modified directly in
accordance with some prescribed performance measure by the use of backstepping
techniques, with unmeasured states estimated by a reduced-order filter. For more
freedom in choosing appropriate tuning laws, an alternative way can be the modular
adaptive control (MAC), which redesigns the pre-defined control law in light of
an online updated plant model rather than the performance measure used in the

DACs (Bhoir and Singh, 2004; Rao et al., 2006; Singh and Brenner, 2003). AFS results
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can be further improved with actuator dynamics taken into account (Behal et al.,
2006a) or through various forms of matrix decomposition to handle coupled input
dynamics when both leading- and trailing-edge control surfaces are used (Behal
et al., 2006b; Lee and Singh, 2010; Reddy et al., 2007). However, the DACs and
MACs have a major limitation that the approximation of nonlinearities is based on
a linear-in-the-system-parameters assumption. As a result, a regression matrix, the
determination of which is often complicated and time-consuming, is required to

provide a suitable basis for approximating nonlinearities.

With state transformation and introduction of a Hurwitz parameter matrix, the
need for a regression matrix can be waived, nonetheless at the cost of increased
number of variables to be dynamically tuned (Lee and Singh, 2013). By using
error dynamics from output feedback only, the methods in Carnahan and Richards
(2008) and Zhang and Behal (2016) do not require a regression matrix and are
numerically shown stabilising. The sliding-mode control is another nonlinear and
adaptive control strain seen in AFS applications with the need for a regression
matrix eliminated (Dilmi and Bouzouia, 2016; Luo et al., 2016b; Wang et al., 2015).
If actuator faults involved in AFS are specifically targeted, one may apply the finite-
time H., adaptive fault-tolerant control (Gao and Cai, 2016; Gao et al., 2016). The
controller robustness is further enhanced in the work of Fazelzadeh et al. (2017).

Nevertheless, none of these methods treat control performance in an optimal sense.

Besides the nonlinear and adaptive control methods mentioned, neural networks
(NNs) in AFS have also been attracting research attention. An NN can learn system
dynamics online and adapt itself in real time, thus no system model is required a
priori. A multi-layer NN has universal approximation properties (Hornik et al., 1989)
that are particularly suitable for function approximation in nonlinear control. Even if
an NN that is linear in the parameters (LIP) is used, its nonlinear activation functions
set can still effectively provide a basis for function approximation. Therefore, there
is no need to perform extensive modelling and preliminary analysis to find a

regression matrix that is essential to other adaptive control techniques assuming
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linearity in the system parameters. In an early study conducted by Spencer et al.
(1999), a double-layer NN controller is used to command a trailing-edge flap on
rotor blades to attenuate its vibrations caused by a wide variety of unknown
and periodic disturbances. No offline training is needed. Collocated and non-
collocated sensor and actuator, as well as extension to time-varying systems are
considered. Successfully implementation was demonstrated in experimental tests
where two different mechanisms — trailing-edge flaps and active wing tip twisting
were controlled using the same NN controller (Spencer et al., 2002). An LIP adaptive
controller and an NN controller were synthesised and compared in the work of
Gujjula et al. (2005), where both leading- and trailing-edge control surfaces are used.
Both controllers are found to have similar performance except that slightly less
smooth transient responses are found for the NN controller. But this problem can
be solved by simply increasing the number of neurons as explained by the author.
It is worth emphasising that the LIP adaptive controller assumes known structure
of uncertainties, while the NN controller approximates unstructured uncertainties.
This is a significant advantage of NN controller over other LIP adaptive controllers.
To address uncertainties associated with external disturbances, a multi-layer NN
that is nonlinear in the parameters (NLIP) is proposed for AFS in Wang et al. (2011).
A singularity-free controller design is achieved through symmetric-diagonal-upper
triangular factorisation for matrix decomposition to decouple the input dynamics
associated with the leading- and trailing-edge control surfaces. A proportion control
component is added to stabilise the NN controller during the online training period,
and a vector of nonlinear auxiliary signals is formed to improve robustness of the
NN controller. The resulting controller shows considerable improvement over the
LIP adaptive controller in Reddy et al. (2007) in terms of faster suppression and
better robustness to disturbances. Further AFS improvement was made in the work
of Brillante and Mannarino (2016), where two separate NNs dynamically tuned
online are employed for system identification and control, respectively. Again, it is

worth noting that optimal control is not considered in all the mentioned NN-based
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controllers.

To allow aircraft normal and tactical maneuver while performing AFS, it is
important to limit the amplitude of control used for AFS by setting constraints
smaller than actuators saturation bounds. Although control-input constraints (CICs)
have been considered in some AFS studies (Gao and Cai, 2016; Gao et al., 2016; Ko
et al., 2002; Viswamurthy and Ganguli, 2008; Wang et al., 2011), none of the existing
solutions address the problem in the sense of optimal control.

It can be seen from the existing studies that:

* The existing model-based optimal controllers for AFS applications are suscep-
tible to modelling errors, while other methods less prone to uncertainties do
not consider optimal control. This has become a dilemma of AFS controller

synthesis hindering further improvement of AFS performance.

* In addition, the available control authority for AFS is subjected to constraints
in practice, for instance, actuator saturation. Saturated control, being one of
the nonlinearities involved in AFS, has nevertheless not been addressed in an

optimal sense.

2.3 Optimal control for nonlinear systems

Optimal control for nonlinear systems involves solving a Hamilton-Jacobi-Bellman
(HJB) equation. This differential equation is nonlinear and difficult to solve directly.
As an alternative, the “policy iteration” or ‘value iteration” can be used (Howard,
1960; Sutton and Barto, 1998), which are based on a successive two-step iteration
between policy evaluation and policy improvement. As distinguished by naming,
these two approaches are slightly different, depending on which step initiates the
process. The term “policy’ is specifically used in the field of adaptive dynamic
programming (ADP) (Howard, 1960) and refers to a control law. The policy iteration
process starts with a given admissible control law and proceeds to solve for the

cost function associated with this initial control. The obtained cost function is then
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used to compute an improved control law that possesses a lower cost. By repeating
these two steps, the initial non-optimal control law evolves to an optimal one which
corresponds to an optimal cost function, namely, the value function. With regard to
the value iteration, a similar procedure is followed except that the overall process
is initiated by a given value (cost). To implement the ADDP, the value function
in the HJB equation needs to be properly approximated. Possessing universal
approximation properties, neural networks (NNs) are ideal candidates (Hornik et al.,

1989).

For continuous-time systems, the policy iteration instead of the value iteration is
commonly adopted. An early approach of NN-based policy iteration for continuous-
time nonlinear systems is an offline method that takes control saturation into
account (Abu-Khalaf and Lewis, 2005). The resulting control law is nonlinear and
optimal for saturated actuators, outperforming its linear counterpart, the linear-
quadratic regulator (LQR), which is only optimal when actuators are not saturated.
Offline ADP was and remains effective and useful for handling optimal control
in various challenging problems, including non-affine systems (Luo et al., 2016b;
Mu et al., 2017, Wang et al., 2012), actuator saturation (Abu-Khalaf and Lewis,
2005; Heydari and Balakrishnan, 2013; Luo et al., 2015), unknown system dynamics
(Li et al., 2017; Luo et al., 2015, 2016b; Mu et al., 2017, 2018; Wang and Liu, 2013;
Wang et al., 2012; Wei et al., 2017; Zhao et al., 2015b), fixed final time (Heydari and
Balakrishnan, 2013), finite approximation error (Wei et al., 2014), finite horizon(Mu
et al., 2018), algorithm simplification (Heydari, 2014; Heydari and Balakrishnan,
2013; Wang and Liu, 2013), optimal tracking (Luo et al., 2016b), non-zero initial
condition for value iteration (Wei et al., 2016), and extension to multi-agent system
applications (Li et al., 2017). Nevertheless, offline methods are not suitable for AFS

that requires controller online adaptation.

With some modification, some offline algorithms can be put online and does not
need the knowledge of system internal dynamics (Feng et al., 2015; Jiang and Jiang,

2015; Liu et al., 2013b; Vrabie et al., 2009). In Vrabie et al. (2009) and Liu et al. (2013b),
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by setting a non-zero initial condition and providing an initial stabilising control law,
NN training begins when the system states start to settle back to equilibrium under
the periodically evolving control. This method requires non-zero initial condition
for NN training, posing a limitation in that the same updated control strategy and
the same initial condition must be set for a next round of tuning if the system settles
before convergence is reached. This is impractical in the AFS case. In addition,
an initial stabilising controller is needed and largely affects the convergence time.
A good choice of an initial control law can yield faster convergence but requires
knowledge of the system. Moreover, the policy iteration is a sequential process
that takes place with one step starting on completion of the other step, resulting in
discrete update of control. Discontinuities in control signals should be smoothed by
appropriate methods which are nonetheless not addressed. Further discussions on
the impact of using a discount factor for the infinite-horizon cost are provided in Liu
et al. (2013b), but the aforementioned limitations are not addressed. The necessity
of having an initial stabilising control is removed in Feng et al. (2015), and the
associated problem of system stability under the control law synthesised online after
limited number of iterations is investigated. More advances are presented in the
work of Jiang and Jiang (2015) where modelling uncertainties are taken into account
and computation efficiency is improved, although an initial stabilising control is still
required. The policy iteration involved in the approaches of Feng et al. (2015); Jiang
and Jiang (2015); Liu et al. (2013b); Vrabie et al. (2009) is a sequential process with
one step commencing upon completion of the previous step, resulting in discrete

update of the control law.

Comparatively, the synchronous policy iteration (SPI) approach as in Vamvoudakis
and Lewis (2010) offers more advantages. Instead of the step-by-step iteration, both
the policy evaluation and policy improvement steps are performed simultane-
ously and continuously in real time, contributing to continuous update of the
control law and hence smoother control signals. The critic-actor configuration used

in Vamvoudakis and Lewis (2010) is formed by two separate NNs with dedicated
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tuning for each. It guarantees the stability of the entire closed-loop system during
online tuning without the necessity of providing an initial stabilising control law. A
limitation is that both the internal/drift dynamics and control input dynamics of
the system are assumed to be known, which can lead to sensitivity to modelling

errors.

The theory framework of online SPI for synthesising optimal control for continuous-
time nonlinear systems as first proposed in Vamvoudakis and Lewis (2010) have
been enormously enriched by recent and latest advances in dealing with more
complicated nonlinearities and system uncertainties as well as application scope ex-
tension and performance improvement (Xu et al., 2014). In Vamvoudakis and Lewis
(2010), only partial knowledge of the system is required. Complete model-free de-
sign is also possible with integrated NN-based online system identification (Bhasin
et al., 2013; Modares et al., 2013a). Without assuming the availability of all system
states for feedback, those unmeasured states can be estimated in the meantime while
optimal control laws are being approximated (Liu et al., 2013c). When disturbances
are presented, one may consider the algorithms of Wang et al. (2014b). In particular,
to cope with disturbances entering a system through control-input channels, a mod-
ified representation of the optimal control law with an added positive coefficient
to produce a proportionally increasing gain is proposed in Wang et al. (2014b).
This approach is especially suitable for applications in relation to decentralised
control of large-scale plants consisting of several interconnected subsystems. In
terms of unstructured uncertainties, the optimal control problem under discussion
can be interpreted into another appropriate form for uncertain systems where the
algorithm is required to provide robust performance with upper-bounded costs (Liu
et al., 2014). To take actuator saturation into account, the use of a nonquadratic cost
function is put to discussion on continuous-time nonlinear systems, with successful
results (Modares and Lewis, 2014; Modares et al., 2013a, 2014, 2013b). In regard to
optimal trajectory tracking control, similar but more complex principles apply, as

proposed in Modares et al. (2014), with actuator saturation considered as well. If
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faster online tuning is desired, one may consider the method in Bhasin et al. (2013),
where a number of means are introduced to increase NN parameter convergence
speed while maintaining closed-loop system stability. In the method proposed
in Modares and Lewis (2014), the condition of persistence of excitation (PE) for
online tuning is relaxed by means of introducing an experience-relay approach
based on recorded past data. In addition, more insights with regard to the mecha-
nism of policy iteration, its convergence, the uniqueness of the solution as well as
the sufficient conditions are discussed in Heydari (2014). However, to guarantee
closed-loop system stability, these online synchronous policy iteration algorithms
either require an additional tuning loop with a non-standard tuning term for the
actor NN, or rely on a logic algorithm to switch between different tuning modes
for the critic NN. The additional tuning loop and the logic switch mechanism can
both introduce more uncertainties into the system, and moreover, the logic switch

mechanism can also cause discontinuities in control.

Compared with continuous-time cases, it is interesting to note that there are rela-
tively more studies based on discrete-time systems in terms of solving for optimal
control using the ADP approach (Si et al., 2004; Yu, 2009). While most recent ADP
methods based on value iteration do not need initial stabilising control laws and
do not require the non-standard stabilising term for tuning the actor NN as those
used in continuous-time systems, these methods are limited to offline implementa-
tion (Heydari and Balakrishnan, 2013; Wang and Liu, 2013; Wei et al., 2014; Zhao
et al., 2015b). Similar comments on the limitation of offline implementation can
also be found in Al-Tamimi et al. (2008) and Wei and Chen (2014). The convergence
of online implementation of a subclass of ADP, the heuristic dynamic program-
ing (Werbos, 1990), is revisited and proven in Al-Tamimi et al. (2008) under the
no-approximation-error assumption. Approximation errors are dealt with in Wei
and Chen (2014) where a new 6-ADP technique is proposed with the potential
for both online and offline implementation. Although the methods in Al-Tamimi

et al. (2008) and Wei and Chen (2014) can be implemented online without stability
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concerns, they does not provide continuous control law update because an inner
tuning loop is required for successive approximation of the value function and the
associated control at every iteration step. Significant improvements have been made
in Kiumarsi and Lewis (2015) where both the critic and actor NNs are updated
simultaneously and continuously with time. However, the generality of the method
of Kiumarsi and Lewis (2015) is nonetheless unconfirmed due to the coupling of
online tuning between the two NN that results in increased difficulty in proving
stability and parameter convergence.

Therefore, it is of significance and of particular interest if the tuning loop for
the actor NN can be eliminated from the synchronous policy iteration process
without adding complicated stabilising mechanisms that may bring additional
uncertainties or cause control discontinuities. To simplify SPI implementation and
reduce computational load, there have been efforts on event-based methods with
single-critic configuration (Wang et al., 2017a,b). The event-based method reduces
the needed online data, while the single-critic configuration uses the same NN for
both the critic and actor and removes the necessity of separate actor NN tuning.
The instability resulted from direct simplification of the actor-critic configuration
is recognised in the work of Liu et al. (2013c), where initial weights of the critic
NN need to be determined carefully by trial-and-error. Guaranteed stability can be
achieved by adding a stabilising term to the critic tuning law (Huang et al., 2017;

Liu et al., 2014; Wang et al., 2017b, 2014b).

It is worth noting that:

* All the existing nonlinear optimal control online synthesis (NOCOS) methods
are confined to locally nonlinear systems, which are a sub-class of globally

nonlinear scenarios.

* Aeroelastic systems are nonlinear at a constant freestream airspeed (i.e. locally
nonlinear), and the dynamics also vary nonlinearly with the airspeed (i.e.

globally nonlinear).
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The above facts render all these existing NOCOS methods inapplicable to AFS
without modification and improvement.

Moreover, it is also interesting to note that the SPI schemes in the aforementioned
studies all share a common form of value function approximation (VFA) with an

NN directly employed. The questions are:

¢ Could the SPI configuration be further simplified for AFS in the interests of

reliable and efficient real-time implementation?

* Would a different form of VFA give a different stability result under the SPI

framework?

2.4 Research gaps

From Section 2.2 it can been seen that adaptive nonlinear control has been receiving
enormous research attention under the increasing demand on higher AFS perfor-
mance. However, existing methods for synthesising adaptive control strategies are
subject to limitations associated with controller design, implementation, and perfor-
mance. First, design of self-tuning controllers requires regression or transformation
matrices that are application dependent and difficult to determine; Second, model-
based controllers require knowledge of the plant and can be sensitive to modelling
errors; Third, model-free controllers that do not require regression matrices are
prone to instability caused by high-gain components. In comparison, some NN
controllers offer better solutions to these limitations and can be a better choice for
AFS, but a lack of solutions to optimal control is also identified. Thus, NOCOS
featuring real-time learning of the changing aeroelastic dynamics and updating
control in an optimal sense accordingly is deemed a potential direction that may
give promising AFS improvement. Nonetheless, none of the available NOCOS
methods are applicable to AFS due to limitations related to stability, application
scope, and real-time implementation.

Concisely, three gaps have been identified and are to be addressed in this project:
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Optimal controllers among the existing methods are susceptible to un-modelled
dynamics, while other controllers that are more adaptive to the changing en-
vironments and tolerant to un-modelled dynamics do not provide nonlinear
optimal control. As a whole, these problems have become a critical dilemma

in AFS control synthesis, hindering further improvement of AFS performance.

Existing NOCOS methods are all confined to locally nonlinear systems and
thus not applicable to AFS. Generalisation of NOCOS to globally nonlinear

scenarios is deemed necessary to suit AFS applications;

Existing NOCOS methods are also subject to issues related to stability and real-
time implementation that are operationally undesired for AFS applications,
and there is potential for further improvement. Arising questions of particular
interest are: Could the SPI configuration be further simplified for AFS in the
interests of reliable and efficient real-time implementation? Would a different

form of VFA give a different stability result under the SPI framework?



Chapter 3

Experimental aeroelastic system

This chapter is based on Article-1, which introduces the experimental test-bed
specially developed for active flutter suppression (AFS) tests in Chapters 5 and 6
that follow. The test-bed also sets out the aeroelastic model as well as the associated
parameters used in the AFS controller derivation and synthesis. It is essential that
the test-bed is reliable in providing trustful results, and therefore, this chapter
describes how the VSDS was developed, presents and explains special approaches
taken to ensure reliable performance. The work fulfils the first objective (Page 4) of

the thesis.
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abstract

In this research a two-degrees-of-freedom (2-DOF) virtual stiffness-damping system
(VSDS) is developed to facilitate industrial and laboratory testing of aerofoil aeroe-
lasticity instability. Other existing test-beds in this field rely on elastic elements or
structures to set aerofoil elasticity in tests, which can be costly and inconvenient in
cases of frequent stiffness adjustment across a wide range. A possible alternative is
the VSDS that utilises electric drives to simulate structural elasticity and damping,
as seen in marine and bio-mechanical engineering, which however, cannot be di-
rectly applied to aerofoil aeroelasticity testing (AAT) due to operation requirements
and conditions being different. Therefore, in this study a new VSDS is developed
specifically for AAT. Firstly, the concept of 1-DOF VSDS is extended to 2 DOFs,
with the dynamics coupling between each DOF addressed at the stage of opera-
tion principle determination, by the proposed direct force/torque regulation with
force/torque feedback. Secondly, resolution loss in position/velocity measurement
is identified as a main problem associated with the non-reduction transmission
required, and is solved by a modified extended-state observer (MESO) proposed
for fast position/velocity estimation. Thirdly, system identification and calibration
procedures involved in developing the new VSDS are reduced to minimum through
a robust force/torque tracking controller design, with detailed numerical study on
parametric analysis given. As validated in wind-tunnel experiments the new VSDS
can closely track the desired force/torque and provide satisfactory virtual stiffness

and damping in AAT.
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CHAPTER 3 EXPERIMENTAL AEROELASTIC SYSTEM

3.1 Introduction

Aeroelasticity studies the interaction between aerodynamic loads and elastic bodies
(Fung, 1955). Aerofoil flutter, as typical dynamic aeroelastic instability, can cause
aerofoil structure fatigue and failure. Although advances in computing has allowed
more convenient investigation on various aspects of aerofoil aeroelasticity instability
as seen in many studies (Lee et al., 2005; Lum et al., 2017; Mardanpour et al., 2018;
Price and Keleris, 1996; Rezaei et al., 2018; Sales et al., 2018; Tang and Dowell, 1993),
experimental approaches remains essential in terms of discovering new phenomena
(Vasconcellos et al., 2016b; Venkatramani et al., 2017, 2018), providing data for
modelling and validation (Abdelkefi et al., 2012; Ghiringhelli et al., 1987; Khalil
et al., 2016; Lum et al., 2017; Popescu et al., 2009; Price and Keleris, 1996; Sedaghat
et al., 2001; Tang and Dowell, 2006; Tang et al., 2004; Tang and Dowell, 1993), as well
as validating active control strategies (Burnett et al., 2016; Farmer, 1982; Lum et al.,
2017; Miller, 1988; O’'Neil and Strganac, 1998). For aerofoil aeroelasticity testing
(AAT), numerous facilities have been built, and well established experimental test-
beds include the benchmark active control technology (Farmer, 1982), active flexible
wing wind-tunnel prototype (Miller, 1988), nonlinear aeroelastic test apparatus
(O’Neil and Strganac, 1998), and the newly developed Lockheed Martin X-56A
demonstrator (Burnett et al., 2016). Development and use of these existing test-
beds can be costly and time-consuming when a wide range of stiffness needs to
be investigated, requiring different materials or structures for scaled prototypes
(Burnett et al., 2016; Miller, 1988) or different physical springs for typical aerofoil
sections (Farmer, 1982; O’Neil and Strganac, 1998). A more efficient and low-
cost alternative arose in marine engineering, using electric drives to physically
simulate the effects of springs and dampers. The pioneer work was an apparatus
for investigating the forces acting on marine cables due to vortex induced vibrations
(VIV) (Hover et al., 1997, 1998). It utilises position control to mimic the dynamic

behaviours of the subject under the effects of virtual stiffness and damping, with
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the reference position trajectory computed from force measurement in real time. In
the work of Hover et al. (1997), for the operation frequency range of interest, the
position control loop was well tuned and brought less than 1 degree phase lag in
displacement, but an additional 12 degrees phase difference between displacement
and force was introduced by signal filtering. The phase loss due to signal filtering
was reduced to 5 degrees in a later work (Hover et al., 1998). For the study of wake
induced vibrations, a similar platform was built and used in Derakhshandeh et al.
(2015), where the additional phase lag resulted from signal filtering was further
reduced to less than 4 degrees for 0.9 Hz vibration frequency. Another direction
towards replacing physical springs with virtual stiffness and damping does not
require force measurement and position control, and thus minimises the delay in
generating commanded forces, by deriving an explicit formula for direct calculation
of the required motor torque output according to the desired stiffness and damping
(Lee and Bernitsas, 2011; Lee et al., 2011; Sun et al., 2015). Satisfactory performance
is achieved with extensive system identification procedures and calibration (Lee and
Bernitsas, 2011; Lee et al., 2011; Sun et al., 2015). Some other related studies can also
be seen in bio-mechanical applications, with corresponding purposes, requirements,
and operation conditions being much different (Kelly, 2013). For unified naming
and convenience of reference hereinafter, these approaches are collectively termed

as the “virtual stiffness-damping system’ (VSDS). It is worth noting that

* The existing VSDSs are of one degree-of-freedom (DOF) whereas at least two
DOFs are required to capture the dynamics of an aeroelastic system. The
coupled dynamics between each DOF is one of the concerns to be addressed

in developing a 2-DOF VSDS for AAT;

* Reduction transmission such as lead-screw drive and reduction gearbox are
commonly used in existing VSDSs, where the tendency of back-driving by
external loads is low or none. This however, is not preferred in AAT, where

back-driving is desired to allow easy perturbation of each DOF by aerody-
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namic loads as one of the flutter initiation/triggering conditions. Accordingly,
potential problems arising from the use of non-reduction transmission on

VSDS should be identified and solved.

* Power loss due to inertial loads and various frictions across the entire trans-
mission of VSDSs requires proper treatments, which affect position controller
design and tuning (Derakhshandeh et al., 2015; Hover et al., 1997, 1998) or
derivation of explicit force generation formulas (Lee and Bernitsas, 2011; Lee
et al., 2011; Sun et al., 2015). In particular, frictions are generally modelled
and estimated via offline system identification procedures, and can be inac-
curate in the presence of uncertainties and parameter change over time or
under different operation conditions. In the interests of enhanced robustness
and ease of maintenance with simplified system identification and calibration

procedures, a new VSDS capable of online estimation of power loss is desired.

Therefore, in this study a new VSDS is developed specifically for AAT, address-
ing the aforementioned three main concerns, as major technical contributions. Some
preliminary works can be found from Tang et al. (2019a,b). In the following: Sec-
tion 3.2 briefly describes a 2-DOF aeroelastic model on which the new VSDS is
based. Section 3.3 presents the proposed operation principle, mechanical design,
and control methodology for the new VSDS to tackle coupled dynamics, solve
problems associated with non-reduction transmission configuration, and address
requirements on enhanced robustness and ease of maintenance with simplified
system identification and calibration procedures. Section 3.4 gives detailed nu-
merical analysis of the VSDS controller in terms of system sensitivity and stability
robustness against different controller parameters for satisfactory implementation.
Section 3.5 describes how the new VSDS was experimentally validated. Conclusions

are drawn in Section 3.6.

32



3.2 Aeroelastic model

2L

he

60/4

Je

N Midchord

AR

Aerodynamic Centre —/ % Chord
Elastic Axis

Centre of Gravity

L

‘he

Figure 3.1: Schematic diagram of a 2-DOF aeroelastic system.
3.2 Aeroelastic model

Aeroelastic flutter, viewed from a rigid aerofoil section attached to elastic elements,
can be described by oscillations in plunge and pitch DOFs. The corresponding
2-DOF aeroelastic system is illustrated in Figure 3.1 and in this study we consider

a subsonic-regime model (O’Neil and Strganac, 1998) with an equation of motion

taking the form of

mg +cq + kq + F. = Fyepo, (3.1)
with
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where geometry and force related parameters and variables are defined in Figure 3.1,

and other terms are defined as

qn, ga: translational/angular displacements;

My aerofoil mass;

I;: aerofoil rotational inertia about its elastic axis;
ky, k. stiffness coefficients;

cp, Cq: damping coefficients;

Ls: aerofoil span;

Cr lift coefficient at the aerofoil aerodynamic centre;

Cu: moment coefficient at the aerofoil aerodynamic centre;
Us:  airflow velocity;

p: air density.

As can be seen from Eq. (3.1), F; and F)s are modelled by quasi-steady aero-
dynamics. Using a fully unsteady aerodynamic model is also possible, without
affecting the VSDS methodology developed in this chapter. In addition, by special
design, the proposed VSDS also suit cases where the 2-DOF aeroelastic model
is extended by more DOFs to account for actuator dynamics, such as the 3-DOF
aeroelastic model in Prime et al. (2010) or a 4-DOF one in Prime (2010). Explanations
are given in Sections 3.3.1 and 3.3 .4.

Denote the forces resulted from structural stiffness and damping by F;. Then

according to Eq. (3.1), there is

F(q,q) = cq + kq. (3.2)

In the absence of physical springs, F;(q, ) can be generated by a VSDS instead,

to be detailed next.
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3.3 Virtual stiffness-damping system

3.3.1 Operation principle determination

The VSDS for AAT is required to have at least two DOFs, and the first concern to be

addressed is the dynamics coupling between each DOEF, as mentioned in Section 3.1.

By looking at Equation (3.1), it is clear that the plunge and pitch aeroelastic
dynamics are coupled in displacements (g, and g,). If position control via force
teedback (Derakhshandeh et al., 2015; Hover et al., 1997, 1998) is implemented to
deliver equivalent virtual stiffness and damping, the reference position needs to be
calculated in real-time, where the coupling from inertial and aerodynamic terms
must be properly treated. A direct result is that the accuracy of simulated stiffness
and damping is sensitive to modelling errors. Note that Eq. (3.1) approximates
general nonlinear aeroelastic systems in a second-order sense, which means resulted
modelling errors can be the direct cause of inaccuracy in virtual stiffness and

damping delivered by position control.

It can be seen from Eq. (3.1) that the sum ¢4y, + kg5, and c,4, + kaq4 (see Eq. (3.2)
for the corresponding matrix form), each considered as a single variable, are mu-
tually independent between the two DOFs. If the stiffness and damping of the
aerofoil structure are physically simulated by taking direct control on corresponding
force/torque generation according to the two independent sums, then subsequent
mechanical design and control synthesis will not be affected by the dynamics
coupling in plunge displacement and pitch angle, and thus not affected by the aero-
dynamic model used (more details follow in Section 3.3.4). In this case it means, the
quasi-steady aerodynamic model employed in this chapter can be simply replaced by
a fully unsteady aerodynamic model if needed. Moreover, the number of DOFs does
not affect the effectiveness of this VSDS methodology since force/torque control
is governed by Eq. (3.2) and irrelevant to the additional DOFs that model aerofoil
actuator dynamics. To allow direct force/torque control according to Eq. (3.2), the

computed force/torque control without the need for force/torque feedback (Lee
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and Bernitsas, 2011; Lee et al., 2011; Sun et al., 2015) fits.

On the other hand however, to meet the requirements on enhanced robustness
and ease of maintenance with simplified system identification and calibration
procedures, it is desired to close the control loop with force/torque measurement
feedback. This drives the VSDS operation principle into a new direction — direct
force/torque regulation with force/torque feedback. Nevertheless, the additional
phase lag between displacement/velocity and force/torque becomes another rising
concern that requires special attention in subsequent control system development

(to be quantitatively detailed at the implementation stage in Section 3.5).

3.3.2 Mechanical design

Following the operation principle proposed in Section 3.3.1, a new VSDS prototype
is developed in this study. An overview of the computer-aided-design (CAD) model
is given in Figure 3.2, where the setup is intended for airflow going along the X axis
while the plunge-DOF path and pitch-DOF axis are aligned with the Y and Z axes,
respectively. Structural details of the VSDS are shown in Figure 3.3. The plunge
and pitch DOFs are each driven by an electric motor with an embedded encoder
for position feedback. Motor shaft rotation is converted to linear displacement for
the plunge DOF via two pairs of synchronous-belt transmission, and the sliding
carriage (on roller bearings) can travel along a pair of parallel linear rails. It is worth
noting that in real-world scenarios where flutter and active control are considered,
the displacement and velocity of a certain point of interest on actual aerofoils can
also be obtained from accelerometers, strain gauges, or laser measurements.

To allow back-driving with least resistance so that the plunge DOF can be
freely perturbed by aerodynamic loads, speed amplification instead of reduction
is introduced via pulleys P1, P2, and P3 as arranged in Figure 3.3(a). Similarly,
the pitch-DOF motor is directly connected to the pitching shaft (elastic axis) of the
aerofoil without any speed reduction mechanism (Figure 3.3(b)). As discussed in

Section 3.1, this transmission configuration is a first trial for VSDS in the field of
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Figure 3.2: Overview of the CAD modelling of the new VSDS prototype.

AAT and hence associated potential problems need to be identified and addressed

(to be covered next in Section 3.3.3).

3.3.3 Velocity measurement and estimation

It has been known that velocity measurement using encoders suffers from loss of
precision at low velocities alternating around and crossing zero, and the problem is
more obvious for low-resolution encoders (Lorenz and Van Patten, 1991; Petrella
et al., 2007; Shi et al., 2015). In the case of the proposed VSDS, the non-reduction
transmission on the other hand also results in some extent of resolution loss (achiev-
able resolution being 0.2mm for plunge DOF and 0.18 degrees for pitch DOF) despite
high-resolution encoders used. This leads to imprecise measurement of low veloci-
ties. Some possible remedies to obtain improved velocity measurements are given
in Lorenz and Van Patten (1991), Petrella et al. (2007), and Shi et al. (2015), which

however, are not ideal solutions to the proposed VSDS due to the dynamics coupling
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17, pitch-DOF motor (b) Pitch DOF
(perspective front view)
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Figure 3.3: Structural details of the new VSDS prototype.

in plunge/pitch displacements. Motivated by the concept of the extended-state
observer (ESO) (Han, 2009) in applications with strong nonlinearities (Chang et al.,
2015; Erenturk, 2013; Herbst, 2016; Li et al., 2014; Yang et al., 2018; Yuan et al., 2017),
we derived a modified extended-state observer (MESO) for velocity estimation. Let

¢ = q, %, = 4. Then Eq. (3.1) can be rewritten as

% =,
(3.3)
¥ = m_l(Faero —F — Cq - kQ)/
Considering the presence of modelling errors, we have
% =,
(3.4)

¥, = F (8, %),
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3.3 Virtual stiffness-damping system

where

F(ﬂlz 192) = mil (Paero —F. — Cq - kq) + (:(f, v, 192)/

with {(t, 91, %) containing un-modelled dynamics.
Let ¢, 8>, and @3 denote the estimate of #;, #, and F (8, 9») respectively, and
ey = B — g. The MESO for Eq. (3.3) is constructed as

(

{91 = 192 — p1éy,

by = by — pp——22
2 —=U3 — Por—F/——

\Jeseg+1 (3.5)
- ¢

3
1/6;1;8194- 1

where p; € R, p, € RT, and p3 € R" are design parameters of choice.

The use of MESO can introduce phase lag between position/velocity measure-
ments and estimations. As to be covered in Section 3.5, the induced phase lag can be
minimised by carefully adjusting the design parameters and do not have noticeable

negative impact on VSDS performance.

3.3.4 Force/torque measurement and control

For force/torque measurement, a 6-axis force/torque transducer (ATI® Mini40) is
mounted between the pitching shafts of the VSDS and the aerofoil test section, with
its Z axis aligned with the Z axis (pitching axis) of the CAD model. Under this
arrangement, the aerofoil body and its pitching shaft together are considered as one
whole rigid body, the total mass of which is m, according to Eq. (3.1).

With the force/torque transducer regarded as an independent rigid body, the
plunge DOF can be considered as a multi-body system illustrated in Figure 3.4(a),
which has the same reference frame as Figure 3.1. Corresponding forcing diagram

on isolated multiple bodies is given in Figure 3.4(b). Accordingly,
Maly + Frina = FL, (3.6)
mshin + Frin2 = Frins, (3.7)
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mg Friwe=—— m, [—FL
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(a) Reference frame (b) Forces on isolated bodies

Figure 3.4: The VSDS plunge DOF as a multi-body system.

Myspsn + FL-f + Frin1 = Fmotor, (3.8)
Fin1 = Froin2, (3.9)
Fi in3 = Fr-in4, (3.10)

where Fyot0 is the translational force (tension) on the synchronous belt B1 with
Pulleys P1 and P2; F ¢ is the total equivalent friction along the entire plunge-DOF
power transmission from motor output to the sliding carriage, consisting of viscous,
Coulomb, and Stribeck frictions; F;_;,1, Fi-inp, Fr-in3 and Fj_j,4 are internal forces
defined according to Newton's 3" Jaw of motion; m, is mass of the force/ torque

transducer, and m,, is the equivalent mass of the plunge-DOF transmission.

VSDS

Let ky,, ¢, ks, and ¢, denote the coefficient of simulated virtual stiffness and

damping of respective DOFs. Comparing Egs. (3.1) and (3.6) gives
Fy ina = —Cyh — kyh. (3.11)

Similar forcing applies to the pitch DOF (related forcing diagram and equations

are not repeated herein) and we have
Fating = Cafa + Iza’]a; (3.12)
where Fjpj,4 is the internal torque that contributes to

Infa + Fpting = Fm- (3.13)

40



3.3 Virtual stiffness-damping system

Let F; & [—Fina  Fupeing) - Then writing Egs. (3.11) and (3.12) in matrix form

yields

E(q,4) = &+ kq, (3.14)

where ¢ = diag(¢y, ¢,) and k = diag(ky, k,)-

According to the structure of the force/torque transducer together with Egs. (3.6)
and (3.13), force/torque measurements closely take the value of F;. Note that k
and ¢ need not be explicitly approximated, and properly controlling the motor
torque can make F; — F;, as suggested by Eq. (3.8). This means the VSDS control
system is decoupled from aerodynamic terms and thus not affected by the types of
aerodynamic model used. Moreover, it can also be seen that increasing the number of
DOFs to account for actuator dynamics does not have any impact on the effectiveness
of the proposed method. Note that precise tracking of the trajectories of F; requires
correct knowledge and proper compensation of power loss caused by frictions
as well as other un-modelled dynamics and exogenous disturbances. Without
force/torque feedback, extensive system identification procedures are necessary
(Lee and Bernitsas, 2011; Lee et al., 2011; Sun et al., 2015). To meet requirements on
enhanced robustness and ease of maintenance with simplified system identification
and calibration procedures, the total power loss can be dynamically estimated online
by evaluating F; against reference F;. For this purpose, the VSDS control system is

proposed as in Figure 3.5.

Accurately estimating power loss due to inertial loads and mechanical frictions
has been shown challenging (Lee and Bernitsas, 2011; Lee et al., 2011; Sun et al.,
2015), and this also raises high requirements to the VSDS controller. To assist VSDS
controller synthesis, dynamics of both DOFs of the VSDS prototype were obtained
via black-box system identification with voltages as inputs and force/torque mea-
surement F; as outputs. Chirp signals of 2 to 5 Hz were used to explore up to 5% and
60% rated capacity (sufficient for required force/torque) of pitch- and plunge-DOF

motors, respectively. Estimated models are in state-space linear time-invariant form
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— Equation (3.2) MESO Encoders

Figure 3.5: Schematic diagram of the proposed VSDS control system.

as

x = Asx + Bsu,
(3.15)

FS - Csx _|— Dsu,

where x € R™ contains n, system states; F; € R"F contains 7, measured outputs;
u € R™ contains n, control inputs; A; € R ", B; € R"™*" C; € R"*" and
D, € R"F*"™« are system matrices.

Power loss due to inertial loads and mechanical frictions are partially captured
in the identified models (Table. 3.1). However, modelling accuracy is insufficient
for direct force/torque regulation without force/torque feedback, as the system
identification procedures involved are reduced to minimum compared with those
in Lee et al. (2011), Lee and Bernitsas (2011), and Sun et al. (2015). Note that
modelling errors and other types of disturbances generally affect a system in the
form of unknown non-control inputs (collectively termed as ‘unknown inputs’).
For satisfactory control, these unknown inputs need to be properly treated, and

Eq. (3.15) can be reformulated as

(3.16)
FS - Csx,

where d € R contains n; unknown inputs perturbing the system, and B; € R™*"

is the unknown-input distribution matrix.

42



3.3 Virtual stiffness-damping system

Table 3.1: Experimentally identified dynamics of the VSDS prototype.

DOF Matrices of System Dynamics I:/lt
A, B, ¢ b ™
T
—8.791 364 45.5 25.53
Plunge 0 93.88
—273.8 —165.9| |29.19 3.903
T
. 18.67 —464 5823 0.4412
Pitch 0 94.04
429.1 -716.3 7501| |—0.0669

Since the models in Table. 3.1 are controllable, observable, and on the imaginary
axis there is no zeros, according to She et al. (2008), an equivalent of d exists which
enters the system via B;. Therefore, system Eq. (3.16) is equivalent to

= Ax+Bs (u+d,), -

FS - Csx,

where d. € R" contains the equivalent unknown inputs.

As discussed in Section 3.2 and as can be seen from Figure 3.5, the VSDS needs
to generate F;(g, ) in the absence of physical springs. Hence, it is a force/torque
tracking problem, where the reference trajectories F;(q, §) change in real time with
respect to g and 4 in accordance with Eq. (3.2). To deal with transmission power-loss,
the linear-quadratic-Gaussian (LQG) tracking control enhanced by unknown-input
estimation (UIE) as in Tang et al. (2016) is employed for the VSDS prototype, given
the existence of an equivalent system as in Eq. (3.17). The controller has a structure
illustrated in Figure 3.6, which consists of a standard LQG tracking component and
a UIE add-on. The LQG control provides nominal force/torque tracking, while the
UIE estimates and compensates transmission power-loss. Detailed composition of
the controller, without distinguishing between specific DOFs, is given below in a

general multiple-input multiple-output form.

The total control u is
u=1u.—d, (3.18)
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Figure 3.6: Schematic diagram of the UIE-LQG controller.

where u, is from the LQG component for trajectory tracking, and d, is the estimated
equivalent power loss.

The nominal control u. takes the form of
u, = —Ky® — Kyxy + K Fs(q,9), (3.19)

with

iy =F(q,9) — F, = FE(q,9) — Csx, (3.20)
where K, € R"™*"x K, € R"™*"F and K F€ R">*"F are gains of the LQG tracking
control which can be selected following standard LQG design procedures (Anderson

and Moore, 1990).

The power-loss estimation d, is obtained via

de — ljgv + Kd (FS - ﬁS) ’ (3.21)
with
Xr = Afxr+ Bed,,
= Agxs + Byd, 622)
dez} — Cfo,
and
&:Asx—f—Bsuc—I—L(FS Ps),
(3.23)
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3.4 Controller analysis

where K; € R™*"* is the UIE gain; F, contains estimated system outputs; A; € R"/*"f,
Bf e R 1 and C r € R'*"f are matrices of a low-pass-filter-characterised subsys-
tem (Ag, By, Cr) with ny states; L € R"+*1 is the state observer gain; £ contains
estimated system states.

The UIE gain K; can be calculated via linear-quadratic optimisation based on

the dynamics of states estimation:

ey = (As - Lcs)ex — BsK;Csey + ey,

(3.24)
e, = Csey,
where e, = F; — E; and e; = d, — d».
Upon e; ~ 0, we have
éx — (AS - LCS - BstCs)ex. (3.25)

For observable systems, the pair (As — LCs, C;) is observable. Under duality,

there exists K, = (BSKd)T that minimises

V= /0 {eEQdex + edTdeedv} dt, (3.26)

with Q; € R™*™ and R; € R"F*"F being symmetric positive-definite weighting
matrices, and e;, = —K;Csey.
Therefore,

K; = BIK], (3.27)

with Bf being the Moore-Penrose pseudo inverse of Bs.
As can be seen from Egs. (3.21) to (3.23), the subsystem (A 7B, C f), UIE gain K,

and state observer gain L are major design parameters related to the UIE component.

3.4 Controller analysis

System sensitivity and stability robustness, being crucial to estimation and com-
pensation of transmission power-loss, are major concerns in controller synthesis for

the VSDS prototype in AAT. Although brief guidelines for selecting UIE related

45



CHAPTER 3 EXPERIMENTAL AEROELASTIC SYSTEM

parameters are available in literature, there is lack of understanding on the influence
of these design variables on system sensitivity and stability robustness. As one of
the technical contributions, numerical studies on controller parametric analysis are
presented in this section.

As can be seen from Egs. (3.21) to (3.23), the subsystem (A £ By, C f), UIE gain K,
and state observer gain L are major design parameters related to the UIE component.

Given the single-input single-output (SISO) feature of VSDS plunge/pitch-DOF
dynamics (Table. 3.1), the following analysis is performed on an SISO basis.

In frequency domain, Eq. (3.17) takes the form of
Fs(s) = Py(s) [u(s) +de(s)], (3.28)

where P, (s) is the nominal model of the plunge/pitch DOF.

In this SISO case, any individual tracking trajectory from the set F;(q,4) is
denoted by Fs(s) C F; for convenience in notation.

With Gy (s) denoting the transfer function of the integral action, Eq. (3.19) can

be transformed into
uc(s) = —Ky2(s) — Kypxaw(s) + KrFs(s), (3.29)

with x;,(s) = Gy(s) [Fs(s) — Fs(s)].
By using Eq. (3.29) in Eq. (3.23), and with Fs(s) = 0, there is
2(s) = (sIy, — As + BsKy + LCs) ™" [BsKyyGa(s) + L] Fs(s)
= Gyx(s)F(s), (3.30)

where Gy (s) contains transfer functions from F(s) to £(s).

From Egs. (3.21) and (3.22), we have

A~

dev(s) = Gy (S)dAe(S)r (3.31)

A

de(s) = Gya(s) [Fs(s) — Fs(s)], (3.32)

where
Gf(s) = Cy(sLy, — Af) "' Byde(s),
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3.4 Controller analysis

Gyals) = [1—Gs(s)] "

Based on Egs. (3.18), (3.28) to (3.30), and (3.32), we reach

K.

Fi(s) = Pu(s)[1 4 Hs(s)Pu(s)] 'de(s), (3.33)

where
H;(s) = KyGyx(s) — KwGu(s) + Gya(s) [1 — CsGya(s)] -

Thus, the system sensitivity to unknown inputs (referred to as ‘sensitivity” in
short hereinafter) is

| 1
SsUw) = 1570 (jew) P (jew)’

Yw € [0,400). (3.34)

To allow evaluating sensitivity against different cutoff frequency w. of the
subsystem (Ay, By, Cy), the magnitude of sensitivity with regard to inputs of a
certain natural frequency (i.e., |Ss(jwy)|) is considered. In the analysis, w; = 5 rad/s
is considered, according to the spectrum characteristics of system identification data.

In the presence of uncertainties J(jw), Vw € [0,40), closed-loop stability is
guaranteed if

1
H;(jw) Py (jw)

As it is common that there is little or no priori knowledge about J(jw), a con-

16(jw)| < ‘1 + , Yw € [0, +00). (3.35)

servative choice is to assume (jw) = 1,Vw € [0, +0c0). On this basis, the following
stability robustness index (SRI) is proposed:

1
L+ o7 P, (],w)‘ —1, Vw € [0, +00) . (3.36)

It is worth noting that due to the conservative assumption of é(jw), a negative

SRI = min

SRI is not necessarily a sign of instability. Instead, SRI gives a relative measure on
stability robustness. That is, a larger SRI suggests better stability robustness.
To investigate the effects of using a low-pass filter (LPF) of different orders for the
subsystem (A, Bf, Cy), the following generalised formulation G(s) is considered:
.pZn ﬂmi(Ts)i
Gy(s) = ?;Jr—l)m (3.37)
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. . . | .
where m is the denominator order and p; is the numerator order; a,,; = ﬁ is

the i coefficient of the numerator polynomial; T is the time constant.

Since the closed-loop system is unstable if p, > 1, the analysis herein only
considers cases where m > 1 and p, = 0. This yields LPFs with a unity passband
gain.

Only the plunge-DOF dynamics of the VSDS prototype are used throughout
the analysis, given similar dynamics of both DOFs. LQG parameters exclusive to
UIE are kept unchanged throughout the analysis while the UIE-related parameters
are varied across regions of interest for investigation. Phase lag introduced by the

UIE-LQG controller is to be quantitatively given in Section 3.5.

3.4.1 Low-pass filter cutoff frequency

In this analysis, the UIE component takes parameters of L = 9.49, 1.07]T, K; = 6.64,
and 1 <m <4, Vm € Z, with the LPF cutoff frequency w, being varied. Figure 3.7
shows that sensitivity decreases with increased w., when w, is times higher than
wy. A first-order LPF requires the least gap between w; and w, to achieve useful
sensitivity, while a fourth-order LPF introduces a mild peak in sensitivity, and w,
needs to be 3 to 4 times higher than w; for reduced sensitivity. In Figure 3.8, similar
stability robustness can be observed among the four filters for w, < 10% rad/s,
all showing relatively good stability robustness. But differences start to grow for
we > 10% rad /s, where the LPF of first-order is more sensitive to the increase of
w¢, having an earlier drop of stability robustness compared with LPFs of higher
orders. Figures 3.7 and 3.8 indicate that a first-order LPF can be a preferred choice
from the sensitivity perspective, and is most suitable for low-frequency uncertainties
in the interests of stability robustness. Figures 3.7 and 3.8 also recommend that
we = 100 rad/s is a relatively better choice that balances sensitivity and stability
robustness for the case under discussion. Therefore, w. = 100 rad/s is used in the

subsequent analysis.
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Figure 3.7: Sensitivity at w; = 5 rad/s against LPF cutoff frequency.
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Figure 3.8: SRI against LPF cutoff frequency.

3.4.2 Unknown-input estimation gain

To study the effect of the UIE gain, K; is considered as a variable while other
parameters are set as L = [9.49, 1.07]", w. =100 rad/s, and 1 < m < 4, Vm € Z.
It is straightforward to see from Figure 3.9 that larger K; contributes to smaller
sensitivity, delivering better rejection of unknown inputs. However, a dip can been
seen on each of the SRI curves in Figure 3.10, indicating a weak stability robustness
region, which should be avoided in design. K; to the left of this potentially unstable
region, being too small to make the UIE component effective, is not preferred. A
larger K; beyond the SRI dip can be considered in UIE design, as the stability
robustness recovers to an acceptable level. Hence, Figures 3.9 and 3.10 both support
the choice for a larger K;. LPFs of different orders do not have significant impact on
K, selection from the stability robustness perspective, although some shift of the
dip on the SRI curve can be seen between LPFs of different orders. In the interests
of better estimation and compensation of transmission power-loss, a first-order LPF

can be considered for the relatively smaller sensitivity achieved with the same K.
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Figure 3.9: Sensitivity at w; = 5 rad/s against UIE gain.
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Figure 3.10: SRI against UIE gain.

3.4.3 State observer gain

With parameters K; = 6.64, w. = 100 rad/s, and 1 < m < 4, Vm € Z, the influence
of L is evaluated. As can be seen in Figure 3.11, the sensitivity remains at a low level
and is insensitive to variation of L in the region where ||L||, € (0,10%], favoured for
estimation and compensation of transmission power-loss. L within this range is also
acceptable in terms of stability robustness, as shown in Figure 3.12. Continuously
increasing L not only weakens unknown-inputs rejection capability with raised
sensitivity (Figure 3.11) but can also brings instability issues as indicated by the dip
around || L||, € [10% 10°] (Figure 3.12). Although stability robustness returns to an
acceptable level with much larger L, L within this high-value range is nevertheless
undesired in consideration of weak rejection of unknown inputs and increased
computation load. With regard to the effects of the LPF order, it is easy to see from
Figure 3.11 that a first-order LPF appears to be a better choice for the relatively
smaller sensitivity, with stability robustness property similar to LPFs of higher

orders.
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3.5 Experimental validation

To validate the new VSDS prototype in providing virtual stiffness and damping
to the aeroelastic system, wind-tunnel experiments were conducted, and the per-
formance of the generated virtual structural forces F; tracking the reference F; is
evaluated. Realisation of virtual stiffness and damping via electric drives is con-
sidered satisfactory if the generated force/torque closely track the reference. The
experimental setup for wind-tunnel testing is shown in Figure 3.13, and correspond-
ing parameters of the 2-DOF aeroelastic system under the experimental setting are
listed in Table. 5.1.

Two test scenarios are presented in this paper, with corresponding settings listed
in Table. 3.3. The numerical values of the eigenfrequencies of the VSDS (with the
aerofoil section mounted on) and those of the overall aeroelastic system are given in
Table. 3.4. In each scenario, comparisons are drawn between standard LQG tracking
control (by disconnecting the UIE component) and the UIE-LQG control.

In experiment, the VSDS controller ran at 1000 Hz while readings were taken
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(1 — pressure transducer connected to a Pitot tube; 2 — airfoil; 3 — wind
tunnel testing duct; 4 — I/O board; 5 — dSPACE" DS1104 R&D board,;
6 —VSDS; 7-PC, 8 — power.)

Figure 3.13: Wind-tunnel experiment setup.

Table 3.2: Parameters of wind-tunnel experiment setup.

Parameters Values Parameters Values
L. 0.0753 m Ch, Ca, ki, ka See Table. 3.3
Lg 0.26 m Mg 0.851 kg
ra 0.0329 m I 2.431 x 1073 kg-m?
T —0.0685 m Cra 6.573
0 1.225 kg/m3 Chr-a 0

Table 3.3: Settings of wind-tunnel test cases.

Case Flutter Boundary Airflow Speed Stiffness & Damping
ki, = 50 + 300h> N/m
k, = 0.3 + 3092 Nm/rad

1 13.92m/s 14.8 m/s
cp =14 kg/s
¢, = 0.042 kg-mz/s
kn, cn, ca: Test 1
2 16.02 m/s 16.8 m/s hs Chy Cqat same as Tes

k, = 0.77 + 302 Nm/rad

from the force/torque transducer and encoders at 5000 Hz. The force/torque
transducer used on the VSDS features high signal-to-noise ratio with near-zero noise

distortion. This allowed the use of a simple digital averaging filter with a sample
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Table 3.4: Numerical values of the eigenfrequencies of the VSDS (with aerofoil
mounted on) and overall aeroelastic system.

VSDS (with Aerofoil) Aeroelastic System
Plunge Pitch Plunge Pitch
Orad/s 8.06 rad/s Orad/s 1191 rad/s
2 Orad/s 14.71rad/s Orad/s 16.20 rad/s

Case

Table 3.5: VSDS controller parameters.

K, Ko K L Ki  Gg(s)
T
627 398] —3.16 04 (949 107 6.64 iy
T
1
[4.39 —0.74} ~3.16 10.08 [7.33 2.19} 434 ok

size of 5, which gave finer force/torque readings while only induced 0.4 degree

phase delay for the presented scenarios in experiments.

Given the MESO being driven by position error, proper velocity estimation
can be verified by comparing measured and estimated positions. The MESO was
fined tuned to give fast estimation with the phase lag minimised to less than 0.5
degree in experiments, and corresponding parameters were p; = 90, p, = 20000,

and p3 = 80000.

The UIE-LQG controller was synthesised following the analysis in Section 3.4,
with parameters given in Table. 3.5. The total additional phase difference introduced
by the VSDS control system, between actual displacement/velocity and generated

force/torque, was found to be 4 degrees at maximum in tests.

Aerofoil plunge and pitch responses in the two test scenarios are shown in
Figures 3.14 and 3.15. According to Egs. (3.4) and (3.5), proper velocity estimation by
MESO can be verified using position information only. To demonstrate, Figure 3.16
shows a close-up of position/velocity MESO estimation for UIE-LQG control in
Case 1, where conventional velocity approximation using a filter is also presented.
Subject to the limited resolution available, the filter was designed as {7557 to

provide relatively acceptable velocity approximation, which however, introduced a
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Figure 3.14: Aeroelastic responses in Case 1 tests.
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Figure 3.15: Aeroelastic responses in Case 2 tests.

significant amount of phase lag compared with MESO estimation, as can be seen in
Figure 3.16. It can also be observed that position estimations using MESO closely
follow encoder measurements, indicating fast and proper velocity estimation by
MESO.

Note the different aeroelastic responses under the same experiment settings
with different controllers, causes of which are revealed in Figures 3.17 to 3.20.
Significant differences between measurements and reference tracking trajectories
can be observed in tests where standard LQG control was applied (Figures 3.17

and 3.19). As a result, flutter failed to initiate under the LQG control (Figures 3.14
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Figure 3.16: Position/velocity estimation using MESO (Case 1, UIE-LQG).

and 3.15), although the airflow speeds in tests were higher than corresponding
flutter boundaries. In comparison, the measured plunge-DOF forces and pitch-DOF
torques strictly follow the desired trajectories under the UIE-LQG control, with
tracking deviations barely identified (Figures 3.18 and 3.20). This enabled successful
initiation and development of flutter (Figures 3.14 and 3.15).

The impact of the additional phase lag from displacement/velocity measurement
to force/torque generation can be examined by calculating the equivalent stiffness
and damping achieved in experiments (using data of position/velocity estimations
by MESO and force/torque measurements by transducer). A maximum of 0.68%
error is found for all stiffness and damping coefficients in the two test scenarios.
Since the phase delay caused by MESO estimation is less than 1/8 of that caused
by the UIE-LQG controller, its addition to the total error of equivalent stiffness and
damping is deemed negligible.

It can be seen from the experiment results that:

¢ Careful design of the MESO can mitigate the problem of resolution loss due
to using non-reduction transmission, with the additional phase lag between
actual displacement/velocity and estimated ones minimised and the associated

negative impact being negligible;
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Figure 3.17: VSDS force/torque under LQG control in Case 1 tests.
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Figure 3.18: VSDS force/torque under UIE-LQG control in Case 1 tests.

* Power loss due to inertial loads, mechanical frictions, and other exogenous
disturbances and un-modelled dynamics, if not properly treated, have consid-

erable impacts on the performance of the new VSDS in AAT;

* The power loss, in the form of equivalent unknown inputs, can be effec-
tively estimated and compensated by the UIE-LQG controller, with superior
force/torque tracking achieved. The proposed approach allows simplified

system identification and calibration procedures.

* The maximum of 4 degrees additional phase lag experienced in experiments,
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Figure 3.19: VSDS force/torque under LQG control in Case 2 tests.
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Figure 3.20: VSDS force/torque under UIE-LQG control in Case 2 tests.

introduced by the VSDS control system, showed minor impact on the overall

realisation of virtual stiffness and damping for AAT.

3.6 Conclusions

Motivated by the disadvantages of conventional test-beds for AAT and limitations of
existing VSDSs in other fields, a new VSDS is developed in this study specifically for
AAT. The proposed new operation principle based on direct force/torque regulation

with force/torque feedback effectively addresses dynamics coupling between plunge
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and pitch DOFs without the need for sophisticated aeroelastic modelling. Resolution
loss in velocity measurement is identified as a main problem associated with the first
trial of non-reduction transmission on the new VSDS prototype and can be solved by
the proposed MESO given that parameters of the MESO are carefully tuned to min-
imise the additional phase lag between estimated displacement/velocity and actual
ones. Based on the new operation principle, the proposed VSDS control system with
systematically synthesised UIE-LQG control enables superior force/torque tracking
with enhanced robustness and significantly reduces system identification and cali-
bration procedures in VSDS development, although with some phase lag introduced.
The phase lag from the actual displacement/velocity to the generated force/torque
due to the involvement of the closed-loop force/torque tracking controller, is found
to cause minor error in the realised virtual stiffness and damping, which are shown
acceptable. In general, as confirmed in wind-tunnel experiments, the developed new
2-DOF VSDS prototype can provide satisfactory realisation of virtual stiffness and
damping to facilitate industrial and laboratory AAT. The developed VSDS also has
the potential for other industrial applications involving oscillatory tests that require
frequent change of stiffness and damping settings. Further reduction of phase lag

introduced by the control system can be a possible direction of future work.
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Chapter 4

Nonlinear optimal control online

synthesis

To derive active flutter suppression (AFS) controllers that accomplish the thesis aim,
the two practical problems of the existing nonlinear optimal control online synthesis
(NOCOS) algorithms (see Section 1.1) are required to be solved first. This chapter,
based on Article-2, addresses the NOCOS algorithm structure problem under the
locally nonlinear setting, by proposing a novel NOCOS scheme that is compact
in configuration without compromising closed-loop stability. Detailed derivation,
stability analysis, and numerical verification of the proposed compact NOCOS
scheme for locally nonlinear systems are given, completing the second objective

(Page 4) of the thesis.
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abstract

This study proposes a modified value-function-approximation (MVFA) and investi-
gates its use under a single-critic configuration based on neural networks (NNs) for
synchronous policy iteration (SPI) to deliver compact implementation of optimal
control online synthesis for control-affine continuous-time nonlinear systems. Exist-
ing single-critic algorithms require stabilising critic tuning laws while eliminating
actor tuning. This paper thus studies alternative single-critic realisation aiming
to relax the needs for stabilising mechanisms in the critic tuning law. Optimal
control laws are determined from the Hamilton-Jacobi-Bellman equality by solving
for the associated value function via SPI in a single-critic configuration. Different
from other existing single-critic methods, an MVFA is proposed to deal with the
closed-loop stability during online learning. Gradient-descent tuning is employed
to adjust the critic NN parameters in the interests of not complicating the problem.
Parameters convergence and the closed-loop system states stability are examined.
The proposed MVFA-based approach yields an alternative single-critic SPI method
with uniformly ultimately bounded NN parameter convergence and asymptotic
closed-loop system states stability throughout the process of online learning without
the need for stabilising mechanisms in the tuning law for critic NN. The proposed

approach is verified via simulations.
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CHAPTER 4 NONLINEAR OPTIMAL CONTROL ONLINE SYNTHESIS

4.1 Introduction

Nonlinear optimal control generally involves the determination of control laws that
minimise the associated performance cost, where the Hamilton-Jacobi-Bellman (HJB)
equality (Bellman, 1957) or its nonlinear variations are to be solved, or where an
inverse approach without solving the HJB equation (Lopez et al., 2017) may apply.
In our study, the discussion is focused on the former, where the HJB equality and
its variants, being partial differential equations that are nonlinear, are difficult to
be solved analytically. Practical methods to solve the HJB equation and its variants
are provided through approximation methods, one class of which is the widely
studied adaptive/approximate dynamic programming (ADP) (Werbos, 1974). ADP
techniques are basically iterative approaches built upon the concept of reinforcement
learning (Sutton and Barto, 1998), which approximates optimal control laws as well
as corresponding value functions through policy evaluation and improvement,
where a “policy’ is referred to as a control law. Some good reviews are provided by
Wang et al. (2009), Jiang and Jiang (2013), and Wang et al. (2017a). To implement the
ADP, the value function in the HJB equation needs to be properly structured, and
neural networks (NNs) are ideal candidates given their universal approximation

properties (Hornik et al., 1989).

Offline ADP has been an effective and useful tool for handling optimal control
in various challenging problems, including nonaffine systems (Luo et al., 2016a; Mu
et al., 2017; Wang et al., 2012), actuator saturation (Abu-Khalaf and Lewis, 2005;
Heydari and Balakrishnan, 2013; Luo et al., 2015), unknown system dynamics (Li
et al.,, 2017; Luo et al., 2016a, 2014, 2015; Mu et al., 2017, 2018; Wang and Liu, 2013;
Wang et al., 2012; Wei et al., 2017; Zhao et al., 2015a), fixed final time (Heydari and
Balakrishnan, 2013), finite approximation error (Wei et al., 2014), finite horizon (Mu
et al., 2018), algorithm simplification (Heydari, 2014; Heydari and Balakrishnan,
2013; Wang and Liu, 2013), optimal tracking (Luo et al., 2016a), non-zero initial

condition for value iteration (Wei et al., 2016), and extension to multi-agent system
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applications (Li et al., 2017).

With increasing demands on synthesising optimal controllers in real time, online
ADP has been receiving intensive research attention. Online ADP, in contrast
to offline methods, features real-time synthesis of optimal control policies for
dynamic systems. The iteration procedures performed on a regular- or irregular-
time-interval basis, where the cost function corresponding to an admissible control
being approximated undergoes evaluation before the next iteration commences, can
be characterised as being sequential. These algorithms collect real-time data prior to
batch processing for policy evaluation and policy update at each discrete iteration
under either continuous-time setting (Feng et al., 2015; Jiang and Jiang, 2014, 2015;
Liu et al., 2013b; Vrabie and Lewis, 2009) or in discrete-time domain (Al-Tamimi
et al.,, 2008; Feng et al., 2015; Kiumarsi et al., 2015; Skach et al., 2018; Wei and Liu,
2014). The study by Vamvoudakis and Lewis (2010) proposes an attractive ADP
algorithm, termed as synchronous policy iteration (SPI), where policy evaluation and
policy update are implemented continuously in time and simultaneously. The SPI
theory framework initiated by Vamvoudakis and Lewis (2010) has been enormously
enriched by latest advances in dealing with faster convergence (Bhasin et al., 2013),
actuator saturation (Huang et al., 2017; Kiumarsi and Lewis, 2015; Modares and
Lewis, 2014; Modares et al., 2013a, 2014, 2013b; Yang et al., 2014), completely
unknown dynamics with unknown nonlinear structures (Liu et al., 2013a; Yang
et al., 2014), unknown affine nonlinear systems (Lv et al., 2019, 2016, Modares
et al., 2013a; Na and Herrmann, 2014; Song et al., 2016; Wang et al., 2016; Zhong
et al., 2018), partially unknown dynamics (Bhasin et al., 2013; Kiumarsi and Lewis,
2015; Modares and Lewis, 2014; Modares et al., 2014; Vamvoudakis et al., 2014),
multi-agent systems (Heydari and Balakrishnan, 2014; Jiang and He, 2018; Luy,
2018), optimal tracking (Kiumarsi and Lewis, 2015; Modares and Lewis, 2014; Na
and Herrmann, 2014), relaxation of persistent-excitation condition (Modares et al.,
2014), exponential convergence driven directly by estimation error assuming known

ideal parameters rather than being driven by the H]B error (Lv et al., 2019, 2016; Na
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and Herrmann, 2014), algorithm simplification (Huang et al., 2017; Liu et al., 2013a,
2014; Luy, 2018; Lv et al., 2019, 2016; Na and Herrmann, 2014; Wang et al., 2017b,
2014a, 2017c; Zhang et al., 2013), and disturbances and uncertainties (Huang et al.,
2017; Liu et al., 2014; Lv et al., 2019; Song et al., 2016; Vamvoudakis and Lewis, 2012;
Wang et al., 2014a, 2016).

For stabilisation purpose, most SPI schemes implement separate NNs for the
critic and actor, respectively, each dynamically tuned with a different learning
law. Specifically, actor tuning laws generally contain stabilising terms derived
from Lyapunov stability analysis. To simplify SPI implementation and reduce
computational load, there have been efforts on single-critic approaches where the
same NN is used for both components with the critic NN weights directly passed on
to the actor NN (Huang et al., 2017; Liu et al., 2013a, 2014; Luy, 2018; Lv et al., 2019,
2016; Na and Herrmann, 2014; Wang et al., 2017b, 2014a, 2017c; Zhang et al., 2013).
Further improvements are seen in event-based methods based on the single-critic
configuration (Wang et al., 2017b,c), where the data needed for online learning
are reduced. The instability resulted from direct simplification of the actor-critic
configuration is recognised in Liu et al. (2013a), and critic-NN initial weights need
to be determined carefully by trial-and-error. Guaranteed stability can be achieved
by introducing a stabilising mechanism to the critic tuning law (Huang et al., 2017;
Liu et al., 2014; Luy, 2018; Lv et al., 2019, 2016; Na and Herrmann, 2014; Wang
et al., 2017b, 2014a; Zhang et al., 2013). The stabilising mechanism is generally
a stabilising term derived on the basis of Lyapunov stability, either conditionally
activated upon instability being detected (Huang et al., 2017; Liu et al., 2014; Luy,
2018; Wang et al., 2014a; Zhang et al., 2013), or continuously in effect throughout
online learning (Lv et al., 2019, 2016; Na and Herrmann, 2014; Wang et al., 2017b).
It is interesting to note that the SPI schemes in the aforementioned studies share
a common form of value function approximation (VFA) with an NN of standard
structure directly employed. The question is: Can a different form of VFA deliver

alternative realisation of the single-critic configuration for SPI without introducing
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additional stabilising mechanisms in the NN tuning law?

Therefore, as our major contributions, this study proposes a modified value-
function-approximation (MVFA) and study its feasibility and efficacy as an alter-
native approach under the single-critic configuration. Specifically, the closed-loop
stability are investigated.

In the remainder of the paper: Section 4.2 introduces the problem under discus-
sion together with some preliminaries; Section 4.3 proposes an MVFA for alternative
realisation of the single-critic configuration for SPI; Section 4.4 analyses overall
closed-loop stability during online learning; Section 4.5 gives a simulation example.

Section 4.6 draws conclusions.

4.2 Problem and preliminaries

4.2.1 Problem

The following control-affine nonlinear systems in continuous-time domain is consid-

ered:
x=f(x)+ g(x)u, 4.1)

where x € R™ contains system states of dimension 1y, x(0) = xp, with xy being
a vector containing the initial states; u € R"* collects control inputs of dimension
ny; f(x) € R™ refers to internal dynamics of the system; g(x) € R"**" denotes

distribution dynamics of control inputs.

Assumption 4.1. For the system as in Eq. (4.1), there is f(0) = 0. Given a set 3 C R™
including zero, Eq. (4.1) is Lipschitz continuous with respect to Q, and there exist admis-
sible control u € Z(Q) that can stabilise system (4.1). f(x) as well as g(x) are assumed

known.

Assumption 4.2. There exist || f(x)|| < bf ||x|| with constant by € R™ and ||g(x)|| < b
with constant bg € R (Modares et al., 2014, 2013b; Vamvoudakis and Lewis, 2010).

67



CHAPTER 4 NONLINEAR OPTIMAL CONTROL ONLINE SYNTHESIS

A proper control law u is desired to minimise

Vi(xg) = /OOO [Q(x(t)) + uTRu] dt, (4.2)

which is also known as a cost function with a positive-definite function Q(x) and

symmetric positive-definite weighting R € IR"™«*",

Definition 4.1 (Admissible control). Given a continuously differentiable control set
u(x) € E(Q) with initial condition #(0) = 0, if on Q it stabilises system (4.1) and if
the cost V(xp), Vxg € Q, as given in Eq. (4.2) is finite, then the control is considered

as being admissible (Beard et al., 1997).

4.2.2 Continous-time HJB equation

IfVec, differentiating Eq. (4.2) yields
Q(x) +u'Ru+ (f +gu)'VvV =0, (4.3)

with V(0) = 0 and VV £ 218 ¢ R,
The control that minimises Eq. (4.2) for the same initial conditions is deemed
optimal and denoted as u*. The associated cost is V* = min(V) for u € Z(Q) and

generally known as the ‘value function’. Specifically,

ut = —%ngTvv*, (4.4)
with which there is
Q+u'Ru* + (f + gu*)TVV* =0, (4.5)

with V*(0) = 0, which then gives the following HJB equation:
1 *T -1 T * xT N —
_ZLVV gR g VV +VV*  f+0Q =0, (4.6)

with V*(0) = 0.

Remark 4.1. Note that u in Eq. (4.3) can be any admissible control, and there exists a

corresponding cost V as in Eq. (4.2) that makes Eq. (4.3) hold. However, Eq. (4.5) is
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a special case of Eq. (4.3) where u is associated with V through Eq. (4.4). A residual
error arises to the right of Egs. (4.5) and (4.6) if the condition of V* = min(V) for

u € E(Q) is unsatisfied.

4.2.3 Policy iteration

To analytically determine V*(x) from the nonlinear HJB equation has been known
difficult. Instead, V*(x) can be obtained through an iterative procedure termed as
‘policy iteration’ (Sutton and Barto, 1998), which requires V*(x) being appropri-
ately structured and successively approximated (Saridis and Lee, 1979), basically

involving two steps in a ‘actor-critic’ configuration:

e The ‘critic’ for policy evaluation: using Eq. (4.3) to evaluate V(;) resulted from

u(;). This is to solve for V(;) from
Q(x) + u(Tl-)Ru(i) + (f + gu(,-))TVV(i) =0, 4.7)
with V(;(0) = 0.
* The ‘actor’ for policy improvement: implementing updated control, which is
(1) = —%ngTvv(i). (4.8)

The iteration procedure begins with u ) which is an initial admissible control,
and proceeds with the above two iterative steps until reaching convergence at V*
and u* or proximity to V* and u*. It is worth emphasising that for synchronous
policy iteration (SPI), the procedure performs continuously in time, and the above
two steps take place simultaneously (Vamvoudakis and Lewis, 2010). The subscript
‘(i) in V;) and u;) are unnecessary in the SPI case. However, for ease of explanation
of SPI at an infinitesimal time step, these subscripts are used, only to indicate a

general time step being considered rather than iteration number.

Remark 4.2. In terms of the single-critic configuration, an actor component is still
necessary for a complete policy iteration procedure including SPI. The term ‘single-

critic’ refers to the case where the separate tuning for the actor component is
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eliminated in comparison to the general actor-critic structure in which both of the

actor and critic components require individual tuning.

4.3 Modified single-critic configuration

4.3.1 Modified value function approximation

Analytically obtaining V(;)(x) from Eq. (4.7) is difficult, and hence implementing
policy iteration requires proper approximation of the solution. Neural networks
(NNs), with universal approximation properties (Hornik et al., 1989), can be used
for this purpose. Different from other existing studies that use a common form
of NN-based representation for approximating the value function, in this paper a

modified value-function-approximation (MVFA) is proposed, being;:

1
V= ExTPx + W +¢, (4.9)

where hidden-layer neurons are contained in ® € R", with ideal NN weights being
W* € R™; P € R™* " is an additional parameter matrix that is diagonal and
positive-definite; the error of approximation is denoted by ¢ € RR.

Accordingly, there is
VV* = VO'W* + Px + Vg, (4.10)

- T
with V@ = V@T = [92] " € R"*" and Ve = & € R™.

x
Remark 4.3. The discussion in Section 4.1 has revealed that VFA in existing methods
takes a common NN-based representation, the convergence of which in online
learning necessitates separate actor tuning or stabilising mechanisms in critic tuning
laws for stabilisation. Differently in this study, the proposed MVFA features an
auxiliary term in addition to the standard structure of an NN. The advantages of

introducing the auxiliary term is to be discussed in the remainder of this paper.

Remark 4.4. The hidden-layer neurons in @ are nonlinear activation functions, which

can be obtained by applying Weierstrass approximation using high-order polynomi-
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als (Finlayson, 1972). The resulting activation functions are the individual terms of

a polynomial of specified order with the NN inputs as variables.

Assumption 4.3. There exist inequalities |V ®|| < by ||x|| for by € RT and ||Ve| < be ||x||

for b, € R, where b4, and b are constants.

4.3.2 Single-critic structure and tuning

On considering the ‘Policy Evaluation” step only (i.e., a control law remains fixed

for evaluation), the associated cost function V(;) takes

1
V(l) = W(I;)(I) + ExTPx + S(i), (411)
with its gradient being
VV(I') = Vd)TW(i) + Px + VE(Z-), (4.12)

with W(;) being NN ideal weights that approximate V|;) with the least error ¢ ;).

Remark 4.5. Note that V{;) in Eq. (4.11) and V in Eq. (4.2) are equal only in terms of
value, given the same initial conditions and the same control policy, but different in
structure. V in Eq. (4.2) is structured to give physical interpretation of cost while
V(iy in Eq. (4.11) is specially constructed for mathematical approximation. The term
W(Ti)<I> in Eq. (4.11) is not equal to u"Ru in Eq. (4.2) but includes the information of
u! Ru, since the set ® contains activation functions in polynomial forms consisting

of both x and u.

Remark 4.6. The discussion at this stage only considers the case of approximating
the cost function for a known control policy u ;). That is, u(; is known and not
approximated by NN. The NN used at this stage only approximates the cost function

associated with the known control u;.
Using an estimate W(i) to replace W;) in Egs. (4.11) and (4.12) gives
N N 1
—_ w1l T
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VV(,) = V(I)TW(I) + Px, (4.14)
and
Q+ u(Ti)Ru(i) +(f+ gu(i))TVV(i) =e, (4.15)

where V(i) (0) = 0, and e; is the error arises as a result (as commented in Remark 4.1
and to be discussed in Section 4.4).
To minimise e; so that W(l-) — W(;), gradient-descent tuning is adopted, by

considering the quadratic error function

1
E= Ee% (4.16)
This yields

A oL o«

Wi = _KlNlaW = — Nige, (4.17)
(i) (i)t +1
where ¥ = —— & = is added for normalisation, with « € R being a scalar learn-
5()5()

ing rate and ¢(;) = Vo(f+ gu(;)); N1 is an auxiliary term added to adjust contribu-
tion of individual state to tuning, and N7 = diag(N,N3), with N, € R"7*"x being a
constant matrix related to V®(x) with its element Ny(ix) € B, (=12 ,n5k=
1,2,--+ ,ny),and N3 € R7xx1 being a weighting vector.
Specifically, the constant matrix N, in connection with the expression of every
single element of V®(x), namely, V® ;) (x), is given in the following form:
0 if V<I>(]-k)(x) =0, Vx #0,

Nagr) =

Similarly, for the complete synchronous policy iteration (SPI), the ideal weights
W™ are unknown and should be determined so that Eq. (4.9) approximates a target
value function. With W being the estimated weights, the approximated value

function and its gradient become
A " T 1 T
V=Wao+ 7% Px (4.18)
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and

VV =V®'W + Px, (4.19)

respectively, and the associated control is given by
i=—-Rg'VV. (4.20)

Note the absence of the subscript ‘(i)" in Egs. (4.18) and (4.19) for complete SPI,
which are different from Egs. (4.13) and (4.14) corresponding to a fixed control law
at a general infinitesimal time step for ‘Policy Evaluation” only.

In the SPI case involving the single-critic structure with Eq. (4.18) and direct

implementation of Eq. (4.20), there is
Q+a'Ri+ (f +g0)'VV = e, (4.21)

where V(0) = 0, and e, is the resulting approximation error as commented in
Remark 4.1 (details to be given in Section 4.4).

To minimise e, so that W — W*, Eq. (4.17) is modified as

A 44

W = —————Njger = —Kx2Njgey, (4.22)
Velg+1
where k¥, = —%—, and ¢ = V®(f + g#), with Nj, N,, and N3 defined the same

Valer
as in Eq. (4.17).

It now gives a single-critic structure consisting of critic tuning only, without

additional stabilising mechanisms in the tuning law as in Eq. (4.22).

Remark 4.7. For conventional VFA as in the SPI pioneer work of Vamvoudakis and
Lewis (2010) (also commonly used in other studies discussed in Section 3.1), it has
been known that closing the loop by directly passing W on to the actor NN can
lead to instability issues during online learning without any stabilising mechanism.
This is because in these cases some intermediate values along the evolution path of
W may not necessarily yield admissible intermediate control policies that satisfy
v < 0.
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Remark 4.8. Compared with the existing single-critic approaches with conventional
VFA and stabilising critic tuning laws, the proposed method with MVFA also differs
in that the critic tuning law does not need to be stabilising, allowing the use of
simpler tuning laws. Accordingly, in this paper the critic tuning based on traditional
yet simple gradient descent is used without additional stabilising mechanisms in

the tuning law. Closed-loop stability is to be investigated next in Section 4.4.

4.4 Convergence and stability analysis

Similar to most adaptive control problems that require online tuning of parame-
ters (Ioannou and Sun, 1996), proper convergence of NN parameters in this paper
also relies on the persistence of excitation (PE) condition to ensure sufficiently rich

training set being obtained.

Definition 4.2 (Persistence of Excitation). A bounded vector signal r(t) is considered

to be persistently excited (PE) if
to+ts T
pr1I = / r(t)r(t) dt = bpgzl,' Vto Z 0,
fo

where I is an identity matrix, bpg; € RY, bpg, € R, and t; € R" (Ioannou and

Sun, 1996).

Assumption 4.4. During online tuning, states x(t) of the system (4.1) satisfy the PE

condition.

4.4.1 Policy evaluation

As an assistive step to evaluate the position of the proposed MVFA in a single-critic
synchronous policy iteration (SPI) structure, this section separates ‘Policy Evaluation’
from the SPI and treats it as a single process that approximates a cost function for a
known admissible control policy.

In addition, the stability of a linear time-varying system as given by the lemma

below, is to be used in the stability analysis that follows.
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Lemma 4.1. For a given system being linear and time-varying in the form of
X = —r(t)rl(t)x, (4.23)

where vector x contains system states, its origin is exponentially stable if vector r(t) satisfies

the condition of PE (loannou and Sun, 1996).

The following theorem presents the convergence property of Policy Evaluation

with the MVFA under the tuning given by Eq. (4.17).

Theorem 4.1. Let Eq. (4.11) approximate the cost function as in Eq. (4.2) corresponding
to a given admissible control U Under Assumptions 4.1, 4.3, and 4.4, and the tuning
algorithm as in Eq. (4.17), the error W(i) = Wy — W(l-) from NN weights estimation
converges to a residual set oy, exponentially, and || oy, || < by, for a finite scalar by, € R™

with by, — 0as n, — oo,

Proof. Comparing Egs. (4.7) and (4.15), with Eq. (4.12) substituted for VV;), and
with Eq. (4.14) substituted for VV(,-), yields

e = —W(l;)g(l) + €1, (424)

where ¢(;) = V®(f + gu(;)), and €] = —Ve{i)(f + gu i)

As can be seen from Eq. (4.24), if £(;)(x) = 0 for any x # 0, then €; = 0. For the
case of ;) (x) # 0, it is easy to see that €1 < b, for b, € R, given Assumption 4.3
and (f + gu(;) as well as x being bounded under Assumption 4.1. Since ;) — 0
and Ve ;) — 0 given proper activation functions with sufficiently large 1, (Finlayson,
1972), it is straightforward to show that e; — 0 when n,, — oo.

By using Egs. (4.17) and (4.24), we have the time derivative of W(i)
W) = _“ngna(i)g;ga(i)w(i) + aN1Gp(i\€1, (4.25)
S(i) S(i)

—2— and ¢ = —L—.
(6{ysi)+1)* bt Vsism

Let ue = aNig ()€1 If €1 = 0, then ue = 0, and Eq. (4.25) reduces to

where ¢,y =

W (i) = —aN1Gua(i)ma(i Wi (4.26)
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Denote the equilibrium of system (4.25) by ;. Under Assumption 4.4, ¢,,(;)
is PE. Recall that « and N; in Eq. (4.26) are constant parameters. Therefore, under
Lemma 4.1, the origin (i.e. o5 = 0) of the system (4.26) is exponentially stable. That
is, W(i) converges to zero exponentially.

In the case of u. # 0, it is straightforward to show that Eq. (4.25) has non-
zero equilibrium (ie. oy # 0), and that W(i) converges to oy exponentially.
Since [|gupi|l < 1 and €1 < by, we have |ue| < by, for by, € RT that can be
arbitrarily small given sufficient number of suitable activation functions being

provided. Therefore, there exists a bound by, € Rt such that |oy || < by, and

b, — 0 with the number of activation functions n, — oo. [l

Remark 4.9. As can be seen from the proof of Theorem 4.1, the MVFA has no direct
influence on critic NN weights convergence when considering the ‘Policy Evaluation’
step only. Exponential stability is primarily due to the admissible control being
evaluated. However, the overall system stability in the case of complete SPI needs
to be further analysed (to be dealt with in Section 4.4.2), where the control policy is

replaced by a dynamically varying approximation.

4.4.2 Synchronous policy iteration

As discussed in Remark 4.7, instability may result when directly implementing the
approximated control policy as in Eq. (4.20) for complete SPI. In this subsection, the
closed-loop stability under the proposed alternative single-critic scheme with the

MVFA is investigated.

Definition 4.3 (Uniformly Ultimately Bounded). The states x() of a dynamic system
with initial states xg £ x(t;) is regarded as uniformly ultimately bounded (UUB)
about equilibrium x, € R"* if there exist a compact set (3 € R", a finite constant
b € RT and a time #4(b,, x9) € R™ such that ||x(¢) — x.|| < b, for any xp € Q) and

t > to+t; (Lewis et al., 1999).
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Theorem 4.2. Consider a system as in Eq. (4.1). Let Eq. (4.9) approximate its value

function, with the control policy given by Eq. (4.20). Under Assumptions 4.1 to 4.4 and the

A

online tuning law as in Eq. (4.22), the critic NN weights estimation error W = W* — W
remain UUB during online tuning while the states x of the system are asymptotically stable,
if the parameter matrix P in Eq. (4.9) is selected to satisfy ||P|| > by,p, for a finite scalar

bup € RT.
Proof. Consider

L=V+ %WT(Kle)_lw
=Ly + Ly, (4.27)
where Ly =V and Ly = %WT(Kle)_lw.
With Egs. (4.1), (4.19), and (4.20), there is
,CV = (f + gﬁ)TVV
= (Px+VOTW)' |f— %gR'lgT(Px + VoIw)
=x"PTf+ WIVef - %WTVd)gR_lgTVd)TW
—x"PTgR1g"VoTW — %xTPTgR_l g Px. (4.28)
Let G = gR™'gT. With W = W* — W, Eq. (4.28) becomes

Ly =x"PTf+ WVeof-W'Vef
1
2

+WIVOGYVPTW — %WTVQGVQTW

x'PTGPx — x"PTGV®TW*

- ~ 1 - -
+x'PTGVO™W — Ew>'<TVc1>GVc1>Tw>'<. (4.29)
In regard to the second term in Eq. (4.27), considering Eq. (4.22), we have

,CW WT(Kle)_lw = —WT(Kle)_IW

WIV®(f + git)e,. (4.30)
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By comparing Egs. (4.4) and (4.20), there is
=u"+ 1R LT (VOTW 4 Ve).
Let z = V®TW. Rewriting Eq. (4.30) using Eq. (4.31) gives

Ly WIV®OGR 1gTVee, + WIVD(f + gu*)e;

I\)|P—‘
—_

2WTV<I>gR 1TV We,

1
=21 (f +gu*)er + EZTGVSez + 52" Gzes.

Subtracting Eq. (4.21) from Eq. (4.5) yields

e = (Px+ VOTW) (f +g0) + a"Ra — u* Ru*

— (Px+ V®TW* + Ve) (f + gu*).

(4.31)

(4.32)

(4.33)

By using Egs. (4.4), (4.10), (4.19), and (4.20), the individual terms in Eq. (4.33)

have expressions of
(Px + VOTW)' (f + gn)
= (f +gu") (Px+ VO'W* — VO'W)

+ 2 (Px+ VOTW*) gR 1T (VOTW + Ve)

— N =

(VOTW) gR1gT(VOTW + Ve),

|
N

TRa

=

Px+ VOTW*) eR 1T (Px + VOTW*
gR™'g

|

(Px + VOTW") R 1¢TVOTW

+ - (VOTW) gR 1gTVOTW,

Hkll—‘l\JI'—‘

jI(Px +VoTW*) gR1¢T(Px + VOTW)
1 _
+5(Px+ vVoTw*) ¢R1¢TVe

1
+ ZVeTgR_lgTVe.
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Substituting Eqs. (4.34), (4.35), and (4.36) back into Eq. (4.33) gives

er=— (VOTW)' (f +gu*) — Ve (f + gu’)
- %(VCDTW)TgR_lgTVs - }LVETgR_lgTVe
}L(VQJTW)TgngTVd)TW. (4.37)

It can be seen from Eq. (4.37) that for a given set of NN hidden-layer neurons of

a finite number 1, the minimum of e, denoted by €5, is reached when W =0:
1
€= —Vel(f +gu*)— ZVsTgR_lgTVs. (4.38)

Under Assumptions 4.1 and 4.3, Ve and (f + gu*) are bounded. Thus, there
exist a finite constant be, € R+ such that e; < be,. Since ¢ — 0 and Ve — 0 as the
number of suitable activation functions 7, increases infinitely (Finlayson, 1972), it is
straightforward to show that e — 0, Vx # 0, if n,, — oo. As a special case, €, = 0 if
Ve=0, Vx #0.

Substituting Eq. (4.33) for e, in Eq. (4.32) yields

Lw=—z2"(f+gu*)(f+gu*)'z— ngGzzTGVe
— 2T (f + gu*) (f + gu*) Ve — %ZTGZZTGZ

- §zT(f + gu*)z Gz — 1zTGzVeT(f +gu™)

4 2
— 2 (f +gu*)z'GVe — %ZTGVfSVSTGVE
1
— }LZT(f + gu*)Vel GVe — ngGzVsTGVS
— %ZTGVEVsT( f+gu*)— %zTGVeVsTGz. (4.39)

Note that the first term in Eq. (4.39) can be expanded as
— 2 (f+gu’)(f +gu*) 'z
=2 ffTz - jIzTGVQDTW*W*TV(DGz
_ izTGPxxTPTGz — ;LZTGV€V€TGZ
+21GPxfTz - %ZTGVQTW*VSTGZ
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+2IGVOTW* fTz — %ZTGPZXJVETGZ
+2'GVefTz — %ZTGPxW*TVCDGz. (4.40)
Combining Egs. (4.29) and (4.39) gives:
L=T1+T+T3+Ti+Ts (4.41)
where
T =— %xTPTGPx +xTPTf 4+ WV af

—x'PTGVe W, (4.42)

T =— jIzTGPxxTPTGz — %ZTGPxW*TV<DGz
- %ZTGPxV(eTGz — %ZTGVd)TW*VeTGz
+2T'GPxfTz + 2TGVO®TW* T2 4 2TGVefT2
— 21 (f + gu*)zGVe — %ZTGZVET(f + gu*)

— 2 f+ 2P Gz + W'V®Gz, (4.43)

T3 = — %zTGVsVETGz ! T(f +gu") Vel GVe

ZZ

— éZTGZVETGVS — %ZTGVSVET(]C + gu™)

—2TffTz =2 (f +gu")(f +gu") Ve
- }IZTGW)TW*W*TWDGZ

— %ZTGVsVsTGVs, (4.44)

1 3
Ty =— ngGzzTGz — ZzT(f +gu*)z' Gz

_ ngGzzTGVs, (4.45)

1 _ 1
Ts = — Ew*TchGchTw* — EzTGz. (4.46)

Now introduce bounds to Eq. (4.42).
As G = gR71gT, the rank of G is

rank(G) = rank(g) < ny. (4.47)
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It follows that there exist kernel
ker(GP) = {re R"™ | GPr=0}. (4.48)

For nonlinear systems as in Eq. (4.1), since x and z are explicitly governed by
Eq. (4.1) instead of being random, the existence of x = ker(GP) and corresponding
effects to the system is rendered negligible. Accordingly, we focus on x # ker(GP)
in this paper. In this case, G is positive-definite and symmetric, and under Assump-

tions 4.2 and 4.3, there is
x"PTGPx > b, ||P|?|x|?, (4.49)

where constant b,; € RT. Also, there is | G|| < bg for constant bg € R™.

Together with Assumption 4.3, the following inequality holds:

1 * %
Ty < (gt PP+ by [P + bobo [W* [P + boby [ W] ) ]

1
= — Sbmll*” (IPIP =1 [ P)| = 12), (4:50)

where

_2 (bf + bgbo |[W*|)

bml
_ 2boby [[WX|

bml

7

Under Assumption 4.4, if IP||*> = 71 ||P|| — 72 > 0, then Ty < 0. This requires

m+a/ni -+,

|P[| > 5 £5b 4.51)

pl-

In T, similarly to the case of T;, we consider the circumstances of x # ker(GP)

and z # ker(G). Then there is a finite constant b,, € R™ such that

2 GPxx"P Gz > by || P|||x|*||z] (4.52)
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Given Assumption 4.3, we have || f 4+ gu*|| < bg||x||, for a finite constant by € R*.

Hence,
1 2, 1., Lo *
Ty < | —zbm2l|PII” + 5650e | P]| + bby |P]| + 5b5ba W[ 1P|

1 N N 3
+§b2qu)bg ||W H + bigbf + bingf HW ” + bebg;l%) HtzHsz

+ (bg [P]| +bs + beba [W7)) x| || z]

1
= — b2 (IPIP = & 1Pl — &) %)=
+ (bg 1P| + by + bebe [ W) 2] =], (4.53)
where
- 2b%bo ||W* || + 2b% b, + 4bcby
me ’
- (262babe + 4bcbaoby) |W*|| + 4bgbebs + 6bsbsbe
2T me .
Let

1= |PI* — &1 |Pl| - &,

Ny = bg HPH + bf + bgbe ”W*” .

Then Eq. (4.53) can be rewritten as

1 4
Ta < — b (Il 21— o ) ) =) n

m213

It is clear that T, < 0 if 73 <||x|| ||z|| — > > 0. That is, if

buonz
&1+ 4/E3+ 48
IP|| > 5 = by, (4.55)
then 773 > 0, and in this case, T, < 0 whenever
414
2] [12]) > —2, (4.56)
bu213
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Regarding Tj, for cases of z # ker(G) and Ve # ker(G), there exist constants

b3, bma, bus, bme € RT such that the following inequalities hold:

2'GVeVE Gz > b x| | W],

2'GzVeT GVe > ba|x|*| W],

~ 112
ZVf T2 > bus| x| W,

GV TW W TV ®Gz > bye|x|| | W[
Therefore, we have from Eq. (4.44) that
1 - 1 ~ - 1 ~
Ts < | =5bus [ WI| = gbmal [W|[ = bus | W] — Zbus | W |
+}beb§bcbq> + %bxbgbcb(p + b2bebo + ébgbébcp) W[ ]|x]*

= — psl|x]|* [ W (HW” ) %)

15
where
1 1 1
5 = Ebmfi + gbm4 + bys + me&
3 1
e = bebgbgbcp + b2bebg + gbszcbq,.

As a result, under Assumption 4.4, T3 < 0 when

With regard to Ty, for z # ker(G), there is
T T 4117114
z' Gzz Gz > byy||x|*||W]|
for a constant b,y € R™. Then from Eq. (4.45),

1 X 3 A
Ty < — gbm7||x||4HWH4 + bebcb%||x||4HWH3

3 ~
+ Sbebb x4 WP
1 ~ 6b:bch3, + 3b:b%b3 -
_ L, (ku  Sheboll + 301G ) W
m7

(4.57)
(4.58)
(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)
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Therefore, under Assumption 4.4, Ty < 0 requires

W] > 6b3bb3, + 3bebZ b3,
o bm7 .

(4.65)

It is easy to see from Eq. (4.46) that T5 < 0. Thus, it can be concluded from
Egs. (4.51), (4.55), (4.56), (4.62), and (4.65) that Eq. (4.41) is negative if

||P|| > max(bpll pr)/ (466)
4
Izl > 52 (4.67)

(4.68)

15 bz '

W] > max <_,

Since z = V®'W, and x is PE under Assumption 4.4, Eq. (4.67) also establishes
a bound for ||W||. Thus, Egs. (4.67) and (4.68) together, show that W is UUB during
online learning. To be specific, there exists a bound by; € R such that W < by,

In the following, the closed-loop stability of system states are examined. The
corresponding Lyapunov function candidate is Ly in Eq. (4.27), the time derivative

of which, according to Eq. (4.29), can be rewritten as
Ly = Ly1+ Lva, (4.69)
where
Ly =x"P f+W'Vef-WVer

1 )
— —x'PTGPx — xTPTGVOTW*

2
+ W TVOGVe™W + xTPTGVOTW, (4.70)

. logre e pn 1 _
Ly, = —EWTVQGVd)TW — EW*TV<I>GWI>TW*. (4.71)

With || W|| < by, together with Assumptions 4.2 and 4.3, the following inequality
yields from Eq. (4.70):

. 1 ]
Lvi =(=5bm IPI* +bs | P]| + by [W* || | P]| + bebeby ||P|
+byby W + bbby | W™ || + brbeby) | ||

1
= — b 2I1” (IPIP = & 1Pl — &), (4.72)
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where

be + Zbi‘P HW>|< ” + Zbi(pbW
3 = 2
ml
: 2b¢by W[ + Zbcbébw [W*[| + 2bsbyby,
4 = .

7

bml

Under Assumption 4.4, we have Ly < 0 as long as ||PH2 — &3 ||P|| — ¢4 > 0,

\/E2+4
HP\|ZC3+ §3+ i

requiring

bps. (4.73)
Since Ly, < 0, it follows from Egs. (4.66) and (4.73) that Ly < 0 if
|P|| > max(bp1, bya, by3) = byp. (4.74)

At this stage, upon satisfaction of Egs. (4.67), (4.68), and (4.74), the UUB stability
holds for the NN weights estimation errors W and the system states x.
It further follows that £y = % is a function of W and x, and Ly is also

bounded since |W|| and ||x| are bounded. As a result, asymptotic stability also

holds true for the system states x throughout online training. O

Remark 4.10. As can be seen from Theorem 4.2, the proposed MVFA establishes a
direct link to the closed-loop stability through the auxiliary quadratic term with a
design parameter matrix P. With the MVFA, no special stabilising tuning laws are
required for the NNs in critic and actor, and during online learning the SPI under
the resulted single-critic configuration remains stable with simple gradient descent

tuning.

Remark 4.11. Upon initialisation of P and W, Eq. (4.20) delivers an initial admissible
control at the time when the algorithm starts. Specifically, P can be chosen following
Theorem 4.2 with some trial-and-error, while the initialisation of W is trivial which

can be small random numbers or simply zeros.
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4.5 Numerical studies

This section presents a simulation example of finding the optimal control law for a
nonlinear model with a known value function to verify the proposed method.
The following nonlinear system is considered (Vamvoudakis and Lewis, 2010),
with
—x1+x2

f) = —0.5x1 — 0.5x {1 — [cos(2x1) + 2]2}

V4
and

0
8(x) =
cos(2x1) +2

For Q = I, and R = 1, the corresponding V* and u* are known to be

1
V= Ex% + 13, (4.75)
and
u* = —[cos(2x1) + 2] xp, (4.76)

respectively, as given in Vamvoudakis and Lewis (2010).

The critic NN has activation functions of
D = [x7, x1X2, x%]T,
with NN weights being
A Ao T
W = [W1, Wy, W;] .
In simulation, P = 10L,4,, « = 10, and N3 = [5, 1]T. System states x and NN
weights W are initialised to zeros. An exogenous signal
ue(t) = 2[cos(0.8t) + sin(t)% cos(t) + sin(2t)? cos(0.1t)
+ sin(—1.2t)% cos(0.5t) + sin(t)°]
is used to perturb the system for exploration. Note that the total control that enters

the process during exploration is the sum of 7 and u,, which also perturbs the

system states x in the meantime. For efficient and effective training with Eqgs. (4.21)
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and (4.22) involved, exploration is implemented in the following manner: The
excitation of u,(t) lasts 0.05 s for every 0.1 s time interval, while the HJB error e, in
Eq. (4.21) is periodically fed back for calculation during the intervals when u,(t) is
temporarily off (i.e., ep = 0 if u.(t) # 0). u.(t) is completely turned off at 40 s. The
trajectories of system states x, approximated optimal control #i and the excitation
signal u, during online learning are plotted in Figures 4.1 and 4.2, respectively.
Close-up of the excitation signal u, for the first 2 seconds is shown in Figure 4.3
for clearer illustration of the special excitation implemented. Weights convergence
history of the critic NN is given in Figure 4.4.

Note in Figure 4.2 that the approximated optimal control I generally mirrors the
contour of the excitation signal u, with slight difference in amplitude. It shows 7
effectively counteracts u, and maintains closed-loop system states stability during
online training.

Figure 4.4 shows that all NN weights settle within 10 s. At the end of training,

W = [—4.4999, —0.0003, —3.9996]".

This yields
V(x) = 0.5001x12 — 0.0003x; x5 + 1.0004x,>
~ o4,
and
f(x) = — [cos(2x1) + 2] (—0.0002x1 4 1.0004x;)

~ — [cos(2x1) + 2] x2,

which are close approximation to Egs. (4.75) and (4.76), showing that the convergence
of NN weights is reached with good accuracy.

In situations when the PE condition may not be satisfied (for example, the closed-
loop response is subject to none-zero initial conditions only), W may not reach its
ideal set W* as a result. In the following simulations, the convergence of NN pa-

rameters and the closed-loop stability is investigated under unsatisfied PE condition.

87



CHAPTER 4 NONLINEAR OPTIMAL CONTROL ONLINE SYNTHESIS

System States

Time (s)

Figure 4.1: Trajectories of system states during online tuning.
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Figure 4.2: Trajectories of control signals during online tuning.
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Figure 4.3: Close-up of excitation signal u, for the first 2 seconds.

Accordingly, x(0) = [0.5 0]" is applied as an initial condition, no probing noise is
added, and controller parameters remain the same. The corresponding closed-loop
states responses are plotted in Figure 4.5, and the corresponding control action is
given in Figure 4.6, together with responses under the ideal optimal control supplied
for comparison. As can be seen from the figures, states trajectories and control

signal under the proposed control scheme are similar to those of the ideal optimal
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Figure 4.4: NN parameters convergence during online tuning.
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Figure 4.5: State trajectories of the closed-loop response to the non-zero initial
condition under the proposed online tuning scheme (PE unsatisfied in this case)
and the known ideal optimal control.

control. The difference in response is due to the approximation error resulted from
lack of PE. The NN parameters convergence history is plotted in Figure 4.7, where
the settling value of W, and Wj is still far from the ideal one. However, stable
closed-loop responses are observed under the proposed algorithm regardless of the
differences, as shown by Figures 4.5 and 4.6. The cost of the closed-loop response to
the none-zero initial condition under the proposed algorithm (i.e., V(x(0))) together
with that under the known ideal optimal control (i.e., V*(x(0))) are evaluated in
Figure 4.8. By recalculating the cost using the continuously updated NN weights,
the approximated value function V is shown to be converging to the optimal one, in

the presence of some approximation error.

Remark 4.12. As shown by the example, the compact controller under the single-critic

configuration with the proposed MVFA is able to maintain the closed-loop stability
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Figure 4.6: Control input in response to the non-zero initial condition under the
proposed online tuning scheme (PE unsatisfied in this case) and the known ideal
optimal control.
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Figure 4.7: NN parameters convergence history during the closed-loop response to
the non-zero initial condition (PE unsatisfied case).
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Figure 4.8: The minimal cost V*(x(0)) of the closed-loop response to the non-zero
initial condition and the evolution of the approximated V(x(0)) (PE unsatisfied
case).

during online learning with the traditional yet simple gradient descent tuning law
without stabilising mechanisms in either critic or actor tuning. The proposed MVFA
does not complicate the problem either, as can be seen from the parameter selection

and initialisation setting.
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4.6 Conclusions

It is shown in stability analysis that using the proposed MVFA to provide alternative
realisation of the single-critic configuration for SPI is feasible and effective. The
proposed method eliminates the need for stabilising mechanisms in either the critic
or actor NN tuning, without jeopardising the closed-loop stability, and without
complicating the problem, as confirmed in theoretical proof and demonstrated in
numerical studies. In general, the proposed MVFA used in a single-critic configura-
tion for SPI, together with the study on parameters convergence and the closed-loop
stability, serve as a new development to the online SPI theory framework.

It is worth noting that the proposed MVFA scheme in this paper is model-based.
Many successful model-free applications (Abouheaf et al., 2018; Luo et al., 2018;
Radac et al., 2018) have motivated future works on advanced model-free MVFA
based schemes that: (1) feature better adaptability and robustness in circumstances
with complex, unknown, uncertain or time-varying system dynamics; (2) deliver

simplified online implementation enabled by the MVFA approach.
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Chapter 5

Flutter suppression by

input-unconstrained optimal control

The novel nonlinear optimal control online synthesis (NOCOS) scheme proposed
in Chapter 4 needs to be generalised to globally nonlinear scenarios so that it
suits active flutter suppression (AFS) applications, as discussed in Chapter 2. This
chapter, based on Article-3, presents details of the proposed adaptive nonlinear
optimal controller based on the novel NOCOS scheme, together with wind-tunnel
experiment results obtained using the VSDS described in Chapter 3. By assuming no
control-input constraints (CICs), the third objective (Page 4) of the thesis is fulfilled
by the work in this chapter, which, at this stage, partially accomplishes the thesis

aim.
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abstract

This paper proposes a novel adaptive nonlinear controller based on neural networks
(NNs) for active flutter suppression (AFS) on aerofoils from the optimal control
perspective. A four-degrees-of-freedom aeroelastic system that has nonlinear transla-
tional and torsional stiffness and employs leading- and trailing-edge control surfaces
as control inputs is considered. Optimal control for the nonlinear aeroelastic system
at a constant airspeed is synthesised by solving the Hamilton-Jacobi-Bellman equa-
tion through synchronous policy iteration with a Modified form of NN-based Value
Function Approximation (MVFA). An extended Kalman filter is proposed to tune
the MVFA. A systematic procedure involving linear matrix inequalities is further
proposed for designing a scheduled parameter matrix to generalise the MVFA to
globally nonlinear cases where the aeroelastic dynamics vary nonlinearly with the
airspeed. An identifier NN is also derived to capture un-modelled dynamics in real
time. Parameter convergence and the closed-loop stability are examined through the
Lyapunov stability analysis. Comparisons drawn with a linear-parameter-varying
optimal controller in wind-tunnel experiments confirm the effectiveness and validity

of the proposed control scheme.
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CHAPTER 5 FLUTTER SUPPRESSION BY INPUT-UNCONSTRAINED OPTIMAL CONTROL

5.1 Introduction

Aeroelastic systems are subjected to various nonlinearities and are generally prone
to the instability known as ‘limit-cycle oscillation” (LCO), which can cause serious
damages to the aerofoil. For active flutter suppression (AFS) on aerofoils, practically
teasible solutions primarily include embedded piezoelectric actuation (Fazelzadeh
et al., 2017; Song and Li, 2014) as well as proper deployment of the existing aerofoil

control surfaces. The latter is to be discussed in detail next.

Suppressing LCOs in broad engineering practice can be done using various
control methods (Chen et al., 2009; Keyser et al., 2017; Saaed et al., 2017). Similarly
in terms of AFS, a wide variety of control strategies are available. In early studies,
there are non-adaptive classical and modern control (Edwards, 1983; Mukhopadhyay
et al., 1981; Newsom and Mukhopadhyay, 1985; Schmidt and Chen, 1986; Waszak,
2001) as well as adaptive online linear quadratic regulator (LQR) that updates
the control in real time to suit the changing dynamics (Friedmann et al., 1997;
Guillot and Friedmann, 2000; Pak et al., 1995). In recent studies, conventional
frequency-domain analysis remains a useful tool for control synthesis (Schmidt,
2016), while advanced methods in adaptive, nonlinear, and robust control have
received more attention due to the time-varying nature and nonlinear characteristics
of an aeroelastic system (Bichiou et al., 2016; Biskri et al., 2008; Chen and Liu, 2010;
Nayfeh et al., 2012; Rebolho et al., 2014; Vasconcellos et al., 2016a) and the increasing
demand on a wider operation range beyond the flutter boundary. These advanced
methods include but are not limited to: optimal control synthesised via time-domain
finite elements method (Fazelzadeh et al., 2014), self-tuning regulator (Viswamurthy
and Ganguli, 2008), linear-parameter-varying techniques (Chen et al., 2012; Prime,
2010), feedback linearisation (Ko et al., 1997, 1998, 1999; Platanitis and Strganac,
2004; Strganac et al., 2000), model reference adaptive control (Ko et al., 2002), back-
stepping-based adaptive output feedback control (Singh and Wang, 2002; Xing and
Singh, 1999, 2000), robust output feedback control (Zhang and Behal, 2016), modular
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adaptive control (Bhoir and Singh, 2004; Rao et al., 2006; Singh and Brenner, 2003),
modified filtered-X least-mean-square control (Carnahan and Richards, 2008), £
adaptive control (Lee and Singh, 2013), sliding-mode control (Dilmi and Bouzouia,
2016; Luo et al., 2016b; Wang et al., 2015), finite-time H., adaptive fault-tolerant
control (Gao and Cai, 2016; Gao et al., 2016) and neural networks (NNs) based
adaptive control (Brillante and Mannarino, 2016; Gujjula et al., 2005; Spencer et al.,
1999, 2002; Wang et al., 2011), etc.

However, optimal controllers among the mentioned methods are sensitive to
modelling errors, which means suboptimal or unsatisfactory performance may result
in the presence of uncertainties or faults. Though some other controllers are designed
to be more adaptive to the changing environments and tolerant to un-modelled
dynamics, these methods do not provide nonlinear optimal control. These two
problems, together being a dilemma in AFS controller synthesis, have nevertheless
not been addressed. Therefore, the study in this paper proposes an approach
that synthesises nonlinear optimal control in real time for AFS according to online
updated aeroelastic dynamics, aiming to reduce the impact of the aforementioned

two problems.

Optimal control for nonlinear systems involves iteratively solving a nonlinear
Hamilton-Jacobi-Bellman (HJB) equation for the associated value function via NN-
based approximation. Most existing methods for online synthesis of nonlinear
optimal control (NOCOS) employ a common form of value function approximation
(VFA), subject to limitations related to stability and algorithm structure, as com-
mented in Tang et al. (2015). Accordingly, a solution to these limitations arising
from the use of the traditional VFA is addressed in the work of Tang et al. (2015),
where a modified value function approximation (MVFA) is proposed. Nonetheless,
all the existing NOCOS methods are confined to locally nonlinear systems, which
are a sub-class of globally nonlinear scenarios. Aeroelastic systems are nonlinear at
a constant freestream airspeed (i.e. locally nonlinear), and the dynamics also vary

nonlinearly with the airspeed (i.e. globally nonlinear). This makes all these existing
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CHAPTER 5 FLUTTER SUPPRESSION BY INPUT-UNCONSTRAINED OPTIMAL CONTROL

NOCOS methods inapplicable to AFS without modification and improvement.

Therefore, the study in this paper focuses on solving the aforementioned prob-

lems and delivers the following contributions:

* Under the locally nonlinear setting, the MVFA is proposed for the AFS con-

troller in the interests of compact algorithm structure suitable for real-time
implementation. An extended Kalman filter is proposed to tune the MVFA
online. NN parameters convergence and the closed-loop stability are examined

through the Lyapunov stability analysis.

A systematic procedure based on linear matrix inequalities is further purposed
for the design of a scheduled parameter matrix for the MVFA to generalise
the proposed method to globally nonlinear cases, so that the proposed NN

controller suits AFS applications.

The proposed method successfully solves the aforementioned controller syn-
thesis dilemma involved in AFS applications, with the capability of learning
in real time to improve AFS performance from the nonlinear optimal control
perspective. Wind-tunnel experiments were conducted to validate the pro-
posed algorithm. To the best of our knowledge, it is the first experimentally

validated approach in this regard.

The remainder of the paper is arranged as follows. The nonlinear aeroelastic

model under consideration is introduced in Section 5.2. A new adaptive control

scheme featuring NN-based NOCOS with integrated system identification is pro-

posed in Section 5.3. Experiment results are presented and discussed in Section 5.4.

Conclusions are drawn in Section 5.5.

5.2 Aeroelastic system

To provide an appropriate aeroelasticity platform for the investigation and discussion

of AFS under the new controller proposed in this study, a typical rigid aerofoil
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5.2 Aeroelastic system

section featuring two-dimensional vibration modes (i.e. the first plunge and first
pitch mode oscillations) is considered for its well-established theory basis and
experimental validation (Ko et al., 2002; O’Neil and Strganac, 1998; Platanitis and
Strganac, 2004; Prime et al., 2010; Prime, 2010; Strganac et al., 2000). Leading- and
trailing-edge control surfaces are used to actively suppress flutter. Specifically
in terms of the analytical model for control synthesis, a four-degrees-of-freedom
(4-DOF) aeroelastic system as in Prime et al. (2010) is considered, which includes
not only the plunge and pitch DOFs but also the deflection angle of the leading-
and trailing-edge control surfaces as another two DOFs. It models the lift and
moment that act on the aerofoil elastic axis using quasi-steady aerodynamics (Fung,
1955; Strganac et al., 2000), describes the coupled dynamics of the plunge and
pitch DOFs, incorporates the inertial coupling of the leading- and trailing-edge
control surfaces to the aerofoil rigid-body dynamics, and also takes into account
servo motors dynamics to capture control delay. This 4-DOF aeroelastic model
is derived by the Lagrangian energy method, verified with a different modelling
technique, the Newton-Euler iteration, and validated in wind-tunnel experiments
using the Nonlinear Aeroelastic Test Apparatus (NATA) at Texas A&M University.
The model was proven accurate for low Strouhal numbers, which primarily accounts
for cases in subsonic flow conditions. Nonlinear translational and torsional stiffness
is introduced in a polynomial form up to second order, and all the trigonometric
terms are retained. A schematic illustration of the 4-DOF aeroelastic system is

shown in Figure 5.1.

The aeroelastic system has equation of motion
Yj+A=F, (5.1)

for which

T
q= |:Qh Ga Gte qle] ’
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(‘c.g.’: centre of gravity)

| hc

L

r}e L le r:’;c/4
} } -

LEc.g. o /
LE Pivot — A

irfoil c.g.
Elastic Axis

AANANNNNNRRNNNNNANNNNY

Figure 5.1: Schematic figure of the 4-DOF aeroelastic system ('LE’ — leading edge;
‘TE’ - trailing edge; ‘c.g.” — centre of gravity).

P Y2 P13 YPua
P21 Yo Pz Y
P31 P2 Le O

Ya1 Yo 0 L

T
A= |:A1 Ny Ajz A4} s

T
F = {—FL Fpo kteGte-cmd kle‘?le—cmd} ’
with
P11 = mg + Mpe + my,

P12 = Po1 = (mara + mygeLte + mleLle) Cos(qa)

+ Miel'te COS(Qa + Qte) + myery, COS(% + I]le)/
P13 = P31 = Mpel'te COS(Qa + I]te)/

P14 = Pag = M1y, cos(qa + qie),
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5.2 Aeroelastic system

Yoo = Iy + Lo + I + mteL%g + mlt?lee

+ 2Lemyete COS(LIte) + 2L;emy, 1y Cos(qle)/
P23 = P32 = lte + LieMierte cOS(qte),
Yoy = Pao = Ijp + Ligmy,rye COS(QIe)/

A = kpqy + cpin — (§a + nt)zmterte sin(qq + qte)
- (qﬂ + qle)zmlerle Sin(qﬂ + qle)

— qﬁ sin(qq) (marq + meeLte + myeLy,),

Ny = kuqa + Cafa — q'te(qte + 2qu)mterteLte Sin(q:fe)

- %(0713 + an)mlerlel‘le Sin(qle)r
A3 = kieGte + Creite + G2MteTteLte sin(qie),

Ay = kiefie + Crefite + G2myerieLie sin(qpe),

FL = pUA Ly LsCry(9a + g—zo + Vsc/4g—zo)

+ PUZ Ly, LsCrLiete + pUA Liye LsCliie,

Fy = pugoL%CLsCme—u(% + Lq[_h + 7’3c/4l/ql_a)

+ pufoLiCLSCme-teqte + PugoLicLscme—leqle/

aC aC oC
Cra = 355, Crte = 55r Clie = 55,10
aC aC oC
Cm—a = #/ Cm-te = WZZ/ Cm-le = Wl";/
ch
Cine-a = L_Cl—a +2C-a,
he
Tfc
Cme-te = ﬁcl—te + 2Cm-te/
c
ch
Cme—le = Ucl—le + 2Cm—ler
c

where geometry and force related parameters and variables are defined in Figure 5.1,

and other terms are defined as
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Qh/ %r qu’/ ‘hei

Qte-cmds Gle-cmd-

My
Mte, Mie:

I

Ite, Ije:

kh/ ka/ kter klE:

Chs Ca, Cte, Clet
p:

Ls:

Cll

Cu:

Ueo:

translational /angular displacements;

TE and LE commandes;

aerofoil mass (excluding TE and LE);

mass of TE and LE;

aerofoil rotational inertia (excluding TE and LE) about its elastic
axis;

TE and LE rotational inertia about respective pivot;
stiffness coefficients;

damping coefficients;

air density;

aerofoil span;

aerofoil lift coefficient;

aerofoil moment coefficient at 1/4-chord;

airflow velocity.

The system as in Eq. (5.1) can be transformed into

x = f(U,x) + g(x)u, (5.2)

with f(x, Us) € R™ being drift dynamics, g(x) € R"**" denoting control distri-
bution, x € R" being a states vector of dimension ny, and u € R™ containing 7,

control inputs.

Specifically,

T
x:[Qh Ga qte qie Gn Ga Gte 1713] ’

T
u= {Qte—cmd QZe—cmd} ’
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with ) ) ) )
Fr — A\ 0 O
F = FM B A2 , g = 0 0

—/A\y 0 kg

5.3 Proposed controller

Aeroelastic dynamics in general, as shown in Egs. (5.1) and (5.2), are nonlinear
for a constant freestream airflow velocity (i.e. locally nonlinear) and also change
nonlinearly with respect to the airspeed (i.e. globally nonlinear). As discussed
in Section 5.1, existing methods capable of synthesising optimal control laws for
nonlinear systems are all limited to locally nonlinear cases and in the meantime
subject to other practical limitations. Therefore, there are no existing methods
suitable for direct implementation in AFS without modification and improvements.
In this section, preliminaries are given in Subsection 5.3.1; NOCOS with the MVFA
tuned by an EKF for locally nonlinear systems is proposed in Subsection 5.3.2, with
convergence and stability properties discussed; The discussion then moves forward
with a systematic procedure proposed in Subsection 5.3.3 to generalise the new
control method to globally nonlinear cases, specifically, for AFS; As the proposed
controller requires some dynamics of the aeroelastic system to be known, an online

system identification scheme is introduced in Subsection 5.3.4 to tackle this.

5.3.1 Continuous-time HJB equation and policy iteration
For a fixed velocity U, Eq. (5.2) can be reduced to:
x(t) = f(x(0)|yu +8(x(8))u(t);  x(0) = xo, (5.3)
which can be written in a compact form:
x(t) = Fa(x(t), u(t))|y,—u;  *(0) = xo, (5.4)
where U € RT is any valid value of Uc.

105



CHAPTER 5 FLUTTER SUPPRESSION BY INPUT-UNCONSTRAINED OPTIMAL CONTROL

For convenience in discussion, the dynamics associated with a fixed velocity U
is hereafter written in a simpler form by omitting the notation of U, = U.

The properties of (5.2) are given by Assumptions 4.1 and 4.2 in Chapter 4.

The control problem is to determine a control policy/law u(f) to minimise the

following performance index (cost function):

V(o) = [ 10(x(1) + R(u(x) Jd, 65)

with Q(x(t)) and R(u(t)) = u"(t)Ru(t) being positive-definite functions, in which
R € R"*™ is a positive-definite weighting matrix.
Differentiating Eq. (5.5) yields its infinitesimal version that is a nonlinear Lya-

punov equation (Abu-Khalaf and Lewis, 2005), written as:
VV(x)Fa(x,u) + Q(x) + R(u) =0; V(0) =0. (5.6)

Let V*(x) denote the optimal (minimal) cost function, named as the ‘value
function’, and let VV*(x) = 0V*(x)/dx denote its derivative with respect to x, The

corresponding optimal control policy is then given by:
' (x) = 3R g (1) YV (), 62
which satisfies the Hamilton-Jacobi-Bellman (HJB) equation based on Eq. (5.6):

—i[VV*(x)]Tg(x)R1gT(X)VV*(X) +Q(x) + [VV*(x)] f(x) =0; V*(0) =0.
(5.8)
That is, by solving Eq. (5.8) for V*(x), the optimal control policy can then be
obtained as in Eq. (5.7), given that the system internal dynamics f(x) and control

input dynamics g(x) are known.

5.3.2 Neural-network-based value function approximation

Note that the HJB equation is nonlinear and analytically solving for V*(x) is difficult.
Instead, the policy-iteration approach applies. To allow implementation of the policy

iteration, an appropriately structured representation of V*(x) is necessary, which
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can be a neural-network (NN) approximation. For this purpose and for AFS, the

MVFA proposed in Tang et al. (2015) is adopted, being;:

V*(x) = %xTPx + W (x) 4 e(x), (5.9)

where ®() = [¢1(x), -+ ,¢u, (x)]" : R" — R"™ contains 1, hidden-layer neurons,
each of which is a nonlinear activation function, W* € R" is a vector of ideal
NN weights; P € R"**"x is a diagonal positive-definite matrix; e(x) € R is the
approximation error.

In regard to Eq. (5.9), the derivative of V*(x) with respect to x is then given by:

2 V' (x)

V() & S

= Px+ VoI (x)W* + Ve(x), (5.10)

where V& (x) = [aq;ix)r is the gradient of ®(x), and Ve(x) = %;) is the gradient
of e(x).

The boundedness properties of V®(x) and Ve(x) are given in Assumption 4.3
in Chapter 4.

Due to the approximation error ¢(x), the associated control law under the

proposed approximation scheme is a near-optimal control as:
u(x) = —%R_lgT(x) [Px + V@T(x)w*] . (5.11)

It is worth noting that Eq. (5.11) is an optimal control law when &(x) = 0 in ideal
conditions where the provided activation functions are the ideal basis set. To avoid
confusion and for ease of discussion, Eq. (5.11) is referred to as optimal control
hereinafter.

This optimal control results in:
e, = |xTPT + w*Tvcp(x)] (f(x) + g(x)u(x)] + Q(x) + R(n),  (5.12)

where ¢, is the residual caused by the approximation error ¢(x) in Eq. (5.9).
Recall that Eq. (5.9) contains a double-layer NN (i.e. W*T®(x)), which is non-
linear in the hidden layer ®(x) but linear in the output layer weights W*. Let W

be the estimate of the ideal weights. To implement policy iteration, W need to be
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tuned dynamically so that W — W* and thus Eq. (5.9) approximates a target value
function. In this case,

1 .
Vix) = ExTPx + Wle(x), (5.13)

and

1 - "
i(x) = —ER_lgT(x) [Px + Vd)T(x)W} : (5.14)
The resulting nonlinear Lyapunov equation then becomes:

[prT + WTW(x)] [f(x) + g(x)a(x)] + Q(x) + R(A) = ¢, +e,,  (5.15)

where ¢, is the error of weights estimation during a tuning process.
For fast convergence of W to the ideal W* so that e, is minimised, an EKF is
proposed in this paper. Since W is the parameter vector to be estimated, Eq. (5.15)

can be rearranged in the following form:

.
A

W=0+w,
(5.16)
y= ﬁ(x,W) ey, —e,+0,
with
y=—Q(x) — R(a),
and

Blx, W) = [x"PT+ WY@ (x)| [£(x) + g(x)a(x)],

where 0 is a null matrix (since W is a constant vector), w and v are white-noise

inputs with covariance Q¢ - 0 and Ry > 0, respectively.

Remark 5.1. In the system described by Eq. (5.16), W are system states, and there
are no drift dynamics for W. However, nonlinearities are present in the output
dynamics, which are associated with the gradient of the NN activation functions as
well as the time derivative of x. Thus a nonlinear observer is needed to estimate the

system states W.

Remark 5.2. White-noise inputs w and v in fact do not physically exist in the system

of Eq. (5.16). Therefore, the corresponding covariance Qr and Ry have no physical
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implication. The expression of w and v is given in Eq. (5.16) purely in support of

the use of Q; and Ry for EKF implementation (Simon, 2002).

Note that y is known from measurements. The unknown ideal W* is to be
estimated according to y and the known dynamics B(x, W). Introducing an EKF

into the system described by Eq. (5.16) yields:

W= Kch(]/ -9,

N

J=Bx, W),

(5.17)

where 77 denotes the estimated output, K € R *1 is the EKF gain, and x, = I I? CT|” I
f

is a normalisation term with a scalar learning rate a¢,, € RT.

The EKF gain Ky can be computed from:

K;=SH'R.!, (5.18)

with
i = PN _ 9o (£(x) + g(x)i(x), (5.19)

and
$=Qs- SHTRjles, (5.20)

where H € R"™*! is defined as in Eq. (5.19), and § € R™*" is a symmetrical
positive-definite matrix with initial state S(0) = S(0)" = 0.

Similar to most adaptive control problems that require online tuning of pa-
rameters, persistence of excitation (PE) is needed for proper convergence of NN
parameters (Ioannou and Sun, 1996). For online tuning, the PE condition as given

in Assumption 4.4 is assumed to hold.

Remark 5.3. Despite the wide use of EKF in literature, it is one of the contributions in
this paper that an EKF other than traditional gradient-based methods is employed to
tune the weights of the NN involved in NOCOS with the MVFA for continuous-time
nonlinear systems. Parameter convergence of the NN in the MVFA under the EKF

tuning scheme is shown in the following theorem.
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Theorem 5.1. Under Assumptions 4.1 to 4.4 and the EFK estimation scheme provided by
Egs. (5.17) to (5.20), optimal or near-optimal control laws for the nonlinear system as in
Egq. (56.3) are given by Eq. (5.14) in an online-learning manner, with the adaptive variable

W converging to the ideal value W* within an error bound |W|| < by,

Proof. Given the ideal NN parameter W*, the estimation error W is thus W = W* — W.
The Lyapunov function candidate Ly = W7 (x.S) W is considered.
According to Egs. (5.16), (5.17), and (5.18),
Ly = —WT(k.S)"'W
— WHR; (s~ 1)
= W'H'R;[x'P'(f +git) + VO 'W(f + g) + Q +a'Ra. (5.21)

With Eq. (5.12), we have from Eq. (5.21):

Ly = WTH'R;! [(Px +VOTW) (f + ga)

— (Px+ VO W) (f + gu)
+a"Ra — u"Ru + eH} : (5.22)
Substituting Eq. (5.10) for VV* in Eq. (5.8) with some manipulation yields:
[xTPT + W*Tvcb] [f +gu] +Q+R
= —Velf+ %VeTgR_lgTPx + %VsTgR_lgTVdﬂW* + %VsTgR_lgTVs. (5.23)
Comparing Egs. (5.12) and (5.23) thus gives:
g, = —Vel f+ %VeTgR_lgTPx + %VeTgR_lgT7<I>TW* + }LVETgR_lgTVE
1
= Vel (f+gu*) — ZVsTgR’lgTVs. (5.24)
With Eq. (5.24) substituted for ¢,, in Eq. (5.22), and G = gR1g", we have:
Ly = WTHTRjtl[xTPTg(a —u) - WIVof
+ WVegh — W' Vdgu + " Ri
—u"Ru — Vel (f + gu*) — %VETGVE]
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= W'H'R,! BxTPTGVCDTW ~WiVaef
- }LWTV¢GV<I>TW — Vel (f + gu¥)
+}LW*TV¢G7<I>TW* - jIVsTGVs}

~W'H'R;! {wTvcpf W TV ecveTw

+ }LWTWDGVQTW* - %xTPTGWDTW
—Vel(f +gu*) — %VSTGVE}

_ _WTHTRf—l {%WTVq) {f _ %G(Px + VchW)]
N %WTVq) [f _ %G(Px + Vchw*)}

~Vel(f +gu*) — iVsTGVe:}

= W' [V@(f + gﬁ)RJ?l] B(f +gi) VoW

+%(f +gu) ' VOTW — Vel (f + gu*) — %VsTGV(e} :

Let i = u* — 4. Since gu = gu* + %gR_lgTVS , we have:

ﬁw——WT[ ®(f +gM)R; } B(f—l—gﬁ)TVQTW

T
+ % (f+gu* + %GV&) Volw
~Vel(f +gu*) — %VeTGVs}

Ve (f+gu*)R *1(f+gu*)TV<I>TW

I
|
Ex

Vo (f +gu" )R, W VOGVR'W

gz

=

%IHOOI»—\NI»—\NM—\N“_\H;“_\

Vo (f + gu*)RJ?1V£TGV<I>TW

gz

'VOGVO'WR, ' (f +gu*) VoW

g:

V@GV&R U(f +gu*) ' VOTW

V4 ) GV@TWR]?1WTV<I>GV¢TW

GV(I)TWRJ?1V8TGV<I>TW

gz

gz
<l

(5.25)
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- WTVd)GVst_lWTVd)GV@TW

WTv¢GveR;1vsTGv¢TW. (5.26)

=~ 0|

Now we introduce bounds. Let
Mi = Vo(f + gu)R; ' (f + gu”) VT,

M, = V(DGV(DTWRJ?lWTVCDGV@T,

and

“IvelgveT.

M3 = VCDGVSRf

Because of rank(G) = rank(g) < ny, there exist kernels

ker(VOGV®T) = {r ER™ | VOGV®r =0 }

ker(GV®T) = {r e R™

GV®eTr = O} ,
ker(V®G) = {re R™ | V®Gr=0}.
Since W is explicitly governed by Eq. (5.17), we consider cases where
W # ker(VOGV®T),
W # ker(GV®T),
Ve # ker(V®G).

Let ||RJ71 | = brs. Under Assumptions 4.1 to 4.4, and with Eq. (5.11), there exist

constants by, by, b1, b, bmz € R so that the following inequalities hold:

If +gu*ll < by |« (5.27)
Gl < beu, (5.28)
by L1|W|* < ||WTM W |, (5.29)
buoIT|W* < | WIM,W ||, (5.30)
bsIT|W|* < ||WTM;W |, (5.31)
where
I = x|
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As a result, Eq. (5.26) can be upper bounded as:

. 1 X 3 A
L < = bl W]* + J03beboubi ]| W]

3 . ;
+ L UR0BubebreIT|W | + Djbsboubebr AT W/

1 . y
— bwaT| W[ = by 1]
1 2 0 4m\? 1697 + 8ipabun

= — gbual1[|[W] [(ku—ﬁ) R ] 2

where
3
m= b (bsbou + bEube) bry,

and

1
12 = bybibcubebrys — 7 0ms — bun.

According to Egs. (5.29) to (5.31),
1
M2 > bypbsboubebry — JpbGub:bRy — bybibry
1 2
= —bybgy (bx — zbcubg) . (5.33)
2 1 2
If —b¢be(bx - Ebcubg> <1, <0, then:

1617 + 8172byn

1
=1 (6417% + 32172bm2>
1 3.3 2 ? 612 12 1 ?
> 1 64( 30 (bibou + Bube ) bry ) — 326562, bk ( bs - Sbaube
= Lpsp b2 (463 + 68bsboube + bEyb2) > 0
T 4 ¢ GURf X xYGUYe GU"e :
If 7o > 0, then:
1617 + 81pbyn < 1677 + 8172b$béube.
As a result, the inequality in Eq. (5.33) gives:

0 < 1697 + 81abyy < 16177 4 8172bjbE bRy
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Under Assumption 4.4, I1 is PE. As a result, Eq. (5.32) shows that L is negative

definite if

4171 + \/1617% + 8172bm2

A
2 by
me w

1w >

W* — WH is uniformly ultimately bounded (UUB) within by, offering

That is,

an optimal or near-optimal control solution as given by Eq. (5.14). This completes

the proof. O

Remark 5.4. It is shown that the convergence of |W|| is UUB under the MVFA
and the EKF tuning scheme. More importantly, any interim value of W along its
evolution path can be directly used by the actor NN (as in Eq. (5.14)) to provide
stabilising control in the meantime. The closed-loop stability of the overall system

under the new approach is discussed next.

According to Assumption 4.1 and Eq. (6.15), the system (5.3) has only one
equilibrium where x = 0 and u = 0, whereas other equilibrium points require
sustained control inputs to maintain. Therefore, both the system states and control
inputs are to be evaluated in terms of the Lyapunov stability, where the control
inputs are also required to decay to zero with time. A suitable Lyapunov function
candidate can be the approximated value function V" (x) of the system associated
with an admissible control u ;) at the i'" infinitesimal time step. This is because in a
stabilised closed-loop system the value function V"0 (x) is positive from definition
as in Eq. (6.5) and its time derivative should be negative in accordance with Eq. (5.6).
On the other hand, if some intermediate values of W during convergence to W*
can lead to system instability, the resulted value function time derivative dV /dt will
turn positive. Therefore, if 4V /dt is shown to be always negative regardless how W
converges to W¥, then the closed-loop system is said to be stable under admissible

control during online tuning.

Theorem 5.2. Given Assumptions 4.1 to 4.3 and the EKF estimation scheme provided by
Egs. (5.17) to (5.20), there exists a scalar by,p € R™ and a matrix P for Eq. (5.9) such that
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5.3 Proposed controller

|P|| > by,p and the nonlinear system as in Eq. (5.4) remains asymptotically stable during

online tuning with the control law given by Eq. (5.14).

Proof. The Lyapunov function candidate is selected to be Ly = V as discussed. Its

time derivative is:

Ay T
tv=(%%) -+
—(Px+ VOTW) (f + ¢gn)

=(Px + VOTW* — VOTW) (f + gu* — gil)

av\T ) )
(%) (g = VeT(F )
+ %xTPTG(VqﬂW + Ve)

+ %w*TWpG(WTW +Ve) - WiVef

+ %WTVd)G(Px + VOIW* + Ve)

- %WTVd)G(VchW + Ve)

——Q-uw'Ru* —Ve'f —WI'V®f + Ve GPx
+ %VETGVS +VelGVO'W* + WIVOGPx
+WIVeGVeTw* — %WTVQGVCDTW

=—Q- }IxTPTGPx — %xTPTGVCI)TW* — Vel'f

1 1 o 1
+ ExTPTGVs _ ZW*Tchquﬂw* + Zv:sTGvS

+ %W*TVCI)GVF, ~-WIVef+W'VeGPx

+WIVeGVeTW* — %WTVQJGVd)TW. (5.34)

As Q(x) > 0, we have bg||x||* < Q(x) for constants by € R*. Given that x
is explicitly governed by system (5.2), the case of x # ker(G) is considered. It is
straightforward to see that there exist constants by € R and b,y € R™ such that

ber < |Gl
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and

bualx|” < |WTV@GVOTW

Following the results of Theorem 5.1, it is known that 0 < ||W|| < by,. Then
Eq. (5.34) can be upper bounded as:
. 2 1 2 2 1 2
Lv < = bollx[|” = 7 beLIPI[1x[|” + 5bcube [| ]| [|x]
1 « 2 1 2 2
+ 5 beubp W7 [P [x[|" = 7 bmallx[|” + beb || x|
1 * 2 1 2 2
+ 5bpboubel W [[|x[|" + bebeullx|” + bybsby %]
2 * 2
+ byboubyy 1P|l [|x]]” + bgbouby W[ x|
2 (1 2
=l (GcullPI? = P 7). 639
where
1 L1
13 = Ebcub(pHW ” + EbGubs + b(prUbW;

and

1 e 1
N4 = Sbpboube [W*|| + 307bcu + beby + bybyby

. 1
+ bybouby ||W*|| — bg — 2 bms (5.36)

Equation (5.35) shows that Ly is negative, and thus || x| is bounded, as long as

213 + 2 2+bGL774
1P| > 2V 2, 5.37)

= Ump-
bar,

It can be easily derived that the second-order derivative of Ly with respect to
time is a function of x and W. Since ||x|| and ||W|| are both bounded, Ly is also
bounded. Therefore, it can be concluded that the system states x are asymptotically

stable. This completes the proof. O

Remark 5.5. This new control scheme under EKF tuning maintains the stability of the
closed-loop system during online adaptation without the necessity of providing an
initial stabilising control, adding a stabilising logic-switch mechanism to the critic

NN, or adding an additional stabilising tuning loop to the actor NN. Moreover, the
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5.3 Proposed controller

proposed algorithm provides proven asymptotic stability rather than the relatively
weaker UUB stability to nonlinear systems as in Eq. (5.3) during online tuning.
Theorems 5.1 and 5.2 verify the EKF tuning for the MVFA and build an important

contribution of this paper.

5.3.3 Generalisation of modified value-function-approximation

Note that the discussion in Subsections 5.3.1 and 5.3.2 are limited to locally nonlinear
systems, with the parameter matrix P being constant, which as a result, does not
suit a wider flight envelop with varying travelling speed U beyond the flutter
boundary. As a second contribution in this paper, a systematic approach is proposed
in the following for the selection of P to cope with U, dependent dynamics as in
Eq. (5.2), generalising the new NN-based VFA to globally nonlinear cases.

Linearising Eq. (5.2) about x = 0 gives:

where
Ap(uoo) 2 M ,
0x x=0
Bp é ag(x) ,
ox x=0

and w) is unit white-noise input.

With performance output h considered, there is:

x Ap(Us) I By| |x
h| = C, 0 E,| |w|. (5.39)
y Cy 0 0 u

where C, = I for full-state feedback, C;, = [Qz 0]T,and E, = [0 Rz|".

Let P(Us) be a scheduled matrix which varies with the freestream airspeed
Ue. According to Theorem 5.2, a stable closed-loop system under the dynamically
tuned control law as in Eq. (5.14) requires ||P|| > b,,p where the value of the scalar

bup € RT depends on the system dynamics. In the case of AFS, b,,p is not constant
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but varies with Ue. That is, byp = b}, p(Ue)|u—u for any valid airspeed U, where

b’ p(Us) is a generalised function. To find P(Us) that satisfies the condition of

|P(Us) || > b%,p(Uso), @ Lyapunov matrix X (Us) = XT(Us) = 0 and an auxiliary

parameter-dependent performance variable Z(Us) are introduced to form the

following linear matrix inequalities (LMIs):

X+AIX+XA, X

<0,
X —vli
X Ct
L

Cy Z
and

Tr(Z) <v,
where

1
A2 A (Us) — EB,ﬂrlBgP(um),

1
Ch2Cp— E15,112*113;1)(um),

and v is a performance index.

(5.40)

(5.41)

(5.42)

Let B; 2 3B,R"'B}, Y(Uw) = P(Ux)X (Us), and J(Us) = X! (Uc). Then

Egs. (5.40) and (5.41) can be transformed into:
—J+A,J+JA, +BY+Y'Bl <0,

] (CuJ + ExY)T
C,] + EyY Z

In light of Eq. (5.1), A(U) can be structured as:
Ap(uoo) - Apl + Ap2Uoo + AP3U§O.
Therefore, J(Us) and Y (U ) take the same structure as:

J(Us) = J1 + JoUs + J3U3,
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and

Y(Us) = Y1 + Yol + Y3U2,. (5.47)

Solving for J(Us) and Y(Us) through Egs. (5.43), (5.44), and (5.42) gives
|P(Uw)|| > b},p(Us) in the form of:

P(Us) = ¥ (Uso) ] (Uso). (5.48)

with b7 (U ) implicitly embedded in the LMIs derived.

Remark 5.6. The proposed procedure for designing the parameter matrix P yields
|P(Us)|| > b},p(Us) across Us of interest, satisfying the condition of ||P|| > b,p
in Theorem 5.2, and thus generalises Theorem 5.2 to a more general scenario, the
globally nonlinear case, with nonlinear dynamics described in Eq. (5.2). This forms

the second contribution of this paper.

5.3.4 Online system identification

Note that the information of f(x, Us) and g(x) is required for real-time synthesis
of nonlinear optimal control laws. Although the knowledge of f(x, Us) and g(x)
is analytically available, the presence of un-modelled dynamics or uncertainties
can degrade controller performance as discussed in Section 5.1. To mitigate this

problem, an NN-based identifier is proposed in the following form:
X = W (x,u) + &, (5.49)

where W;T € R™s*"x and ®,(x,u) € R" are the ideal weights and nonlinear
activation functions of the NN, respectively.

Motivated by Modares et al. (2013b), the system states x can be expressed as:
x=W;Tui (%) + Tua(x) + &, (5.50)

with
p(x) = —Tup(x) + ®s(x,u), wp1(xg) =0, (5.51)
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and

fa(x) = —Tua(x) +x, wp2(x9) =0, (5.52)
where p1(x) € R™s and pp(x) € R™ are auxiliary regressors, I = yI, xn, with
v € R, and

t
e = e T +/ e Tt-Te dr.
0

Denote the estimate of x by #£. For fast estimation of W; towards W{', the EKF is
considered for online tuning. In this study, multiple EKFs in a parallel configuration
instead of a single EKF are employed, based on the fact that the columns of NN
weights in the W, matrix are exclusively associated with respective single state in
the x vector and thus independent from each other (i.e. uncoupled). By doing so,
the computational expense is significantly less than standard implementation using

only one EKEF, according to Simon (2002). On this basis, we have:

Weip) = Kst<i> (x) = %)), 559
2y = Wiy (x) + Tpa(x),
where K; € R™* is the EKF gain and the subscript (i) restricts the parameters to the
i'" decoupled EKF; x; = Wﬁ# is a normalisation term with a constant learning
rate ag,; € RT.
Each EKF gain vector Kj ;) can be computed following Egs. (5.18) to (5.20), with

some variation to Eq. (5.19). That is:

Ky = Sqiy Hy iy RS (5.54)
R

HY. = — 9 — y(x), 5.55

s(i) aws(i) 13 (x) ( )

Ss(i) = Qs — Se(iyHs(i) ' Ry ' Hy(j) Sy (5.56)

where Qs > 0 and Rs; > 0 are defined the same as Q J; and R f-

As can be seen from Eq. (5.55), Hy(;) is the same among all individual EKF in
the parallel configuration. It is also to be noted that Hy;) is not constant but state
dependent, indicating the nonlinearities involved in system identification, which

justifies the use of an EKF instead of linear observers.

120



5.3 Proposed controller

At this stage, the internal dynamics f(x, Us) can be given by the identifier
NN in an indirect manner, since the estimated derivative of system states used by
Eq. (56.17) can be obtained through Eq. (5.49), with W;" and u replaced by W; and 1,
respectively.

The input dynamics g(x) can then be obtained as:

_ aFa(xn) _ 0 [Wids(x,0)]

g(x) P =7 (5.57)

That is,

D (x, 1) -
g(x) = —a(:: ) W., (5.58)

Convergence of the identifier NN weights under the state filtering scheme and

the decoupled EKEF is given in the following theorem.

Theorem 5.3. Under Assumption 4.4 and the EKF estimation scheme provided by Egs. (5.53)
to (56.56), the nonlinear system as in Eq. (5.3) can be reconstructed by Egs. (5.49) to (5.52),
with |Ws|| = HWS*(I.) - Ws(i)” < by, where by, € RT.

Proof. The following Lyapunov candidate is considered:

1. 1
Es = EWSFIEZ) (Ksss(i)) 1Ws(i)' (559)

With an EKF as in Eq. (5.53), the time derivative of Eq. (5.59) is:

.
A

Ls= _WT(i) (Ksss(i))_lws(i)

S

= —W,;) (Ss(i)) " Ks(iy () — 2(3))- (5.60)

Using Egs. (5.50), (5.53), and (5.54), we have:
& &g

S

ﬁs = _WS'IEI)HT(Z)Rs_l (WST(I)ﬂl +€S(i)> .
Substituting Eq. (5.55) for HsT(i) yields:

Ls = —W]ymRs 'm' Wy — Wi mR; egi).

Under Assumption 4.4, u; is PE. With Eq. (5.51), there exist constants by,;,; € R™

so that

2l 2
bmyle” st(i)
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where M,;) = mR;ul.

Therefore, with HR; 1 H = bgs, we have

: 2 2 2 2 ||
L5 < ~bua x| + bbby 1) || Wy

Ws(i)

2
— bebybgs

= —l1? (B i

Ws(i)

> . (5.61)

Under Assumption 4.4, ||x|| is PE. As a result, L is negative definite if

beb2bgs
>
bmyl

7

W

~ beb2b
which shows W; is UUB within bound by, £ 5 I

Rs .
o This completes the proof. [

Remark 5.7. As stated at the beginning of this subsection, the use of the identifier NN
is mainly for updating the knowledge of system dynamics accessed by the real-time
optimal-control synthesis scheme. The known dynamics (i.e. known analytical
model) are embedded into the identifier NN in the form of the initial values of W'
obtained via pre-training the NN using known dynamics. Therefore, any mismatch
between the actual dynamics and the analytical model can be captured and used to
update W{". Specifically for the case of AFS, as the on-board controller is normally
switched on prior to the airspeed reaching the flutter boundary, pre-training the
identifier NN offline using known dynamics at this airspeed suffices given the
learning ability of the identifier NN. When the airspeed increases, un-modelled and
mismatching dynamics can be captured, with the pre-trained NN updated in real

time accordingly.

5.4 Wind-tunnel experiments

Experiments were performed in a temperature regulated closed-loop wind tunnel
at the University of Adelaide, Australia, and the setup is shown in Figure 3.13.
The wind tunnel has a 0.5x0.5 m testing duct, and can generate up to 30 m/s
smooth airflow with 0.5% turbulence intensity. The leading- and trailing-edge

control surfaces of the aerofoil section are each driven by a servo motor, with the
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5.4 Wind-tunnel experiments

Table 5.1: Parameters of the experimental aeroelastic system

Parameters Values Parameters Values
P 1.225 kg/m3 ch 14.0 kg/s
Mg 0.851 kg Ca 0.042 kg-m?/s
Mige 0.030 kg Cte 4231 x 10~* kg-m?/s
e 0.058 kg Cle 4.327 x 10~* kg-m?/s
It —0.0685 m ky, 50 + 300h*> N/m
r3eu 0.081 m kaq 0.3 + 3042 Nm/rad
Ta 0.033 m ke 4570 x 1073 Nm/rad
Tt 1.019 x 102 m ki 4.704 x 1073 Nm/rad
Tle 4401 x 103 m I, 2431 x 1073 kg-m?
Cla 6.573 Lie 2.307 x 1076 kg-m?
Clte 3.472 L, 4.791 x 1076 kg-m?
CLie —0.145 Lie 0.088 m
Crn-a 0 L, —0.010 m
Co-te —0.631 Ls 0.260 m
Cote 0.098 Lic 0.075 m

corresponding deployment angle fed back via an optical encoder. Instead of using
physical springs for plunge and pitch stiffness, a virtual stiffness-damping system
(VSDS) was developed in this study, where two electric motors were used to mimic
the compound structural forces acting on the aerofoil using force/torque feedback
from a 6-axis force/torque transducer. The VSDS allows custom setting of the
structural stiffness and damping within the output capacity of the motors used.
This enables convenient adjustment of the structural stiffness and damping so that
the flutter phenomenon of the aerofoil section can be observed around an desired
airspeed. The parameters of the overall aeroelastic system used in experiments are
listed in Table 5.1. With the stiffness and damping setting of the VSDS in Table 5.1,
the system had a flutter boundary around 14.6m/s. Flutter was initiated by means

of giving the VSDS a pulse signal along the plunge DOF.

In consideration of the 3 order nonlinear plunge and pitch stiffness in polyno-

mial form, a power series of activation functions containing the powers of 8 system
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Table 5.2: Other parameters of the proposed NN controller.

Parameters Values
Q diag (1,1,107%,107%, 0.1, 0.1, 1074, 10~%)
R 1001
Qs 10001
Rf I
Qs(i) 1x 10°1
Ry (i) 1

states up to 4" order and 2 control inputs limited to 15 order were used for the
identifier NN in accordance with the high-order Weierstrass approximation theorem
(Finlayson, 1972). This renders 135 significant activation functions for ®(x). Initial
weights were determined via simulation-based training for 14.6 m/s airspeed. Simi-
larly, ®(x) of the critic NN contains the powers of 8 system states only (no control
inputs) up to 4" order. This gives 65 significant activation functions. Weights W
were initialised to zeros. J(Us) and Y (U ) were designed using the parameters
in Table 5.1 for the airspeed range from 14.6 m/s to 20 m/s with a gridding of 50
evenly spaced points. P(Us) was calculated in real time using Eq. (5.48). Q(x) in

Eq. (5.5) was structured as x' Qx, with Q and other parameters listed in Table 5.2.

Tests were conducted at two different airspeeds, and flutter was allowed to
develop to reach LCO before the controller under testing was turned on. To ensure
consistent initial conditions x(t.) throughout all tests under the same settings, where
tc is the time when the controller is switched on, the controller was configured to be

triggered when « crossed zero immediately after 15 seconds. This means ¢, > 15 s.

As discussed in Section 5.1 and throughout the paper, there is no existing
policy-iteration algorithms suitable for AFS without modification and improvement.
Therefore, no suitable NN-based optimal controller counterparts can be compared
in experiments. In order to evaluate the AFS performance improvement gained
by using the proposed controller, a linear-parameter-varying (LPV) controller in

the form of linear-quadratic-regulator (LQR) synthesised by means of LMIs (Prime,
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2010) was reconstructed for the 4-DOF model as in Eq. (5.1) with the parameters
in Table 5.1 and the weighting Q and R same as those used by the proposed NN

controller.

Plunge and pitch responses as well as control surfaces deflections of the aerofoil
section in the wind-tunnel tests under the proposed NN controller and the LPV-LQR
controller at different airspeeds are plotted in Figure 5.2 for 14.8 m/s and Figure 5.4
for 18 m/s. Higher airspeeds were not tested due to the torque output limit of
the VSDS motors. For elegance of presentation and ease of reading, ¢, is offset to
zero in each plot, and LCOs before controllers are activated are presented in dotted
curves. Since both controllers are off before t = t., only the full trajectories of control
surfaces deflections under the proposed NN controller are shown for illustration
purpose. In the plots, leading- and trailing-edge control surfaces are expressed in
short as ‘LE” and “TE’, respectively. The trajectories of NN weights are presented in

Figures 5.3 and 5.5.

At 14.8 m/s, the flutter was effectively suppressed within 1.5 seconds under
the proposed NN controller, with only mild demands on the deflection of control
surfaces. By comparing Figures 5.2 and 5.3, it can be seen the identifier NN has
higher rate of convergence than that of the critic NN, which means the latter is able
to access updated and more accurate system dynamics for control law improvement.
The critic NN also settles 1 second before the flutter is fully suppressed, indicating
the PE condition being met, which leads to satisfactory parameter convergence. This
validates the selection of the activation functions sets for both the identifier NN
and the critic NN, and also indicates that near-optimal control was obtained under
experiment conditions. In comparison, it takes longer for the LPV-LQR controller to
fully suppress the flutter. Similar phenomena can be observed for 18 m/s, as shown
in Figures 5.4 and 5.5, where however, relatively larger differences between the the

responses under the two controllers can be observed.

To better capture the performance differences between the two controllers, perfor-

mance cost is evaluated for t = 0 — 4 s according to Eq. (5.5) using the experiment
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Figure 5.2: Suppressing developed flutter at 14.8 m/s airflow speed using the
proposed NN controller and an LPV-LOR controller.

Table 5.3: Performance costs calculated from experiment data.

Airspeed LPV-LQR Proposed NN Controller

14.8 m/s 5.372 4.893
18 m/s 0.627 0.545

data with discrete approximation. Costs are each calculated and averaged from 4
tests under the same settings to ensure data consistency, and are listed in Table 5.3.
It can be concluded from Table 5.3 that the proposed NN control suppresses the

flutter better with lower cost at both airspeeds, compared with the LPV-LQR control.
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Figure 5.3: Convergence trajectories of the critic and identifier NN weights of the
proposed controller at 14.8 m/s airflow speed.
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Figure 5.4: Suppressing developed flutter at 18 m/s airflow speed using the pro-
posed NN controller and an LPV-LQR controller.
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Figure 5.5: Convergence trajectories of the critic and identifier NN weights of the
proposed controller at 18 m/s airflow speed.

5.5 Conclusions

In this paper a novel controller is proposed for AFS on aerofoils, featuring NO-
COS with an MVFA tuned by an EKF. Convergence and stability analysis shows
an important advantage of the new method that asymptotic convergence of the
closed-loop system states is guaranteed during online learning. This is a stronger
stability than the uniformly ultimately bounded stability of other existing NOCOS
algorithms. The proposed systematic procedure based on linear matrix inequali-
ties for the design of a scheduled parameter matrix further generalises the MVFA
from locally nonlinear cases to globally nonlinear scenarios to suit AFS and other
potential applications with strong nonlinearities that also vary nonlinearly with
non-state independent variables. With an NN-based online system identification
scheme, un-known dynamics can be estimated in real time for online control im-
provement. As validated in the wind-tunnel experiments, the proposed controller
satisfactorily mitigates the impact of modelling uncertainties and improves AFS
from the optimal control perspective, with the AFS controller synthesis dilemma
successfully addressed. Experiments also confirm that the proposed controller is

suitable for real-time implementation.
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Chapter 6

Flutter suppression by

input-constrained optimal control

This chapter is based on Article-4, focusing on nonlinear optimal control online
synthesis (NOCOS) under control-input constraints (CICs). By further generalising
the novel NOCOS scheme proposed in Chapter 4 and the new active flutter suppres-
sion (AFS) controller proposed in Chapter 5 to treat CICs from the optimal control
perspective, a new adaptive nonlinear optimal controller for AFS under CICs is
derived. This work completes the fourth objective (Page 4) of the thesis, and most

importantly, accomplishes the primary aim of the research in this thesis.

129






Statement of Authorship

Title of Paper

Neural network based adaptive nonlinear optimal control for active suppression of airfoil flutter
with constrained inputs

Publication Status

[ Published [~ Accepted for Publication

Unpublished and Unsubmitted w ork w ritten in

[V Submitted for Publication manuscript style

Publication Details

Tang D, Chen L, Tian ZF and Hu E (2018) A neural-network approach for improving airfoil flutter
suppression under control-input constraints. Journal of Vibrations and Control.

Principal Author

Name of Principal Author (Candidate)

Difan Tang

Contribution to the Paper

Proposing and deriving methods and theories, performing theoretical analysis, conducting
experiments, collecting data, interpreting results, and writing manuscript.

Overall percentage (%)

80 J

Certification:

Signature

Co-Author Contributions

This paper reports on original research | conducted during the period of my Higher Degree by
Research candidature and is not subject to any obligations or contractual agreements with a
third party that would constrain its inclusion in this thesis. | am the primary author of this paper.

Date 11 December 2018

By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author Lei Chen

Contribution to the Paper Supervising development of work, evaluating methods and theories, helping with setting up
experiments, providing advice in mathematical aspects, and evaluating manuscript.

Signature Date yal /%/ / 7/// /F
i (4 / ’ / [ >4

Name of Co-Author Zhao Feng Tian

Contribution to the Paper Supervising development of work, providing advice in mathematical aspects, and evaluating
manuscript.

Signature Date /

N2 /LY
Name of Co-Author Eric Hu

Contribution to the Paper

Supervising development of work, providing advice in mathematical aspects, and evaluating

Signature

Date

manuscript.
I~/1 /et

3







abstract

This paper deals with improving aerofoil flutter suppression (AFS) under control-
input constraints (CICs) from the optimal control perspective by proposing a novel
optimal neural-network control (ONNC). The proposed CIC-ONNC approach uses a
modified value function approximation (MVFA) dynamically tuned by an extended
Kalman filter to solve the Hamilton-Jacobi-Bellman equality online for continuously
improved optimal control to address optimality in globally nonlinear systems.
CICs are integrated into the controller synthesis by introducing a generalised
nonquadratic cost function for control inputs. The feasibility of using a performance
index involving the nonquadratic control-input cost with the MVFA is examined
through the Lyapunov stability analysis. Wind-tunnel experiments were conducted
for controller validation, where an optimal controller synthesised offline via linear-
parameter-varying technique was used as a benchmark and compared. It is shown,
both theoretically and experimentally, that the proposed CIC-ONNC method can
effectively improve AFS under CICs.
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CHAPTER 6 FLUTTER SUPPRESSION BY INPUT-CONSTRAINED OPTIMAL CONTROL

6.1 Introduction

Aerofoil flutter is destructive vibration that occurs at and beyond a particular
airspeed (flutter boundary) and can damage the aerofoil. For active flutter suppres-
sion (AFS), there have been enormous studies on solutions involving piezoelectric-
material-actuated structures and aerofoil control-surface deployment. Despite dif-
ferent AFS solutions in terms of mechanical realisation, the underlying control

algorithms play a crucial role in successful implementation.

Conventional frequency-domain analysis and basic state-space methods are
useful in control synthesis (Schmidt, 2016) and actuators location optimisation (Song
and Li, 2014). However, aeroelastic systems, being generally nonlinear and time-
varying, pose significant challenges in characterisation and modelling, and make
controller synthesis faced with numerous difficulties under increasing demands
on performance improvement over extended flight envelopes. Accordingly, recent
AFS studies mostly focus on advanced methods dealing with adaptive, nonlinear,
and robust control. Pak et al. (1995) developed an approach to synthesise the
linear-quadratic regulator online at the cost of optimality loss due to limiting
the number of iterations in order to reduce computation loads; Strganac et al.
(2000) tackled the nonlinearities using feedback linearisation, where optimality was
retained for the linearised dynamics. Platanitis and Strganac (2004) extended the
feedback-linearisation method to the case where control surfaces at both leading
and trailing edges were involved. Ko et al. (2002) employed adaptive control built
upon a reference model of known structure. Singh and Wang (2002) examined the
possibility of utilising only plunge or pitch displacement measurement for AFS
without exact knowledge of the aeroelastic system using back-stepping technique.
Differently, Singh and Brenner (2003) used a passive observer and treated parameter
estimation errors as disturbances, with the closed-loop stability guaranteed by an
input-to-state stabilising control law. Similar modular approach can also be seen

in the work of Rao et al. (2006). Viswamurthy and Ganguli (2008) focused on
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6.1 Introduction

helicopter blades with multiple flaps and derived deferentially weighted control.
Carnahan and Richards (2008) removed the filter from the feed-forward path of the
least-mean-square algorithm and proposed a modified version without the need to
adjust its convergence coefficient. Prime et al. (2010) synthesised suboptimal control
scheduled across a wide range of airspeeds by employing the linear-parameter-
varying (LPV) technique. In the work of Chen et al. (2012), the LPV control was
investigated on a proposed high-fidelity LPV model of reduced order. Lee and
Singh (2013) tackled the presence of modelling uncertainties as well as various
exogenous aerodynamic disturbances by developing an £; adaptive control law.
Fazelzadeh et al. (2014) dealt with nonlinearities and optimality using time-domain
finite-element approach performed offline. Wang et al. (2015) introduced sliding-
mode control (SMC) for AFS in hypersonic scenarios. Under the SMC framework
the circumstances involving control time-delay were studied in Luo et al. (2016b).
In addition to control delay, Gao and Cai (2016) took actuator faults into account.
Beside actuator faults, Gao et al. (2016) also considered sensor faults in control
design. By using pitch angle measurement only, Zhang and Behal (2016) derived
and investigated a robust output-feedback scheme for AFS under aerodynamic
perturbations. Fazelzadeh et al. (2017) proposed a hybrid control structure featuring
both adaptive and robust control. With the advances in computing, neural networks
(NNs) have been increasingly used. Gujjula et al. (2005) raised two hypotheses of
structural nonlinearities and used adaptive control to treat linearly parameterised
case and NN control to tackle non-parameterisable circumstance. In the work of
Wang et al. (2011), a different NN was used to deal with scenarios under various
exogenous disturbances. Brillante and Mannarino (2016) employed two recurrent
NNs for system identification and control respectively. Tang et al. (2018) made
turther improvement to AFS by deriving an algorithm powered by two NNs to

synthesise nonlinear optimal control in real time.

To allow aircraft normal and tactical maneuver while performing AFS, it is

important to limit the amplitude of control used for AFS by setting constraints
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CHAPTER 6 FLUTTER SUPPRESSION BY INPUT-CONSTRAINED OPTIMAL CONTROL

smaller than actuators saturation bounds. Although control-input constraints (CICs)
have been considered in some AFS studies (Gao and Cai, 2016; Gao et al., 2016;
Ko et al., 2002; Viswamurthy and Ganguli, 2008; Wang et al., 2011), none of the
existing solutions address the problem in the sense of optimal control. Despite
numerous methods of nonlinear optimal control online synthesis (NOCOS) for
systems with CICs being available, these methods are inapplicable to AFS due
to problems related to stability, application scope, and real-time implementation.
Moreover, these methods are limited to locally nonlinear systems whereas aeroelastic
systems are globally nonlinear as the dynamics also change nonlinearly with the
freestream airflow speed.

Therefore, in this study we focus on optimal AFS under CICs, and deliver the

following two contributions:

* As a major technical contribution, a new algorithm is proposed for AFS, which
performs NOCOS for globally nonlinear systems with CICs taken into account.
The resulting controller is optimal under CICs and adaptive to airspeeds, and
to our knowledge, a pioneer solution to adaptive nonlinear optimal control
for AFS under CICs. Controller validation was conducted in wind-tunnel

experiments.

¢ Unlike existing NOCOS approaches considering CICs, a modified value func-
tion approximation (MVFA) is used in this paper specifically for AFS. For the
first time, the feasibility of using the MVFA with a performance index involv-
ing a nonquadratic control-input cost function to address CICs is examined
through the Lyapunov stability analysis. This delivers an important scientific

contribution to the NOCOS theory framework.

6.2 Aeroelastic system

In this study, AFS is mechanically realised by proper deployment of the aerofoil

slat at leading-edge (LE) and the flap at trailing-edge (TE). The aeroelastic system
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6.3 Proposed controller

involves a typical rigid aerofoil section with plunge and pitch oscillations. For
controller design, the analytical model takes the form studied in Prime (2010), which
describes aeroelastic behaviours at subsonic regime using four degrees-of-freedom
(DOF), capturing the coupled dynamics between plunge, pitch, LE, and TE DOFs
including servo dynamics (see Figure 5.1). The corresponding analytical model is

given in Section 5.2 of Chapter 5.

6.3 Proposed controller

6.3.1 Problem formulation

If the airspeed U is constant, Eq. (5.2) reduces to

x = f(x) +g(x)u, 6.1)

which is locally nonlinear due to the absence of the variable Uy as compared with
Eq. (56.2).
The properties of (6.1) are given by Assumptions 4.1 and 4.2 in Chapter 4.

A proper control law u is desired to minimise

V(xg) = /O " O(x(1))dr + /0 " R(u(1))dr, 6.2)

where the penalty to states is set by Q(x(7)) and the control is weighted by R(u(T)),

both of which are functions being positive-definite and monotonically increasing.
The control that minimises Eq. (6.2) for the same initial conditions is deemed

optimal and denoted as u#*(x). The associated cost is generally known as the ‘value

function’, denoted by V*(x).

6.3.2 Input-constrained optimal control

In conventional optimal control problems, Q(x) and R(u) take quadratic forms,

which however, do not apply to cases under CICs. To take CICs into account, a
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CHAPTER 6 FLUTTER SUPPRESSION BY INPUT-CONSTRAINED OPTIMAL CONTROL

positive-definite integrand function is introduced for R(u) in the following form
(Lyshevski, 1998):

_ 1 T

R(u) =2 / (07'(u)) Rdu, 6.3)
where u = O(v) = [0(v1), - -+, 8(vy,)]" with 6(-) being a bounded function that is
pth-order continuous (p > 1) and v € R™; weighting R € R"*" and R = R" ~ 0.

For ©(v) in Eq. (6.3), it is practically feasible to choose
@(v) = Atanh(A " 'v),
and accordingly,
_ 11T
R(u) :2/ [Atanh_ (A™ u)} Rdu
2
— 2uTARtanh ™! (A—lu) + R,A%In (? - (A—lu) ) , (6.4)

where the functions tanh(-), tanh™!(-) and In(-) perform element-wise operation,
the vector R, = [Rq, Ry, - -+ , Ry, | contains diagonal elements of R, diagonal matrix
A = diag[A1, A, - -+, Ay, ] contains bounds for respective control (—A; < u; < A;,

VA €ERY,i=1,2,- ) and T =[1,1,---,1]".

Remark 6.1. It can be seen from Eq. (6.4) that for any unbounded control v, if |v| < A

then R(u) ~ u'Ru ~ v'Ro, and if |v| > A then R(u) < v'Rwv.
With the introduction of Eq. (6.4), differentiating Eq. (6.2) yields
VVI(f+gu)+Q+RA’In (? — </\_1u> 2)
+ 2u"ARtanh~! (A’1u> =0; V(0)=0. (6.5)

On the basis of Eq. (6.5), the following Hamilton-Jacobi-Bellman (HJB) equality
holds under CICs:

Q + R:A%In (? . tanhz(%/\_lR_lgTVV*))
+ v [f — gAtanh (%AlngTVV*)}

+ VV*TgA tanh (%AlRl gTVV*) =0, (6.6)
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6.3 Proposed controller

the solution of which is V*, with
* 1 —1p—-1_T *
u" = —Atanh EA R g'Vv™ ), (6.7)

% o x* A 9V
where V*(0) = 0 and VV* = &,

6.3.3 Value function approximation for cases with constant U

To analytically determine V*(x) is difficult, which instead, can be obtained through
an iterative procedure termed as “policy iteration” (Jiang and Jiang, 2015), which
requires V*(x) being appropriately structured and approximated. With universal
approximation properties, neural networks (NNs) can be used (Hornik et al., 1989).
The discussion in Section 6.1 reveals that a majority of the available methods
for NOCOS, being subjected to issues related to stability, application scope, and
real-time implementation, are inapplicable to AFS. Accordingly, a modified value
function approximation (MVFA) as in Tang et al. (2018) is introduced specifically
for AFS as

Vi(x) = WTld(x) + %xTPx + ¢(x), (6.8)

where hidden-layer neurons are contained in ®(x) € R"7, with ideal NN weights
being W* € R"™; P € R"**" is an additional parameter matrix that is diagonal and

positive-definite; the error of approximation is denoted by ¢(x) € R.

Remark 6.2. For the first time, in this paper the MVFA is used with a performance cost
involving the generalised nonquadratic functional as in Eq. (6.3) to solve for optimal
control under CICs. As one of the major contributions, this input-constrained case
with MVFA is examined through the Lyapunov stability analysis, as to be presented
in Theorems 6.1 and 6.2.

Remark 6.3. To select proper activation functions for the hidden-layer neurons of
the NN in Eq. (6.8), one may apply Weierstrass approximation using high-order
polynomials (Finlayson, 1972). The resulting activation functions are the individual

terms of a polynomial of specified order with the NN inputs as variables.
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Accordingly, there is
VV* = VO'W* + Px + Vg, (6.9)

with Vo = VT = [%%}T and Ve = .

The boundedness properties of V®(x) and Ve(x) are given in Assumption 4.3
in Chapter 4.

Note that W* is unknown and is replaced by an estimate W during real-time
implementation. Under the proposed approximation scheme, the corresponding

estimations V(x), VV(x), and #(x), expressed in short omitting the variable x, are

V= %xTPx +Wle, (6.10)

VV =Px+ Vo'W, (6.11)
1 R

i = —Atanh (E/\lngTVV) . (6.12)

As a result, Eq. (6.6) becomes
QO+ R,A%In (? — tanhz(%A_lR_lgTVV))
+ vVt [f — gAtanh (%/\_IR_lgTVV)}
+ VVTgA tanh (%A‘lR_lgTVV) =e, (6.13)
where V(0) = 0 and e € R is the error resulted from approximation.

It is clear that e is to be minimised so that W — W*. The extended Kalman filter

(EKF) can be applied and Eq. (6.13) can be rewritten as a dynamic system

W — O + wy,
(6.14)
y=B(x, W) —e+ vy,
with

y=-Q-20"ARtanh " (A714) - R,A%In (? - </\1ﬁ>2) ,
B(x, W) = (WTWD + prT) (f +gn),
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6.3 Proposed controller

where w, contains virtual process noises of covariance Q f€ R™ > » (0 and v, is
virtual measurement noise of covariance R f € RT.

Now applying an EKF to Eq. (6.14) yields

(

7= B(x,W),
W = KCKfey,
Kenn (6.15)
Ke = g =
K] +1
ey =Yy—1,

where the EKF has a gain of Ky € R" *1 y has an estimate of §, and a¢y, € RY is

an auxiliary constant normalisation gain.

Specifically,
K;=SH'R/', (6.16)
9B (x, W) -
H' = 52" V& (f+gi), 6.17
W (f + &) (6.17)
$=Qf- SHTRjtle, (6.18)

where § € R"*" is symmetric and positive-definite.
For online tuning, the persistence of excitation (PE) condition as in Assump-

tion 4.4 is assumed to hold.

Theorem 6.1. For nonlinear systems as in Eq. (6.1), let the value function be approximated
by Eq. (6.8), the control be in the form of Eq. (6.12), and the NN weights W be dynamically
adjusted using the EKF as in Egs. (6.15) to (6.18) with estimation error of W = W* — W.
On the basis of Assumptions 4.1 to 4.4, W remain uniformly ultimately bounded (UUB)
during online learning, if the parameter matrix P in Eq. (6.8) is selected to be ||P|| > by,p

for a finite constant byp € RT.
Proof. Consider
N T
L=V + W (kS) W
=Ly + Ly, (6.19)
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where Ly = V and Ly = %WT(KCS)_le.
With Egs. (6.10) to (6.12), the time derivative of Ly is

Ly = (VOTW + Px)' [f — gAtanh(¥)], (6.20)
where
Y= %AlngTvV. (6.21)

By using Maclaurin series, there is
tanh(Y) = Y+ O(Y?), for [¥| < % (6.22)
Based on Egs. (6.21), (6.22), and Assumptions 4.2 and 4.3, we have
tanh(Y) =~ Y+e,¢ VY, (6.23)

and there is ||e,,¢|| < b,,¢ ||| where constant b,, ¢ € R™.

With Egs. (6.11), (6.21) and (6.23), Eq. (6.20) becomes
Ly~ (Px+VOIW* — 7<I>TW)T (f — %gngTPx
1 4 1e S <
—EgR lLIVeTw* + EgR 1gTV<I>TW—gAsmY)

1, o7 _
= — %xTPTgR_lgTPx - ;W TWaogR g VoTw*

— %WTngR—l g Ve'W — x"PTgR1gTVaTW*

+x"PTf+x"PTgR 1g'VO'W — x"PTgAe o
+WIVef+WTIVOgR g’ Vo'W
—~WTVogle ( —W'VOf+ W Vdgie 4. (6.24)
In regard to Ly in Eq. (6.19), by using Egs. (6.14) to (6.16), the time derivative of
Eq. (6.19) is
Ly =-WTST'Ks(y—9)

= -W'H'R ' (y - 7). (6.25)
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6.3 Proposed controller

First we look at the term y —  of Eq. (6.25). From Egs. (6.14) and (6.15), there is

y—7=—Q—20'ARtanh™! (A_1ﬁ>

—R,A%In (? _ (A—1a>2)

- <xTPT + WT7<I>> (f +gh).

(6.26)

By using Eq. (6.5) with u* substituted for u as an equivalent expression to

Eq. (6.6), together with Egs. (6.7), (6.9), (6.11) and (6.12), Eq. (6.26) becomes

y—§=ertey,

where
eg = —2u TARY* + R,A’In (? — tanhz(Y*))
+24"ARY — R,A%In (? . tanhz(Y)> ,
ey = (¥"PT+ WV 4 V") (f + gu’)
— (xTPT n WTV<1>> (f +gn),
with

Y = %AlngTvv*.

Using Eq. (6.30) and substituting u* with Egs. (6.7) and (6.9) gives
1 T
2uTARY* =2 {—Atanh(EAlngTvv*)] ARY*
1 T
= —2(§A_1R_1gTVV*) AR tanh(Y*)
=— (xTPT + WV + V€T> gAtanh(Y").
Similarly, with Egs. (6.11), (6.12) and (6.21), there is
20TARY = — <xTPT + WT7<I>) gA tanh(Y)

= — (xTPT + W TV® - WIV®) gAtanh(¥Y).

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)
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In the following, we deal with the term R,A%In (? — tanhz(Y*)> in Eq. (6.28).
Since ’? — tanh?(Y*)

< 1, by using Mercator series, there is

In (T — tanh?(Y")) =In (T + tanh(Y")) +In (T — tanh(Y"))
= —tanh?(Y*) + O (tanh4(Y*)>
= —tanh?(Y*) + ey-, (6.33)

where tanh?(-) and tanh*(-) perform element-wise operations, ey- = O <tanh4(Y*)>.

Then,
210 (T 2(y* T yv*) 12 * 2
RA%In ( 1 — tanh?(Y )) = —tanh"(Y*)A2R tanh(Y*) + R,A%ey..  (6.34)
Similarly, the term R,A?In (? — tanhZ(Y)) in Eq. (6.28) can be expressed as
210 (T 2% T ({22 < 2
RA%In ( 1 — tanh (y)) = —tanh"(¥)A2R tanh(¥) + R,A2eq, (6.35)

where e = O (tanh4(Y)).
Substituting Egs. (6.31), (6.32), (6.34) and (6.35) for respective terms in Eq. (6.28)
yields

eg = x'PTgA [tanh(Y*) — tanh(Y)]
+ W TV®gA [tanh(Y*) — tanh(Y)]
+ WIV®gA tanh(Y) + VelgA tanh(Y*) + R,A%e,y

— tanh"(Y*)A?R tanh(Y*) 4 tanh’ (Y)A%R tanh(Y). (6.36)

where g,y = ey — &, and it is straightforward to see that ||,y || < bey with constant

by € RT and beey < 1.

Similar to Eq. (6.23), according to Eq. (6.30) with Maclaurin series expansion

under Assumptions 4.2 and 4.3, we have
tanh(Y*) =~ Y* + &y, VYY", (6.37)

and ||epy+ || < bepy- ||x|| with beys € R being a constant.
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By using the approximations as in Egs. (6.23) and (6.37) with Egs. (6.21) and (6.30),

we obtain

ep = %xTPTgR_l gIVOIW + %xTPTgR_lgTVE
n %W*Tvq)gngTvq)TW + %W*TVd)gngTVs
— }lWTVCI)gngTVd)TW + }LVSTgngTVS
— £,y A’ Reyys + €] (ARe, ¢ + RrA%e,y. (6.38)

In the following we deal with e}, as in Eq. (6.29). Substituting Egs. (6.7), (6.9),
(6.11), and (6.12) into Eq. (6.29) yields

ey = (xTPT +WIVe + V£T> [f — gAtanh(Y")]
— (xTPT +WTVe - WTVd)) [f — gAtanh(Y)]
= — x'PTgA [tanh(Y*) — tanh(Y)]
— WTV®gA [tanh(Y*) — tanh(Y)]
+ Vel f — VelgAtanh(Y*) + WIV®f
— WIV®gA tanh(Y). (6.39)
Again, with approximations in Egs. (6.23) and (6.37), Eq. (6.39) becomes
ey =—x'PTgR 1g"Ve — x"PTgAe,

~WTVOgR 'g"'Ve - WTVDgAey,

+ Vel f — %VsTgR_lgTVe — Velghe,y-

—x'PTgR g VO'W - WIVagR g VoIW

+WIVef + %WTVd)gR_l g'VO'W — W'Vdgae 4, (6.40)

where &, = &y« — €,¢, and ||&y|| < by« ||x]|, according to Egs. (6.23) and (6.37).

With Egs. (6.38) and (6.40) substituted for ez and ey, respectively, Eq. (6.27)

becomes
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=— %xTPTgR_lgTVq)TW — %xTPTgR_lgTVe
— %W*TVq)gR—lgTVNW — %W*TVd)gR_lgTVs
+ }LWTVngR_lgTV(I)TW - }LVETgR_lgTV€ + R A%e,y
— &,y A’Reyy- + &) (A’Re, ¢ — x'PTgAe, — W TV dgAe,
+ Vel f — Velghey + WIVOf — WIVDgAe <. (6.41)
Now we rewrite the term WTHT of Eq. (6.25) using Egs. (6.17), (6.11), (6.12),
(6.21), and (6.23). This gives
WTHT = WI'V® [f — gAtanh(Y)]
= WiVef - WTVcbgR leTpx — 2WTchgwl g Velw
- %WTVd)gRl g VOTW - WiVdgie 4. (6.42)
After assembling Egs. (6.41) and (6.42) for Eq. (6.25), together with Eq. (6.24), we

have the time derivative of Eq. (6.19) as

L=Ly+Lw=T1+T+T3+Ty+Ts+Ts, (6.43)
with
T =— lzTGzR 121Gz - ngGVsR 127Gz + 3zTGzR zTghe ¢
716 f 8 f 4 f m¥
3 3 7
— ZzTGzRf Tode,y: — —z (f +gu )R;lzTGz, (6.44)
T2 = Tog + Top + Toc + Tog + Toe, (6.45)

1 1 e
Ty, = — ngGPijjlePTGz - EzTGPijjlw VG2

+22TfR 12Tghe ¢ —zTGVd)TW*Rflz ghe, ¢
—zTGPfolzTgAs ¢ TGzR (f — gu*) Ve

1o
+§Z GZRf

1 7 _
+§Z GzRf

mY*/\ Re, v+ — EZTGzRf

"WTVegae,, (6.46)

2
A Rng

1
xTPTgAe,, + EZTGZRJ?

Top = — szRfl(f —gu*) Ve + szR]?IxTPTGz + szRj?lw*TVCDGz
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1 _ _ _
—~ ZZT fR;'VeTGVe + 2T fR; ey ARepy: — 2 fR;e] 4A°Re, g

+ szRflePTgAem + szRflw*TVd{gAem, (6.47)
1 1
Ty = EzTGPxR (f — gu*) Ve + ngGPij?leTGVe
1 1
_ EzTGPxRJ? el i A’Reyy: + 2zTGPfo 1.T Ast
1 1 -
— EzTGPxRJt1xTPTg;u;m — EzTGPxRlew TVWdgie,, (6.48)

1 ¢
Tog = —zTGVCDTW*R (f —gu™) Ve+ngGV<I>TW*R;1VsTGVe
2
1 _ e
- EZTGVd)TW*R]?lePTgAsm - EzTGVCDTW*RJ?lW TVCDgAem, (6.49)

1 1w 1
— EzTGV<1>Tw*R— el AZRe,y + 2zTGV<I>TW*R

1
Toe = zTg/\emYRfl(f — qu*) Ve + —zTgAsmnyVsTGVe

— zTg}Lemny el AZRe, iy + 2 gAemY £ e;Y)\ZRemY

- zTgkemnylePTgAem — zTg/\emijle*TVQg/\sm, (6.50)
1 _
T3 = — ExTPTGPx +x'PTf —x"PTGVO'W* —xPTgAe ¢
+WIVef-WTVdgie, o, (6.51)
1
Ty = — ngGPfolePTGz +x"PTGz — 2T + zTgAsmY
T 1
+WTIV®Gz — 2T fR;erAzeey + EzTGPxR;erAZseY
1 _
+ EzTGv<1>Tw*RJ;erAZeeY + zTg/\emg{RferAzsey, (6.52)
1
Ts =— —z'GzR; 127Gz — —zTGzR IR A%e,y, (6.53)

16 f f

Te=—z'fR; 1sz— TGV(I)TW*Rflw WaoG:
- L r —1g,T
-z gAemny z gAemy—gz GzRf Ve GVe
1

——zTGz ; WIVeGVeIwr, (6.54)

where G = gR_lgT and z = V®TW.
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Now we introduce bounds. As G = gR™!g", the rank of G is
rank(G) = rank(g) < ny.

It follows that there exist kernels
ker(G) ={re R™| Gr=0},
ker(GP) = {re R™| GPr=0}.

For nonlinear systems as in Eq. (6.1), since vectors x and z are explicitly governed
by Eq. (6.1) instead of being random, the existence of x = ker(GP) and z = ker(G)
as well as corresponding effects to the system are rendered negligible. Accordingly,
we focus on cases where x # ker(GP) and z # ker(G).

Given that G is positive-definite and symmetric, under Assumptions 4.2 and 4.3,

there are
2'GzR; 2" Gz > by | W[,

ZTGPxR;XTPTGz > by | PIP*|| W ||| x]|*,

XTPTGPx > bys||P|?||x|,

where constants b,; € RY, by, € R" and b,3 € R". Also, there is ||G|| < bg for
constant bg € R*.

Under Assumptions 4.1 and 4.2, we also have || f + gu*|| < b; ||x|| for constant

by € R, Let by = HRJZlH and by = ||A||. Then for Ty,

1 .
Ty < — 5 (b || W]| — 6b2bebry — 12bGbrsbgbab

smY
—12bGbrsbebabemy- — 12b:bgsbc) [|x[*|W|°
1 i i

=~ 1 (bu [ W] =) [lx]* W],

(6.55)
where
1 = 6bgbebr s + 12bGbr rbebrby,y + 126GUR rbebrbepy+ + 12bebrsbc.
On satisfying Assumption 4.4, it is clear that T; < 0 if

byt [W|| =111 >0,
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6.3 Proposed controller

which requires

1 m
Wi > —. 6.56
H ” bt ( )

Note that T, has several terms as shown in Eq. (6.45). Let bg = ||R||. Then for

T», we have
Toa < — ¢ (buallPI? — 46bgsby | P [ W
— 8bGbRrybgbab,, [|Pl| — 4bcbrsbgbabemy- || P
— 8bgbrb,, ¢ Hw bobrsby — 4bGbrbypbebrbeny: |[W
— 16bsbg sbgbb,,g — 4bGbRbibe — 4bGbR b2,y b3bR
—4bcbrsb? 5 Bbx ) | W
= ¢ (bual P2~ 12 [P s [ W], 657)
where

12 = 4% brysby | W

+ SbibegbAbsmY + 4bibegb)\b£my*,

113 = 8bgbaby, 5 bbby W W

emY

+ 4bibe(pbgbAbemY*

+ 16b bR bbb, + 4bGbRbibe + 4bgbrsbZ,y+b3bR

em¥
+ 4bcbrsb? o b3bg.
For Ty, there is
Top < (bpbrrbc | Pl + bpbrbgbabemys ||P|| + brbrybibe
+ LlibbefbgbG + bybrsbz,y-b3bR + bsbrb? (bibr

WX—

+hpbrsbyb W ) W]

+ bsbrsbpbebibemy-
= (13 |[PI| +115) | W] |11, (6.58)
where
N4 = bgbrebg + bpbrbebpbeny-,
15 = bybrsbibe + ijbefbgbG + bybrsbZ,y-b3br

+ bybrsb?, DAbr + bybrsbsbe W

*

+ bbefb(Pbgb)\bgmy* 4%
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For Ty,

1 1 1
T < (Ebibegb)\bemY* IP|* + 5bGURrbibe 1P| + gbébkfb? 1P|

1 1

+ 5bGbrebEy-DRbR | Pl| + Sbcbrsb;, 5 bRbr || P|
+3bcbugbabebubory W] 1Y ) W] )"
= (sllPI> + 7 |12} W] ], (6.59)
where
1
e = 5bGURDgbADemy+,
17 = %bibexbg + ébébebg + %bibeng*bﬁbR
+ %bibengb%bR + %bibe(pbgbAme* ;
For T»,,

]. * 1 *
Thy < (—biqbbebgb/\bsmY* (W IP| + —bi¢bebxbg W]
+ b2 Gbpbr b7 | W + 5 bicprfbsmY*bAbR W7

+3cbybigt2, g B0 [W° | + 3bcb3bnsbbabny [W° I ) W]

emY

= (15 | Pl + o) | W]] |, (6.60)
where
s = 5 babgbrsbgbabeny- W
no = —bi¢beb be | W*|| + b2b¢beb2||W*H+ ~bGbybg b2,y Db [ W
+ = bi¢be@ JAbR [|[W*|| + biZbeb brbemy+ | W%

emY

For Ty,

bebsmY* HPH + bgb/\bsm\{bebxb8

emY

T < (W23

1
+ 050l bR GE + Bibiis bR b2y UY0R + bgbrsb), bR

0203 b b pbgbenye [W* ) [|W]] 2]

= (o |PI| + ) [W]] [|*]*, (6.61)
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6.3 Proposed controller

where

o = béb/z\bsmYbebsmY*/
1
1 = bbb, sbrsbiebe + ZbgbAmebebig + bgb,, bR b5,y D3 bR

emY
+ bobrb® Bibr + b2b3b, obrebpbeny: |W|
8VRf¥emy AR §YA%emYURfVpTemY .
Assembling Ty, Top, Toc, T4, and T, together gives
1 2 1121 A
T < - 5 (b2l PP = n2 [P = 3) W]

+ [’76HPHZ+ (12 + 117 + 118+ 1110) || P|| + (75 + 179 +7711)} W | [|[|*

1 -~
= — = [ (n2llPI = 2Pl = 15) | W|| — 86| P
—8 (4 + 17+ 15 +110) ||P|| — 8 (115 + 170 + m11)] | W) |||
1 ~ -
=— 5 @ W] = &) W] =", (6.:62)
where
& = bua||P|* = 12 ||P|| — 113, (6.63)

& = 8116||P||” + 8 (11 + 17+ 118 + 1130) || P|| + 8 (115 + 170 + 1711 -

Under Assumption 4.4, it is clear that T, < 0 if (3 ||WH —¢,) >0, that is,

&

W)= 2,

for ¢ > 0and ¢ > 0. (6.64)

In order to ensure ¢; > 0, it can be derived from Eq. (6.63) that the condition to

12+ 1/ 115 + b3
1P| > 12T 4 (6.65)

mez It

be satisfied is

Now we look at T3, which is bounded as

1 2 *
T3 < <—§bm3HPH + g [Pl + bgbaby,,y |P|| +bcby [W7| [ P]]

‘H?(pbf HW* +b¢bgb)\b€m§{ HW* > ||x||2
1
—— (ealPI? = 2 P = 2 I, (6.66)
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where

2 = bg + bgbab,, ¢ + bsby |[W*|,

+ bybgbyb .

emY

113 = byby Hw

v

According to Eq. (6.66) and under Assumption 4.4, to guarantee Tz < 0 requires

1
5 bna|[PI* =2 | P = 715 > 0,

which can be satisfied by

12+ 1/ 135 + 2bwsinz
= 2 T sy, (6.67)

In regard to Ty, let bg, = ||R/||, then

1 ~
Ty < — 5 (b2 [P |W][ 1] — 8bG | PI| - 4bGbrsbr:bibeey [P

— 8bybg HWH — AbGbybg b beey [WF|| — 8D — 8bebab,, g
—8bybrybrrb3bey — 8bgby,sbrbrbibey ) W] ]
1 ~ -
= o [bu P W 10 = s 1P ] 1] 1202 (6.68)

where

14 = 8bg + 4bgbg fbr,bibecy,

115 = 8bypbg HW

+ 4bGbybrsbrbibeey ||W*|| + 8bf + 8bgbab,,.¢
+ 8b¢bRrsbrrb3beey + 8bgb, bR FORAD] becy-
As can been seen from Eq. (6.68), with PE condition applied, Ty < 0 requires

bu2 | P||* [ W] l€l|* — 114 | PI| = 715 > 0.

That is,
[W|[|x]* > M (6.69)
bz ||P||
Regarding T,
1 - 1 N
Ts < <—Ebm1||W||2||x||2 + EbibeRrb%bgey) W% 112

1 - 8bGbR bR b2 b i

TR <||wH2||x||z_ T SeY) W]l ©70)
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6.3 Proposed controller

It is straightforward to see from Eq. (6.70) that Ts < 0 under the PE condition as

long as

i 8bcbg b, b2b
W || > x/ ¢ RQ)?; AeeX, 6.71)
m

As for Ty, it is clear from Eq. (6.54) that Ty < 0. Therefore, from Eq. (6.43), we
have £ < 0 upon conditions in Egs. (6.56), (6.64), (6.65), (6.67), (6.69) and (6.71)
being satisfied.

Recall from Egs. (6.69) and (6.71) that a bound exists for HW

, given x is
PE under Assumption 4.4. Denote this bound as b, € R*. Together with
Egs. (6.56), (6.64), (6.65), and (6.67), we can reach a conclusion that W is UUB
by a bound by; £ max (b%' %, bw) during online tuning if the parameter matrix P

is selected to be

||P|| > max(bpl, pr) = byup. (6.72)

The proof is now completed. O

In the next, we further examine the closed-loop stability with respect to system

states x regardless of whether Assumption 4.4 is applied or not.

Theorem 6.2. For nonlinear systems as in Eq. (6.1), let the value function be approximated
by Eq. (6.8), the control be in the form of Eq. (6.12), and the NN weights W be dynamically
adjusted using the EKF as in Egs. (6.15) to (6.18) with estimation error of W = W* — W.
On the basis of Assumptions 4.1 to 4.3, the closed-loop system is asymptotically stable in
terms of the states x about the origin, if the parameter matrix P in Eq. (6.8) is selected to

be || P|| > by,p for a finite constant b,,p € RT.

Proof. Consider
Ly=V (6.73)
as the Lyapunov candidate, the time derivative of which has been given by Eq. (6.24).
With G = gR™!gT, Eq. (6.24) can be rewritten as
Ly = Ly1+ Ly, (6.74)
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where

. 1 -
Ly =— ExTPTGPx +xTPTf —x"PTGVeTW*
TpT  ~v a6 1A TpT T
+x"PTGVO™W —x"PTghe o + WTIVOf
+WIVeGVe'W - WiVaegie o

~WIVef+W'Vdgie, ¢, (6.75)
Lyy =— %W*TWPGWDTW* — %WTV':I)GVQ)TW. (6.76)

If Assumption 4.4 holds, then W is UUB during online tuning, as shown in
Theorem 6.1. In the case of the PE condition being not satisfied, W may not reach
W* but remains bounded as a result. Let by, denote the bound of W in both cases.

Then Eq. (6.75) is bounded as

. 1 *
L1 < (= ouabcllPIP+ by [P + bty [W 2]+ bbby, [P

+ bgb)\bsm\? ”P” + b‘/’bf HW*

+ bghcbyy W]

+bgbgbab,s W'

1
= — > (buablIPI* = 116 I P = 117) IIx|1, (6.77)

+ bybgby + bbobgbrbe,s ) |||

emY

where

7716 = bi(P ||W*|| —+ bf —+ bi¢bW -+ bgb)\bsm\?’

My = byby HW

+ bbby [[W* || + bybghaby,g HW

+ bwbq;bf + bwb(l;bgb/\b

emY"
According to Eq. (6.77), when x # 0, to make ﬁm < 0, it requires
buabg||P||* — 116 | P|| — 17 > 0,

that is,

116 + \/77%6 + 4by3bcimy N

P| > = by3. 7
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6.3 Proposed controller

Since Ly, < 0 according to Eq. (6.76), by using Eq. (6.74) together with the result
of Eq. (6.72) in Theorem 6.1 we have Ly < 0, if

HPH > max (bpll pr; bp3) = by.p. (6.79)

Upon satisfying Eq. (6.79), it follows that the second-order time derivative of
Eq. (6.73) is bounded since both x and W are bounded. Therefore, the closed-loop
system is asymptotically stable in terms of the states x about the origin. The proof

is now completed. O

Remark 6.4. Theorems 6.1 and 6.2 show that it is viable to introduce the nonquadratic
control-input cost function to NOCOS involving the MVFA. The new control scheme
considering CICs guarantees the closed-loop stability during NN online learning.
Theorems 6.1 and 6.2 contribute new knowledge to the NOCOS theory framework

and serve as major scientific contributions.

6.3.4 Value function approximation for cases with non-constant
airspeed U,

The NOCOS under CICs proposed in Subsections 6.3.1 to 6.3.3 assumes constant
Ue. For cases with non-constant U, that renders system (5.2) globally nonlinear,
the parameter matrix P in Eq. (6.10) needs to be changed accordingly to satisfy
the condition in Theorems 6.1 and 6.2, and can be determined and implemented
through linear-parameter-varying technique using linear matrix inequalities (LMIs)
as follows.

By linearising Eq. (5.2) at equilibrium and denoting h as the performance output,

we have
% A,(Us) I Bp| | x
y|=| ¢ 0 0| |u]|, (6.80)
h C, 0 E,| |wp

with

Ap(Us) =Y
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where

Cp:I, Ch: 7 Eh: 7

and vector w), contains process noises.

In the case of AFS, the value of b,,p in Theorems 6.1 and 6.2 varies with U,
which thus, is denoted by @ (U ) herein instead. Given the ||P|| > b,,p condition in
Theorem 6.1 and 6.2, a parameter-varying P (U ) is now introduced, and accordingly,
it is required that ||P(Uw)|| > @(Us) for a stable closed loop. To properly determine
P(U), the following LMIs are constructed by introducing a performance variable

Z(Us) and a positive-definite symmetric matrix X (Us):

X+ATX+XA. X

<0, (6.81)
X —vI
~ 0, (6.82)
C., Z
Tr(Z(Us)) < v, (6.83)

where v is a performance index, and

1
A2 Ay (Us) — EBpR—lng(uoo),

1
C,2C,— EEhwlB;P(uoo).

Let B. £ 1B,R'BI, Y = PX~1,and ] = X~ 1. Then from Egs. (6.81) and (6.82),
2Pp p q

we have
—J+A,J+JA, +BY +Y'B] <0, (6.84)
C,J +E,Y)T
J (Cu] + ELY) (6.85)
Ch] —+ EhY yA

Based on Eq. (5.1), A;(Uw) can be in the form of

Ap(Us) = Ayt + AppUe + ApsUs,. (6.86)
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6.3 Proposed controller

Accordingly, J(Us) and Y(Us) are given by
J(Ueo) = J1 + JoUeo + J3U3, (6.87)
Y(Us) = Y + Yol + Y3U2, (6.88)
and can be obtained by solving Egs. (6.83), (6.84), and (6.85). Finally, there is
P(Us) = ¥ (Uso)J ' (Uso), (6.89)

which satisfies |P(Us)| > @(Uw), with @(Us ) implicitly expressed in the LMIs.

Remark 6.5. Different from other existing NOCOS methods which only apply to
locally nonlinear systems (i.e., not suitable for the AFS cases with non-constant U.),
the MVFA with the scheduled parameter matrix P enables the proposed NOCOS
scheme under CICs to cover globally nonlinear scenarios involving non-constant

uco .

6.3.5 Online system identification

Despite aeroelastic dynamics being analytically known, online system identification
is desired to reduce the impact of modelling errors. A suitable solution can be

realised via an NN as:

. _ w7

x =W, ®(x,u) + ¢, (6.90)
where W; € R™*"us collects the ideal weights, ®;(x, ) € R"» contains nonlinear
activation functions, and &; € R"* is a vector of approximation errors.

According to Modares et al. (2013a), the solution to Eq. (6.90) has a filtered

representation of

x=WSu + Ty + &y, (6.91)
with ) )
i
pi|  |-T I 0 0] |®s(x,u)
1) N 0 0 —-I I 70 ’
L x .
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where p; € R™s with zero initial condition and u, € R™* also with zero initial condi-
tion are both auxiliary regressors; I' € R"**"x is a constant matrix and I' = yI,;, xn,
with 7 € R* being a constant; e, = e Tfxy + fg e T(t=Te dT is the approximation
error.

Note that W needs to be found so that x can be correctly obtained as in Eq. (6.91).
The corresponding estimation W; and £ can be obtained by employing the EKF. In
the interests of light computational load during real-time implementation, the EKF
can be constructed in a decoupled form, consisting of multiple EKFs of one input

and one output, each approximating a single state in x. Accordingly,

(

5&(]) — WS(])ﬂl (x) + r‘uz(x)/
W ke,
) = x0) — 0, (6.92)
g = s
- K| +1

where xU) € R is the /™ measured state; £(/) € R is the j" estimated state; ag;, € R*
is a constant; K_SJ ) € R™s is the gain of the j" decoupled EKF; and Ws(j ) e RVmas ig
a row vector corresponding to the jh row of W;.

The gain K_gj ) of each decoupled EKF can be obtained from
KY = sV R, (6.93)
V) = Qo — sV R 1l sY. (6.94)

where Q,; € R™:""s and Ry € R™ are respective weightings.

Based on Egs. (6.90), (6.91), (6.92) to (6.94), we now have an estimate of % as
=Wl (x,u). (6.95)

By using Eq. (6.95), there is
X adJs(x,u)W

Let ¢(x) denote the estimation of g(x). Since g(x) = g—ﬁ, from Eq. (6.96) we have
0D (x,u) ~
g(x) = —Sa(u )Ws- (6.97)
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Equations (6.95) and (6.97) now provide necessary information required by the

proposed control scheme.

Remark 6.6. W; can be initialised by offline training of the identifier NN performed
prior to online implementation. One may use a known analytical model with U, set
to the flutter boundary (denoted by U, herein) for the offline training given the fact
that the AFS controller only needs to be activated when the aircraft is approaching
its flutter onset airspeed. Modelling errors (for Us > U}, ) can then be captured in

real time and used to update the pre-trained NN model online.

6.4 Wind-tunnel experiments

For validation of the proposed optimal NN control (ONNC) scheme that considers
CICs (in short, CIC-ONNC), wind-tunnel experiments were conducted (see setup in
Figure 3.13). A scaled-down NACA 0012 aerofoil section was placed in a testing
duct measuring 0.5 x 0.5 m in cross-section, and was vertically mounted on a virtual
stiffness-damping system (VSDS). The VSDS uses electric drives to generate plunge
force and pitch torque to mimic the effects of physical translational and torsional
springs. This allows convenient adjustment of the structural stiffness and damping
of the aeroelastic system to suit different test scenarios. Table 6.1 lists the parameters
of the wind-tunnel experiment setup which together deliver an aeroelastic system
subjected to flutter when the airflow reaches or increases beyond 14.1 m/s.

To implement the proposed CIC-ONNC, the activation functions of the NNs
were generated as in Remark 6.3, and Table 6.2 gives an overview of these NNs.
For synthesis of J(Usx) and Y (U ), 50 scheduling points are equally spaced over
Us C [14.0, 20.0] m/s. Then P(Us) was obtained online according to Eq. (6.89).
The conventional quadratic structure of xT Qx was adopted for Q(x) in Eq. (6.2). All
parameters related to the proposed CIC-ONNC are given in Table 6.3.

As discussed in Section 6.1, the existing methods for AFS do not consider

CICs from the optimal control perspective and no existing NOCOS algorithms that
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Table 6.1: Wind-tunnel experiment parameters.

Parameters Values Parameters Values

0 1.225 kg/m?3 ch 14.0 kg/s

Mg 0.851 kg Ca 0.042 kg-m?/s

Mige 0.030 kg Cte 4231 x 10~* kg'm?/s
M, 0.058 kg Cle 4.327 x 10~* kg-m?/s
e —0.0685 m ky, 50 + 30042 N/m

r3e/ 0.081 m ka 0.3 + 52 Nm/rad
Ta 0.033 m kie 4570 x 1073 Nm/rad
Tt 1.019 x 102 m ki 4.704 x 1073 Nm/rad
Tl 4401 x 1073 m I, 2.431 x 1073 kg-m?
Cla 6.573 Lie 2.307 x 107° kg-m?

Clte 3.472 I, 4.791 x 10~° kg-m?
CLie —0.145 Lie 0.088 m

Cri-a 0 L, —0.010 m

Crte —0.631 Ls 0.260 m

Conle 0.098 Lyc 0.075 m

Table 6.2: Key information of the NN components of the proposed CIC-ONNC.

NN  Input  Order  Neurons Weights Initialisation
. t 4th . .. . .
Identifier |*| ¥ UP'© 1, = 135 offline training based on simulations
u u: 1% for 14.1 m/s airspeed
Critic x up to 4" 1, =65 zeros

deals with input-constrained cases apply to AFS. For these reasons, the robust
controller for AFS studied in Prime (2010) was deemed appropriate for use in
comparison, which has a primary structure as the linear-quadratic-regulator (LQR)
optimal control scheduled via linear-parameter-varying (LPV) technique using LMIs.
The LPV-LQR controller was designed using the same aeroelastic model, system
parameters, and cost function weightings (Q and R) as the proposed CIC-ONNC.
AFS at two different airspeeds were investigated, and the worst-case scenario
was considered where the AFS controllers were expected to suppress flutter that

had already developed and reached the state of limit-cycle oscillation. Automatic
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Table 6.3: Parameters of the proposed CIC-ONNC.

Parameters Values

+21I degrees (£0.035I rad) for Us = 14.8 m/s tests
A +8I degrees (£0.1401 rad) for Us = 18 m/s tests
+91 degrees (£0.157I rad) for Us, = 18 m/s tests

Renn 10%

NXsnn 104

r 10°1

Q diag (1,1,107%,107%, 1071, 1071, 1074, 107%)
R 10°1

Qr 10°1

Ry 1

Qs(i) 10°1

Ry (i) 1

triggers were put in place to switch the AFS controllers on when the pitch angle
ga crossed zero immediately after 15 s. Let t, denote this triggering time. Then we
have initial conditions x(t.) under the experimental setting. This allowed all tests
under different controllers to be evaluated under the same settings and consistent

initial conditions.

For airspeed of U, = 14.8 m/s, a bound of +2 degrees (A = 0.0351 rad) was
set for the TE and LE control surfaces by imposing saturation constraints to the TE
and LE servos. Aeroelastic responses of the aerofoil section, together with TE and
LE deflections, under the proposed CIC-ONNC and the benchmark LPV-LQR, are
plotted in Figure 6.1. Corresponding trajectories of the NNs weights (W; and W) of
the proposed CIC-ONNC in the form of their 2-norm are presented in Figure 6.2.
No significant differences can be observed for plunge and pitch responses from
Figure 6.1 before 0.5 s, whereas deviations start to increase afterwards (Figure 6.1)
as the NNs weights converge (Figure 6.2). Figure 6.2 also shows that W; converges
faster than W, and thus allowing proper convergence of W in around 0.7 s, before

the flutter is fully suppressed at approximately 1.5 s (under the proposed CIC-
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Figure 6.1: Suppression of developed flutter at U, = 14.8 m/s airspeed with
A = 0.035I rad.

ONNC). The convergence of both W, and W well before the flutter settles suggests
optimal control being obtained under CICs. By comparing TE and LE control
surfaces deflections, it is straightforward to see that TE severely saturates the pre-set
bounds under the LPV-LQR scheme due to constraints in control being not taken
into account in controller synthesis. As a result, the LPV-LQOR scheme takes longer
to suppress the developed flutter.

In tests with U, = 18.0 m/s airspeed, the +2 degrees bound was found too
small to enable effective flutter suppression. Therefore, A for both controllers were
increased incrementally by a magnitude of 1 degree until successful flutter suppres-
sion was observed. It was found that the LPV-LQR scheme failed to suppress flutter
until the saturation bound for TE and LE was raised to an absolute value of 9 degrees

(A = 0.157I rad), while the proposed CIC-ONNC successfully eliminated flutter
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Figure 6.2: NN weights convergence of the proposed CIC-ONNC at U, = 14.8 m/s
airspeed with A = 0.035I rad.

with a £8 degrees bound (A = 0.140I rad), as can be seen from Figures 6.3 and 6.5.
With the £9 degrees bound, the proposed CIC-ONNC also yielded superior AFS
results, as demonstrated in Figure 6.5, where in contrast, the LPV-LQR scheme heav-
ily saturates both control surfaces and needs significantly longer time to suppress
flutter. Regarding the NNs weights during online learning, the 2-norm trajectories
in Figures 6.4 and 6.6 show similar patterns to those in the U, = 14.8 m/s case,
consistently indicating satisfactory convergence and optimal control being reached.

The optimality of the control law synthesised in real time using the proposed
CIC-ONNC can be further confirmed by comparing the performance costs of both
controllers, calculated from the experiments data. The span of the data included for
cost computation in each different test scenario is the same as the time range shown
in Figures 6.1, 6.3, and 6.5. For the cost of control inputs, both the conventional
quadratic formulation #'Ru and the nonquadratic one as in Eq. (6.4) in their
discretised form are considered. The values in Table 6.4 are the averaged results
from four repeated experiments, which show that the proposed CIC-ONNC has
consistent low costs while those of the LPV-LQR scheme are much higher. It is

also worth noting that the differences between the performance costs obtained by
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Table 6.4: Performance costs calculated from experiments data.

V(x(t.)) from Eq. (6.2) with Q(x) = xTQx

R(u) as Eq. (6.4)

uTRu

(u) =

V-LOR CIC-

1.615
513.393
129.213

Tests

V-LOR CIC-ONNC

LpP

ONNC
0.380
7.634
7.633

LpP

0.411

0.542
70.446
22.242

14.8 m/s with A = 0.0351

8.780

18.0 m/s with A = 0.1401

8.786

18.0 m/s with A = 0.1571

ONNC compared with

different cost functions are small under the proposed CIC

those of the LPV-LQR scheme. This finding is in agreement with Remark 6.1, as the
proposed CIC-ONNC did not saturate the TE and LE whereas heavy saturation of
control was observed under the LPV-LQR scheme (see Figures 6.1, 6.3, and 6.5).
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6.5 Conclusions

A novel control scheme, CIC-ONNC based on NOCOS, is proposed and analysed
in this study to improve AFS performance under CICs. The Lyapunov stability
analysis shows that it is viable to introduce the generalised nonquadratic control-
input cost function to the NOCOS involving the MVFA, contributing new knowledge
to the NOCOS theory framework. As demonstrated and confirmed in experimental
studies in a wind tunnel, the proposed CIC-ONNC using the MVFA and EKF
with a performance cost containing the generalised nonquadratic control-input cost
function is practically feasible and effective in optimally dealing with CICs involved

in AFS, delivering satisfactory AFS results.
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Chapter 7

Conclusions

The contributions and significance of the overall work on active suppression of
aerofoil flutter (AFS) and its essential elements are summarised in Section 7.1.

Future directions of the work are recommended in Section 7.2.

7.1 Contributions and significance

In general, the proposed solutions in this thesis based on online synthesis of nonlin-
ear optimal control (NOCOS) using neural networks (NNs) are novel and shown
effective in solving the AFS controller synthesis dilemma and improving AFS from
the optimal control perspective. The proposed methods were also experimentally
confirmed feasible for real-time implementation.

Specifically, the methods derived in this thesis at each stage towards the ultimate
goal of solving the dilemma involved in AFS controller synthesis have respective

technical and scientific significance as follows:

* The virtual stiffness-damping system (VSDS) prototype developed in Chap-
ter 3 for wind-tunnel experiments has a technical breakthrough in enabling
improved and robust simulation of physical stiffness and damping in oscilla-
tory systems. It was experimentally proven capable of mimicking traditional

aeroelasticity test-beds and hence serving as a reliable platform for experi-
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mental validation of the proposed AFS controllers that follow. It also has
the potential for other industrial applications involving oscillatory testing

requiring frequent change of stiffness and damping settings.

The proposed NOCOS algorithm with the Modified form of NN-based Value
Function Approximation (MVFA) presented in Chapter 4 is theoretically and
analytically shown effective in addressing closed-loop stability in a compact
configuration suitable for real-time implementation. It not only forms an
essential basis for subsequent studies towards solving the AFS control syn-
thesis dilemma but also contributes new knowledge to the NOCOS theory

framework.

In Chapter 5, the systematic procedure proposed for synthesising the sched-
uled parameter matrix P plays a crucial role in generalising the MVFA from
locally nonlinear systems to globally nonlinear scenarios. The resulting gener-
alisation is a vital step to make the proposed NOCOS scheme suitable for AFS
applications. The extended Kalman filter (EKF) proposed for critic NN tuning
with the MVFA, theoretically proven stable and experimentally confirmed
feasible, allows satisfactory parameter convergence for AFS during online
learning. The impact of modelling errors or uncertainties can be significantly
reduced by implementing online system identification using decoupled iden-
tifier NNs, as shown effective in wind-tunnel tests. These three elements —
MVFA generalisation, EKF-based MVFA tuning, and online system identifi-
cation, together form the proposed NN-based control scheme for AFS and
provides a complete solution to solving the AFS controller synthesis dilemma,

assuming no actuator constraints.

Optimal control for AFS in the presence of control-input constraints is tackled
in Chapter 6, where the introduction of a non-quadratic functional for general-
ising the traditional quadratic cost function to a non-quadratic form for the

NN controller based on the MVFA is theoretically and experimentally proven



7.2 Future work

viable. The proposed NN controller with the generalised cost function thus
successfully addresses AFS scenarios where the available control authority is
bounded by some constraints, in an optimal manner. Experimental results are
promising and confirm the validity and efficacy of the proposed NN controller
under control-input constraints. This is a significant enhancement to the NN
control scheme proposed in Chapter 5 and provides a better solution to solving

the AFS controller synthesis dilemma.

7.2 Future work

Three possible directions are recommended for future work on AFS.

The first deals with the online tuning for both the critic and identifier NNs.
The proposed NN controllers for AFS, with extended Kalman filters for online
tuning, were proven practical and effective in wind-tunnel experiments. For faster
parameter convergence and further performance improvement, a direct and possible

way is to explore more efficient online learning of the NNs involved.

The second suggestion on possible future work is about the types of NNs used
for the controller. The critic and identifier NNs of the proposed controllers are linear
in the parameters (LIP) with explicit nonlinear activation functions. LIP NNs on
one hand can give firm approximation results for specified accuracy but on the
other hand require explicitly nominating a suitable basis of activation functions.
Using the high-order Weierstrass approximation theorem is a convenient way to
systematically select a set of proper activation functions, but the the number of
activation functions can increase significantly as the order of the power series or the
dimension of the system rises. Some activation functions as part of the power series
given by the Weierstrass approximation theorem may have negligible influence on
approximation accuracy and can be eliminated, but the refinement requires either
a prior knowledge or simulation-aided procedures. Therefore, to further ease the

controller synthesis, multi-layer NNs that are nonlinear in the parameters (NLIP)
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are of interest for further investigation. By using NLIP NNs, there is no need to
explicitly determine a basis of activation functions but only a common form such
as sigmoid, hyperbolic tangent, radial-basis or other logistic-curve-type functions.
Nonetheless, nonlinearity in NN weights poses new challenges in deriving efficient
tuning algorithms.

The third recommendation is to consider exogenous disturbances in the optimal
control scheme. For the case of AFS, typical exogenous disturbances are turbulence.
During steady cruise regime, the turbulence intensity of atmosphere is low and has
little impact on AFS. As shown in wind-tunnel experiments, where the turbulence
intensity was 0.5%, no considerable perturbation was observed, and all results
under the proposed NN controller are promising. However, should turbulence
be inevitably encountered, the NN controllers proposed in this thesis may only
be suboptimal, due to exogenous disturbances being not considered in the online
optimal control synthesis. For optimal AFS in the presence of turbulence, possible
solutions may involve solving the Hamilton-Jacobi-Isaacs equation instead of the
Hamilton-Jacobi-Bellman equation in the critic NN. In addition, the disturbance-
input dynamics may need to be included in the online system identification scheme

as well.
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Appendix A

Controller composition

This appendix supplies detailed neural-network composition of the proposed nonlin-
ear optimal controller used in wind-tunnel experiments as presented in Chapters 5

and 6.

A.1 Identifier neural network activation functions

The activation functions contained in ®(x) are:

3 2 2 2 2 2 2
X1, X2, X3, X4, X5, X¢, X7, X8, U1, U, xl/ x1x2/ x1x4/ x1x5/ x1x6/ ulxll ulel

2 2 2 2 4
X1X5, X1X2X4, UpX1X2, X1X3X4, X1X3X5, X1X4X5, X1X5, U1X1X5, xi, X3X3, X5X5, Xq{, xi’xz,

2 2

3 3 3 3 3 3 3 3 42,2 2 2

2 2 2 2.2 .2 2 2 2 2 2 2
X1X2X7, U1X1X2, UpX X2, X1X3, X1X3X4, X1X3X5, X1X3Xs, X1X3X7, X]1X3X8, U1XTX3, UpX X3,
2.2 .2 2 2 2 2 2 2.2 .2 2 2
2 2 2.2 .2 2 2 2 2 2 3 2
U1X7X5, UpX1X5, X1Xg, X1X6X8, UX X6, U1XTX7, UXTX7, U1X X, UpXTXS, X1X5, X1X5X3,
X1 x2 2 2 2 2 2 2
1X5X4, X1X5X5, X1X5X6, X1X5X7, X1X5Xg, U1X1X5, X1X2X3, X1X2X3X4, X1X2X3X5, U1X1X2X3,
2 2
UpX1X2X3, X1X2Xy, X1X2X4X5, U1X1X2X4, UpX1X2X4, X1X2X5, X1X2X5X6, U1X1X2X5, UpX]1X2X5,
2 2 2 2 2
U1X1X2X6, X1X3X5, U1X1X3, UpX1X5, X1X3Xy, X1X3X4X5, U1X1X3X4, UpX1X3X4, X1X3X5, U1X1X3X5,
2 2 2
UpX1X3X5, U1X1X3X6, UpX]1X3 X6, xlxi, X1X4X5, U1X1Xy, X1X4X5, X1X4X5X6, U1X1X4X5, UpX]1X4X5,
U X 3 2 2 2 3 3 3 2 2
2X1X4X6, X1X5, X1X5Xe, U1X1X5, UpX1X5, UpX1X5Xe, X5X4, X5X5, U1X5, U1X5X3, UpX5X3,

2,2 2 2 2 2 2 3 2
X5X5, U1X5X5, UpX5X5, X2X3X4, U1X2X3X5, XoX4XE, UpX2XE, X3X5, UDX4X5.
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A.2 Critic neural network activation functions

The activation functions contained in ®(x) are:

4 .3 2 2,2 42 2 2,2 42,2 2
X1, X{X6, X1X2X4, X1X3, X1X3X8, X1X4X8, X1Xg, X1Xg, X1X5X6, X1X2X3X5, X1X2X4X5,

2 2 2 3 2 3
X1X2X5X6, X1X2X6X8, X1X3X4, X1X3Xy, X1X3X5, X1X3X6X7, X1Xy, X1X4X5, X1X4X6X7, X1X5,

3 2 4 .3 2 2 2 2.2 2
X1X5X6X7, X1Xg, X1X6Xg, X5, XpX7, X5X3Xe, X5X4Xe, X5X5X7, X5X7, X2X3X5, X3pX3X4X5,

2 2 2 2.2 2.2
X2X3X5X6, X2X3X6X8, X2XyX5, X2X4X5X6, X2X4X6X8, X2X5X6, X2X5X6X8, X2 X X7, X3Xy, X3XF,

x§x6x7, X3xil x3x4x§, X3X4X6X7, x3xg’, X3X5X6X7, xsxg, x3x6x§, xﬁi, xﬁxé, xixéx% x4x§,

2 4 .2 2 4 2.2 4 4
X4X5X6X7, X4Xy, X4X6X3, X3, X3XeX7, X5X3, X5XeX3, X&, X2X3, X5, Xg.
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