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hinge axis

Ls Aerofoil section span

L3c/4 Distance from elastic axis to 3/4-chord position

Lfc Distance from elastic axis to aerofoil aerodynamic centre

Lhc Half-chord length of aerofoil section

Lle Distance from elastic axis to the hinge axis of leading-edge control

surface

Lte Distance from elastic axis to the hinge axis of trailing-edge control

surface

Pn(s) Transfer function of VSDS plunge/pitch DOF

R f Weighting matrix for inputs of the EKF used in critic NN

Rs(i) Weighting matrix for inputs of the EKF used in identifier NN
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Ss(jω) System sensitivity at frequency ω

T1, T2, T3, ... Intermediate variables

U∞ Relative velocity of aerofoil to the air

V(·) Cost function

V∗(·) Value function

V(i)(·) Cost function at the ith iteration step

Cl Lift coefficient of aerofoil section at the aerodynamic centre

Cm Moment coefficient of aerofoil section at the aerodynamic centre





Abstract

This thesis deals with active flutter suppression (AFS) on aerofoils via adaptive

nonlinear optimal control using neural networks (NNs).

Aeroelastic flutter can damage aerofoils if not properly controlled. AFS not only

ensures flutter-free flight but also enables the use of aerodynamically more efficient

lightweight aerofoils. However, existing optimal controllers for AFS are generally

susceptible to modelling errors while other controllers less prone to uncertainties

do not provide optimal control. This thesis, thus, aims to reduce the impact of the

dilemma by proposing new solutions based on nonlinear optimal control online

synthesis (NOCOS) according to online updated dynamics.

Existing NOCOS methods, with NNs as essential elements, require a separate

initial stabilising control law for the overall system, an additional stabilising tuning

loop for the actor NN, or an additional stabilising term in the critic NN tuning law,

to guarantee the closed-loop stability for unstable and marginally stable systems.

The resulting complexity is undesired in AFS applications due to computational

concerns in real-time implementation. Moreover, the existing NOCOS methods are

confined to locally nonlinear systems, while aeroelastic systems under consideration

are globally nonlinear. These make all the existing NOCOS algorithms inapplicable

to AFS without modification and improvement. Therefore, this thesis solves the

aforementioned problems through the following step-by-step approaches.

Firstly, a four degrees-of-freedom (4-DOF) aeroelastic model is considered, where

leading- and trailing-edge control surfaces of the aerofoil are used to actively sup-

press flutter. Accordingly, a virtual stiffness-damping system (VSDS) is developed
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to simulate physical stiffness in the aeroelastic system. The VSDS, together with

a scaled-down typical aerofoil section placed in a wind tunnel, serve as an exper-

imental 4-DOF aeroelastic test-bed for synthesis and validation of proposed AFS

controllers that follow.

Secondly, a Modified form of NN-based Value Function Approximation (MVFA),

tuned by gradient-descent learning, is proposed for NOCOS to address the closed-

loop stability in a compact controller configuration suitable for real-time implemen-

tation. Its validity and efficacy are examined by the Lyapunov stability analysis and

numerical studies.

Thirdly, a systematic procedure based on linear matrix inequalities is further

proposed for synthesising a scheduled parameter matrix to generalise the MVFA to

to globally nonlinear cases, so that the new NN controller suits AFS applications. In

addition, the extended Kalman filter (EKF) is proposed for the new NN controller

for fast parameter convergence. An identifier NN is also derived to capture and

update aeroelastic dynamics in real time to mitigate the impact of modelling errors.

Wind-tunnel experiments were conducted for validation.

Finally, a non-quadratic functional is introduced to generalise the performance

index to tackle the problem where control inputs are constrained. The feasibility

of including the non-quadratic cost function under the proposed control scheme

based on the MVFA is examined via the Lyapunov stability analysis and was also

experimentally evaluated through the wind-tunnel testings.

The proposed NN controllers are compact in structure and shown capable of

maintaining the closed-loop stability while eliminating the need for a separate initial

stabilising control law for the overall system, an additional tuning loop for the actor

NN, and an additional stabilising term in the critic NN tuning law. Under the

new control schemes, online synthesised nonlinear control laws are optimal in the

cases with and without constraints in control. Comparisons drawn with a popular

linear-parameter-varying (LPV) controller in the form of the widely used linear

quadratic regulator (LQR) in experiments show that the proposed NN controllers



xxvii

outperform the LPV-LQR algorithm and improve AFS from the optimal control

perspective. Specifically, the proposed NN controllers can effectively mitigate the

impact of modelling errors, successfully solving the mentioned dilemma involved

in AFS. The results also confirm that the proposed NN controllers are suitable for

real-time implementation.
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Chapter 1

Introduction

1.1 Motivation

Aerofoil flutter is a type of self-feeding oscillation due to the interaction between

aerodynamic loads and non-rigid aerofoil structures, occurring at and above a

certain airflow velocity depending on the aerofoil structural characteristics. Such

dynamic aeroelastic instability can develop dramatically in a short instance and may

cause structure fatigue and eventually catastrophic failure if not controlled properly.

To prevent aerofoil flutter from happening within an aircraft’s flight envelope,

traditional practice relies on stiffness distribution optimisation, mass balancing, or

geometry modification performed at design stage (Haftka et al., 1975; Markowitz

and Isakson, 1978; Reed et al., 1980). These are known as passive approaches

for aerofoil flutter suppression, which are effective but on the other hand lead to

heavier aerofoil designs (Karpel, 1981). To further postpone the onset of aerofoil

flutter to a higher airspeed without excessive structure modification and weight

penalty, one may apply proper control efforts (such as generating structural forces

via piezoelectric actuation or changing aerodynamic loads through aerofoil control

surfaces) to counteract flutter once it happens. This is categorised as an active

approach, which emerged since the 1970s and has been proven effective theoretically

and experimentally in numerous leading research projects (Mukhopadhyay, 2003).
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More importantly, active flutter suppression (AFS) renders it possible for more

efficient flexible lightweight aerofoils to be used to achieve weight reduction and

aerodynamic improvement, as successfully demonstrated in the US Active Flexible

Wing Program (Perry et al., 1995). These achievements through AFS are of great

significance to the aviation industry because modern and future aircraft are desired

to be more efficient than ever before (NSTC, 2010).

Despite some success in AFS by various means in past studies, challenges

remain, especially in seeking better control algorithms to treat nonlinearities and

uncertainties in time-varying aeroelastic systems. As to be detailed in the literature

review in Chapter 2, the challenges are:

(1) Existing model-based optimal controllers for AFS applications are susceptible

to modelling errors, while other methods less prone to uncertainties do not

consider optimal control. This has become a dilemma of AFS controller

synthesis hindering further improvement of AFS performance.

(2) In addition, the available control authority for AFS is subjected to constraints

in practice, for instance, actuator saturation. Saturated control, being one of

the nonlinearities involved in AFS, has nevertheless not been addressed in an

optimal sense.

Therefore, deriving new control schemes to improve AFS performance from

the optimal control perspective is of particular significance. To address the AFS

controller synthesis dilemma, this thesis suggests an approach based on synthesising

nonlinear optimal control in real time. Despite the availability of techniques under

the theory framework of nonlinear optimal control online synthesis (NOCOS) to be

detailed in Chapter 2, none of the existing approaches are applicable to AFS without

modification and improvement, due to realistic problems in relation to stability,

application scope, and real-time implementation. To be specific, the problems are:

(1) Aeroelastic dynamics are generally nonlinear for a constant airspeed (i.e.

locally nonlinear) and also vary nonlinearly against the airspeed (i.e. globally
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nonlinear). However, available NOCOS methods are all confined to locally

nonlinear cases, and thus, not capable of AFS without modification and

improvement.

(2) Stability during controller online self-learning is one of the major concerns

among the existing NOCOS algorithms, in which sophisticated structures with

various stabilising mechanisms are used to maintain the closed-loop stability.

In the interests of real-time implementation, a compact NOCOS method in

place of the existing ones is desired. In particular, Chapter 2 points out that

existing studies all share a common form of value function approximation

(VFA) as a fundamental element of synchronous policy iteration (SPI) involved

in NOCOS. Could the SPI configuration be further simplified for AFS in the

interests of reliable and efficient real-time implementation? Would a different

form of VFA give a different stability result under the SPI framework?

Accordingly, deriving methods to tackle these NOCOS related problems for AFS

applications are deemed necessary.

1.2 Aims and objectives

The primary aim of the research in this thesis is to derive new control schemes to

address the AFS controllers synthesis dilemma and improve AFS performance from

the optimal control perspective. Associated objectives include:

(1) Developing an experimental test-bed based on the concept of the virtual

stiffness-damping system (VSDS) to facilitate testing and validation of AFS

controllers in wind-tunnel experiments;

(2) Deriving a novel NOCOS scheme with a compact configuration without

compromising the closed-loop stability, for locally nonlinear systems, assuming

no constraints in control;
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(3) Deriving a new adaptive nonlinear optimal controller for AFS, by generalising

the novel NOCOS scheme to globally nonlinear scenarios. At this stage, it is

assumed that there are no constraints in control. The proposed control is to be

validated in wind-tunnel experiments using the developed VSDS;

(4) Deriving a new adaptive nonlinear optimal controller for AFS under control-

input constraints (CICs), by generalising the proposed NOCOS scheme to take

CICs into account, from the optimal performance perspective. The proposed

control is to be validated in wind-tunnel experiments using the developed

VSDS;

1.3 Methodologies in general

Methodologies developed to accomplish the aim and objectives are given in detail

in Chapters 3, 4, 5, and 6. This section describes the methodologies in general,

and also sets out the methodology-related context in support of the discussions in

subsequent chapters.

1.3.1 Mechanical mechanism for active flutter suppression on

aerofoils

AFS can be realised by using existing control surfaces such as leading-edge slats

and trailing-edge flaps or ailerons on wings, which has been numerically and

experimentally shown effective in an extensive amount of studies as given in

the review by Livne (2018). Proper deployment of control surfaces can change

aerodynamic forces exerted on aerofoils accordingly to counteract and alleviate

aerofoil oscillatory motions. Well established experimental test-beds include but

are not limited to the benchmark active control technology (BACT) (Farmer, 1982,

1984), active flexible wing (AFW) wind-tunnel prototype (Miller, 1988), nonlinear

aeroelastic test apparatus (NATA) (O’Neil and Strganac, 1998), and the newly
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developed Lockheed Martin X-56A demonstrator (Burnett et al., 2016). Depending

on the physical configuration of these test-beds, the control surfaces utilised for

flutter suppression consist of trailing-edge flaps, ailerons, upper spoilers, or leading-

edge slats, functioned solely or jointly (Pendleton et al., 2000; Perry et al., 1995;

Waszak, 2001). Associated merits of this class of solution include: (1) little or no

modifications to existing aerofoil mechanical structures, and hence no considerable

additional hardware investments; (2) improved ride quality as a result of direct

aerodynamic treatment.

As the work in this thesis focuses on improving AFS performance by making

scientific and technical breakthroughs from the control aspect instead of the me-

chanical mechanism, the control-surface actuation method, given its well established

basis, is adopted as the mechanical mechanism for AFS studied in this research.

1.3.2 Aeroelastic model

Aerofoil flutter is generally studied and characterised by a typical rigid wing

section of a finite span with two-degrees-of-freedom (2-DOF) motions: plunge

and pitch (Fung, 1955). For studies in this thesis, the 2-DOF aeroelastic system

with leading- and trailing-edge control surfaces based on the NATA test-bed is

selected given its well-established theoretical and experimental basis and that it

captures representative nonlinearities in real aeroelastic systems (Ko et al., 2002;

O’Neil and Strganac, 1998; Platanitis and Strganac, 2004). The experimental test-bed

developed in this thesis is based on this 2-DOF model and details are given in

Chapter 3. When the dynamics of both control surfaces are taken into account, this

2-DOF model is improved and extended to the four-degrees-of-freedom (4-DOF) one

developed in Prime (2010). This 4-DOF model not only describes the first plunge

and first pitch mode oscillations of a rigid wing section under linear unsteady

aerodynamic loads in subsonic flow, but also captures the delay in control-surface

responses to corresponding commands. As the 4-DOF model allows better AFS

results as validated in wind-tunnel experiments using the NATA test-bed (Prime
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et al., 2010; Prime, 2010), it is adopted for controller synthesis in this thesis. More

details of the model are presented in Chapters 5 and 6. Nonlinear transnational

(plunge) and torsional (pitch) stiffness can be introduced in a polynomial form

up to specified order in both the 2-DOF and 4-DOF aeroelastic models. The AFS

controllers proposed in this thesis, although derived by referring to the 4-DOF

aeroelastic model, can be easily extended to more complicated aeroelastic systems.

1.3.3 Controller verification and validation

The research in this thesis seeks theoretical breakthroughs in controller synthesis to

accomplish the aim, which necessitates stability analysis in the form of establishing

new theorems and giving corresponding proofs. In addition, numerical studies

are deemed appropriate for verification of the proposed novel NOCOS scheme

using representative dynamic systems that allow convincing comparison, while

wind-tunnel experiments were performed to validate the proposed AFS controllers.

The VSDS used in experiments is based on the NATA test-bed, but replaces the

physical plunge and pitch springs each with an electric drive. It offers advantages

over NATA in that the stiffness and damping of the plunge and pitch DOFs can be

adjusted conveniently without frequent change of mechanical components. However,

whether the VSDS can precisely mimic the behaviour of the NATA test-bed highly

depends on how well the electric drives track the desired plunge force and pitch

torque calculated from the assumed physical stiffness and damping. This requires

the high-performance force/torque tracking of the developed VSDS, which was

addressed first (in Chapter 3) before the VSDS was used for AFS controller testing

in the wind-tunnel experiments.

1.4 Thesis format and publications

This thesis is presented in publication format according to the ‘Academic Program

Rules’ of the University of Adelaide and contains four papers published or submitted

6



1.5 Thesis Outline

for publication by peer-reviewed journals. These papers serve as main chapters

of the thesis, with slight amendments made for concise, consistent and coherent

presentation, which include:

• British English spelling is used throughout the thesis;

• Manuscript titles are changed to chapter headings of a shorter form;

• Bibliography of each paper are converted uniformly to the Harvard referencing

style, and integrated at the end of the thesis;

• Figures and tables are renumbered and renamed, with repetition in different

papers omitted;

• Equations are renumbered;

• Repeated mathematical assumptions and definitions from later papers are

removed;

• Additional notes are given where necessary in chapters based on publications,

to enhance the overall coherence.

All publications arising from the research in this thesis are included in the List

of Publications on Page v, where the four journal papers are identified as, and

hereafter referred to as, Article-1, Article-2, Article-3, and Article-4, respectively.

1.5 Thesis Outline

From this Chapter onward, the thesis is organised as follows.

Past and recent studies as well as latest advances in the fields of AFS and NOCOS

are reviewed in Chapter 2, where a summary of identified research gaps is given at

the end.

As this research elects to validate the proposed AFS controllers via wind-tunnel

experiments, Chapter 3, which is based on Article-1, introduces the experimental
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test-bed specially developed for subsequent AFS tests. It is essential that the test-

bed is reliable in providing trustful results, and therefore, this chapter describes

how the VSDS was developed, presents and explains special approaches taken to

ensure reliable performance. The test-bed also sets out the aeroelastic model as well

as associated parameters used in the AFS controller derivation and synthesis in

Chapters 5 and 6 that follow. The first objective (Page 4) of the research is completed

on successful development of the VSDS.

To derive the AFS controllers that accomplish the aim, the two realistic problems

of the existing NOCOS algorithms (Page 3) are required to be solved first. The

NOCOS algorithm structure problem under the locally nonlinear setting is addressed

in Chapter 4 based on Article-2, by proposing a novel NOCOS scheme that is

compact in configuration without compromising the closed-loop stability. This

chapter provides detailed derivation, stability analysis, and numerical verification

of the proposed compact NOCOS scheme for locally nonlinear systems, completing

the second objective (Page 4) of the research.

On completion of the second objective, the research moves on to generalising

the novel NOCOS scheme to globally nonlinear scenarios so that it suits AFS

applications. This work completes the third objective (Page 4), contributes to Article-

3, and forms Chapter 5, where details of the proposed adaptive nonlinear optimal

controller based on the novel NOCOS scheme are given, together with wind-tunnel

experiment results obtained using the VSDS in Chapter 3. The research aim is

partially accomplished at this stage, assuming no CICs.

By further generalising the novel NOCOS scheme in Chapter 4 and the new AFS

controller in Chapter 5 to treat CICs from the optimal control perspective, a new

adaptive nonlinear optimal controller for AFS under CICs is derived. This work

completes the fourth objective (Page 4), delivers Article-4, forms Chapter 6, and

most importantly, accomplishes the primary aim of the research in this thesis.

Finally, Chapter 7 gives concluding remarks regarding contributions and signifi-

cance of the overall project and also suggests possible directions of future work.
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Chapter 2

Literature review

The literature review first looks into the basic mechanism of aerofoil flutter in Sec-

tion 2.1, providing a background of the control problems discussed in sections that

follow. A review on advances in various controllers for active flutter suppression

(AFS) on aerofoils is then given in Section 2.2. With the potential to further improve

AFS performance, methods for solving nonlinear optimal control problems are dis-

cussed in Section 2.3. Research gaps to be addressed in this project are summarised

in Section 2.4.

2.1 Basic mechanism of aerofoil flutter

Aerofoil flutter is a type of self-feeding oscillation due to the interaction between

aerodynamic loads and non-rigid aerofoil structures, occurring at and above a certain

airflow velocity depending on structural characteristics of the aerofoil (Balakrishnan,

2012; Fung, 1955). With linear stiffness in structure, flutter develops rapidly into

infinitely large amplitude that can cause immediate damage. For aeroelastic systems

with nonlinear stiffness generating a ‘hardening’ effect, the oscillation may not

infinitely grow in amplitude but maintains at a certain level, termed as ‘limit-cycle

oscillation (LCO)’.

Aerofoil flutter can be initiated by any off-equilibrium state, which may be either

because of aerofoil self-excitation during control surfaces deployment or more com-
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monly, caused by unsteady airflow (Kimberlin, 2003), as tiny variation/perturbation

in airflow velocity can result in disequilibrium of an aeroelastic system (Marzocca

et al., 2001). In fact, aerofoil flutter only occurs at and above a particular airspeed

which is called the ‘flutter boundary’. Prior to an aircraft reaching its flutter bound-

ary, the damping in the aeroelastic system reduces both its kinetic and elastic energy

and brings down any excited oscillations. On reaching or exceeding the flutter

boundary, the total energy dissipated from the aeroelastic system becomes less than

or equal to the total energy absorbed, resulting in the amplitude of any excited

oscillations continuously growing until reaching the LCO state or structure failure.

An aerofoil in flutter can have several degrees of freedom referred to as ‘flutter

modes’, the dominant two of which are the first plunge mode (bending) and first

pitch mode (torsion), respectively (Kimberlin, 2003). The aerofoil structure and

aerodynamic forces together contribute to coupled damping of each mode, and the

damping ratio of the critical flutter mode may start to decrease beyond some point

with increasing airspeed (Heeg, 1993; Wright and Cooper, 2008). When the damping

ratio of the critical flutter mode reaches zero, flutter occurs.

2.2 Controllers for active flutter suppression on

aerofoils

In light of the basic mechanism of aerofoil flutter, practically preventing such

aeroelastic instability means to move the flutter boundary to a higher airspeed so

that flutter does not occur within the operation envelop of an aircraft. This applies

to both passive and active approaches for aerofoil flutter suppression. Among the

active control approaches, there have been enormous studies on solutions involving

actuation of structures embedded with piezoelectric materials and deployment of

aerofoil control surfaces. Despite different AFS solutions in terms of mechanical

realisation, the underlying control algorithms play a crucial role in successful

implementation. Specifically, the AFS controllers are required to properly utilise the
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available actuator authority to counteract oscillations and contribute to a closed-loop

system with positive damping ratio of the critical flutter mode at the airspeed where

an open-loop (uncontrolled) system goes unstable. This thus moves the flutter

boundary of an aerofoil to a higher airspeed.

Suppressing LCOs and even bifurcations can be achieved via various control

methods, such as the hybrid linear and nonlinear-velocity feedback control proposed

by Chen et al. (2009) and the position feedback controller in Yabuno et al. (2012).

Similarly in terms of AFS, a wide variety of control techniques are available. As ex-

ploratory attempts and for ease of implementation, non-adaptive control laws with

constant gains were employed in early studies. Some are single-input single-output

(SISO) classical controllers designed in frequency domain (Edwards, 1983; Schmidt

and Chen, 1986; Waszak and Srinathkumar, 1992). Although being effective in early

studies and useful in latest research (Schmidt, 2016), these methods are inconvenient

for multiple-input multiple-output (MIMO) systems as a well-functioning design

may need excessive trials, which can be costly and time-consuming. Alternatively,

modern control theory in state space provides some relatively more convenient

solutions to both SISO and MIMO cases. Under this category a wide range of

variations in controller synthesis exist. For example, aerodynamic energy eigen-

values assignment (Nissim, 1971), suboptimal reduced-order control law synthesis

(Mukhopadhyay et al., 1981), internal model control (Viswamurthy and Ganguli,

2008), linear-quadratic-Gaussian (LQG) algorithms (Newsom and Mukhopadhyay,

1985; Vipperman et al., 1998), singular-value-gradient based robustness optimisa-

tion (Newsom and Mukhopadhyay, 1985), eigenvalue placement with eigenvector

shaping (Ghiringhelli et al., 1990; Liebst et al., 1986), H∞ and µ-synthesis robust

control design methods (Waszak, 2001), etc. Regardless of these various forms of

optimisation and robustness recovery techniques used, very limited expansion of the

flutter boundary were achieved because the controllers mentioned were designed

with constant parameters. The resulting control laws are not adaptive to change

of system parameters such as airspeed, and may have poor performance if there
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are off-design variations in system parameters. Moreover, aeroelastic systems are

generally nonlinear, thus a linear optimal controller is actually suboptimal given

that it does not take nonlinearities into account. In order to go beyond these limita-

tions, AFS controllers are desired to be nonlinear and adaptive to varying factors

throughout the entire flight envelope.

A direct way of enabling adaptive control in nonlinear systems is to put the

linear quadratic regulator (LQR) design online (Friedmann et al., 1997; Guillot

and Friedmann, 2000; Pak et al., 1995). This is basically a discrete procedure that

operates on a series of linear models estimated in real time at small enough intervals

technically allowed and solves the algebraic Riccati equation at every time step.

A major limitation is, identified system parameters need to be passed on to the

LQR routine online, requiring some forms of transformation that are not simple in

most cases, even though the auto-regressive-moving-average model is employed.

In addition, since the LQR itself is solved via an iterative approach, such online

implementation is computationally intensive. Reducing the iteration number to one

as in Pak et al. (1995) can reduce the computation time to some extent but leads to

approximation errors of the Riccati matrix and degraded performance.

Instead of running control synthesis online, methods of gain scheduling pre-

define a set of control laws offline and choose an appropriate one according to

specific operating conditions (Leith and Leithead, 2000). In particular, advanced

gain scheduling can be accomplished via systematic procedures based upon linear

parameter-varying (LPV) techniques (Rugh and Shamma, 2000). Specifically for AFS

applications, Prime et al. (2010) synthesise a gain-scheduled LQR controller via lin-

ear matrix inequalities (LMIs) as a generalised LPV control problem. The resulting

LPV-LQR controller can self-schedule with airspeed and can effectively suppress

developed LCOs at post-flutter-boundary airspeeds in wind tunnel experiments.

In the work of Fazelzadeh et al. (2014) the time-domain finite element concept is

employed as a special LPV formulation to address aeroelastic nonlinearities. The

obtained controller is also shown effective in numerical studies. It is worth noting
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that for controller synthesis, aeroelastic models are required to be known a priori,

and the modelling quality directly affects the controller performance. Though a

high-fidelity reduced-order model can be used to reduce the impact of modelling

errors while facilitating controller synthesis (Chen et al., 2012), building a suitable

LPV model that balances accuracy and simplicity remains a challenge because of the

presence of uncertainties in aeroelastic systems in reality (Marcos and Balas, 2004).

It is also worth noticing that aeroelastic systems possess a complicated combination

of structural and aerodynamic nonlinearities (Li et al., 2012; Sheta et al., 2002), some

of which vary as fast as aeroelastic dynamics, posing significant challenges for gain

scheduling. When all or most of these nonlinearities are to be accounted for by

the controller, LPV techniques are still capable but may face other realistic issues

related to implementation due to increased complexity in computing automatically

scheduled control laws.

To cope with nonlinearities in aeroelastic systems more effectively, the control

law itself can be nonlinear, giving rise to a variety of more sophisticated methods.

Ko et al. (1997) utilise partial and full feedback linearisation to derive locally and

globally stabilising adaptive nonlinear controllers for an aeroelastic system of known

dynamics with known structural nonlinearities. The associated stability and bifurca-

tion structure of the resulting closed-loop systems are discussed in Ko et al. (1998).

In the work of Ko et al. (1998), the need for explicit knowledge of the nonlinear

pitch stiffness is exempted by employing high-order polynomial approximation

with corresponding coefficients updated online. To gain global stability using only

one control surface, the partial feedback linearisation scheme is integrated with

a different form of parameterisation for the structural nonlinearity using a linear

combination of transformed system states, coefficients of which are tuned online

(Ko et al., 1999; Strganac et al., 2000). The case with one control surface is further

extended to the configuration with two control surfaces as in Platanitis and Strganac

(2004), by using a similar online tuning scheme to approximate the nonlinear tor-

sional stiffness. Note that not all nonlinear systems can be completely linearised,
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and other nonlinearities not included in the mathematical approximation can also

pose stability risks (Ko et al., 1999). Moreover, although feedback linearisation yields

direct cancellation of undesired nonlinearities and allows implementation of optimal

control designed on the basis of the linearised model, the nonlinearities are not

treated by considering optimal performance.

Compared with non-adaptive control laws, online tuning of some prescribed

parameters enables synthesising control laws that are adaptive and robust. Instead

of parameterised approximation, Zhang and Singh (2001) treat model uncertainties

as a completely unknown function. The resulting adaptive controller is in the

form of feedback linearisation but has the unknown function compensated by an

estimate via a high-gain observer. This method is effective as demonstrated in

experiments, but has a major drawback in that it is prone to sensor noises due to

the use of the high-gain observer. Ko et al. (2002) apply model reference adaptive

control (MRAC) method to update a pre-defined control law in real time according

to the performance measure in the form of the error between desired and actual

system outputs. Although being theoretically robust and valid for a wide range

of airspeeds allowed by the actuator authority, the MRAC controller is unable

to suppress LCOs at high airspeeds in experiments due to modelling errors not

handled by the control law. Following the similar principle but being different

in mathematical representation, direct adaptive controllers (DACs) are able to

synthesise adaptive control laws online in a model-free manner with measurements

of only the plunge displacement and pitch angle (Singh and Wang, 2002; Xing

and Singh, 1999, 2000). Parameters of these controllers are modified directly in

accordance with some prescribed performance measure by the use of backstepping

techniques, with unmeasured states estimated by a reduced-order filter. For more

freedom in choosing appropriate tuning laws, an alternative way can be the modular

adaptive control (MAC), which redesigns the pre-defined control law in light of

an online updated plant model rather than the performance measure used in the

DACs (Bhoir and Singh, 2004; Rao et al., 2006; Singh and Brenner, 2003). AFS results

14
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can be further improved with actuator dynamics taken into account (Behal et al.,

2006a) or through various forms of matrix decomposition to handle coupled input

dynamics when both leading- and trailing-edge control surfaces are used (Behal

et al., 2006b; Lee and Singh, 2010; Reddy et al., 2007). However, the DACs and

MACs have a major limitation that the approximation of nonlinearities is based on

a linear-in-the-system-parameters assumption. As a result, a regression matrix, the

determination of which is often complicated and time-consuming, is required to

provide a suitable basis for approximating nonlinearities.

With state transformation and introduction of a Hurwitz parameter matrix, the

need for a regression matrix can be waived, nonetheless at the cost of increased

number of variables to be dynamically tuned (Lee and Singh, 2013). By using

error dynamics from output feedback only, the methods in Carnahan and Richards

(2008) and Zhang and Behal (2016) do not require a regression matrix and are

numerically shown stabilising. The sliding-mode control is another nonlinear and

adaptive control strain seen in AFS applications with the need for a regression

matrix eliminated (Dilmi and Bouzouia, 2016; Luo et al., 2016b; Wang et al., 2015).

If actuator faults involved in AFS are specifically targeted, one may apply the finite-

time H∞ adaptive fault-tolerant control (Gao and Cai, 2016; Gao et al., 2016). The

controller robustness is further enhanced in the work of Fazelzadeh et al. (2017).

Nevertheless, none of these methods treat control performance in an optimal sense.

Besides the nonlinear and adaptive control methods mentioned, neural networks

(NNs) in AFS have also been attracting research attention. An NN can learn system

dynamics online and adapt itself in real time, thus no system model is required a

priori. A multi-layer NN has universal approximation properties (Hornik et al., 1989)

that are particularly suitable for function approximation in nonlinear control. Even if

an NN that is linear in the parameters (LIP) is used, its nonlinear activation functions

set can still effectively provide a basis for function approximation. Therefore, there

is no need to perform extensive modelling and preliminary analysis to find a

regression matrix that is essential to other adaptive control techniques assuming
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linearity in the system parameters. In an early study conducted by Spencer et al.

(1999), a double-layer NN controller is used to command a trailing-edge flap on

rotor blades to attenuate its vibrations caused by a wide variety of unknown

and periodic disturbances. No offline training is needed. Collocated and non-

collocated sensor and actuator, as well as extension to time-varying systems are

considered. Successfully implementation was demonstrated in experimental tests

where two different mechanisms – trailing-edge flaps and active wing tip twisting

were controlled using the same NN controller (Spencer et al., 2002). An LIP adaptive

controller and an NN controller were synthesised and compared in the work of

Gujjula et al. (2005), where both leading- and trailing-edge control surfaces are used.

Both controllers are found to have similar performance except that slightly less

smooth transient responses are found for the NN controller. But this problem can

be solved by simply increasing the number of neurons as explained by the author.

It is worth emphasising that the LIP adaptive controller assumes known structure

of uncertainties, while the NN controller approximates unstructured uncertainties.

This is a significant advantage of NN controller over other LIP adaptive controllers.

To address uncertainties associated with external disturbances, a multi-layer NN

that is nonlinear in the parameters (NLIP) is proposed for AFS in Wang et al. (2011).

A singularity-free controller design is achieved through symmetric-diagonal-upper

triangular factorisation for matrix decomposition to decouple the input dynamics

associated with the leading- and trailing-edge control surfaces. A proportion control

component is added to stabilise the NN controller during the online training period,

and a vector of nonlinear auxiliary signals is formed to improve robustness of the

NN controller. The resulting controller shows considerable improvement over the

LIP adaptive controller in Reddy et al. (2007) in terms of faster suppression and

better robustness to disturbances. Further AFS improvement was made in the work

of Brillante and Mannarino (2016), where two separate NNs dynamically tuned

online are employed for system identification and control, respectively. Again, it is

worth noting that optimal control is not considered in all the mentioned NN-based
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2.3 Optimal control for nonlinear systems

controllers.

To allow aircraft normal and tactical maneuver while performing AFS, it is

important to limit the amplitude of control used for AFS by setting constraints

smaller than actuators saturation bounds. Although control-input constraints (CICs)

have been considered in some AFS studies (Gao and Cai, 2016; Gao et al., 2016; Ko

et al., 2002; Viswamurthy and Ganguli, 2008; Wang et al., 2011), none of the existing

solutions address the problem in the sense of optimal control.

It can be seen from the existing studies that:

• The existing model-based optimal controllers for AFS applications are suscep-

tible to modelling errors, while other methods less prone to uncertainties do

not consider optimal control. This has become a dilemma of AFS controller

synthesis hindering further improvement of AFS performance.

• In addition, the available control authority for AFS is subjected to constraints

in practice, for instance, actuator saturation. Saturated control, being one of

the nonlinearities involved in AFS, has nevertheless not been addressed in an

optimal sense.

2.3 Optimal control for nonlinear systems

Optimal control for nonlinear systems involves solving a Hamilton-Jacobi-Bellman

(HJB) equation. This differential equation is nonlinear and difficult to solve directly.

As an alternative, the ‘policy iteration’ or ‘value iteration’ can be used (Howard,

1960; Sutton and Barto, 1998), which are based on a successive two-step iteration

between policy evaluation and policy improvement. As distinguished by naming,

these two approaches are slightly different, depending on which step initiates the

process. The term ‘policy’ is specifically used in the field of adaptive dynamic

programming (ADP) (Howard, 1960) and refers to a control law. The policy iteration

process starts with a given admissible control law and proceeds to solve for the

cost function associated with this initial control. The obtained cost function is then
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used to compute an improved control law that possesses a lower cost. By repeating

these two steps, the initial non-optimal control law evolves to an optimal one which

corresponds to an optimal cost function, namely, the value function. With regard to

the value iteration, a similar procedure is followed except that the overall process

is initiated by a given value (cost). To implement the ADP, the value function

in the HJB equation needs to be properly approximated. Possessing universal

approximation properties, neural networks (NNs) are ideal candidates (Hornik et al.,

1989).

For continuous-time systems, the policy iteration instead of the value iteration is

commonly adopted. An early approach of NN-based policy iteration for continuous-

time nonlinear systems is an offline method that takes control saturation into

account (Abu-Khalaf and Lewis, 2005). The resulting control law is nonlinear and

optimal for saturated actuators, outperforming its linear counterpart, the linear-

quadratic regulator (LQR), which is only optimal when actuators are not saturated.

Offline ADP was and remains effective and useful for handling optimal control

in various challenging problems, including non-affine systems (Luo et al., 2016b;

Mu et al., 2017; Wang et al., 2012), actuator saturation (Abu-Khalaf and Lewis,

2005; Heydari and Balakrishnan, 2013; Luo et al., 2015), unknown system dynamics

(Li et al., 2017; Luo et al., 2015, 2016b; Mu et al., 2017, 2018; Wang and Liu, 2013;

Wang et al., 2012; Wei et al., 2017; Zhao et al., 2015b), fixed final time (Heydari and

Balakrishnan, 2013), finite approximation error (Wei et al., 2014), finite horizon(Mu

et al., 2018), algorithm simplification (Heydari, 2014; Heydari and Balakrishnan,

2013; Wang and Liu, 2013), optimal tracking (Luo et al., 2016b), non-zero initial

condition for value iteration (Wei et al., 2016), and extension to multi-agent system

applications (Li et al., 2017). Nevertheless, offline methods are not suitable for AFS

that requires controller online adaptation.

With some modification, some offline algorithms can be put online and does not

need the knowledge of system internal dynamics (Feng et al., 2015; Jiang and Jiang,

2015; Liu et al., 2013b; Vrabie et al., 2009). In Vrabie et al. (2009) and Liu et al. (2013b),
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by setting a non-zero initial condition and providing an initial stabilising control law,

NN training begins when the system states start to settle back to equilibrium under

the periodically evolving control. This method requires non-zero initial condition

for NN training, posing a limitation in that the same updated control strategy and

the same initial condition must be set for a next round of tuning if the system settles

before convergence is reached. This is impractical in the AFS case. In addition,

an initial stabilising controller is needed and largely affects the convergence time.

A good choice of an initial control law can yield faster convergence but requires

knowledge of the system. Moreover, the policy iteration is a sequential process

that takes place with one step starting on completion of the other step, resulting in

discrete update of control. Discontinuities in control signals should be smoothed by

appropriate methods which are nonetheless not addressed. Further discussions on

the impact of using a discount factor for the infinite-horizon cost are provided in Liu

et al. (2013b), but the aforementioned limitations are not addressed. The necessity

of having an initial stabilising control is removed in Feng et al. (2015), and the

associated problem of system stability under the control law synthesised online after

limited number of iterations is investigated. More advances are presented in the

work of Jiang and Jiang (2015) where modelling uncertainties are taken into account

and computation efficiency is improved, although an initial stabilising control is still

required. The policy iteration involved in the approaches of Feng et al. (2015); Jiang

and Jiang (2015); Liu et al. (2013b); Vrabie et al. (2009) is a sequential process with

one step commencing upon completion of the previous step, resulting in discrete

update of the control law.

Comparatively, the synchronous policy iteration (SPI) approach as in Vamvoudakis

and Lewis (2010) offers more advantages. Instead of the step-by-step iteration, both

the policy evaluation and policy improvement steps are performed simultane-

ously and continuously in real time, contributing to continuous update of the

control law and hence smoother control signals. The critic-actor configuration used

in Vamvoudakis and Lewis (2010) is formed by two separate NNs with dedicated
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tuning for each. It guarantees the stability of the entire closed-loop system during

online tuning without the necessity of providing an initial stabilising control law. A

limitation is that both the internal/drift dynamics and control input dynamics of

the system are assumed to be known, which can lead to sensitivity to modelling

errors.

The theory framework of online SPI for synthesising optimal control for continuous-

time nonlinear systems as first proposed in Vamvoudakis and Lewis (2010) have

been enormously enriched by recent and latest advances in dealing with more

complicated nonlinearities and system uncertainties as well as application scope ex-

tension and performance improvement (Xu et al., 2014). In Vamvoudakis and Lewis

(2010), only partial knowledge of the system is required. Complete model-free de-

sign is also possible with integrated NN-based online system identification (Bhasin

et al., 2013; Modares et al., 2013a). Without assuming the availability of all system

states for feedback, those unmeasured states can be estimated in the meantime while

optimal control laws are being approximated (Liu et al., 2013c). When disturbances

are presented, one may consider the algorithms of Wang et al. (2014b). In particular,

to cope with disturbances entering a system through control-input channels, a mod-

ified representation of the optimal control law with an added positive coefficient

to produce a proportionally increasing gain is proposed in Wang et al. (2014b).

This approach is especially suitable for applications in relation to decentralised

control of large-scale plants consisting of several interconnected subsystems. In

terms of unstructured uncertainties, the optimal control problem under discussion

can be interpreted into another appropriate form for uncertain systems where the

algorithm is required to provide robust performance with upper-bounded costs (Liu

et al., 2014). To take actuator saturation into account, the use of a nonquadratic cost

function is put to discussion on continuous-time nonlinear systems, with successful

results (Modares and Lewis, 2014; Modares et al., 2013a, 2014, 2013b). In regard to

optimal trajectory tracking control, similar but more complex principles apply, as

proposed in Modares et al. (2014), with actuator saturation considered as well. If
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faster online tuning is desired, one may consider the method in Bhasin et al. (2013),

where a number of means are introduced to increase NN parameter convergence

speed while maintaining closed-loop system stability. In the method proposed

in Modares and Lewis (2014), the condition of persistence of excitation (PE) for

online tuning is relaxed by means of introducing an experience-relay approach

based on recorded past data. In addition, more insights with regard to the mecha-

nism of policy iteration, its convergence, the uniqueness of the solution as well as

the sufficient conditions are discussed in Heydari (2014). However, to guarantee

closed-loop system stability, these online synchronous policy iteration algorithms

either require an additional tuning loop with a non-standard tuning term for the

actor NN, or rely on a logic algorithm to switch between different tuning modes

for the critic NN. The additional tuning loop and the logic switch mechanism can

both introduce more uncertainties into the system, and moreover, the logic switch

mechanism can also cause discontinuities in control.

Compared with continuous-time cases, it is interesting to note that there are rela-

tively more studies based on discrete-time systems in terms of solving for optimal

control using the ADP approach (Si et al., 2004; Yu, 2009). While most recent ADP

methods based on value iteration do not need initial stabilising control laws and

do not require the non-standard stabilising term for tuning the actor NN as those

used in continuous-time systems, these methods are limited to offline implementa-

tion (Heydari and Balakrishnan, 2013; Wang and Liu, 2013; Wei et al., 2014; Zhao

et al., 2015b). Similar comments on the limitation of offline implementation can

also be found in Al-Tamimi et al. (2008) and Wei and Chen (2014). The convergence

of online implementation of a subclass of ADP, the heuristic dynamic program-

ing (Werbos, 1990), is revisited and proven in Al-Tamimi et al. (2008) under the

no-approximation-error assumption. Approximation errors are dealt with in Wei

and Chen (2014) where a new θ-ADP technique is proposed with the potential

for both online and offline implementation. Although the methods in Al-Tamimi

et al. (2008) and Wei and Chen (2014) can be implemented online without stability
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concerns, they does not provide continuous control law update because an inner

tuning loop is required for successive approximation of the value function and the

associated control at every iteration step. Significant improvements have been made

in Kiumarsi and Lewis (2015) where both the critic and actor NNs are updated

simultaneously and continuously with time. However, the generality of the method

of Kiumarsi and Lewis (2015) is nonetheless unconfirmed due to the coupling of

online tuning between the two NNs that results in increased difficulty in proving

stability and parameter convergence.

Therefore, it is of significance and of particular interest if the tuning loop for

the actor NN can be eliminated from the synchronous policy iteration process

without adding complicated stabilising mechanisms that may bring additional

uncertainties or cause control discontinuities. To simplify SPI implementation and

reduce computational load, there have been efforts on event-based methods with

single-critic configuration (Wang et al., 2017a,b). The event-based method reduces

the needed online data, while the single-critic configuration uses the same NN for

both the critic and actor and removes the necessity of separate actor NN tuning.

The instability resulted from direct simplification of the actor-critic configuration

is recognised in the work of Liu et al. (2013c), where initial weights of the critic

NN need to be determined carefully by trial-and-error. Guaranteed stability can be

achieved by adding a stabilising term to the critic tuning law (Huang et al., 2017;

Liu et al., 2014; Wang et al., 2017b, 2014b).

It is worth noting that:

• All the existing nonlinear optimal control online synthesis (NOCOS) methods

are confined to locally nonlinear systems, which are a sub-class of globally

nonlinear scenarios.

• Aeroelastic systems are nonlinear at a constant freestream airspeed (i.e. locally

nonlinear), and the dynamics also vary nonlinearly with the airspeed (i.e.

globally nonlinear).
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The above facts render all these existing NOCOS methods inapplicable to AFS

without modification and improvement.

Moreover, it is also interesting to note that the SPI schemes in the aforementioned

studies all share a common form of value function approximation (VFA) with an

NN directly employed. The questions are:

• Could the SPI configuration be further simplified for AFS in the interests of

reliable and efficient real-time implementation?

• Would a different form of VFA give a different stability result under the SPI

framework?

2.4 Research gaps

From Section 2.2 it can been seen that adaptive nonlinear control has been receiving

enormous research attention under the increasing demand on higher AFS perfor-

mance. However, existing methods for synthesising adaptive control strategies are

subject to limitations associated with controller design, implementation, and perfor-

mance. First, design of self-tuning controllers requires regression or transformation

matrices that are application dependent and difficult to determine; Second, model-

based controllers require knowledge of the plant and can be sensitive to modelling

errors; Third, model-free controllers that do not require regression matrices are

prone to instability caused by high-gain components. In comparison, some NN

controllers offer better solutions to these limitations and can be a better choice for

AFS, but a lack of solutions to optimal control is also identified. Thus, NOCOS

featuring real-time learning of the changing aeroelastic dynamics and updating

control in an optimal sense accordingly is deemed a potential direction that may

give promising AFS improvement. Nonetheless, none of the available NOCOS

methods are applicable to AFS due to limitations related to stability, application

scope, and real-time implementation.

Concisely, three gaps have been identified and are to be addressed in this project:
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(1) Optimal controllers among the existing methods are susceptible to un-modelled

dynamics, while other controllers that are more adaptive to the changing en-

vironments and tolerant to un-modelled dynamics do not provide nonlinear

optimal control. As a whole, these problems have become a critical dilemma

in AFS control synthesis, hindering further improvement of AFS performance.

(2) Existing NOCOS methods are all confined to locally nonlinear systems and

thus not applicable to AFS. Generalisation of NOCOS to globally nonlinear

scenarios is deemed necessary to suit AFS applications;

(3) Existing NOCOS methods are also subject to issues related to stability and real-

time implementation that are operationally undesired for AFS applications,

and there is potential for further improvement. Arising questions of particular

interest are: Could the SPI configuration be further simplified for AFS in the

interests of reliable and efficient real-time implementation? Would a different

form of VFA give a different stability result under the SPI framework?
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Chapter 3

Experimental aeroelastic system

This chapter is based on Article-1, which introduces the experimental test-bed

specially developed for active flutter suppression (AFS) tests in Chapters 5 and 6

that follow. The test-bed also sets out the aeroelastic model as well as the associated

parameters used in the AFS controller derivation and synthesis. It is essential that

the test-bed is reliable in providing trustful results, and therefore, this chapter

describes how the VSDS was developed, presents and explains special approaches

taken to ensure reliable performance. The work fulfils the first objective (Page 4) of

the thesis.
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abstract

In this research a two-degrees-of-freedom (2-DOF) virtual stiffness-damping system

(VSDS) is developed to facilitate industrial and laboratory testing of aerofoil aeroe-

lasticity instability. Other existing test-beds in this field rely on elastic elements or

structures to set aerofoil elasticity in tests, which can be costly and inconvenient in

cases of frequent stiffness adjustment across a wide range. A possible alternative is

the VSDS that utilises electric drives to simulate structural elasticity and damping,

as seen in marine and bio-mechanical engineering, which however, cannot be di-

rectly applied to aerofoil aeroelasticity testing (AAT) due to operation requirements

and conditions being different. Therefore, in this study a new VSDS is developed

specifically for AAT. Firstly, the concept of 1-DOF VSDS is extended to 2 DOFs,

with the dynamics coupling between each DOF addressed at the stage of opera-

tion principle determination, by the proposed direct force/torque regulation with

force/torque feedback. Secondly, resolution loss in position/velocity measurement

is identified as a main problem associated with the non-reduction transmission

required, and is solved by a modified extended-state observer (MESO) proposed

for fast position/velocity estimation. Thirdly, system identification and calibration

procedures involved in developing the new VSDS are reduced to minimum through

a robust force/torque tracking controller design, with detailed numerical study on

parametric analysis given. As validated in wind-tunnel experiments the new VSDS

can closely track the desired force/torque and provide satisfactory virtual stiffness

and damping in AAT.
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3.1 Introduction

Aeroelasticity studies the interaction between aerodynamic loads and elastic bodies

(Fung, 1955). Aerofoil flutter, as typical dynamic aeroelastic instability, can cause

aerofoil structure fatigue and failure. Although advances in computing has allowed

more convenient investigation on various aspects of aerofoil aeroelasticity instability

as seen in many studies (Lee et al., 2005; Lum et al., 2017; Mardanpour et al., 2018;

Price and Keleris, 1996; Rezaei et al., 2018; Sales et al., 2018; Tang and Dowell, 1993),

experimental approaches remains essential in terms of discovering new phenomena

(Vasconcellos et al., 2016b; Venkatramani et al., 2017, 2018), providing data for

modelling and validation (Abdelkefi et al., 2012; Ghiringhelli et al., 1987; Khalil

et al., 2016; Lum et al., 2017; Popescu et al., 2009; Price and Keleris, 1996; Sedaghat

et al., 2001; Tang and Dowell, 2006; Tang et al., 2004; Tang and Dowell, 1993), as well

as validating active control strategies (Burnett et al., 2016; Farmer, 1982; Lum et al.,

2017; Miller, 1988; O’Neil and Strganac, 1998). For aerofoil aeroelasticity testing

(AAT), numerous facilities have been built, and well established experimental test-

beds include the benchmark active control technology (Farmer, 1982), active flexible

wing wind-tunnel prototype (Miller, 1988), nonlinear aeroelastic test apparatus

(O’Neil and Strganac, 1998), and the newly developed Lockheed Martin X-56A

demonstrator (Burnett et al., 2016). Development and use of these existing test-

beds can be costly and time-consuming when a wide range of stiffness needs to

be investigated, requiring different materials or structures for scaled prototypes

(Burnett et al., 2016; Miller, 1988) or different physical springs for typical aerofoil

sections (Farmer, 1982; O’Neil and Strganac, 1998). A more efficient and low-

cost alternative arose in marine engineering, using electric drives to physically

simulate the effects of springs and dampers. The pioneer work was an apparatus

for investigating the forces acting on marine cables due to vortex induced vibrations

(VIV) (Hover et al., 1997, 1998). It utilises position control to mimic the dynamic

behaviours of the subject under the effects of virtual stiffness and damping, with
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the reference position trajectory computed from force measurement in real time. In

the work of Hover et al. (1997), for the operation frequency range of interest, the

position control loop was well tuned and brought less than 1 degree phase lag in

displacement, but an additional 12 degrees phase difference between displacement

and force was introduced by signal filtering. The phase loss due to signal filtering

was reduced to 5 degrees in a later work (Hover et al., 1998). For the study of wake

induced vibrations, a similar platform was built and used in Derakhshandeh et al.

(2015), where the additional phase lag resulted from signal filtering was further

reduced to less than 4 degrees for 0.9 Hz vibration frequency. Another direction

towards replacing physical springs with virtual stiffness and damping does not

require force measurement and position control, and thus minimises the delay in

generating commanded forces, by deriving an explicit formula for direct calculation

of the required motor torque output according to the desired stiffness and damping

(Lee and Bernitsas, 2011; Lee et al., 2011; Sun et al., 2015). Satisfactory performance

is achieved with extensive system identification procedures and calibration (Lee and

Bernitsas, 2011; Lee et al., 2011; Sun et al., 2015). Some other related studies can also

be seen in bio-mechanical applications, with corresponding purposes, requirements,

and operation conditions being much different (Kelly, 2013). For unified naming

and convenience of reference hereinafter, these approaches are collectively termed

as the ‘virtual stiffness-damping system’ (VSDS). It is worth noting that

• The existing VSDSs are of one degree-of-freedom (DOF) whereas at least two

DOFs are required to capture the dynamics of an aeroelastic system. The

coupled dynamics between each DOF is one of the concerns to be addressed

in developing a 2-DOF VSDS for AAT;

• Reduction transmission such as lead-screw drive and reduction gearbox are

commonly used in existing VSDSs, where the tendency of back-driving by

external loads is low or none. This however, is not preferred in AAT, where

back-driving is desired to allow easy perturbation of each DOF by aerody-
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namic loads as one of the flutter initiation/triggering conditions. Accordingly,

potential problems arising from the use of non-reduction transmission on

VSDS should be identified and solved.

• Power loss due to inertial loads and various frictions across the entire trans-

mission of VSDSs requires proper treatments, which affect position controller

design and tuning (Derakhshandeh et al., 2015; Hover et al., 1997, 1998) or

derivation of explicit force generation formulas (Lee and Bernitsas, 2011; Lee

et al., 2011; Sun et al., 2015). In particular, frictions are generally modelled

and estimated via offline system identification procedures, and can be inac-

curate in the presence of uncertainties and parameter change over time or

under different operation conditions. In the interests of enhanced robustness

and ease of maintenance with simplified system identification and calibration

procedures, a new VSDS capable of online estimation of power loss is desired.

Therefore, in this study a new VSDS is developed specifically for AAT, address-

ing the aforementioned three main concerns, as major technical contributions. Some

preliminary works can be found from Tang et al. (2019a,b). In the following: Sec-

tion 3.2 briefly describes a 2-DOF aeroelastic model on which the new VSDS is

based. Section 3.3 presents the proposed operation principle, mechanical design,

and control methodology for the new VSDS to tackle coupled dynamics, solve

problems associated with non-reduction transmission configuration, and address

requirements on enhanced robustness and ease of maintenance with simplified

system identification and calibration procedures. Section 3.4 gives detailed nu-

merical analysis of the VSDS controller in terms of system sensitivity and stability

robustness against different controller parameters for satisfactory implementation.

Section 3.5 describes how the new VSDS was experimentally validated. Conclusions

are drawn in Section 3.6.
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Figure 3.1: Schematic diagram of a 2-DOF aeroelastic system.

3.2 Aeroelastic model

Aeroelastic flutter, viewed from a rigid aerofoil section attached to elastic elements,

can be described by oscillations in plunge and pitch DOFs. The corresponding

2-DOF aeroelastic system is illustrated in Figure 3.1 and in this study we consider

a subsonic-regime model (O’Neil and Strganac, 1998) with an equation of motion

taking the form of

mq̈ + cq̇ + kq + Fc = Faero, (3.1)

with

q =

qh

qa

 , Faero =

−FL

FM

 , Fc =

−maq̇2
araLhc sin (qa)

0

 ,

m =

 ma maraLhccos (qa)

maraLhccos (qa) Ia

 ,

c =

ch 0

0 ca

 , k =

kh 0

0 ka

 ,

FL = ρU2
∞LhcLsCl-a

[
qa +

q̇h
U∞

+ L3c/4
q̇a

U∞

]
,
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FM = ρU2
∞L2

hcLsCme-a

[
qa +

q̇h
U∞

+ L3c/4
q̇a

U∞

]
,

Cl-a =
∂Cl
∂qa

, Cm-a =
∂Cm
∂qa

, Cme-a =
rfc
Lhc

Cl-a + 2Cm-a,

where geometry and force related parameters and variables are defined in Figure 3.1,

and other terms are defined as
qh, qa: translational/angular displacements;

ma: aerofoil mass;

Ia: aerofoil rotational inertia about its elastic axis;

kh, ka: stiffness coefficients;

ch, ca: damping coefficients;

Ls: aerofoil span;

Cl: lift coefficient at the aerofoil aerodynamic centre;

Cm: moment coefficient at the aerofoil aerodynamic centre;

U∞: airflow velocity;

ρ: air density.

As can be seen from Eq. (3.1), FL and FM are modelled by quasi-steady aero-

dynamics. Using a fully unsteady aerodynamic model is also possible, without

affecting the VSDS methodology developed in this chapter. In addition, by special

design, the proposed VSDS also suit cases where the 2-DOF aeroelastic model

is extended by more DOFs to account for actuator dynamics, such as the 3-DOF

aeroelastic model in Prime et al. (2010) or a 4-DOF one in Prime (2010). Explanations

are given in Sections 3.3.1 and 3.3.4.

Denote the forces resulted from structural stiffness and damping by Fs. Then

according to Eq. (3.1), there is

Fs(q, q̇) = cq̇ + kq. (3.2)

In the absence of physical springs, Fs(q, q̇) can be generated by a VSDS instead,

to be detailed next.
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3.3 Virtual stiffness-damping system

3.3.1 Operation principle determination

The VSDS for AAT is required to have at least two DOFs, and the first concern to be

addressed is the dynamics coupling between each DOF, as mentioned in Section 3.1.

By looking at Equation (3.1), it is clear that the plunge and pitch aeroelastic

dynamics are coupled in displacements (qh and qa). If position control via force

feedback (Derakhshandeh et al., 2015; Hover et al., 1997, 1998) is implemented to

deliver equivalent virtual stiffness and damping, the reference position needs to be

calculated in real-time, where the coupling from inertial and aerodynamic terms

must be properly treated. A direct result is that the accuracy of simulated stiffness

and damping is sensitive to modelling errors. Note that Eq. (3.1) approximates

general nonlinear aeroelastic systems in a second-order sense, which means resulted

modelling errors can be the direct cause of inaccuracy in virtual stiffness and

damping delivered by position control.

It can be seen from Eq. (3.1) that the sum chq̇h + khqh and caq̇a + kaqa (see Eq. (3.2)

for the corresponding matrix form), each considered as a single variable, are mu-

tually independent between the two DOFs. If the stiffness and damping of the

aerofoil structure are physically simulated by taking direct control on corresponding

force/torque generation according to the two independent sums, then subsequent

mechanical design and control synthesis will not be affected by the dynamics

coupling in plunge displacement and pitch angle, and thus not affected by the aero-

dynamic model used (more details follow in Section 3.3.4). In this case it means, the

quasi-steady aerodynamic model employed in this chapter can be simply replaced by

a fully unsteady aerodynamic model if needed. Moreover, the number of DOFs does

not affect the effectiveness of this VSDS methodology since force/torque control

is governed by Eq. (3.2) and irrelevant to the additional DOFs that model aerofoil

actuator dynamics. To allow direct force/torque control according to Eq. (3.2), the

computed force/torque control without the need for force/torque feedback (Lee
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and Bernitsas, 2011; Lee et al., 2011; Sun et al., 2015) fits.

On the other hand however, to meet the requirements on enhanced robustness

and ease of maintenance with simplified system identification and calibration

procedures, it is desired to close the control loop with force/torque measurement

feedback. This drives the VSDS operation principle into a new direction – direct

force/torque regulation with force/torque feedback. Nevertheless, the additional

phase lag between displacement/velocity and force/torque becomes another rising

concern that requires special attention in subsequent control system development

(to be quantitatively detailed at the implementation stage in Section 3.5).

3.3.2 Mechanical design

Following the operation principle proposed in Section 3.3.1, a new VSDS prototype

is developed in this study. An overview of the computer-aided-design (CAD) model

is given in Figure 3.2, where the setup is intended for airflow going along the X axis

while the plunge-DOF path and pitch-DOF axis are aligned with the Y and Z axes,

respectively. Structural details of the VSDS are shown in Figure 3.3. The plunge

and pitch DOFs are each driven by an electric motor with an embedded encoder

for position feedback. Motor shaft rotation is converted to linear displacement for

the plunge DOF via two pairs of synchronous-belt transmission, and the sliding

carriage (on roller bearings) can travel along a pair of parallel linear rails. It is worth

noting that in real-world scenarios where flutter and active control are considered,

the displacement and velocity of a certain point of interest on actual aerofoils can

also be obtained from accelerometers, strain gauges, or laser measurements.

To allow back-driving with least resistance so that the plunge DOF can be

freely perturbed by aerodynamic loads, speed amplification instead of reduction

is introduced via pulleys P1, P2, and P3 as arranged in Figure 3.3(a). Similarly,

the pitch-DOF motor is directly connected to the pitching shaft (elastic axis) of the

aerofoil without any speed reduction mechanism (Figure 3.3(b)). As discussed in

Section 3.1, this transmission configuration is a first trial for VSDS in the field of
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Figure 3.2: Overview of the CAD modelling of the new VSDS prototype.

AAT and hence associated potential problems need to be identified and addressed

(to be covered next in Section 3.3.3).

3.3.3 Velocity measurement and estimation

It has been known that velocity measurement using encoders suffers from loss of

precision at low velocities alternating around and crossing zero, and the problem is

more obvious for low-resolution encoders (Lorenz and Van Patten, 1991; Petrella

et al., 2007; Shi et al., 2015). In the case of the proposed VSDS, the non-reduction

transmission on the other hand also results in some extent of resolution loss (achiev-

able resolution being 0.2mm for plunge DOF and 0.18 degrees for pitch DOF) despite

high-resolution encoders used. This leads to imprecise measurement of low veloci-

ties. Some possible remedies to obtain improved velocity measurements are given

in Lorenz and Van Patten (1991), Petrella et al. (2007), and Shi et al. (2015), which

however, are not ideal solutions to the proposed VSDS due to the dynamics coupling
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Figure 3.3: Structural details of the new VSDS prototype.

in plunge/pitch displacements. Motivated by the concept of the extended-state

observer (ESO) (Han, 2009) in applications with strong nonlinearities (Chang et al.,

2015; Erenturk, 2013; Herbst, 2016; Li et al., 2014; Yang et al., 2018; Yuan et al., 2017),

we derived a modified extended-state observer (MESO) for velocity estimation. Let

ϑ1 = q, ϑ2 = q̇. Then Eq. (3.1) can be rewritten as
ϑ̇1 = ϑ2,

ϑ̇2 = m−1(Faero − Fc − cq̇− kq),
(3.3)

Considering the presence of modelling errors, we have
ϑ̇1 = ϑ2,

ϑ̇2 = F (ϑ1, ϑ2),
(3.4)

38



3.3 Virtual stiffness-damping system

where

F (ϑ1, ϑ2) = m−1(Faero − Fc − cq̇− kq) + ζ(t, ϑ1, ϑ2),

with ζ(t, ϑ1, ϑ2) containing un-modelled dynamics.

Let ϑ̂1, ϑ̂2, and ϑ̂3 denote the estimate of ϑ1, ϑ2, and F (ϑ1, ϑ2) respectively, and

eϑ = ϑ̂1 − q. The MESO for Eq. (3.3) is constructed as

˙̂ϑ1 = ϑ̂2 − p1eϑ,

˙̂ϑ2 = ϑ̂3 − p2
eϑ√

eT
ϑeϑ + 1

,

˙̂ϑ3 = −p3
eϑ√

eT
ϑeϑ + 1

,

(3.5)

where p1 ∈ R+, p2 ∈ R+, and p3 ∈ R+ are design parameters of choice.

The use of MESO can introduce phase lag between position/velocity measure-

ments and estimations. As to be covered in Section 3.5, the induced phase lag can be

minimised by carefully adjusting the design parameters and do not have noticeable

negative impact on VSDS performance.

3.3.4 Force/torque measurement and control

For force/torque measurement, a 6-axis force/torque transducer (ATIr Mini40) is

mounted between the pitching shafts of the VSDS and the aerofoil test section, with

its Z axis aligned with the Z axis (pitching axis) of the CAD model. Under this

arrangement, the aerofoil body and its pitching shaft together are considered as one

whole rigid body, the total mass of which is ma according to Eq. (3.1).

With the force/torque transducer regarded as an independent rigid body, the

plunge DOF can be considered as a multi-body system illustrated in Figure 3.4(a),

which has the same reference frame as Figure 3.1. Corresponding forcing diagram

on isolated multiple bodies is given in Figure 3.4(b). Accordingly,

maq̈h + FL-in4 = FL, (3.6)

msq̈h + FL-in2 = FL-in3, (3.7)
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Figure 3.4: The VSDS plunge DOF as a multi-body system.

mVSDS q̈h + FL-f + FL-in1 = Fmotor, (3.8)

FL-in1 = FL-in2, (3.9)

FL-in3 = FL-in4, (3.10)

where Fmotor is the translational force (tension) on the synchronous belt B1 with

Pulleys P1 and P2; FL-f is the total equivalent friction along the entire plunge-DOF

power transmission from motor output to the sliding carriage, consisting of viscous,

Coulomb, and Stribeck frictions; FL-in1, FL-in2, FL-in3 and FL-in4 are internal forces

defined according to Newton’s 3rd law of motion; ms is mass of the force/torque

transducer, and mVSDS is the equivalent mass of the plunge-DOF transmission.

Let k̄h, c̄h, k̄a, and c̄a denote the coefficient of simulated virtual stiffness and

damping of respective DOFs. Comparing Eqs. (3.1) and (3.6) gives

FL-in4 = −c̄hḣ− k̄hh. (3.11)

Similar forcing applies to the pitch DOF (related forcing diagram and equations

are not repeated herein) and we have

FM-in4 = c̄aq̇a + k̄aqa, (3.12)

where FM-in4 is the internal torque that contributes to

Iaq̈a + FM-in4 = FM. (3.13)
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Let F̄s , [−FL-in4 FM-in4]
T. Then writing Eqs. (3.11) and (3.12) in matrix form

yields

F̄s(q, q̇) = c̄q̇ + k̄q, (3.14)

where c̄ = diag(c̄h, c̄a) and k̄ = diag(k̄h, k̄a).

According to the structure of the force/torque transducer together with Eqs. (3.6)

and (3.13), force/torque measurements closely take the value of F̄s. Note that k̄

and c̄ need not be explicitly approximated, and properly controlling the motor

torque can make F̄s → Fs, as suggested by Eq. (3.8). This means the VSDS control

system is decoupled from aerodynamic terms and thus not affected by the types of

aerodynamic model used. Moreover, it can also be seen that increasing the number of

DOFs to account for actuator dynamics does not have any impact on the effectiveness

of the proposed method. Note that precise tracking of the trajectories of Fs requires

correct knowledge and proper compensation of power loss caused by frictions

as well as other un-modelled dynamics and exogenous disturbances. Without

force/torque feedback, extensive system identification procedures are necessary

(Lee and Bernitsas, 2011; Lee et al., 2011; Sun et al., 2015). To meet requirements on

enhanced robustness and ease of maintenance with simplified system identification

and calibration procedures, the total power loss can be dynamically estimated online

by evaluating F̄s against reference Fs. For this purpose, the VSDS control system is

proposed as in Figure 3.5.

Accurately estimating power loss due to inertial loads and mechanical frictions

has been shown challenging (Lee and Bernitsas, 2011; Lee et al., 2011; Sun et al.,

2015), and this also raises high requirements to the VSDS controller. To assist VSDS

controller synthesis, dynamics of both DOFs of the VSDS prototype were obtained

via black-box system identification with voltages as inputs and force/torque mea-

surement F̄s as outputs. Chirp signals of 2 to 5 Hz were used to explore up to 5% and

60% rated capacity (sufficient for required force/torque) of pitch- and plunge-DOF

motors, respectively. Estimated models are in state-space linear time-invariant form
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Figure 3.5: Schematic diagram of the proposed VSDS control system.

as 
ẋ = Asx + Bsu,

F̄s = Csx + Dsu,
(3.15)

where x ∈ Rnx contains nx system states; F̄s ∈ RnF contains nF measured outputs;

u ∈ Rnu contains nu control inputs; As ∈ Rnx×nx , Bs ∈ Rnx×nu , Cs ∈ RnF×nx , and

Ds ∈ RnF×nu are system matrices.

Power loss due to inertial loads and mechanical frictions are partially captured

in the identified models (Table. 3.1). However, modelling accuracy is insufficient

for direct force/torque regulation without force/torque feedback, as the system

identification procedures involved are reduced to minimum compared with those

in Lee et al. (2011), Lee and Bernitsas (2011), and Sun et al. (2015). Note that

modelling errors and other types of disturbances generally affect a system in the

form of unknown non-control inputs (collectively termed as ‘unknown inputs’).

For satisfactory control, these unknown inputs need to be properly treated, and

Eq. (3.15) can be reformulated as
ẋ = Asx + Bsu + Bdd,

F̄s = Csx,
(3.16)

where d ∈ Rnd contains nd unknown inputs perturbing the system, and Bd ∈ Rnx×nd

is the unknown-input distribution matrix.
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Table 3.1: Experimentally identified dynamics of the VSDS prototype.

DOF
Matrices of System Dynamics Fit

(%)As Bs Cs Ds

Plunge

[
−8.791 364

−273.8 −165.9

] [
45.5

29.19

] [
25.53

3.903

]T

0 93.88

Pitch

[
18.67 −464

429.1 −716.3

] [
5823

7501

] [
0.4412

−0.0669

]T

0 94.04

Since the models in Table. 3.1 are controllable, observable, and on the imaginary

axis there is no zeros, according to She et al. (2008), an equivalent of d exists which

enters the system via Bs. Therefore, system Eq. (3.16) is equivalent to


ẋ = Asx + Bs (u + de) ,

F̄s = Csx,
(3.17)

where de ∈ Rnu contains the equivalent unknown inputs.

As discussed in Section 3.2 and as can be seen from Figure 3.5, the VSDS needs

to generate Fs(q, q̇) in the absence of physical springs. Hence, it is a force/torque

tracking problem, where the reference trajectories Fs(q, q̇) change in real time with

respect to q and q̇ in accordance with Eq. (3.2). To deal with transmission power-loss,

the linear-quadratic-Gaussian (LQG) tracking control enhanced by unknown-input

estimation (UIE) as in Tang et al. (2016) is employed for the VSDS prototype, given

the existence of an equivalent system as in Eq. (3.17). The controller has a structure

illustrated in Figure 3.6, which consists of a standard LQG tracking component and

a UIE add-on. The LQG control provides nominal force/torque tracking, while the

UIE estimates and compensates transmission power-loss. Detailed composition of

the controller, without distinguishing between specific DOFs, is given below in a

general multiple-input multiple-output form.

The total control u is

u = uc − d̂e, (3.18)
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Figure 3.6: Schematic diagram of the UIE-LQG controller.

where uc is from the LQG component for trajectory tracking, and d̂e is the estimated

equivalent power loss.

The nominal control uc takes the form of

uc = −Kx x̂− Kwxw + KrFs(q, q̇), (3.19)

with

ẋw = Fs(q, q̇)− F̄s = Fs(q, q̇)− Csx, (3.20)

where Kx ∈ Rnu×nx , Kw ∈ Rnu×nF , and K f ∈ Rnu×nF are gains of the LQG tracking

control which can be selected following standard LQG design procedures (Anderson

and Moore, 1990).

The power-loss estimation d̂e is obtained via

d̂e = d̂ev + Kd
(

F̄s − F̂s
)

, (3.21)

with 
ẋ f = A f x f + B f d̂e,

d̂ev = C f x f ,
(3.22)

and 
˙̂x = As x̂ + Bsuc + L

(
F̄s − F̂s

)
,

F̂s = Cs x̂,
(3.23)
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where Kd ∈ Rnu×nF is the UIE gain; F̂s contains estimated system outputs; A f ∈ Rn f×n f ,

B f ∈ Rn f×1, and C f ∈ R1×n f are matrices of a low-pass-filter-characterised subsys-

tem (A f , B f , C f ) with n f states; L ∈ Rnx×1 is the state observer gain; x̂ contains

estimated system states.

The UIE gain Kd can be calculated via linear-quadratic optimisation based on

the dynamics of states estimation:
ėx = (As − LCs)ex − BsKdCsex + ed,

eF = Csex,
(3.24)

where eF = F̄s − F̂s and ed = de − d̂ev.

Upon ed ≈ 0, we have

ėx = (As − LCs − BsKdCs)ex. (3.25)

For observable systems, the pair (As − LCs, Cs) is observable. Under duality,

there exists Kv = (BsKd)
T that minimises

Vd =
∫ ∞

0

{
eT

x Qdex + eT
dvRdedv

}
dt, (3.26)

with Qd ∈ Rnx×nx and Rd ∈ RnF×nF being symmetric positive-definite weighting

matrices, and edv = −KdCsex.

Therefore,

Kd = B†
s KT

v , (3.27)

with B†
s being the Moore-Penrose pseudo inverse of Bs.

As can be seen from Eqs. (3.21) to (3.23), the subsystem (A f , B f , C f ), UIE gain Kd,

and state observer gain L are major design parameters related to the UIE component.

3.4 Controller analysis

System sensitivity and stability robustness, being crucial to estimation and com-

pensation of transmission power-loss, are major concerns in controller synthesis for

the VSDS prototype in AAT. Although brief guidelines for selecting UIE related
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parameters are available in literature, there is lack of understanding on the influence

of these design variables on system sensitivity and stability robustness. As one of

the technical contributions, numerical studies on controller parametric analysis are

presented in this section.

As can be seen from Eqs. (3.21) to (3.23), the subsystem (A f , B f , C f ), UIE gain Kd,

and state observer gain L are major design parameters related to the UIE component.

Given the single-input single-output (SISO) feature of VSDS plunge/pitch-DOF

dynamics (Table. 3.1), the following analysis is performed on an SISO basis.

In frequency domain, Eq. (3.17) takes the form of

F̄s(s) = Pn(s) [u(s) + de(s)] , (3.28)

where Pn(s) is the nominal model of the plunge/pitch DOF.

In this SISO case, any individual tracking trajectory from the set Fs(q, q̇) is

denoted by Fs(s) ⊆ Fs for convenience in notation.

With Gw(s) denoting the transfer function of the integral action, Eq. (3.19) can

be transformed into

uc(s) = −Kx x̂(s)− Kwxw(s) + KrFs(s), (3.29)

with xw(s) = Gw(s) [Fs(s)− F̄s(s)].

By using Eq. (3.29) in Eq. (3.23), and with Fs(s) = 0, there is

x̂(s) = (sInx − As + BsKx + LCs)
−1 [BsKwGw(s) + L] F̄s(s)

= Gyx(s)F̄s(s), (3.30)

where Gyx(s) contains transfer functions from F̄s(s) to x̂(s).

From Eqs. (3.21) and (3.22), we have

d̂ev(s) = G f (s)d̂e(s), (3.31)

d̂e(s) = Gyd(s)
[
F̄s(s)− F̂s(s)

]
, (3.32)

where

G f (s) = C f (sIn f − A f )
−1B f d̂e(s),
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Gyd(s) =
[
1− G f (s)

]−1Kd.

Based on Eqs. (3.18), (3.28) to (3.30), and (3.32), we reach

F̄s(s) = Pn(s)[1 + Hs(s)Pn(s)]
−1de(s), (3.33)

where

Hs(s) = KxGyx(s)− KwGw(s) + Gyd(s)
[
1− CsGyx(s)

]
.

Thus, the system sensitivity to unknown inputs (referred to as ‘sensitivity’ in

short hereinafter) is

Ss(jω) =
1

1 + Hs(jω)Pn(jω)
, ∀ω ∈ [0,+∞) . (3.34)

To allow evaluating sensitivity against different cutoff frequency ωc of the

subsystem (A f , B f , C f ), the magnitude of sensitivity with regard to inputs of a

certain natural frequency (i.e., |Ss(jωd)|) is considered. In the analysis, ωd = 5 rad/s

is considered, according to the spectrum characteristics of system identification data.

In the presence of uncertainties δ(jω), ∀ω ∈ [0,+∞), closed-loop stability is

guaranteed if

|δ(jω)| <
∣∣∣∣1 + 1

Hs(jω)Pn(jω)

∣∣∣∣ , ∀ω ∈ [0,+∞) . (3.35)

As it is common that there is little or no priori knowledge about δ(jω), a con-

servative choice is to assume δ(jω) = 1, ∀ω ∈ [0,+∞). On this basis, the following

stability robustness index (SRI) is proposed:

SRI = min
∣∣∣∣1 + 1

Hs(jω)Pn(jω)

∣∣∣∣− 1, ∀ω ∈ [0,+∞) . (3.36)

It is worth noting that due to the conservative assumption of δ(jω), a negative

SRI is not necessarily a sign of instability. Instead, SRI gives a relative measure on

stability robustness. That is, a larger SRI suggests better stability robustness.

To investigate the effects of using a low-pass filter (LPF) of different orders for the

subsystem (A f , B f , C f ), the following generalised formulation G f (s) is considered:

G f (s) =

pn

∑
i=0

ami(τs)i

(τs + 1)m , (3.37)
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where m is the denominator order and pn is the numerator order; ami =
m!

(m−i)!i! is

the ith coefficient of the numerator polynomial; τ is the time constant.

Since the closed-loop system is unstable if pn ≥ 1, the analysis herein only

considers cases where m ≥ 1 and pn = 0. This yields LPFs with a unity passband

gain.

Only the plunge-DOF dynamics of the VSDS prototype are used throughout

the analysis, given similar dynamics of both DOFs. LQG parameters exclusive to

UIE are kept unchanged throughout the analysis while the UIE-related parameters

are varied across regions of interest for investigation. Phase lag introduced by the

UIE-LQG controller is to be quantitatively given in Section 3.5.

3.4.1 Low-pass filter cutoff frequency

In this analysis, the UIE component takes parameters of L = [9.49, 1.07]T, Kd = 6.64,

and 1 ≤ m ≤ 4, ∀m ∈ Z, with the LPF cutoff frequency ωc being varied. Figure 3.7

shows that sensitivity decreases with increased ωc, when ωc is times higher than

ωd. A first-order LPF requires the least gap between ωd and ωc to achieve useful

sensitivity, while a fourth-order LPF introduces a mild peak in sensitivity, and ωc

needs to be 3 to 4 times higher than ωd for reduced sensitivity. In Figure 3.8, similar

stability robustness can be observed among the four filters for ωc < 102 rad/s,

all showing relatively good stability robustness. But differences start to grow for

ωc > 102 rad/s, where the LPF of first-order is more sensitive to the increase of

ωc, having an earlier drop of stability robustness compared with LPFs of higher

orders. Figures 3.7 and 3.8 indicate that a first-order LPF can be a preferred choice

from the sensitivity perspective, and is most suitable for low-frequency uncertainties

in the interests of stability robustness. Figures 3.7 and 3.8 also recommend that

ωc = 100 rad/s is a relatively better choice that balances sensitivity and stability

robustness for the case under discussion. Therefore, ωc = 100 rad/s is used in the

subsequent analysis.
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Figure 3.7: Sensitivity at ωd = 5 rad/s against LPF cutoff frequency.

Figure 3.8: SRI against LPF cutoff frequency.

3.4.2 Unknown-input estimation gain

To study the effect of the UIE gain, Kd is considered as a variable while other

parameters are set as L = [9.49, 1.07]T, ωc = 100 rad/s, and 1 ≤ m ≤ 4, ∀m ∈ Z.

It is straightforward to see from Figure 3.9 that larger Kd contributes to smaller

sensitivity, delivering better rejection of unknown inputs. However, a dip can been

seen on each of the SRI curves in Figure 3.10, indicating a weak stability robustness

region, which should be avoided in design. Kd to the left of this potentially unstable

region, being too small to make the UIE component effective, is not preferred. A

larger Kd beyond the SRI dip can be considered in UIE design, as the stability

robustness recovers to an acceptable level. Hence, Figures 3.9 and 3.10 both support

the choice for a larger Kd. LPFs of different orders do not have significant impact on

Kd selection from the stability robustness perspective, although some shift of the

dip on the SRI curve can be seen between LPFs of different orders. In the interests

of better estimation and compensation of transmission power-loss, a first-order LPF

can be considered for the relatively smaller sensitivity achieved with the same Kd.
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Figure 3.9: Sensitivity at ωd = 5 rad/s against UIE gain.

Figure 3.10: SRI against UIE gain.

3.4.3 State observer gain

With parameters Kd = 6.64, ωc = 100 rad/s, and 1 ≤ m ≤ 4, ∀m ∈ Z, the influence

of L is evaluated. As can be seen in Figure 3.11, the sensitivity remains at a low level

and is insensitive to variation of L in the region where ‖L‖2 ∈ (0, 102], favoured for

estimation and compensation of transmission power-loss. L within this range is also

acceptable in terms of stability robustness, as shown in Figure 3.12. Continuously

increasing L not only weakens unknown-inputs rejection capability with raised

sensitivity (Figure 3.11) but can also brings instability issues as indicated by the dip

around ‖L‖2 ∈ [102, 105] (Figure 3.12). Although stability robustness returns to an

acceptable level with much larger L, L within this high-value range is nevertheless

undesired in consideration of weak rejection of unknown inputs and increased

computation load. With regard to the effects of the LPF order, it is easy to see from

Figure 3.11 that a first-order LPF appears to be a better choice for the relatively

smaller sensitivity, with stability robustness property similar to LPFs of higher

orders.
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Figure 3.11: Sensitivity at ωd = 5 rad/s against state observer gain.

Figure 3.12: SRI against state observer gain.

3.5 Experimental validation

To validate the new VSDS prototype in providing virtual stiffness and damping

to the aeroelastic system, wind-tunnel experiments were conducted, and the per-

formance of the generated virtual structural forces F̄s tracking the reference Fs is

evaluated. Realisation of virtual stiffness and damping via electric drives is con-

sidered satisfactory if the generated force/torque closely track the reference. The

experimental setup for wind-tunnel testing is shown in Figure 3.13, and correspond-

ing parameters of the 2-DOF aeroelastic system under the experimental setting are

listed in Table. 5.1.

Two test scenarios are presented in this paper, with corresponding settings listed

in Table. 3.3. The numerical values of the eigenfrequencies of the VSDS (with the

aerofoil section mounted on) and those of the overall aeroelastic system are given in

Table. 3.4. In each scenario, comparisons are drawn between standard LQG tracking

control (by disconnecting the UIE component) and the UIE-LQG control.

In experiment, the VSDS controller ran at 1000 Hz while readings were taken
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Figure 3.13: Wind-tunnel experiment setup.

Table 3.2: Parameters of wind-tunnel experiment setup.

Parameters Values Parameters Values

Lhc 0.0753 m ch, ca, kh, ka See Table. 3.3

Ls 0.26 m ma 0.851 kg

ra 0.0329 m Ia 2.431× 10−3 kg·m2

rfc −0.0685 m Cl-a 6.573

ρ 1.225 kg/m3 Cm-a 0

Table 3.3: Settings of wind-tunnel test cases.

Case Flutter Boundary Airflow Speed Stiffness & Damping

1 13.92 m/s 14.8 m/s

kh = 50 + 300h2 N/m

ka = 0.3 + 30q2
a Nm/rad

ch = 14 kg/s

ca = 0.042 kg·m2/s

2 16.02 m/s 16.8 m/s
kh, ch, ca: same as Test 1

ka = 0.77 + 30q2
a Nm/rad

from the force/torque transducer and encoders at 5000 Hz. The force/torque

transducer used on the VSDS features high signal-to-noise ratio with near-zero noise

distortion. This allowed the use of a simple digital averaging filter with a sample
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Table 3.4: Numerical values of the eigenfrequencies of the VSDS (with aerofoil
mounted on) and overall aeroelastic system.

Case
VSDS (with Aerofoil) Aeroelastic System

Plunge Pitch Plunge Pitch

1 0 rad/s 8.06 rad/s 0 rad/s 11.91 rad/s

2 0 rad/s 14.71 rad/s 0 rad/s 16.20 rad/s

Table 3.5: VSDS controller parameters.

Kx Kw Kr L Kd G f (s)[
6.27 3.98

]
−3.16 0.4

[
9.49 1.07

]T
6.64 1

(0.01s+1)[
4.39 −0.74

]
−3.16 10.08

[
7.33 2.19

]T
4.34 1

(0.01s+1)

size of 5, which gave finer force/torque readings while only induced 0.4 degree

phase delay for the presented scenarios in experiments.

Given the MESO being driven by position error, proper velocity estimation

can be verified by comparing measured and estimated positions. The MESO was

fined tuned to give fast estimation with the phase lag minimised to less than 0.5

degree in experiments, and corresponding parameters were p1 = 90, p2 = 20000,

and p3 = 80000.

The UIE-LQG controller was synthesised following the analysis in Section 3.4,

with parameters given in Table. 3.5. The total additional phase difference introduced

by the VSDS control system, between actual displacement/velocity and generated

force/torque, was found to be 4 degrees at maximum in tests.

Aerofoil plunge and pitch responses in the two test scenarios are shown in

Figures 3.14 and 3.15. According to Eqs. (3.4) and (3.5), proper velocity estimation by

MESO can be verified using position information only. To demonstrate, Figure 3.16

shows a close-up of position/velocity MESO estimation for UIE-LQG control in

Case 1, where conventional velocity approximation using a filter is also presented.

Subject to the limited resolution available, the filter was designed as s
1/50s+1 to

provide relatively acceptable velocity approximation, which however, introduced a
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Figure 3.14: Aeroelastic responses in Case 1 tests.

Figure 3.15: Aeroelastic responses in Case 2 tests.

significant amount of phase lag compared with MESO estimation, as can be seen in

Figure 3.16. It can also be observed that position estimations using MESO closely

follow encoder measurements, indicating fast and proper velocity estimation by

MESO.

Note the different aeroelastic responses under the same experiment settings

with different controllers, causes of which are revealed in Figures 3.17 to 3.20.

Significant differences between measurements and reference tracking trajectories

can be observed in tests where standard LQG control was applied (Figures 3.17

and 3.19). As a result, flutter failed to initiate under the LQG control (Figures 3.14
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Figure 3.16: Position/velocity estimation using MESO (Case 1, UIE-LQG).

and 3.15), although the airflow speeds in tests were higher than corresponding

flutter boundaries. In comparison, the measured plunge-DOF forces and pitch-DOF

torques strictly follow the desired trajectories under the UIE-LQG control, with

tracking deviations barely identified (Figures 3.18 and 3.20). This enabled successful

initiation and development of flutter (Figures 3.14 and 3.15).

The impact of the additional phase lag from displacement/velocity measurement

to force/torque generation can be examined by calculating the equivalent stiffness

and damping achieved in experiments (using data of position/velocity estimations

by MESO and force/torque measurements by transducer). A maximum of 0.68%

error is found for all stiffness and damping coefficients in the two test scenarios.

Since the phase delay caused by MESO estimation is less than 1/8 of that caused

by the UIE-LQG controller, its addition to the total error of equivalent stiffness and

damping is deemed negligible.

It can be seen from the experiment results that:

• Careful design of the MESO can mitigate the problem of resolution loss due

to using non-reduction transmission, with the additional phase lag between

actual displacement/velocity and estimated ones minimised and the associated

negative impact being negligible;
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Figure 3.17: VSDS force/torque under LQG control in Case 1 tests.

Figure 3.18: VSDS force/torque under UIE-LQG control in Case 1 tests.

• Power loss due to inertial loads, mechanical frictions, and other exogenous

disturbances and un-modelled dynamics, if not properly treated, have consid-

erable impacts on the performance of the new VSDS in AAT;

• The power loss, in the form of equivalent unknown inputs, can be effec-

tively estimated and compensated by the UIE-LQG controller, with superior

force/torque tracking achieved. The proposed approach allows simplified

system identification and calibration procedures.

• The maximum of 4 degrees additional phase lag experienced in experiments,
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Figure 3.19: VSDS force/torque under LQG control in Case 2 tests.

Figure 3.20: VSDS force/torque under UIE-LQG control in Case 2 tests.

introduced by the VSDS control system, showed minor impact on the overall

realisation of virtual stiffness and damping for AAT.

3.6 Conclusions

Motivated by the disadvantages of conventional test-beds for AAT and limitations of

existing VSDSs in other fields, a new VSDS is developed in this study specifically for

AAT. The proposed new operation principle based on direct force/torque regulation

with force/torque feedback effectively addresses dynamics coupling between plunge
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and pitch DOFs without the need for sophisticated aeroelastic modelling. Resolution

loss in velocity measurement is identified as a main problem associated with the first

trial of non-reduction transmission on the new VSDS prototype and can be solved by

the proposed MESO given that parameters of the MESO are carefully tuned to min-

imise the additional phase lag between estimated displacement/velocity and actual

ones. Based on the new operation principle, the proposed VSDS control system with

systematically synthesised UIE-LQG control enables superior force/torque tracking

with enhanced robustness and significantly reduces system identification and cali-

bration procedures in VSDS development, although with some phase lag introduced.

The phase lag from the actual displacement/velocity to the generated force/torque

due to the involvement of the closed-loop force/torque tracking controller, is found

to cause minor error in the realised virtual stiffness and damping, which are shown

acceptable. In general, as confirmed in wind-tunnel experiments, the developed new

2-DOF VSDS prototype can provide satisfactory realisation of virtual stiffness and

damping to facilitate industrial and laboratory AAT. The developed VSDS also has

the potential for other industrial applications involving oscillatory tests that require

frequent change of stiffness and damping settings. Further reduction of phase lag

introduced by the control system can be a possible direction of future work.
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Chapter 4

Nonlinear optimal control online

synthesis

To derive active flutter suppression (AFS) controllers that accomplish the thesis aim,

the two practical problems of the existing nonlinear optimal control online synthesis

(NOCOS) algorithms (see Section 1.1) are required to be solved first. This chapter,

based on Article-2, addresses the NOCOS algorithm structure problem under the

locally nonlinear setting, by proposing a novel NOCOS scheme that is compact

in configuration without compromising closed-loop stability. Detailed derivation,

stability analysis, and numerical verification of the proposed compact NOCOS

scheme for locally nonlinear systems are given, completing the second objective

(Page 4) of the thesis.
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abstract

This study proposes a modified value-function-approximation (MVFA) and investi-

gates its use under a single-critic configuration based on neural networks (NNs) for

synchronous policy iteration (SPI) to deliver compact implementation of optimal

control online synthesis for control-affine continuous-time nonlinear systems. Exist-

ing single-critic algorithms require stabilising critic tuning laws while eliminating

actor tuning. This paper thus studies alternative single-critic realisation aiming

to relax the needs for stabilising mechanisms in the critic tuning law. Optimal

control laws are determined from the Hamilton-Jacobi-Bellman equality by solving

for the associated value function via SPI in a single-critic configuration. Different

from other existing single-critic methods, an MVFA is proposed to deal with the

closed-loop stability during online learning. Gradient-descent tuning is employed

to adjust the critic NN parameters in the interests of not complicating the problem.

Parameters convergence and the closed-loop system states stability are examined.

The proposed MVFA-based approach yields an alternative single-critic SPI method

with uniformly ultimately bounded NN parameter convergence and asymptotic

closed-loop system states stability throughout the process of online learning without

the need for stabilising mechanisms in the tuning law for critic NN. The proposed

approach is verified via simulations.
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4.1 Introduction

Nonlinear optimal control generally involves the determination of control laws that

minimise the associated performance cost, where the Hamilton-Jacobi-Bellman (HJB)

equality (Bellman, 1957) or its nonlinear variations are to be solved, or where an

inverse approach without solving the HJB equation (Lopez et al., 2017) may apply.

In our study, the discussion is focused on the former, where the HJB equality and

its variants, being partial differential equations that are nonlinear, are difficult to

be solved analytically. Practical methods to solve the HJB equation and its variants

are provided through approximation methods, one class of which is the widely

studied adaptive/approximate dynamic programming (ADP) (Werbos, 1974). ADP

techniques are basically iterative approaches built upon the concept of reinforcement

learning (Sutton and Barto, 1998), which approximates optimal control laws as well

as corresponding value functions through policy evaluation and improvement,

where a ‘policy’ is referred to as a control law. Some good reviews are provided by

Wang et al. (2009), Jiang and Jiang (2013), and Wang et al. (2017a). To implement the

ADP, the value function in the HJB equation needs to be properly structured, and

neural networks (NNs) are ideal candidates given their universal approximation

properties (Hornik et al., 1989).

Offline ADP has been an effective and useful tool for handling optimal control

in various challenging problems, including nonaffine systems (Luo et al., 2016a; Mu

et al., 2017; Wang et al., 2012), actuator saturation (Abu-Khalaf and Lewis, 2005;

Heydari and Balakrishnan, 2013; Luo et al., 2015), unknown system dynamics (Li

et al., 2017; Luo et al., 2016a, 2014, 2015; Mu et al., 2017, 2018; Wang and Liu, 2013;

Wang et al., 2012; Wei et al., 2017; Zhao et al., 2015a), fixed final time (Heydari and

Balakrishnan, 2013), finite approximation error (Wei et al., 2014), finite horizon (Mu

et al., 2018), algorithm simplification (Heydari, 2014; Heydari and Balakrishnan,

2013; Wang and Liu, 2013), optimal tracking (Luo et al., 2016a), non-zero initial

condition for value iteration (Wei et al., 2016), and extension to multi-agent system
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applications (Li et al., 2017).

With increasing demands on synthesising optimal controllers in real time, online

ADP has been receiving intensive research attention. Online ADP, in contrast

to offline methods, features real-time synthesis of optimal control policies for

dynamic systems. The iteration procedures performed on a regular- or irregular-

time-interval basis, where the cost function corresponding to an admissible control

being approximated undergoes evaluation before the next iteration commences, can

be characterised as being sequential. These algorithms collect real-time data prior to

batch processing for policy evaluation and policy update at each discrete iteration

under either continuous-time setting (Feng et al., 2015; Jiang and Jiang, 2014, 2015;

Liu et al., 2013b; Vrabie and Lewis, 2009) or in discrete-time domain (Al-Tamimi

et al., 2008; Feng et al., 2015; Kiumarsi et al., 2015; Škach et al., 2018; Wei and Liu,

2014). The study by Vamvoudakis and Lewis (2010) proposes an attractive ADP

algorithm, termed as synchronous policy iteration (SPI), where policy evaluation and

policy update are implemented continuously in time and simultaneously. The SPI

theory framework initiated by Vamvoudakis and Lewis (2010) has been enormously

enriched by latest advances in dealing with faster convergence (Bhasin et al., 2013),

actuator saturation (Huang et al., 2017; Kiumarsi and Lewis, 2015; Modares and

Lewis, 2014; Modares et al., 2013a, 2014, 2013b; Yang et al., 2014), completely

unknown dynamics with unknown nonlinear structures (Liu et al., 2013a; Yang

et al., 2014), unknown affine nonlinear systems (Lv et al., 2019, 2016; Modares

et al., 2013a; Na and Herrmann, 2014; Song et al., 2016; Wang et al., 2016; Zhong

et al., 2018), partially unknown dynamics (Bhasin et al., 2013; Kiumarsi and Lewis,

2015; Modares and Lewis, 2014; Modares et al., 2014; Vamvoudakis et al., 2014),

multi-agent systems (Heydari and Balakrishnan, 2014; Jiang and He, 2018; Luy,

2018), optimal tracking (Kiumarsi and Lewis, 2015; Modares and Lewis, 2014; Na

and Herrmann, 2014), relaxation of persistent-excitation condition (Modares et al.,

2014), exponential convergence driven directly by estimation error assuming known

ideal parameters rather than being driven by the HJB error (Lv et al., 2019, 2016; Na
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and Herrmann, 2014), algorithm simplification (Huang et al., 2017; Liu et al., 2013a,

2014; Luy, 2018; Lv et al., 2019, 2016; Na and Herrmann, 2014; Wang et al., 2017b,

2014a, 2017c; Zhang et al., 2013), and disturbances and uncertainties (Huang et al.,

2017; Liu et al., 2014; Lv et al., 2019; Song et al., 2016; Vamvoudakis and Lewis, 2012;

Wang et al., 2014a, 2016).

For stabilisation purpose, most SPI schemes implement separate NNs for the

critic and actor, respectively, each dynamically tuned with a different learning

law. Specifically, actor tuning laws generally contain stabilising terms derived

from Lyapunov stability analysis. To simplify SPI implementation and reduce

computational load, there have been efforts on single-critic approaches where the

same NN is used for both components with the critic NN weights directly passed on

to the actor NN (Huang et al., 2017; Liu et al., 2013a, 2014; Luy, 2018; Lv et al., 2019,

2016; Na and Herrmann, 2014; Wang et al., 2017b, 2014a, 2017c; Zhang et al., 2013).

Further improvements are seen in event-based methods based on the single-critic

configuration (Wang et al., 2017b,c), where the data needed for online learning

are reduced. The instability resulted from direct simplification of the actor-critic

configuration is recognised in Liu et al. (2013a), and critic-NN initial weights need

to be determined carefully by trial-and-error. Guaranteed stability can be achieved

by introducing a stabilising mechanism to the critic tuning law (Huang et al., 2017;

Liu et al., 2014; Luy, 2018; Lv et al., 2019, 2016; Na and Herrmann, 2014; Wang

et al., 2017b, 2014a; Zhang et al., 2013). The stabilising mechanism is generally

a stabilising term derived on the basis of Lyapunov stability, either conditionally

activated upon instability being detected (Huang et al., 2017; Liu et al., 2014; Luy,

2018; Wang et al., 2014a; Zhang et al., 2013), or continuously in effect throughout

online learning (Lv et al., 2019, 2016; Na and Herrmann, 2014; Wang et al., 2017b).

It is interesting to note that the SPI schemes in the aforementioned studies share

a common form of value function approximation (VFA) with an NN of standard

structure directly employed. The question is: Can a different form of VFA deliver

alternative realisation of the single-critic configuration for SPI without introducing
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additional stabilising mechanisms in the NN tuning law?

Therefore, as our major contributions, this study proposes a modified value-

function-approximation (MVFA) and study its feasibility and efficacy as an alter-

native approach under the single-critic configuration. Specifically, the closed-loop

stability are investigated.

In the remainder of the paper: Section 4.2 introduces the problem under discus-

sion together with some preliminaries; Section 4.3 proposes an MVFA for alternative

realisation of the single-critic configuration for SPI; Section 4.4 analyses overall

closed-loop stability during online learning; Section 4.5 gives a simulation example.

Section 4.6 draws conclusions.

4.2 Problem and preliminaries

4.2.1 Problem

The following control-affine nonlinear systems in continuous-time domain is consid-

ered:

ẋ = f (x) + g(x)u, (4.1)

where x ∈ Rnx contains system states of dimension nx, x(0) = x0, with x0 being

a vector containing the initial states; u ∈ Rnu collects control inputs of dimension

nu; f (x) ∈ Rnx refers to internal dynamics of the system; g(x) ∈ Rnx×nu denotes

distribution dynamics of control inputs.

Assumption 4.1. For the system as in Eq. (4.1), there is f (0) = 0. Given a set Ω ⊆ Rnx

including zero, Eq. (4.1) is Lipschitz continuous with respect to Ω, and there exist admis-

sible control u ∈ Ξ(Ω) that can stabilise system (4.1). f (x) as well as g(x) are assumed

known.

Assumption 4.2. There exist ‖ f (x)‖ ≤ b f ‖x‖ with constant b f ∈ R+ and ‖g(x)‖ ≤ bg

with constant bg ∈ R+ (Modares et al., 2014, 2013b; Vamvoudakis and Lewis, 2010).
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A proper control law u is desired to minimise

V(x0) =
∫ ∞

0

[
Q̄(x(t)) + uTRu

]
dt, (4.2)

which is also known as a cost function with a positive-definite function Q̄(x) and

symmetric positive-definite weighting R ∈ Rnu×nu .

Definition 4.1 (Admissible control). Given a continuously differentiable control set

u(x) ∈ Ξ(Ω) with initial condition u(0) = 0, if on Ω it stabilises system (4.1) and if

the cost V(x0), ∀x0 ∈ Ω, as given in Eq. (4.2) is finite, then the control is considered

as being admissible (Beard et al., 1997).

4.2.2 Continous-time HJB equation

If V ∈ C1, differentiating Eq. (4.2) yields

Q̄(x) + uTRu + ( f + gu)T∇V = 0, (4.3)

with V(0) = 0 and ∇V , ∂V(x)
∂x ∈ Rnx .

The control that minimises Eq. (4.2) for the same initial conditions is deemed

optimal and denoted as u∗. The associated cost is V∗ = min(V) for u ∈ Ξ(Ω) and

generally known as the ‘value function’. Specifically,

u∗ = −1
2

R−1gT∇V∗, (4.4)

with which there is

Q̄ + uTRu∗ + ( f + gu∗)T∇V∗ = 0, (4.5)

with V∗(0) = 0, which then gives the following HJB equation:

−1
4
∇V∗TgR−1gT∇V∗ +∇V∗T f + Q̄ = 0, (4.6)

with V∗(0) = 0.

Remark 4.1. Note that u in Eq. (4.3) can be any admissible control, and there exists a

corresponding cost V as in Eq. (4.2) that makes Eq. (4.3) hold. However, Eq. (4.5) is
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a special case of Eq. (4.3) where u is associated with V through Eq. (4.4). A residual

error arises to the right of Eqs. (4.5) and (4.6) if the condition of V∗ = min(V) for

u ∈ Ξ(Ω) is unsatisfied.

4.2.3 Policy iteration

To analytically determine V∗(x) from the nonlinear HJB equation has been known

difficult. Instead, V∗(x) can be obtained through an iterative procedure termed as

‘policy iteration’ (Sutton and Barto, 1998), which requires V∗(x) being appropri-

ately structured and successively approximated (Saridis and Lee, 1979), basically

involving two steps in a ‘actor-critic’ configuration:

• The ‘critic’ for policy evaluation: using Eq. (4.3) to evaluate V(i) resulted from

u(i). This is to solve for V(i) from

Q̄(x) + uT
(i)Ru(i) + ( f + gu(i))

T∇V(i) = 0, (4.7)

with V(i)(0) = 0.

• The ‘actor’ for policy improvement: implementing updated control, which is

u(i+1) = −
1
2

R−1gT∇V(i). (4.8)

The iteration procedure begins with u(0) which is an initial admissible control,

and proceeds with the above two iterative steps until reaching convergence at V∗

and u∗ or proximity to V∗ and u∗. It is worth emphasising that for synchronous

policy iteration (SPI), the procedure performs continuously in time, and the above

two steps take place simultaneously (Vamvoudakis and Lewis, 2010). The subscript

‘(i)’ in V(i) and u(i) are unnecessary in the SPI case. However, for ease of explanation

of SPI at an infinitesimal time step, these subscripts are used, only to indicate a

general time step being considered rather than iteration number.

Remark 4.2. In terms of the single-critic configuration, an actor component is still

necessary for a complete policy iteration procedure including SPI. The term ‘single-

critic’ refers to the case where the separate tuning for the actor component is
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eliminated in comparison to the general actor-critic structure in which both of the

actor and critic components require individual tuning.

4.3 Modified single-critic configuration

4.3.1 Modified value function approximation

Analytically obtaining V(i)(x) from Eq. (4.7) is difficult, and hence implementing

policy iteration requires proper approximation of the solution. Neural networks

(NNs), with universal approximation properties (Hornik et al., 1989), can be used

for this purpose. Different from other existing studies that use a common form

of NN-based representation for approximating the value function, in this paper a

modified value-function-approximation (MVFA) is proposed, being:

V∗ =
1
2

xTPx + W∗T
Φ + ε, (4.9)

where hidden-layer neurons are contained in Φ ∈ Rnn , with ideal NN weights being

W∗ ∈ Rnn ; P ∈ Rnx×nx is an additional parameter matrix that is diagonal and

positive-definite; the error of approximation is denoted by ε ∈ R.

Accordingly, there is

∇V∗ = ∇̄ΦTW∗ + Px +∇ε, (4.10)

with ∇̄Φ = ∇ΦT =
[

∂Φ
∂x

]T
∈ Rnn×nx and ∇ε = ∂ε

∂x ∈ Rnx .

Remark 4.3. The discussion in Section 4.1 has revealed that VFA in existing methods

takes a common NN-based representation, the convergence of which in online

learning necessitates separate actor tuning or stabilising mechanisms in critic tuning

laws for stabilisation. Differently in this study, the proposed MVFA features an

auxiliary term in addition to the standard structure of an NN. The advantages of

introducing the auxiliary term is to be discussed in the remainder of this paper.

Remark 4.4. The hidden-layer neurons in Φ are nonlinear activation functions, which

can be obtained by applying Weierstrass approximation using high-order polynomi-
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als (Finlayson, 1972). The resulting activation functions are the individual terms of

a polynomial of specified order with the NN inputs as variables.

Assumption 4.3. There exist inequalities
∥∥∇̄Φ

∥∥ ≤ bφ ‖x‖ for bφ ∈ R+ and ‖∇ε‖ ≤ bε ‖x‖

for bε ∈ R+, where bφ and bε are constants.

4.3.2 Single-critic structure and tuning

On considering the ‘Policy Evaluation’ step only (i.e., a control law remains fixed

for evaluation), the associated cost function V(i) takes

V(i) = WT
(i)Φ +

1
2

xTPx + ε(i), (4.11)

with its gradient being

∇V(i) = ∇̄ΦTW(i) + Px +∇ε(i), (4.12)

with W(i) being NN ideal weights that approximate V(i) with the least error ε(i).

Remark 4.5. Note that V(i) in Eq. (4.11) and V in Eq. (4.2) are equal only in terms of

value, given the same initial conditions and the same control policy, but different in

structure. V in Eq. (4.2) is structured to give physical interpretation of cost while

V(i) in Eq. (4.11) is specially constructed for mathematical approximation. The term

WT
(i)Φ in Eq. (4.11) is not equal to uTRu in Eq. (4.2) but includes the information of

uTRu, since the set Φ contains activation functions in polynomial forms consisting

of both x and u.

Remark 4.6. The discussion at this stage only considers the case of approximating

the cost function for a known control policy u(i). That is, u(i) is known and not

approximated by NN. The NN used at this stage only approximates the cost function

associated with the known control u(i).

Using an estimate Ŵ(i) to replace W(i) in Eqs. (4.11) and (4.12) gives

V̂(i) = ŴT
(i)Φ +

1
2

xTPx, (4.13)
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∇V̂(i) = ∇̄ΦTŴ(i) + Px, (4.14)

and

Q̄ + uT
(i)Ru(i) + ( f + gu(i))

T∇V̂(i) = e1, (4.15)

where V̂(i)(0) = 0, and e1 is the error arises as a result (as commented in Remark 4.1

and to be discussed in Section 4.4).

To minimise e1 so that Ŵ(i) → W(i), gradient-descent tuning is adopted, by

considering the quadratic error function

E =
1
2

e2
1. (4.16)

This yields

˙̂W (i) = −κ1N1
∂E

∂Ŵ(i)
= − α√

ς(i)
Tς(i) + 1

N1ς(i)e1, (4.17)

where κ1 = α√
ςT
(i)ς(i)+1

is added for normalisation, with α ∈ R+ being a scalar learn-

ing rate and ς(i) = ∇̄Φ( f + gu(i)); N1 is an auxiliary term added to adjust contribu-

tion of individual state to tuning, and N1 = diag(N2N3), with N2 ∈ Rnn×nx being a

constant matrix related to ∇̄Φ(x) with its element N2(jk) ∈ B, (j = 1, 2, · · · , nn; k =

1, 2, · · · , nx), and N3 ∈ Rnx×1 being a weighting vector.

Specifically, the constant matrix N2, in connection with the expression of every

single element of ∇̄Φ(x), namely, ∇̄Φ(jk)(x), is given in the following form:

N2(jk) =


0 if ∇̄Φ(jk)(x) = 0, ∀x 6= 0,

1 if ∇̄Φ(jk)(x) 6= 0, ∀x 6= 0.

Similarly, for the complete synchronous policy iteration (SPI), the ideal weights

W∗ are unknown and should be determined so that Eq. (4.9) approximates a target

value function. With Ŵ being the estimated weights, the approximated value

function and its gradient become

V̂ = ŴTΦ +
1
2

xTPx (4.18)
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and

∇V̂ = ∇̄ΦTŴ + Px, (4.19)

respectively, and the associated control is given by

û = −1
2

R−1gT∇V̂. (4.20)

Note the absence of the subscript ‘(i)’ in Eqs. (4.18) and (4.19) for complete SPI,

which are different from Eqs. (4.13) and (4.14) corresponding to a fixed control law

at a general infinitesimal time step for ‘Policy Evaluation’ only.

In the SPI case involving the single-critic structure with Eq. (4.18) and direct

implementation of Eq. (4.20), there is

Q̄ + ûTRû + ( f + gû)T∇V̂ = e2, (4.21)

where V̂(0) = 0, and e2 is the resulting approximation error as commented in

Remark 4.1 (details to be given in Section 4.4).

To minimise e2 so that Ŵ →W∗, Eq. (4.17) is modified as

˙̂W = − α√
ςTς + 1

N1ςe2 = −κ2N1ςe2, (4.22)

where κ2 = α√
ςTς+1

, and ς = ∇̄Φ( f + gû), with N1, N2, and N3 defined the same

as in Eq. (4.17).

It now gives a single-critic structure consisting of critic tuning only, without

additional stabilising mechanisms in the tuning law as in Eq. (4.22).

Remark 4.7. For conventional VFA as in the SPI pioneer work of Vamvoudakis and

Lewis (2010) (also commonly used in other studies discussed in Section 3.1), it has

been known that closing the loop by directly passing Ŵ on to the actor NN can

lead to instability issues during online learning without any stabilising mechanism.

This is because in these cases some intermediate values along the evolution path of

Ŵ may not necessarily yield admissible intermediate control policies that satisfy

dV̂
dt < 0.
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Remark 4.8. Compared with the existing single-critic approaches with conventional

VFA and stabilising critic tuning laws, the proposed method with MVFA also differs

in that the critic tuning law does not need to be stabilising, allowing the use of

simpler tuning laws. Accordingly, in this paper the critic tuning based on traditional

yet simple gradient descent is used without additional stabilising mechanisms in

the tuning law. Closed-loop stability is to be investigated next in Section 4.4.

4.4 Convergence and stability analysis

Similar to most adaptive control problems that require online tuning of parame-

ters (Ioannou and Sun, 1996), proper convergence of NN parameters in this paper

also relies on the persistence of excitation (PE) condition to ensure sufficiently rich

training set being obtained.

Definition 4.2 (Persistence of Excitation). A bounded vector signal r(t) is considered

to be persistently excited (PE) if

bPE1I �
∫ t0+td

t0

r(t)r(t)Tdt � bPE2I; ∀t0 ≥ 0,

where I is an identity matrix, bPE1 ∈ R+, bPE2 ∈ R+, and td ∈ R+ (Ioannou and

Sun, 1996).

Assumption 4.4. During online tuning, states x(t) of the system (4.1) satisfy the PE

condition.

4.4.1 Policy evaluation

As an assistive step to evaluate the position of the proposed MVFA in a single-critic

synchronous policy iteration (SPI) structure, this section separates ‘Policy Evaluation’

from the SPI and treats it as a single process that approximates a cost function for a

known admissible control policy.

In addition, the stability of a linear time-varying system as given by the lemma

below, is to be used in the stability analysis that follows.
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Lemma 4.1. For a given system being linear and time-varying in the form of

ẋ = −r(t)rT(t)x, (4.23)

where vector x contains system states, its origin is exponentially stable if vector r(t) satisfies

the condition of PE (Ioannou and Sun, 1996).

The following theorem presents the convergence property of Policy Evaluation

with the MVFA under the tuning given by Eq. (4.17).

Theorem 4.1. Let Eq. (4.11) approximate the cost function as in Eq. (4.2) corresponding

to a given admissible control u(i). Under Assumptions 4.1, 4.3, and 4.4, and the tuning

algorithm as in Eq. (4.17), the error W̃(i) = W(i) − Ŵ(i) from NN weights estimation

converges to a residual set σW̃ exponentially, and ‖σW̃‖ ≤ bW̃ for a finite scalar bW̃ ∈ R+

with bW̃ → 0 as nn → ∞.

Proof. Comparing Eqs. (4.7) and (4.15), with Eq. (4.12) substituted for ∇V(i), and

with Eq. (4.14) substituted for ∇V̂(i), yields

e1 = −W̃T
(i)ς(i) + ε1, (4.24)

where ς(i) = ∇̄Φ( f + gu(i)), and ε1 = −∇εT
(i)( f + gu(i)).

As can be seen from Eq. (4.24), if ε(i)(x) = 0 for any x 6= 0, then ε1 = 0. For the

case of ε(i)(x) 6= 0, it is easy to see that ε1 ≤ bε1 for bε1 ∈ R+, given Assumption 4.3

and ( f + gu(i)) as well as x being bounded under Assumption 4.1. Since ε(i) → 0

and∇ε(i) → 0 given proper activation functions with sufficiently large nn (Finlayson,

1972), it is straightforward to show that ε1 → 0 when nn → ∞.

By using Eqs. (4.17) and (4.24), we have the time derivative of W̃(i)

˙̃W (i) = −αN1ςna(i)ς
T
na(i)W̃(i) + αN1ςnb(i)ε1, (4.25)

where ςna(i) =
ς(i)

(ςT
(i)ς(i)+1)

1
4

and ςnb(i) =
ς(i)√

ςT
(i)ς(i)+1

.

Let uε = αN1ςnb(i)ε1. If ε1 = 0, then uε = 0, and Eq. (4.25) reduces to

˙̃W (i) = −αN1ςna(i)ς
T
na(i)W̃(i). (4.26)
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Denote the equilibrium of system (4.25) by σW̃ . Under Assumption 4.4, ςna(i)

is PE. Recall that α and N1 in Eq. (4.26) are constant parameters. Therefore, under

Lemma 4.1, the origin (i.e. σW̃ = 0) of the system (4.26) is exponentially stable. That

is, W̃(i) converges to zero exponentially.

In the case of uε 6= 0, it is straightforward to show that Eq. (4.25) has non-

zero equilibrium (i.e. σW̃ 6= 0), and that W̃(i) converges to σW̃ exponentially.

Since ‖ςnb(i)‖ < 1 and ε1 ≤ bε1 , we have ‖uε‖ ≤ buε for buε ∈ R+ that can be

arbitrarily small given sufficient number of suitable activation functions being

provided. Therefore, there exists a bound bW̃ ∈ R+ such that ‖σW̃‖ ≤ bW̃ , and

bW̃ → 0 with the number of activation functions nn → ∞.

Remark 4.9. As can be seen from the proof of Theorem 4.1, the MVFA has no direct

influence on critic NN weights convergence when considering the ‘Policy Evaluation’

step only. Exponential stability is primarily due to the admissible control being

evaluated. However, the overall system stability in the case of complete SPI needs

to be further analysed (to be dealt with in Section 4.4.2), where the control policy is

replaced by a dynamically varying approximation.

4.4.2 Synchronous policy iteration

As discussed in Remark 4.7, instability may result when directly implementing the

approximated control policy as in Eq. (4.20) for complete SPI. In this subsection, the

closed-loop stability under the proposed alternative single-critic scheme with the

MVFA is investigated.

Definition 4.3 (Uniformly Ultimately Bounded). The states x(t) of a dynamic system

with initial states x0 , x(t0) is regarded as uniformly ultimately bounded (UUB)

about equilibrium xe ∈ Rnx if there exist a compact set Ω ∈ Rnx , a finite constant

be ∈ R+ and a time td(be, x0) ∈ R+ such that ‖x(t)− xe‖ ≤ be for any x0 ∈ Ω and

t ≥ t0 + td (Lewis et al., 1999).
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Theorem 4.2. Consider a system as in Eq. (4.1). Let Eq. (4.9) approximate its value

function, with the control policy given by Eq. (4.20). Under Assumptions 4.1 to 4.4 and the

online tuning law as in Eq. (4.22), the critic NN weights estimation error W̃ = W∗ − Ŵ

remain UUB during online tuning while the states x of the system are asymptotically stable,

if the parameter matrix P in Eq. (4.9) is selected to satisfy ‖P‖ > bmP, for a finite scalar

bmP ∈ R+.

Proof. Consider

L = V̂ +
1
2

W̃T(κ2N1)
−1W̃

= LV + LW , (4.27)

where LV = V̂ and LW = 1
2W̃T(κ2N1)

−1W̃ .

With Eqs. (4.1), (4.19), and (4.20), there is

L̇V = ( f + gû)T∇V̂

= (Px + ∇̄ΦTŴ)
T
[

f − 1
2

gR-1gT(Px + ∇̄ΦTŴ)

]
= xTPT f + ŴT∇̄Φ f − 1

2
ŴT∇̄ΦgR−1gT∇̄ΦTŴ

− xTPTgR−1gT∇̄ΦTŴ − 1
2

xTPTgR−1gTPx. (4.28)

Let G = gR−1gT. With Ŵ = W∗ − W̃ , Eq. (4.28) becomes

L̇V = xTPT f + W∗T∇̄Φ f − W̃T∇̄Φ f

− 1
2

xTPTGPx− xTPTG∇̄ΦTW∗

+ W∗T∇̄ΦG∇̄ΦTW̃ − 1
2

W̃T∇̄ΦG∇̄ΦTW̃

+ xTPTG∇̄ΦTW̃ − 1
2

W∗T∇̄ΦG∇̄ΦTW∗. (4.29)

In regard to the second term in Eq. (4.27), considering Eq. (4.22), we have

L̇W = W̃T(κ2N1)
−1 ˙̃W = −W̃T(κ2N1)

−1 ˙̂W

= W̃T∇̄Φ( f + gû)e2. (4.30)
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By comparing Eqs. (4.4) and (4.20), there is

û = u∗ +
1
2

R−1gT(∇̄ΦTW̃ +∇ε). (4.31)

Let z = ∇̄ΦTW̃ . Rewriting Eq. (4.30) using Eq. (4.31) gives

L̇W =
1
2

W̃T∇̄ΦgR−1gT∇εe2 + W̃T∇̄Φ( f + gu∗)e2

+
1
2

W̃T∇̄ΦgR−1gT∇̄ΦTW̃e2

= zT( f + gu∗)e2 +
1
2

zTG∇εe2 +
1
2

zTGze2. (4.32)

Subtracting Eq. (4.21) from Eq. (4.5) yields

e2 = (Px + ∇̄ΦTŴ)
T
( f + gû) + ûTRû− u∗TRu∗

− (Px + ∇̄ΦTW∗ +∇ε)
T
( f + gu∗). (4.33)

By using Eqs. (4.4), (4.10), (4.19), and (4.20), the individual terms in Eq. (4.33)

have expressions of

(Px + ∇̄ΦTŴ)
T
( f + gû)

= ( f + gu∗)T(Px + ∇̄ΦTW∗ − ∇̄ΦTW̃)

+
1
2
(Px + ∇̄ΦTW∗)

T
gR−1gT(∇̄ΦTW̃ +∇ε)

− 1
2
(∇̄ΦTW̃)

T
gR−1gT(∇̄ΦTW̃ +∇ε), (4.34)

ûTRû

=
1
4
(Px + ∇̄ΦTW∗)

T
gR−1gT(Px + ∇̄ΦTW∗)

− 1
2
(Px + ∇̄ΦTW∗)

T
gR−1gT∇̄ΦTW̃

+
1
4
(∇̄ΦTW̃)

T
gR−1gT∇̄ΦTW̃ , (4.35)

u∗TRu∗

=
1
4
(Px + ∇̄ΦTW∗)

T
gR−1gT(Px + ∇̄ΦTW∗)

+
1
2
(Px + ∇̄ΦTW∗)

T
gR−1gT∇ε

+
1
4
∇εTgR−1gT∇ε. (4.36)
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Substituting Eqs. (4.34), (4.35), and (4.36) back into Eq. (4.33) gives

e2 =− (∇ΦTW̃)
T
( f + gu∗)−∇εT( f + gu∗)

− 1
2
(∇ΦTW̃)

T
gR−1gT∇ε− 1

4
∇εTgR−1gT∇ε

− 1
4
(∇ΦTW̃)

T
gR−1gT∇ΦTW̃ . (4.37)

It can be seen from Eq. (4.37) that for a given set of NN hidden-layer neurons of

a finite number nn, the minimum of e2, denoted by ε2, is reached when W̃ = 0:

ε2 = −∇εT( f + gu∗)− 1
4
∇εTgR−1gT∇ε. (4.38)

Under Assumptions 4.1 and 4.3, ∇ε and ( f + gu∗) are bounded. Thus, there

exist a finite constant bε2 ∈ R+ such that ε2 ≤ bε2 . Since ε → 0 and ∇ε → 0 as the

number of suitable activation functions nn increases infinitely (Finlayson, 1972), it is

straightforward to show that ε2 → 0, ∀x 6= 0, if nn → ∞. As a special case, ε2 = 0 if

∇ε = 0, ∀x 6= 0.

Substituting Eq. (4.33) for e2 in Eq. (4.32) yields

L̇W =− zT( f + gu∗)( f + gu∗)Tz− 3
8

zTGzzTG∇ε

− zT( f + gu∗)( f + gu∗)T∇ε− 1
8

zTGzzTGz

− 3
4

zT( f + gu∗)zTGz− 1
2

zTGz∇εT( f + gu∗)

− zT( f + gu∗)zTG∇ε− 1
8

zTG∇ε∇εTG∇ε

− 1
4

zT( f + gu∗)∇εTG∇ε− 1
8

zTGz∇εTG∇ε

− 1
2

zTG∇ε∇εT( f + gu∗)− 1
4

zTG∇ε∇εTGz. (4.39)

Note that the first term in Eq. (4.39) can be expanded as

− zT( f + gu∗)( f + gu∗)Tz

=− zT f f Tz− 1
4

zTG∇̄ΦTW∗W∗T∇̄ΦGz

− 1
4

zTGPxxTPTGz− 1
4

zTG∇ε∇εTGz

+ zTGPx f Tz− 1
2

zTG∇̄ΦTW∗∇εTGz
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+ zTG∇̄ΦTW∗ f Tz− 1
2

zTGPx∇εTGz

+ zTG∇ε f Tz− 1
2

zTGPxW∗T∇̄ΦGz. (4.40)

Combining Eqs. (4.29) and (4.39) gives:

L̇ = T1 + T2 + T3 + T4 + T5, (4.41)

where

T1 =− 1
2

xTPTGPx + xTPT f + W∗T∇̄Φ f

− xTPTG∇̄ΦTW∗, (4.42)

T2 =− 1
4

zTGPxxTPTGz− 1
2

zTGPxW∗T∇̄ΦGz

− 1
2

zTGPx∇εTGz− 1
2

zTG∇̄ΦTW∗∇εTGz

+ zTGPx f Tz + zTG∇̄ΦTW∗ f Tz + zTG∇ε f Tz

− zT( f + gu∗)zG∇ε− 1
2

zTGz∇εT( f + gu∗)

− zT f + xTPTGz + W∗T∇̄ΦGz, (4.43)

T3 =− 1
2

zTG∇ε∇εTGz− 1
4

zT( f + gu∗)∇εTG∇ε

− 1
8

zTGz∇εTG∇ε− 1
2

zTG∇ε∇εT( f + gu∗)

− zT f f Tz− zT( f + gu∗)( f + gu∗)T∇ε

− 1
4

zTG∇̄ΦTW∗W∗T∇̄ΦGz

− 1
8

zTG∇ε∇εTG∇ε, (4.44)

T4 =− 1
8

zTGzzTGz− 3
4

zT( f + gu∗)zTGz

− 3
8

zTGzzTG∇ε, (4.45)

T5 =− 1
2

W∗T∇̄ΦG∇̄ΦTW∗ − 1
2

zTGz. (4.46)

Now introduce bounds to Eq. (4.42).

As G = gR−1gT, the rank of G is

rank(G) = rank(g) < nx. (4.47)
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It follows that there exist kernel

ker(GP) = {r ∈ Rnx | GPr = 0} . (4.48)

For nonlinear systems as in Eq. (4.1), since x and z are explicitly governed by

Eq. (4.1) instead of being random, the existence of x = ker(GP) and corresponding

effects to the system is rendered negligible. Accordingly, we focus on x 6= ker(GP)

in this paper. In this case, G is positive-definite and symmetric, and under Assump-

tions 4.2 and 4.3, there is

xTPTGPx ≥ bm1‖P‖2‖x‖2, (4.49)

where constant bm1 ∈ R+. Also, there is ‖G‖ ≤ bG for constant bG ∈ R+.

Together with Assumption 4.3, the following inequality holds:

T1 ≤
(
−1

2
bm1‖P‖2 + b f ‖P‖+ bGbΦ ‖W∗‖ ‖P‖+ bΦb f ‖W∗‖

)
‖x‖2

=− 1
2

bm1‖x‖2
(
‖P‖2 − η1 ‖P‖ − η2

)
, (4.50)

where

η1 =
2
(
b f + bGbΦ ‖W∗‖

)
bm1

,

η2 =
2bΦb f ‖W∗‖

bm1
.

Under Assumption 4.4, if ‖P‖2 − η1 ‖P‖ − η2 ≥ 0, then T1 ≤ 0. This requires

‖P‖ ≥
η1 +

√
η2

1 + 4η2

2
, bp1. (4.51)

In T2, similarly to the case of T1, we consider the circumstances of x 6= ker(GP)

and z 6= ker(G). Then there is a finite constant bm2 ∈ R+ such that

zTGPxxTPTGz ≥ bm2‖P‖2‖x‖2‖z‖2. (4.52)
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Given Assumption 4.3, we have ‖ f + gu∗‖ ≤ bẋ‖x‖, for a finite constant bẋ ∈ R+.

Hence,

T2 ≤
(
−1

4
bm2‖P‖2 +

1
2

b2
Gbε ‖P‖+ bGb f ‖P‖+

1
2

b2
GbΦ ‖W∗‖ ‖P‖

+
1
2

b2
GbΦbε ‖W∗‖+ bGbεb f + bGbΦb f ‖W∗‖+ 3

2
bẋbGbε

)
‖x‖2‖z‖2

+
(
bG ‖P‖+ b f + bGbΦ ‖W∗‖

)
‖x‖ ‖z‖

=− 1
4

bm2

(
‖P‖2 − ξ1 ‖P‖ − ξ2

)
‖x‖2‖z‖2

+
(
bG ‖P‖+ b f + bGbΦ ‖W∗‖

)
‖x‖ ‖z‖ , (4.53)

where

ξ1 =
2b2

GbΦ ‖W∗‖+ 2b2
Gbε + 4bGb f

bm2
,

ξ2 =
(2b2

GbΦbε + 4bGbΦb f ) ‖W∗‖+ 4bGbεb f + 6bẋbGbε

bm2
.

Let

η3 = ‖P‖2 − ξ1 ‖P‖ − ξ2,

η4 = bG ‖P‖+ b f + bGbΦ ‖W∗‖ .

Then Eq. (4.53) can be rewritten as

T2 ≤ −
1
4

bm2η3

(
‖x‖ ‖z‖ − 4η4

bm2η3

)
‖x‖ ‖z‖ . (4.54)

It is clear that T2 ≤ 0 if η3

(
‖x‖ ‖z‖ − 4η4

bm2η3

)
≥ 0. That is, if

‖P‖ >
ξ1 +

√
ξ2

1 + 4ξ2

2
, bp2, (4.55)

then η3 > 0, and in this case, T2 ≤ 0 whenever

‖x‖ ‖z‖ ≥ 4η4

bm2η3
. (4.56)
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Regarding T3, for cases of z 6= ker(G) and ∇ε 6= ker(G), there exist constants

bm3, bm4, bm5, bm6 ∈ R+ such that the following inequalities hold:

zTG∇ε∇εTGz ≥ bm3‖x‖4∥∥W̃
∥∥2, (4.57)

zTGz∇εTG∇ε ≥ bm4‖x‖4∥∥W̃
∥∥2, (4.58)

zT f f Tz ≥ bm5‖x‖4∥∥W̃
∥∥2, (4.59)

zTG∇̄ΦTW∗W∗T∇̄ΦGz ≥ bm6‖x‖4∥∥W̃
∥∥2. (4.60)

Therefore, we have from Eq. (4.44) that

T3 ≤
(
−1

2
bm3
∥∥W̃

∥∥− 1
8

bm4
∥∥W̃

∥∥− bm5
∥∥W̃

∥∥− 1
4

bm6
∥∥W̃

∥∥
+

1
4

bẋb2
ε bGbΦ +

1
2

bẋb2
ε bGbΦ + b2

ẋbεbΦ +
1
8

b3
ε b2

GbΦ

)∥∥W̃
∥∥‖x‖4

=− η5‖x‖4 ∥∥W̃
∥∥(∥∥W̃

∥∥− η6

η5

)
, (4.61)

where

η5 =
1
2

bm3 +
1
8

bm4 + bm5 +
1
4

bm6,

η6 =
3
4

bẋb2
ε bGbΦ + b2

ẋbεbΦ +
1
8

b3
ε b2

GbΦ.

As a result, under Assumption 4.4, T3 ≤ 0 when

∥∥W̃
∥∥ ≥ η6

η5
. (4.62)

With regard to T4, for z 6= ker(G), there is

zTGzzTGz ≥ bm7‖x‖4∥∥W̃
∥∥4 (4.63)

for a constant bm7 ∈ R+. Then from Eq. (4.45),

T4 ≤−
1
8

bm7‖x‖4∥∥W̃
∥∥4

+
3
4

bẋbGb3
Φ‖x‖

4∥∥W̃
∥∥3

+
3
8

bεb2
Gb3

Φ‖x‖
4∥∥W̃

∥∥3

=− 1
8

bm7

(∥∥W̃
∥∥− 6bẋbGb3

Φ + 3bεb2
Gb3

Φ
bm7

)
‖x‖4∥∥W̃

∥∥3. (4.64)
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Therefore, under Assumption 4.4, T4 ≤ 0 requires∥∥W̃
∥∥ ≥ 6bẋbGb3

Φ + 3bεb2
Gb3

Φ
bm7

. (4.65)

It is easy to see from Eq. (4.46) that T5 ≤ 0. Thus, it can be concluded from

Eqs. (4.51), (4.55), (4.56), (4.62), and (4.65) that Eq. (4.41) is negative if

‖P‖ > max(bp1, bp2), (4.66)

‖x‖ ‖z‖ > 4η4

bm2η3
, (4.67)

∥∥W̃
∥∥ > max

(
η6

η5
,

6bẋbGb3
Φ + 3bεb2

Gb3
Φ

bm7

)
. (4.68)

Since z = ∇̄ΦTW̃ , and x is PE under Assumption 4.4, Eq. (4.67) also establishes

a bound for ‖W̃‖. Thus, Eqs. (4.67) and (4.68) together, show that W̃ is UUB during

online learning. To be specific, there exists a bound bW̃ ∈ R+ such that W̃ ≤ bW̃ .

In the following, the closed-loop stability of system states are examined. The

corresponding Lyapunov function candidate is LV in Eq. (4.27), the time derivative

of which, according to Eq. (4.29), can be rewritten as

L̇V = L̇V1 + L̇V2, (4.69)

where

L̇V1 = xTPT f + W∗T∇̄Φ f − W̃T∇̄Φ f

− 1
2

xTPTGPx− xTPTG∇̄ΦTW∗

+ W∗T∇̄ΦG∇̄ΦTW̃ + xTPTG∇̄ΦTW̃ , (4.70)

L̇V2 = −1
2

W̃T∇̄ΦG∇̄ΦTW̃ − 1
2

W∗T∇̄ΦG∇̄ΦTW∗. (4.71)

With ‖W̃‖ ≤ bW̃ , together with Assumptions 4.2 and 4.3, the following inequality

yields from Eq. (4.70):

L̇V1 ≤(−
1
2

bm1‖P‖2 + b f ‖P‖+ bGbφ ‖W∗‖ ‖P‖+ bGbφbW̃ ‖P‖

+ b f bφ ‖W∗‖+ bGb2
φbW̃ ‖W

∗‖+ b f bφbW̃)‖x‖2

=− 1
2

bm1‖x‖2
(
‖P‖2 − ξ3 ‖P‖ − ξ4

)
, (4.72)

84



4.4 Convergence and stability analysis

where

ξ3 =
2b f + 2bGbφ ‖W∗‖+ 2bGbφbW̃

bm1
,

ξ4 =
2b f bφ ‖W∗‖+ 2bGb2

φbW̃ ‖W∗‖+ 2b f bφbW̃

bm1
.

Under Assumption 4.4, we have L̇V1 ≤ 0 as long as ‖P‖2 − ξ3 ‖P‖ − ξ4 ≥ 0,

requiring

‖P‖ ≥
ξ3 +

√
ξ2

3 + 4ξ4

2
, bp3. (4.73)

Since L̇V2 ≤ 0, it follows from Eqs. (4.66) and (4.73) that L̇V ≤ 0 if

‖P‖ > max(bp1, bp2, bp3) , bmP. (4.74)

At this stage, upon satisfaction of Eqs. (4.67), (4.68), and (4.74), the UUB stability

holds for the NN weights estimation errors W̃ and the system states x.

It further follows that L̈V = dL̇V
dt is a function of W̃ and x, and L̈V is also

bounded since ‖W̃‖ and ‖x‖ are bounded. As a result, asymptotic stability also

holds true for the system states x throughout online training.

Remark 4.10. As can be seen from Theorem 4.2, the proposed MVFA establishes a

direct link to the closed-loop stability through the auxiliary quadratic term with a

design parameter matrix P. With the MVFA, no special stabilising tuning laws are

required for the NNs in critic and actor, and during online learning the SPI under

the resulted single-critic configuration remains stable with simple gradient descent

tuning.

Remark 4.11. Upon initialisation of P and Ŵ , Eq. (4.20) delivers an initial admissible

control at the time when the algorithm starts. Specifically, P can be chosen following

Theorem 4.2 with some trial-and-error, while the initialisation of Ŵ is trivial which

can be small random numbers or simply zeros.
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4.5 Numerical studies

This section presents a simulation example of finding the optimal control law for a

nonlinear model with a known value function to verify the proposed method.

The following nonlinear system is considered (Vamvoudakis and Lewis, 2010),

with

f (x) =

 −x1 + x2

−0.5x1 − 0.5x2

{
1− [cos(2x1) + 2]2

}
 ,

and

g(x) =

 0

cos(2x1) + 2

 .

For Q = I2×2 and R = 1, the corresponding V∗ and u∗ are known to be

V∗ =
1
2

x2
1 + x2

2, (4.75)

and

u∗ = − [cos(2x1) + 2] x2, (4.76)

respectively, as given in Vamvoudakis and Lewis (2010).

The critic NN has activation functions of

Φ = [x2
1, x1x2, x2

2]
T

,

with NN weights being

Ŵ = [Ŵ1, Ŵ2, Ŵ3]
T

.

In simulation, P = 10I2×2, α = 10, and N3 = [5, 1]T. System states x and NN

weights Ŵ are initialised to zeros. An exogenous signal

ue(t) = 2[cos(0.8t) + sin(t)2 cos(t) + sin(2t)2 cos(0.1t)

+ sin(−1.2t)2 cos(0.5t) + sin(t)5]

is used to perturb the system for exploration. Note that the total control that enters

the process during exploration is the sum of û and ue, which also perturbs the

system states x in the meantime. For efficient and effective training with Eqs. (4.21)
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4.5 Numerical studies

and (4.22) involved, exploration is implemented in the following manner: The

excitation of ue(t) lasts 0.05 s for every 0.1 s time interval, while the HJB error e2 in

Eq. (4.21) is periodically fed back for calculation during the intervals when ue(t) is

temporarily off (i.e., e2 = 0 if ue(t) 6= 0). ue(t) is completely turned off at 40 s. The

trajectories of system states x, approximated optimal control û and the excitation

signal ue during online learning are plotted in Figures 4.1 and 4.2, respectively.

Close-up of the excitation signal ue for the first 2 seconds is shown in Figure 4.3

for clearer illustration of the special excitation implemented. Weights convergence

history of the critic NN is given in Figure 4.4.

Note in Figure 4.2 that the approximated optimal control û generally mirrors the

contour of the excitation signal ue with slight difference in amplitude. It shows û

effectively counteracts ue and maintains closed-loop system states stability during

online training.

Figure 4.4 shows that all NN weights settle within 10 s. At the end of training,

Ŵ = [−4.4999, −0.0003, −3.9996]T.

This yields

V̂(x) = 0.5001x1
2 − 0.0003x1x2 + 1.0004x2

2

≈ 1
2

x2
1 + x2

2,

and

û(x) = − [cos(2x1) + 2] (−0.0002x1 + 1.0004x2)

≈ − [cos(2x1) + 2] x2,

which are close approximation to Eqs. (4.75) and (4.76), showing that the convergence

of NN weights is reached with good accuracy.

In situations when the PE condition may not be satisfied (for example, the closed-

loop response is subject to none-zero initial conditions only), Ŵ may not reach its

ideal set W∗ as a result. In the following simulations, the convergence of NN pa-

rameters and the closed-loop stability is investigated under unsatisfied PE condition.
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Chapter 4 Nonlinear optimal control online synthesis

Figure 4.1: Trajectories of system states during online tuning.

Figure 4.2: Trajectories of control signals during online tuning.

Figure 4.3: Close-up of excitation signal ue for the first 2 seconds.

Accordingly, x(0) = [0.5 0]T is applied as an initial condition, no probing noise is

added, and controller parameters remain the same. The corresponding closed-loop

states responses are plotted in Figure 4.5, and the corresponding control action is

given in Figure 4.6, together with responses under the ideal optimal control supplied

for comparison. As can be seen from the figures, states trajectories and control

signal under the proposed control scheme are similar to those of the ideal optimal
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Figure 4.4: NN parameters convergence during online tuning.

Figure 4.5: State trajectories of the closed-loop response to the non-zero initial
condition under the proposed online tuning scheme (PE unsatisfied in this case)
and the known ideal optimal control.

control. The difference in response is due to the approximation error resulted from

lack of PE. The NN parameters convergence history is plotted in Figure 4.7, where

the settling value of Ŵ2 and Ŵ3 is still far from the ideal one. However, stable

closed-loop responses are observed under the proposed algorithm regardless of the

differences, as shown by Figures 4.5 and 4.6. The cost of the closed-loop response to

the none-zero initial condition under the proposed algorithm (i.e., V̂(x(0))) together

with that under the known ideal optimal control (i.e., V∗(x(0))) are evaluated in

Figure 4.8. By recalculating the cost using the continuously updated NN weights,

the approximated value function V̂ is shown to be converging to the optimal one, in

the presence of some approximation error.

Remark 4.12. As shown by the example, the compact controller under the single-critic

configuration with the proposed MVFA is able to maintain the closed-loop stability
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Chapter 4 Nonlinear optimal control online synthesis

Figure 4.6: Control input in response to the non-zero initial condition under the
proposed online tuning scheme (PE unsatisfied in this case) and the known ideal
optimal control.

Figure 4.7: NN parameters convergence history during the closed-loop response to
the non-zero initial condition (PE unsatisfied case).

Figure 4.8: The minimal cost V∗(x(0)) of the closed-loop response to the non-zero
initial condition and the evolution of the approximated V̂(x(0)) (PE unsatisfied
case).

during online learning with the traditional yet simple gradient descent tuning law

without stabilising mechanisms in either critic or actor tuning. The proposed MVFA

does not complicate the problem either, as can be seen from the parameter selection

and initialisation setting.
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4.6 Conclusions

It is shown in stability analysis that using the proposed MVFA to provide alternative

realisation of the single-critic configuration for SPI is feasible and effective. The

proposed method eliminates the need for stabilising mechanisms in either the critic

or actor NN tuning, without jeopardising the closed-loop stability, and without

complicating the problem, as confirmed in theoretical proof and demonstrated in

numerical studies. In general, the proposed MVFA used in a single-critic configura-

tion for SPI, together with the study on parameters convergence and the closed-loop

stability, serve as a new development to the online SPI theory framework.

It is worth noting that the proposed MVFA scheme in this paper is model-based.

Many successful model-free applications (Abouheaf et al., 2018; Luo et al., 2018;

Radac et al., 2018) have motivated future works on advanced model-free MVFA

based schemes that: (1) feature better adaptability and robustness in circumstances

with complex, unknown, uncertain or time-varying system dynamics; (2) deliver

simplified online implementation enabled by the MVFA approach.
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Chapter 5

Flutter suppression by

input-unconstrained optimal control

The novel nonlinear optimal control online synthesis (NOCOS) scheme proposed

in Chapter 4 needs to be generalised to globally nonlinear scenarios so that it

suits active flutter suppression (AFS) applications, as discussed in Chapter 2. This

chapter, based on Article-3, presents details of the proposed adaptive nonlinear

optimal controller based on the novel NOCOS scheme, together with wind-tunnel

experiment results obtained using the VSDS described in Chapter 3. By assuming no

control-input constraints (CICs), the third objective (Page 4) of the thesis is fulfilled

by the work in this chapter, which, at this stage, partially accomplishes the thesis

aim.

93









abstract

This paper proposes a novel adaptive nonlinear controller based on neural networks

(NNs) for active flutter suppression (AFS) on aerofoils from the optimal control

perspective. A four-degrees-of-freedom aeroelastic system that has nonlinear transla-

tional and torsional stiffness and employs leading- and trailing-edge control surfaces

as control inputs is considered. Optimal control for the nonlinear aeroelastic system

at a constant airspeed is synthesised by solving the Hamilton-Jacobi-Bellman equa-

tion through synchronous policy iteration with a Modified form of NN-based Value

Function Approximation (MVFA). An extended Kalman filter is proposed to tune

the MVFA. A systematic procedure involving linear matrix inequalities is further

proposed for designing a scheduled parameter matrix to generalise the MVFA to

globally nonlinear cases where the aeroelastic dynamics vary nonlinearly with the

airspeed. An identifier NN is also derived to capture un-modelled dynamics in real

time. Parameter convergence and the closed-loop stability are examined through the

Lyapunov stability analysis. Comparisons drawn with a linear-parameter-varying

optimal controller in wind-tunnel experiments confirm the effectiveness and validity

of the proposed control scheme.
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5.1 Introduction

Aeroelastic systems are subjected to various nonlinearities and are generally prone

to the instability known as ‘limit-cycle oscillation’ (LCO), which can cause serious

damages to the aerofoil. For active flutter suppression (AFS) on aerofoils, practically

feasible solutions primarily include embedded piezoelectric actuation (Fazelzadeh

et al., 2017; Song and Li, 2014) as well as proper deployment of the existing aerofoil

control surfaces. The latter is to be discussed in detail next.

Suppressing LCOs in broad engineering practice can be done using various

control methods (Chen et al., 2009; Keyser et al., 2017; Saaed et al., 2017). Similarly

in terms of AFS, a wide variety of control strategies are available. In early studies,

there are non-adaptive classical and modern control (Edwards, 1983; Mukhopadhyay

et al., 1981; Newsom and Mukhopadhyay, 1985; Schmidt and Chen, 1986; Waszak,

2001) as well as adaptive online linear quadratic regulator (LQR) that updates

the control in real time to suit the changing dynamics (Friedmann et al., 1997;

Guillot and Friedmann, 2000; Pak et al., 1995). In recent studies, conventional

frequency-domain analysis remains a useful tool for control synthesis (Schmidt,

2016), while advanced methods in adaptive, nonlinear, and robust control have

received more attention due to the time-varying nature and nonlinear characteristics

of an aeroelastic system (Bichiou et al., 2016; Biskri et al., 2008; Chen and Liu, 2010;

Nayfeh et al., 2012; Rebolho et al., 2014; Vasconcellos et al., 2016a) and the increasing

demand on a wider operation range beyond the flutter boundary. These advanced

methods include but are not limited to: optimal control synthesised via time-domain

finite elements method (Fazelzadeh et al., 2014), self-tuning regulator (Viswamurthy

and Ganguli, 2008), linear-parameter-varying techniques (Chen et al., 2012; Prime,

2010), feedback linearisation (Ko et al., 1997, 1998, 1999; Platanitis and Strganac,

2004; Strganac et al., 2000), model reference adaptive control (Ko et al., 2002), back-

stepping-based adaptive output feedback control (Singh and Wang, 2002; Xing and

Singh, 1999, 2000), robust output feedback control (Zhang and Behal, 2016), modular

98



5.1 Introduction

adaptive control (Bhoir and Singh, 2004; Rao et al., 2006; Singh and Brenner, 2003),

modified filtered-X least-mean-square control (Carnahan and Richards, 2008), L1

adaptive control (Lee and Singh, 2013), sliding-mode control (Dilmi and Bouzouia,

2016; Luo et al., 2016b; Wang et al., 2015), finite-time H∞ adaptive fault-tolerant

control (Gao and Cai, 2016; Gao et al., 2016) and neural networks (NNs) based

adaptive control (Brillante and Mannarino, 2016; Gujjula et al., 2005; Spencer et al.,

1999, 2002; Wang et al., 2011), etc.

However, optimal controllers among the mentioned methods are sensitive to

modelling errors, which means suboptimal or unsatisfactory performance may result

in the presence of uncertainties or faults. Though some other controllers are designed

to be more adaptive to the changing environments and tolerant to un-modelled

dynamics, these methods do not provide nonlinear optimal control. These two

problems, together being a dilemma in AFS controller synthesis, have nevertheless

not been addressed. Therefore, the study in this paper proposes an approach

that synthesises nonlinear optimal control in real time for AFS according to online

updated aeroelastic dynamics, aiming to reduce the impact of the aforementioned

two problems.

Optimal control for nonlinear systems involves iteratively solving a nonlinear

Hamilton-Jacobi-Bellman (HJB) equation for the associated value function via NN-

based approximation. Most existing methods for online synthesis of nonlinear

optimal control (NOCOS) employ a common form of value function approximation

(VFA), subject to limitations related to stability and algorithm structure, as com-

mented in Tang et al. (2015). Accordingly, a solution to these limitations arising

from the use of the traditional VFA is addressed in the work of Tang et al. (2015),

where a modified value function approximation (MVFA) is proposed. Nonetheless,

all the existing NOCOS methods are confined to locally nonlinear systems, which

are a sub-class of globally nonlinear scenarios. Aeroelastic systems are nonlinear at

a constant freestream airspeed (i.e. locally nonlinear), and the dynamics also vary

nonlinearly with the airspeed (i.e. globally nonlinear). This makes all these existing
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NOCOS methods inapplicable to AFS without modification and improvement.

Therefore, the study in this paper focuses on solving the aforementioned prob-

lems and delivers the following contributions:

• Under the locally nonlinear setting, the MVFA is proposed for the AFS con-

troller in the interests of compact algorithm structure suitable for real-time

implementation. An extended Kalman filter is proposed to tune the MVFA

online. NN parameters convergence and the closed-loop stability are examined

through the Lyapunov stability analysis.

• A systematic procedure based on linear matrix inequalities is further purposed

for the design of a scheduled parameter matrix for the MVFA to generalise

the proposed method to globally nonlinear cases, so that the proposed NN

controller suits AFS applications.

• The proposed method successfully solves the aforementioned controller syn-

thesis dilemma involved in AFS applications, with the capability of learning

in real time to improve AFS performance from the nonlinear optimal control

perspective. Wind-tunnel experiments were conducted to validate the pro-

posed algorithm. To the best of our knowledge, it is the first experimentally

validated approach in this regard.

The remainder of the paper is arranged as follows. The nonlinear aeroelastic

model under consideration is introduced in Section 5.2. A new adaptive control

scheme featuring NN-based NOCOS with integrated system identification is pro-

posed in Section 5.3. Experiment results are presented and discussed in Section 5.4.

Conclusions are drawn in Section 5.5.

5.2 Aeroelastic system

To provide an appropriate aeroelasticity platform for the investigation and discussion

of AFS under the new controller proposed in this study, a typical rigid aerofoil
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section featuring two-dimensional vibration modes (i.e. the first plunge and first

pitch mode oscillations) is considered for its well-established theory basis and

experimental validation (Ko et al., 2002; O’Neil and Strganac, 1998; Platanitis and

Strganac, 2004; Prime et al., 2010; Prime, 2010; Strganac et al., 2000). Leading- and

trailing-edge control surfaces are used to actively suppress flutter. Specifically

in terms of the analytical model for control synthesis, a four-degrees-of-freedom

(4-DOF) aeroelastic system as in Prime et al. (2010) is considered, which includes

not only the plunge and pitch DOFs but also the deflection angle of the leading-

and trailing-edge control surfaces as another two DOFs. It models the lift and

moment that act on the aerofoil elastic axis using quasi-steady aerodynamics (Fung,

1955; Strganac et al., 2000), describes the coupled dynamics of the plunge and

pitch DOFs, incorporates the inertial coupling of the leading- and trailing-edge

control surfaces to the aerofoil rigid-body dynamics, and also takes into account

servo motors dynamics to capture control delay. This 4-DOF aeroelastic model

is derived by the Lagrangian energy method, verified with a different modelling

technique, the Newton-Euler iteration, and validated in wind-tunnel experiments

using the Nonlinear Aeroelastic Test Apparatus (NATA) at Texas A&M University.

The model was proven accurate for low Strouhal numbers, which primarily accounts

for cases in subsonic flow conditions. Nonlinear translational and torsional stiffness

is introduced in a polynomial form up to second order, and all the trigonometric

terms are retained. A schematic illustration of the 4-DOF aeroelastic system is

shown in Figure 5.1.

The aeroelastic system has equation of motion

ψq̈ + Λ = F, (5.1)

for which

q̈ =

[
q̈h q̈a q̈te q̈le

]T

,
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Figure 5.1: Schematic figure of the 4-DOF aeroelastic system (‘LE’ – leading edge;
‘TE’ – trailing edge; ‘c.g.’ – centre of gravity).

ψ =



ψ11 ψ12 ψ13 ψ14

ψ21 ψ22 ψ23 ψ24

ψ31 ψ32 Ite 0

ψ41 ψ42 0 Ile


,

Λ =

[
Λ1 Λ2 Λ3 Λ4

]T

,

F =

[
−FL FM kteqte-cmd kleqle-cmd

]T

,

with

ψ11 = ma + mte + mle,

ψ12 = ψ21 = (mara + mteLte + mleLle) cos(qa)

+ mterte cos(qa + qte) + mlerle cos(qa + qle),

ψ13 = ψ31 = mterte cos(qa + qte),

ψ14 = ψ41 = mlerle cos(qa + qle),
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ψ22 = Ia + Ite + Ile + mteL2
te + mleL2

le

+ 2Ltemterte cos(qte) + 2Llemlerle cos(qle),

ψ23 = ψ32 = Ite + Ltemterte cos(qte),

ψ24 = ψ42 = Ile + Llemlerle cos(qle),

Λ1 = khqh + chq̇h − (q̇a + q̇te)
2mterte sin(qa + qte)

− (q̇a + q̇le)
2mlerle sin(qa + qle)

− q̇2
a sin(qa)(mara + mteLte + mleLle),

Λ2 = kaqa + caq̇a − q̇te(q̇te + 2q̇a)mterteLte sin(qte)

− q̇le(q̇le + 2q̇a)mlerleLle sin(qle),

Λ3 = kteqte + cteq̇te + q̇2
amterteLte sin(qte),

Λ4 = kleqle + cleq̇le + q̇2
amlerleLle sin(qle),

FL = ρU2
∞LhcLsCl-a(qa +

q̇h
U∞

+ r3c/4
q̇a

U∞
)

+ ρU2
∞LhcLsCl-teqte + ρU2

∞LhcLsCl-leqle,

FM = ρU2
∞L2

hcLsCme-a(qa +
q̇h

U∞
+ r3c/4

q̇a

U∞
)

+ ρU2
∞L2

hcLsCme-teqte + ρU2
∞L2

hcLsCme-leqle,

Cl-a =
∂Cl
∂qa

, Cl-te =
∂Cl
∂qte

, Cl-le =
∂Cl
∂qle

,

Cm-a =
∂Cm
∂qa

, Cm-te =
∂Cm
∂qte

, Cm-le =
∂Cm
∂qle

,

Cme-a =
r f c

Lhc
Cl-a + 2Cm-a,

Cme-te =
r f c

Lhc
Cl-te + 2Cm-te,

Cme-le =
r f c

Lhc
Cl-le + 2Cm-le,

where geometry and force related parameters and variables are defined in Figure 5.1,

and other terms are defined as
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qh, qa, qte, qle: translational/angular displacements;

qte-cmd, qle-cmd: TE and LE commands;

ma: aerofoil mass (excluding TE and LE);

mte, mle: mass of TE and LE;

Ia: aerofoil rotational inertia (excluding TE and LE) about its elastic

axis;

Ite, Ile: TE and LE rotational inertia about respective pivot;

kh, ka, kte, kle: stiffness coefficients;

ch, ca, cte, cle: damping coefficients;

ρ: air density;

Ls: aerofoil span;

Cl: aerofoil lift coefficient;

Cm: aerofoil moment coefficient at 1/4-chord;

U∞: airflow velocity.

The system as in Eq. (5.1) can be transformed into

ẋ = f (U∞, x) + g(x)u, (5.2)

with f (x, U∞) ∈ Rnx being drift dynamics, g(x) ∈ Rnx×nu denoting control distri-

bution, x ∈ Rnx being a states vector of dimension nx, and u ∈ Rnu containing nu

control inputs.

Specifically,

x = [qh qa qte qle q̇h q̇a q̇te q̇le]
T

,

u =

[
qte-cmd qle-cmd

]T

,

f (x, U∞) =

 q̇

ψ−1F̄

 , g(x) =

 0

ψ−1 ḡ

 ,

104



5.3 Proposed controller

with

F̄ =



FL −Λ1

FM −Λ2

−Λ3

−Λ4


, ḡ =



0 0

0 0

kte 0

0 kle


.

5.3 Proposed controller

Aeroelastic dynamics in general, as shown in Eqs. (5.1) and (5.2), are nonlinear

for a constant freestream airflow velocity (i.e. locally nonlinear) and also change

nonlinearly with respect to the airspeed (i.e. globally nonlinear). As discussed

in Section 5.1, existing methods capable of synthesising optimal control laws for

nonlinear systems are all limited to locally nonlinear cases and in the meantime

subject to other practical limitations. Therefore, there are no existing methods

suitable for direct implementation in AFS without modification and improvements.

In this section, preliminaries are given in Subsection 5.3.1; NOCOS with the MVFA

tuned by an EKF for locally nonlinear systems is proposed in Subsection 5.3.2, with

convergence and stability properties discussed; The discussion then moves forward

with a systematic procedure proposed in Subsection 5.3.3 to generalise the new

control method to globally nonlinear cases, specifically, for AFS; As the proposed

controller requires some dynamics of the aeroelastic system to be known, an online

system identification scheme is introduced in Subsection 5.3.4 to tackle this.

5.3.1 Continuous-time HJB equation and policy iteration

For a fixed velocity U∞, Eq. (5.2) can be reduced to:

ẋ(t) = f (x(t))|U∞=U + g(x(t))u(t); x(0) = x0, (5.3)

which can be written in a compact form:

ẋ(t) = FA(x(t), u(t))|U∞=U ; x(0) = x0, (5.4)

where U ∈ R+ is any valid value of U∞.
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For convenience in discussion, the dynamics associated with a fixed velocity U

is hereafter written in a simpler form by omitting the notation of U∞ = U.

The properties of (5.2) are given by Assumptions 4.1 and 4.2 in Chapter 4.

The control problem is to determine a control policy/law u(t) to minimise the

following performance index (cost function):

V(x0) =
∫ ∞

0
[Q̄(x(τ)) + R̄(u(τ))]dτ, (5.5)

with Q̄(x(t)) and R̄(u(t)) = uT(t)Ru(t) being positive-definite functions, in which

R ∈ Rnu×nu is a positive-definite weighting matrix.

Differentiating Eq. (5.5) yields its infinitesimal version that is a nonlinear Lya-

punov equation (Abu-Khalaf and Lewis, 2005), written as:

∇VT(x)FA(x, u) + Q̄(x) + R̄(u) = 0; V(0) = 0. (5.6)

Let V∗(x) denote the optimal (minimal) cost function, named as the ‘value

function’, and let ∇V∗(x) , ∂V∗(x)/∂x denote its derivative with respect to x, The

corresponding optimal control policy is then given by:

u∗(x) = −1
2

R−1gT(x)∇V∗(x), (5.7)

which satisfies the Hamilton-Jacobi-Bellman (HJB) equation based on Eq. (5.6):

−1
4
[∇V∗(x)]Tg(x)R−1gT(x)∇V∗(x) + Q̄(x) + [∇V∗(x)]T f (x) = 0; V∗(0) = 0.

(5.8)

That is, by solving Eq. (5.8) for V∗(x), the optimal control policy can then be

obtained as in Eq. (5.7), given that the system internal dynamics f (x) and control

input dynamics g(x) are known.

5.3.2 Neural-network-based value function approximation

Note that the HJB equation is nonlinear and analytically solving for V∗(x) is difficult.

Instead, the policy-iteration approach applies. To allow implementation of the policy

iteration, an appropriately structured representation of V∗(x) is necessary, which
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5.3 Proposed controller

can be a neural-network (NN) approximation. For this purpose and for AFS, the

MVFA proposed in Tang et al. (2015) is adopted, being:

V∗(x) =
1
2

xTPx + W∗TΦ(x) + ε(x), (5.9)

where Φ(·) = [φ1(x), · · · , φnn(x)]T : Rn → Rnn contains nn hidden-layer neurons,

each of which is a nonlinear activation function; W∗ ∈ Rnn is a vector of ideal

NN weights; P ∈ Rnx×nx is a diagonal positive-definite matrix; ε(x) ∈ R is the

approximation error.

In regard to Eq. (5.9), the derivative of V∗(x) with respect to x is then given by:

∇V∗(x) ,
∂V∗(x)

∂x
= Px + ∇̄ΦT(x)W∗ +∇ε(x), (5.10)

where ∇̄Φ(x) ,
[

∂Φ(x)
∂x

]T
is the gradient of Φ(x), and ∇ε(x) , ∂ε(x)

∂x is the gradient

of ε(x).

The boundedness properties of ∇̄Φ(x) and ∇ε(x) are given in Assumption 4.3

in Chapter 4.

Due to the approximation error ε(x), the associated control law under the

proposed approximation scheme is a near-optimal control as:

u(x) = −1
2

R−1gT(x)
[
Px + ∇̄ΦT(x)W∗

]
. (5.11)

It is worth noting that Eq. (5.11) is an optimal control law when ε(x) = 0 in ideal

conditions where the provided activation functions are the ideal basis set. To avoid

confusion and for ease of discussion, Eq. (5.11) is referred to as optimal control

hereinafter.

This optimal control results in:

εH =
[

xTPT + W∗T∇̄Φ(x)
]
[ f (x) + g(x)u(x)] + Q̄(x) + R̄(u), (5.12)

where εH is the residual caused by the approximation error ε(x) in Eq. (5.9).

Recall that Eq. (5.9) contains a double-layer NN (i.e. W∗TΦ(x)), which is non-

linear in the hidden layer Φ(x) but linear in the output layer weights W∗. Let Ŵ

be the estimate of the ideal weights. To implement policy iteration, Ŵ need to be
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tuned dynamically so that Ŵ →W∗ and thus Eq. (5.9) approximates a target value

function. In this case,

V̂(x) =
1
2

xTPx + ŴTΦ(x), (5.13)

and

û(x) = −1
2

R−1gT(x)
[
Px + ∇̄ΦT(x)Ŵ

]
. (5.14)

The resulting nonlinear Lyapunov equation then becomes:

[
xTPT + ŴT∇̄Φ(x)

]
[ f (x) + g(x)û(x)] + Q̄(x) + R̄(û) = εH + eH , (5.15)

where eH is the error of weights estimation during a tuning process.

For fast convergence of Ŵ to the ideal W∗ so that eH is minimised, an EKF is

proposed in this paper. Since Ŵ is the parameter vector to be estimated, Eq. (5.15)

can be rearranged in the following form:
˙̂W = 0 + w,

y = β(x, Ŵ)− εH − eH + v,
(5.16)

with

y = −Q̄(x)− R̄(û),

and

β(x, Ŵ) =
[

xTPT + ŴT∇̄Φ(x)
]
[ f (x) + g(x)û(x)] ,

where 0 is a null matrix (since Ŵ is a constant vector), w and v are white-noise

inputs with covariance Q f � 0 and R f > 0 , respectively.

Remark 5.1. In the system described by Eq. (5.16), Ŵ are system states, and there

are no drift dynamics for Ŵ . However, nonlinearities are present in the output

dynamics, which are associated with the gradient of the NN activation functions as

well as the time derivative of x. Thus a nonlinear observer is needed to estimate the

system states Ŵ .

Remark 5.2. White-noise inputs w and v in fact do not physically exist in the system

of Eq. (5.16). Therefore, the corresponding covariance Q f and R f have no physical
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implication. The expression of w and v is given in Eq. (5.16) purely in support of

the use of Q f and R f for EKF implementation (Simon, 2002).

Note that y is known from measurements. The unknown ideal W∗ is to be

estimated according to y and the known dynamics β(x, Ŵ). Introducing an EKF

into the system described by Eq. (5.16) yields:
˙̂W = κcK f (y− ŷ),

ŷ = β(x, Ŵ),
(5.17)

where ŷ denotes the estimated output, K f ∈ Rnn×1 is the EKF gain, and κc =
αcnn
‖K f‖+1

is a normalisation term with a scalar learning rate αcnn ∈ R+.

The EKF gain K f can be computed from:

K f = SHTR−1
f , (5.18)

with

HT =
∂β(x, Ŵ)

∂Ŵ
= ∇̄Φ(x)[ f (x) + g(x)û(x)], (5.19)

and

Ṡ = Q f − SHTR−1
f HS, (5.20)

where H ∈ Rnn×1 is defined as in Eq. (5.19), and S ∈ Rnn×nn is a symmetrical

positive-definite matrix with initial state S(0) = S(0)T � 0.

Similar to most adaptive control problems that require online tuning of pa-

rameters, persistence of excitation (PE) is needed for proper convergence of NN

parameters (Ioannou and Sun, 1996). For online tuning, the PE condition as given

in Assumption 4.4 is assumed to hold.

Remark 5.3. Despite the wide use of EKF in literature, it is one of the contributions in

this paper that an EKF other than traditional gradient-based methods is employed to

tune the weights of the NN involved in NOCOS with the MVFA for continuous-time

nonlinear systems. Parameter convergence of the NN in the MVFA under the EKF

tuning scheme is shown in the following theorem.
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Theorem 5.1. Under Assumptions 4.1 to 4.4 and the EFK estimation scheme provided by

Eqs. (5.17) to (5.20), optimal or near-optimal control laws for the nonlinear system as in

Eq. (5.3) are given by Eq. (5.14) in an online-learning manner, with the adaptive variable

Ŵ converging to the ideal value W∗ within an error bound ‖W̃‖ ≤ bW̃ .

Proof. Given the ideal NN parameter W∗, the estimation error W̃ is thus W̃ = W∗ − Ŵ .

The Lyapunov function candidate LW = 1
2W̃T(κcS)−1W̃ is considered.

According to Eqs. (5.16), (5.17), and (5.18),

L̇W = −W̃T(κcS)−1 ˙̂W

= −W̃THTR−1
f (y− ŷ)

= W̃THTR−1
f [xTPT( f + gû) + ∇̄ΦTŴ( f + gû) + Q̄ + ûTRû]. (5.21)

With Eq. (5.12), we have from Eq. (5.21):

L̇W = W̃THTR−1
f

[
(Px + ∇̄ΦTŴ)

T
( f + gû)

− (Px + ∇̄ΦTW∗)
T
( f + gu)

+ûTRû− uTRu + εH

]
. (5.22)

Substituting Eq. (5.10) for ∇V∗ in Eq. (5.8) with some manipulation yields:[
xTPT + W∗T∇̄Φ

]
[ f + gu] + Q̄ + R̄

= −∇εT f +
1
2
∇εTgR−1gTPx +

1
2
∇εTgR−1gT∇̄ΦTW∗ +

1
4
∇εTgR−1gT∇ε. (5.23)

Comparing Eqs. (5.12) and (5.23) thus gives:

εH = −∇εT f +
1
2
∇εTgR−1gTPx +

1
2
∇εTgR−1gT∇̄ΦTW∗ +

1
4
∇εTgR−1gT∇ε

= −∇εT( f + gu∗)− 1
4
∇εTgR−1gT∇ε. (5.24)

With Eq. (5.24) substituted for εH in Eq. (5.22), and G , gR−1gT, we have:

L̇W = W̃THTR−1
f [xTPTg(û− u)− W̃T∇̄Φ f

+ ŴT∇̄Φgû−W∗T∇̄Φgu + ûTRû

− uTRu−∇εT( f + gu∗)− 1
4
∇εTG∇ε]
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= W̃THTR−1
f

[
1
2

xTPTG∇̄ΦTW̃ − W̃T∇̄Φ f

− 1
4

ŴT∇̄ΦG∇̄ΦTŴ −∇εT( f + gu∗)

+
1
4

W∗T∇̄ΦG∇̄ΦTW∗ − 1
4
∇εTG∇ε

]
= −W̃THTR−1

f

[
W̃T∇̄Φ f − 1

4
W∗T∇̄ΦG∇̄ΦTW̃

+
1
4

W̃T∇̄ΦG∇̄ΦTW∗ − 1
2

xTPTG∇̄ΦTW̃

−∇εT( f + gu∗)− 1
4
∇εTG∇ε

]
= −W̃THTR−1

f

{
1
2

W̃T∇̄Φ

[
f − 1

2
G(Px + ∇̄ΦTŴ)

]
− 1

2
W̃T∇̄Φ

[
f − 1

2
G(Px + ∇̄ΦTW∗)

]
−∇εT( f + gu∗)− 1

4
∇εTG∇ε

}
= −W̃T

[
∇̄Φ( f + gû)R−1

f

] [1
2
( f + gû)T∇̄ΦTW̃

+
1
2
( f + gu)T∇̄ΦTW̃ −∇εT( f + gu∗)− 1

4
∇εTG∇ε

]
. (5.25)

Let ũ = u∗ − û. Since gu = gu∗ + 1
2 gR−1gT∇ε , we have:

L̇W =− W̃T
[
∇̄Φ( f + gû)R−1

f

] [1
2
( f + gû)T∇̄ΦTW̃

+
1
2

(
f + gu∗ +

1
2

G∇ε

)T

∇̄ΦTW̃

−∇εT( f + gu∗)− 1
4
∇εTG∇ε

]
=− W̃T∇̄Φ( f + gu∗)R−1

f ( f + gu∗)T∇̄ΦTW̃

− 1
4

W̃T∇̄Φ( f + gu∗)R−1
f W̃T∇̄ΦG∇̄ΦTW̃

− 1
2

W̃T∇̄Φ( f + gu∗)R−1
f ∇εTG∇̄ΦTW̃

− 1
2

W̃T∇̄ΦG∇̄ΦTW̃ R−1
f ( f + gu∗)T∇̄ΦTW̃

− 1
2

W̃T∇̄ΦG∇εR−1
f ( f + gu∗)T∇̄ΦTW̃

− 1
8

W̃T∇̄ΦG∇̄ΦTW̃ R−1
f W̃T∇̄ΦG∇̄ΦTW̃

− 1
4

W̃T∇̄ΦG∇̄ΦTW̃ R−1
f ∇εTG∇̄ΦTW̃
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− 1
8

W̃T∇̄ΦG∇εR−1
f W̃T∇̄ΦG∇̄ΦTW̃

− 1
4

W̃T∇̄ΦG∇εR−1
f ∇εTG∇̄ΦTW̃ . (5.26)

Now we introduce bounds. Let

M1 = ∇̄Φ( f + gu∗)R−1
f ( f + gu∗)T∇̄ΦT,

M2 = ∇̄ΦG∇̄ΦTW̃ R−1
f W̃T∇̄ΦG∇̄ΦT,

and

M3 = ∇̄ΦG∇εR−1
f ∇εTG∇̄ΦT.

Because of rank(G) = rank(g) < nx, there exist kernels

ker(∇̄ΦG∇̄ΦT) =
{

r ∈ Rnn
∣∣∣ ∇̄ΦG∇̄ΦTr = 0

}
,

ker(G∇̄ΦT) =
{

r ∈ Rnn
∣∣∣ G∇̄ΦTr = 0

}
,

ker(∇̄ΦG) =
{

r ∈ Rnx
∣∣ ∇̄ΦGr = 0

}
.

Since Ŵ is explicitly governed by Eq. (5.17), we consider cases where

W̃ 6= ker(∇̄ΦG∇̄ΦT),

W̃ 6= ker(G∇̄ΦT),

∇ε 6= ker(∇̄ΦG).

Let ‖R−1
f ‖ = bR f . Under Assumptions 4.1 to 4.4, and with Eq. (5.11), there exist

constants bẋ, bGU, bm1, bm2, bm3 ∈ R+ so that the following inequalities hold:

‖ f + gu∗‖ ≤ bẋ ‖x‖ , (5.27)

‖G‖ ≤ bGU, (5.28)

bm1Π‖W̃‖2 ≤
∥∥∥W̃TM1W̃

∥∥∥ , (5.29)

bm2Π‖W̃‖4 ≤
∥∥∥W̃TM2W̃

∥∥∥ , (5.30)

bm3Π‖W̃‖2 ≤
∥∥∥W̃TM3W̃

∥∥∥ , (5.31)

where

Π = ‖x‖4.
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As a result, Eq. (5.26) can be upper bounded as:

L̇W ≤−
1
8

bm2Π
∥∥W̃

∥∥4
+

3
4

b3
φbẋbGUbR f Π

∥∥W̃
∥∥3

+
3
4

b3
φb2

GUbεbR f Π
∥∥W̃

∥∥3
+ b2

φbẋbGUbεbR f Π
∥∥W̃

∥∥2

− 1
4

bm3Π
∥∥W̃

∥∥2 − bm1Π
∥∥W̃

∥∥2

=− 1
8

bm2Π
∥∥W̃

∥∥2
[(∥∥W̃

∥∥− 4η1

bm2

)2

−
16η2

1 + 8η2bm2

b2
m2

]
, (5.32)

where

η1 =
3
4

b3
φ

(
bẋbGU + b2

GUbε

)
bR f ,

and

η2 = b2
φbẋbGUbεbR f −

1
4

bm3 − bm1.

According to Eqs. (5.29) to (5.31),

η2 ≥ b2
φbẋbGUbεbR f −

1
4

b2
φb2

GUb2
ε bR f − b2

φb2
ẋbR f

= −b2
φbR f

(
bẋ −

1
2

bGUbε

)2

. (5.33)

If −b2
φbR f

(
bẋ − 1

2 bGUbε

)2
≤ η2 < 0 , then:

16η2
1 + 8η2bm2

=
1
4

(
64η2

1 + 32η2bm2

)
≥ 1

4

[
64
(

3
4

b3
φ

(
bẋbGU + b2

GUbε

)
bR f

)2

− 32b6
φb2

GUb2
R f

(
bẋ −

1
2

bGUbε

)2
]

=
1
4

b6
φb2

GUb2
R f

(
4b2

ẋ + 68bẋbGUbε + b2
GUb2

ε

)
> 0.

If η2 ≥ 0 , then:

16η2
1 + 8η2bm2 ≤ 16η2

1 + 8η2b4
φb2

GUbR f .

As a result, the inequality in Eq. (5.33) gives:

0 < 16η2
1 + 8η2bm2 ≤ 16η2

1 + 8η2b4
φb2

GUbR f .
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Under Assumption 4.4, Π is PE. As a result, Eq. (5.32) shows that L̇W is negative

definite if ∥∥W̃
∥∥ >

4η1 +
√

16η2
1 + 8η2bm2

bm2
, bW̃ .

That is,
∥∥W∗ − Ŵ

∥∥ is uniformly ultimately bounded (UUB) within bW̃ , offering

an optimal or near-optimal control solution as given by Eq. (5.14). This completes

the proof.

Remark 5.4. It is shown that the convergence of ‖W̃‖ is UUB under the MVFA

and the EKF tuning scheme. More importantly, any interim value of Ŵ along its

evolution path can be directly used by the actor NN (as in Eq. (5.14)) to provide

stabilising control in the meantime. The closed-loop stability of the overall system

under the new approach is discussed next.

According to Assumption 4.1 and Eq. (5.15), the system (5.3) has only one

equilibrium where x = 0 and u = 0, whereas other equilibrium points require

sustained control inputs to maintain. Therefore, both the system states and control

inputs are to be evaluated in terms of the Lyapunov stability, where the control

inputs are also required to decay to zero with time. A suitable Lyapunov function

candidate can be the approximated value function V̂u(i)(x) of the system associated

with an admissible control u(i) at the ith infinitesimal time step. This is because in a

stabilised closed-loop system the value function Vu(i)(x) is positive from definition

as in Eq. (5.5) and its time derivative should be negative in accordance with Eq. (5.6).

On the other hand, if some intermediate values of Ŵ during convergence to W∗

can lead to system instability, the resulted value function time derivative dV̂/dt will

turn positive. Therefore, if dV̂/dt is shown to be always negative regardless how Ŵ

converges to W∗, then the closed-loop system is said to be stable under admissible

control during online tuning.

Theorem 5.2. Given Assumptions 4.1 to 4.3 and the EKF estimation scheme provided by

Eqs. (5.17) to (5.20), there exists a scalar bmP ∈ R+ and a matrix P for Eq. (5.9) such that
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‖P‖ > bmP and the nonlinear system as in Eq. (5.4) remains asymptotically stable during

online tuning with the control law given by Eq. (5.14).

Proof. The Lyapunov function candidate is selected to be LV = V̂ as discussed. Its

time derivative is:

L̇V =

(
∂V̂
∂x

)T

( f + gû)

=(Px + ∇̄ΦTŴ)
T
( f + gû)

=(Px + ∇̄ΦTW∗ − ∇̄ΦTW̃)
T
( f + gu∗ − gũ)

=

(
∂V∗

∂x

)T

( f + gu∗)−∇εT( f + gu∗)

+
1
2

xTPTG(∇̄ΦTW̃ +∇ε)

+
1
2

W∗T∇̄ΦG(∇̄ΦTW̃ +∇ε)− W̃T∇̄Φ f

+
1
2

W̃T∇̄ΦG(Px + ∇̄ΦTW∗ +∇ε)

− 1
2

W̃T∇̄ΦG(∇̄ΦTW̃ +∇ε)

=− Q̄− u∗TRu∗ −∇εT f − W̃T∇̄Φ f +∇εTGPx

+
1
2
∇εTG∇ε +∇εTG∇̄ΦTW∗ + W̃T∇̄ΦGPx

+ W̃T∇̄ΦG∇̄ΦTW∗ − 1
2

W̃T∇̄ΦG∇̄ΦTW̃

=− Q̄− 1
4

xTPTGPx− 1
2

xTPTG∇̄ΦTW∗ −∇εT f

+
1
2

xTPTG∇ε− 1
4

W∗T∇̄ΦG∇̄ΦTW∗ +
1
4
∇εTG∇ε

+
1
2

W∗T∇̄ΦG∇ε− W̃T∇̄Φ f + W̃T∇̄ΦGPx

+ W̃T∇̄ΦG∇̄ΦTW∗ − 1
2

W̃T∇̄ΦG∇̄ΦTW̃ . (5.34)

As Q̄(x) > 0, we have bQ‖x‖2 ≤ Q̄(x) for constants bQ ∈ R+. Given that x

is explicitly governed by system (5.2), the case of x 6= ker(G) is considered. It is

straightforward to see that there exist constants bGL ∈ R+ and bm4 ∈ R+ such that

bGL ≤ ‖G‖ ,
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and

bm4‖x‖2 ≤
∥∥∥W∗T∇̄ΦG∇̄ΦTW∗

∥∥∥ .

Following the results of Theorem 5.1, it is known that 0 ≤ ‖W̃‖ ≤ bW̃ . Then

Eq. (5.34) can be upper bounded as:

L̇V ≤− bQ‖x‖2 − 1
4

bGL‖P‖2‖x‖2 +
1
2

bGUbε ‖P‖ ‖x‖2

+
1
2

bGUbφ‖W∗‖ ‖P‖ ‖x‖2 − 1
4

bm4‖x‖2 + bεb f ‖x‖2

+
1
2

bφbGUbε‖W∗‖‖x‖2 +
1
4

b2
ε bGU‖x‖2 + bφb f bW̃‖x‖

2

+ bφbGUbW̃ ‖P‖ ‖x‖
2 + b2

φbGUbW̃‖W
∗‖‖x‖2

=− ‖x‖2
(

1
4

bGL‖P‖2 − η3 ‖P‖ − η4

)
. (5.35)

where

η3 =
1
2

bGUbφ‖W∗‖+ 1
2

bGUbε + bφbGUbW̃ ,

and

η4 =
1
2

bφbGUbε‖W∗‖+ 1
4

b2
ε bGU + bεb f + bφb f bW̃

+ b2
φbGUbW̃‖W

∗‖ − bQ −
1
4

bm4. (5.36)

Equation (5.35) shows that L̇V is negative, and thus ‖x‖ is bounded, as long as

‖P‖ ≥
2η3 + 2

√
η2

3 + bGLη4

bGL
, bmP. (5.37)

It can be easily derived that the second-order derivative of LV with respect to

time is a function of x and W̃ . Since ‖x‖ and ‖W̃‖ are both bounded, L̈V is also

bounded. Therefore, it can be concluded that the system states x are asymptotically

stable. This completes the proof.

Remark 5.5. This new control scheme under EKF tuning maintains the stability of the

closed-loop system during online adaptation without the necessity of providing an

initial stabilising control, adding a stabilising logic-switch mechanism to the critic

NN, or adding an additional stabilising tuning loop to the actor NN. Moreover, the
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proposed algorithm provides proven asymptotic stability rather than the relatively

weaker UUB stability to nonlinear systems as in Eq. (5.3) during online tuning.

Theorems 5.1 and 5.2 verify the EKF tuning for the MVFA and build an important

contribution of this paper.

5.3.3 Generalisation of modified value-function-approximation

Note that the discussion in Subsections 5.3.1 and 5.3.2 are limited to locally nonlinear

systems, with the parameter matrix P being constant, which as a result, does not

suit a wider flight envelop with varying travelling speed U∞ beyond the flutter

boundary. As a second contribution in this paper, a systematic approach is proposed

in the following for the selection of P to cope with U∞ dependent dynamics as in

Eq. (5.2), generalising the new NN-based VFA to globally nonlinear cases.

Linearising Eq. (5.2) about x = 0 gives:

ẋ = Ap(U∞)x + Bpu + wp, (5.38)

where

Ap(U∞) ,
∂ f (x, U∞)

∂x

∣∣∣∣
x=0

,

Bp ,
∂g(x)

∂x

∣∣∣∣
x=0

,

and wp is unit white-noise input.

With performance output h considered, there is:
ẋ

h

y

 =


Ap(U∞) I Bp

Ch 0 Eh

Cp 0 0




x

w

u

 , (5.39)

where Cp = I for full-state feedback, Ch = [Q
1
2 0]T, and Eh = [0 R

1
2 ]T.

Let P(U∞) be a scheduled matrix which varies with the freestream airspeed

U∞. According to Theorem 5.2, a stable closed-loop system under the dynamically

tuned control law as in Eq. (5.14) requires ‖P‖ > bmP where the value of the scalar

bmP ∈ R+ depends on the system dynamics. In the case of AFS, bmP is not constant
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but varies with U∞. That is, bmP = b∗mP(U∞)|U∞=U for any valid airspeed U, where

b∗mP(U∞) is a generalised function. To find P(U∞) that satisfies the condition of

‖P(U∞)‖ > b∗mP(U∞), a Lyapunov matrix X(U∞) = XT(U∞) � 0 and an auxiliary

parameter-dependent performance variable Z(U∞) are introduced to form the

following linear matrix inequalities (LMIs):Ẋ + AT
c X + X Ac X

X −νI

 ≺ 0, (5.40)

 X CT
ch

Cch Z

 � 0, (5.41)

and

Tr(Z) < ν, (5.42)

where

Ac , Ap(U∞)− 1
2

BpR−1BT
p P(U∞),

Cch , Ch −
1
2

EhR−1BT
p P(U∞),

and ν is a performance index.

Let B̄c , 1
2 BpR−1BT

p , Y(U∞) = P(U∞)X−1(U∞), and J(U∞) = X−1(U∞). Then

Eqs. (5.40) and (5.41) can be transformed into:

− J̇ + Ap J + JAT
p + B̄cY + YTB̄T

c ≺ 0, (5.43) J (Ch J + EhY)T

Ch J + EhY Z

 � 0. (5.44)

In light of Eq. (5.1), A(U∞) can be structured as:

Ap(U∞) = Ap1 + Ap2U∞ + Ap3U2
∞. (5.45)

Therefore, J(U∞) and Y(U∞) take the same structure as:

J(U∞) = J1 + J2U∞ + J3U2
∞, (5.46)
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and

Y(U∞) = Y1 + Y2U∞ + Y3U2
∞. (5.47)

Solving for J(U∞) and Y(U∞) through Eqs. (5.43), (5.44), and (5.42) gives

‖P(U∞)‖ > b∗mP(U∞) in the form of:

P(U∞) = Y(U∞)J−1(U∞). (5.48)

with b∗mP(U∞) implicitly embedded in the LMIs derived.

Remark 5.6. The proposed procedure for designing the parameter matrix P yields

‖P(U∞)‖ > b∗mP(U∞) across U∞ of interest, satisfying the condition of ‖P‖ > bmP

in Theorem 5.2, and thus generalises Theorem 5.2 to a more general scenario, the

globally nonlinear case, with nonlinear dynamics described in Eq. (5.2). This forms

the second contribution of this paper.

5.3.4 Online system identification

Note that the information of f (x, U∞) and g(x) is required for real-time synthesis

of nonlinear optimal control laws. Although the knowledge of f (x, U∞) and g(x)

is analytically available, the presence of un-modelled dynamics or uncertainties

can degrade controller performance as discussed in Section 5.1. To mitigate this

problem, an NN-based identifier is proposed in the following form:

ẋ = W∗T
s Φs(x, u) + εs, (5.49)

where W∗T
s ∈ Rnws×nx and Φs(x, u) ∈ Rnws are the ideal weights and nonlinear

activation functions of the NN, respectively.

Motivated by Modares et al. (2013b), the system states x can be expressed as:

x = W∗T
s µ1(x) + Γµ2(x) + εx, (5.50)

with

µ̇1(x) = −Γµ1(x) + Φs(x, u), µ1(x0) = 0, (5.51)
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and

µ̇2(x) = −Γµ2(x) + x, µ2(x0) = 0, (5.52)

where µ1(x) ∈ Rnws and µ2(x) ∈ Rnx are auxiliary regressors, Γ = γInx×nx with

γ ∈ R+, and

εx = e−Γtx0 +
∫ t

0
e−Γ(t−τ)εsdτ.

Denote the estimate of x by x̂. For fast estimation of Ŵs towards W∗
s , the EKF is

considered for online tuning. In this study, multiple EKFs in a parallel configuration

instead of a single EKF are employed, based on the fact that the columns of NN

weights in the W∗
s matrix are exclusively associated with respective single state in

the x vector and thus independent from each other (i.e. uncoupled). By doing so,

the computational expense is significantly less than standard implementation using

only one EKF, according to Simon (2002). On this basis, we have:
˙̂W s(i) = κsKs(i)(x(i) − x̂(i)),

x̂(i) = Ŵs(i)µ1(x) + Γµ2(x),
(5.53)

where Ks ∈ Rnws is the EKF gain and the subscript (i) restricts the parameters to the

ith decoupled EKF; κs =
αsnn

‖Ks(i)‖+1
is a normalisation term with a constant learning

rate αsnn ∈ R+.

Each EKF gain vector Ks(i) can be computed following Eqs. (5.18) to (5.20), with

some variation to Eq. (5.19). That is:

Ks(i) = Ss(i)H
T
s(i)R

−1
s , (5.54)

HT
s(i) =

∂x̂(i)
∂Ŵs(i)

= µ1(x), (5.55)

Ṡs(i) = Qs − Ss(i)Hs(i)
TR−1

s Hs(i)Ss(i). (5.56)

where Qs � 0 and Rs > 0 are defined the same as Q f and R f .

As can be seen from Eq. (5.55), Hs(i) is the same among all individual EKF in

the parallel configuration. It is also to be noted that Hs(i) is not constant but state

dependent, indicating the nonlinearities involved in system identification, which

justifies the use of an EKF instead of linear observers.
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5.3 Proposed controller

At this stage, the internal dynamics f (x, U∞) can be given by the identifier

NN in an indirect manner, since the estimated derivative of system states used by

Eq. (5.17) can be obtained through Eq. (5.49), with W∗
s and u replaced by Ŵs and û,

respectively.

The input dynamics g(x) can then be obtained as:

ĝ(x) =
∂F̂A(x, û)

∂û
=

∂
[
ŴT

s Φs(x, û)
]

∂û
. (5.57)

That is,

ĝ(x) =
∂Φs(x, û)

∂û
Ŵs. (5.58)

Convergence of the identifier NN weights under the state filtering scheme and

the decoupled EKF is given in the following theorem.

Theorem 5.3. Under Assumption 4.4 and the EKF estimation scheme provided by Eqs. (5.53)

to (5.56), the nonlinear system as in Eq. (5.3) can be reconstructed by Eqs. (5.49) to (5.52),

with ‖W̃s‖ = ‖W∗
s(i) − Ŵs(i)‖ ≤ bW̃s, where bW̃s ∈ R+.

Proof. The following Lyapunov candidate is considered:

Ls =
1
2

W̃T
s(i)(κsSs(i))

−1W̃s(i). (5.59)

With an EKF as in Eq. (5.53), the time derivative of Eq. (5.59) is:

L̇s = −W̃T
s(i)(κsSs(i))

−1 ˙̂W s(i)

= −W̃T
s(i)(Ss(i))

−1Ks(i)(x(i) − x̂(i)). (5.60)

Using Eqs. (5.50), (5.53), and (5.54), we have:

L̇s = −W̃T
s(i)H

T
s(i)R

−1
s

(
W̃T

s(i)µ1 + εs(i)

)
.

Substituting Eq. (5.55) for HT
s(i) yields:

L̇s = −W̃T
s(i)µ1R−1

s µ1
TW̃s(i) − W̃T

s(i)µ1R−1
s εs(i).

Under Assumption 4.4, µ1 is PE. With Eq. (5.51), there exist constants bmµ1 ∈ R+

so that

bmµ1‖x‖2
∥∥∥W̃s(i)

∥∥∥2
≤
∥∥∥W̃T

s(i)Ms(i)W̃s(i)

∥∥∥ ,
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where Ms(i) = µ1R−1
s µT

1 .

Therefore, with
∥∥R−1

s
∥∥ = bRs, we have

L̇s ≤ −bmµ1‖x‖2
∥∥∥W̃s(i)

∥∥∥2
+ bεb2

ηbRs‖x‖2
∥∥∥W̃s(i)

∥∥∥
= −‖x‖2

(
bmµ1

∥∥∥W̃s(i)

∥∥∥2
− bεb2

ηbRs

∥∥∥W̃s(i)

∥∥∥) . (5.61)

Under Assumption 4.4, ‖x‖ is PE. As a result, L̇s is negative definite if

∥∥∥W̃s(i)

∥∥∥ >
bεb2

ηbRs

bmµ1
,

which shows W̃s is UUB within bound bW̃s ,
bεb2

ηbRs
bmµ1

. This completes the proof.

Remark 5.7. As stated at the beginning of this subsection, the use of the identifier NN

is mainly for updating the knowledge of system dynamics accessed by the real-time

optimal-control synthesis scheme. The known dynamics (i.e. known analytical

model) are embedded into the identifier NN in the form of the initial values of W∗
s

obtained via pre-training the NN using known dynamics. Therefore, any mismatch

between the actual dynamics and the analytical model can be captured and used to

update W∗
s . Specifically for the case of AFS, as the on-board controller is normally

switched on prior to the airspeed reaching the flutter boundary, pre-training the

identifier NN offline using known dynamics at this airspeed suffices given the

learning ability of the identifier NN. When the airspeed increases, un-modelled and

mismatching dynamics can be captured, with the pre-trained NN updated in real

time accordingly.

5.4 Wind-tunnel experiments

Experiments were performed in a temperature regulated closed-loop wind tunnel

at the University of Adelaide, Australia, and the setup is shown in Figure 3.13.

The wind tunnel has a 0.5×0.5 m testing duct, and can generate up to 30 m/s

smooth airflow with 0.5% turbulence intensity. The leading- and trailing-edge

control surfaces of the aerofoil section are each driven by a servo motor, with the
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5.4 Wind-tunnel experiments

Table 5.1: Parameters of the experimental aeroelastic system

Parameters Values Parameters Values

ρ 1.225 kg/m3 ch 14.0 kg/s

ma 0.851 kg ca 0.042 kg·m2/s

mte 0.030 kg cte 4.231× 10−4 kg·m2/s

mle 0.058 kg cle 4.327× 10−4 kg·m2/s

rfc −0.0685 m kh 50 + 300h2 N/m

r3c/4 0.081 m ka 0.3 + 30q2
a Nm/rad

ra 0.033 m kte 4.570× 10−3 Nm/rad

rte 1.019× 10−2 m kle 4.704× 10−3 Nm/rad

rle 4.401× 10−3 m Ia 2.431× 10−3 kg·m2

Cl-a 6.573 Ite 2.307× 10−6 kg·m2

Cl-te 3.472 Ile 4.791× 10−6 kg·m2

Cl-le −0.145 Lte 0.088 m

Cm-a 0 Lle −0.010 m

Cm-te −0.631 Ls 0.260 m

Cm-le 0.098 Lhc 0.075 m

corresponding deployment angle fed back via an optical encoder. Instead of using

physical springs for plunge and pitch stiffness, a virtual stiffness-damping system

(VSDS) was developed in this study, where two electric motors were used to mimic

the compound structural forces acting on the aerofoil using force/torque feedback

from a 6-axis force/torque transducer. The VSDS allows custom setting of the

structural stiffness and damping within the output capacity of the motors used.

This enables convenient adjustment of the structural stiffness and damping so that

the flutter phenomenon of the aerofoil section can be observed around an desired

airspeed. The parameters of the overall aeroelastic system used in experiments are

listed in Table 5.1. With the stiffness and damping setting of the VSDS in Table 5.1,

the system had a flutter boundary around 14.6m/s. Flutter was initiated by means

of giving the VSDS a pulse signal along the plunge DOF.

In consideration of the 3rd order nonlinear plunge and pitch stiffness in polyno-

mial form, a power series of activation functions containing the powers of 8 system
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Table 5.2: Other parameters of the proposed NN controller.

Parameters Values

Q diag (1, 1, 10−4, 10−4, 0.1, 0.1, 10−4, 10−4)

R 100I

Q f 1000I

R f I

Qs(i) 1× 105I

Rs(i) 1

states up to 4th order and 2 control inputs limited to 1st order were used for the

identifier NN in accordance with the high-order Weierstrass approximation theorem

(Finlayson, 1972). This renders 135 significant activation functions for Φs(x). Initial

weights were determined via simulation-based training for 14.6 m/s airspeed. Simi-

larly, Φ(x) of the critic NN contains the powers of 8 system states only (no control

inputs) up to 4th order. This gives 65 significant activation functions. Weights Ŵ

were initialised to zeros. J(U∞) and Y(U∞) were designed using the parameters

in Table 5.1 for the airspeed range from 14.6 m/s to 20 m/s with a gridding of 50

evenly spaced points. P(U∞) was calculated in real time using Eq. (5.48). Q̄(x) in

Eq. (5.5) was structured as xTQx, with Q and other parameters listed in Table 5.2.

Tests were conducted at two different airspeeds, and flutter was allowed to

develop to reach LCO before the controller under testing was turned on. To ensure

consistent initial conditions x(tc) throughout all tests under the same settings, where

tc is the time when the controller is switched on, the controller was configured to be

triggered when α crossed zero immediately after 15 seconds. This means tc > 15 s.

As discussed in Section 5.1 and throughout the paper, there is no existing

policy-iteration algorithms suitable for AFS without modification and improvement.

Therefore, no suitable NN-based optimal controller counterparts can be compared

in experiments. In order to evaluate the AFS performance improvement gained

by using the proposed controller, a linear-parameter-varying (LPV) controller in

the form of linear-quadratic-regulator (LQR) synthesised by means of LMIs (Prime,
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2010) was reconstructed for the 4-DOF model as in Eq. (5.1) with the parameters

in Table 5.1 and the weighting Q and R same as those used by the proposed NN

controller.

Plunge and pitch responses as well as control surfaces deflections of the aerofoil

section in the wind-tunnel tests under the proposed NN controller and the LPV-LQR

controller at different airspeeds are plotted in Figure 5.2 for 14.8 m/s and Figure 5.4

for 18 m/s. Higher airspeeds were not tested due to the torque output limit of

the VSDS motors. For elegance of presentation and ease of reading, tc is offset to

zero in each plot, and LCOs before controllers are activated are presented in dotted

curves. Since both controllers are off before t = tc, only the full trajectories of control

surfaces deflections under the proposed NN controller are shown for illustration

purpose. In the plots, leading- and trailing-edge control surfaces are expressed in

short as ‘LE’ and ‘TE’, respectively. The trajectories of NN weights are presented in

Figures 5.3 and 5.5.

At 14.8 m/s, the flutter was effectively suppressed within 1.5 seconds under

the proposed NN controller, with only mild demands on the deflection of control

surfaces. By comparing Figures 5.2 and 5.3, it can be seen the identifier NN has

higher rate of convergence than that of the critic NN, which means the latter is able

to access updated and more accurate system dynamics for control law improvement.

The critic NN also settles 1 second before the flutter is fully suppressed, indicating

the PE condition being met, which leads to satisfactory parameter convergence. This

validates the selection of the activation functions sets for both the identifier NN

and the critic NN, and also indicates that near-optimal control was obtained under

experiment conditions. In comparison, it takes longer for the LPV-LQR controller to

fully suppress the flutter. Similar phenomena can be observed for 18 m/s, as shown

in Figures 5.4 and 5.5, where however, relatively larger differences between the the

responses under the two controllers can be observed.

To better capture the performance differences between the two controllers, perfor-

mance cost is evaluated for t = 0→ 4 s according to Eq. (5.5) using the experiment
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Figure 5.2: Suppressing developed flutter at 14.8 m/s airflow speed using the
proposed NN controller and an LPV-LQR controller.

Table 5.3: Performance costs calculated from experiment data.

Airspeed LPV-LQR Proposed NN Controller

14.8 m/s 5.372 4.893

18 m/s 0.627 0.545

data with discrete approximation. Costs are each calculated and averaged from 4

tests under the same settings to ensure data consistency, and are listed in Table 5.3.

It can be concluded from Table 5.3 that the proposed NN control suppresses the

flutter better with lower cost at both airspeeds, compared with the LPV-LQR control.
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5.4 Wind-tunnel experiments

Figure 5.3: Convergence trajectories of the critic and identifier NN weights of the
proposed controller at 14.8 m/s airflow speed.

Figure 5.4: Suppressing developed flutter at 18 m/s airflow speed using the pro-
posed NN controller and an LPV-LQR controller.
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Figure 5.5: Convergence trajectories of the critic and identifier NN weights of the
proposed controller at 18 m/s airflow speed.

5.5 Conclusions

In this paper a novel controller is proposed for AFS on aerofoils, featuring NO-

COS with an MVFA tuned by an EKF. Convergence and stability analysis shows

an important advantage of the new method that asymptotic convergence of the

closed-loop system states is guaranteed during online learning. This is a stronger

stability than the uniformly ultimately bounded stability of other existing NOCOS

algorithms. The proposed systematic procedure based on linear matrix inequali-

ties for the design of a scheduled parameter matrix further generalises the MVFA

from locally nonlinear cases to globally nonlinear scenarios to suit AFS and other

potential applications with strong nonlinearities that also vary nonlinearly with

non-state independent variables. With an NN-based online system identification

scheme, un-known dynamics can be estimated in real time for online control im-

provement. As validated in the wind-tunnel experiments, the proposed controller

satisfactorily mitigates the impact of modelling uncertainties and improves AFS

from the optimal control perspective, with the AFS controller synthesis dilemma

successfully addressed. Experiments also confirm that the proposed controller is

suitable for real-time implementation.
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Chapter 6

Flutter suppression by

input-constrained optimal control

This chapter is based on Article-4, focusing on nonlinear optimal control online

synthesis (NOCOS) under control-input constraints (CICs). By further generalising

the novel NOCOS scheme proposed in Chapter 4 and the new active flutter suppres-

sion (AFS) controller proposed in Chapter 5 to treat CICs from the optimal control

perspective, a new adaptive nonlinear optimal controller for AFS under CICs is

derived. This work completes the fourth objective (Page 4) of the thesis, and most

importantly, accomplishes the primary aim of the research in this thesis.
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abstract

This paper deals with improving aerofoil flutter suppression (AFS) under control-

input constraints (CICs) from the optimal control perspective by proposing a novel

optimal neural-network control (ONNC). The proposed CIC-ONNC approach uses a

modified value function approximation (MVFA) dynamically tuned by an extended

Kalman filter to solve the Hamilton-Jacobi-Bellman equality online for continuously

improved optimal control to address optimality in globally nonlinear systems.

CICs are integrated into the controller synthesis by introducing a generalised

nonquadratic cost function for control inputs. The feasibility of using a performance

index involving the nonquadratic control-input cost with the MVFA is examined

through the Lyapunov stability analysis. Wind-tunnel experiments were conducted

for controller validation, where an optimal controller synthesised offline via linear-

parameter-varying technique was used as a benchmark and compared. It is shown,

both theoretically and experimentally, that the proposed CIC-ONNC method can

effectively improve AFS under CICs.
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6.1 Introduction

Aerofoil flutter is destructive vibration that occurs at and beyond a particular

airspeed (flutter boundary) and can damage the aerofoil. For active flutter suppres-

sion (AFS), there have been enormous studies on solutions involving piezoelectric-

material-actuated structures and aerofoil control-surface deployment. Despite dif-

ferent AFS solutions in terms of mechanical realisation, the underlying control

algorithms play a crucial role in successful implementation.

Conventional frequency-domain analysis and basic state-space methods are

useful in control synthesis (Schmidt, 2016) and actuators location optimisation (Song

and Li, 2014). However, aeroelastic systems, being generally nonlinear and time-

varying, pose significant challenges in characterisation and modelling, and make

controller synthesis faced with numerous difficulties under increasing demands

on performance improvement over extended flight envelopes. Accordingly, recent

AFS studies mostly focus on advanced methods dealing with adaptive, nonlinear,

and robust control. Pak et al. (1995) developed an approach to synthesise the

linear-quadratic regulator online at the cost of optimality loss due to limiting

the number of iterations in order to reduce computation loads; Strganac et al.

(2000) tackled the nonlinearities using feedback linearisation, where optimality was

retained for the linearised dynamics. Platanitis and Strganac (2004) extended the

feedback-linearisation method to the case where control surfaces at both leading

and trailing edges were involved. Ko et al. (2002) employed adaptive control built

upon a reference model of known structure. Singh and Wang (2002) examined the

possibility of utilising only plunge or pitch displacement measurement for AFS

without exact knowledge of the aeroelastic system using back-stepping technique.

Differently, Singh and Brenner (2003) used a passive observer and treated parameter

estimation errors as disturbances, with the closed-loop stability guaranteed by an

input-to-state stabilising control law. Similar modular approach can also be seen

in the work of Rao et al. (2006). Viswamurthy and Ganguli (2008) focused on
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helicopter blades with multiple flaps and derived deferentially weighted control.

Carnahan and Richards (2008) removed the filter from the feed-forward path of the

least-mean-square algorithm and proposed a modified version without the need to

adjust its convergence coefficient. Prime et al. (2010) synthesised suboptimal control

scheduled across a wide range of airspeeds by employing the linear-parameter-

varying (LPV) technique. In the work of Chen et al. (2012), the LPV control was

investigated on a proposed high-fidelity LPV model of reduced order. Lee and

Singh (2013) tackled the presence of modelling uncertainties as well as various

exogenous aerodynamic disturbances by developing an L1 adaptive control law.

Fazelzadeh et al. (2014) dealt with nonlinearities and optimality using time-domain

finite-element approach performed offline. Wang et al. (2015) introduced sliding-

mode control (SMC) for AFS in hypersonic scenarios. Under the SMC framework

the circumstances involving control time-delay were studied in Luo et al. (2016b).

In addition to control delay, Gao and Cai (2016) took actuator faults into account.

Beside actuator faults, Gao et al. (2016) also considered sensor faults in control

design. By using pitch angle measurement only, Zhang and Behal (2016) derived

and investigated a robust output-feedback scheme for AFS under aerodynamic

perturbations. Fazelzadeh et al. (2017) proposed a hybrid control structure featuring

both adaptive and robust control. With the advances in computing, neural networks

(NNs) have been increasingly used. Gujjula et al. (2005) raised two hypotheses of

structural nonlinearities and used adaptive control to treat linearly parameterised

case and NN control to tackle non-parameterisable circumstance. In the work of

Wang et al. (2011), a different NN was used to deal with scenarios under various

exogenous disturbances. Brillante and Mannarino (2016) employed two recurrent

NNs for system identification and control respectively. Tang et al. (2018) made

further improvement to AFS by deriving an algorithm powered by two NNs to

synthesise nonlinear optimal control in real time.

To allow aircraft normal and tactical maneuver while performing AFS, it is

important to limit the amplitude of control used for AFS by setting constraints
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smaller than actuators saturation bounds. Although control-input constraints (CICs)

have been considered in some AFS studies (Gao and Cai, 2016; Gao et al., 2016;

Ko et al., 2002; Viswamurthy and Ganguli, 2008; Wang et al., 2011), none of the

existing solutions address the problem in the sense of optimal control. Despite

numerous methods of nonlinear optimal control online synthesis (NOCOS) for

systems with CICs being available, these methods are inapplicable to AFS due

to problems related to stability, application scope, and real-time implementation.

Moreover, these methods are limited to locally nonlinear systems whereas aeroelastic

systems are globally nonlinear as the dynamics also change nonlinearly with the

freestream airflow speed.

Therefore, in this study we focus on optimal AFS under CICs, and deliver the

following two contributions:

• As a major technical contribution, a new algorithm is proposed for AFS, which

performs NOCOS for globally nonlinear systems with CICs taken into account.

The resulting controller is optimal under CICs and adaptive to airspeeds, and

to our knowledge, a pioneer solution to adaptive nonlinear optimal control

for AFS under CICs. Controller validation was conducted in wind-tunnel

experiments.

• Unlike existing NOCOS approaches considering CICs, a modified value func-

tion approximation (MVFA) is used in this paper specifically for AFS. For the

first time, the feasibility of using the MVFA with a performance index involv-

ing a nonquadratic control-input cost function to address CICs is examined

through the Lyapunov stability analysis. This delivers an important scientific

contribution to the NOCOS theory framework.

6.2 Aeroelastic system

In this study, AFS is mechanically realised by proper deployment of the aerofoil

slat at leading-edge (LE) and the flap at trailing-edge (TE). The aeroelastic system
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involves a typical rigid aerofoil section with plunge and pitch oscillations. For

controller design, the analytical model takes the form studied in Prime (2010), which

describes aeroelastic behaviours at subsonic regime using four degrees-of-freedom

(DOF), capturing the coupled dynamics between plunge, pitch, LE, and TE DOFs

including servo dynamics (see Figure 5.1). The corresponding analytical model is

given in Section 5.2 of Chapter 5.

6.3 Proposed controller

6.3.1 Problem formulation

If the airspeed U∞ is constant, Eq. (5.2) reduces to

ẋ = f (x) + g(x)u, (6.1)

which is locally nonlinear due to the absence of the variable U∞ as compared with

Eq. (5.2) .

The properties of (6.1) are given by Assumptions 4.1 and 4.2 in Chapter 4.

A proper control law u is desired to minimise

V(x0) =
∫ ∞

0
Q̄(x(τ))dτ +

∫ ∞

0
R̄(u(τ))dτ, (6.2)

where the penalty to states is set by Q̄(x(τ)) and the control is weighted by R̄(u(τ)),

both of which are functions being positive-definite and monotonically increasing.

The control that minimises Eq. (6.2) for the same initial conditions is deemed

optimal and denoted as u∗(x). The associated cost is generally known as the ‘value

function’, denoted by V∗(x).

6.3.2 Input-constrained optimal control

In conventional optimal control problems, Q̄(x) and R̄(u) take quadratic forms,

which however, do not apply to cases under CICs. To take CICs into account, a
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positive-definite integrand function is introduced for R̄(u) in the following form

(Lyshevski, 1998):

R̄(u) = 2
∫ (

Θ−1(u)
)T

Rdu, (6.3)

where u = Θ(v) = [θ(v1), · · · , θ(vnu)]
T with θ(·) being a bounded function that is

pth-order continuous (p ≥ 1) and v ∈ Rnu ; weighting R ∈ Rnu×nu and R = RT � 0.

For Θ(v) in Eq. (6.3), it is practically feasible to choose

Θ(v) = λ tanh(λ−1v),

and accordingly,

R̄(u) = 2
∫ [

λtanh−1(λ−1u)
]T

Rdu

= 2uTλRtanh−1
(

λ−1u
)
+ Rrλ2 ln

(
−→
1 −

(
λ−1u

)2
)

, (6.4)

where the functions tanh(·), tanh−1(·) and ln(·) perform element-wise operation,

the vector Rr = [R1, R2, · · · , Rnu ] contains diagonal elements of R, diagonal matrix

λ = diag[λ1, λ2, · · · , λnu ] contains bounds for respective control (−λi ≤ ui ≤ λi,

∀λi ∈ R+, i = 1, 2, · · · nu), and
−→
1 = [1, 1, · · · , 1]T.

Remark 6.1. It can be seen from Eq. (6.4) that for any unbounded control v, if |v| ≤ λ

then R̄(u) ≈ uTRu ≈ vTRv, and if |v| > λ then R̄(u)� vTRv.

With the introduction of Eq. (6.4), differentiating Eq. (6.2) yields

∇VT ( f + gu) + Q̄ + Rrλ2 ln
(
−→
1 −

(
λ−1u

)2
)

+ 2uTλRtanh−1
(

λ−1u
)
= 0; V(0) = 0. (6.5)

On the basis of Eq. (6.5), the following Hamilton-Jacobi-Bellman (HJB) equality

holds under CICs:

Q̄ + Rrλ2 ln
(
−→
1 − tanh2(

1
2

λ−1R−1gT∇V∗)
)

+∇V∗T
[

f − gλ tanh
(

1
2

λ−1R−1gT∇V∗
)]

+∇V∗Tgλ tanh
(

1
2

λ−1R−1gT∇V∗
)
= 0, (6.6)
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the solution of which is V∗, with

u∗ = −λ tanh
(

1
2

λ−1R−1gT∇V∗
)

, (6.7)

where V∗(0) = 0 and ∇V∗ , ∂V∗
∂x .

6.3.3 Value function approximation for cases with constant U∞

To analytically determine V∗(x) is difficult, which instead, can be obtained through

an iterative procedure termed as ‘policy iteration’ (Jiang and Jiang, 2015), which

requires V∗(x) being appropriately structured and approximated. With universal

approximation properties, neural networks (NNs) can be used (Hornik et al., 1989).

The discussion in Section 6.1 reveals that a majority of the available methods

for NOCOS, being subjected to issues related to stability, application scope, and

real-time implementation, are inapplicable to AFS. Accordingly, a modified value

function approximation (MVFA) as in Tang et al. (2018) is introduced specifically

for AFS as

V∗(x) = W *TΦ(x) +
1
2

xTPx + ε(x), (6.8)

where hidden-layer neurons are contained in Φ(x) ∈ Rnn , with ideal NN weights

being W∗ ∈ Rnn ; P ∈ Rnx×nx is an additional parameter matrix that is diagonal and

positive-definite; the error of approximation is denoted by ε(x) ∈ R.

Remark 6.2. For the first time, in this paper the MVFA is used with a performance cost

involving the generalised nonquadratic functional as in Eq. (6.3) to solve for optimal

control under CICs. As one of the major contributions, this input-constrained case

with MVFA is examined through the Lyapunov stability analysis, as to be presented

in Theorems 6.1 and 6.2.

Remark 6.3. To select proper activation functions for the hidden-layer neurons of

the NN in Eq. (6.8), one may apply Weierstrass approximation using high-order

polynomials (Finlayson, 1972). The resulting activation functions are the individual

terms of a polynomial of specified order with the NN inputs as variables.

139



Chapter 6 Flutter suppression by input-constrained optimal control

Accordingly, there is

∇V∗ = ∇̄ΦTW∗ + Px +∇ε, (6.9)

with ∇̄Φ = ∇ΦT =
[

∂Φ
∂x

]T
and ∇ε = ∂ε

∂x .

The boundedness properties of ∇̄Φ(x) and ∇ε(x) are given in Assumption 4.3

in Chapter 4.

Note that W∗ is unknown and is replaced by an estimate Ŵ during real-time

implementation. Under the proposed approximation scheme, the corresponding

estimations V̂(x), ∇V̂(x), and û(x), expressed in short omitting the variable x, are

V̂ =
1
2

xTPx + ŴTΦ, (6.10)

∇V̂ = Px + ∇̄ΦTŴ , (6.11)

û = −λ tanh
(

1
2

λ−1R−1gT∇V̂
)

. (6.12)

As a result, Eq. (6.6) becomes

Q̄ + Rrλ2 ln
(
−→
1 − tanh2(

1
2

λ−1R−1gT∇V̂)

)
+∇V̂T

[
f − gλ tanh

(
1
2

λ−1R−1gT∇V̂
)]

+∇V̂Tgλ tanh
(

1
2

λ−1R−1gT∇V̂
)
= e, (6.13)

where V̂(0) = 0 and e ∈ R is the error resulted from approximation.

It is clear that e is to be minimised so that Ŵ →W∗. The extended Kalman filter

(EKF) can be applied and Eq. (6.13) can be rewritten as a dynamic system
˙̂W = 0 + wv,

y = β(x, Ŵ)− e + vv,
(6.14)

with

y = −Q̄− 2ûTλRtanh−1
(

λ−1û
)
− Rrλ2 ln

(
−→
1 −

(
λ−1û

)2
)

,

β(x, Ŵ) =
(

ŴT∇̄Φ + xTPT
)
( f + gû) ,
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where wv contains virtual process noises of covariance Q f ∈ Rnn×nn � 0 and vv is

virtual measurement noise of covariance R f ∈ R+.

Now applying an EKF to Eq. (6.14) yields

ŷ = β(x, Ŵ),

˙̂W = κcK f ey,

κc =
αcnn∥∥K f
∥∥+ 1

,

ey = y− ŷ,

(6.15)

where the EKF has a gain of K f ∈ Rnn×1, y has an estimate of ŷ, and αcnn ∈ R+ is

an auxiliary constant normalisation gain.

Specifically,

K f = SHTR−1
f , (6.16)

HT =
∂β(x, Ŵ)

∂Ŵ
= ∇̄Φ ( f + gû) , (6.17)

Ṡ = Q f − SHTR−1
f HS, (6.18)

where S ∈ Rnn×nn is symmetric and positive-definite.

For online tuning, the persistence of excitation (PE) condition as in Assump-

tion 4.4 is assumed to hold.

Theorem 6.1. For nonlinear systems as in Eq. (6.1), let the value function be approximated

by Eq. (6.8), the control be in the form of Eq. (6.12), and the NN weights Ŵ be dynamically

adjusted using the EKF as in Eqs. (6.15) to (6.18) with estimation error of W̃ = W∗ − Ŵ .

On the basis of Assumptions 4.1 to 4.4, W̃ remain uniformly ultimately bounded (UUB)

during online learning, if the parameter matrix P in Eq. (6.8) is selected to be ‖P‖ > bmP

for a finite constant bmP ∈ R+.

Proof. Consider

L = V̂ +
1
2

W̃T(κcS)−1W̃

= LV + LW , (6.19)
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where LV = V̂ and LW = 1
2W̃T(κcS)−1W̃ .

With Eqs. (6.10) to (6.12), the time derivative of LV is

L̇V = (∇̄ΦTŴ + Px)
T [

f − gλ tanh(Υ̂)
]

, (6.20)

where

Υ̂ =
1
2

λ−1R−1gT∇V̂. (6.21)

By using Maclaurin series, there is

tanh(Υ̂) = Υ̂ +O(Υ̂3), for
∣∣Υ̂∣∣ < π

2
. (6.22)

Based on Eqs. (6.21), (6.22), and Assumptions 4.2 and 4.3, we have

tanh(Υ̂) ≈ Υ̂ + εmΥ̂, ∀Υ̂, (6.23)

and there is
∥∥εmΥ̂

∥∥ ≤ bεmΥ̂ ‖x‖ where constant bεmΥ̂ ∈ R+.

With Eqs. (6.11), (6.21) and (6.23), Eq. (6.20) becomes

L̇V ≈ (Px + ∇̄ΦTW∗ − ∇̄ΦTW̃)
T
(

f − 1
2

gR−1gTPx

−1
2

gR−1gT∇̄ΦTW∗ +
1
2

gR−1gT∇̄ΦTW̃ − gλεmΥ̂

)
=− 1

2
xTPTgR−1gTPx− 1

2
W *T∇̄ΦgR−1gT∇̄ΦTW∗

− 1
2

W̃T∇̄ΦgR−1gT∇̄ΦTW̃ − xTPTgR−1gT∇̄ΦTW∗

+ xTPT f + xTPTgR−1gT∇̄ΦTW̃ − xTPTgλεmΥ̂

+ W *T∇̄Φ f + W *T∇̄ΦgR−1gT∇̄ΦTW̃

−W *T∇̄ΦgλεmΥ̂ − W̃T∇̄Φ f + W̃T∇̄ΦgλεmΥ̂. (6.24)

In regard to LW in Eq. (6.19), by using Eqs. (6.14) to (6.16), the time derivative of

Eq. (6.19) is

L̇W = −W̃TS−1K f (y− ŷ)

= −W̃THTR−1
f (y− ŷ). (6.25)
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First we look at the term y− ŷ of Eq. (6.25). From Eqs. (6.14) and (6.15), there is

y− ŷ =− Q̄− 2ûTλRtanh−1
(

λ−1û
)

− Rrλ2 ln
(
−→
1 −

(
λ−1û

)2
)

−
(

xTPT + ŴT∇̄Φ
)
( f + gû) . (6.26)

By using Eq. (6.5) with u∗ substituted for u as an equivalent expression to

Eq. (6.6), together with Eqs. (6.7), (6.9), (6.11) and (6.12), Eq. (6.26) becomes

y− ŷ = eR̄ + eV̇ , (6.27)

where

eR̄ =− 2u*TλRΥ∗ + Rrλ2 ln
(−→

1 − tanh2(Υ∗)
)

+ 2ûTλRΥ̂− Rrλ2 ln
(−→

1 − tanh2(Υ̂)
)

,
(6.28)

eV̇ =
(

xTPT + W∗T∇̄Φ +∇εT
)
( f + gu∗)

−
(

xTPT + ŴT∇̄Φ
)
( f + gû) ,

(6.29)

with

Υ∗ =
1
2

λ−1R−1gT∇V∗. (6.30)

Using Eq. (6.30) and substituting u∗ with Eqs. (6.7) and (6.9) gives

2u*TλRΥ∗ = 2
[
−λ tanh(

1
2

λ−1R−1gT∇V∗)
]T

λRΥ∗

= −2
(

1
2

λ−1R−1gT∇V∗
)T

λ2R tanh(Υ∗)

= −
(

xTPT + W∗T∇̄Φ +∇εT
)

gλ tanh(Υ∗). (6.31)

Similarly, with Eqs. (6.11), (6.12) and (6.21), there is

2ûTλRΥ̂ = −
(

xTPT + ŴT∇̄Φ
)

gλ tanh(Υ̂)

= −
(

xTPT + W∗T∇̄Φ− W̃T∇̄Φ
)

gλ tanh(Υ̂). (6.32)
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In the following, we deal with the term Rrλ2 ln
(−→

1 − tanh2(Υ∗)
)

in Eq. (6.28).

Since
∣∣∣−→1 − tanh2(Υ∗)

∣∣∣ < 1, by using Mercator series, there is

ln
(−→

1 − tanh2(Υ∗)
)
= ln

(−→
1 + tanh(Υ∗)

)
+ ln

(−→
1 − tanh(Υ∗)

)
= −tanh2(Υ∗) +O

(
tanh4(Υ∗)

)
= −tanh2(Υ∗) + εΥ∗ , (6.33)

where tanh2(·) and tanh4(·) perform element-wise operations, εΥ∗ = O
(

tanh4(Υ∗)
)

.

Then,

Rrλ2 ln
(−→

1 − tanh2(Υ∗)
)
= −tanhT(Υ∗)λ2R tanh(Υ∗) + Rrλ2εΥ∗ . (6.34)

Similarly, the term Rrλ2 ln
(−→

1 − tanh2(Υ̂)
)

in Eq. (6.28) can be expressed as

Rrλ2 ln
(−→

1 − tanh2(Υ̂)
)
= −tanhT(Υ̂)λ2R tanh(Υ̂) + Rrλ2εΥ̂, (6.35)

where εΥ̂ = O
(

tanh4(Υ̂)
)

.

Substituting Eqs. (6.31), (6.32), (6.34) and (6.35) for respective terms in Eq. (6.28)

yields

eR̄ = xTPTgλ
[
tanh(Υ∗)− tanh(Υ̂)

]
+ W *T∇̄Φgλ

[
tanh(Υ∗)− tanh(Υ̂)

]
+ W̃T∇̄Φgλ tanh(Υ̂) +∇εTgλ tanh(Υ∗) + Rrλ2εeΥ

− tanhT(Υ∗)λ2R tanh(Υ∗) + tanhT(Υ̂)λ2R tanh(Υ̂). (6.36)

where εeΥ = εΥ∗ − εΥ̂, and it is straightforward to see that ‖εeΥ‖ ≤ bεeΥ with constant

bεeΥ ∈ R+ and beεΥ � 1.

Similar to Eq. (6.23), according to Eq. (6.30) with Maclaurin series expansion

under Assumptions 4.2 and 4.3, we have

tanh(Υ∗) ≈ Υ∗ + εmΥ∗ , ∀Υ∗, (6.37)

and ‖εmΥ∗‖ ≤ bεmΥ∗ ‖x‖ with bεmΥ∗ ∈ R+ being a constant.
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By using the approximations as in Eqs. (6.23) and (6.37) with Eqs. (6.21) and (6.30),

we obtain

eR̄ =
1
2

xTPTgR−1gT∇̄ΦTW̃ +
1
2

xTPTgR−1gT∇ε

+
1
2

W *T∇̄ΦgR−1gT∇̄ΦTW̃ +
1
2

W *T∇̄ΦgR−1gT∇ε

− 1
4

W̃T∇̄ΦgR−1gT∇̄ΦTW̃ +
1
4
∇εTgR−1gT∇ε

− εT
mΥ∗λ

2RεmΥ∗ + εT
mΥ̂

λ2RεmΥ̂ + Rrλ2εeΥ. (6.38)

In the following we deal with eV̇ as in Eq. (6.29). Substituting Eqs. (6.7), (6.9),

(6.11), and (6.12) into Eq. (6.29) yields

eV̇ =
(

xTPT + W *T∇̄Φ +∇εT
)
[ f − gλ tanh(Υ∗)]

−
(

xTPT + W *T∇̄Φ− W̃T∇̄Φ
) [

f − gλ tanh(Υ̂)
]

=− xTPTgλ
[
tanh(Υ∗)− tanh(Υ̂)

]
−W *T∇̄Φgλ

[
tanh(Υ∗)− tanh(Υ̂)

]
+∇εT f −∇εTgλ tanh(Υ∗) + W̃T∇̄Φ f

− W̃T∇̄Φgλ tanh(Υ̂). (6.39)

Again, with approximations in Eqs. (6.23) and (6.37), Eq. (6.39) becomes

eV̇ =− xTPTgR−1gT∇ε− xTPTgλεm

−W *T∇̄ΦgR−1gT∇ε−W *T∇̄Φgλεm

+∇εT f − 1
2
∇εTgR−1gT∇ε−∇εTgλεmΥ∗

− xTPTgR−1gT∇̄ΦTW̃ −W *T∇̄ΦgR−1gT∇̄ΦTW̃

+ W̃T∇̄Φ f +
1
2

W̃T∇̄ΦgR−1gT∇̄ΦTW̃ − W̃T∇̄ΦgλεmΥ̂, (6.40)

where εm = εmΥ∗ − εmΥ̂, and ‖εm‖ ≤ bmΥ∗ ‖x‖, according to Eqs. (6.23) and (6.37).

With Eqs. (6.38) and (6.40) substituted for eR̄ and eV̇ , respectively, Eq. (6.27)

becomes

y− ŷ = eR̄ + eV̇
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=− 1
2

xTPTgR−1gT∇̄ΦTW̃ − 1
2

xTPTgR−1gT∇ε

− 1
2

W *T∇̄ΦgR−1gT∇̄ΦTW̃ − 1
2

W *T∇̄ΦgR−1gT∇ε

+
1
4

W̃T∇̄ΦgR−1gT∇̄ΦTW̃ − 1
4
∇εTgR−1gT∇ε + Rrλ2εeΥ

− εT
mΥ∗λ

2RεmΥ∗ + εT
mΥ̂

λ2RεmΥ̂ − xTPTgλεm −W *T∇̄Φgλεm

+∇εT f −∇εTgλεmΥ∗ + W̃T∇̄Φ f − W̃T∇̄ΦgλεmΥ̂. (6.41)

Now we rewrite the term W̃THT of Eq. (6.25) using Eqs. (6.17), (6.11), (6.12),

(6.21), and (6.23). This gives

W̃THT = W̃T∇̄Φ
[

f − gλ tanh(Υ̂)
]

= W̃T∇̄Φ f − 1
2

W̃T∇̄ΦgR−1gTPx− 1
2

W̃T∇̄ΦgR−1gT∇̄ΦTW∗

+
1
2

W̃T∇̄ΦgR−1gT∇̄ΦTW̃ − W̃T∇̄ΦgλεmΥ̂. (6.42)

After assembling Eqs. (6.41) and (6.42) for Eq. (6.25), together with Eq. (6.24), we

have the time derivative of Eq. (6.19) as

L̇ = L̇V + L̇W = T1 + T2 + T3 + T4 + T5 + T6, (6.43)

with

T1 =− 1
16

zTGzR−1
f zTGz− 3

8
zTG∇̄εR−1

f zTGz +
3
4

zTGzR−1
f zTgλεmΥ̂

− 3
4

zTGzR−1
f zTgλεmΥ∗ −

3
4

zT ( f + gu∗) R−1
f zTGz, (6.44)

T2 = T2a + T2b + T2c + T2d + T2e, (6.45)

T2a =−
1
8

zTGPxR−1
f xTPTGz− 1

2
zTGPxR−1

f W *T∇̄ΦGz

+ 2zT f R−1
f zTgλεmΥ̂ − zTG∇̄ΦTW∗R−1

f zTgλεmΥ̂

− zTGPxR−1
f zTgλεmΥ̂ −

1
2

zTGzR−1
f ( f − gu∗)T∇ε

+
1
2

zTGzR−1
f εT

mΥ∗λ
2RεmΥ∗ −

1
2

zTGzR−1
f εT

mΥ̂
λ2RεmΥ̂

+
1
2

zTGzR−1
f xTPTgλεm +

1
2

zTGzR−1
f W *T∇̄Φgλεm, (6.46)

T2b =− zT f R−1
f ( f − gu∗)T∇ε + zT f R−1

f xTPTGz + zT f R−1
f W *T∇̄ΦGz
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− 1
4

zT f R−1
f ∇εTG∇ε + zT f R−1

f εT
mΥ∗λ

2RεmΥ∗ − zT f R−1
f εT

mΥ̂
λ2RεmΥ̂

+ zT f R−1
f xTPTgλεm + zT f R−1

f W *T∇̄Φgλεm, (6.47)

T2c =
1
2

zTGPxR−1
f ( f − gu∗)T∇ε +

1
8

zTGPxR−1
f ∇εTG∇ε

− 1
2

zTGPxR−1
f εT

mΥ∗λ
2RεmΥ∗ +

1
2

zTGPxR−1
f εT

mΥ̂
λ2RεmΥ̂

− 1
2

zTGPxR−1
f xTPTgλεm −

1
2

zTGPxR−1
f W *T∇̄Φgλεm, (6.48)

T2d =
1
2

zTG∇̄ΦTW∗R−1
f ( f − gu∗)T∇ε +

1
8

zTG∇̄ΦTW∗R−1
f ∇εTG∇ε

− 1
2

zTG∇̄ΦTW∗R−1
f εT

mΥ∗λ
2RεmΥ∗ +

1
2

zTG∇̄ΦTW∗R−1
f εT

mΥ̂
λ2RεmΥ̂

− 1
2

zTG∇̄ΦTW∗R−1
f xTPTgλεm −

1
2

zTG∇̄ΦTW∗R−1
f W *T∇̄Φgλεm, (6.49)

T2e = zTgλεmΥ̂R−1
f ( f − gu∗)T∇ε +

1
4

zTgλεmΥ̂R−1
f ∇εTG∇ε

− zTgλεmΥ̂R−1
f εT

mΥ∗λ
2RεmΥ∗ + zTgλεmΥ̂R−1

f εT
mΥ̂

λ2RεmΥ̂

− zTgλεmΥ̂R−1
f xTPTgλεm − zTgλεmΥ̂R−1

f W *T∇̄Φgλεm, (6.50)

T3 =− 1
2

xTPTGPx + xTPT f − xTPTG∇̄ΦTW∗ − xTPTgλεmΥ̂

+ W *T∇̄Φ f −W *T∇̄ΦgλεmΥ̂, (6.51)

T4 =− 1
8

zTGPxR−1
f xTPTGz + xTPTGz− zT f + zTgλεmΥ̂

+ W *T∇̄ΦGz− zT f R−1
f Rrλ2εeΥ +

1
2

zTGPxR−1
f Rrλ2εeΥ

+
1
2

zTG∇̄ΦTW∗R−1
f Rrλ2εeΥ + zTgλεmΥ̂R−1

f Rrλ2εeΥ, (6.52)

T5 =− 1
16

zTGzR−1
f zTGz− 1

2
zTGzR−1

f Rrλ2εeΥ, (6.53)

T6 =− zT f R−1
f zT f − 1

4
zTG∇̄ΦTW∗R−1

f W *T∇̄ΦGz

− zTgλεmΥ̂R−1
f zTgλεmΥ̂ −

1
8

zTGzR−1
f ∇εTG∇ε

− 1
2

zTGz− 1
2

W *T∇̄ΦG∇̄ΦTW∗, (6.54)

where G = gR−1gT and z = ∇̄ΦTW̃ .
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Now we introduce bounds. As G = gR−1gT, the rank of G is

rank(G) = rank(g) < nx.

It follows that there exist kernels

ker(G) = {r ∈ Rnx | Gr = 0} ,

ker(GP) = {r ∈ Rnx | GPr = 0} .

For nonlinear systems as in Eq. (6.1), since vectors x and z are explicitly governed

by Eq. (6.1) instead of being random, the existence of x = ker(GP) and z = ker(G)

as well as corresponding effects to the system are rendered negligible. Accordingly,

we focus on cases where x 6= ker(GP) and z 6= ker(G).

Given that G is positive-definite and symmetric, under Assumptions 4.2 and 4.3,

there are

zTGzR−1
f zTGz ≥ bm1

∥∥W̃
∥∥4‖x‖4,

zTGPxR−1
f xTPTGz ≥ bm2‖P‖2∥∥W̃

∥∥2‖x‖4,

xTPTGPx ≥ bm3‖P‖2‖x‖2,

where constants bm1 ∈ R+, bm2 ∈ R+ and bm3 ∈ R+. Also, there is ‖G‖ ≤ bG for

constant bG ∈ R+.

Under Assumptions 4.1 and 4.2, we also have ‖ f + gu∗‖ ≤ bẋ ‖x‖ for constant

bẋ ∈ R+. Let bR f =
∥∥∥R−1

f

∥∥∥ and bλ = ‖λ‖. Then for T1,

T1 ≤−
1

16

(
bm1

∥∥W̃
∥∥− 6b2

GbεbR f − 12bGbR f bgbλbεmΥ̂

−12bGbR f bgbλbεmΥ∗ − 12bẋbR f bG
)
‖x‖4∥∥W̃

∥∥3

=− 1
16
(
bm1

∥∥W̃
∥∥− η1

)
‖x‖4∥∥W̃

∥∥3, (6.55)

where

η1 = 6b2
GbεbR f + 12bGbR f bgbλbεmΥ̂ + 12bGbR f bgbλbεmΥ∗ + 12bẋbR f bG.

On satisfying Assumption 4.4, it is clear that T1 ≤ 0 if

bm1
∥∥W̃

∥∥− η1 ≥ 0,

148



6.3 Proposed controller

which requires ∥∥W̃
∥∥ ≥ η1

bm1
. (6.56)

Note that T2 has several terms as shown in Eq. (6.45). Let bR = ‖R‖. Then for

T2a we have

T2a ≤−
1
8

(
bm2‖P‖2 − 4b2

GbR f bφ ‖P‖
∥∥∥W *

∥∥∥
− 8bGbR f bgbλbεmΥ̂ ‖P‖ − 4bGbR f bgbλbεmΥ∗ ‖P‖

− 8bgbλbεmΥ̂

∥∥∥W *
∥∥∥ bGbR f bφ − 4bGbR f bφbgbλbεmΥ∗

∥∥∥W *
∥∥∥

− 16b f bR f bgbλbεmΥ̂ − 4bGbR f bẋbε − 4bGbR f b2
εmΥ∗b

2
λbR

−4bGbR f b2
εmΥ̂b2

λbR

) ∥∥W̃
∥∥2‖x‖4

=− 1
8

(
bm2‖P‖2 − η2 ‖P‖ − η3

) ∥∥W̃
∥∥2‖x‖4, (6.57)

where

η2 = 4b2
GbR f bφ

∥∥∥W *
∥∥∥+ 8bGbR f bgbλbεmΥ̂ + 4bGbR f bgbλbεmΥ∗ ,

η3 = 8bgbλbεmΥ̂bGbR f bφ

∥∥∥W *
∥∥∥+ 4bGbR f bφbgbλbεmΥ∗

∥∥∥W *
∥∥∥

+ 16b f bR f bgbλbεmΥ̂ + 4bGbR f bẋbε + 4bGbR f b2
εmΥ∗b

2
λbR

+ 4bGbR f b2
εmΥ̂b2

λbR.

For T2b there is

T2b ≤
(
b f bR f bG ‖P‖+ b f bR f bgbλbεmΥ∗ ‖P‖+ b f bR f bẋbε

+
1
4

b f bR f b2
ε bG + b f bR f b2

εmΥ∗b
2
λbR + b f bR f b2

εmΥ̂
b2

λbR

+b f bR f bφbG

∥∥∥W *
∥∥∥+ b f bR f bφbgbλbεmΥ∗

∥∥∥W *
∥∥∥) ∥∥W̃

∥∥ ‖x‖4

= (η4 ‖P‖+ η5)
∥∥W̃

∥∥ ‖x‖4, (6.58)

where

η4 = b f bR f bG + b f bR f bgbλbεmΥ∗ ,

η5 = b f bR f bẋbε +
1
4

b f bR f b2
ε bG + b f bR f b2

εmΥ∗b
2
λbR

+ b f bR f b2
εmΥ̂

b2
λbR + b f bR f bφbG

∥∥∥W *
∥∥∥

+ b f bR f bφbgbλbεmΥ∗

∥∥∥W *
∥∥∥ .
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For T2c,

T2c ≤
(

1
2

bGbR f bgbλbεmΥ∗‖P‖2 +
1
2

bGbR f bẋbε ‖P‖+
1
8

b2
GbR f b2

ε ‖P‖

+
1
2

bGbR f b2
εmΥ∗b

2
λbR ‖P‖+

1
2

bGbR f b2
εmΥ̂

b2
λbR ‖P‖

+
1
2

bGbR f bφbgbλbεmΥ∗

∥∥∥W *
∥∥∥ ‖P‖)∥∥W̃

∥∥ ‖x‖4

=
(

η6‖P‖2 + η7 ‖P‖
) ∥∥W̃

∥∥ ‖x‖4, (6.59)

where

η6 =
1
2

bGbR f bgbλbεmΥ∗ ,

η7 =
1
2

bGbR f bẋbε +
1
8

b2
GbR f b2

ε +
1
2

bGbR f b2
εmΥ∗b

2
λbR

+
1
2

bGbR f b2
εmΥ̂

b2
λbR +

1
2

bGbR f bφbgbλbεmΥ∗

∥∥∥W *
∥∥∥ .

For T2d,

T2d ≤
(

1
2

bGbφbR f bgbλbεmΥ∗ ‖W∗‖ ‖P‖+ 1
2

bGbφbR f bẋbε ‖W∗‖

+
1
8

b2
GbφbR f b2

ε ‖W∗‖+ 1
2

bGbφbR f b2
εmΥ∗b

2
λbR ‖W∗‖

+
1
2

bGbφbR f b2
εmΥ̂b2

λbR ‖W∗‖+ 1
2

bGb2
φbR f bgbλbεmΥ∗‖W∗‖2

)∥∥W̃
∥∥ ‖x‖4

= (η8 ‖P‖+ η9)
∥∥W̃

∥∥ ‖x‖4, (6.60)

where

η8 =
1
2

bGbφbR f bgbλbεmΥ∗ ‖W∗‖ ,

η9 =
1
2

bGbφbR f bẋbε ‖W∗‖+ 1
8

b2
GbφbR f b2

ε ‖W∗‖+ 1
2

bGbφbR f b2
εmΥ∗b

2
λbR ‖W∗‖

+
1
2

bGbφbR f b2
εmΥ̂b2

λbR ‖W∗‖+ 1
2

bGb2
φbR f bgbλbεmΥ∗‖W∗‖2.

For T2e,

T2e ≤
(

b2
gb2

λbεmΥ̂bR f bεmΥ∗ ‖P‖+ bgbλbεmΥ̂bR f bẋbε

+
1
4

bgbλbεmΥ̂bR f bGb2
ε + bgbεmΥ̂bR f b2

εmΥ∗b
3
λbR + bgbR f b3

εmΥ̂b3
λbR

+b2
gb2

λbεmΥ̂bR f bφbεmΥ∗ ‖W∗‖
) ∥∥W̃

∥∥ ‖x‖4

= (η10 ‖P‖+ η11)
∥∥W̃

∥∥ ‖x‖4, (6.61)
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6.3 Proposed controller

where

η10 = b2
gb2

λbεmΥ̂bR f bεmΥ∗ ,

η11 = bgbλbεmΥ̂bR f bẋbε +
1
4

bgbλbεmΥ̂bR f bGb2
ε + bgbεmΥ̂bR f b2

εmΥ∗b
3
λbR

+ bgbR f b3
εmΥ̂b3

λbR + b2
gb2

λbεmΥ̂bR f bφbεmΥ∗ ‖W∗‖ .

Assembling T2a, T2b, T2c, T2d, and T2e together gives

T2 ≤−
1
8

(
bm2‖P‖2 − η2 ‖P‖ − η3

) ∥∥W̃
∥∥2‖x‖4

+
[
η6‖P‖2 + (η4 + η7 + η8 + η10) ‖P‖+ (η5 + η9 + η11)

] ∥∥W̃
∥∥ ‖x‖4

=− 1
8

[(
bm2‖P‖2 − η2 ‖P‖ − η3

) ∥∥W̃
∥∥− 8η6‖P‖2

−8 (η4 + η7 + η8 + η10) ‖P‖ − 8 (η5 + η9 + η11)]
∥∥W̃

∥∥ ‖x‖4

=− 1
8
(
ξ1
∥∥W̃

∥∥− ξ2
) ∥∥W̃

∥∥ ‖x‖4, (6.62)

where

ξ1 = bm2‖P‖2 − η2 ‖P‖ − η3, (6.63)

ξ2 = 8η6‖P‖2 + 8 (η4 + η7 + η8 + η10) ‖P‖+ 8 (η5 + η9 + η11) .

Under Assumption 4.4, it is clear that T2 ≤ 0 if
(
ξ1
∥∥W̃

∥∥− ξ2
)
≥ 0, that is,

∥∥W̃
∥∥ ≥ ξ2

ξ1
, for ξ1 > 0 and ξ2 ≥ 0. (6.64)

In order to ensure ξ1 > 0, it can be derived from Eq. (6.63) that the condition to

be satisfied is

‖P‖ >
η2 +

√
η2

2 + 4bm2η3

2bm2
, bp1. (6.65)

Now we look at T3, which is bounded as

T3 ≤
(
−1

2
bm3‖P‖2 + b f ‖P‖+ bgbλbεmΥ̂ ‖P‖+ bGbφ ‖W∗‖ ‖P‖

+bφb f

∥∥∥W *
∥∥∥+ bφbgbλbεmΥ̂

∥∥∥W *
∥∥∥) ‖x‖2

=−
(

1
2

bm3‖P‖2 − η12 ‖P‖ − η13

)
‖x‖2, (6.66)
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where

η12 = b f + bgbλbεmΥ̂ + bGbφ ‖W∗‖ ,

η13 = bφb f

∥∥∥W *
∥∥∥+ bφbgbλbεmΥ̂

∥∥∥W *
∥∥∥ .

According to Eq. (6.66) and under Assumption 4.4, to guarantee T3 ≤ 0 requires

1
2

bm3‖P‖2 − η12 ‖P‖ − η13 ≥ 0,

which can be satisfied by

‖P‖ ≥
η12 +

√
η2

12 + 2bm3η13

bm3
, bp2. (6.67)

In regard to T4, let bRr = ‖Rr‖, then

T4 ≤−
1
8

(
bm2‖P‖2 ∥∥W̃

∥∥ ‖x‖2 − 8bG ‖P‖ − 4bGbR f bRrb2
λbεeΥ ‖P‖

− 8bφbG

∥∥∥W *
∥∥∥− 4bGbφbR f bRrb2

λbεeΥ ‖W∗‖ − 8b f − 8bgbλbεmΥ̂

−8b f bR f bRrb2
λbεeΥ − 8bgbεmΥ̂bR f bRrb3

λbεeΥ

) ∥∥W̃
∥∥ ‖x‖2

=− 1
8

[
bm2‖P‖2 ∥∥W̃

∥∥ ‖x‖2 − η14 ‖P‖ − η15

] ∥∥W̃
∥∥ ‖x‖2, (6.68)

where

η14 = 8bG + 4bGbR f bRrb2
λbεeΥ,

η15 = 8bφbG

∥∥∥W *
∥∥∥+ 4bGbφbR f bRrb2

λbεeΥ ‖W∗‖+ 8b f + 8bgbλbεmΥ̂

+ 8b f bR f bRrb2
λbεeΥ + 8bgbεmΥ̂bR f bRrb3

λbεeΥ.

As can been seen from Eq. (6.68), with PE condition applied, T4 ≤ 0 requires

bm2‖P‖2 ∥∥W̃
∥∥ ‖x‖2 − η14 ‖P‖ − η15 ≥ 0.

That is, ∥∥W̃
∥∥ ‖x‖2 ≥ η14 ‖P‖+ η15

bm2‖P‖2 . (6.69)

Regarding T5,

T5 ≤
(
− 1

16
bm1
∥∥W̃

∥∥2‖x‖2 +
1
2

bGbR f bRrb2
λbεeΥ

)∥∥W̃
∥∥2‖x‖2

=− 1
16

bm1

(∥∥W̃
∥∥2‖x‖2 −

8bGbR f bRrb2
λbεeΥ

bm1

)∥∥W̃
∥∥2‖x‖2. (6.70)

152



6.3 Proposed controller

It is straightforward to see from Eq. (6.70) that T5 ≤ 0 under the PE condition as

long as ∥∥W̃
∥∥ ‖x‖ ≥

√
8bGbR f bRrb2

λbεeΥ

bm1
. (6.71)

As for T6, it is clear from Eq. (6.54) that T6 ≤ 0. Therefore, from Eq. (6.43), we

have L̇ < 0 upon conditions in Eqs. (6.56), (6.64), (6.65), (6.67), (6.69) and (6.71)

being satisfied.

Recall from Eqs. (6.69) and (6.71) that a bound exists for
∥∥W̃

∥∥, given x is

PE under Assumption 4.4. Denote this bound as bw ∈ R+. Together with

Eqs. (6.56), (6.64), (6.65), and (6.67), we can reach a conclusion that W̃ is UUB

by a bound bW̃ , max
(

η1
bm1

, ξ2
ξ1

, bw

)
during online tuning if the parameter matrix P

is selected to be

‖P‖ > max(bp1, bp2) , bmP. (6.72)

The proof is now completed.

In the next, we further examine the closed-loop stability with respect to system

states x regardless of whether Assumption 4.4 is applied or not.

Theorem 6.2. For nonlinear systems as in Eq. (6.1), let the value function be approximated

by Eq. (6.8), the control be in the form of Eq. (6.12), and the NN weights Ŵ be dynamically

adjusted using the EKF as in Eqs. (6.15) to (6.18) with estimation error of W̃ = W∗ − Ŵ .

On the basis of Assumptions 4.1 to 4.3, the closed-loop system is asymptotically stable in

terms of the states x about the origin, if the parameter matrix P in Eq. (6.8) is selected to

be ‖P‖ > bmP for a finite constant bmP ∈ R+.

Proof. Consider

LV = V̂ (6.73)

as the Lyapunov candidate, the time derivative of which has been given by Eq. (6.24).

With G = gR−1gT, Eq. (6.24) can be rewritten as

L̇V = L̇V1 + L̇V2, (6.74)
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where

L̇V1 =− 1
2

xTPTGPx + xTPT f − xTPTG∇̄ΦTW∗

+ xTPTG∇̄ΦTW̃ − xTPTgλεmΥ̂ + W *T∇̄Φ f

+ W *T∇̄ΦG∇̄ΦTW̃ −W *T∇̄ΦgλεmΥ̂

− W̃T∇̄Φ f + W̃T∇̄ΦgλεmΥ̂, (6.75)

L̇V2 =− 1
2

W *T∇̄ΦG∇̄ΦTW∗ − 1
2

W̃T∇̄ΦG∇̄ΦTW̃ . (6.76)

If Assumption 4.4 holds, then W̃ is UUB during online tuning, as shown in

Theorem 6.1. In the case of the PE condition being not satisfied, Ŵ may not reach

W∗ but remains bounded as a result. Let bW̃ denote the bound of W̃ in both cases.

Then Eq. (6.75) is bounded as

L̇V1 ≤
(
−1

2
bm3bG‖P‖2 + b f ‖P‖+ bGbφ ‖W∗‖ ‖P‖+ bGbφbW̃ ‖P‖

+ bgbλbεmΥ̂ ‖P‖+ bφb f

∥∥∥W *
∥∥∥+ b2

φbGbW̃ ‖W
∗‖

+bφbgbλbεmΥ̂

∥∥∥W *
∥∥∥+ bW̃bφb f + bW̃bφbgbλbεmΥ̂

)
‖x‖2

=− 1
2

(
bm3bG‖P‖2 − η16 ‖P‖ − η17

)
‖x‖2, (6.77)

where

η16 = bGbφ ‖W∗‖+ b f + bGbφbW̃ + bgbλbεmΥ̂,

η17 = bφb f

∥∥∥W *
∥∥∥+ b2

φbGbW̃ ‖W
∗‖+ bφbgbλbεmΥ̂

∥∥∥W *
∥∥∥

+ bW̃bφb f + bW̃bφbgbλbεmΥ̂.

According to Eq. (6.77), when x 6= 0, to make L̇V1 ≤ 0, it requires

bm3bG‖P‖2 − η16 ‖P‖ − η17 ≥ 0,

that is,

‖P‖ ≥
η16 +

√
η2

16 + 4bm3bGη17

2bm3bG
, bp3. (6.78)
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Since L̇V2 ≤ 0 according to Eq. (6.76), by using Eq. (6.74) together with the result

of Eq. (6.72) in Theorem 6.1 we have L̇V ≤ 0, if

‖P‖ > max
(
bp1, bp2, bp3

)
, bmP. (6.79)

Upon satisfying Eq. (6.79), it follows that the second-order time derivative of

Eq. (6.73) is bounded since both x and W̃ are bounded. Therefore, the closed-loop

system is asymptotically stable in terms of the states x about the origin. The proof

is now completed.

Remark 6.4. Theorems 6.1 and 6.2 show that it is viable to introduce the nonquadratic

control-input cost function to NOCOS involving the MVFA. The new control scheme

considering CICs guarantees the closed-loop stability during NN online learning.

Theorems 6.1 and 6.2 contribute new knowledge to the NOCOS theory framework

and serve as major scientific contributions.

6.3.4 Value function approximation for cases with non-constant

airspeed U∞

The NOCOS under CICs proposed in Subsections 6.3.1 to 6.3.3 assumes constant

U∞. For cases with non-constant U∞ that renders system (5.2) globally nonlinear,

the parameter matrix P in Eq. (6.10) needs to be changed accordingly to satisfy

the condition in Theorems 6.1 and 6.2, and can be determined and implemented

through linear-parameter-varying technique using linear matrix inequalities (LMIs)

as follows.

By linearising Eq. (5.2) at equilibrium and denoting h as the performance output,

we have 
ẋ

y

h

 =


Ap(U∞) I Bp

Cp 0 0

Ch 0 Eh




x

u

wp

 , (6.80)

with

Ap(U∞) = ∂ f
∂x

∣∣∣
x=0

, Bp = ∂g
∂x

∣∣∣
x=0

,
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where

Cp = I, Ch =

√Q

0

, Eh =

 0
√

R

,

and vector wp contains process noises.

In the case of AFS, the value of bmP in Theorems 6.1 and 6.2 varies with U∞,

which thus, is denoted by v(U∞) herein instead. Given the ‖P‖ > bmP condition in

Theorem 6.1 and 6.2, a parameter-varying P(U∞) is now introduced, and accordingly,

it is required that ‖P(U∞)‖ > v(U∞) for a stable closed loop. To properly determine

P(U∞), the following LMIs are constructed by introducing a performance variable

Z(U∞) and a positive-definite symmetric matrix X̄(U∞): ˙̄X + AT
c X̄ + X̄ Ac X̄

X̄ −νI

 ≺ 0, (6.81)

 X̄ CT
ch

Cch Z

 � 0, (6.82)

Tr(Z(U∞)) < ν, (6.83)

where ν is a performance index, and

Ac , Ap(U∞)− 1
2

BpR−1BT
p P(U∞),

Cch , Ch −
1
2

EhR−1BT
p P(U∞).

Let B̄c , 1
2 BpR−1BT

p , Y = PX̄−1, and J = X̄−1. Then from Eqs. (6.81) and (6.82),

we have

− J̇ + Ap J + JAT
p + B̄cY + YTB̄T

c ≺ 0, (6.84) J (Ch J + EhY)T

Ch J + EhY Z

 � 0. (6.85)

Based on Eq. (5.1), Ap(U∞) can be in the form of

Ap(U∞) = Ap1 + Ap2U∞ + Ap3U2
∞. (6.86)
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Accordingly, J(U∞) and Y(U∞) are given by

J(U∞) = J1 + J2U∞ + J3U2
∞, (6.87)

Y(U∞) = Y1 + Y2U∞ + Y3U2
∞, (6.88)

and can be obtained by solving Eqs. (6.83), (6.84), and (6.85). Finally, there is

P(U∞) = Y(U∞)J−1(U∞), (6.89)

which satisfies ‖P(U∞)‖ > v(U∞), with v(U∞) implicitly expressed in the LMIs.

Remark 6.5. Different from other existing NOCOS methods which only apply to

locally nonlinear systems (i.e., not suitable for the AFS cases with non-constant U∞),

the MVFA with the scheduled parameter matrix P enables the proposed NOCOS

scheme under CICs to cover globally nonlinear scenarios involving non-constant

U∞.

6.3.5 Online system identification

Despite aeroelastic dynamics being analytically known, online system identification

is desired to reduce the impact of modelling errors. A suitable solution can be

realised via an NN as:

ẋ = WT
s Φs(x, u) + εs, (6.90)

where Ws ∈ Rnx×nws collects the ideal weights, Φs(x, u) ∈ Rnws contains nonlinear

activation functions, and εs ∈ Rnx is a vector of approximation errors.

According to Modares et al. (2013a), the solution to Eq. (6.90) has a filtered

representation of

x = WT
s µ1 + Γµ2 + εx, (6.91)

with

µ̇1

µ̇2

 =

−Γ I 0 0

0 0 −Γ I




µ1

Φs(x, u)

µ2

x


,
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where µ1 ∈ Rnws with zero initial condition and µ2 ∈ Rnx also with zero initial condi-

tion are both auxiliary regressors; Γ ∈ Rnx×nx is a constant matrix and Γ = γInx×nx

with γ ∈ R+ being a constant; εx = e−Γtx0 +
∫ t

0 e−Γ(t−τ)εsdτ is the approximation

error.

Note that Ws needs to be found so that x can be correctly obtained as in Eq. (6.91).

The corresponding estimation Ŵs and x̂ can be obtained by employing the EKF. In

the interests of light computational load during real-time implementation, the EKF

can be constructed in a decoupled form, consisting of multiple EKFs of one input

and one output, each approximating a single state in x. Accordingly,

x̂(j) = Ŵ (j)
s µ1(x) + Γµ2(x),

˙̂W
(j)
s = κsK

(j)
s e(j)

x ,

e(j)
x = x(j) − x̂(j),

κs =
αsnn∥∥∥K(j)
s

∥∥∥+ 1
,

(6.92)

where x(j) ∈ R is the jth measured state; x̂(j) ∈ R is the jth estimated state; αsnn ∈ R+

is a constant; K(j)
s ∈ Rnws is the gain of the jth decoupled EKF; and Ŵ (j)

s ∈ R1×nws is

a row vector corresponding to the jth row of Ŵs.

The gain K(j)
s of each decoupled EKF can be obtained from

K(j)
s = S(j)

s µ1R−1
s , (6.93)

Ṡ(j)
s = Qs − S(j)

s µ1R−1
s µT

1 S(j)
s . (6.94)

where Qs ∈ Rnws×nws and Rs ∈ R+ are respective weightings.

Based on Eqs. (6.90), (6.91), (6.92) to (6.94), we now have an estimate of ˙̂x as

˙̂x = ŴT
s Φs(x, u). (6.95)

By using Eq. (6.95), there is

∂ ˙̂x
∂u

=
∂Φs(x, u)

∂u
Ŵs. (6.96)

Let ĝ(x) denote the estimation of g(x). Since ĝ(x) = ∂ ˙̂x
∂u , from Eq. (6.96) we have

ĝ(x) =
∂Φs(x, u)

∂u
Ŵs. (6.97)
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6.4 Wind-tunnel experiments

Equations (6.95) and (6.97) now provide necessary information required by the

proposed control scheme.

Remark 6.6. Ws can be initialised by offline training of the identifier NN performed

prior to online implementation. One may use a known analytical model with U∞ set

to the flutter boundary (denoted by Ub herein) for the offline training given the fact

that the AFS controller only needs to be activated when the aircraft is approaching

its flutter onset airspeed. Modelling errors (for U∞ ≥ Ub ) can then be captured in

real time and used to update the pre-trained NN model online.

6.4 Wind-tunnel experiments

For validation of the proposed optimal NN control (ONNC) scheme that considers

CICs (in short, CIC-ONNC), wind-tunnel experiments were conducted (see setup in

Figure 3.13). A scaled-down NACA 0012 aerofoil section was placed in a testing

duct measuring 0.5× 0.5 m in cross-section, and was vertically mounted on a virtual

stiffness-damping system (VSDS). The VSDS uses electric drives to generate plunge

force and pitch torque to mimic the effects of physical translational and torsional

springs. This allows convenient adjustment of the structural stiffness and damping

of the aeroelastic system to suit different test scenarios. Table 6.1 lists the parameters

of the wind-tunnel experiment setup which together deliver an aeroelastic system

subjected to flutter when the airflow reaches or increases beyond 14.1 m/s.

To implement the proposed CIC-ONNC, the activation functions of the NNs

were generated as in Remark 6.3, and Table 6.2 gives an overview of these NNs.

For synthesis of J(U∞) and Y(U∞), 50 scheduling points are equally spaced over

U∞ ⊆ [14.0, 20.0] m/s. Then P(U∞) was obtained online according to Eq. (6.89).

The conventional quadratic structure of xTQx was adopted for Q̄(x) in Eq. (6.2). All

parameters related to the proposed CIC-ONNC are given in Table 6.3.

As discussed in Section 6.1, the existing methods for AFS do not consider

CICs from the optimal control perspective and no existing NOCOS algorithms that
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Table 6.1: Wind-tunnel experiment parameters.

Parameters Values Parameters Values

ρ 1.225 kg/m3 ch 14.0 kg/s

ma 0.851 kg ca 0.042 kg·m2/s

mte 0.030 kg cte 4.231× 10−4 kg·m2/s

mle 0.058 kg cle 4.327× 10−4 kg·m2/s

rfc −0.0685 m kh 50 + 300q2
h N/m

r3c/4 0.081 m ka 0.3 + 5q2
a Nm/rad

ra 0.033 m kte 4.570× 10−3 Nm/rad

rte 1.019× 10−2 m kle 4.704× 10−3 Nm/rad

rle 4.401× 10−3 m Ia 2.431× 10−3 kg·m2

Cl-a 6.573 Ite 2.307× 10−6 kg·m2

Cl-te 3.472 Ile 4.791× 10−6 kg·m2

Cl-le −0.145 Lte 0.088 m

Cm-a 0 Lle −0.010 m

Cm-te −0.631 Ls 0.260 m

Cm-le 0.098 Lhc 0.075 m

Table 6.2: Key information of the NN components of the proposed CIC-ONNC.

NN Input Order Neurons Weights Initialisation

Identifier

[
x

u

]
x : up to 4th

u : 1st nn = 135 offline training based on simulations
for 14.1 m/s airspeed

Critic x up to 4th nn = 65 zeros

deals with input-constrained cases apply to AFS. For these reasons, the robust

controller for AFS studied in Prime (2010) was deemed appropriate for use in

comparison, which has a primary structure as the linear-quadratic-regulator (LQR)

optimal control scheduled via linear-parameter-varying (LPV) technique using LMIs.

The LPV-LQR controller was designed using the same aeroelastic model, system

parameters, and cost function weightings (Q and R) as the proposed CIC-ONNC.

AFS at two different airspeeds were investigated, and the worst-case scenario

was considered where the AFS controllers were expected to suppress flutter that

had already developed and reached the state of limit-cycle oscillation. Automatic
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6.4 Wind-tunnel experiments

Table 6.3: Parameters of the proposed CIC-ONNC.

Parameters Values

λ
±2I degrees (±0.035I rad) for U∞ = 14.8 m/s tests
±8I degrees (±0.140I rad) for U∞ = 18 m/s tests
±9I degrees (±0.157I rad) for U∞ = 18 m/s tests

αcnn 104

αsnn 104

Γ 103I

Q diag (1, 1, 10−4, 10−4, 10−1, 10−1, 10−4, 10−4)

R 102I

Q f 103I

R f 1

Qs(i) 105I

Rs(i) 1

triggers were put in place to switch the AFS controllers on when the pitch angle

qa crossed zero immediately after 15 s. Let tc denote this triggering time. Then we

have initial conditions x(tc) under the experimental setting. This allowed all tests

under different controllers to be evaluated under the same settings and consistent

initial conditions.

For airspeed of U∞ = 14.8 m/s, a bound of ±2 degrees (λ = 0.035I rad) was

set for the TE and LE control surfaces by imposing saturation constraints to the TE

and LE servos. Aeroelastic responses of the aerofoil section, together with TE and

LE deflections, under the proposed CIC-ONNC and the benchmark LPV-LQR, are

plotted in Figure 6.1. Corresponding trajectories of the NNs weights (Ŵs and Ŵ) of

the proposed CIC-ONNC in the form of their 2-norm are presented in Figure 6.2.

No significant differences can be observed for plunge and pitch responses from

Figure 6.1 before 0.5 s, whereas deviations start to increase afterwards (Figure 6.1)

as the NNs weights converge (Figure 6.2). Figure 6.2 also shows that Ŵs converges

faster than Ŵ , and thus allowing proper convergence of Ŵ in around 0.7 s, before

the flutter is fully suppressed at approximately 1.5 s (under the proposed CIC-
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Figure 6.1: Suppression of developed flutter at U∞ = 14.8 m/s airspeed with
λ = 0.035I rad.

ONNC). The convergence of both Ŵs and Ŵ well before the flutter settles suggests

optimal control being obtained under CICs. By comparing TE and LE control

surfaces deflections, it is straightforward to see that TE severely saturates the pre-set

bounds under the LPV-LQR scheme due to constraints in control being not taken

into account in controller synthesis. As a result, the LPV-LQR scheme takes longer

to suppress the developed flutter.

In tests with U∞ = 18.0 m/s airspeed, the ±2 degrees bound was found too

small to enable effective flutter suppression. Therefore, λ for both controllers were

increased incrementally by a magnitude of 1 degree until successful flutter suppres-

sion was observed. It was found that the LPV-LQR scheme failed to suppress flutter

until the saturation bound for TE and LE was raised to an absolute value of 9 degrees

(λ = 0.157I rad), while the proposed CIC-ONNC successfully eliminated flutter
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6.4 Wind-tunnel experiments

Figure 6.2: NN weights convergence of the proposed CIC-ONNC at U∞ = 14.8 m/s
airspeed with λ = 0.035I rad.

with a ±8 degrees bound (λ = 0.140I rad), as can be seen from Figures 6.3 and 6.5.

With the ±9 degrees bound, the proposed CIC-ONNC also yielded superior AFS

results, as demonstrated in Figure 6.5, where in contrast, the LPV-LQR scheme heav-

ily saturates both control surfaces and needs significantly longer time to suppress

flutter. Regarding the NNs weights during online learning, the 2-norm trajectories

in Figures 6.4 and 6.6 show similar patterns to those in the U∞ = 14.8 m/s case,

consistently indicating satisfactory convergence and optimal control being reached.

The optimality of the control law synthesised in real time using the proposed

CIC-ONNC can be further confirmed by comparing the performance costs of both

controllers, calculated from the experiments data. The span of the data included for

cost computation in each different test scenario is the same as the time range shown

in Figures 6.1, 6.3, and 6.5. For the cost of control inputs, both the conventional

quadratic formulation uTRu and the nonquadratic one as in Eq. (6.4) in their

discretised form are considered. The values in Table 6.4 are the averaged results

from four repeated experiments, which show that the proposed CIC-ONNC has

consistent low costs while those of the LPV-LQR scheme are much higher. It is

also worth noting that the differences between the performance costs obtained by
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Figure 6.3: Suppression of developed flutter at U∞ = 18.0 m/s airspeed with
λ = 0.140I rad.

Table 6.4: Performance costs calculated from experiments data.

Tests

V(x(tc)) from Eq. (6.2) with Q̄(x) = xTQx

R̄(u) = uTRu R̄(u) as Eq. (6.4)

LPV-LQR CIC-ONNC LPV-LQR CIC-ONNC

14.8 m/s with λ = 0.035I 1.615 0.380 0.542 0.411

18.0 m/s with λ = 0.140I 513.393 7.634 70.446 8.780

18.0 m/s with λ = 0.157I 129.213 7.633 22.242 8.786

different cost functions are small under the proposed CIC-ONNC compared with

those of the LPV-LQR scheme. This finding is in agreement with Remark 6.1, as the

proposed CIC-ONNC did not saturate the TE and LE whereas heavy saturation of

control was observed under the LPV-LQR scheme (see Figures 6.1, 6.3, and 6.5).
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6.5 Conclusions

Figure 6.4: NN weights convergence of the proposed CIC-ONNC at U∞ = 18.0 m/s
airspeed with λ = 0.140I rad.

6.5 Conclusions

A novel control scheme, CIC-ONNC based on NOCOS, is proposed and analysed

in this study to improve AFS performance under CICs. The Lyapunov stability

analysis shows that it is viable to introduce the generalised nonquadratic control-

input cost function to the NOCOS involving the MVFA, contributing new knowledge

to the NOCOS theory framework. As demonstrated and confirmed in experimental

studies in a wind tunnel, the proposed CIC-ONNC using the MVFA and EKF

with a performance cost containing the generalised nonquadratic control-input cost

function is practically feasible and effective in optimally dealing with CICs involved

in AFS, delivering satisfactory AFS results.
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Figure 6.5: Suppression of developed flutter at U∞ = 18.0 m/s airspeed with
λ = 0.157I rad.

Figure 6.6: NN weights convergence of the proposed CIC-ONNC at U∞ = 18.0 m/s
airspeed with λ = 0.157I rad.
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Chapter 7

Conclusions

The contributions and significance of the overall work on active suppression of

aerofoil flutter (AFS) and its essential elements are summarised in Section 7.1.

Future directions of the work are recommended in Section 7.2.

7.1 Contributions and significance

In general, the proposed solutions in this thesis based on online synthesis of nonlin-

ear optimal control (NOCOS) using neural networks (NNs) are novel and shown

effective in solving the AFS controller synthesis dilemma and improving AFS from

the optimal control perspective. The proposed methods were also experimentally

confirmed feasible for real-time implementation.

Specifically, the methods derived in this thesis at each stage towards the ultimate

goal of solving the dilemma involved in AFS controller synthesis have respective

technical and scientific significance as follows:

• The virtual stiffness-damping system (VSDS) prototype developed in Chap-

ter 3 for wind-tunnel experiments has a technical breakthrough in enabling

improved and robust simulation of physical stiffness and damping in oscilla-

tory systems. It was experimentally proven capable of mimicking traditional

aeroelasticity test-beds and hence serving as a reliable platform for experi-
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mental validation of the proposed AFS controllers that follow. It also has

the potential for other industrial applications involving oscillatory testing

requiring frequent change of stiffness and damping settings.

• The proposed NOCOS algorithm with the Modified form of NN-based Value

Function Approximation (MVFA) presented in Chapter 4 is theoretically and

analytically shown effective in addressing closed-loop stability in a compact

configuration suitable for real-time implementation. It not only forms an

essential basis for subsequent studies towards solving the AFS control syn-

thesis dilemma but also contributes new knowledge to the NOCOS theory

framework.

• In Chapter 5, the systematic procedure proposed for synthesising the sched-

uled parameter matrix P plays a crucial role in generalising the MVFA from

locally nonlinear systems to globally nonlinear scenarios. The resulting gener-

alisation is a vital step to make the proposed NOCOS scheme suitable for AFS

applications. The extended Kalman filter (EKF) proposed for critic NN tuning

with the MVFA, theoretically proven stable and experimentally confirmed

feasible, allows satisfactory parameter convergence for AFS during online

learning. The impact of modelling errors or uncertainties can be significantly

reduced by implementing online system identification using decoupled iden-

tifier NNs, as shown effective in wind-tunnel tests. These three elements –

MVFA generalisation, EKF-based MVFA tuning, and online system identifi-

cation, together form the proposed NN-based control scheme for AFS and

provides a complete solution to solving the AFS controller synthesis dilemma,

assuming no actuator constraints.

• Optimal control for AFS in the presence of control-input constraints is tackled

in Chapter 6, where the introduction of a non-quadratic functional for general-

ising the traditional quadratic cost function to a non-quadratic form for the

NN controller based on the MVFA is theoretically and experimentally proven
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viable. The proposed NN controller with the generalised cost function thus

successfully addresses AFS scenarios where the available control authority is

bounded by some constraints, in an optimal manner. Experimental results are

promising and confirm the validity and efficacy of the proposed NN controller

under control-input constraints. This is a significant enhancement to the NN

control scheme proposed in Chapter 5 and provides a better solution to solving

the AFS controller synthesis dilemma.

7.2 Future work

Three possible directions are recommended for future work on AFS.

The first deals with the online tuning for both the critic and identifier NNs.

The proposed NN controllers for AFS, with extended Kalman filters for online

tuning, were proven practical and effective in wind-tunnel experiments. For faster

parameter convergence and further performance improvement, a direct and possible

way is to explore more efficient online learning of the NNs involved.

The second suggestion on possible future work is about the types of NNs used

for the controller. The critic and identifier NNs of the proposed controllers are linear

in the parameters (LIP) with explicit nonlinear activation functions. LIP NNs on

one hand can give firm approximation results for specified accuracy but on the

other hand require explicitly nominating a suitable basis of activation functions.

Using the high-order Weierstrass approximation theorem is a convenient way to

systematically select a set of proper activation functions, but the the number of

activation functions can increase significantly as the order of the power series or the

dimension of the system rises. Some activation functions as part of the power series

given by the Weierstrass approximation theorem may have negligible influence on

approximation accuracy and can be eliminated, but the refinement requires either

a prior knowledge or simulation-aided procedures. Therefore, to further ease the

controller synthesis, multi-layer NNs that are nonlinear in the parameters (NLIP)
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are of interest for further investigation. By using NLIP NNs, there is no need to

explicitly determine a basis of activation functions but only a common form such

as sigmoid, hyperbolic tangent, radial-basis or other logistic-curve-type functions.

Nonetheless, nonlinearity in NN weights poses new challenges in deriving efficient

tuning algorithms.

The third recommendation is to consider exogenous disturbances in the optimal

control scheme. For the case of AFS, typical exogenous disturbances are turbulence.

During steady cruise regime, the turbulence intensity of atmosphere is low and has

little impact on AFS. As shown in wind-tunnel experiments, where the turbulence

intensity was 0.5%, no considerable perturbation was observed, and all results

under the proposed NN controller are promising. However, should turbulence

be inevitably encountered, the NN controllers proposed in this thesis may only

be suboptimal, due to exogenous disturbances being not considered in the online

optimal control synthesis. For optimal AFS in the presence of turbulence, possible

solutions may involve solving the Hamilton-Jacobi-Isaacs equation instead of the

Hamilton-Jacobi-Bellman equation in the critic NN. In addition, the disturbance-

input dynamics may need to be included in the online system identification scheme

as well.
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Appendix A

Controller composition

This appendix supplies detailed neural-network composition of the proposed nonlin-

ear optimal controller used in wind-tunnel experiments as presented in Chapters 5

and 6.

A.1 Identifier neural network activation functions

The activation functions contained in Φs(x) are:

x1, x2, x3, x4, x5, x6, x7, x8, u1, u2, x3
1, x2

1x2, x2
1x4, x2

1x5, x2
1x6, u1x2

1, u2x2
1,

x1x2
2, x1x2x4, u2x1x2, x1x3x4, x1x3x5, x1x4x5, x1x2

5, u1x1x5, x3
2, x2

2x3, x2
2x5, x4

1, x3
1x2,

x3
1x3, x3

1x4, x3
1x5, x3

1x6, x3
1x7, x3

1x8, u1x3
1, u2x3

1, x2
1x2

2, x2
1x2x3, x2

1x2x4, x2
1x2x5, x2

1x2x6,

x2
1x2x7, u1x2

1x2, u2x2
1x2, x2

1x2
3, x2

1x3x4, x2
1x3x5, x2

1x3x6, x2
1x3x7, x2

1x3x8, u1x2
1x3, u2x2

1x3,

x2
1x2

4, x2
1x4x5, x2

1x4x6, x2
1x4x7, x2

1x4x8, u1x2
1x4, u2x2

1x4, x2
1x2

5, x2
1x5x6, x2

1x5x7, x2
1x5x8,

u1x2
1x5, u2x2

1x5, x2
1x2

6, x2
1x6x8, u2x2

1x6, u1x2
1x7, u2x2

1x7, u1x2
1x8, u2x2

1x8, x1x3
2, x1x2

2x3,

x1x2
2x4, x1x2

2x5, x1x2
2x6, x1x2

2x7, x1x2
2x8, u1x1x2

2, x1x2x2
3, x1x2x3x4, x1x2x3x5, u1x1x2x3,

u2x1x2x3, x1x2x2
4, x1x2x4x5, u1x1x2x4, u2x1x2x4, x1x2x2

5, x1x2x5x6, u1x1x2x5, u2x1x2x5,

u1x1x2x6, x1x2
3x5, u1x1x2

3, u2x1x2
3, x1x3x2

4, x1x3x4x5, u1x1x3x4, u2x1x3x4, x1x3x2
5, u1x1x3x5,

u2x1x3x5, u1x1x3x6, u2x1x3x6, x1x3
4, x1x2

4x5, u1x1x2
4, x1x4x2

5, x1x4x5x6, u1x1x4x5, u2x1x4x5,

u2x1x4x6, x1x3
5, x1x2

5x6, u1x1x2
5, u2x1x2

5, u2x1x5x6, x3
2x4, x3

2x5, u1x3
2, u1x2

2x3, u2x2
2x3,

x2
2x2

5, u1x2
2x5, u2x2

2x5, x2x2
3x4, u1x2x3x5, x2x4x2

5, u2x2x2
5, x3x3

5, u2x4x2
5.
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A.2 Critic neural network activation functions

The activation functions contained in Φ(x) are:

x4
1, x3

1x6, x2
1x2x4, x2

1x2
3, x2

1x3x8, x2
1x4x8, x2

1x2
6, x2

1x2
8, x1x2

2x6, x1x2x3x5, x1x2x4x5,

x1x2x5x6, x1x2x6x8, x1x2
3x4, x1x3x2

4, x1x3x2
5, x1x3x6x7, x1x3

4, x1x4x2
5, x1x4x6x7, x1x3

5,

x1x5x6x7, x1x3
6, x1x6x2

8, x4
2, x3

2x7, x2
2x3x6, x2

2x4x6, x2
2x5x7, x2

2x2
7, x2x2

3x5, x2x3x4x5,

x2x3x5x6, x2x3x6x8, x2x2
4x5, x2x4x5x6, x2x4x6x8, x2x2

5x6, x2x5x6x8, x2x2
6x7, x2

3x2
4, x2

3x2
5,

x2
3x6x7, x3x3

4, x3x4x2
5, x3x4x6x7, x3x3

5, x3x5x6x7, x3x3
6, x3x6x2

8, x4
4, x2

4x2
5, x2

4x6x7, x4x3
5,

x4x5x6x7, x4x3
6, x4x6x2

8, x4
5, x2

5x6x7, x5x3
6, x5x6x2

8, x4
6, x2

6x2
8, x4

7, x4
8.
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