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Abstract 

Previous research has shown that typeface fluency has an impact on the encoding and 

processing of written texts. Specifically, less fluent letters and words appear to be processed 

more deeply and remembered more accurately. To date, there is limited research regarding the 

mechanisms by which typeface fluency impacts on the encoding of full sentences. Therefore, 

this study aimed to expand on this research by focusing on the way it can be applied to the 

encoding of full sentences. Participants were asked to memorise simple sentences presented in 

either a fluent or disfluent typeface. Electroencephalography was used to record the changes in 

spectral power during the learning phase in order to determine the level of encoding success. 

Following a period of distraction, an audio-presented recall task was used to assess recall 

accuracy. Fluency was found to be associated with changes in alpha power at learning. Further, 

alpha power significantly differed between the parietal and occipital regions of the brain but 

did not show any reaction with fluency. Due to performance ceiling effects, these findings 

could not be associated with memory outcomes. This research is especially relevant to 

education, as much of the information presented in schooling is digitally presented text.  

 

Keywords: electroencephalography, spectral power, typeface fluency, language encoding, 

typography 
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The influence of typeface fluency on simple sentence encoding as measured through spectral 

power analysis. 

Our ability to communicate effectively through language is crucial for the spread of 

information and the advancement of society. From around 3500BCE, humans have used 

script to communicate visually, which developed from earlier uses of tokens and other 

imagery (Schmandt-Besserat, 2014). Since then, written language has become a key way for 

information to be presented and shared. The linguistic study of written language became a 

more prominent area of investigation in the 1970s (Schmandt-Besserat & Erard, 2008). 

Psychologists and typographers have studied the way humans process written information. 

While understanding language and deriving meaning from it appears to be a simple task, 

being cognizant of the underlying mechanisms of language processing and comprehension is 

a far more difficult task (Bastiaansen & Hagoort, 2006). Researchers have more recently 

begun to discover the impact of the way the text is visually presented on how written 

information is processed in the brain, and how well that information is retained. This is 

important knowledge for a range of contexts, such as education and marketing, where the 

retaining of presented information is crucial for success. While there is evidence for the 

connection between the visual features of written language and information processing and 

recall, there is little known regarding the impact of such visual features on the brain activity 

that underlies the encoding of such information. Moreover, there is even less on the impact of 

visual features on encoding written sentences of information. This study will address this gap 

in the present literature. 

Language Encoding 

Encoding is the process by which presented information is registered and processed in 

the brain (Baddeley, 1976). The success of encoding influences one’s ability to store and 

retrieve this information. Effective communication requires both a ready store of contextually 
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appropriate responses, as well as the ability to attend to, process and interpret received 

information. The ability to encode language is therefore especially important. Understanding 

the mechanisms around language encoding and processing is both fascinating and essential, 

as it will allow us to explore how the mechanisms of language processing in the brain work, 

how they can fail or work differently in people with language disorders, and how to 

maximize our recall ability based on manipulation of factors that affect our language 

encoding abilities. Encoding of individual letters has been found to be essential for the 

processing of language (Paap & Ogden, 1981). Keage, Coussens, Kohler, Thiessen, and 

Churches (2014) found that the visual features of individual written letters affect their 

processing. Their results suggest that it is more difficult to initially abstract letter meaning 

when a letter is less legible. In fact, several studies have shown that the visual features of 

single letters influence their encoding success (Thiessen, Kohler, Churches, Coussens, & 

Keage, 2015; Wamain, Tallet, Zanone, & Longcamp, 2012). Such features include a 

relationship to movement-based information such as with handwriting and script (or motor 

familiarity) (Wamain et al., 2012), letter width, and the vertical and horizontal strokes of each 

letter (Thiessen et al., 2015). Moreover, the encoding of separate words has been widely 

studied. Physical variables such as word-background colour contrast, case and style are 

thought to have a moderate effect on word encoding (Barton, Fox, Sekunova, & Iaria, 2010; 

Wickens, 1973). Research on word processing has primarily focused on both wider neuronal 

activity and specific brain regions involved in word encoding (Clark & Wagner, 2003; Mei et 

al., 2010; Weiss & Rappelsberger, 2000), and have found increased neural activity parietal 

and frontal cortices during word memorization tasks, as well as changes in coherence 

depending on recall accuracy. Mei et al. (2010) found that the left fusiform cortex, or the 

visual word form area, plays a role in the successful the processing and learning of visual 

information. This area has also been found to be more active in stronger readers and is said to 
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specifically support the encoding of words. Allen, Madden, and Slane (1995) stated that 

visual word encoding is the first step in the process of reading. However, natural language is 

not presented as single letters or words very often. Instead, we tend to communicate 

information through the use of full sentences (Hasson, Nusbaum, & Small, 2007). Therefore, 

the most accurate and generalisable way to study encoding of language is through looking at 

whole sentences.  

Areas of the Brain Involved. Activity in both hemispheres of the brain have been 

linked to different aspects of written language processing (Barton et al., 2010). Reading is 

largely based in the left inferior temporo-occipital area (Baldo et al., 2018). Specifically, 

sentence-level reading has been associated with activation of the left anterior-mid of the 

medial and superior temporal gyri. Left posterior ventral temporal zones have in fact been 

labelled the “visual word form area” (McCandliss, Cohen, & Dehaene, 2003). A 

computerized tomography study found that the left perisylvian cortex plays a role in verbal 

short term memory (STM) (Koenigs et al., 2011). Computerised Tomography (CT) has 

shown sentence-reading comprehension to be positively correlated using to activity in the left 

parahippocampus and right calcarine fissure, and oral word reading was positively correlated 

with activity in the left superior temporal gyrus, left inferior temporal gyrus, left 

supramarginal gyrus and right superior temporal gyrus (Xia et al., 2017). Lesions in the left 

fusiform area can impair the reading of text, and lesions in the right have been found to 

impair handwriting recognition specifically (Barton et al., 2010). These findings suggest 

strong hemispheric differences in language encoding, and Spironelli and Angrilli (2010) 

suggest that functional lateralisation is in fact necessary for humans to fully realise their 

linguistic potential. 



TYPEFACE FLUENCY, ENCODING AND SPECTRAL POWER  11 

 

EEG Measures and Spectral Power 

While imaging has helped identify the major regions and structure important for 

language processing, such techniques do not capture the sequences of processes in real time 

well. Language encoding processes can be measured using several different techniques with 

high temporal resolution. A popular method for this is using an electroencephalogram (EEG) 

to measure the electrical signals in the brain. The precise temporal resolution of EEG enables 

the capture of neuronal activity evoked by stimuli, including the encoding process (Teplan, 

2002). One way to use this technology is to analyse the event related potential (ERP), or 

stimulus-locked neural activity during a language task. ERP analysis is a popular way to 

study language processing, and such research makes up a large proportion of the EEG-based 

language studies (Weiss & Mueller, 2003). ERPs reflect global electrical activity in the brain 

(Kaan, 2007), and different components have been linked to different linguistic processes. 

For example, the N400 is a negative waveform that occurs 400ms after stimulus onset, and is 

particularly linked to sentence-final words (Friederici, 2004). This is often larger over the 

right hemisphere with visually presented words. Additionally, the P600 is a positive 

waveform that occurs 600ms after stimulus presentation, and is associated with violations or 

difficulties with sentence structure (Friederici, 2004). ERP analysis is beneficial for language 

processing research as its high temporal resolution matches the rate of language 

comprehension, and thus allows researchers to track processing throughout a language task 

(Kaan, 2007). However, ERPs only consist of phase-locked activity. Interactive brain systems 

show changes throughout the duration of processing rather than through specific waveform 

amplitude changes, and therefore ERPs only give a rough estimate of the whole electrical 

response (Weiss & Mueller, 2003). Another way to analyse language processing using EEG is 

to analyse specific frequency bands of neural activity. These frequency bands are thought to 
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have a crucial role in linking areas of the brain that are a part of the functional network 

involved in language processing (Bastiaansen & Hagoort, 2006). Each frequency band can be 

isolated using EEG and can be analysed with respect to stimulus presentation. Spectral 

analysis is able to monitor global synchronisations and desynchronisations between 

frequency bands and electrodes (Weiss & Mueller, 2003). It is therefore a useful way to 

measure electrical activity across the cortex during a language processing task, and 

successfully compliments ERP findings. Grabner, Brunner, Leeb, Neuper, and Pfurtscheller 

(2007) state that language processing is primarily reflected in the alpha and theta frequency 

bands. 

Alpha and Alpha Power. Alpha waves are electrical brainwaves with a frequency 

between 8-13Hz. There has been extensive research into this frequency band and into the 

sorts of activities it is associated with. Geske and Bellur (2008) found that the ventral stream 

in the brain showed alpha changes associated with processing of line, shape and form 

information. Additionally, alpha in the dorsal stream was associated with spatial processing 

and focus of attention (Geske & Bellur, 2008). This study showed that alpha waves are found 

primarily in the occipital and parietal lobes of the brain, and that they are inversely related to 

task difficulty. It has also been associated with preparatory visual attention (Bacigalupo & 

Luck, 2019), cognitive performance and processing speed (Klimesch, 1999), and is thought 

to reflect inhibitory top-down control of task processing and executive functioning (Fell et 

al., 2011). While some studies do suggest otherwise, (Poliakov, Stokes, Woolrich, Mantini, & 

Astle, 2014), most research shows an inverse correlation between alpha activity during 

encoding and cognitive performance. Cognitive performance has specifically been associated 

with a decrease in alpha power (Klimesch, Sauseng, & Hanslmayr, 2007), and when such 

changes occur in response to a particular stimulus or event, it is called event related 

desynchronisation (ERD, for a decrease in activity) in the alpha band. Conversely, event 
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related synchronization (ERS) in the alpha range refers to an increase in activity 

(Pfurtscheller & Da Silva, 1999). Specifically, ERD is the percentage of change in frequency 

band power within a particular time interval with respect to a reference (Klimesch, 

Russegger, Doppelmayr, & Pachinger, 1998). Klimesch (1999) specifically found an increase 

in ERD in the left hemisphere at the time of semantic judgement, which is suggested to be 

due to an increase in attention required. ERD is also associated with an increase in attention 

(Klimesch, 1999; Mathewson et al., 2011; Pfurtscheller & Da Silva, 1999; Pfurtscheller, 

Neuper, & Mohl, 1994). More precisely, a decrease of activity in response to attention 

engagement is found predominantly in the lower alpha band range (8-10Hz). The upper alpha 

band (11-13Hz) on the other hand, has been associated with the processing of sensory-

semantic information (Klimesch, 1999; Pfurtscheller & Da Silva, 1999). A decrease in left 

hemisphere alpha activity has been linked to the performance of language tasks (Grabow, 

Aronson, Greene, & Offorfd, 1979). Specifically, alpha ERD occurs following stimulus onset 

in reading and semantic tasks. This desynchronisation in the alpha band appears to be 

maximal after a full sentence has been presented, therefore reflecting sentence 

comprehension (Röhm, Klimesch, Haider, & Doppelmayr, 2001). 

Theta and Theta Power. Theta frequencies range between 4-8Hz and are also 

important for memory encoding (Werkle-Bergner, Müller, Li, & Lindenberger, 2006).  

Oscillations within this frequency band have been specifically associated with remembering 

words, and increased theta power during encoding has been related to memory processing 

(White et al., 2013) and increased recall success (Hanslmayr, Spitzer, & Bäuml, 2008). 

Werkle-Bergner and colleagues (2006) suggest that this is due to a link between theta activity 

and long-term potentiation - the mechanism responsible for creating memory traces. 

Additionally, theta ERS in the frontal area is believed to reflect the activation of neural 

networks responsible for the allocation of attention (Missonnier et al., 2006), thereby aiding 
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the encoding of relevant information. A theta power increase can be seen approximately 100-

600ms following stimulus onset, and occurs for both open class (nouns, verbs and adjectives) 

and closed class (articles, prepositions and determiners) words (Bastiaansen & Hagoort, 

2006). Theta band activity has been specifically linked to the lexical-semantic retrieval 

process, due to differences in power between open and closed class words (Grabner et al., 

2007). It is also expected to indicate an interaction between the other important memory 

structures, such as the hippocampus and the cortex (Bastiaansen & Hagoort, 2003). In their 

2003 paper, Bastiaansen and Hagoort state that hippocampo-cortical circuits are thought to be 

the origin of much theta band activity, and thus any scalp-recorded activity through EEG 

would be reflective of the activity in these circuits. As the hippocampus plays a crucial role in 

memory formation (Izquierdo & Medina, 1997), this further highlights the connection 

between theta activity and memory processes. 

Using Spectral Power to Measure the Strength of Language Encoding 

There has been ample research conducted using alpha power to measure sentence 

encoding, both in a linguistic sense and in a visual sense for written language. An early study 

found that words associated with an immediate reduction in alpha activity are recalled better 

than words not associated with alpha reduction (Warren, Peltz, & Haueter, 1976). Alpha 

oscillations have been linked to both language and working memory (WM), both of which 

play a crucial role in sentence processing (Meyer, Obleser, & Friederici, 2013). Further, ERD 

has been associated with the successful encoding of sentences into WM (Vassileiou, Meyer, 

Beese, & Friederici, 2018). These findings focus on syntactic, or sentence structure features, 

rather than lexical-semantic, or word-based features, and suggest that a decrease in alpha 

power is indicative of successful sentence encoding. Due to the link between ERD and 

sentence structure, the decrease in alpha power found when encoding words from lists into 

WM (Fellner, Bäuml, & Hanslmayr, 2013) is weaker than when encoding words from a full 
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sentence into WM (Lam, Schoffelen, Uddén, Hultén, & Hagoort, 2016). The basis for this 

effect was thought to be the greater demand of extracting words from a sentence as opposed 

to words presented separately, as greater neural activation is required to process whole 

sentences, compared to single words. ERD has been found both before and during the 

presentation of visual stimuli, suggesting that ERD is associated with both visual and 

cognitive aspects of language processing (Pfurtscheller et al., 1994). A decrease in alpha 

power when reading is thought to be due to the increased executive function required 

(Scharinger, Kammerer, & Gerjets, 2015), and this suggests active visual processing (Wianda 

& Ross, 2019) and semantic processing  (Fellner et al., 2013). Combined, these findings 

suggest that a decrease in alpha power underlies the successful encoding of language 

(Klimesch et al., 1996; Vassileiou et al., 2018).  

Synchronisation of theta band activity has been related to the retrieval of lexical 

information from long term memory stores (Grabner et al., 2007). This power increase is 

associated with the successful encoding of information (Lin et al., 2017). A global increase of 

theta power has also been associated with the encoding of language, both at the word level 

and sentence level (Bastiaansen, Van Berkum, & Hagoort, 2002). Studies completed by 

Klimesch and colleagues provide evidence for theta ERS during both the encoding and 

retrieval of linguistic information. This synchronisation is greater for participants who score 

highly on recall tasks than those who perform poorly (Klimesch & Doppelmayr, 1996; 

Klimesch, Doppelmayr, Schimke, & B., 1997). Moreover, theta power increases are observed 

during the encoding of visual lexical information specifically (Bastiaansen, Oostenveld, 

Jensen, & Hagoort, 2008). Although some research suggests that there is no relationship 

between language processing and theta activity (Röhm et al., 2001), it is overwhelmed by 

evidence in support of such a connection (Bastiaansen et al., 2008; Klimesch, 1999). The 

hippocampal network, including its links to the cortex, is thought to support language 



TYPEFACE FLUENCY, ENCODING AND SPECTRAL POWER  16 

processing, which is evidenced by theta power increases (Covington & Duff, 2016; Piai et al., 

2016). Stronger theta power is found during sentence encoding in comparison to encoding 

words from a list (Lam et al., 2016).   

In addition to analysing alpha or theta alone, comparing levels of alpha and theta 

power during encoding further supports the link between spectral power changes and 

encoding (Fell et al., 2011; Klimesch et al., 1997). ERS in the theta band combined with ERD 

in the alpha band has been associated with intentional encoding of information (Mölle, 

Marshall, Fehm, & Born, 2002) and memory performance (Klimesch, 1999). Further, 

Klimesch, Fellinger, and Freunberger (2011) found that theta ERS and alpha ERD develop in 

the same time window following stimulus presentation. Finally, a theta power increase and 

alpha power decrease is found following the presentation of words in a sentence 

(Bastiaansen, van Berkum, & Hagoort, 2002). This implies a relationship between alpha ERD 

and theta ERS during encoding of new information. One explanation for how this interaction 

of alpha and theta jointly aid language encoding is that while alpha activity is associated with 

neural activity inhibition (Jensen & Mazaheri, 2010), theta is associated with an increase in 

neural activity, especially during learning and memory-based tasks (Kahana, 2006). 

Therefore, a decrease in alpha power and simultaneous increase in theta power at stimulus 

onset is associated with an increase in neural activity throughout the encoding process.  

Typeface Fluency and Encoding  

A range of features can influence the encoding of written information. Typeface refers 

to the collection of these features that vary to create a particular font. As such, a font is a 

particular presentation of typeface features that may differ in size, weight or boldness, slope 

or italicization, and width (Carter, Meggs, & Day, 2011). The fluency of a typeface refers to 

how legible it is, or how similar the individual letters are (Keage et al., 2014; Thiessen et al., 

2015). It is important to note that fluency is not necessarily about the readability of the 
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typeface, although they are related constructs. Typeface fluency is instead determined by the 

ease of distinguishing each letter, rather than readability specifically (Oppenheimer & Frank, 

2008). Features that influence typeface fluency include italicization, greyscale percentage and 

whether it is serif (has small lines at the end of larger strokes) or sans-serif (does not have any 

such embellishment) (Beier, 2013; Lonsdale, 2014). For example, a typeface with no 

italicization, presented in black, and without serifs, would be considered more fluent. A 

disfluent typeface, on the other hand, may be italicized, presented in greyscale rather than 

black, and have serifs.  

The disfluency effect (Geller, 2017) states that words presented in a disfluent typeface 

are better remembered than words presented in a more fluent typeface. A long encoding 

duration has been associated with the disfluency effect (Gomez & Perea, 2014; Ngiam, L. C. 

Khaw, Holcombe, & Goodbourn, 2018). Ngiam and colleagues suggest that the encoding of 

disfluent typefaces requires more time for the information to fill WM than fluent typefaces, 

and Gomez and Perea’s study suggests this may be due to a decrease in lexical accessibility 

for less familiar word forms (in their case, word orientation). Additionally, increased neural 

activity is seen with decreased typeface fluency during processing (Thiessen et al., 2015). 

This is due to the fact that a disfluent typeface requires more mental effort and better 

understanding of the content in order for the information to be successfully encoded into WM 

(Eitel, Kühl, Scheiter, & Gerjets, 2014; Thiessen et al., 2015). In fact, if a typeface is more 

disfluent, deeper processing could occur due to enhanced recall (Price, McElroy, & Martin, 

2016). Typeface fluency has been shown to impact iconic storage capacity (Hoffman, 1987). 

Moreover, Ngiam and colleagues (2018) found a decreased verbal WM capacity for disfluent 

typefaces, and Rajsic, Burton, and Woodman (2019) found that written letters and words 

activate visual WM encoding and storage. In addition, Walker (2008) found that letter and 

word identification is supported by encoding the visual aspects of written language. Various 
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aspects of typeface have also been found to influence attention (Faber, Mills, Kopp, & 

D’Mello, 2017). Brath and Banissi (2017) suggest that typeface spacing is perceived 

preattentively and note that it can specifically influence the encoding of quantitative 

information. Roldán, Marcet, and Perea (2018) found that letter segmentation – the separation 

of words into individual letters – occurs during the letter encoding stage of written language 

encoding. This is called cursive normalisation. The study found that connected letters in 

cursive typefaces require a longer reaction time than for typefaces with separated letters. 

Geller (2017) additionally found that the more disfluent a cursive text is, the better it is 

remembered.  

As much as there is evidence in support of the disfluency effect, there is also some 

evidence with contrasted findings. Larson (2009) suggested that visual aid variables such as 

varying typeface do not have any significant impact on information recall. Instead, their study 

suggests that unfamiliarity with the disfluent typeface, rather than the disfluency itself, 

impacts encoding. This has been backed up by several studies that suggested perceptual 

disfluency may even have a negative impact on memory (Einstein, McDaniel, Owen, & Coté, 

1990; Yue, Castel, & Bjork, 2013). It is possible that there is an existing threshold for any 

beneficial disfluency effects. It is therefore important for future research to identify the 

amount of perceptual difficulty required to be beneficial to memory. This threshold is called 

desirable difficulty (Bjork, 1994). According to Bjork (1994), desirable difficulties force the 

reader to use a more elaborate encoding processes, as well as a more substantial and varied 

retrieval processes. Perceptual difficulties that sit below this threshold trigger encoding and 

retrieval processes that support the processing and recall of novel information (Bjork & 

Bjork, 2011). Sungkhasettee, Friedman, and Castel (2011) show that desirable difficulties in 

word presentation increases recall success, as they require encoding processes that enhance 

recall. This is therefore something that must be kept in mind when studying the effects of 
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disfluency not only on the encoding process, but also on recall ability. Bryden and Allard 

(1976) suggest that typeface processing is carried out more efficiently in the right 

hemisphere. They found that script-like (more disfluent) typefaces showed left hemisphere 

dominance, whereas print-type (more fluent) typefaces were associated with greater right 

hemisphere activity. Moreover, the initial stages of written letter processing has been 

associated with right hemispheric dominance (Hellige & Webster, 1979).  

On balance, the findings on typeface fluency suggest that both visual and linguistic 

based aspects of written language play a role in encoding. However, there is still more to 

learn about what factors contribute to beneficial effects, as well as understand the neural 

mechanisms of such effects. 

The Present Study 

Much of the typeface fluency and encoding research focuses on single letters or words, 

rather than on full sentences. Since most of our communication occurs in full sentences, the 

study of typeface fluency impact on sentence encoding would be highly beneficial. This study 

will aim to fill this gap in the current literature by focusing specifically on the encoding of 

written sentences. There is equally a gap in terms of measuring the influence of typeface on 

sentence encoding with EEG. As alpha power appears to be important for the sensory aspects 

of language processing (Weiss & Mueller, 2003), attention (Mathewson et al., 2011), task 

difficulty (Geske & Bellur, 2008) and cognitive performance (Klimesch et al., 2007), it will 

be used as a measure of encoding success. Additionally, theta frequencies are important for 

memory (White et al., 2013) and language encoding (Bastiaansen & Hagoort, 2006). Theta 

power has also been specifically associated with sentence encoding (Lam et al., 2016) and 

will therefore also be analysed. Finally, simultaneous alpha ERD and theta ERS are 

associated with information processing (Mölle et al., 2002), and therefore their relationship 

will be taken into account.  
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The aims of the study are therefore to determine whether: 

1. Encoding of written sentences can be measured via alpha ERD and theta ERS 

2. Encoding of sentences is influenced by typeface fluency 

3. Alpha and theta power levels during encoding are indicative of recall outcome 

From these aims, it is predicted that: 

1. A lower alpha power and higher theta power will imply stronger encoding of written 

information, when compared to baseline power levels 

2. Encoding of sentences in a disfluent typeface will be associated with greater change 

in alpha and theta power from a baseline, relative to sentences in a fluent typeface 

3. A disfluent typeface will be associated with superior information recall. 
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Method 

Participants 

 Power analysis based on effects of typeface on early attention processes, as reported 

by Keage et al (2015) determined that 14 participants would be adequate, assuming a large 

effect size (f = .47) at power = .90, alpha = .05. To account for potential variations in effect 

and data loss, as well as provide sufficient data for averaging EEG effects, we aimed to 

recruit up to 40 participants. Forty-nine participants were initially recruited, with 35 

undergraduate students (23 female, 12 male) from the University of Adelaide aged 18-34 (M 

= 20.59, SD = 3.32) completing the study. Participants were recruited either via an online 

portal to obtain course credit, or in response to fliers placed on campus and a $40 gift 

voucher for their participation.  

Inclusion criteria contained: 

 Right-handed (due to differential effects of handedness on EEG recordings (Galin, 

Ornstein, Herron, & Johnstone, 1982)). 

 English as their primary spoken language 

 Have normal or corrected to normal vision 

 No current psychiatric, neurological or learning/intellectual disorder 

 No current or previous alcohol or substance abuse or dependence 

 No history of unconsciousness for greater than one minute (except due to anaesthetic) 

 No recreational drug use in the last six months 

The present study used a within-subjects design, with the presentation order of fluent and 

disfluent typefaces being pseudorandomised to control for any order effects. The University 

of Adelaide Human Research Ethics Committee approved this study. 
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Materials 

Alien Species task. For the main task of the study, participants were asked to read a 

series of simple sentences describing two alien species. Both species has a name and seven 

features to memorise. These features differed between the species by only one word. For 

example, “has thick, tough skin” versus “has thick, tough scales”. A full list of sentences can 

be found in Appendix A. The information was shown electronically, in either a fluent or 

disfluent typeface. The fluent typeface was Arial, and the disfluent typeface was Bodoni MT 

italicized and in 60% greyscale. Both typefaces were displayed in 12pt size. This task has 

been adapted from a study conducted by Diemand-Yauman, Oppenheimer, and Vaughan 

(2011), which looked at the impact of typeface fluency on the processing of individual letters.  

In addition to the Alien Species task, three tasks were used as distractor tasks. These 

were carried out in a 15-minute timeslot between the learning and recall stages of the main 

task. The roles of two tasks in the study were to prevent the participant from engaging in 

active rehearsal of the Alien Species information, and the results of the distractor tasks were 

not presented in this report. The results of the one-back task were compared to the 

participants’ behavioural outcomes of the main task to consider the impact of general 

attentional state and ability on language processing. The order of distractor task presentation 

was counterbalanced to avoid any order effects.  

One-back Task. In this task, letters will be shown individually, in either a fluent 

(Arial or Times New Roman) or disfluent (Edwardian Script or Lucinda Blackletter) 

typeface, on the computer screen. These letters are matched by visual size, rather than font 

point. The participant must determine whether the letter presented is the same as the one 

before. Stimuli were presented for 500ms, and the inter-stimulus intervals varied between 

1250ms and 1750ms. The probability of a repetition in stimuli was 38%. One-back tasks are 

used to measure WM (Conway et al., 2005) and attention (Nebel et al., 2005), and thus was 
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chosen as a distractor. Additionally, the one-back task was used as a comparison measure for 

recall ability. This task ran for approximately five minutes. 

Raven’s Progressive Matrices (RPM). This general intelligence task focuses on 

visual similarity (Kunda, McGreggor, & Goel, 2009) and thus it was used as a distractor after 

the one-back task. For RPM, the participant is asked to identify the missing piece of a design 

or pattern out of either six or eight options (Raven, 2000). The designs get progressively 

more complex throughout the task. The participants were given the first five sets of the 

general RPM and were asked to complete as much as they could within a time limit of ten 

minutes following the completion of the one-back task. 

Group Embedded Figure Test (GEFT). The participant must locate a simple figure 

inside a more complex one (Day, McRae, & Young, 1990). The GEFT comprises of three 

sections. The first section contains seven relatively simple items and is primarily for practice. 

The second and third sections each contain nine items. This distractor task was chosen due to 

the fact that it assesses level of field dependence-independence, or the degree to which a 

person can make perceptual judgements about stimuli without contextual cues from the field 

(Donovan, Queisser, & O'leary, 1976). This is useful as it may provide some insight into 

whether participants can remove cues such as fluency from their perception of the presented 

text. The participants were given 15 minutes to complete this task. 

Apparatus 

SCAN4.5 software (Compumedics Neuroscan) was used to monitor brain activity. 

Electroencephalography was obtained using a modified Quik-Cap (Compumedics Neuroscan, 

Charlotte, North Carolina, USA) with the 64 silver/silver-chloride electrodes positioned 

according to the 10-20 system (American Electroencephalographic Society, 1994). 

Participants were seated in a lit testing room, approximately 60 cm from the monitor that 

presented the stimuli. The signal was collected and referenced to Cpz with an Apz ground, 
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and all EEG data were re-referenced offline to an average mastoids reference prior to further 

analysis. Vertical and horizontal eye movements were recorded in bipolar channels with 

electrodes 1 cm above and below the left eye and from the outer canthus of each eye. 

Continuous EEG was recorded using a Synamps II amplifier (Compumedics Neuroscan) that 

sampled the analogue signal at 1000 Hz with an analogue bandpass filter between 0.1 and 

100 Hz. Impedance at each electrode was reduced to below 5 KΩ at the start of recording.  

Procedure 

We first welcome the participant and ask them to read and sign a consent form, before 

applying the appropriate size EEG cap in the test room, where the participant remained for 

the duration of the study. The task then consisted of four phases: the baseline, the learning 

phase, the distractor phase and the recall phase.  

1. Baseline. The participant spends two minutes sitting with their eyes open, and two 

minutes with their eyes closed. Brain activity was recorded during this phase and the first one 

minute was used as a baseline comparison for alpha power levels during the learning phase. 

2. Learning Phase. The information on the two alien species was shown 

electronically for 60 seconds in either the fluent (Arial) or disfluent (Bodoni MT) typeface. 

During this time, the participant attempted to memorise as much of the information as 

possible. 

3. Distractor Phase. The participant was given 15 minutes to complete the GEFT or 

both the one-back task and RPM. 

4. Recall Phase. The participant was presented with the 56 audio file statements, 

presented using free field speakers located on each side of the monitor. The order of the 

statements was pseudorandomised to avoid any order effects. The participants chose which 

alien each statement is related to, pressed one of the two response buttons that had been pre-

assigned as the first or second alien presented. 
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Phases two, three and four were repeated with the counter-condition typeface and the 

other distractor. The order of their presentation was counterbalanced to control for any order 

effects of fluency or influence from the distractor task.  

Following the second recall phase, the participant’s QuikCap was removed and 

cleaned. The participant had the opportunity to wash their hair before leaving the laboratory. 

Data Analysis 

Independent components analysis (ICA) isolates specific artefacts, making it easier to 

clean and analyse EEG data (Delorme, Sejnowski, & Makeig, 2007; Vigário, 1997), and was 

used to remove any eye movement, muscle activity or electrical noise from the data. This was 

done using MATLAB, and the MATLAB toolkit EEGlab (Delorme & Makeig, 2004) was 

used to extract spectral power from the cleaned data. For analysis, we classified theta as the 

frequency bandwidth between 4-7Hz, and alpha as the bandwidth between 8-13Hz. These 

frequencies were isolated over a 60 second period from the eyes open baseline, fluent 

learning and disfluent learning phases, from the point of stimulus onset. Topographic maps 

for average overall alpha and theta were constructed using EEGlab to display activity during 

the fluent and disfluent encoding phases. Previous research has found that alpha activity is 

most prevalent in the occipital and parietal regions of the brain (Thut & Miniussi, 2009), 

whereas theta activity is most prevalent in the frontal and parietal regions (Thut, Miniussi, & 

Gross, 2012). Therefore, electrode channels from these regions were used for statistical 

analyses (see figure 1). A regional analysis was conducted to compare alpha and theta activity 

in these areas across hemispheres and across fluent and disfluent conditions. 
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Figure 1. Compumedics Neuroscan 64-channel Quik-Cap electrodes used for  

regional and hemispheric analysis. 

 

Statistical Analysis 

We hypothesise that changes in alpha and theta power will occur during simple 

sentence encoding. Further, we expect that these changes will be greater when encoding 

information in a disfluent typeface than in a fluent typeface. This is expected to be associated 

with superior recall outcomes. Behavioural responses were binary (correct or incorrect) and 

elicited through response buttons. These responses were compared to trigger codes 

throughout the recall phase and averaged for each fluency condition to find the percentage of 

correct recall. This was then compared to the responses of the one-back distractor task to 

determine the accuracy of the recall findings. To analyse the EEG data, relative alpha and 

theta datasets were first separated for analysis. The fluent and disfluent datasets were then 

compared to the baseline eyes open values to find the change in spectral power between 

baseline and encoding. Median scores were calculated for overall alpha and theta power for 

each participant, and then tested for normality using the Shapiro-Wilk normality test and 
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histograms in SPSS (IBM Corp, Armonk, New York). Mean comparison tests were then run 

to determine any initial differences between the fluent and disfluent conditions for both alpha 

and theta power. To further explore these conditions, the data was analysed using linear 

mixed models (LMM). LMM was chosen over other analyses due to its ability to control 

variance without data averaging, and its ability to investigate multiple interactions and effects 

(Steson & Sally, 2015). The LMM analysis for spectral power included fluency (fluent vs 

disfluent), hemisphere (left vs right), and region (frontal, parietal, occipital) as fixed factors, 

and participant was included as a random intercept. LMM analyses were conducted 

separately for alpha and theta power. Significance was determined at p < .05.  
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Results 

Due to technological difficulties during data cleaning, four of the 35 data sets could 

not be used for analysis. Therefore, the final analysis was performed on 31 participants (10 

male and 21 female).  

Behavioural Analysis 

Analysis of recall data showed a strong ceiling effect. Participants averaged an error 

rate of only 1.4% overall, with an average correct disfluent score of 97.8% (SD = 4.93%) and 

average correct fluent score of 98.7% (SD = 3.46%). To check whether this was an accurate 

representation of recall, we compared these outcomes with that of the one-back task. The 

one-back also had a very high correct response rate (M = 89.66%, SD = 9.23%), which 

replicates the response rate found by Keage et al. (2014) on the same task and suggests the 

high correct response rate was an accurate representation of the participants’ attention and 

recall abilities. Because of this ceiling effect, we were unable to determine the impact of 

fluency on recall success. Thus, the following results from spectral analysis focus on the 

differences in encoding activity only. 

Spectral Analysis 

Global alpha and theta activity for both the fluent and disfluent conditions were first 

visualised using topographic maps (see figures 2 and 3). Activity was averaged across the 31 

participants for analysis. These provided preliminary evidence for spectral activity 

differences between conditions. 
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Figure 2. Average alpha activity during the encoding phase for fluent (top) and disfluent 

(bottom) conditions. 

 

Figure 3. Average theta activity during the encoding phase for fluent (top) and disfluent 

(bottom) conditions. 

 



TYPEFACE FLUENCY, ENCODING AND SPECTRAL POWER  30 

For alpha power relative to the eyes open baseline, the disfluent condition contained a 

higher median power score (4.89 x 10-4, range = -0.003-0.007) than the fluent condition  

(-2.43 x 10-5, range = -0.005-0.009). Similarly, we found a greater median power of for the 

disfluent condition (5.54 x 10-4, range = -0.012-0.011) than the fluent dataset (8.55 x 10-5, 

range = -0.005-0.003) in the theta frequency band. Visual inspection of histograms revealed 

the fluent groups to have a negative skew, and the disfluent groups to have approximately 

normal distributions. Additionally, the Shapiro-Wilk normality test showed a non-normal 

distribution for fluent alpha (W = .914, p = .017), but normal distributions with outliers for 

the other conditions (disfluent alpha: W = .935, p = .061, fluent theta: W = .968, p = .461, 

disfluent theta: W = .960, p = .286). Due to the skewness and outliers, a Wilcoxon signed-

ranks test was used to compare spectral data across fluent and disfluent conditions. This 

analysis found a significant difference between fluent and disfluent conditions in the alpha 

power band, z = 142, p = .038, but not in the theta power band, z = 201, p > .05. These 

comparisons are presented in figures 4 and 5. 

 

 

Figure 4. Boxplot of alpha power relative to baseline eyes open across fluent and 

disfluent conditions.  
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Figure 5. Boxplot of theta power relative to baseline eyes open across fluent and 

disfluent conditions.  

 

A full factorial LMM, using estimated marginal means for pairwise comparisons of 

alpha power across regions, included fluency, brain region and hemisphere as fixed factors. 

No covariates were used. Individual participants were entered as a random intercept to 

control for individual differences. Analysis of fixed effects found a significant difference 

between regions of the brain, F(2, 130.706) = 3.226, p = .043. Pairwise comparisons further 

explored this regional difference (see figure 6) and found significant variance between the 

parietal and occipital regions (mean difference = 0.003, p = .012). However, this analysis 

found the difference between fluent and disfluent conditions to be non-significant. 

Additionally, no other regional differences or hemispheric differences were found (see 

Appendix B). 
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Figure 6. Differences in alpha power between brain regions for fluent and disfluent 

conditions. *p < .05. 
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Discussion 

This study looked at the influence of typeface fluency on written language encoding. 

We aimed to expand on previous literature by focusing on the processing of simple sentences, 

rather than on single letters or words. We were particularly interested in quantifying this 

effect through the analysis of changing spectral power during the encoding phase, as this had 

not been previously reported. To measure this, we recorded alpha and theta activity using 

EEG during a memorisation task and focused on changes in power relative to an eyes open 

baseline for analysis. Based on previous research in the field, it was expected that stronger 

encoding of written sentences would be shown through alpha desynchronisation and theta 

synchronisation (hypothesis one), and that there would be greater alpha and theta power 

changes during the encoding of disfluent information, relative to fluent information 

(hypothesis two). Additionally, we expected participants to have greater recall success for 

information presented in the disfluent sentences, relative to the fluent sentences (hypothesis 

three). The hypotheses were largely unconfirmed, however some differences in alpha power 

across conditions and regions was observed. 

Observations of topographical maps show that the activity in each frequency band 

was most concentrated in the regions expected based on the literature (Thut & Miniussi, 

2009; Thut et al., 2012). Theta activity was primarily found in the frontal regions of the brain, 

whereas alpha was concentrated in the occipital regions. Activity in each frequency band also 

differed with fluency condition. While theta in the fluent condition was strongest in the left-

central area of the frontal region, the disfluent condition showed more theta activity on the 

right of the frontal region. Activity in the disfluent condition was also more concentrated to 

the one area than in the fluent condition. Similarly, alpha activity in the fluent condition was 

highest in the occipital region but was relatively spread out along the anterior-posterior axis 

of the brain. Alpha in the disfluent condition, however, was strongly concentrated in the 
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occipital region, with little activity elsewhere. No hemispheric differences between the fluent 

and disfluent conditions were apparent. The maps suggest that there is less global activity 

relative to baseline in the disfluent condition than in the fluent condition for both the theta 

and alpha bands.  

Statistical analyses looked at the overall alpha and theta power in each of the fluency 

conditions, relative to the baseline eyes open condition. The results showed a significant 

difference in alpha power relative to typeface fluency. This provides evidence for the link 

between alpha power and encoding, and the influence of fluency on this connection. 

However, alpha synchronisation was found in the disfluent condition, meaning alpha activity 

increased during the encoding phase relative to baseline. This goes against the hypothesised 

direction of power change when compared to the baseline and does not replicate the majority 

of previous research findings. Therefore, hypothesis one was not supported by the findings, 

and hypothesis two was only partially supported. It is interesting to note that, although the 

interactions with condition and scalp region were not significant, alpha activity in the parietal 

region did demonstrate desynchronisation as expected. Due to a large ceiling effect in the 

behavioural data, spectral power relative to recall accuracy could not be assessed, and thus 

we could not provide any evidence in support of hypothesis 3. Further analysis focused only 

on the effects of fluency on alpha power during the encoding phase.  

Overall alpha power was found to be significantly different between fluent and 

disfluent conditions. As expected, alpha power decreased from the baseline for the fluent 

condition. However, alpha power was found to increase from the baseline for the disfluent 

condition. Although this goes against the expected direction stated in the hypotheses, an alpha 

power increase in response to stimuli has been recorded in previous research (Poliakov et al., 

2014). This may be explained by distinguishing between induced and evoked alpha activity. 

While evoked alpha, which is phase locked to the stimulus, synchronises during sensory 
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information processing, induced alpha, which is not phase locked, desynchronises within the 

same time window (Klimesch, Doppelmayr, Röhm, Pöllhuber, & Stadler, 2000). David, 

Kilner, and Friston (2006) note that evoked responses are characterized by the power of the 

average alpha, whereas induced responses are characterized by the average power that is not 

explained by the power of the average. As this difference was not focused on or controlled for 

in this study, doing so in future research may help pinpoint what differences in alpha power 

occur during encoding of written sentences. Nevertheless, the findings show that alpha power 

differs due to fluency, which suggests that typeface does play a role in the encoding process. 

Although theta appears to be greater in the disfluent condition than in the fluent 

condition, the difference was not statistically significant. This contradicts the original 

hypotheses and previous research. This could be due to the fact that a majority of theta 

differences are found in recall success versus forgetting (Hanslmayr et al., 2008). The ceiling 

effects (i.e. low forgetting) in this participant pool meant we were unable to establish any 

recall differences between the fluent and disfluent conditions. ERS of the theta band also 

tends to be larger during the retrieval of information than during the encoding phase 

(Klimesch, Schimke, & Schwaiger, 1994). Combined, the observable effects of typeface 

fluency in the present study may have been confined to the alpha power band as a 

consequence. Additionally, memory-based theta band activity is commonly found in the 

hippocampus (Klimesch & Doppelmayr, 1996; Vertes, 2005). Specifically, hippocampal theta 

has been linked to enhanced learning and memory, and activity is phase locked to stimuli in 

WM tasks (Kahana, Seelig, & Madsen, 2001). The hippocampus has also recently been 

specifically associated with language processes, with theta oscillations thought to link the 

hippocampus and neocortex (Covington & Duff, 2016; Piai et al., 2016). Given EEG only 

measures electrical activity that reaches the scalp (Teplan, 2002), measures of hippocampal 

generated theta activity would not be detectable, or would be very indirect at best (Cohen, 
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2011). This could provide another explanation as to why our theta power findings were non-

significant. It is interesting to note, however, that the topographical maps show maximal theta 

activity in the prefrontal cortex, as research suggests that this area can become synchronised 

with reverberatory hippocampal activity (Axmacher, Schmitz, Wagner, Elger, & Fell, 2008; 

Cohen, 2011).  

Following this analysis, we no longer focused on theta power due to the lack of 

significant results, and continued with a LMM focusing only on changes in alpha power. This 

analysis found no differences based on fluency. However, an exploration of regional 

variation found a significant difference between the parietal and occipital lobes. Alpha power 

in the parietal region showed more change from the baseline in both the fluent and disfluent 

conditions when compared to the occipital region. Alpha power in the parietal region 

desynchronised from the baseline in both conditions, supporting the hypothesised directional 

change. These results align with previous research on regional alpha activity (Geske & 

Bellur, 2008; Thut & Miniussi, 2009) and replicate the findings of Klimesch et al. (1996), 

who found alpha desynchronisation in the parietal regions of the brain during word encoding. 

In contrast, alpha power increased in the disfluent condition and decreased in the fluent 

condition within the occipital region of the brain, which aligns with the results of the 

Wilcoxon signed-ranks test. Zumer, Scheeringa, Schoffelen, Norris, and Jensen (2014) note 

that an increase in occipital alpha activity suppresses the encoding of irrelevant visual 

information, whereas a decrease in occipital alpha activity allows relevant visual information 

to be processed. Applying these findings to the present study’s results suggest that alpha ERS 

may have occurred in the occipital region in the disfluent condition in order to suppress 

disfluent features of the text, as they were not relevant for information processing.  

The regional difference did not interact with hemispheres, and no further hemispheric 

differences were found overall. Due to the hemispheric specialization of language (Hervé, 
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Zago, Petit, Mazoyer, & Tzourio-Mazoyer, 2013), it was expected that the left hemisphere 

would show greater power differences than the right during the encoding process. This could 

be due to having a relatively small sample size for a full factorial LMM, and therefore being 

underpowered. The complexity of this model may have reduced the power enough to shadow 

any significant interactions between factors. In order to fully analyse all interactions using a 

LMM, a larger sample size would be required. This could increase the power to a level 

appropriate for complex analysis. Future studies could also increase the number of electrodes 

used for analysis. Although we used a 64 channel cap and all electrodes were included in the 

global analysis, only 20 electrode channels were included in the LMM. On top of increasing 

sample size, running the analysis with the full 64 channels, or increasing the number to a 128 

channel cap, could minimize signal loss due to pre-processing, and thus increase the amount 

of data available for analysis. As the removal of artefacts was done by eye, increasing the 

number of channels used would also decrease the amount of artefact or lost data due to 

human error, as well as more precisely isolate components of artefact for rejection.  

Another limitation of this study was the lack of variance in recall. Due to the 

participants getting very few responses incorrect, we were unable to assess the third 

hypothesis – that a disfluent typeface will increase recall success. However, the large 

proportion of correct responses with this task and sample of university students replicates 

other research (Komes, Schweinberger, & Wiese, 2014). Based on this, it would be beneficial 

for future research to look into the lack of recall difference. Additionally, future studies could 

use more complex texts, more complex disfluent typefaces, or increase the distractor time in 

order to measure any potential differences in recall between fluent and disfluent texts.     

Further research also ought to look at individual alpha frequencies (IAF) as another 

method of comparison. EEG activity can differ from person to person, and alpha activity has 

become a way to index these individual differences (Goljahani et al., 2012). Klimesch, 
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Schimke, and Pfurtscheller (1993) note that a higher IAF is associated with better recall 

performance on a memory task. Additionally, they state that IAF can be influenced by 

demands of attention. Further, changes in IAF are observed during the encoding and recall 

phases of visual memory tasks (Klimesch, 1997). It could therefore be a beneficial way to 

measure changes in alpha activity during sentence encoding, and better control for any 

individual differences.  

Additionally, extending the tasks to more complex real-life scenarios, for example 

reading whole chapters rather than a selection of simple sentences, could increase the 

generalisability of this type of research to all levels of education. Moreover, there has been 

research into the relationship between alpha, theta and gamma oscillations (Friese et al., 

2013; Palva, Palva, & Kaila, 2005). As gamma frequencies have been associated with feature 

binding and working memory (Palva et al., 2005), it may be beneficial for future studies to 

take gamma ERS into account when discussing the impact of typeface fluency on learning. 

However, a lot of muscle artefact occurs within the gamma frequency range, making it 

difficult to get a clear and accurate reading through EEG (Fries, Scheeringa, & Oostenveld, 

2008). Therefore, intracortical EEG or MEG could be more useful than normal EEG for 

studying frequencies in the gamma range (Kaiser & Lutzenberger, 2005). Measures such as 

these could also be used to measure any hippocampal theta activity during encoding, however 

such techniques are expensive or limited to particular clinical samples. Lastly, to improve the 

generalisability of typeface fluency research, it would be beneficial to conduct research using 

a range of population samples. At present, a majority of research in this area has worked with 

university populations. Conducting similar studies using child, adolescent or clinical samples 

would substantially increase the generalisability of research in this field, and potentially 

target populations where understanding factors which influence language processing are 

likely to have greater benefits. 
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Although the LMM did not provide any further evidence for the impact of fluency on 

encoding, it did highlight the regional differences in alpha activity during encoding. 

Comparing these regions has not been a focus of previous research, and instead they have 

been analysed as one region (Geske & Bellur, 2008) or separately (Meyer et al., 2013; Thut, 

Nietzel, Brandt, & Pascual-Leone, 2006). Therefore, this study highlights a new path for 

future research to take. Moreover, the findings of the Wilcoxon tests support past research on 

the connection between alpha power and the encoding of written language (M. C. M. 

Bastiaansen et al., 2002; Klimesch, 1999; Klimesch et al., 1996; Vassileiou et al., 2018; Weiss 

& Mueller, 2003), but did not replicate findings associated with theta power (Klimesch et al., 

2011; Mölle et al., 2002; Werkle-Bergner et al., 2006). They specifically show that alpha 

power is impacted by typeface fluency during the encoding stage of written simple sentence 

processing. As there is little research on alpha power and the impact of typeface on sentence 

encoding at present, this study has begun to fill this gap in the literature. As previously 

mentioned, different frequency levels of alpha have been associated to different aspects of 

information processing (Klimesch, 1999). Klimesch (1999) states that while lower frequency 

alpha is related to attention, higher frequency alpha activity is involved in sensory aspects of 

processing. Separating alpha into high and low frequencies may highlight differences in 

fluency impact that are not observable in a wide frequency band and would therefore be a 

logical next step to take in research. 

These results are perhaps most relevant to educational settings, as most educational 

content is now presented in either a digitised or printed form. Although typeface research can 

also be applied to marketing and logo design (Childers & Jass, 2002), education is the main 

area to which this research can be applied, due to the specificity of looking at sentence 

encoding. There are a number of ways in which typeface fluency plays a role in the 

educational field. For example, Tarasov, Sergeev, and Filimonov (2015) reviewed the 
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different typefaces used in textbooks, and noted that not only does the legibility of the 

typeface used impact reading comprehension and speed, but features such as size, line width, 

the contrast between text and background colour, and paragraph uniformity. Additionally, 

Čerepinko, Periša, and Keček (2017) looked at the differences in text legibility between iPad 

screens, computer screens and paper. They found that a sans serif typeface was more legible 

and readable on the iPad screen than a more disfluent, serif typeface. Further, they 

established that text is more readable on paper than on screen. Due to the increased use of 

technology in education (Selwyn, 2014), it is important to take into account the medium on 

which text is presented and assess the impact. Čerepinko and colleagues’ paper suggests that 

both typeface fluency and medium can impact the legibility of text. The present study 

displayed text on a computer screen and found that typeface fluency impacts encoding. 

Future research could expand on these findings by using spectral power changes to assess the 

influence of typeface fluency on sentence encoding across a variety of mediums (digital 

screen and paper). This would be beneficial in today’s digitised society. 

As mentioned previously, running studies with a range of populations such as 

different age groups and educational levels would further increase the generalisability of 

findings in this field. Although there is place in traditional education settings as mentioned 

above, there is also cause for applying research on the impact of typeface to clinical settings. 

Text presentation has a significant impact on the accessibility of written work for persons 

with reading difficulties. Previous work in this field has focused on analysing and designing 

typefaces for persons with vision impairment (Evett & Brown, 2005), aphasia (Rose, Worrall, 

Hickson, & Hoffmann, 2012) and dyslexia (Hillier, 2008). Rello and Baeza-Yates (2016) note 

that features such as italicisation decrease reading performance in persons with dyslexia. This 

suggests that the features used for desirable difficulty differs between normal and clinical 

populations. While italicisation is possibly a beneficial disfluent feature for typical 
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population samples (Lonsdale, 2014), it would cross the threshold for desirable difficulty in 

dyslexic samples. Using spectral power to determine the level of disfluency required for 

desirable difficulty in both typical and clinical populations would be an interesting expansion 

on these findings.  

While the present study worked with healthy participants and did not show any 

behavioural differences, the findings regarding alpha activity and regional variation provide 

evidence for specific underlying mechanisms associated with written language encoding. We 

have shown that alpha power differences are apparent between fluent and disfluent typefaces, 

and that this is true not only for individual letters or words, but for full sentences. Further, we 

have provided evidence for regional differences in alpha activity during written language 

encoding. Such research will aid in the understanding language processing, as well as provide 

a platform or future research to extend not only the understanding of processing in typical 

populations, but also in clinical conditions with impairment in visual language processing. 

To conclude, the present study provides further evidence for alpha power being 

associated with encoding success. It has expanded on previous literature by analysing alpha 

power during sentence encoding rather than at an individual letter or word level. Moreover, it 

showed that changes in alpha power differ between fluent and disfluent typeface conditions, 

therefore suggesting that typeface fluency impacts encoding. This research can be applied to 

educational fields of work and research, as much academic language processing now occurs 

through written text. 
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Appendix A: Alien Task 

Species pair A 

The Pang The Gerish 

Ten feet tall Ten feet wide 

Eats green vegetables Eats green fruit 

Has a bushy purple tail Has a bushy purple mane 

Has blue eyes Has blue toes 

Has smooth, soft skin Has smooth, soft hands 

Females lay their young on piles of soil at 

birth 

Females lay their young on piles of soil at 

feeding 

Males collect food for their young Males collect food for their partners 

 

Species pair B 

The Derl The Enga 

Five feet tall Five feet wide 

Eats the bark of maples Eats the bark of gums 

Has a line of orange spikes down its back Has a line of orange spikes down its 

forehead 

Has black eyes Has black toes 

Has thick, tough skin Has thick, tough scales 

Females usually travel in groups Females usually travel in pairs 

Males tend to wander alone Males tend to wander together 
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Appendix B: Tests of fixed effects 

Source 
F sig. 

Intercept 0.001 .974 

Region 3.226 .043 

Hemisphere 1.874 .173 

Fluency 1.274 .261 

Region*Hemisphere 0.425 .655 

Region*Fluency 0.087 .917 

Hemisphere*Fluency 0.074 .785 

Region*Hemisphere*Fluency 0.096 .909 

 


