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Abstract

The latency associated with bone metastasis emergence in
castrate-resistant prostate cancer is attributed to dormancy, a
state in which cancer cells persist prior to overt lesion forma-
tion. Using single-cell transcriptomics and ex vivo profiling, we
have uncovered the critical role of tumor-intrinsic immune
signaling in the retention of cancer cell dormancy. We demon-
strate that loss of tumor-intrinsic type I IFN occurs in proliferat-
ing prostate cancer cells in bone. This loss suppresses tumor
immunogenicity and therapeutic response and promotes bone
cell activation to drive cancer progression. Restoration of tumor-
intrinsic IFN signaling by HDAC inhibition increased tumor cell
visibility, promoted long-term antitumor immunity, and blocked

cancer growth in bone. Key findings were validated in patients,
including loss of tumor-intrinsic IFN signaling and immunogenic-
ity in bone metastases compared to primary tumors. Data herein
provide a rationale as to why current immunotherapeutics fail
in bone-metastatic prostate cancer, and provide a new thera-
peutic strategy to overcome the inefficacy of immune-based
therapies in solid cancers.
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Introduction

Bone metastases are characteristic of lethal prostate cancer (PCa),

occurring in up to 90% of men who develop treatment-refractory

disease [1,2], invariably leading to death within 12–24 months of

detection [3]. Treatment of prostate cancer that has spread to bone

primarily involves androgen deprivation, chemotherapy, and radia-

tion, all of which may be coupled to bone-targeted therapies.

However, in castrate-resistant prostate cancer (CRPC), while bone-

targeted and conventional treatments have been shown to enhance

quality of life and delay the onset of skeletal-related events, they

have failed to prevent bone-metastatic outgrowth or impact long-

term survival [4–6]. This, along with success in metastatic mela-

noma [7], sparked interest in the use of checkpoint-targeted

immunotherapeutics for advanced PCa. Yet, to date, this approach

has been met with underwhelming results with few long-term

responses [8–10]. Therefore, the dissection of processes that drive

bone metastasis, including mechanisms of immune regulation or

tumor-driven escape, is crucial to the development of new strategies

for improving therapeutic response in bone-metastatic PCa.

Several studies suggest that upward of 60% of primary PCa

patients harbor disseminated tumor cells (DTCs) in bone, indepen-

dent of PCa stage, and in the absence of detectable metastases [11–

13]. Moreover, distinct evolutionary events that precede key metas-

tasis-associated alterations in the primary tumor have been

observed in metastatic lesions [14]. These findings suggest that

tumor cell spread to bone is an early event in PCa progression. Still,

overt skeletal lesions often remain undetected for many years.

Dormancy, in which tumor cell proliferation is restricted by cell-

intrinsic or cell-extrinsic means for up to 20 years from initial local

diagnosis [15], is proposed to govern DTC indolence and the delay

often observed in PCa recurrence. In addition to cellular and angio-

genic dormancy [16,17], immune regulation of tumor cell fate in

bone has been proposed as a driver of dormancy [18,19]. However,

to date, little evidence exists of direct immune cell involvement in

dormant cell persistence or eventual escape and outgrowth in the

bone tumor microenvironment (TME). While tumor-associated

alterations that promote immune evasion at secondary soft-tissue

sites have been frequently reported, few studies have explored the

contribution of immune regulatory processes to bone metastasis.

Likewise, cancer cell-intrinsic immunomodulatory signaling has

been largely ignored in the exploration of tumor progression in

bone. As such, there exists a gap in our understanding of the funda-

mental mechanisms that underpin bone-metastatic outgrowth,

which may impede development of new approaches aimed at target-

ing bone-avid cancers.

In this study, a labeling technique was developed to detect and

isolate dormant and proliferating tumor cells from bone using an

immune-competent, androgen receptor-positive yet androgen-inde-

pendent mouse model of PCa, to uncover critical pathways that

regulate bone-metastatic progression. Single-cell transcriptomics

revealed that suppression of tumor-intrinsic type I interferon

(IFN)—a class of immunomodulatory cytokines previously linked to

breast cancer metastasis [20]—was strongly associated with

dormant tumor cell outgrowth in bone and the acceleration of

disease. Importantly, similar loss of tumor-intrinsic type I IFN was

observed in macrometastatic lesions in CRPC patients. We investi-

gate the consequences of this loss in the osteoimmune niche and

uncover a mechanism by which tumor-derived IFN signals prevent

bone-metastatic outgrowth. Moreover, we reveal a new therapeutic

approach to enhance tumor-intrinsic IFN signaling using an epige-

netic modulator to restore cancer cell immunogenicity and promote

bone metastasis-free survival in CRPC.

Results

Tumor-intrinsic IFN signaling is enriched in dormant PCa cells
in bone

To investigate transcriptional alterations that facilitate dormancy

induction and subsequent outgrowth, we utilized the RM1

syngeneic model of bone-metastatic PCa, which is the only immuno-

competent model of CRPC that reliably yields skeletal lesions in vivo

[21,22]. We coupled this model to a membrane-dye (PKH26) reten-

tion system that permits fluorescent discrimination of dormant and

proliferating cells (Appendix Fig S1A–C). Following intracardiac

(IC) injection of PKH26-labeled RM1 cells expressing cerulean

(eCFP) and luciferase (luc2) into C57BL/6 mice, dormant (occurring

at a rate of ~ 2 in 3 × 107 bone marrow [BM] cells in ~ 1 in eight

tumor-bearing mice) and proliferating single RM1 cells were FACS-

isolated from bone metastases on average at day 16 (Fig 1A).

Single-cell RNA-seq of 28 dormant (PKH+) and 32 proliferating

(PKH�) cells was performed, and BASiCS [23] normalization was

employed. Pre- and post-normalization of all samples revealed no

significant batch effects, and potential technical noise was corrected

after normalization (Appendix Fig S1D). Further analysis of RM1

markers (eCFP and luc2) demonstrated the authenticity of more

than 83% of single tumor cells (Appendix Fig S1E). Of 2,410 dif-

ferentially expressed (DE) genes in dormant cells, 1,609 were identi-

fied by BASiCS as having no residual overdispersion within

dormant and proliferating groups [24], validating the absence of

spurious signals in mean gene expression shifts. Enrichment of gene

ontologies (GOs) defining cell cycle and mitotic processes was

observed in the proliferating group (Fig 1B). Conversely, robust

overrepresentation of GO biological processes defining immune

effector responses in dormant cells (Fig 1C) prompted unbiased

INTERFEROME [25] analysis of all DEGs. It was revealed that 39%

of genes enriched in dormant cells were predicted interferon-regu-

lated genes (IRGs), largely type I (IFN-a/b; 459 DEG; Fig 1D), repre-

sented by heatmap (Fig 1E). This included interferon regulatory

factor (Irf) 7, a master transcription factor that mediates type I IFN

production and IRG expression [26], which was expressed threefold

higher in dormant than in proliferating tumor cells. A subpopulation

of robustly enriched type I IRGs evident in ~ 11 single PKH+ cells

was identified, eight of which cluster together (Appendix Fig S1F).

Subsequent non-negative matrix factorization (NMF) [27] analysis

of all DEGs (Fig EV1A) identified three distinct groups of single cells

consisting of two dominant dormant cell clusters (C1 and C2) and

one proliferating cluster (C3) with a cophenetic correlation of

0.9995. Analysis of genes contributing to these three metagene clus-

ters (Fig EV1B) revealed that C1 was enriched for genes associated

with positive regulation of immune responses (Irf7, Mx1, and

Unc93b1) and antiapoptotic processes (Casp7 and Bcl2a1a/b/d),

while C2 was enriched for genes involved in metabolic processes

(B3gat3, Hs6st1, and Man1b1) along with immune activation (B7-
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H3, H2-M3, CD80, and Mr1), suggesting that, when compared to C2,

C1 may embody a more fully manifest dormant state (Fig EV1C).

Indeed, it is known that tumor dormancy encompasses a range of

stages that can rapidly evolve in response to TME dynamics [28]

and may be influenced by bone niche-specific pressure and co-

existing tumor growth [29]. This is supported by C1 enrichment of

Bhlhe41, previously linked to dormancy in breast and prostate

cancers [29,30] and more recently associated with bone-endosteal

niche dormancy in metastatic breast cancer [31]. Unsurprisingly,

metagene C3 was enriched for genes associated with cell prolifera-

tion (Cenpe, Bub1, and Nuf2). Stratification of type I IRGs enriched

in dormant cells compared to proliferating cells isolated from the

same hosts (Appendix Fig S1G) confirmed that differential IRG

expression did not result from unequal representation of dormant

cells derived from a single mouse. Rather, they encompass unbiased

population-level changes evident across multiple tumor-bearing

animals. Importantly, an overlap of more than 60% of type I IRGs

with no residual overdispersion was observed between DEGs

enriched in all dormant cells compared to those enriched in hosts

from which both dormant and proliferating RM1 cells were isolated,

with the highest fold changes predominantly occurring in shared

IRGs (Appendix Fig S1H). Moreover, the biological processes

enriched in dormant compared to proliferating cells from an isolated

host (Appendix Fig S1I) were nearly identical to those enriched

across all dormant cells as shown in Fig 1C.

Interestingly, IRGs enriched in our dormant cells included several

genes previously linked to dormancy [32] in other bone-avid

cancers (Appendix Fig S1J) that had not been explicitly defined as

IRGs in literature, including the aforementioned Bhlhe41 [30] along

with Gas6 [33], reinforcing our isolated PKH+ cells as dormant.

While type I IRGs are known to regulate a myriad of biological

processes [34], the most significantly enriched genes in dormant

tumor cells were those associated with positive regulation of

immune cells, lymphocyte activation, and antigen processing and

presentation, with critical immune-activatory genes (shown in

Fig 1F), including major histocompatibility complex (MHC) mole-

cules H2-M3, H2-DMa, and H2-Aa. Based on these findings, we

postulated that tumor cells may be growth-restricted in bone by

immune-activatory means. Moreover, we hypothesized that loss of

tumor-intrinsic IFN signaling may release tumor cells from

dormancy and promote metastatic outgrowth through loss of IFN-

regulated tumor cell immunogenicity.

Loss of intrinsic type I IFN in proliferating PCa cells occurs
in bone

Based on our findings that dormant tumor cells have higher IFN

signaling than proliferating PCa cells in bone, we questioned

whether IFN signaling was being upregulated in dormant cells or

alternatively lost in proliferating cells from the time of inoculation.

Comparison of parental RM1 and bulk-sorted bone-derived prolifer-

ating (PKH�) cells revealed robust and homogenous tumor-intrinsic

suppression of IFN in proliferating tumor cells from bone metas-

tases, with 44% of all downregulated genes defined as IRGs by

INTERFEROME allocation (74 IFN-a/b, 40 IFN-c, and 100 type I and

II IFN target genes; Appendix Fig S2A). Gene set testing using the

Hallmark gene set collection [35] revealed a robust enrichment of

type I (IFN-a) response genes that were suppressed in bone metas-

tases (Figs 2A and B). Pathway analysis also revealed that the most

suppressed biological pathways in proliferating tumor cells were

those associated with IFN responsiveness and immune cell recruit-

ment (Appendix Fig S2B), with enrichment of processes associated

with positive immune regulation (Appendix Fig S2C). Among the

DEGs implicated in IFN modulation were direct mediators of IFN-a/
b production, including Stat1, Stat2, and Irf9 (all critical compo-

nents of the IFN-stimulated gene factor 3 complex, ISGF3), that

directly regulate Irf7, and several key IRGs retained in single

dormant RM1 cells (shown in Fig 1) and multiple classic type I IFN

targets [36] (Fig 2C). Further transcriptional analysis of proliferating

bone-derived RM1 (RM1 BD) cells compared to those derived from

lung metastasis (Fig 2D) revealed that IRG loss was specific to bone

(Fig 2E). As with comparisons between dormant and proliferating

cells in bone, genes suppressed in bone-derived tumor cells

compared to lung were enriched in IFN response genes

(Appendix Fig S2D). Orthogonal validation of preliminary findings

confirmed that tumor-intrinsic IFN loss was more profound in bone

metastases, as evidenced through quantitative real-time–PCR (qRT–

PCR) analysis of Irf7 and Irf9 (both robust representative markers of

▸Figure 1. Type I IFN signaling is retained in dormant PCa cells in bone metastases.

A PKH26 (PE)-labeled RM1 (V500/eCFP) cells were injected intracardiacally (IC) into C57BL/6 mice and FACS-isolated from bones with evident tumor burden (eight
individual mice across five independent experiments) at � day 16, and individual dormant and proliferating cells were isolated for scRNA-seq. Representative tumor
burden at the whole mouse level and in bone shown by bioluminescence with representative FACS plots of PKH+ (PE/V500) and PKH� (V500) RM1 cells and bone
marrow cells (gray).

B goana gene ontology (GO) analysis (limma) of all DE genes enriched in proliferating (PKH�, n = 32) cells compared to dormant cells (PKH+, n = 28). Gene sets appear
in order of significance (P-value) with color representing fold enrichment and bar width indicating the number of genes in each process.

C goana GO analysis (limma) of all DE genes uniquely enriched in PKH+ compared to PKH� cells. Gene sets appear in order of significance (P-value) with color
representing fold enrichment and bar width indicating the number of genes in each process.

D INTERFEROME database classification of differentially expressed (DE) genes retained in dormant cells into predicted type I and/or II IFN-regulated genes (IRGs).
E Heatmap of relative BASiCS-derived log2 (denoised counts + 1) of type I IRGs (upregulated > twofold in the INTERFEROME in at least one dataset) that are

differentially expressed between all dormant and active cells with no residual overdispersion. Mouse IDs for each sample are indicated, along with type I IRGs that
are identified as such in at least 30 INTERFEROME datasets. Genes are displayed if detected in at least 10 samples per population. Samples with zero counts for
individual genes are represented in white.

F Dot plot of BASiCS-derived log2(denoised counts + 1) of key DE IRGs expressed in > 5 dormant cells associated with immune-activatory processes (among one of the
most enriched types of biological pathway determined by GO analyses) present for all single cells ranked by ExpLogFC (Fig 1C). Open circles are zero counts. Bars
indicate mean expression.

Source data are available online for this figure.
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IFN pathway activity [37]) expression in RM1 BD cells compared to

parental cells and RM1 cells from lung metastases derived from

independent animals (Fig 2F). Interestingly, Irf7 and Irf9 expression

in naı̈ve BM was revealed to be high, reflecting public transcrip-

tomic datasets [38], which is potentially due to the presence of

megakaryocytes that express high Irf7[39], indicating bone-specific

tumor cell loss did not result from low paracrine IFN signaling in

surrounding stroma. Pathway suppression was also independent of

host responsiveness to type I IFN, evidenced through tumor-

intrinsic Irf7 and Irf9 loss in cells derived from bone metastases in

mice deficient in the IFN-a receptor 1 (Ifnar1�/�; Fig 2G). As such,

tumor-intrinsic IFN suppression in bone may be induced through

niche-specific mechanisms that subsequently facilitate unchecked

metastatic progression.

Tumor-intrinsic type I IFN suppression is inducible and can be
reversed and blocked through epigenetic targeting using the
HDACi MS275

In order to assess the feasibility of targeting tumor-intrinsic type I

IFN, we needed to determine whether the loss we observed in

bone metastases was indeed reversible. First, the stability of IFN

suppression in proliferating RM1 cells derived from bone metas-

tases in three independent animals was assessed by serial passage

ex vivo. We revealed that with restricted passage (less than ~ 8) in

culture, IFN loss was maintained in RM1 cells derived from bone,

which we henceforth refer to as RM1 BD Irf� (Figs 3A and EV2A).

Notably, one RM1 BD line showed initial IFN loss during early

passage (EP), yet at late passage (LP; > 13), reverted back to

parental IFN expression levels, which we henceforth label RM1

BD REV. As such, RM1 BD Irf� cells served as biological knock-

downs for further experimentation under restricted culture. ELISA

confirmed that the differential expression of Irf7 and Irf9 between

parental RM1 cells and RM1 BD Irf� and RM1 BD REV ex vivo cell

lines directly correlated with their capacity to produce IFN-a when

stimulated with the TLR3 agonist, poly I:C [40] (Fig 3B). Notably,

in vitro poly I:C treatment also revealed that RM1 BD Irf� cells

were unresponsive to IFN pathway activation by this known

systemic IFN-inducing agent.

Given that histone acetylation is a well-known and integral

component of IRG regulation [41–43] and that IFN pathway loss

was moderately stable in tumor cells outside of the bone TME, this

led us to question whether IFN suppression could be relieved

through chromatin modulation. Interrogation of in-house microar-

ray data revealed that a panel of histone deacetylase inhibitors

(HDACi) could induce expression of type I IFN pathway mediators

in HCT116 colon cancer cells (Appendix Fig S3A). As such, we

investigated the capacity of various pan-selective (i.e., SAHA

[vorinostat]) and class-selective (i.e., depsipeptide, MS275) HDACi

to induce intrinsic IFN signaling in RM1 BD Irf� cells (Fig 3C;

Appendix Fig S3B and C). These analyses revealed that the class I-

specific HDACi MS275 (entinostat) robustly increased tumor-

intrinsic Irf7 and Irf9 in RM1 BD Irf� at a concentration that did not

impact tumor proliferation (Fig EV2B), eliminating HDACi-induced

growth inhibition as a confounding means of tumor regression. We

then asked whether tumor-intrinsic IFN suppression we observed in

bone could be mimicked in vitro and whether MS275 would be suffi-

cient to prevent this loss from occurring. While in vivo systems yield

important information about the metastatic process, exploration of

live stromal interactions in bone is notoriously difficult to

adequately model and focally manipulate in mice. As such, an

ex vivo co-culture system was devised (Fig 3D) to assess the

inducibility, timing, and potential epigenetic influence over tumor-

intrinsic type I IFN signaling downregulation. Interestingly, co-

culture of RM1 parental with naı̈ve BM cells revealed that IFN loss

could be induced in tumor cells within 48 h of BM contact (Fig 3E)

and that this rapid loss is BM contact-dependent, as demonstrated

by retained tumor cell expression under non-contact conditions

(Fig 3F). Moreover, we show that the ubiquitous bone-resident

myeloid population (Fig EV2C) involved in IFN loss may be

CD11b+ Ly6G+ cells, which are included in the granulocytic

myeloid-derived suppressor cell (MDSC) subset [44] and which

were able to suppress key members of the IFN pathway in RM1 cells

for up to 96 h (Fig EV2D). Interestingly, CD11b+ Ly6G+ cells have

been previously linked to metastatic PCa progression [45]. More-

over, such cells have been associated with acetylation events in the

TME (reviewed in Ref. [46]) that promote tumor cell expansion and

immune repression. Most importantly, however, we reveal that

◀ Figure 2. Intrinsic type I IFN pathways are specifically suppressed in proliferating PCa cells from bone.

A–C Bulk RNA-seq analysis of DE genes (DEG) significantly suppressed (FDR < 0.05; generalized linear model extraction (GLM) by edgeR) in proliferating RM1 bone-
derived (BD) cells compared to parental RM1 and lung metastases. Tumor-intrinsic type I IFN signaling is suppressed in proliferating bone lesions (n = 1) compared
to parental RM1 (n = 2) cells as shown by (A) camera analysis of Hallmark gene set responses associated with bone metastasis (bar length is the –log10FDR, false
discovery rate). Color indicates mean log2fold change (FC) of all genes in gene set. Bar width is relative gene set size. Dashed line shows FDR = 0.05; (B) barcode
plot showing enrichment of the Hallmark IFN-a response gene set in genes suppressed in bone metastases, using the signed log-likelihood ratio statistic (EdgeR).
Bars indicate value of the statistic for each gene in the gene set; (C) log2FC values of key downregulated IRGs, with genes retained in dormant cells and classical
downstream IFN signaling targets indicated. Altered IRGs directly involved in IFN-a/b production (light blue) compared to downstream IFN targets (dark blue) are
segregated. P-values represented as * < 0.05, ** < .005, and *** < 0.0005; GLM by edgeR.

D Schematic of proliferating RM1 cell isolation from bone and lung metastases following IC injection for preliminary RNA-seq and orthogonal validation by qRT–PCR.
E Heatmap of mean normalized voom expression of IRGs suppressed in RM1 bone metastases (n = 1) compared to lung metastases (n = 1) and parental cells

(n = 2).
F qRT–PCR validation of Irf7 and Irf9 downregulation in RM1 cells from bone metastases (RMI BD) compared to parental RM1 cells, lung metastases (RM1 lung), and

naïve bone marrow (BM) (n = 3 mice per group). P-values represented as ** < 0.005, and *** < 0.0005 (Student’s t-test).
G qRT–PCR of Irf7 and Irf9 downregulation in parental RM1 cells and RM1 cells from bone metastases (RM1 BD) in WT and Ifnar1-deficient (�/�) mice, with naïve BM

from WT and Ifnar�/� animals for reference. (n = 3 mice per group, n = 1 for Ifnar�/� BM control). P-values were represented as * < 0.05 and ** < 0.005 (Student’s
t-test).

Data information: All error bars � SEM.
Source data are available online for this figure.
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addition of MS275 to the bone co-culture system blocked BM-

induced IFN pathway loss in parental RM1 cells and further

enhanced tumor-intrinsic IFN signaling (Figs 3G and EV2E).

Collectively, these results suggest that epigenetic agents may reverse

tumor-intrinsic IFN suppression in bone and thus prevent metastatic

outgrowth by upregulating tumor-intrinsic immune signals.

A B

DC

E F G

Figure 3. Loss of tumor-intrinsic type I IFN is inducible by bone marrow cells and is reversed by HDACi.

A Stability of Irf7 and Irf9 mRNA suppression by qRT–PCR in ex vivo bone-derived cells (RM1 BD Irf�, n = 7) in culture compared to a bone-derived line that showed
initial loss during early passage (RM1 BD REV (EP), n = 3), then reverted to parental expression levels at late passage (RM1 BD REV (LP), n = 4) compared to parental
RM1 (n = 3).

B ELISA of IFN-a production by RM1 parental (n = 3), RM1 bone-derived Irf-low (RM1 BD Irf�, n = 4), and RM1 BD REV (n = 3) cells subsequent to poly I:C stimulation.
C qRT–PCR analysis of Irf7 and Irf9 expression in RM1 BD Irf� cells � 48 h treatment with MS275 (1 lM) (n = 7–9).
D Schematic of contact and transwell co-culture systems.
E qRT–PCR analysis of Irf7 and Irf9 expression in parental RM1 cells (n = 4) 48 h post-contact culture with naïve BM (n = 6).
F qRT–PCR analysis of Irf9 expression in parental RM1 cells � 48 h co-culture with naïve BM under contact (non-transwell; NT) and transwell (0.4-lm filters that

prevent cell contact) conditions (n = 6–8 per condition).
G qRT–PCR analysis of Irf9 expression in parental RM1 cells � 48 h contact co-culture with naïve BM � MS275 (1 lM) (n = 3–6 per condition).

Data information: P-values represented as * < 0.05, ** < 0.005, and *** < 0.0005 (Student’s t-test). All error bars � SEM.
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Tumor-intrinsic IFN signaling regulates metastatic potential,
dormancy status, and bone remodeling processes to prolong
bone metastasis-free survival through immune activation

We next asked how differential tumor-intrinsic type I IFN signaling

impacts tumor progression in vivo, and whether stable restoration

of IFN signaling to bypass possible epigenetic suppression in

tumor cells can indeed block bone metastasis. Firstly, we

compared the metastatic potential of three cell lines (RM1

parental, RM1 BD Irf�, and RM1 BD REV), each with different IFN

production capacity yet no difference in in vitro growth

(Appendix Fig S4A). Subsequent to IC injection, mice were individ-

ually monitored for the first signs of bone metastasis, most

commonly hindlimb paralysis. Survival analysis revealed that mice

bearing RM1 BD tumors with low Irf expression (RM1 BD Irf�)
succumbed to fatal bone metastasis faster (median survival day

13) than mice bearing tumors in which IFN signaling was intact at

the time of injection, regardless of whether they were previously

derived from bone or not (RM1 BD REV and RM1 parental, respec-

tively; median survival > 24 days; Fig 4A).

Constitutive IFN signaling in RM1 BD Irf� cells was achieved

through the overexpression of Irf7 in cells henceforth labeled as

RM1 BD Irf7 OE (Fig 4B). A matched base vector control line (RM1

BD Irf� BV) was also generated in order to confirm that tumor-

intrinsic IFN loss was directly responsible for the acceleration of

bone metastasis in animals bearing IFN-suppressed tumors. Upregu-

lation of Irf7, Irf9, and downstream IFN target Oas2 was confirmed

in RM1 BD Irf7 OE cells at the transcript level and enhanced IFN-a
production verified by ELISA, with both lines demonstrating equal

proliferative potential (Fig 4C; Appendix Fig S4B and C). Survival

analysis post-IC injection of RM1 BD Irf7 OE and Irf� BV cells con-

firmed that molecular restoration of tumor-intrinsic type I IFN

signaling in aggressive bone-derived cells confers long-term bone

metastasis-free survival (Fig 4D; Appendix Fig S4D and E). To

further confirm that tumor cell IFN signaling to host cells was a criti-

cal component of metastasis suppression in RM1 BD Irf7 OE tumor-

bearing mice, bone metastasis-free survival was assessed in animals

unresponsive to type I IFN (Ifnar1�/�). Importantly, no difference in

survival was observed in Ifnar1�/� hosts (Fig 4E; Appendix Fig

S4F) with tumor burden in bone across different models shown by

immunohistochemical detection of cerulean (eCFP; Fig 4F).

Additionally, we show that outgrowth from dormancy in bone is

significantly impaired in mice bearing RM1 BD Irf7 OE tumors

compared to mice inoculated with RM1 BD Irf� cells. Following IC

injection of claret-labeled RM cells (Appendix Fig S4G) and subse-

quent analysis by flow cytometry, no difference was observed at an

early time point (D11) between dormant RM1 BD Irf� and Irf7 OE

populations in bone (Fig 4G). However, by day 17 post-IC injection,

more Irf7 OE dormant cells were detected in bone by both FACS

(Fig 4H) and multiphoton imaging (Appendix Fig S4H), along with

reduced colony outgrowth (Fig 4I), indicating that high tumor cell

expression of Irf7 restricts escape from dormancy in bone. Further-

more, we identified two key IFN-regulated tumor-driven osteoim-

mune processes previously linked to bone-metastatic progression

that were dramatically different between RM1 BD Irf� and RM1 BD

Irf7 OE cells. Firstly, to support the requirement of host cell interac-

tions with IFN-producing tumor cells, we confirmed that RM1 BD

Irf7 OE cells were able to enhance tumor immunogenicity to

provoke a robust, functional T-cell response ex vivo (Fig 4J;

Appendix Fig S4I). Secondly, RM1 BD Irf7 OE showed impaired abil-

ity to induce osteoclast maturation, required for bone resorption,

compared to Irf� BV cells, which induced osteoclastogenesis even in

the absence of RANKL (Fig 4K; Appendix Fig S4J). Moreover,

enhanced osteoclast activity in the endosteal region and trabecular

marrow of RM1 BD Irf� tumor-bearing bones was revealed

(Fig EV3). Taken together, these results suggest that tumor-intrinsic

type I IFN plays a crucial role in tumor cell progression, immune

mediation, and destabilization of bone-homeostatic mechanisms

that fuel tumor outgrowth and may determine dormant tumor cell

fate.

HDACi induction of tumor cell type I IFN signaling blocks
metastasis and enhances the efficacy of systemic
immune-based treatments

While molecular restoration of tumor-intrinsic IFN signaling was

sufficient to alter bone-metastatic progression, it remained to be

shown whether the same result could be achieved through

◀ Figure 4. Molecular restoration of tumor-intrinsic type I IFN suppression inhibits bone-metastatic outgrowth and modulates osteoimmunity.

A Bone metastasis-free survival in WT C57BL/6 mice harboring RM1 parental, RM1 BD Irf�, and RM1 BD REV (LP) tumors (n = 5 per group; **P = 0.0043 by log-rank
(Mantel–Cox) test).

B Schematic of enforced Irf7 expression in RM1 BD Irf� cells under exogenous promoter control.
C ELISA of IFN-a production by RM1 parental, RM1 BD Irf� base vector (BV), and RM1 BD Irf7 overexpressing (OE) with 24-h poly I:C stimulation (n = 4).
D Bone metastasis-free survival in WT C57BL/6 mice subsequent to IC inoculation of RM1 BD Irf� BV (n = 9) and RM1 BD Irf7 OE (n = 7) cells (**P = 0.0028 by log-

rank (Mantel–Cox) test).
E Bone metastasis-free survival in Ifnar1�/� mice harboring RM1 BD Irf� BV and RM1 BD Irf7 OE tumors (n = 4 per group) and representative bioluminescent imaging

of tumor burden in leg bones (also shown in Appendix Fig S4F).
F Immunohistochemical (IHC) staining for cerulean (anti-eCFP; green) on naïve WT bone, RM1 parental, RM1 BD Irf� BV, and RM1 BD Irf7 OE tumor-bearing bones

derived from WT animals; and RM1 BD Irf7 OE tumor-bearing bones derived from Ifnar1�/� animals at survival assay endpoints. Blue represents DAPI nuclear
staining. Scale bar, 100 lm.

G–I FACS analysis of dormant (claret+) RM1 BD Irf� and RM1 BD Irf7 OE cells from bone at (G) day 11 post-IC injection (n = 4 per group) and (H) day 17 (n = 4–6 mice
group/time point) with (I) D17 active (claret�) colony quantitation (mean +1) determined by multiphoton imaging and IMARIS interrogation (n = 9 bones from
three mice per condition). Median shown. Upper and low box hinges denote first and third quartiles. Whiskers mark value limits.

J FACS analysis of IFN-c+ and TNF-a+ CD8+ T cells (%) post-ICS induction of T-cell (spleen derived from tumor-bearing mice) activation by RM1 parental, RM1 BD
Irf� BV, and RM1 BD Irf7 OE cells (n = 6 per condition/group).

K Mean quantitation of TRAP-stained osteoclasts differentiated with M-CSF � RANKL in co-culture with RM1 BD Irf� BV and RM1 BD Irf7 OE cells with representative
wells shown (n = 3 per condition M-CSF; n = 6 per condition M-CSF + RANKL; also shown in Appendix Fig S4J). Scale bar represents 100 lm.

Data information: P-values represented as * < 0.05, ** < 0.005, and *** < 0.0005 (Student’s t-test). All error bars � SEM, except where stated.
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therapeutic modulation. Following the previously unreported obser-

vation that poly I:C directly activates lymphocytes in bone

(Appendix Fig S5A) in addition to standard peripheral measures, we

examined whether systemic induction of type I IFN alone was suffi-

cient to block bone metastasis. To test this, mice were inoculated by

IC injection with either RM1 parental or RM1 BD Irf� cells and

treated with poly I:C or saline from day 4 onward. As a single agent,

poly I:C effectively decreased bone metastasis in mice bearing RM1

parental tumors, which was associated with enhanced immune acti-

vation and T-cell cytotoxic function (Appendix Fig S5B–D). Compar-

atively, in mice bearing RM1 BD Irf- tumors, poly I:C failed to

prevent bone metastasis at the day 15 endpoint. This was potentially

due to TLR3 suppression in bone-derived tumor cells with low IFN

signaling (evidenced in Fig 2C), highlighting the requirement of

tumor-intrinsic stimulation to promote an early IFN-driven antitu-

mor immune response in addition to systemic immune-activating

agents.

Notably, pre-treatment (48 h) of BD Irf� cells with the clinically

relevant HDACi MS275 enhanced IFN-a production by poly I:C

in vitro (Fig 5A), suggesting that HDACi alleviation of tumor-

intrinsic IFN suppression may underpin optimal responsiveness to

systemic immune-based therapeutics. Furthermore, MS275 as a

single-agent upregulated surface MHC class I molecule H2-Kb

within 48 h, which was further induced through combination of

MS275 and poly I:C (Fig 5B). The robust increase in tumor

immunogenicity markers was again associated with enhanced

CD8+ T-cell stimulation (Fig 5C and D), with T-cell responsiveness

further augmented by the addition of poly I:C. Excitingly, the bene-

fit of tumor-intrinsic type I IFN induction through HDACi interven-

tion was verified in vivo, where MS275 alone prolonged bone

metastasis-free survival in mice inoculated with aggressive RM1

BD Irf� cells (median survival extended from D14 to D24; Fig 5E).

Furthermore, the inhibitory effect of MS275 on bone metastasis

was enhanced in combination with poly I:C, whereby lethal bone

progression was completely blocked (Fig 5E and F, and

Appendix Fig S5E). Thus, tumor-intrinsic IFN status may be a criti-

cal determinant of immunotherapeutic success in CRPC, whereby

in the absence of intact or restored tumor cell IFN signaling, the

tumor cells may be rendered invisible despite modulation of

immune cell populations.

Tumor-intrinsic and systemic induction of IFN signaling
is required for long-term antitumor immunity against
bone-metastatic outgrowth

The efficacy of MS275 to enhance bone metastasis-free survival

likely resulted from immune engagement. Given that our in vitro

experiments revealed the requirement of at least 48 h for MS275 to

induce demonstrable changes in tumor-intrinsic type I IFN signaling,

it is not surprising that systemic immune activation within the first

24 h of treatment, as evidenced through lymphocyte expression of

activatory markers CD69 and NKG2D, was largely restricted to poly

I:C and combination groups (Fig 6A). However, analysis of periph-

eral blood lymphocytes at later time points suggests that the

strength of MS275 comes from its ability to increase peripheral

CD8+ and CD4+ T-cell populations and provoke a robust effector

memory response without induction of immune-suppressive

Foxp3+ CD4+ regulatory T cells (Tregs)—all critical for sustained

antitumor targeting (Fig 6B; Appendix Fig S6). This was demon-

strated following CD8+ T-cell harvest from metastasis-free combina-

tion-treated mice at endpoint (Fig 6C), in which a tumor-specific,

functional T-cell response was evidenced by increased IFN-c
production that directly corresponded to the degree of therapeutic

tumor-intrinsic type I IFN induction (Fig 6D). Collectively, these

findings further confirm the importance of tumor-intrinsic type I IFN

modulation of tumor immunogenicity and long-term antitumor

immune activity, which modern immune-based treatments have

failed to engender in the metastatic treatment setting.

Loss of intrinsic type I IFN signaling and tumor immunogenicity
is associated with bone metastasis in PCa patients

The unequivocal link between IFN signaling and bone metastasis

identified in the murine CRPC model led us to investigate the impor-

tance of type I IFN alterations in PCa patients, given the current lack

of patient responses to conventional and immune-targeting thera-

pies in bone-metastatic CRPC. To address this, we compared the

transcriptional profiles of bone metastases (n = 9) and matched

primary tumors (n = 12) from a cohort of PCa patients. Hierarchical

clustering revealed high similarity in gene expression patterns

within both the primary tumor and bone metastases groups.

Furthermore, overall lymphocyte composition was comparable

between both sites (Fig 7A) as was epithelial content, with mean

tumor cell purity > 85% in primary tumor metastasis and bone

metastasis samples (Fig 7B). Consistent with the observations made

in the RM1 model, genes associated with immune responses (TNF-a
and IFN responses; Appendix Fig S7A and Fig 7C.) were the most

significantly downregulated in bone compared to primary tumors,

with 39% of DEGs defined as IRGs (Appendix Fig S7B), from which

the type I IRG subset is represented (Fig 7D).

To confirm IFN pathway loss at the protein level and that loss

was indeed tumor-intrinsic, we assessed IRF9 expression in both

matched and unmatched primary tumors and bone metastases from

CRPC patients, given that we have previously identified IRF9 as a

robust marker of active intratumoral type I IFN signaling [37].

Immunohistochemical analysis confirmed that pathway loss was

localized to tumor cells in bone and occurred despite the observed

intratumoral heterogeneity of IRF9 between primary cancer tissues

(Fig 7E and Appendix Fig S7C). Loss of tumor-intrinsic type I IFN in

bone was associated with widespread downregulation of tumor

immunogenicity, evidenced through suppression of several HLA

genes (Fig 7F), which further validated murine findings. Further-

more, IFN loss in skeletal lesions compared to both benign and

malignant primary tumors corresponded to leukocyte compositional

alterations (Fig EV4A), in which robust increases in suppressive

immune cells, such as Tregs and myeloid cells, and decreases in

immune cells linked to antitumor immunity were observed

(Fig 7G).

Following validation of type I IFN suppression in bone metas-

tases and the evident heterogeneity across primary tumors despite

global IFN pathway loss, we asked whether reduced signaling in

primary PCa could actually predict risk of PCa progression and

whether IFN-associated progression was site-specific in CRPC. Based

on significant gene alterations common to both murine and human

bone metastases, we developed an eight-gene core signature of

bone-suppressed IRGs, including Irf9, Oas2, Gbp1, and Vgll3
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Figure 5. Bone metastasis is inhibited by therapeutic induction of cell-intrinsic (HDACi) and systemic type I IFN.

A ELISA of IFN-a production by RM1 BD Irf� cells � single-agent MS275 and poly I:C treatment or 48 h pre-treatment with MS275 (pMS) prior to poly I:C stimulation
(n = 6).

B Mean fluorescence intensity of H2-Kb staining on RM1 BD Irf� cells by FACS � MS275, poly I:C, or combination treatment (n = 3).
C, D FACS analysis of IFN-c+ CD8+ T cells (%) post-ICS induction of T-cell (spleen derived from RM1 BD Irf� tumor-bearing mice) activation upon re-stimulation with

RM1 cells and MS275, poly I:C, or combination treatment, with NAC (no antigen-presenting cells) and RM1 BD Irf7 OE controls (n = 3; Irf7 OE control (C), n = 1)
with (D) representative FACS plots shown.

E Bone metastasis-free survival in WT C57BL/6 mice harboring RM1 BD Irf� cells � MS275, poly I:C, or combination treatment (n = 6 per group; log-rank (Mantel–
Cox) test).

F Mean total tumor burden in bone (femurs, tibias, spine, and humerus) at endpoint by bioluminescent intensity score (log2 p/s/cm
2/sr) with values < 4.0 × 104

representing zero burden (n = 24 bones per group; six mice per group) and representative bioluminescent imaging of tumor burden in spine (all shown in
Appendix Fig S5E).

Data information: P-values represented as * < 0.05, ** < 0.005, and *** < 0.0005 (Student’s t-test in A–C and F; log-rank [Mantel–Cox] test in E). All error bars � SEM.
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(Appendix Fig S7D). This signature was used to stratify 499 PCa

patients with primary tumor expression data available through The

Cancer Genome Atlas (TCGA), which when probed revealed that

patients with altered type I IFN expression had an increased risk of

metastasis (Fig 7H). These results validate RM1 model findings that

IFN pathway loss in tumor cells accelerates PCa progression and are

particularly salient, given the multifocal nature of PCa [47,48], with

high heterogeneity, a key contributing factor to the current lack of

biomarkers through which to effectively predict metastasis [49–51].

Indeed, we provide evidence that tumor-intrinsic Irf9 expression

within high-risk primary PCa (Gleason > 7) is indeed variable at

both the protein level and transcriptional level (Appendix Fig S7E).

However, we also demonstrate that low expression is largely

homogenous across patients harboring bone metastases and could

therefore serve as a marker of patients likely to progress, supporting

further investigation of IRF9 as a prognostic marker in CRPC.

A

B

C D

Figure 6. HDACi and systemic IFN induction provides long-term immune protection from bone-metastatic colonization and outgrowth.

A, B FACS analysis of (A) peripheral blood (PB) T and NK lymphocyte representation and activation status and (B) FoxP3+ CD4+ and CD4+ effector memory T-cell status
at days 4 and 10 post-IC tumor cell inoculation across treatment settings (n = 4–6 per group).

C, D Bioluminescent imaging (C) of a combination group mouse with tumor clearance from days 7 to 41 (full experimental cohort shown in Appendix Fig S5E) post-IC
inoculation with (D) associated specific CD8+ memory T-cell response. This is represented by FACS analysis of IFN-c+ CD8+ T cells (%) post-ICS induction of T-cell
(spleen derived from tumor-bearing mice) activation upon re-stimulation with RM1 BD Irf� cells and MS275, poly I:C, or combination treatments in vitro, with NAC
and RM1 BD Irf7 OE controls (n = 3; Irf7 OE control (C), n = 1). Representative FACS plots shown on right.

Data information: P-values represented as * < 0.05, ** < 0.005, and *** < 0.0005 (Student’s t-test). All error bars � SEM.
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Additionally, Oncomine [52] interrogation (Fig EV4B) of the Varam-

bally prostate cancer microarray dataset [53], comprised of individ-

ual and pooled primary (n = 7) and hormone-refractory metastatic

(n = 6) tissue samples including bone, liver, and soft-tissue metas-

tases, revealed that the loss of bone-suppressed IRGs is potentially

shared across different metastatic sites. While this expands the clini-

cal relevance of IFN pathway alterations in CRPC, it is widely

acknowledged that visceral metastases are mostly accompanied by

the presence of bone metastases in CRPC [54]. As such, we cannot

rule out the possibility that visceral metastases were seeded from

bone lesions, as has been reported [55,56].

Together, these findings suggest that early IFN pathway alter-

ations at the primary site may promote successful bone colonization

by tumor cells and assist in accelerated DTC expansion. Our data

reiterate the critical function of type I IFN loss on PCa outgrowth to

and within bone. Furthermore, we highlight the potential applica-

tion of immunotherapeutic strategies that overcome intratumoral

type I IFN suppression to boost tumor visibility and subsequently

block bone-metastatic progression once IFN loss has occurred,

reflective of late-stage CRPC.

Discussion

Disseminated tumor cells in bone are a common occurrence in PCa.

While asymptomatic in many cases, their eventual detection and

subsequent outgrowth represent an incurable and ultimately fatal

stage of castrate-resistant disease. Here, we identified tumor-

inherent IFNs as potent suppressors of bone-metastatic outgrowth.

Type I IFNs have been implicated in the regulation of processes as

disparate as immune signaling to angiogenesis, cell adhesion, and

migration [57]. As such, the consequences of suppressed tumor-

intrinsic IFN signaling in the TME are potentially vast. Yet, the role

of type I IFN in addition to general immunomodulatory processes in

bone-metastatic cancers remains gravely underexplored. Here, we

show that tumor-inherent IFN signaling may dictate the temporal

development of bone metastases through osteoimmune modulation,

from dormancy through to the onset of fatal skeletal events. More-

over, we demonstrate that reversal of this loss can be therapeuti-

cally induced to prevent bone-metastatic progression in a murine

model of bone-metastatic CRPC, revealing a potential new approach

to treat advanced CRPC patients, many of whom may harbor bone

metastases with suppressed tumor-intrinsic type I IFN.

The impact of tumor-inherent signaling on PCa outgrowth in the

bone TME remains poorly described, particularly in immune-compe-

tent systems. Using the only reproducible bone-metastatic syngeneic

PCa murine line (reviewed in Ref. [21,22]), which is an unavoidable

limitation of the current study, we demonstrate that loss of tumor-

intrinsic IFN signaling not only is sufficient to accelerate metastasis to

bone, but also, importantly, permits tumor outgrowth. Dormant cell

retention of critical IRGs, including Irf7, along with other immunore-

active markers, such as several MHC molecules [58], supports existing

theories that immune mechanisms may indeed control PCa progres-

sion [59,60]. Additionally, dormant cell retention of IRGs linked to

chemoresistance and quiescent cell endurance (Gas6 [33]) along with

inhibition of apoptosis (Bhlhe41 [61]) suggests IRG enrichment in

dormant cells may also promote effects beyond immune effector

processes—the impact of which warrants further investigation.

Indeed, our findings suggest dormancy may result from several

concomitant processes, which are likely niche-specific, as others have

proposed. The rarity [62–65], plasticity [62–65], and stochastic nature

of dormant cancer cells in the osteoimmune microenvironment have

hindered mechanistic studies. Yet, here we show that tumor cell reten-

tion of IRGs—while potentially conferring some survival advantage—

may ultimately restrict overt tumor formation and promote dormant

cell eradication, likely through immune-mediated means. Indeed, this

was evidenced by the absence of bone metastases in mice inoculated

with RM1 BD Irf7 OE cells at endpoints exceeding mean RM1 model

survival of up to threefold.

In bone, several studies have exposed unique mechanisms of

crosstalk between skeletal and immune systems that can be

exploited by DTCs to initiate tumor progression [66,67]. In support

of this, the current study shows that tumor-intrinsic IFN suppres-

sion, indicated by loss of Irf7 or Irf9, occurs largely within bone and

can be induced by BM in vitro in a contact-dependent manner. Such

findings may reflect site-specific differences in stromal composition

and the molecules bone-resident cells express, particularly myeloid

cells, which comprise a large percentage of the BM population

[68,69]. The specific role of Ly6G+ myeloid cells in driving IFN loss

and metastatic outgrowth in bone is an important area of future

study and may underpin the specific loss of IFN in tumor cells in

bone compared to lung. The reported accumulation of populations

◀ Figure 7. IFN signaling is decreased in bone-metastatic PCa.

A–C Compositional analysis of RNA-seq data (FDR < 0.05; GLM by edgeR) from bone metastases (n = 9) and primary tumors (n = 12) revealed (A) immune cells and (B)
tumor cells were relative (% of total) across all samples, with a mean tumor purity > 85% as determined by ARMET. Median shown. Upper and low box hinges
denote first and third quartiles. Upper and lower whiskers mark the values � 1.5IQR from the hinge. Data points beyond the whiskers are shown individually.
P-values not significant by Wilcoxon rank sum test (R). Hallmark gene set responses associated with bone metastasis by camera analysis show (C) enrichment of
type I (IFN-a) IFN responses in suppressed genes (barcode plot).

D Heatmap of type I IFN DE IRGs (normalized log2CPM; counts per million) significantly suppressed in bone metastases (n = 9) compared to primary (n = 12) and
benign (n = 3) tumors, grouped by type I IFN-specific, and type II and III IFN co-regulation status. Scale truncated at � 5 relative log2CPM. GLM by edgeR.

E IHC for IRF9 expression in primary prostate tumors and bone metastases with matched samples indicated. IRF9 indicated by brown (DAB) staining. Scale bar
represents 100 lm. Full-face slides shown in Appendix Fig S7C.

F Heatmap of HLA genes (normalized log2CPM) suppressed (P < 0.05; FDR < 0.05) in bone metastases (n = 9), primary tumors (n = 12), and benign tumors (n = 3).
Scale truncated at � 5 relative log2CPM. GLM by edgeR.

G CIBERSORT analysis of absolute leukocyte proportions (arbitrary units, AU) in mRNA samples of bone metastases (n = 9), primary tumors (n = 12), and benign
tumors (n = 3). P-values by Mann–Whitney U-test.

H Kaplan–Meier curve of human prostate (n = 499 from 498 TCGA samples) biochemical recurrence based on primary tumor alterations in a core 8-IRG signature
(Appendix Fig S7D). Patient groups stratified by mRNA z-score (RNA-seq V2 RSEM) � 1.5. Hazard ratio 1.674 (95% confidence interval (CI) 2.707 to 1.035); *P = 0.03
by log-rank test.
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such as MDSCs in advanced metastatic prostate cancer [45] along

with MDSC promotion of bone resorption, tumor growth, and

immune suppression [20,69–71] suggests Ly6G+ myeloid cells play

a pivotal role in switching the bone TME to a permissive one. Inter-

estingly, the class I HDACi MS275 used in this study to restore

tumor-intrinsic IFN and block metastasis has been previously shown

to neutralize suppressive myeloid cell function in renal cell carci-

noma [72], possibly linking epigenetic modulation by myeloid cells

to the loss of IFN signaling that we observed in mice. It remains to

be determined whether the CD11b+ Ly6G+ myeloid cells that

induced IFN loss in tumor cells ex vivo are indeed truly suppressive

and responsible for silencing tumor-inherent IFN signaling in the

bone TME. Yet, it is recognized that acetylation is an integral part of

transcriptional regulation of IFN signaling [41]. Therefore, further

dissecting the contribution of BM populations, including Tregs and

other undefined M0 macrophage populations that are enriched in

human bone metastases, to tumor immune suppression may also

uncover potential mechanisms of TME-induced epigenetic modula-

tion of cancer cells.

Our findings may have major implications for immunotherapeu-

tic success, or lack thereof, in metastatic CRPC. It has long been

established that adaptive immune cells are pivotal to tumor eradica-

tion and T-cell activation and tumor immunogenicity are critical

components of immunotherapeutic success [73]. Several IRGs that

regulate tumor cell visibility, antigen presentation, and immune cell

function were suppressed in the bone metastases of both mice and

PCa patients. Such findings support previous evidence that down-

regulation of antigen-processing components occurs in the bone-

metastatic lesions of PCa patients [74], suggesting dampened

immunogenicity in bone. Indeed, we showed that mice bearing

cancer cells deficient in IFN signaling had impaired T-cell function

and response, suggesting bone metastases are unreactive and there-

fore unlikely to respond to single-agent checkpoint-based therapies

that work best against a T cell-inflamed tumor [75]. Moreover, we

showed that T cells derived from tumor-bearing mice can become

differentially cytotoxic purely based on tumor-intrinsic IFN signaling

potential. As such, tumor cell type I IFN signaling, largely ignored in

solid cancers, is a key determinant of tumor cell recognition and

immune memory response.

Tumor-driven IFN-dependent bone remodeling processes also

likely contribute to tumor expansion in the osteoimmune environ-

ment. The osteomimetic properties of PCa cells, shown to express

high levels of largely osteoblast and osteoclast-restricted proteins,

have been reported [76,77]. Bone resorption has been suggested to

precede the emergence of osteoblastic lesions in PCa [78], with a

skew toward late osteogenesis further influenced by bone-targeted

therapeutics, such as bisphosphonates [79]. Expanding on these

findings, we revealed high osteoclast activity within and around

RM1 BD Irf� bone lesions, which recapitulate the early stage of

skeletal lesion formation. Moreover, co-cultures demonstrated that

bone-derived IFN-deficient RM1 cells induced osteoclastogenesis,

while reversal of tumor-intrinsic IFN loss abrogated this phenom-

enon, supporting previous findings [80,81] that type I IFN (IFN-b)
prevents bone loss through osteoclast inhibition. While deeper

exploration into IFN-dependent crosstalk between immune and

bone cells in the TME is required, taken together, these results

demonstrate the inextricable link in PCa-driven osteoimmune modu-

lation being intrinsic type I IFN dysregulation.

This study implicates restoration of tumor cell IFN as means for

reducing metastatic burden and enhancing therapeutic response in

patients with CRPC. The shortcomings of recombinant IFN as a ther-

apy (reviewed in Ref. [34]) along with recent acknowledgment of

the critical influence of intact IFN signaling in the TME on therapeu-

tic response [82–85], including immune-targeted agents, have

sparked a new wave of IFN inducers being trialed in oncology, such

as STING and TLR agonists. However, our data herein provide the

rationale for the lack of efficacy of such immune-activating agents,

and suggest that tumor-intrinsic IFN signaling must be intact for a

treatment-provoked antitumor response. As such, epigenetic regula-

tors, including MS275 (entinostat), that boost tumor immunogenic-

ity through cell-intrinsic IFN modulation hold great promise as

anticancer agents. In recent years, several HDACi have been FDA-

approved to treat hematological malignancies with many more

currently undergoing clinical testing [86,87]. Notably, in addition to

exerting proapoptotic and antiproliferative effects, varied classes of

HDACi have also demonstrated activity in conjunction with other

immunotherapeutics [88,89]. While early broad-spectrum HDACi,

such as Trichostatin A, have been shown to suppress IRG expres-

sion in non-metastatic cancer cells in culture [90], here we demon-

strate that the selective class I HDACi MS275 is able to boost tumor

cell immunogenicity through cell-intrinsic IFN induction and

imparts a synergistic effect combined with immune-activatory poly

I:C to completely abrogate bone metastasis. In contrast to reports

using the HDACi SAHA (vorinostat) [91], class I HDACi MS275

prevented Treg cell accumulation. Moreover, treatment promoted

sustained effector T-cell responses through CD4+ and CD8+ T-cell

expansion and enhanced T-cell memory function, which directly

correlated with IFN-induced MHC expression in bone-derived tumor

cells. As previously reported [92], in our hands MS275 does not

impact innate immune populations. As such, the additive effect of

MS275 and poly I:C on bone progression may result from the induc-

tion of both innate and adaptive arms of immunity, both implicated

in acute and long-term antitumor activity. Future spatial exploration

using quantitative visual analysis platforms [93,94] may help

expand our understanding of the direct effect of MS275 in bone on

tumor–immune cell interactions and the mechanisms through which

HDACi shape T-cell memory in the osteoimmune niche.

Here, we report for the first time that tumor-intrinsic type I IFN

loss occurs during dormancy outgrowth and that this is perhaps one

mechanism that facilitates accelerated bone-metastatic progression

in PCa. Moreover, we highlight that the complex tri-regulation that

may occur between tumor, immune, and bone cells to promote bone

metastasis underscores the importance of looking beyond isolated

interactions to target a highly heterogenous and bone-avid disease.

Critically, we demonstrate that in an aggressive cancer context that

mimics CRPC, lost tumor-inherent IFN can be restored using a

HDACi. Use of this or other agents, including HDACi not explored in

this study, may provide new therapeutic opportunities to restore

inherent IFN signaling in tumor cells to enhance immunogenicity

and stimulate T-cell memory should dormant tumor cells awaken in

bone. We demonstrate that low tumor cell expression of IRGs in

PCa patients is associated with bone-metastatic progression and

may be important for subsequent or concurrent spread to other

sites. Moreover, that members of this pathway, such as IRF9, may

serve as robust markers through which to identify patients most at

risk of metastasis and aid in early stratification of candidates most
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likely to benefit from the therapeutic strategies aimed at increasing

the visibility of tumor cells, such as those explored in the current

study. Furthermore, we reveal that tumor-intrinsic IFN suppression

in patient bone metastases may underpin the inefficacy of

immunotherapeutics against CRPC progression by suppressing

tumor cell induction of immune activation and engendering an

immune-unreactive TME. Our study will hopefully prompt more

systematic trials aimed at utilizing the predictive and therapeutic

value of PCa cell-intrinsic IFN signaling to personalize immune-

based strategies in patients harboring an incurable stage of disease.

Materials and Methods

Patients and mice

Epworth Clinical Cohort patient samples were obtained and processed

[95] with consent and institutional ethics approval from the Royal

Melbourne Hospital and Epworth Hospital Human Ethics Committees

following invitation to undergo voluntary biopsy. The metastatic clini-

cal cohort comprised of primary adenocarcinomas spanning the

common clinical grades and stages (Gleason scores 7–9; pathological

T stages 2c, 3a, and 3b; and prostate-specific antigen [PSA] 5–81 at

time of diagnosis). The localized patient cohort consisted of primary

adenocarcinomas ranging from Gleason scores 6 to 9, pathological T

stages 2a to 3b, and PSA 5 to 81 at time of diagnosis. No patient had

received bone-targeted therapy at the time of surgery.

Primary prostate cancer specimens were obtained with written

and informed consent through the Australian Prostate Cancer BioRe-

source from men undergoing robotic radical prostatectomy at St

Andrew’s Hospital (Adelaide, Australia), with approvals from the St

Andrew’s and University of Adelaide Human Research Ethics

Committees (HRECs).

Cancer Tissue Acquisition After Death (CASCADE; PMCC HREC

Project 11/102)[96] program prostate primary tumor and metastatic

bone lesions were accessed from 5 enrolled patients.

St Vincent’s-Garvan Clinical Cohort primary adenocarcinoma

biospecimens were obtained at time of radical prostatectomy from

patients recruited and consented as approved by the St Vincent’s

Hospital HREC #SVH/12/231. Sample processing and expression anal-

ysis was performed in accordance with St Vincent’s HREC approval

#SVH/15/227. The full cohort comprised of 80 patients who, at time of

surgery, had not received radiation, chemotherapy, and/or ADT, and

post-surgery had at least 24 months of clinical follow-up. Patient char-

acteristics at surgery included the following: Gleason scores 6 (n = 20),

7 (n = 32), 8 (n = 12), and 9 (n = 16), with median age in years 60.7

(range 46–75) and median PSA in ng/ml 8.2 (range 3.1–19.2).

Mouse experiments were approved by the La Trobe Animal

Experimentation Ethics Committee. Male C57BL/6 mice (~ 8 weeks)

were obtained from the Walter and Eliza Hall Institute of Medical

Research (Melbourne, Vic, Australia) and C57BL/6 Ifnar1�/� mice

bred in-house as previously described [20]. For all in vivo studies,

mice were age-matched.

PCa models

The bone-metastatic RM1 cell line sourced from Timothy Thompson

(The Urology Research Laboratory, Veterans Affairs Medical Center,

Houston, and Baylor College of Medicine, Department of Cell Biol-

ogy, Houston, TX, USA) was engineered to express cerulean and

luciferase via standard retroviral transfection and spin infection

methods using Phoenix-Eco cells to generate RM1 parental pool cells

per previously outlined methods [20]. Tissue-specific RM1 libraries,

including all RM1 bone-derived Irf-low (RM1 BD Irf�) cell lines,

were generated through FACS isolation of cerulean (V500+) PKH�

cells from tumor-bearing mice and expanded in vitro with restricted

passage (< 8). The reverted RM1 BD cell line (RM1 BD Rev) was

further generated through extended passage (> 13) in vitro. The

pMSCV-ires-mCherry retroviral expression vector (Clontech, Palo

Alto, CA, USA) was used to enforce constitutive Irf7 expression in

RM1 BD Irf� cells to create the RM1 BD Irf7 OE line by retroviral

transduction. In parallel, pooled empty pMSCV-ires-mCherry vector-

expressing cells served as base vector controls (RM1 BD Irf� BV).

Cherry/cerulean-positive clones were single-cell-sorted, expanded,

validated, and pooled from three individual clones. Cell lines were

cultured in DMEM (10% FBS) at 37°C (5% CO2) and passaged using

EDTA (0.01% w/v in PBS). Tumor lines were verified to be myco-

plasma-negative by the Victorian Infectious Diseases References Lab

(Melbourne, Vic, Australia).

Tissue-derived cell preparation

To obtain BM cell suspensions, the long bones (femurs, tibias, and

humerus) and spines were resected and muscle was removed using

a scalpel blade under sterile conditions. Long bones were cut at the

epiphyses and flushed with 10–50 ml PBS using a 10-ml syringe and

27-gauge needle, and spines were sectioned and flushed accord-

ingly. Whole BM was subjected to red blood cell (RBC) lysis

(155 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA, pH 7.3) and fil-

tered through a 70-lm membrane. Lung-derived RM1 cells were

isolated via whole lung mechanical disaggregation and filtration

through a 70-lm membrane with subsequent RBC lysis and re-

suspension. Tumor cells were sorted from crude cell suspensions

and FACS-purified based on cerulean detection using the FACSAria

III. All tissues and stromal cells were harvested from male WT

C57BL/6 mice aged ~ 8 weeks.

Membrane labeling

RM1 parental cells were labeled using the PKH26 Red Fluorescent

Cell Linker Mini Kit (Sigma-Aldrich), and RM1 BD Irf� and Irf7 OE

cells were labeled using the CellVue� Claret Far Red Fluorescent

Cell Linker Mini Kit (Sigma-Aldrich) according to the manufac-

turer’s instruction with minor modifications, including incubation

times and centrifugation speeds. Cells were labeled 12–14 h prior to

subsequent use, to facilitate cell recovery. Cell viability along with

label intensity and homogeneity was analyzed by FACS prior to

in vivo and ex vivo assays.

RNA-seq

Single-cell cDNA generation, library preparation, sequencing,
and analysis
Live (APC�; Fixable Viability Dye eFluor 780, eBioscience) PKH+

and PKH� BD RM1 cells were single-cell-sorted by FACS (FACSAria

III; BD Biosciences) into 384-well plates containing RNA lysis buffer
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(0.05% 10× GeneAmp PCR Buffer without MgCl, Life Technologies;

0.9% SUPERase In RNase Inhibitor (20 U/ll), Life Technologies;

0.9% RNasin� Plus RNase Inhibitor (40 U/ll), Promega; Nuclease-

free Water), snap-frozen, and stored at �80°C for processing.

Single-cell cDNA was generated using the SMARTer Ultra Low RNA

Kit (Clontech) with modifications. Briefly, 1:2.5 × 106 dilution of

ERCC spike-in controls (Ambion) were incorporated during first-

strand cDNA synthesis. Subsequent steps were performed according

to the manufacturer’s instructions at half-reaction volumes. cDNA

quality assessment was performed using the Bioanalyzer HS DNA

chip (Agilent Technologies) according to the manufacturer’s instruc-

tions and with Qubit 4 (Thermo Fisher). Libraries (1 ng cDNA

input) were subsequently generated in four batches (2 × 14 samples

of PKH+ cells; 2 × 16 samples of PKH� cells sourced from eight

independent animals at different time points of metastasis from d14

onward, with an average of d16, across independent experiments),

and unique adapters were incorporated using the Nextera XT Kit

(Illumina) according to the manufacturer’s protocol. Libraries were

validated by Bioanalyzer 2100 (Agilent) and quantitated by Qubit 4

and pooled (2 × pools of equal numbers of PKH � in each group)

for sequencing across 2 lanes on the Illumina HiSeq2500 (125-bp

paired-end reads) on a high-throughput mode with ~ 3 million reads

per cell. Sequence adapters were trimmed and aligned to a modified

version of the GRCm38/mm10 mouse genome (which also included

ERCC and eCFP sequences) using the STAR aligner [97]. Summa-

rized gene transcript counts and TPMs were generated using RSEM

[98]. All subsequent normalization and differential expression anal-

ysis was performed using the BASiCS package according to methods

previously described [23,24].

Bulk RM1 RNA preparation and sequencing
Matched bone and lung metastases were derived from an RM1

parental tumor-bearing mouse at d16 post-IC injection of PKH26-

labeled RM1 cells. PKH� cells from a bone-metastatic femur were

bulk-sorted on the FACSAria III (BD Biosciences). PKH26 � cells

were single-cell-sorted (n = 6 PKH+; 63 single PKH�) in parallel

from the same mouse for validation of subsequent expression analy-

sis. Cells were expanded in culture, until ~ 5 × 106 cells were

pelleted and RNA was extracted using the innuPREP RNA Mini Kit

(Analytik Jena). RNA was also extracted from unlabeled and ceru+/

luc2+-labeled RM1 parental cells (n = 4). RNA concentration was

determined via NanoDrop 2000 (Thermo Fisher), validated by

Bioanalyzer 2100 (Agilent), and quality of RNA was assessed by gel

electrophoresis (1% agarose gel). Purified RNA (RIN > 6.8) was

prepared using the NEBNext Ultra RNA Library Prep Kit for Illumina

(NEB, USA), and RNA-seq was performed on the HiSeq2500 (125-bp

paired-end reads; 24 million pair reads per sample) by Novogene

Bioinformatics (Hong Kong). Clean reads meeting exclusion criteria

(no adaptor contamination; undecided nucleotide call > 10%; low

base quality > 50% of read) were aligned to GRCm38 using TopHat

(v2.1.10)[99] and counted using HTSeq-count [100]. Differential

expression was performed using edgeR, and statistical significance

was determined by generalized linear model extraction (GLM)[101].

Patient tissue processing

For metastatic samples, a coaxial bone biopsy needle with an 18G

internal caliber (Bonopty Bone Biopsy System, 10-1072, AprioMed

AB, Sweden) was used and tissue cores were immediately flash-

frozen in liquid nitrogen. Tissue samples were embedded in optical

cutting time compound (Sakura) at �24°C, and 5-lm sections were

cut by cryotome (CM1,900, Leica Microsystems, NSW, Australia).

Sections were transferred to charged glass slides (SuperFrost Ultra

Plus, Thermo Scientific), stained with hematoxylin and eosin, and

assessed in real time by a pathologist for tumor content. On confir-

mation of malignancy or where this was considered likely but incon-

clusive, the optical cutting time compound-embedded tissue

samples were isolated with a scalpel and placed in RLT Plus Buffer

for immediate homogenization (TissueRuptor, Qiagen, CA). DNA

and RNA were simultaneously extracted using the Allprep Micro Kit

(Qiagen, CA) following the manufacturer’s instructions, including

on-column DNase digestion of the RNA. Genomic DNA was

extracted from fresh-frozen samples of whole blood with the

DNeasy Blood & Tissue Kit (Qiagen, Maryland) following the manu-

facturer’s instructions. RNA quantity and quality were checked by

microelectrophoresis (Agilent 2100 Bioanalyzer), while DNA quan-

tity was checked by spectrophotometry (NanoDrop 1000, Thermo

Scientific), and the quality was assessed by gel electrophoresis

(0.8% agarose gel).

Patient library preparation and RNA sequencing

A total of 1 lg RNA was input into the TruSeq RNA Sample

Preparation Kit v2 (Illumina, RS-122-2001) according to the

manufacturer’s instructions. Second-strand cDNA synthesis was

performed using DNA Polymerase I and RNase H. The resulting

cDNA fragments were end-repaired, 30 ends were adenylated, and

indexed paired-end adaptors were ligated. The products were

purified and then enriched with PCR to create the cDNA library,

validated by 2100 Bioanalyzer (Agilent). Sample libraries were

normalized to 10 nM using Tris-Cl 10 mM, pH 8.5, with 0.1%

Tween-20. Samples were multiplexed with multiple samples per

lane in the flow cell and thus were pooled accordingly. Cluster

generation occurred on a cBot automated cluster generation

system using TruSeq PE Cluster Kit v3 (cBot-HS, Illumina)

reagents for 100-bp paired-end sequencing. Each flow cell was

loaded onto a HiSeq2000 sequencing platform with reagents from

TruSeq SBSv3 HS (200 cycles; Illumina) and 120–180 million

reads per flow-cell lane performed. Reads were aligned to

GRCh37 and counted, and differential expression was performed

per bulk RM1 outline.

Clustering analysis

Differentially expressed genes enriched in dormant (PKH+)

compared to proliferating RM1 single cells, as identified by BASiCS,

were clustered by non-NMF using the NMF package in R.

The Cancer Genome Atlas analysis

Human survival curves were generated using the prostate adenocar-

cinoma TCGA provisional dataset (TCGA-PRAD; 499 RNA-seq

samples from 498 patients; RSEM z-Score � 1.5) using cBioPortal

[102,103]. Statistical significance was determined by log-rank test.

Hazard ratios are exp(coef) with upper and lower confidence inter-

vals of 95%.
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Oncomine analysis

The Varambally [53] prostate dataset (GSE3325) generated using

the Affymetrix Human Genome U133 Plus 2.0 Array platform from

individual and pooled benign (not shown) primary and metastatic

prostate cancer tissues was probed for an 8-IRG core signature for

mRNA expression (z-score normalized; log2 median-centered ratio).

Statistical significance was determined by log-rank test.

INTERFEROME, gene set testing, and GO enrichment analyses

Differentially expressed genes high in dormant cells with no residual

dispersion difference from the scRNA-seq analysis or downregulated

gens with FDR � 0.05 from the bulk RNA-seq analyses were

subjected to INTERFEROME [25] interrogation to identify IRGs (with

a twofold upregulation threshold).

Gene ontology (GO) overrepresentation analysis was performed

on DEGs with no residual dispersion from the single-cell data using

GO biological process terms with the goana function from the limma

package.

Gene set testing was performed using the cameraPR function

[104] on the signed log-likelihood ratio (LR) statistic derived from

edgeR [101] differential expression results, calculated as sign

(logFC) × sqrt(LR). The Hallmark gene set collection [35] and the

GO biological process subset [105] of the c5 gene set collection from

the Molecular Signatures Database [106] were tested.

Gene enrichment and pathway annotations of biological

processes from IRG signatures were derived using the PANTHER

v11 package [107,108]. Output was restricted to fold enrichment

(FE) > 2; P < 0.05.

Multidimensional scaling (MDS) plot

The MDS plot was generated using the plotMDS function from the

limma package using log2(denoised counts + 1) expression values.

ARMET and CIBERSORT analyses

Differential tissue composition analyses to determine tumor cell

(epithelial) and immune cell content (% of total sample) of human

tumor mRNA were quantified using the custom probabilistic

Bayesian model ARMET (version 0.6.0) according to methods

recently outlined [109]. Significance was determined using the

stat_compare_means function Mann–Whitney U-test from the

ggpubr R package.

For immune cell deconvolution of leukocytes in human tumor

mRNA, raw counts were converted to counts per million using the

edgeR cpm function. Gene symbols were obtained from Ensembl IDs

using the Homo.sapiens package. Expression data for annotated

genes were used for CIBERSORT analysis [110] in absolute mode

with quantile normalization disabled. For each cell type, bone

metastases and primary tumor groups were compared by Mann–

Whitney U-test using the wilcox.test function in R.

Sulforhodamine B proliferation assay

In vitro cell proliferation was assessed using a sulforhodamine B-

binding assay over 6 days with a seeding number of 500 cells per

cell line in triplicate and measured at 550 nm using methods previ-

ously described [111].

qRT–PCR

RNA was extracted from cell pellets using the innuPREP RNA Mini

Kit (Analytik Jena) according to the manufacturer’s instructions.

When required, cells were transfected with poly I:C (10 lg/ml)

overnight or treated with HDACi (entinostat [MS275], 1 lM [Sel-

leckchem]; romidepsin [depsipeptide], 50 nM [Selleckchem]; or

vorinostat [suberanilohydroxamic acid, SAHA], 2.5 lM [Sel-

leckchem]) for 48 h prior to RNA extraction. cDNA was generated

using the iScript Reverse Transcriptase Supermix cDNA for qRT–

PCR kit (Bio-Rad). qRT PCR was performed using SsoAdvanced

Universal SYBR Green Supermix (Bio-Rad) to quantify murine Irf7,

Irf9, and Oas2 transcript expression on the CFX96 (Bio-Rad) cycler

per manufacturer’s guidelines. Gene expression (arbitrary units)

relative to housekeeper gene Hprt was calculated as mean relative

transcript abundance (RTA) by methods previously outlined [20].

Primers sourced from IDT were used as follows: Irf7 fwd: 50-CC
ACACCCCCATCTTCGA-30; Irf7 rev: 50-CCTCCGAGCCCGAAACTC-30;
Irf9 fwd: 50-GCTCTAGCCATAGCCAAGAGAATC-30; Irf9 rev: 50-TCC
AGTAAATGTCGGGCAAAG-30; Oas2 fwd: 50-CTGTTGGAAGCAGTC
CATGA-30; Oas2 rev: 50-CCCTGTGAAGGAAGTGGCTA-30; Hprt fwd:

50-GGCCAGACTTTGTTGGATTT-30; Hprt rev: 50-ACTGGCAACATCA
ACAGGACT-30.

RNA was prepared from 88 primary biopsy cores from 80 St

Vincent’s–Garvan PCa patients using the AllPrep DNA/RNA Mini

Kit (Qiagen). cDNA generated using the QuantiTect Reverse Tran-

scription Kit (Qiagen) was assessed for Irf9 expression, with each

sample (100 ng RNA) run in triplicate using primers and probe

sourced from IDT: Irf9 fwd: 50-CCAGCCATACTCCACAGAAT-30;
Probe: 50-ACAGTGAAGATGGAGCAGGCCTTT-30; Rev: 50-GAGTC
TGCTCCAGCAAGTAT-30 with expression relative to GAPDH (IDT).

Microarray

HCT116 colon cancer cells were � treated with SAHA (vorinostat;

5 lM), romidepsin (50 nM), and belinostat (5 lM; Selleckchem) for

24 h. Total RNA was isolated from pelleted cells using the RNeasy

kit (Qiagen). Samples were submitted to the Australian Genome

Research Facility (AGRF) for processing and direct hybridization

using Illumina HumanHT-12 v4 Expression BeadChip whole-genome

microarrays containing probes for over 47,000 transcripts (Illumina).

Data were analyzed using R and the Bioconductor package (limma),

where raw data were background-corrected using the normexp func-

tion, log-transformed, and quantile-normalized. Differential expres-

sion in treated samples was measured relative to controls.

IFN-a enzyme-linked immunosorbent assay (ELISA)

IFN-a ELISA was performed using standard molecular biology tech-

niques. Capture antibody, clone RMMA-1, was used at 1/500

(0.16 lg/ml; PBL Interferon source) prior to detection antibody (1/

500 rabbit polyclonal mouse IFN-a 32100-1; 4 lg/ml; PBL Interferon

Source) and tertiary antibody (1/1,000 anti-rabbit-HRP; AP182P;

Chemicon). In-house-generated recombinant IFN-a gifted from the

Hertzog Lab. Cells were � pre-treated with MS275 (1 lM) for 48 h
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and then seeded for same day � poly I:C (10 lg/ml) transfection

overnight.

Flow cytometry analysis

For analysis of peripheral blood lymphocytes, tail or submandibular

vein blood (< 100 ll) was collected and subjected to RBC lysis.

Subsequent cell suspensions were stained with panels of antibodies:

CD8a-PE-Cy7 (53-6.7), CD4-APC-Cy7 (GK1.5), CD69-APC (H1.2F3),

CD44-FITC (IM7), CD62L-BV421 (MEL-14), PD-1-PE (J43), NK1.1-

BV421 (PK136), FOXP3-FITC (MF23), TNF-a-FITC (MP6-XT22), and

IFN-c–PE (XMG 1.1) (all from BD Biosciences), and NKg2D-PE-Cy7

(CX5) (eBioscience). For characterization of bone stromal cell popula-

tions, cells and isolation of CD11b+ subsets for co-culture cells were

also stained with CD11b-BV421/BV605 (M1/70), CD3-PE (17A2),

TCR-b–FITC (H57-597), and Ly6G-PE (1A8; all BD Biosciences),

CD11c-PercP (N418; Biolegend), Ly6C-APC (HK1.4; eBioscience), and

F4/80-PeCy7 (BM8; Invitrogen). For characterization of H2-Kb

expression, RM1 cells were stained with H2-Kb-PE (AF6-88.5; BD

Biosciences). Data are represented as lymphocyte percentage. All

analysis was performed on the FACSAria III (BD Biosciences), and

data were analyzed using FlowJo 10.5.0 software (Tree star).

Co-cultures

Parental RM1 cells were seeded at 1–2.5 × 104 cells per well in a 24-

well plate. BM was derived as previously specified, and ~ 8 h later,

6 × 105 cells were added (�) to cultures for 48 h � MS275 (1 lM).

Excess naı̈ve BM was stored at �80°C for RNA extraction to assess

IRG expression. For transwell cultures, BM was � seeded onto 0.4-

lm filters (Corning) in a 24-well plate and cultured for 48 h. For

CD11b+ co-cultures, CD11b+ Ly6G+ populations were FACS-

isolated from naı̈ve BM after staining as described. At all co-culture

endpoints, RM1 cells were pelleted for RNA extraction and qRT–

PCR by methods previously outlined.

Osteoclastogenesis assay

RM1 BD Irf� BV and RM1 BD Irf7 OE were seeded in triplicate at

1 × 104 cells per well in a 48-well plate. BM was derived as previ-

ously specified and plated independently from individual animals

(n = 3), and ~ 8 h later, 3 × 105 cells were added � M-CSF (50 ng/

ml) for 24 h, after which fresh media containing � M-CSF (50 ng/

ml) and recombinant RANKL (60 ng/ml) were added every 2 days

until day 9. Due to rapid RM1 growth, tumor cells were split 1:4 on

d4 and d7 by adding 100 ll fresh media, pipetting gently, and

removing 100 ll of RM1-suspended cells. On day 9, RM1 cells were

removed via gentle washing and TRAP staining was performed as

previously published [112].

Survival analysis and in vivo treatment

For in vivo experiments, 3–4 × 104 cells (RM1, RM1 BD Irf�, RM1

BD Rev, RM1 BD Irf� BV, or RM1 BD Irf7 OE) were injected under

isoflurane anesthesia into the left ventricle of the heart on day 0. To

derive subcutaneous cell lines and investigate the impact of PKH

labeling on in vivo growth, 8 × 104 RM cells were injected into the

hind flank. Growth was measured using electric calipers, and tumor

volume (mm3) was calculated as L (mm) × W (mm)2/2. For

survival assays, mice were euthanized following paralysis or signs

of metastatic distress. Metastatic burden in whole animals, viscera

and bones, was confirmed in all subjects at endpoint via biolumi-

nescence imaging (BLi) following IP injection of D-luciferin (3 mg/

mouse; Gold Biotechnology, USA) and IVIS Lumina XR III Detection

(Caliper Life Science). Living Image v4.4 software was used for

normalization and luminescence quantitation (Caliper Life Science).

To compare saline (0.9%) to poly I:C using RM1 and RM1 BD

Irf� cells, saline or poly I:C (25 mg/mouse in saline; Sigma) was ip-

administered three times weekly for 2 weeks from d3 post-IC injec-

tion of RM cells. To assess the efficacy of HDACi and poly I:C on

bone metastasis inhibition in RM1 BD Irf� tumor-bearing mice, the

following groups (n = 6) were administered: vehicle (1 × dose of

saline; 1 × dose of DSPT [2% DMSO, 0.09% saline, 30% PEG 300,

and 2% Tween-80]); MS275 (8 mg/kg in DSPT; 1 × dose saline;

Selleckchem); poly I:C (25 mg/mouse in saline; 1 × dose DSPT);

and Combo (1 × dose MS275; 1 × dose poly I:C). MS275 was deliv-

ered once daily (Monday–Friday) for 2 weeks from d3 post-IC injec-

tion of PCa cells. Poly I:C was delivered three times weekly for

2 weeks from d3 post-IC injection of RM cells.

Intracellular cytokine staining for T-cell specificity

Antigen-specific CD8+ T cells were identified following splenocyte

isolation from RM1 BD Irf� tumor-inoculated mice (> day 50) and T-

cell generation following co-culture with irradiated RM1 BD Irf� cells

at a 10:1 ratio in RPM1 (10% FBS; 10U IL-2/ml) for 14 days. In vitro-

expanded RM1 BD Irf�-specific CD8+ T cells (5 × 104) or splenocytes

from memory tumor-bearing mice (1 × 106) were re-stimulated with

5 × 104 untreated or treated RM1 cell lines (RM1, RM1 BD Irf�, and
RM1 BD Irf7 OE) in the presence of 10 lg/ml Brefeldin A for 5 h.

Following incubation, cells were surface-antibody-stained for CD8

(30 min, 4°C) and fixed with 1% paraformaldehyde (20 min, RT),

and intracellular antibody was stained for IFN-c and TNF-a in the

presence of 0.4% saponin (30 min, 4°C) before analysis by flow

cytometry. For assessment of drug-induced changes in intracellular

cytokine staining (ICS) assays, RM1 BD IRF� cells were � pre-

treated with 1 lM of MS275 for 48 h, then transfected with poly I:C

(10 lg/ml) for a further 24 h prior to ICS inclusion.

Immunohistochemistry

Differential tumor burden in mouse bone was visualized using eCFP

antibodies with the OPAL method using the 7-Color Manual immuno-

histochemistry (IHC) Kit (PerkinElmer; NEL811001KT). Bones were

decalcified and fixed as per conventional IHC methods mentioned

above. Staining was performed according to the manufacturer’s proto-

col with the exception of 30-min blocking and secondary antibody

incubations. Primary antibodies obtained from Abcam used were CFP

(ab6556; 1 lg/ml), and incubations were performed for 1 h at RT.

Secondary antibody was donkey anti-rabbit HRP (AP182P; 1:2,000,

Chemicon). After all rounds of staining, including DAPI, tissues were

mounted using Vectashield hardset mounting medium (Vector Labs).

Whole slide scans and multispectral imaging of sections were under-

taken using the VECTRA 3.0 (PerkinElmer) at 200× magnification.

Image analysis was performed using inForm software (PerkinElmer)

following tissue segmentation into tumor and stromal areas.
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For differential IRF9 expression in human primary tumors and

bone metastases, tissues were subject to heat-induced epitope

retrieval in a decloaking chamber (110°C for 5 min) before incubat-

ing with anti-IRF9 (ab51639; 7 lg/ml, Abcam) overnight at 4°C.

Tissues were then incubated with goat anti-rabbit secondary anti-

body (BA-1000; 1:250; Vector Labs) following incubation with

avidin/biotinylated enzyme complex (ABC; Vectastain) and visual-

ized using DAB (Vectastain). Tissues were counterstained using

hematoxylin.

TRAP staining of bone sections

Slides were dewaxed through histolene (3×, 3 min), 100% ETOH

(3×, 1 min), 70% ETOH (1×, 1 min), and distilled water (1×,

1 min). Slides were incubated in 50 ml acetate buffer pre-warmed

to 37°C following addition of 0.5% Naphthol AS-BI phosphate

substrate (Sigma-Aldrich) as previously described [112]. A 1:1 mix

of sodium nitrite solution (0.58 M) and pararosaniline dye (154 mM

in 2M HCl) was prepared and added to a second Coplin jar of pre-

warmed acetate buffer 2 min prior to incubation endpoint. The

slides were then transferred, and TRAP was developed for 5–12 min

with periodical monitoring for optimal induction. Slides were

washed three times with distilled water and counterstained with

0.02% Fast Green (Sigma-Aldrich) for 45 s. Slides were rinsed with

distilled water, dehydrated with 100% ETOH (3×, 1 min) and histo-

lene (3×, 4 min), and coverslipped with Entellan.

Two-photon microscopy

Whole tibias and femurs were harvested from tumor-bearing

animals. Two-photon excitation was achieved with a Chameleon

Vision II Ti:Sa laser (Coherent). Images were acquired on a Zeiss

7MP microscope with LBF 760 and BSMP 760 filters to enable far-

red detection. Non-descanned detectors used were SP485 (blue,

second-harmonic generation and eCFP), BP 500–550 (green, eCFP),

and BP 540–719 (far-red, CellVue Claret). Imaging and cell quantita-

tion were performed on intact whole tibias as published [113].

Quantification and statistical analysis

Unless otherwise described in the figure legends, Student’s two-

tailed t-tests were used to determine significance between groups.

Dot plots and histograms are means and all error bars � SEM with

exact n described. The Mantel–Cox log-rank tests were performed to

evaluate differences in survival time from the Kaplan–Meier analy-

ses in murine assays. GraphPad Prism software (v5.0) was used for

analyses, and P-values were deemed significant as follows:

*P < 0.05, **P < 0.005, and ***P < 0.0005.

Data availability

The RNA-seq datasets produced in this study and corresponding to

Figs 1 and 2 are available in the following database: Gene Expres-

sion Omnibus (GSE147151; https://www.ncbi.nlm.nih.gov/geo/que

ry/acc.cgi?acc=GSE147151).

Expanded View for this article is available online.
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