
@ Copyright by Jijoong Kim 1995



\-l.B.q5

A New Recursive High-Resolution
Parametric Method for Power

Spectral DensitY Estimation

Jijoong Kim, B.E. (Hons.)

Thesis submitted for the degree of

Master of Engineering Science

The UniversitY of Adelaide

Faculty of Engineering

Department of Electrical and Electronic Engineering

April, 1995

by

Ê\wo', cJ c'c{ ì' ì Õt ':



DECLARATION

This thesis contains no material which has been accepted for the award of any other

degree or diploma in and University or other tertiary institution, and to the best of the

author's knowledge and belief contains no material previously published or written by

another person, except where due reference has been made in the text.

Should the thesis be accepted for the award of Degree, the author hereby consents to this

copy, when deposited in the University Library, being made available for loan and photo-

copying.

Signature

Date Anril 19 1 9q5



CONTENTS

Abstract

Acknowledgement

List of Figures

List of Tables

Notation and Nomenclature

I Introduction

1.1 Power Spectral DensitY . . . .

1.2 Organization of the Thesis ' .

2 Review of the conventional spectrum Estimation Methods ' ' '

2.1 Introduction . '. .

2.2 Non-Parametric Methods for PSD Estimation ' '

2.2.1 Periodogram PSD Estimators

2.2.1.1 Daniel Periodogram' ' " '

2.2.1.2 BartlettPeriodogram ' ' ' '

2.2.1.3 Welch Periodogram

2.2.2 Correlogram for PSD. .

2.2.3 SummarY

2.3 Parametric Methods for PSD Estimation '

2.3.1 Yule-WalkerMethod

2.3.2 Burg Method . .

2.3.3. Unconstrained Least-Squares Method ' ' '

iv

v

vi

x

xi

1

3

5

5

7

7

9

9

1l

t3

t4

l5

16

l7

19

^ 
lL^-:,^'¿.3.4 Mooel uroer òelccLrutl \-lrlsrra ' ' ' )o



2.3.5 SummarY

2.4 Performance ComParisons. '

3 New Parametric Method. . '

22

24

27

27

27

33

34

37

39

44

48

48

49

49

58

62

66

68

79

79

81

83

87

3.1

3.2

3.3

Introduction....

A Recursive Parametric Method ' ' '

Derivation of the Recursive Method

3.3.I LinearPrediction. - '.

3.3.2 Recursive Method for PSD Estimation ' ' ' '

3.4 Preconditioner Matrix . . .'

3.5 Step Size Parameter .

4 Performance AnalYsis .. ..

4.1 Introduction

4.2 Single Sinusoid Test. . . . .

4.2.1 Effect of SNR. . .

4.2.2 Effect of Low FrequencY

4.2.3 Selection of Step Multiplication Factor ' ' ' '

4.2.4 Bandwidth Versus Frequency'

4.3

4.4

4.2.5 Effect of Initial Phase. .

Two Sinusoids Test.

4.3.1 Effect of Model Order .

4.3.2 Effects of SNR

4.3.3 Spectral Resolution . . '

Summary of Test Results

885 Implementation

ll



i

I

T

I

5.1 Analogy between Matrix Multiplication and circular convolution ' 88

5.2 Implementation using FFT ' ' 92

5.3 ComputationalComPlexitY
l0l

6 Conclusion and Further Studies 104

6.1 Conclusion
t04

6.2 Further Studies
105

BibliographY
ro7

lll



ABSTRACT

The estimation of power spectral density (PSD) has progressed through several stages

since the turn of the century. Research in this area has led to the development of a wide

range of techniques and increased the number of applications.

This thesis reviews the conventional PSD estimation techniques developed in the last

three decades. They are largely partitioned into two main streams: traditional non-para-

metric techniques and AR model based techniques, which are being applied to wide range

of data by virtue of its potential to achieve increased spectral resolution. Resolution is an

important consideration in PSD estimation. A technique is classified as a high-resolution

if it can resolve two or more closely spaced signals at low signal to noise ratio (SNR)'

This thesis also includes the attributes of these conventional techniques, and some com-

parisons.

This brief review is followed by the introduction of a new recursive high resolution para-

metric method which stems from the well know n normal equations' In the first part' we

address the formulation of this method and derivation of the recursive equation, and

study the stability of the system described by the recursive equation'

To show the advantages of the recursive method, an extensive performance test is con-

ducted using short data which comprise one or two sinusoids comrpted with additive

gaussian noise, and the results are evaluated and compared with those obtained from the

Yule-Walker method, which was chosen because it falls under the same frame work as the

proposed method.

Finally, the implementation of this method using FFT is discussed; we use pruning to

reduce the computational complexity. The computational complexity achieved using this

method is thoroughly evaluated and compared with that of existing techniques'

lv
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NOTATION AND NOMENCLATURB

Most of the notation used throughout this thesis is standard to the signal processing area'

For clarification, the list of the important notations in this thesis is provided in the fol-

lowing.

Matrix and Vector Notation

Matrix

Vector

Hermitian transPose of X

Transpose ofX

Complex conjugate of x

Estimate of ,x

Inverse ofX

¡@y Circular convolution of x and Y

FFT {x} : Fast Fourier transformation of x

Elxl Expected value of x

Gradient Operator

d,iag (X) : Diagonal matrix whose elements are the main

diagonal ofX

ei7 (X) : Eigenvalues of X

the ryth element of X

x

x

yH

yr

rd'

x

{rI

d
1

.j

v

tlx

lxt
I

;

Modulus of -r

var lx) Variance of x
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Estimate of autocorrelation matrix
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CHAPTER 1 Introduction

This chapter introduces Power Spectral Density (PSD) estimation, and presents the

organisation of the thesis. The general description and the issues of the power spectral

density are given in Section 1.1 on page 1 and the organisation of thesis is given in sec-

tion l.2onpage3.

7.7 Power SPectral DensitY

This thesis deals with the estimation of the spectral characteristics of signals that are

characterised as stationary random processes. Many of the phenomena that occur in

nature are best characterised statistically in terms of time averages. For example, meteor-

ological phenomena such as the fluctuations in air temperature and pressure are best

characterised statistically as random processes [76]' Thermal noise voltage generated in

resistors and electronic devices are additional examples of physical signals that are well

modelled by random processes [76].

With such signals, we must adopt a statistical view point which deals with the average

characteristics of random signals. In particular, the autocorrelation function of a random

process is an appropriate statistical average for characterizing random signals in the time

A new recursive high-resolution parametric method for PSD estimation



Chapter l: Introductton

domain; spectral analysis provides a means for characterising random signals in the fre-

quency domain.

In its simplest form, spectral analysis involves estimating the amplitudes of the harmon-

ics of a periodic signal from a finite set of data samples, i'e', making an estimate of the

energy in each Fourier component. since practical signals are usually non periodic, it is

preferable to adopt the term energy density rather than energy as a measure of frequency

content of the signal. Thus consideration is made into the energy in a band of the fre-

quencies rather than at a particular frequency'

If the signal is of infinite energy, a more appropriate measure is the power spectral den'

stry, GSD) , oÍ power density spectrum, because for an infinite energy signal the Fourier

transformation does not exist. Thus in order to deal with the widest class of signals,

which would include deterministic signals as well as random signals, spectral analysis is

very often defined as a technique for estimating the power spectral density of the signal

to be analysed [31].

The mathematical framework for the theoretical analysis of random signals is provided

by the theory of probability and stochastic processes'

Spectral analysis [7S] is a large and much researched subject with numerous applica-

tions. Power spectral density analysis techniques have been widely applied in geophysi-

cal dataprocessing [5], [13], [14], [16], [58], [59], [71], [78]' [89]' [95]' [96]' radar [36]'

[40], [49], [53], speech-communications l4l,1321, 1351, l42l' [61]' [63]' [65]' medical

systems 1271, llo2l, direction finding [25], [90], oceanography [39]' radio astronomy

[103], [104], sonar, and imaging as well as vibration analysis, non destructive testing and

seismic signal investigations [31], [33]. The main purpose of spectrum analysis is to aid

signal interpretation. With the knowledge of where the significant components of a sig-

nal occur, it is often possible to improve the coding of the signal, i'e' represents the sig-

nal with less bits of information [31].

Research in power density spectrum estimation has led to a variety of parametric and

non parametric techniqttes,extensions to multi-dimensional, multi-channel' and Spatio-

r - --^----l^¿:^-^11,, f^ot olnnrifhmc [?Ql Cnncllr-
tgmporal procgsslng, anu utrvgluPllrgltt uI r-LIIryuL4rrvr¡4¡rJ "¡^¡v L-- r-

A new recursive high-resolution parametric method for PSD estimation
.,



Chapter 1: Introduction

rently, various techniques have been developed for estimation of signal parameters' Such

as frequencies of sinusoids, poles and zeros of a signal' In some cases' parameter estima-

tion is an intermediate step in spectrum analysis'

1.2 Organizøtion of the Thesis

This thesis is organised as follows:

chapter 2. In this chapter, we start off by briefly discussing the limitations associated

with the classical pSD estimation methods and the increased applications and demands

for short data PSD analysis, which prompted the advent of various model based PSD

estimation methods. we then provide a comprehensive review of the conventional PSD

estimation methods, tracking back to the evolution of the PSD estimation methods from

the classical concepts based on the FFT and the autocorrelation techniques to the model

based concepts (i.e. parametric PSD estimation), which are the spring board for the con-

temporary PSD estimators. The discussion is limited to a small subset of a large set of

PSD estimation methods that appeared in the literature.

Chapter 3. In this chapter, we present a new method named lhe recursive method for the

AR model based pSD estimation. This method enhances the spectral peak of a sinusoid

by reducing the 3-dB bandwidth of the peak and increasing its height' We then address

the mathematical formulation of this method by adopting the concepts of adaptive filter-

ing for linear prediction t641, t661. Using the well-known norÏnal equations as a back

bone and incorporating the steepest descent method, we derive a compact expression for

the proposed recursive equations-

Chapter 4. In this chapter, we present the simulation results, and analyse the perform-

ance of the proposed method and compare it with the Yule-walker method for PSD esti-

mation [100], tl06l. The Yule-Walker method was chosen for comparison because it

falls under the same framework as the proposed method, i.e., both methods use the nor-

mal equations.

3
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Chapter l: Introduction

The objective is to compare these two methods on the basis of their bandwidth resolu-

tion, frequency bias and their robustness in the presence of additive noise' and then to

identify their relative merits through discussion and illustrative simulations' The test data

records used for performance analysis are short in duration and comprise one or two

sinusoids in additive Gaussian noise.

The test performed are the following:

. Effect of signal to noise ratio (sNR): The sNR of the data is varied and the conse-

quences of these variations on the quality of the spectmm are observed and discussed'

. Relative frequency: The relative frequency of the sinusoid is reduced until the two

algorithms are unable to detect the corresponding peak in the spectrum and the behav-

iour in the low frequency region is examined'

. Step multiplication factors: A simple test is carried out to evaluate the appropriate

step multiplication factors for the best performance of the recursive method'

. Initial phase of the sinusoid: We tested the methods by varying the initial phase of the

sinusoid over the range 0 - 360" (3-dB bandwidth and frequency bias)'

. 2 Sinusoids test: The resolving power of the recursive method and the Yule-Walker

method were examined using two sinusoids very close to each other-

Chapter 5. This chapter addresses the implementation and the computational complex-

ity of the recursive method, by incorporating the widely used FFT algorithm llTl' Í761

into the recursive equation. We study the analogy between matrix-vector multiplication

and circular convolution of two sequences and then devise a pruned FFT algorithm [67]'

[73], [81]-tS5l to compute the iterative equation in the frequency domain' We analyse

the computational complexity of this method and make comparisons with other conven-

tional methods.

Chapter 6. We restate briefly the significance of this work and our overall contribution'

we then present some concluding remarks and summarize the thesis. Related topics for

future research are suggested at the end ofthis chapter'

4
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CHAPTER 2 Review of Conventionnl

Sp e ctrum Estimntion M ethods

This chapter contains a brief review of the conventional power spectral estimation tech-

niques. They are largely divided into two categories: the classical non-parametric meth-

ods and the modern parametric (model-based) methods' The non-parametric methods'

including periodograms and correlogram, are described in Section 2.2. Section2'3 cov-

ers the three well known parametric methods: the Yule-Walker, Burg, and Unconstrained

least-squares method. The conventional model order selection criteria are discussed in

Section 2.4. Finally some test results of these conventional PSD estimators are included

in Section 2.5.

2.I Introduction

The estimation of PSD of a sampled stationary process is usually based on the FFT'

Approaches based on the FFT are relatively efficient in computation time, and yield rea-

sonable results for a large class of signals. The FFT approach, however, has a number of

performance limitations; the most prominent one being the limit of frequency resolution

due to the frnite-length of the data record available. Spectral resolution, or frequency res-

olution, can be thought of as a measure of how closely spaced in frequency two sinusoids

can become before they cannot be distinguished, and hence are detected as a single broad

5
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A second limitation is due to the implicit windowing of the data that occurs when apply-

ing the FFT. The windowing manifests itself as leakage in the frequency domain obscur-

ing and distorting other spectral components present, or even masking the weak spectral

components. By adopting appropriate windows, the problem of side lobe leakage can be

alleviated at the expense of degradation of spectral resolution. Harris [34] provides a

good summary of the merits of various windows'

These two limitations are particularly noticeable when only short data records are availa-

ble for analysis. In practice, such a situation arises frequently as most data records are

finite in duration, non-stationary, or have slowly time-varying spectra that may only be

considered constant for short durations. In radar, for example, only a few data samples

are available from each received radar pulse. In sonar, the motion of targets results in a

time varying spectral response due to Doppler effects [52]'

In an attempt to alleviate the inherent limitations of the FFT approach' many alternative

spectral estimation methods have been proposed over the last decade' The PSD estima-

tion techniques fall into two broad classes: the classical non-parametric methods' and the

modern model-based or parametric methods originating with the work of Yule 11061'

The relationship among the conventional PSD estimation methods is shown in Fig' 2' l '

In this chapter, we describe the methods developed and applied by Walker [100]' Bartlett

[6], Blackman and Tukey [9], Burg [13] and others'

ctassical modern

./1\
periodigram corrèlogram parametric nonparametric

A{ ìto m¡nimulm var¡ance

,/\
Burg LS

FIGURE 2.1 Overview of spectral analysis techniques

6
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2.2 Non-Parametric Methods for PSD Estimation

The classical methods developed by Bartlett [6], Blackman and Tukey [9], and welch

[101] are considered here. These methods are referred to as non-parametric because they

make no assumptions on how the data was generated. Their frequency resolution

depends upon the length of the data record; the best resolution achieved is equal to the

spectral width of a rectangular window of length N (approximately equal to I at l-an

points). These methods undergo a decrease in frequency resolution in order to reduce the

variance of the spectral density estimator. The following subsections present the high-

lights only; references that provide greater detail of the classical spectral estimation tech-

niques include Gardner [26], Jenkins and watts[43] and Koopmans [56]'

In the following two subsections, we consider the two most prominent non-parametnc

PSD estimates: the periodogram [6], [8], [19], [70] and the correlogram [9]' The periodo-

gram is known as the direct method because the PSD estimate is obtained from direct

computation of the Fourier transformation (FT) of the signal' The second method' the

correlogram, is called the indirect method because it requires two steps' First' an auto-

correlation is computed from the signal samples, and then the PSD estimate is obtained

by computing the FT of the autocorrelation sequence'

2.2.1 P eriodogram PSD Estimators

The simplest form of the formal definition of the PSD, based on ergodicity' has the dis-

crete time form

P,*a = 

",T_"[#1,å"' 
@);i^r,,l') (2.r)

All that is available, in a practical situation, is the finite sequence of N signal samples

{x (0) , ..., x (N- l) }.

Ignoring the expectation operation and assuming a finite data set of N samples' we can

C +L^ -^",a¡ .--^+¡nl .lancifrr rc
wfllg ttltr çùLLlll4Lg vl Lr¡w l/v v' vr

7
A new recursive high-resolution parametric method for PSD estimation



2 (2.2)

This technique is the simplest form of what is known as a periodogram' the structure of

which is illustrated in Fig. 2.2.The periodogram is appropriate for analysis of ergodic

random signals; i.e., signals whose time averages are equivalent to their statistical aver-

ages. The popularity of this method stems from the existence of efficient FFT algorithms

for computing the DFT.

The periodogram is not a consistent estimate of the true PSD, and it is only asymptoti-

cally unbiased. Furthermore, it can be shown that the mean of the estimated spectmm'

using Eqn. (2.2), is the convolution of the true PSD with WT(fl, the FT of the Bartlett

(Rectangular) window.

Þ,*a=ilå" (n¡s-i2nrn
2

= L**'

rlrlûf = l_'r)rr-"(a) wu(Í-u)du where v* = EÍx(n)l = 0

22 2 2

DFT

FIGURE 2.2 Periodogram power spectral estimator
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Therefore, the mean of the estimated spectrum is a smoothed version of the true PSD'

Furthermore, the PSD estimate in Eqn. (2.2) suffers from the spectral leakage problem

inherent in all windowing methods.

One must resort to pseudo ensemble averaging in order to smooth the periodogram PSD

estimate. Daniel's periodogram [19], Bartlett periodogram t6l and Welch periodogram

[101] averaging methods are considered here'

2.2.1.1 Daniel's Periodogram

This method [19], [70] smoothes the rapid fluctuation of the sample spectrum by averag-

ing over adjacent spectral frequencies. The modified periodogram estimate at frequency

f ¡ canbe obtained by averaging the M points on either side of d. .

p?"q = #'i, _b
Þ,,(Íù, fk = ff and M <i<N- M -1

, "',K-|
,."rM-l

(2.3)

k=i-M

This can be expressed as the convolution of the sample spectrum with a low pass filter

P?,A - P,,A *H A

This concept can be thought of as passing the sample spectrum through a low pass filter

with frequency resPonse ÍI(fl.

2.2.1.2 Bartlett Periodogram

To reduce the variance in the periodogram, a pseudo-ensemble is created by dividing the

N-point sequence into K non-overlapping segments each of length M'

x,(n) = x(n+iM) j=0, 1

n = 0, 1

where (2.4)

For each segment, we compute the periodogram

9
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2

P
(,) j = 0, I, ..., K-l
xx

At each frequency of interest, the periodogram for the K segments are averaged to pro-

duce the Bartlett averaged periodogram

(2.s)a = t17,.¡(n)e-iznr'

K-l
ÞT,a = å> ,ll ai=0

(2.6)

(2.7)

(2.8)

(2.10)

(2.n)

providedtharElx(n)l = 0 and I l^{,r(n) l."",themeanof thisPSDestimateis

n=-@

K-l
EIP!..cnl = L*Z tlpiil ol

EIP:,rnl =¿[Pjl o]

i=0

M-r

m=l-M
E a l l*l

M )t,,rø ,-i2nfm , T,, = Elx. Q) x (t + fif Qs)r^B
LP,. l-(

E a P," ( cr)t
Iln

-tMJ _\
2

]=^BPtt

ElÞ!,.O] = P**AxwsA

Clearly the true spectrum is convolved with the FT of the Bartlett window' The Bartlett

averaged periodogram can be shown to have variance inversely proportional to the

numberof segments, i.e., ,orlÞ!".COl * +
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The resolution has now been degraded due to segmentation of the data into samples each

of length, M, andthe effective spectral window will have a broader main lobe bandwidth-

For fixed N = K . M , there is the usual trade-off between high spectral resolution (M is

as large as possible) and small estimation variance (K is as large as possible)'

2.2.1.3 Welch Periodogram

Welch [101] made two basic modifications to the Bartlett window. First, the data is

divided into L segments of M samples each, with a shift of D samples between adjacent

segments;thus,

x,(n) = x(n+iD), (2.r2)
(D<M)

where iD is the starting point of the ith segment.

The second modification made by Welch to the Bartlett Method is windowing the data

prior to the computation of the segment periodogram'

M_
L_

n = O, I
i =0, 1

I
1

ell a = #rl[,x,(n)w(n)u'""1
2

where U is the normalization factor

i = 0, 1,...,L-l (2-13)

(2.t4)
M-l

u = Lilrlw
n=0

2 (n)

The welch power density spectrum estimate is the average of the modified periodograms

- li)P;; Ø (2.rs)
L-l

PY,a = l>
i=0
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Provided that E lx (n)l = 0 and >
n---6

j=0

tr P
(j) (f)l

L-l
ElÞy.ol = I2øtÞÍ'(rl (2.t6)

(2.r7)

(2.18)

(2.re)

t xx

= Pr*A *w A

where, by definition,

w(f) = hl\,w@)"-i'v'l'

\ilelch specifically proposed the use of the Hanning window [70]' Il0l], and 50Vo ovet'

lap between the segments, which leads to a very efficient implementation with the FFT

algorithm.

Like the Bartlett periodogram, the variance of the Welch periodogram is roughly

inversely proportional to the number of segments L'

(2.20)

Due to overlap, more segments are obtained, for a fixed data record, in the Welch method

than in the Bartlett method (L>K). As a result, the Welch periodogram tends to have

less variance than the Bartlett periodogram'

D2

,orlÞ!,cn] * ry
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2.2.2 Correlogram for PSD

An alternative approach to the PSD is the so called correlogram' Before we discuss this'

we must first introduce the concept of correlation. The autoconelation yt, (m) of a

sequence x (n) is the expectation of the product of x (n) with a time delayed replica of

itself, x (n + m) .

nl"r(m) = Elx (n) x (n + m)l (2.21)

If x (n) is an ergodic process, the expectation operator in Eqn' (2'21) can be replaced by

the time average, which can be approximated by

N-l
(2.22)

¿=0

A DFT of the set of estimated autocorrelation coefficients then provides an estimate of

the PSD, Þrr(f), as shown below'

r,*(m) = it x(n)x(n+m) '

M-l
Þrr¡ = 2r*r(n)e-iznf" M<N (2.23)

n=0

This is the conelogram spectral estimator. Fig. 2.3 illustrates the structure of the correlo-

gram.

often the N samples are padded with extra zeros to increase the data size' This does not

improve the resolution of the estimated PSD but it generates more spectral points'

A more detailed discussion on the correlogram method can be found in Blackman and

Tukey [9], who were the first to extensively study and popularize the discrete time corre-

logram method of psD estimation. They suggested the maximum lag of M = #to avoid

the greater statistical variance associated with higher lags of the autocorrelation estimate'

A new recursive high-resolution parametric method for PSD estimation l3



1s
¡¡L

1s
¡¡L

!s
¡¡L

1s
¡¡L

z-1 z-'l z-1

DFT

FIGURE 2.3 Correlogram power spectral estimator

rII ? (M-t)lrr.?**(2)

TIII

{x(n)}

îr, (o) Îr, ( 1)

estimated PSD

2.2.3 Summary

Classical techniques for spectral analysis are based on either the periodogram or the cor-

relogram, or hybrids of the two. They show robustness in the signal environment' An

additional advantage is that they are well understood because of their age, and can be

made computationally efficient through the use of the FFT'

Classical techniques, however, have the disadvantage that they provide a poor compro-

mise between spectral resolution, and spectral quality which is the measure of how good

the PSD is in a statistical sense. The ability to resolve two signals is fundamentally lim-

ited by the number of samples, N. Processing more samples improves the resolution'

however, these classical techniques are not appropriate for non-stationary signals

because the classical techniques implicitly assume that the signal repeats itself in a peri-

.., /^+^+i^-^.ir., ic occrrrncd\ Alqo thev are subigct
oolc malllltrl Lrutsluç Lll(i 4tr4ryòrò wllluvvv \rl4lrvr¡sr¡!J '" ""*--
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to spectral leakage, which distorts the desired spectrum, and masks weak signals' For the

Blackman-Tukey correlogram, negative PSD values may be obtained in the spectrum

with some window weightings and autocorrelation estimates (e.g. unbiased) [52]'

2.3 Pørametric Methods for PSD Estimutíon

The classical approach uses the FFT operation on either windowed data or windowed lag

estimates (autocorrelation estimates). The basic limitation of these non-parametric meth-

ods is the inherent assumption that the unobserved data of lag values outside the window

are zeros. This assumption severely limits the frequency resolution and the resultant

quality of the power sPectrum.

In this section, we describe methods that use a priori information, or assumption, on how

the data was generated. The model for the generation of the data is constructed with a

number of parameters which can be estimated from the observed data. with the model

and the estimated parameters we can obtain the spectral estimate by substituting the esti-

mated model parameters into the theoretical PSD imptied by the model. The parametric

modelling is dePicted inFig-2"4.

w(n)

FIGURE 2.4Parametric model of random process

where w(n) is the stationary discrete-time stochastic process, and x(n) is the observed

signal. We may then write [75]

x(n)

P,rA = lHAl2' P,*(J) (2.24)

where P rrfi and P rrA are the power density spectra of x(n) and rv(n) respectively

The most straight forward approach to parametric spectral estimation is to assume that
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the signal from the filter I1(e) is auto-regressive (AR), which means that the present sam-

ple value is a weighted sum of the p previous sample values.

This method is, by far, the most widely used because firstly, the AR model is suitable for

representing Spectra with narrow peaks, and secondly, the AR model results in very sim-

ple linear equations to be solved for the AR parameters [76]'

2.3.1 Yule-Walker Method

In the Yule-walker method [100], [106], we estimate the autocorrelation from the data

and use the estimate, that is the Yule-WalkeÍ of norrnal equations, to solve for the AR

model parameters. In this method, it is desirable to use the biased form of the autocorre-

lation estimate

N-
r*r(m) = i

l.l- 1

n=0

(2.2s)

to reduce the risk of ill-conditioning. The result is a stable AR model, but at the expense

of degrading the AR spectral resolution, and shifting of spectral peaks from their true

locarions. The Levinson-Durbin Algorithm [18], [21], [60], [105], provides the solution

of the normal equations with a computational complexity of O (p2) -

The corresponding power spectrum estimate is

(2.26),iÏa = P

\ ar{rr) e

k=l

.,

+I

where ae(k) are estimates of the AR parameters obtained from the Levinson-Durbin

. - ' o2 :s rhe esrimated minimum mean-square value for the pth order predic-
recursion and ôio is the estimated minimum mean-square I

tor. This method suffers degradations of spectral resolution, frequency estimation bias'
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and spectral line splitting. The reasons for spectral line splitting have been documented

by Kay and Marple [51]

2.3.2Btlrg Method

This method was devised by Burg [13], [14], [15] for estimating the AR parameters' It

may be viewed aS a constrained least-squares estimation procedure using the sum of the

forward and backward errors in linear prediction, with the constraint that the AR param-

eters satisfy the Levinson-Durbin algorithm.

Assuming an all-pole stationary stochastic process, the forward and backward linear pre-

diction errors oforder m 
^re 

given by

f^(n) = Zo^(k)x(n-k)
m

k=0

(2.27)

(2.2e)

8^@) =
t=0

a*^(k)x(n-m-k), O<k1m-I, m = 1,2, "',P Q'28)

where a^(k), is the prediction coefficient. The least-square efror ls

N-l
E^= >lV^f*lgil']

n=l

This error is minimised by selecting the appropriate prediction coefficients with the con-

straint that they satisfy the Levinson-Durbin recursion given by

a^(k) = a^- r (k) + a^(m) d* 
^-t(m-k)

(2.30)

where a^(m) is the ruth reflection coefficient in the lattice filter realization of the pre-

dictor.
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!d
,t
¡

Now if we substitute Eqn. (2j0) into Eqn. (2.21) and Eqn. (2.28), we get the following

recursive relationshiPs

f^@) = f^-1 (n) + a^(m) s^-y@-l) (2.3r)

s^Ø) = B^-r(n-I) +a*^(m)f^-r(n) for 1< n1N-m (2'32)

Substituting Eqn. (2.31) and Eqn. (2.32) into Eqn. (2.29) and minimizing with respect to

a^(m), we obtain

N-l
-2>f^-1Ø)s**@-r)

..., p (2.33)

(2.3s)

n=m

Andersen [3] discovered the recursive relationship for the denominator term that reduces

the computational effort needed in computinE an(m). Since the Levinson recursion is

maintained in the Burg algorithm, then

È^ = È^-tlt-1"^fùl') (2.34)

From the estimation of the AR parameters, we form the power density spectrum estimate

È
P axx 2p

k

+ -j2I ap
I

(k) e

The Burg method results in high spectral resolution, yields a stable AR model, and is

computationally efficient. Howevet it exhibits undesirable spectral line splitting for high

SNRsandhiehmodelorders(seeFougere|23),124)),spuriouspeaksforhighorder

I
I

I
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models U9l,1971, degradation of resolution at low SNR [50], [68], and sensitivity to the

initial phase of short-length sinusoids [52], [91]. An analytical discussion of the reasons

for line splitting in the Burg method has been presented by Hening [38]' Swingler [87]

also provided simulations that indicated that Hamming taper function reduced the fre-

quency bias. Several modifications involving the introduction of a weighting sequence

on the squared forward and backward errors have been proposed to improve those inher-

ent limitations.

2.3.3 Unconstrained Least-Squares Method

In contrast to the Burg method which is basically a least-squares lattice algorithm with

an added constraint that the predictor coefficients must satisfy the Levinson recursion,

Marple [69] proposed an unconstrained least-squares algorithm to determine the AR

pafameters.

The forming of the forward and backward linear prediction estimate, and their cone-

sponding efrors is identical to that of Burg method. However, the Levinson-Durbin

recursion is not imposed on the AR parameters.

The unconstrained minimization of the squared error with respect to the prediction coef-

ficients yields a set of linear equations.

P

k=l

The resulting residual least-squares effor ls

P

Z or(k) rr*(1, k) = -r,r(/, 0) , I = 1,2,...,P (2.36)

(2.37)È, = r"r(0, o) + ) ap(k) r,,(o, k)

k= |

Hence the unconstrained least-squares power density spectrum estimate ts

:l
u
''i;

f
I

,
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iip (2.38)P*rA =
l+ã (k\ep'

-iznfnl 2

\{
t1:

The correlation matrix implied by Eqn. (2.36) is not toeplitz, and hence the Levinson-

Durbin algorithm can not be applied. Marple [69] devised an algorithm which has a lat-

tice structure and employs Levinson-Durbin type order recursions and additional time

recursions. Its performance characteristics are superior to those of the Burg algorithm in

the sense that this method does not exhibit the same sensitivity to such problems as fre-

quency bias, spurious peaks, and spectral line splitting [69], [87]'

Its computational efficiency is almost comparable to that of the Levinson-Durbin algo-

rithm and the Burg algorithm, requiring about 20Vo mote computations than the Burg

algorithm. With this method there is no guarantee of obtaining a stable model, but in

spectrum estimation this is not considered to be a significant problem'

2.3.4 Model Order Selection Criteria

The best choice of model order p is generally not known a priorí, and choosing the cor-

rect model order is a major issue in all AR modelling problems. The choice of the model

order, p, is acompromise between the degree of spectral detail required' the accuracy'

and the computational requirement. An adequate choice of model order is such that there

is a sufficient number of poles to represent all expected resonances (two poles per sinu-

soid) with some additional poles to give spectral shaping, and to approximate the troughs

in the spectrum. Too low a model order results in a highly smoothed spectral estimate' If

the model order selected is too high, however, spurious low level peaks in the spectrum

are likely to occur.

Much work has been done by researchers on this problem and many experimental results

have been presented in the literature (see, Gersch and Sharpe [28], Ulrych and Bishop

[97], Tong Íg2l-1941, Jones 1451,1461, Berryman [7], Kashyap [48]' Huzzli [41]' Kane

[47] and Kozin t57l).
t
I

;
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Akaike Il], [2] has proposed two criteria, for selecting the model order, called rhe Final

prediction Error (FPE) c¡iterion and the Akaike Information Criterion (AIC) which are

given below.

2
FPE (p) - ôwp

(2.3e)

(2.40)AIC (p) = Nln o +2pwp(
2

)

I
!
'i

where ô2* ,epr"sents the estimated variance of the linear prediction error'

The model order p is chosen to minimise the perforrnance indices FPE(P) and AIC(p)

respectively. The FPE(p) criterion works fairly well with a pure AR process, but tends to

underestimate rhe model order p against the actual process Ul, 1451, [46]' [97]' The

AIC(p) criterion adopts the maximum likelihood approach to obtain the model order

which minimises the AIC(p). This criterion has the disadvantage that it is statistically

inconsistent; i.e., it overestimates the model order as Nbecomes very large [48]'

These two methods proposed by Akaike are both based on Asymptotic Information The-

ory, andthey are asymptotically equivalent.

An alternative information criterion, proposed by RissanenUTl, is based on selecting the

model order which minimises the description length (MDL), where MDL is defined as

MDL(P) = ¡rlnô}p +PlnN (2.41)

This criterion is found to be statistically consistent [82]

The fourth criterion has been proposed by Parzen [74]. This is called the criterion

autoregressive transfer (CAT) function and is defined as

,l
'i

t
I

i
CAT (P) =

p

I1 I (2.42)

k=l wp

tr
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where

N6rk = {-¡ro*p
(2.43)

UIrych and Clayton [98] have found that for short data segments neither the FPE' AIC

nor CAI work well. Also for harmonic processes in noise, the FPE and AIC tend to

underestimate p if the SNR is high [37], [59].

According to other experimental results, for data records with small lengths the optimum

AR model order selected, in many cases, lies in the range N/3 to Nlz1761, [92]. Another

reference is Broersen [12], which describes a Finite Sample Theory for AR model order

selection. This theory takes into account the distinction existing between the different

estimation methods hence being more accurate for finite samples' In that paper' for most

existing model order-selection criteria, equivalents are given, based on the finite sample

theory. Their performance is better for small samples, and they converge to the existing

criteria for increasing sample size.

As a concluding remark, it is suggested that when the prior information in regard to the

physical process implied by the data, is not provided or unknown' one should try differ-

ent model orders and different criteria, and ultimately interpret the different results, or

use the information resulting from non-parametric methods, which in practice would dis-

qualify many parametric results.

2.3.5 Summary

In this subsection, we briefly list the attributes of the three AR PSD estimation method'

Yule-Walker Method:

" Model order must be selected.

. Better resolution than FFT or BT, but not as good as other AR methods'

. Spectral line splitting occurs.
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. Implied windowing caused by the biased autocorrelation estimate distorts the spec-

trum.

. No side lobes.

. ApPlicable to seismic, speech, radar clutter data'

. Stable linear prediction filter is guaranteed if biased lag estimates are used'

Burg Method:

. Must determine model order.

. High resolution for low noise levels.

. Good spectral fidelity for short data records'

. Spectral line splitting can occur.

. Bias in the frequency estimates of the peaks'

. No implied windowing.

. No side lobes.

. Stable linear prediction filter guaranteed'

. Adaptive filtering applicable.

. Constrained recursive least-squares approach

LS method:

. sharper response for narrow band processes than other AR estimates.

. No spectral line splitting observed.

. Reduced bias in frequency estimates.

. No side lobes.

. Must determine model order.

. Stable linear prediction filter not guaranteed, but stable in most cases'

. Based on exact recursive least squares solution with no constraint'
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2.4 P erformqnc e C omP aris ons

We have highlighted the key properties of the conventional AR PSD estimation tech-

niques. In this section, we illustrate some typical PSD estimates of these techniques to

better explain what the actual spectra obtained by these techniques look like.

Fig. 2.5 illustrates the pSD estimates of the eight conventional techniques discussed in

this chapter. The data record consists of a single sinusoid and additive gaussian noise.

The frequency axis ranges from 0.0 cps to 0.5 cps, and represents the fraction of the sam-

pling frequency; we will call it relative frequency in cycles per sample (cps)'The sinu-

soid has a relative frequency of 0.3 cps and SNR of 20d8. Fig. 2.5 is intended to

illustrate properties of each technique, especially for short data records, rather than to

serve as a basis for comparing relative performance among the techniques'

A PSD estimate using the periodogram is shown in Fig. 2.5 (a)' \Vhen generating this

periodogram ,236 zeros are padded to the data record to produce a better picture because

the 256-poinr FFT provides finer interpolation than the 2O-point FFT does. Doing this

also resolves potential ambiguities, and reduces the quantization error in the accuracy of

estimating the frequency of a spectral peak. The nominal resolution of the 2O-point data

record is 0.05 cps. In fact all the techniques mentioned in this chapter except for the Bar-

tlett averaged periodogram in Fig. 2.5 (c), and the Welch averaged periodogram in Fig'

2.5 (d) are based on a 20-point sample sequence. The Welch and Bartlett periodograms

involve segmentation. A segmentation of a 2O-point sample sequence into a number of

smaller sequences results in dramatically degraded resolution. What we want to demon-

strate here is the typical shape of the spectra with spectral resolutions based upon a 20-

point data record. The improvement on variance of the estimate due to the segmentation

is not something we can put on a display. Hence, for these two methods, a 100-point

sample sequence is used instead, and segmented into a number of 2O-point sample

sequences. Each 2o-point sample sequence is then padded with 236 zeros for evaluating

the pSD estimate at frequencies spaced fi"rr,just like the other classical PSD esti-

mates. For the'Welch method, a5OVo overlapping between the successive data segments,

i.e., 10 samples, is tried, and the Hanning window is used. For the Daniel periodogram'
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each Sample Spectmm is averaged over 4 adjacent spectral frequencies, i'e', two on each

side.

A 2g-point data record may be considered to be obtained by windowing an infinite length

sample sequence with a rectangular window. The use of this data implicitly assumes that

the unmeasured data is zero. It is evident in Fig 2.5 (a), (b), (c), (e), that the periodog-

rams and the conelogram, except the Welch averaged periodogram, suffer from the dis-

torting effect of leakage. The sidelobes exhibit a characteristic sinc function, which is the

transform of a rectangular window. The heights of the sidelobes are relatively large,

therefore if there was any weak frequency component with a height less than say 10d8,

then it will cenainly be masked by one of the sidelobes. The Welch averaged periodog-

ram does not exhibit any prominent sidelobes, however the bandwidth of the mainlobe is

almost doubled.

The spectral resolution with the classical PSD estimates are significantly poorer than that

of the modern AR PSD estimates. The conventional AR PSD estimates are shown in Fig'

16 (Ð-(g). Although all are AR PSD estimates, differing only in the manner that the AR

coefficients are estimated, the resulting AR PSD estimates are different. These PSD esti-

mates do not exhibit sidelobes, and show an improved resolution. The AR PSD estimate

based on the unconstrained least-squares method in Fig. 2.5 (h) provides the sharpest

response at f0=0.3 cps. From the graphs and the previous discussion, the unconstrained

least-squares method seems to be the best amongst the methods discussed in this exam-

ple.
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CHAPTER 3 lr{ew Parametric Method

3.1 Introductíon

With the background developed in the previous chapters, we are now in a good position

to introduce a new recursive parametric method. The brief introduction of the devised

method is included with some results for demonstrative purposes in the next section' The

formulation of the system together with the derivation of the recursive equation are pre-

sented in Section 3.3. In section 3.4 we focus on the stability of the system and discuss

preconditioning. We conclude this chapter with a treatment of the step size parameter for

the recursive equation

3.2 A Recursive Parametric Method

In chapter 2, we reviewed the conventional AR PSD estimation methods and discussed

briefly their advantages and disadvantages. In this section, we introduce a new AR PSD

estimation method. This method is described by a simple recursive equation:

u(n+l) = M'u(n) +Yt (3.1)

where u (n) and y, are vectors of length p, and M is a pxp symmetric matrix; more

details about this equation will be presented in section 3'3'

A new recursive high-resolution parametric method for PSD estimation 27



Chapter 3: New Parametric Method

This method is somewhat similar to the conventional Yule-Walker method' However

instead of using the Levinson-Durbin algorithm to find the solution of the normal equa-

tions, the new method uses an iterative approach to find the AR model parameters' In

general, these parameters are not a solution to the normal equations except when they

converge to a steady state value (see Fig. 3'1)'

Locations of the poles ol thê AR modsl
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z7o 27o

(;i (d)

FIGURE 3.1 Comparison of poles of Yule-walker (o) method and the recursive (x)

method, N=20 points, fo=O.2cps & f f0.35 cps, p=l{ & (a) I iteration, (b) 3 itera-

tions, (c) 9 iterations, (d) 17 iterations.

In Fig. 3.1 (a), two poles found by the recursive method are very near the unit circle at

t/
-\

0 = 71.3" and 0 = 127". They to
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f = 0.1gg cps and/- 0.353 cps. As the number of iterations increases, the poles associ-

ated with the recursive method move towards the poles associated with the Yule-Walker

method. When the number of iterations reach 17, the poles of the recursive method

almost coincide with those of the Yule-Walker method, as shown in Fig. 3.1 (d)'

This new method yields better bandwidth resolution than the Yule-Walker method does

when the model parameters are found using one iteration only. The PSD estimates of a

short data record (N=20) comprising two sinusoids of equal amplitude, using the Yule-

Walker method and the recursive method, are shown in Fig. 3.2.lnFig- 3.2 (a), the esti-

mated pSD using the yule-Walker method, represented by the dashed line, exhibits spec-

tral line splitting due to the fact that the number of the estimated AR parameters is a large

percentage of the length of data record. However, the estimated PSD using the new

method, represented by the solid line, displays extremely sharp peaks located very near

the true frequency positions, fo=0.2 cps and f t=0.35 cps, after one iteration only' This

recursive method does not exhibit line splitting if the number of iterations is small.

Clearly upon inspection of Fig.3.2 (b), (c) and (d), it is apparent that the estimated AR

parameters converge to the exact solution of the Yule-'Walker equation as the number of

iterations increases. When the estimated AR parameters reach the steady state, the two

spectra look identical.

In Section 2.4, we concluded that, for short data records, the unconstrained least-squares

(LS) method is the best. Since the LS method is the best, it would be appropriate to make

a quick comparison between PSD estimates of the LS method and the recursive method

to see if the recursive method lives up to the expectation that it will at least be compara-

ble to conventional AR PSD estimates including the LS method.

The Marple algorithm is used here to get the exact LS solution. This algorithm selects

the AR model order for itself. Each value of the AR model order is tried in an increasing

order, starting from p=1, until the residual prediction efror energy at p = M, (Eø) is a
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FIGURE 3.2 AR PSD estimates of the Yule-Walker method (dashed) and the recur-

sive method (solid)' N=20, fo=o'z cPS' /t =0'35 cps' p=r4' and number of itera-

tions =1 iteration (a), 3 iterations (b), 9 iterations (c), 17 iterations (d)'

changed by only a small fraction from the previous model order, that is

(d)

small fraction of the total signal energy (Es), name ry 
Eå< 

TOLI (tolerance), or it has

F _F
Iw- | tYt <ToL2(tolerance)

E
"M

For this test, 3 sets of 2Q-point data records, having SNR of 5dB, 10d8, and 20dB' are

usedwithtwofrequencyvalues,fo=O.3cpsandfg-O.lcps'Thetolerances,ToLland
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FIGURE 3.3 The LS PSD estimates, (a) and (c), and the recursive PSD esti-

mates, (b) and (d), using N=20.

10L2,are set to 0.1. The AR model orders used here are shown in Tables 3'I and3'2,

togerher with the 3-dB bandwidth of the peaks. The LS PSD estimates with fo=O'3cps

and fg=Q.lcps are depicted in Fig. 3.3 (a) and (c), and the recursive PSD estimates with

fo=O.3cps and fs=Q.lçps are depicted in Fig. 3'3 (b) and (d)' The solid' dashed' and dash-

dotted lines refer to SNR values of 20dB, lOdB, and 5dB respectively'

Let us consider the case when fo=0'3cps' Fig' 3'3 (a) and (b) show that' in the recursive

method, the peaks are much sharper, and they do not get degraded as much as with the

LS merhod as the sNR decreases. when the sNRs arelOdB and 20d8, the heights of the

SNR=5dB

sNR=10d8

fo=o.3cPs

it
ll

sNRSdB .¡i

fo=o.3cPs

fo=o'1cps

SNF=5dB

SNR=5dB

sNR=.t0dB

f60.1cps

I

I

peaks obtained from the two methods are comparable. However when the SNR is as low
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as 5dB, rhe LS PSD estimate is much degraded; the 3-dB bandwidth is 0.195cps, and the

height of the peak is about 20dB. On the other hand, the recursive PSD estimate retains

its superiority; the 3-dB bandwidth is 0.0008cps (approximately 24 times narrower)' and

the height of the peak is about 40d8.

usually the quality of the AR PSD estimates is poorer at low frequencies. So a low fre-

quency value, 0.1 cps, is selected for the PSD estimate comparison at a low frequency;

the results are depicted in Fig. 3.3 (c) and (d). Again the recursive PSD estimate holds its

superiority over the LS PSD estimate. The recursive PSD estimates exhibit peaks of

much larger heights (almost twice in dB scale) and much smaller 3-dB bandwidth' V/hen

SNR=SdB, the 3-dB bandwidth of the recursive PSD estimate is approximately 42 times

smaller than that of the LS PSD estimate

The detailed performance of the recursive method will be covered in Chapter 4' Since

the LS method is computationally complex, and the Yule-Walker method is more related

to the recursive method, the Yule-Walker method is used for a rigorous performance

comparison in ChaPter 4.

TABLE 3.1 Best 3-dB bandwidths of the LS and recursive estimates at fs=0.1 çp5.

0.0002cps

P=10

0.0007cps

P=10

0.008cps

P=10

Recursive

0.0011cps

P=2

0.0023cps

P=5

0.195cps

P=5

ri: r: '.' |i" i,'i : ì.

' 'SiltR=2Od8, '.,1:. :...: :.',i:.''::-;t:'l' t7;:;";,r'..

"rMethod. :

TABLE 3.2 Best 3-dB bandwidths of the LS and recursive estimates at fs-0.1 cps

Recursive

n-l O

0.0023cps 0.0018cps

n=10

0.0008cps

P=lO

0.098cps

P=4

0.009cps

P=5

0.0079cps

P=5

Method SNR=5dB sNR=1OdB SNR=20d8
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3.3 Derivation of the Recursive Method

In AR-based pSD estimation methods, the model parameters are obtained by solving a

linear prediction problem. The coefficients of a one-step forward linear predictor are

obtained by solving a system of linear equations known as the normal equations 1521,

[69], [76]. The solution of the normal equations can be found by direct matrix inversion

or using the Levinson-Durbin recursion [18], [21], t601, t1051. A less common approach

to solving the normal equations is an iterative approach. In this approach an initial guess

of the solution is made, and then the solution is updated iteratively until the steady state

is reached; the steady state solution forms the solution of the normal equations' In this

section the iterative approach is exploited to derive the recursive equation (3.1). The goal

here is not to obtain a solution of the normal equations but to obtain a set of coefficients

which are used for PSD estimation. The normal equations are derived next. Then Eqn"

(3.1) is derived in Subsection3.3.2.

Yule-Walker Solution AR Parameters

Normal Equations

Forward Linea¡ Prediction

Yule Walker Method Recursíve Method

to
steady state

FIGURE 3.4 The Yule-Walker method and the recursive method
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3.3.L Linear Prediction

Since the recursive method originates from the linear prediction, we begin with the prob-

lem of predicting a future value of a zero-mean stationary complex process from obser-

vation of past values of the process. In particular, we consider the one-step forward

linear predictor which forms the prediction of the value x(n)by a weighted linear combi-

nation of the past values x(n-l), x(n-Z),..., x(n-p). Hence the linearly predicted value of

{n) is

î(n)= - (3.2)

where {-ao(k)l represent the weights in the linear combination, and are called prediction

coefficients of the one step forward linear predictor of order p. The difference between

the value x(n) and the predicted value î (n) is called the forward prediction error,

denoted asfo@):

fo@) = x(n) -î(n) =

P

t=0
a (k)x(n-k) (3.3)

P

where ao = |

lVe view linear prediction [64], t66l as being equivalent to linear filtering where the pre-

dictor is embedded in the linear filter as shown in Fig. 3.5' In Fig' 3'5, the system con-

sists of two basic parts: a transversal filter with adjustable tap weights, called prediction

coefficients, whose values are denoted as aO(l),'.., aO(P), and a mechanism for adjusting

these tap weights in an adaptive manner.

We may express the estimation enor$ (n) in Eqn. (3.3) using the vector notation as

P

2 "r(k) 
x (n - k)

t= I

T (3.4)fr(n) = x(n) +a x
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where the ¿ and .r are vectors of length p, and the superscript Z signifies ffansposition.

x(n) z- x(n-l) Z- x( Z-
x(n-p+l Z- x(n-p)

l) --_>

3/
->

Adaptive
Control

Algorithm

FIGURE 3.5 Adaptive filter and linear prediction

1) )

o' = Íar(l),ao(2),"..,a (p)l (3.s)

,' = lx (n - l),x (n -2),...,x (n - P)l

rJ .[r- Ø)+r''o.))

(3.6)

The mean square value of the forward linear prediction enor fo@) may be achieved by

evaluating the expectation of the squared forward linear prediction error:

1= ,l1,rùl'l (3.7)

= ø[l' @) + o' ' ,l')

- 
"t(.

x(n) +a T

= Elx(r) .** (r)] + a* 'Elx(n) .xtf +ar .Elx* (n)'rl + ar'Elx'xHl 'ø*
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1= r*(0) - ø*'r-ar'rH+arla*

where

T,,(1)

r = -El,x(n).xHf = - ^lrr(2)

^trr(n)

\r*@ - l)
Trr@ -2)

(3.8)

(3.e)

(3.10)

I r,,(o)

andf = Etx.xnf =l ''lt'
þ,"ø-tl

\**

Ttt

(1)

(0)

and the superscript Il signifies Hermitian transposition. Here we use estimates y and R

for r and F, respectivelY:

andR =

T,,(1) Tr"(o)

R(p- l)
R (p -2)

( l)
(2)

(p)

R (0)

R(t)
,R(l)
R(2)y=-

(p-r)...R(1) R(0)

where R (m) is the autocorrelation estimate (see Eqn' (2'25))'

For the case of real valued data, the autocorrelation function ro(k) is also real for all k

hence the autocorrelation matrix, R, is symmetric and toeplitz [37]'

This simplifies Eqn. (3.8):
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1 = o1- (2or 'J) + arRa (3.11)

where or2 is a variance of the desired response, and R is a p x p positive semidefinite

symmetric matrix. Thus we may visualize the dependence of the mean-Square error, (f,

or J (a) , on ¿ as a bowl-shaped surface with a unique minimum if R is positive definite-

The global minimum of J (a) clearly occurs at a = R-l 'J which may be calculated

directly by inverting R. However, the inverse process becomes computationally intensive

for large p andnumerically unstable for ill-posed problems [11].

3.3.2 Recursive Method for PSD Estimation

An alternative to finding the minimum of the prediction elror, { in fqn. (3.11) is to use

the gradient approach. According to the method of steepest descent (Murray [72]),the

update value of the tap weight vector at time n + I is computed using the simple recur-

sive relation [37]

a (n + t) = a (n) *t' o(-V (n) ) (3.12)

where h is apositive value referred to as step size parameter, and V is the gradient with

respect to ¿ of Eqn. (3.11). Reananging Eqn. (3.12) gives

(3.13)

Let a = B.u where B is a preconditioner p xp symmetric matrix, then Eqn. (3.11)

becomes

J (u) - o|-2ur. Br . y +ur' Br' R' B' u (3.r4)

andEqn. (3.13) becomes
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-Y (n)= 28 Lu( n+l) -u(n)l
h

-[ = 28. Ly - (R' B) 'u]

Comparing Eqn. (3.15) and Eqn. (3.16), we get the following difference equation

Differentiating J(u) in Eqn. (3.14) with respect to u yields the value for the gradient

vector,

, = *ur(u) = -2Br'y+2Br '(R'B)'u = -2Br 'tv- (R'B)'ttl (3'16)

Since B is symmetric, Eqn. (3.16) can be written as

(3.1s)

(3.t7)

u(n+l)-u(n) 
= y_ (R.B)

h
u (3. r 8)

(3.2r)

Læt us decompose the matrix product R'B into diagonal and off-diagonal matrices

denoted.4 and C respectivelY'

A = diag (R.B) (3.1e)

C = R'B-4. (3.20)

Substituting for R.B by A and C into Eqn. (3.18), and estimating u by letting

Au = Au (n+ I ) and Cu = Cu (n) (reasons for doing this come later in Section 3.4),

rwe get

u(n+ 1) -u(n) = y -A. u(n+ l) - c. u(n)
h

u(n+ l) -u (n) - hy -hA' u (n + l) -hC' u (n)
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(I+hA).u(n+l) = (I-hC)'u(n) +hY

u(n+ l) = (I +hA)-t . t (/ -hC) 'u(n) +hvl

and since A is a diagonal matrix in the form of A = kI (see Subsection 3'4),

u(n+ l) = u(n) +#¿ (3.22)

(3.23)

By rewriting Eqn. (3.22) in simplified form, we get the recursive equation (3'1)'

u(n+I) = M'u(n) +Yt

where

(3.24)

hy (3.2s)lr = I+hk

The purpose of decomposing the product R ' B into matrices A and C and decomposing

the state vector u into u (n + l) and n (n ) is to improve the stability of the system by

means of increasing the tolerable range of the step size parameter. Analytic verification

of this is shown in Section 3.4.

3.4 Preconditioner Matrix

In this section, we address the issue of an appropriate choice of the preconditioner B

[ll]. To describe the condition of an autocorrelation matrix R quantitatively, we define

M =I#hk

'.L

u
',rJ

and

I

I
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the condition number of ,R as the ratio of the maximum singular value to the minimum

singular value of R [37], [86].

A matrix which has a condition number near unity is said to be well-conditioned whereas

a large condition number indicates that the matrix is ill-conditioned which in turn implies

that the system described by the matrix is susceptible to errors in the system matrix and

round off errors caused by finite-word length in digital simulations'

The condition number of a matrix can be improved by multiplying the matrix by another

matrix B called the preconditioner. One common choice for B [11] is

(3.26)

where Þ¡¡ and r,, (or R(0)) are the diagonal elements of B and R respectively' This is a

reasonable approximation to a scalar multiple of the inverse of R' However this diagonal

preconditioning does not improve the condition number of the autocorrelation matrix'

Because the diagonal elements in the autocorrelation matrix R are identical, the precon-

ditioner will simply O" Oå)- 
. 1, which will not have any effect on the singular values of

R.B

This preconditioner, nevertheless, controls the upper limits of the eigenvalues of R ' B '

The eigenvalues of R.B determine the maximum permissible step size. Therefore the

preconditioner, or more precisely, the value of k is the key factor determining the range

of the step size which does not violate the stability or convergence of the recursive algo-

rithm. To illustrate this, let us consider the recursive equation (3'23)

u(n+I) =M'u(n)+Yt where M=#

For all modes of the recursive algorithm to converge, all the eigenvalues of M must lie

inside the unit circle [76]

Þ,, = L1,, k>o

,.I

t\l

I

¡

f
I

;
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leis (M)l < |

1,"(#) .'

h-leig(I-h.c)l<r

leig(I-h'C)l<-t+n*

ll-h.eis(c)l< r+hk

If l-h'eig(C) <0,

-1+h.eig(C) <l+hk

h(eíg (C) - k\ <2

(3.27)

(3.28)

(3.2e)

I

ü
rd

Ifl-h'eig(C)>0,

l-h.eig(C) <l+hk

0<h(k+eis(C))

0<h.eig(R'B)

and since eigenvalues of R ' B are real and positive,

0<h

Since C=R'B-A,andA = k'1,
I
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eig(C) = ei7 (RB) -k

(3.31)

Therefore the necessary condition for the convergence or stability of the recursive algo-

rithm is that the step size h satisfies the following condition.

= Uåt 
-eig(R) -k (since RB = 

^å 
o,

(3.30)

(3.32)

orequivalently o<h<ffi (3.33)

From Eqn. (3.33), the upper limit of the step size parameter, denoted by lr,o*, is

inversely proportional to k. In other words, the permissible range of /r now can be manip-

ulated by the external user by deciding on the value of k, and this provides the system

some degree of flexibility.

Now let us consider the maximum allowable step size for the recursive equation letting

u=u(n).

u(n+l)-u(n) -hy-hR'B'u(n) Q'34)

u(n+l) = (I-hR'B)u(n) +hY

= M'.u(n) +y' (3.3s)

where

M' = I-hR'B

Y'=hY

f
I

;
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Now the convergence of the system described by this recursive equation is guaranteed if

all eigenvalues of the system matrix M' lie inside the unit circle.

leis (M')l < I

leisg-l,R'B)l<1

lr-h.eig(R'B)l<1 (3.36)

If I - h' eig (R ' B) of Eqn. (3.36) is less than zero, then

-l+h.eig(R'B) <1

h. eig (R' B) <2

(3.37)

(3.38)

(3.3e)

(

If 1 - h . eíg (R . B) of Eqn. (3.36) is greater than or equal to zero, then

l-h'eis(R 'B) < 1

h.eig(R'B) >0

h>0

Putting together Eqn. (3.37) and Eqn. (3.38)' we get

o<h<#6
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or equivalently (3.40)

By comparing Eqns. (3.32) and (3.39), we can clearly see that the former is more stable

than the latter; i.e., the range of å for which (3.32) is stable is larger than that for which

(3.39) is stable.

3.5 Step Size Parameter

In this section we introduce an expression for the scalar constant k, and discuss the con-

sequences of using this particular expression. Later on we introduce a new term called

the step multiplication factor.

First, the scalar quantity k in Eqn. (3.32) is chosen to be l. By doing this, the variable'p

term k and the other variable term p, the AR model order, are now related reducing the

number of user- variable terms. This also ensures that the smallest h range is O < h <2

so that choosing the h value less than 2 guarantees the convergence of the system in all

cases. This can be explained by using Gershgorin's theorem 137f.

Let Q = RB, and let qil be the elements of Q,, where i,i = I,2,...,P and

7t1,7"2,...,L0 be its eigenvalues. Denote by D¡ the i,¡ Gershgorin disÈ with centreøii

and radius r,.

2R l0)o<h<ffi

ri= 2løi,i = 1,2,...,p & i*i
p

j=l
(3.41)

Denote by Q the union of these p disks, then all the eigenvalues of Q must lie inside C).

Since Q has real and positive eigenvalues, the eigenvalues will lie on the strip of real axis

as depicted in Fig. 3.6. The diagonal elements of Q are all equal, i'e', 7ii =
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"b 

x R (0) = k. Since k is selected to be I , th. diagonal elements Q¡¡ are"quul to !

for all I values ranging from I to P.

locus of the eigenvalues of Q
Gershgorin's disk

Im
r¡ * I¡¡ row Yields the maximum radius

I
, t

I
t
\

r¡ Re
I

\,\ /'

FIGURE 3.6 Gershgorin's disk for the eigenvalues of the matrix Q = RB.

Let r, = ma.x(r).
t

rl

In fact, the matrix Q is equal. R+ ' R since B is equal to # '1' Then' 4¡¡ will be

equal a Rå 
. rU where rU refers to iith element of the autocorrelation matrix R' and

R(0) is the diagonal elements r,, or equivalently rr' (0) '

lq,¡

PI
j=l

= 
¿u."r''o'
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,j*l (3.42)
R (0)

We know that the autocorrelation sequence is symmetrical about its maximum value in

the middle which has zero lag. (i.e r,, (0) > r**(i) , i *0)

This indicates that R(0) will always be greater than the off-diagonal elements r¡ in the

/û ro*.

So *$. t

and this lead to

p

H

P
l',tl

Ã (0)

ltr;l <p-l,since lt - p-tP

j= I

< I t , i*I,therefore the summation applies top-l elements'

j=l j= I

P

)( 0R

therefore

j=l

R (0)
(r, - l)

j=l

From Fig. 3.6

1<-+r
p

L^o* I

Substituting Eqn. (3.44) into Eqn. (3.45) we get

(3.43)

(3.44)

(3.4s)

p
1

tp
I
p
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^ I o-l
L^o*1 p*' p

L^ott I

:.eigmax(RB) < I

(3.46)

(3.47)

(3.48)

(3.4e)

Now referring back to Eqn. (3.32), the above result indicates that the lowest possible

valueforh,.,(h^^--+)occurswhen,i8*o'(RB)isneareSttoland' ei7^orßB) -2

the conesponding value of h^o*i, ,L-o=2.

In order to use the recursive algorithm for PSD estimation, a suitable value for the step

size h must be decided by the user. Recalling the condition for convergence of the sys-

tem,i.e., O<h< .ifwer"tk = 1,êt7^or(RB) - 2k'" P'

h^o, = 
þ, 

z, p>2

p

we simply decide the step size parameter by multiplyin E h^o* by a real number ranging

between 0 and I so that /¿ is inside the convergence range. Sy'e name this multiplier the

Step Muttiplication Factor (abbreviated as smfl.

h = smf xhmax

The value of the term smlmust be decided by the user together with the model order p
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CHAPTER 4 Performnnce AnnlYsis

4.I Introduction

This chapter analyses the performance of the devised recursive method by measuring the

spectral bandwidth at the 3-dB points and the frequency bias of the peak of the PSD esti-

mate. We adopt the term relative frequency in cycles per sample (cps) as a measure of

frequency/, which is defined as

(4.1)

where F is the frequency of the analogue signal and F, is the sampling frequency' both in

hertz.

The signal to noise ratio (SNR) is defined as

sNR = rorog,o( #) Ø.2)

where o2 is variance of the additive noise, and A is the amplitude of the sinusoid' The

objective is to compare the performances of two PSD estimation methods, namely the

recursive method and the Yule-Walker method, on the basis of spectral bandwidth of the

main lobe at the 3-dB points, frequency bias, and robustness in the presence of additive

noise.
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We define the 3-dB bandwidth as the spectral width of a peak at -3-dB points, and the

frequency bias as the absolute value of the bias in the estimated frequency, i.e.,

Jñ -4,u*u,.¿l '

The performance analysis using a single sinusoid is presented in Section 4.2- The analy-

sis includes various tests: effect of varying SNR, low frequency test, step multiplication

factor selection test, variation of 3-dB bandwidth with frequency, and effect of introduc-

ing a non-zero initial phase in the data. In Section 4.3, we consider the PSD estimates of

two sinusoids in additive noise. Tests will concentrate on the effects of the model order

and SNR on rhe quality of the PSD estimates, and on peak-resolving ability of the recur-

sive method in comparison with the Yule-Walker method. The results of different tests

are summarised in Section 4.4.

4.2 Single Sínusoid Test

In this section, we present some experimental results on the performance of the recursive

method and the yule-V/alker method, using a single sinusoid comrpted with additive

gaussian noise. As mentioned earlier, the recursive method with one iteration yields very

narrow spectral bandwidth. Therefore, all experiments in this section are performed with

one iteration only, except for the low frequency test in Subsection 4-2.2.In the next sub-

section, we look into the effect of varying SNR on the spectral bandwidth and the fre-

quency bias. Then we analyse the performance of the two methods at low frequencies in

Subsection 4.2.2.In Subsection 4.2.3, we investigate the selection of step multiplication

factor (smf) and the sensitivity of the PSD estimate to smf. In Subsection 4.2.4, we study

the variation of the spectral bandwidth as a function of frequency. Finally, in Subsection

4.2.5, we investigate the effect of initial phase of a sinusoid on the PSD estimate.

4.2.LBffect of SNR

Here we observe the effect of additive noise on the quality of the PSD estimate of the

Yule-Walker method and the recursive method.

The data consists of a single sinusoid with additive Gaussian noise. The sinusoid has a

normalised or relative frequency of 0.3 cps and an amplitude of 5 volts peak' Before
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starting the detailed analysis, let us make a quick comparison between the two methods

by plotting rhe estimated spectra at two different SNR levels, one high and one low. The

purpose of this comparison is to gain an insight into the effect of noise on spectral band-

width and frequency bias.

Figure 4.1 presents the estimated spectra of a sinusoid of length N=20 for SNR values of

5dB and 25d8, respectively. The plotted spectra were estimated assuming AR model

order of p=4, p=8, and, p=lg, respectively. The spectra obtained using the Yule-Walker

method are represented by dashed lines, and the spectra obtained from the recursive

method are represented by solid lines.

In Fig. a.I (a) and (b), the model order is held constant at p'4 and the SNR is increased

from 5dB to 25d8. We can clearly see that when P=4 the recursive method yields much

narrower spectral bandwidths at the expense of an increased frequency bias. In the Yule-

rwalker method, the increase of SNR seems to improve the spectral bandwidth and the

frequency bias seems to remain very small, and independent of SNR variations- On the

other hand, in the recursive method, the spectral resolution Seems to improve slightly,

but the improvement is not significant enough to convince us that it is due to the increase

in SNR and not due to variations in the spectrum.

In Fig. 4.1 (c) and (d), the model order is increased to p-8. With the Yule-Walker

method, the spectra do not show any perceptible differences from the earlier ones except

for the slight spurious fluctuations. Again an increase in SNR improves the PSD esti-

mate. However, with the recursive method, both the spectral resolution and the fre-

quency bias are significantly improved. Interestingly, with SNR=25 dB the spectrum is

somewhat poorer than that with SNR=5 dB. This could indicate that p=$ is not the right

model order for SNR=25d8, or the smf is far from the optimum value.

Further increase of the model order to P=16 causes a split of the peak and introduces

noticeable spurious peaks in the spectra of the Yule-Walker method as depicted in Fig'

4.1 (e) and (l). With SNR=25 dB, the spurious peaks in the spectrum are somewhat

diminished but the improvement is not dramatic enough to completely get rid of line

spliuing.
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The spectra yielded by the recursive method are again very good, having a very sharp

peak with very small frequency bias and much suppressed spurious peaks' The SNR

seems not to influence the PSD of the recursive method'

It can be concluded that the recursive method yields better spectra than the Yule-Walker

method does, and the increase of SNR seems to improve the spectra of the Yule-Walker

method but not necessarily those of the recursive method'

To verify the above conclusions, more rigorous tests are conducted to analyse the behav-

iour of the spectra as the SNR varies.Fig.4.2 illustrates the results (spectral bandwidth

and frequency bias) obtained using a data record of length N=100 which is assumed to be

an AR process with model order p=4,8, andl6' The SNR ranges from ldB to 30dB in

regular intervals of 1 dB.

To obtain more statistically reliable results for each value of SNR, the method was tested

6 times and the results (i.e. bandwidth resolution and frequency bias) were averaged.

Each SNR value is tolerable up to *5 dB. For example, once the noise level is set to give

a SNR of 2O dB and if the actual SNR measured from the data lies outside the range

19.5 < SNR < 20.5 due to the finite length of data, then the data is discarded and another

set is generated. This process continues until the measured SNR is in the tolerable range

( 19.5 < SNR < 20.5).

In Fig. 4.2 (a) and (b), it can be seen that the Yule-Walker method exhibits poor spectral

bandwidth and a slight frequency bias when the SNR is small, but as the SNR increases a

significant improvement occurs. At large SNRs (SNR > 20dB), the frequency bias

becomes so small that it is barely perceptible, and the spectral bandwidth reduces to

about 0.003 cps; this is true for all three model orders. It can also be observed that the

greater the model order is the better is the quality of the spectrum' For p=16, the spectral

bandwidth and the frequency bias are the smallest and are more or less constant through-

out the SNR range. The results obtained with p-4 are the worst.

In Fig. a.Z @) and (d), it is observed that the recursive method after only one iteration

yields better spectrum than the Yule-Walker method does. After trying different smf val-

ues (see a. tlon

A new recursive high-resolution parametric method for PSD estimation 52



Chapter 4: Performance Analysis

selected, and the corresponding results were plotted. When P=2, the results were far too

large compared to those of higher model orders, and did not fit in the graphs shown in

Fig.4.2.Itiswellknownthatp=),isthesmallestpossiblevalueforthemodelorderto

represent a peak in frequency domain corresponding to a sinusoid in the time domain' It

is found that the recursive method requires model orders at least greater than two to get

an acceptable PSD estimate, except in the steady state. With p=2,the best possible per-

formance achievable by the recursive method is when the parameters of the recursive

method converge to the exact solution of the normal equations; the results then are iden-

tical to those obtained with the Yule-Walker method'

Fig.4.2(c) and (d) shows thatthe recursive method, withp=4,8, 16, yields very small

spectral bandwidth throughout the entire SNR range, even at SNR values as low as ldB

or 2dB. For SNR=1dB, the spectral bandwidth is smaller than 3.75x10-3 cps, and for

high SNR values, it is smaller than 6.3xl0a cps, which is about I of the bandwidth

yietded by the Yule-V/alker method at high SNRs. The frequency bias is also very small

and comparable to that of the Yule-Walker method for small SNR values. However, an

increase in SNR does not contribute any significant improvement in the frequency bias'

For higher SNR values, the frequency bias of the recursive method is not as good as that

of the Yule-walker method, but it is kept at a very small value, below 0.004 cps, through-

out the entire SNR range.

Similar experiments were conducted for N=50 and N=20. The results are depicted in

Figs. 4.3 and 4.4, respectively. These plots show that as the data length is reduced both

the spectral bandwidth and the frequency bias become larger. With the recursive method,

the increases in the spectral bandwidth and frequency bias are much less significant than

with the yule-Walker method. Furthermore, the recursive method does not exhibit line

splitting with high model orders, which is inherent in the Yule-Walker method' This is

clearly evident in Fig. 4.4 (a) and (b) where the Yule-walker method exhibits radical

increases in the spectral bandwidth and frequency bias if p-I6, which is too high for a

2O-point signal. In Figs. a.a @) and (d) the recursive method is shown to have small

spectral bandwidth and frequency bias at all SNRs. A closer examination of Fig' 4'3 (c)

and Fig 4.4 (c),
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for N=20, the spectral bandwidth is largest when p=8. This phenomenon appears also

with the frequency bias. Selecting higher model order does not always lead to an

improved result. From the observation of all the plots in Figs' 4'2,4'3 and 4'4,we can

conclude that the recursive PSD estimate yields naffower peak, but at the expense of

increased bias of the estimated frequency. The performance of the recursive method is

more consistent than that of the Yule-Walker method'

The step multiplication factors used in the Figs. 4.2, 4.3 and 4.4 are tabulated below'

Since the frequency bias and the bandwidth resolution are approximately constant

throughout the SNR range, the optimum smf can be considered to be independent of

SNR. This table indicates that the optimum values for the smf lie in the range smf=0.4 to

smf=O.6

Table 4.1 Step Multiplication Factors (smf;

0.6o.40.620

0.5o.40.550

0.50.40.5100

p 1 6P=8P=4P=2N
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4.2.2BfTect of Low FrequencY

In this experiment, the normalised frequency of the sinusoid is reduced to 0.1 cps in

order to observe the effect of reducing the number of cycles of the sinusoid on the PSD

estimate. The length of the data used is 20 points, hence we have 2 cycles of a sinusoid'

In this test, the recursive method is used with one iteration only, and smf is set to 0'6'

This value of the smf is chosen because it yields near optimum results'

Fig. 4.5 shows that the Yule-Walker method gives a peak with spectral bandwidth equal

to 0.02 cps at the correct frequency position when p=4. Furthermore' when the model

order increases the bandwidth resolution becomes worse' When the model order is

increased beyond p=lo,line splitting occurs, and spurious low level peaks are intro-

duced. This phenomenon agrees with the result in Fig 4.4 (a): for SNR > 20 dB' the

bandwidth resolution of the peak with P=4 is about 0'02 cps which is the smallest value

achieved. V/ith other values of p, the bandwidth resolution increases'

When the model order is p-A,the PSD estimate of the recursive method is smoothed out,

and a slight frequency bias is observed. The spectral resolution of the recursive method

is slightly better than that of the Yule-Walker method at low model orders. Unlike the

yule-Walker PSD estimate, the spectral resolution of the recursive PSD estimate

improves significantly as the model order increases. For p=lS, the result is most out-

standing: the main lobe has very small frequency bias, very large height and extremely

n¿urow bandwidth. V/ith the recursive method, neither line splitting nor spurious peaks

are observed at high model order.

For the conventional AR based PSD estimation techniques such as the Yule-Walker

method, the best model order lies in the range N/3 to N/2 to achieve good PSD estimate'

This, of course, does not apply to every case, but gives a general idea on how to select

the model order. with the recursive method, the appropriate model order should be

higher than that of the conventional methods. The range P=12 to p-18 is adequate for a

2O-point data record"
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The frequency was reduced until the Yule-Walker method could not generate a spectral

peak. It was found that when the frequency was 0.03 cps, the Yule-Walker method gave a

spectrum with a very small peak, which can hardly be recognised, thus,/' = 0'03 cps was

selected for this test.

The model order is set to p=l|because the best result was yielded in the previous test for

the recursive method (/o=0.1 cps), for p-16. Different values of the step multiplication

factors were tried, and smf=0.9 appeared to yield good PSD estimate'

Fig. 4.6 (a) shows the PSD of the Yule-Walker method with p-8. With the model order

in the range 4 to 8, the Yule-Walker method yields PSD estimate with a noticeable but

very small peak; Otherwise, no peak is observed. Also the variation of the shape of the

spectrum was relatively large; the PSD estimate plotted in Fig a'6 @) has the most fre-

quently observed shape. After one iteration, with the recursive method, no peak is

observed (see Fig. 4.6 (b)), hence, no sinusoid was detected. After increasing the number

of iterations to 2, a peak at /0=0'03 cps appeared as shown in Fig' 4'6 (c)' Further

increase in the number of iterations revealed that the PSD estimate of the recursive

method exhibits a peak only for an even number of iterations; no peak is observed for

odd numbers of iterations as shown in Fig. 4.6.

Further decreases in the frequency was tried with¡o=g'O2 cps and 0'01 cps' In each case'

a single peak is observed when the number of iterations is even, and no peak for odd

number of iterations. However, the frequency estimate showed a large bias; all peaks

occurred at fg=Q.QlJ cps or slightly greater. There are two interpretations for this mis-

placement of the peak. One is that the frequency of the sinusoid is too low for the recur-

sive method to make a correct estimate. The other may be due to the existence of a

replica of this peak in the negative frequency region. Because the limitation on the

resolving power of the recursive method, when the difference in the frequencies of these

two peaks is less than 0.05 cps, in other words, when/g is less than 0'025 cps, the peaks

are pushed away from each other resulting in such a large frequency bias. A test to see

whether this is, in fact, the case was carried out with two sinusoids whose frequencies are

0.27 cpsand 0.3 cps, respectively. The results found support this reasoning; the details of

'.til
'úi
j

¡

on are

I A new recursive high-resolution parametric method for PSD estimation 60



YulÈWðlkff nethod

p.8
sNR E 20 dB

ff}.0.03
N¿ã)

Chapter 4: Performance Analysis

o
!

øoù
!o
,2
?
È
o2

o
!
.g
ø
o
À
!o
.9
3
È

2

o
!
.E
oo
À
!ô!
?
È
2

I
øoq
¡.,I
E

2

Eslimtsd AR Powtr dmsity spedrum

o.or 0.02 0.03 0.04 0 05 0.05 0.07
t{qmli!6d lroquo¡cf h cps

(a)
Edlìst.d AR pflt &nsily spælm

0.01 0.02 0.Gì 0.0i1 0.05 0.06
t{m¡¡!d troq/ffit iì qt

(c)

0.0r 0.02

Edlut.d AR wd d€¡sily ¿p.dM

o.o3 o.o4 o.o5 0.06 0 07 0.08 0 09 0.1

¡lqmlirsd koquency h Qs

Esl¡naled AR Powor donsity sp$trun

o.o3 0.04 0 05 0 06 0.07 0.08 0.09 0.1

l,lonìal¡sod lreauffi h Ðs

(b)
Eltml€d AR pflor dil$ty spoclm

o.ot o.o2 ocB 0.(X 0.05 0.07 0.08 0.09 0.1

lSrB¡¡ad lrequoíG'Y h es

(d)

Ed¡Bl.d AR Pdor dilsity 6P*:trum

o.o'r o.o2 0.03 o 04 0 05 0.06 0.07
I'lqmi¡sod lroquof,q ¡n cps

0.08 0.09 0.1

.l

0.08 0.09 0.'|

0.08 0.09 0.1

0.01 0.02

l
rl,l

o!
c
øo
À
!ô
.9

Êoz

d

Øo
È
¡
.9!
E

2
n

I
I

(e) (Ð

FIGURE 4.6 Power density spectrum estimations using: (a) Yule-Walker method,

Recursive method with (b) I iteration, (c) 2 iterations, (d) 3 iterations, (e) 4 iterations and

(Ð 5 iterations (N - 20, p= 16, SNR = 20dB, h = 0.9 x h_max and/s = 0.03 cps).

R*u6ivo molhod

p. tô
StlR .20 ds
I ilonüo
h ¡0.9'h-m
f0.0.03
N¡ãl

RHrslve m6ûþd

p. t6
Sl.lR .20 dB

2 lmlþf,s
h .0.9'h_H
f0.0.üt
N.ãt

Ræ6iva môhod

pr'18
SNR¡ÐdB
3llomtms
h¡0.9'h-m
lo ¡ 0.0Í!

N.ãt

RdBih method

P¡ t6
SNR.20 dB

a lælint
hr0.9'h-ru
l0 ¡ 0.011

N.20

Rffiiv. mothod

pr 16

SNR. æ dB

5 ilrdin!
h '0.9'h-lÈ
1o.0.03
N. ãl

þ A new recursive high-resolution pÍìrametric method for PSD estimation 6t



I{

Chapter 4: Performance Anal]¡sis

4.2.3 Selection of Step Muttiplication Factor

This section deals with the determination of the optimum values of the smf. Since it was

observed in Fig. a.4 @) that the performance of the recursive method is not affected by

the SNR, a value of SNR=20 dB was chosen for this test with N = 20. The frequency of

the sinusoid varies from 0.05 cps to 0.45 cps with an increment of 0'05 cps, and the

modelordervariesfromP=4top=l8withanincrementof2.Foreachpairofthese

p¿uameters, e.g.,/g=0.3 cps and P=16, seven different values of smf ranging from 0'3 to

0.9, with an increment of 0'1, were applied.

After observing the seven plots of the corresponding PSD for each pair of frequency and

model order, the smf resulting in the best estimate, i.e., frequency bias and bandwidth

resolution, was selected and recorded in Table 4'2'

Table 4.2The optimum step multiplication factors(smf)

ÚF âeà The height ofthe peak is greater than 30dB but less than 40dB

G *ìlç à The height of the peak is greater than 40dB

In order to observe the trend of the smf with respect to the frequency of the sinusoid and

the model order, the smf values are averaged both column-wise (frequency-wise) and

row-wise (model-order-wise). The frequency-wise averaged smf versus model order and

the model-order-wise averaged smf versus frequency are depicted in Fig' 4'7'

In Fig. 4.7 (a), apart from p=4, the frequency-wise averaged smf increases as p increases'

o.7l0.620.590.550.540.470.490.6mean

0.70.8*o;l*0.6*0.6*0.8*0.45

0.6250.7*0.6*0.60.6*0.5x0.70.40.90.40

0.530.70.6*0.60.5*0.50.5*0.5*x0.30.35

0.s50.70.6*0.6*x0.50.50.40.5x*0.6*0.30

0.480.60.6*0.50.5*o.40.40.30.50.25

0.550.70.6*0.6*0.50.50.40.5*0.6o.20

0.560.70.6*0.60.6**0.5*0.5*0.5*0.50.15

0.6130.7*0.6*0.60.6*0.5*o.40.70.80.10

0.70.8f0.7**0.6*0.6*0.8**0.05

meanP=18P=16P=|4Þ=12P=10P=8P=6Þ=4fn

In Fig. 4.7 (b), the lowest value of the model-order-wise averaged smf is 0'48 and this
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occurs rorfg=0.25 cps, i.e., the middle frequency. As the frequency moves away from

this value, the smf increases in a symmetrical manner. The most ideal situation is that if

the optimum smf is constant throughout the entire frequency range. This enables the

choice of a single value of smf, after deciding on the model order, to be irrespective of

frequency.

By examining the columns of Table 4.2, we can see that there exist relatively large varia-

tions in the optimum smf value when the model order is low. The columns associated

with high model orders contain optimum smf values which are almost constant over the

entire frequency range. In fact the V-shape of the graph shown in Fig' 4'7 (b) is caused

mainly by the predominant influence of lower model order smf values. If we plotted the

graphs for high model orders only, the plot in Fig. 4.7 (b) would be flat' Therefore, by

neglecting the low model orders, a near optimum smf value can be found for each model

order by taking the average value of the corresponding column, i'e', the last row in Table

4.2.

The column for p-16 contains consistent values of the smf; i.e., smþ0.6 throughout the

entire frequency range except at the extreme frequencies such as 0'05 cps and 0'45 cps'

where the smf increases slightly to 0.7. Also this column contains the largest number of

* and å<'* symbols, which signify sharp spectral peaks with heights greater than 30 dB

in the estimated PSD' This suggests that p=16 is the optimum model order for 20 points

data records and the corresponding smf should be 0'6'

So far we have considered, intuitively, how to choose a smf for the best result' However,

we must take into account the fact that the selected smf values may not always be opti-

mum. An issue arising from this is the sensitivity of the recursive PSD estimate to varia-

tions in the smf; it is important that the PSD estimate is not very sensitive to changes in

smf.

A test for sensitivity of 3-dB bandwidth to smf was carried out using 2O-point data

records; the frequency was 0.3 cps, SNR was 20d8, and the mOdel orders were 4, 8, and

16. The smf was increased from 0.1 to 0.9 in regular intervals of 0.025, and the 3-dB

bandwidth for each smf was evaluated. For each smf, the test was carried out 6 times; the

results were averaged, and plotted in Fig. 4. curves

A new recursive high-resolution parametric method for PSD estimation
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Step Multiplication Fator vs Model Order Step Multiplication Fator vs Frequency
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FIGURE 4.7 The averaged step multiplication factors versus (a) the model order p

and (b) the frequencY fo, for N=20 and SNR=20dB.

minima at different smf positions: 0.525, 0.45, and 0.625, respectively. The correspond-

ing 3-dB bandwidths are tabulared in Table 4.3. Note that the averaged 3-dB bandwidth

decreases with increasing model order.

Table 21.3 Optimum smfs for 2O-point data records. SNR = 20dB, and fg = 0.3 cps

0.00020.00040.00063-dB bandwidth
(cps)

o.6250.450.525smr

P=16p--8P=4
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The 3-dB bandwidths obtained using smf = 0.6 with p = 4, smf = 0.4 with p = 8, smf =

0.6 with p = l6are 0.0033, 0.0041 , and 0.0013 cps, respectively. Therefore, the largest 3-

dB bandwidth is obtained with P=3.

3-dB bandwidth versus smf

0.1
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0.09

0.08

0.07
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0.05

0.04

att
o-o
.g

Þ'=
E
c,
ct
-o
coa

I(r)

0.03

1 o.2 0.3 0.4 0.5 0.6
step multiPlication factor

o.7 0.8 0.9

FIGURE 4.8 3-dB bandwidth versus smf. N=20, p=4 (--),8 (..), 16 (-), fo=O'3cps,

and SNR=20d8.

In Subsection 4.2.1 (see Fig,4.4), it was found that p-8 gives the largest 3-dB band-

width. In that test we used smf=Q .6,0.4,0.6. Therefore the above result is consistent with

the result obtained in Subsection 4.2.I.

In Fig. 4.8, the three curves have a similar shape; each of the curves is bowl-shaped, and

has one minimum. These curves have small second derivatives; the 3-dB bandwidths

increase slowly and monotonously as the smf moves further away from the optima' For

smfs smaller than 0.3, the 3-dB increases rapidly as smf decreases. It can be concluded

that the recursive PSD estimate is not degraded significantly by choosing near optimum

p-l =2 dashed

P=8 => dotted

P=16 => solid

N=20

SNR=20d8

fo=0.3 cPs

smf, and choosing smf between 0'4 and ,l[ resu
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4.2.4 Bandwidth Versus FrequencY

In this section, we study the variations of the spectral bandwidth of the peak as a function

of the frequency. We use data of length 20 and SNR = 20 dB. By selecting the smf values

from the frequency-wise averaged smfs, Fig.4.7 (a), the spectral bandwidths were evalu-

atedformodelordersrangingfromp={top-lSatregularintervalsof2,andplotted(see

Fig. a.9).

Fig. 4.9 shows that, when the model order p is greater than N/2, i'e', p=¡2, 14, 16, and

18, the 3-dB bandwidths are very small, in the order of 10-3 cps. The 3-dB bandwidths at

fo=0.2 cps and 0.3 cps are smallest, except forp-18. The graphs exhibit a symmetry

about/g-O.2s cps, at which a local maximum occurs. However the variations throughout

the frequency range are relatively small, i.e, less than 5xl0-3cps' At the extreme fre-

quencies,,fo=0.05 cps and fO=0.45 cps, the 3-dB bandwidths are still small and are less

than 5xl0-3 cps.

with the small model orders, p=4 to p=lo, the 3-dB bandwidths are larger than with the

high model orders. The 3-dB bandwidths remain flat throughout the middle part of the

frequency range, and increase at the extreme frequencies are obseryed' When P ( 6, no

spectral peaks atlo=Q'05 cps or/g=0'45 cps are observed'

The yule-Walker method exhibits line splitting if the model order is greater than p-10.

However, for lower model orders, the results achieved by the Yule-Walker method do not

seem to be subject to variation due to the frequency change and are constant about 0'02

cps, throughout the entire frequency range regardless of the model order. In spite of con-

sistency of the bandwidth over the frequency change, the value itself ( = 0.02 cps) is

much greater than the values from the recursive method, except at extreme frequencies'

In summary, if the data is short in duration, i.e N=20, the recursive method yields very

small spectral bandwidth at the expense of variations of the spectral bandwidth with fre-

quency. Since the actual values and the variations of the spectral bandwidths are very

small, and get even smaller if the model order is high, it can be concluded that the recur-

-¿2 ^- ^c +L^ ^-^^r¡nl I..onrlr¡riãth
slve mgtnoLl I5 uËttgl lll sPrttr ul Llls v4tl4lr\rrr ur Lr¡w ryvvrrsr
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soid. Dashed and solid lines represent the Yule-Walker and the recursive PSD esti-

mates, respectivelY.
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4.2.5 Effect of Initial Phase

Here, we investigate the effect of initial phase of a sinusoid on the PSD estimate. Again,

the Yule-Walker and the recursive methods are tested and the results are compared and

analysed.

The data consists of a single sinusoid of frequencY fo = 0'3 cps plus white Gaussian' The

tests were performed using signals of length N=20, 50, and 100, and SNR = 20dB with

model orders p = 4,8, and 16. The smfs for the recursive method were chosen from

Table 4.2 as follows

. p=4, smf = 0.6

. p=8, Smf = 0.4

" p=16, smf = 0.6

We denote the initial phase value in degrees by 0. Seventy-two different initial phase

values, ranging from 0o to 355. in regular intervals of 5", are used'

To improve the reliability of the results, for each initial phase the test is carried out

twenty times, the 3-dB bandwidth and frequency bias are recorded, and only the aver-

aged results are presented.

Recursive Method

For N=20, 50 and 100, the results obtained with the recursive method are depicted in

Figs.4.l0 (a) and (b),4.11 (a) and (b), and,4.l2 (a) and (b), respectively. These figures

show that both the 3-dB bandwidth and frequency bias vary as a function of initial phase.

Although the amplitude of 3-dB bandwidth fluctuations for p-16 are generally much

smaller than for p=4 and,p=8, the variations are periodic with a period equal to 180o.

The fluctuations for p=8 and p=16 are sinusoidal, whereas the fluctuations for P=4 are

not sinusoidal but periodic with period of about 180" '

Examination of the frequency bias in Figs.4.10 (b),4.11 (b), and4'12(b)' reveals that

the frequency bias fluctuations are periodic with a period equal to 180'. For N=20, the

fluctuations are not sinusoidal. For N=50 and 100, the fluctuations are sinusoidal except

for p-4. The amplitude of the frequency bias variations are smallest when p=16.'l'he
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variations for p-8 possess the largest DC offset, except for N=20; consequently the fre-

quency bias when p=8 is generally greater than the frequency biases when P=4 and P=16-

It is apparent that as the data length is increased the amplitude of fluctuations gets

smaller but their shape is preserved.

The maximum value of the frequency bias is approximately 0.0075 cps when the fluctu-

ation with N=20 reaches the crests at phase positions, 0 = l50o and 325". However,

more frequently, we would expect the frequency bias to be less than 0.003 cps ¿ls more of

the results fall in this region.

Now let us examine the 3-dB bandwidth variations more closely. In Figs. 4.10 (a)' 4.11

(a), and 4.I2 (a), the variations when p=4 exhibit 2 main lobes centred at 0 = l50o and

325" ,and two much smaller lobes centred at 0 = 60o and 230o . Taking a closer look at

the shapes of the fluctuations, one would find that the patterns which have four lobes can

be thought of as rectified sinusoids. Each one of these sinusoids has a DC offset smaller

than amplitude of the sinusoid. Consequently the troughs of the sinusoid lies in the nega-

tive region. Since it is meaningless to have negative values for the 3-dB bandwidth and

the frequency bias, because they are absolute values as defined in Section 4.l,it can be

concluded that any portion of the sinusoids which lies below the threshold limit, which

lies below 0.001 cps for all model orders and data lengths, are reflected back upwards

about the threshold line. If this is so, all the variations can be regarded as being sinusoi-

dal with period of 180'; they may, or may not be all in phase, depending on which one

of the major and minor lobes, for p=4, is being reflected'

Yule-Walker Method

With the yule-Walker method, the results are quite apprehensible. In all cases, the results

are roughly constant with small variations along the phase axes showing the robustness

of this system against the initial phase variations.

With N=20 and p-4, the Yule-Walker method shows the smallest values for both 3-dB

bandwidth and frequency bias, but for p=16 they are prominently larger than the others,

indicating the advent of spectral line splitting due to excessively high model order with

respect to slze rec
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ence between the three plots fades out; the three plots eventually become almost identi-

cal for N=100

Comparisons

with regard to the 3-dB bandwidth, even though the recursive method shows prominent

fluctuations, its results are still superior to those of the Yule-Walker method. The largest

values of the 3-dB bandwidth achieved using the recursive method for three data lengths,

N=20, N=50 and N=100, are roughly 0.0062 cps (p-8), 0.0021 cps (p={), and 0.001 cps

(p=4),respectively (see Table 4.4). On the other hand, the smallest values for the Yule-

Walker method are 0.0176 cps (p-4), 0.0067 cps (p-4), and 0.0032 cps (p-8), for the

same signals. This shows that, regardless of the value of initial phase and model order,

the recursive method produces smaller spectral bandwidth.

For the frequency bias of the spectral peak, the Yule-Walker method shows overwhelm-

ing superiority over the recursive method. Apart from N=20 (notice that line splitting

occurs when p=lg), the frequency bias values obtained from the Yule-Walker method lie

below lxl0-3 cps (see Table 4.5). With the recursive method, the frequency bias reaches

about 0.008 cps in the worst cases, and the mean value of the frequency bias for all

model orders and data lengths falls below 0.004 cps, which is a considerably small value"

Table. 4.4Max./ min. 3-dB bandwidths of AR PSD estimates with initial phase.

0.00340.00820.04060.000350.00140.0009mln

16 0.00390.00950.04190.000490.00170.0018max

0.00320.0069o.02240.000110.00040.0028mln

8 0.00350.00750.02530.000470.00160.0062max

0.00360.00670.01760.00010.00020.0006mln

4 0.00390.00750.01950.00100.00210.0051max

N=100N=50N=20N=100N=50N=20p

Yule-WalkerRecursive
3-dB

bandwidth
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Table 4.5 Max. / min. frequency bias of AR PSD estimates with initial phase'

0.000070.000270.00890.000450.00020.0004mln

l6 0.000190.000590.01140.000970.00130.0031max

0.000080.000200.00090.00020.00160.0003mln

0.000170.000510.00190.00280.00330.0049m¿x

0.000060.000170.00050.00010.00020.0005mln

4 0.000170.000330.00120.00130.00270.0075max

N=100N=50N=20N=100N=50N=20

Yule-WalkerRecursive
frequency

bias

A new recursive high-resolution parametric method for PSD estimation 7t



Chapter 4: Performance Analysis

N=20 N=20

0 0 100 200 300
lnitial phase in degree

(b)

0 100 200 300
lnitial phase in degree

(a)

0

N=20 N=20

o.05

0 100 200 300
lnitial phase in degree

(c)

100 200 300
lnitial phase in degree

(d)

0

FIGURE 4.10. Variarion of 3-dB bandwidth and frequency bias versus initial

phase using the recursive method, (a) and (b), and the Yule-Walker method, (c) and

(d). smf =0.6, 0.4, 0.6 for p=4(dashed), 8(dotted), 16(solid), respectively, N=20

points, I iteration,/g=0.3 cps, and SNR=2OdB.
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Remarks

The graphs in Fig. 4.10,4.11, and 4.12 represent averaged values over twenty tests,

hence the smooth nature of these graphs. To see if these graphs depict an accurate picture

of the performance of the two methods, similar experiments were conducted using a sin-

gle test instead of twenty. The results are plotted in Figs. 4'13, 4.15, and 4.15. As

expected, the graphs are much coarser but substantially similar to the smoothed ones,

indicating that the smoothed graphs in Figs. 4.I0, 4.11 and 4.12 are reliable representa-

tions of the behaviour of the systems with respect to phase changes.
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4.3 Two Sinusoids Test

In this section, we present some experimental results on the AR based PSD estimates

obtained from artificially generated data consisting of two sinusoids comrpted with

noise, and spaced Â/ cps apart. Thus, the underlying process is an ARMA(4,4), but the

results presented in this section employ an AR(p) model. The model order p for the AR

model is expected to be higher than 4 to accurately approximate the ARMA(4,4) process'

Here, we study the effects of the model order p and the SNR on the quality of the PSD

estimates obtained by the Yule-Walker method and the recursive method, and also com-

pare the spectral resolutions of the two PSD estimates.

4.3.1 Effect of Model Order

The test data comprises two sinusoids with relative frequencies /o = O'2cps and

ft = 0.3cps. The data record has a fixed length of 20 points and SNR=20 dB' The

model order is varied from p-4 to p-18 in regular intervals of 2.

The results are depicted in Fig. 4.16. The solid lines represent the PSD estimates of the

recursive method, and the dashed lines represent those of the Yule-Walker method'

When p=4,therecursive method does not resolve the peaks as illustrated in Fig. 4.16 (a)'

The Yule-Walker method gives a very smooth (broad) spectral estimate with two small

peaks. Some frequency bias is also evident in the Yule-Walker method (i.e. the peaks are

pushed apart and away from their true locations). As the model order increases to p=6,

Fig. 4.16 (b), the recursive method resolves the peaks putting them at the correct fre-

quency positions. The Yule-Walker method exhibits slight frequency bias, but the resolu-

tion is better than that of the recursive estimate. However, for model orders p > 8 the

recursive method exhibits superior spectral resolution and very small frequency bias'

According to the graphs in Fig. 4.16, the optimum model orders seem to be p=8 for the

Yule-Walker method anð p-14 for the recursive method. The peaks, in the recursive

method, when p=ld have large heights, about 40dB-45dB, extremely narrow band-

widths, and very small frequency bias. The Yule-Walker method exhibits broadening in

peaksasthemodelorderexceedsp=l4,andprominentsplittinginthepeakswhenp=13,
I

Fig4.16 (h)

t
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Chapter 4: Performance Analysis

Comparing the best PSD estimates, Figs.4.16 (c) and (f), it is clearly evident that the

recursive method outperforms the Yule-Walker method in this test.

4.3.2 Effect of SNR

It is well known that the resolution of the AR spectral estimate for two equiamplitude

sinusoids in white noise decreases as the SNR decreases. The reason for the degradation

is that the all-pole model assumed in AR spectral analysis is no longer valid when obser-

vation noise is present. The inadequacy of the AR model for a noise comrpted AR proc-

ess leads to degradation in PSD estimate. The effect of noise is to reduce the dynamic

range of PSD of the signal without noise.

To observe the effect of different noise levels on the PSD estimates, the PSD estimates

with four different noise levels, SNR= ldB, 5db, l0dB, and 20dB, are examined. The

results using the Yule-Walker method are plotted in Fig. 4.17. When the SNR=1d8, there

exist noticeable spurious peaks which have relatively large heights, and the two main

spectral peaks have unequal heights. As the SNR increases to 5 dB, the spurious peaks

a¡e diminished; however, the difference in height of the main peaks still remains. For

larger SNRs, the estimated PSDs become better: no spurious peaks, equal height of the

peaks, and consistency against the SNR change (i.e. No distinguishable differences

between SNR = l0 dB and SNR = 20dB).

A similar test is conducted using the recursive method, and the results are shown in Fig.

4.18. Similar phenomena as with the Yule-Walker method are observed, except that the

heights of the main peaks are much larger than those of the Yule-Walker method- There

is also a slight improvement in bandwidth resolution when SNR changes from ldB to

5dB.

Comparing the SNR=1dB and SNR=20d8, one can easily see that the degradation due to

a decrease in SNR is more prominent in the Yule-Walker PSD estimate than it is in the

recursive PSD estimate.

t
I
I

i

þ A new recursive high-resolution parametric method for PSD estimation 8l



fo=0'2 cps

f¡=0.3 cps

N=20
SNR=ldB

Chapter 4: Performance Analysis

EfuId PDS E!üiltd POS

(b)
Ertrld POS

E.m Pos

03 0s

s
Ê
¡
I
t

I¡
R

I
I

I

i
E-l
2

g
E

ô

E
I

I

o6 0.t 0.1 6 o2 04 0ß 05 0.6 o.t 0 t5

0.G o.i 0.t 5

0,1 0.t 5 o2

06 01

0a

os 04 0.6 05

(a)
E.hd POS

o! 016 02 0ã 06 0.6
ffi

EffiPN

0l 0 t5 025 03 0s 0a 0Æ 05

ot5 02 025 0t 0G
Ftrfqqñc¡

(a)
€.ùilíd Pos

0a 05

o40s0¡

(c) (d)

FIGURE 4.17 Effectof SNR on the Yule-V/alker PSD estimates

¡I
2

-l

g

ô

¡
?
E

2

khnwhq
(b)

e.)mú¿ pos

Bd.ft. F{u@ iñø.
(d)

02 025 03 035 0,4 06 05

c

io=0.2 cps

fr=0.3 cps

N=20
SNR=5 dB

fg=0.2 cPs

f1=0.3 cPs

N=20
l0 dB

f60.2 cps

f1=0.3 cPs

N=20
20 dB

fg=o'2 
"otf¡{.3 cps

N=20
SNR=ldB
smf=0.7

f60.2 cps

fr=0.3 cPs

N=20
SNR=5dB
smf=0.7

fg=O.2.tt
f1=0.3 cPs

N=20
SNR=10d8
smf=0.7

fo=0.2 cPs

ft=0.3 cPs

N=20
SNR=20d8
smf=0.7

I

FIGURE 4.18 Effect of SNR on the recursive PSD estimates

I A new recursive high-resolution parametric method for PSD estimation 82



Chapter 4: Performance Analysis

4.3.3 Spectral Resolution

In this section, we focus on spectral resolution of the PSD estimates. Spectral resolution

is a measure of how closely spaced in the frequency domain two sinusoids can become

before they can not be distinguished and are detected as a single broad lobe'

The test data consists of two sinusoids of equal amplitude with frequencies 0'25 cps and

0.3 cps, hence Al=0.05 cps. The SNR is set to 20d8, and the model order is set to 14' A

model order of p = 14 was chosen because in Fig. 4.16 it yielded the best PSD estimate

for the recursive method and a near best PSD estimate for the Yule-Walker method. This

experimentwasrepeatedusingp=S,theoptimummodelorderfortheYule-Walker

merhod in Fig. 4.16; the PSD estimate obtained by the Yule-V/alker method using p-8

was poorer than that obtained with p=l{.
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FIGURE 4.19 PSD estimates with A/ = 0'05 cps and P=14 using the recur-

sive method (a) and the Yule-walker method (b), smf=0.6, fo=0.25 cps'

SNR=20d8, f t=0.3 cps, and N=20.

In Fig. 4.19 (a), the recursive method exhibits sharp peaks atÞ0'246 cps andftO'31 cps

giving Lf=g.064 cps. In Fig. 4.19 (b), the Yule-Walker method exhibits 2 more broad

peaks at þ0.239 cps and È0.314 cps, giving Lf=0.075 cps. Notice that the peaks

obtained with the Yule-Walker method are broader and displaced further from their true

Recursive
method

Yule-Walker
method

I

positions than those obtained with the recursive method, suggesting that the Yule-Walker
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method is inferior to the recursive method with respect to the spectral resolution'

The frequency difference between the two sinusoids is reduced to Al = 0'03 cps (/0 =

0.27 cps and /t= 0.3 cps).Recalling the low frequency test in Subsection 4.2.2, it was

mentioned that when the relative frequency of the peak was below f = 0'025 cps, the

peak was displaced from the correct position to where the frequency is greater than 0.03

cps. One reasoning for this result was that it is due to the presence of a replica in the neg-

ative frequency region, and to the fact that the resolving power of the recursive method is

limited to A/> 0.05 cPs.
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FIGURE 4.20 Yule-Walker PSD estimate with a/- 0.03 cps. fo= 0-27 cps, /r =

0.3 cps, SNR=20 dB, N=20, and P-12.

First, the Yule-Walker method is tried and the best spectrum, obtained using p=12, is

plotted in Fig' 4'20'Two very small peaks atf = Q'27 cps and/= 0'306 cps are observed

giving Ål = 0.036 cps. Of course rhe spectrum is highly degraded with the peaks being

barely perceptible. Peaks are considered to be resolved only if they are separate at -3 dB

level. The heights of the small peaks in Fig. 4.20 are about I dB; only a single broad lobe

is detected, Therefore it is concluded that the Yule-Walker method can not resolve peaks

0.03 cps aPart.
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Second, the recursive PSD estimate is plotted using the same signal. The best PSD esti-

matesareobtainedusingsmf=0.9andP=I6.TheresultsareshowninFig'4.21.4sim-

ilar phenomenon as with the low frequency test results is observed. After odd number of

iterations, a single peak is observed at a frequency position between the two true fre-

quency positions. However with even number of iterations, two peaks are detected' their

frequencypositionsaref_0.258cpsandf=0.3|Tcpsrespectivelyhencegiving

Af = 0.059 cps. Comparing these with their true frequencies, i-e-,f - 0.27 cps and/= 9.3

cps, it can be seen that the peaks are pushed further away from each other giving false

frequency estimates.

In conclusion, the Yule-Walker method can not detect two very close peaks; the peaks

are not separated at -3 dB level, and only the crests of the peaks are distinguishable. On

the other hand, the recursive method detects the presence of two very close peaks, but

trades the accuracy of estimated frequencies with the resolution of peaks, i.e., two peaks

are clearly separated. Therefore, for even number of iterations' any two peaks with

4f < 0.05 cps will be detected at frequency locations with À/> 0.05 cps' This supports

the second reasoning of the low frequency test results in Subsection 4'2'2"
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4.4 Summary of Test Results

This section summarises the attributes of the recursive method based upon the test results

presented in the current chapter. For simplicity these attributes are presented in a list

form.

. No line splitting.

. No spurious peaks.

. smf value must be chosen optimally.

. Even number of iterations is needed to resolve very closely spaced spectral peaks.

. Very good bandwidth resolution.

. Small bias in frequency estimate.

. Robustness in noisy environment.

. Very small variations of 3-dB bandwidth and frequency bias due to initial phase

changes.

. Very small variations of bandwidth resolution due to the frequency changes.

. Higher model orders work better.

The recursive method features many advantages over the Yule-Walker method. Another

strength of this method is the simplicity of the recursive equation. Overall, the recursive

method outperforms the Yule-Walker method'
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This chapter deals with the implementation issues of the recursive method for PSD esti-

mation. It is shown that the recursive method can be implemented using Fast Fourier

Transform (FfÐ algorithms, and hence improving its computational speed' especially

for large model orders. The implementation of PSD estimation algorithm is crucial and

this chapter demonstrates once again the superiority of the new recursive method com-

pared to the other well known techniques. Discussions on how the recursive equation is

related to circular convolution is treated in Section 5.1. The implementation of the recur-

sive equation using the FFT algorithms is presented in Section 5.2. Savings on the com-

putational cost of the recursive method, by incorporating the FFT algorithm, and

comparisons with the computational complexity of other AR PSD estimation techniques

are dealt with in Section 5.3.

5.I Analogy between Matrix Multiplication and Círcular Convolution

In this section we explore the link between the devised recursive equation and circular

convolution, which is implementable using the FFT algorithm' To do so' let us recall the

recursive equation, Eqn. (3.23),

u(n+I) =M'u(n) +Yt (s.1)
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ttr = tr¿(1) u(2)...u(p)l ,yT = #*[r',(1) r,,(2) r*r(p)l,k>o

and M =ffi=
L

m(0) ...m(P-r)

(p - 1) tn (0)

This equation provides a complete description of the system or a mechanism governing

the adjustment of the AR model parameters, which are the states of the system. We say

this equation provides a state-space description of the system with y, and u (n), for

n2O,being the input and state variables, respectively. Since the matrix M and the input

vector J 1 are constant with time, the above equation is called the linear time-invariant

state-space realization of pth order system. The initial value for u (n) is zero' i'e''

z1(0) = 10.."01 . This recursive method involves p2xn multiplications wherep is

the model order and n is the number of iterations'

Let us consider a multiplication of the system matrix M and the state vector u (n)

[ 
,rol

l*ro'-tr::

.m(p-l

m (o) l.r;l
(s.2)

(s.4)

Due to the structure of the matrix M, this multiplication is somewhat analogous to the

circular convolurion t10l of the two sequences {m(n)} and {ø(n)} given by

{m(n)} = {m(0) m(I) ... m(p-r) m(p-r) m(p-2) "'m(r)} (5'3)

and

{u(n)} = {u(I) u(2) .u(p) 00...0 Ì
p-I zeros
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These two sequences are of equal length, L = 2p - L

We know that the sequence {m(n)} is a fixed quantity and the sequence {u(n)l is to be

constantly updated at each iteration. The circular convolution of {m(n)} and {a(n)} is

illustrated in Fig. 5. 1.

The product of the matrix M and the vector u yields a vector of length p. However the

circular convolution of the two sequences { m(n ) } and { ø(n) } yields a sequence of length

2p-1, which is greater than p for p > 2. This suggests that some kind of elaboration is

required.

Let us rewrite the recursive equation (5.1) as a circular convolution of two sequences'

{uo*r@)} = {m (n) } 0 {uo@) } + {Yr (n) } (s.s)

where {r1 (n) } = {yr (1) ... ytØ) 9 .;. Ol

I zeros

The circular convolution of the two sequences lm(n)) and {u*(r)l yields a sequence of

length 2p-l.We denote this sequence by {å¿ (n) }

{bo@)}={m(n)}o {uo@)}

= {b*(I) ... bt @) bt @ + l) ... bt,Qp-l)}

=Mu

We notice that the first p elements in the sequence {br@)} constitute a sequence equiva-

lent to the multiplication of the matrix M and the vector t1,the rest are redundant terms'

(s.6)
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u(...)
)

m(2) u(3)
m(p-2)

m(p-l)
m(p-1)

m(p-

m(1)

m(o)

m(1)

m(2)

0

0

r)

u(p-1)

0

u(2)

u(l)

1. Sequence {m(n)}

0

2. Sequence [u(n)]

4. Product sequence

6. Product sequence

00

)

u(p-l u(2)

u(l)
u(2)

0

0

u(p

3. Folded sequence {u(-n)}

0
0

u(3)

5. Folded sequence rotated bY
one unlt ln tlme

0

u(1)

u(2)

7. Folded sequence rotated by 8. Product sequence

2p-1 units in time

FIGURE 5.L Circular convolution of two sequences {m(n)} and { ø(n) }.

u(-n) m(n).u(-n)

u(l-n) m(n).u(1-n)

u(2p-l-n) m(n).u(2p-1-n)
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Therefore the sequence {r,o*r(n) } obtained from Eqn. (5.5) will also contain the

redundant elements, b u@ + l) .'. b *(2p - l) .

{uo*r@)} = {boØ) } + {Yr (k) }

redundant elements

{ øo*1(1) ... uk*¡(z) b k&) ... b kQp - r)

updated AR coefficients

The last p-l elements in the sequence {uo* r(n ) } need to be replaced by zeros to enter

the next iteration; the sequence {uo*r(n) } must retain its structure in Eqn. (5.4) to

enter the next circular convolution operation, i.e., {n (n ) } O {u** tØ) } '

5.2 Implementation usíng FFT

If the matrix multiplication were equivalent to full circular convolution, then using the

linearity property of the DFT, the recursive equation can be expressed in the frequency

domain as follows

{uo*¡(k)} = FFTI{m(n)}l' FFrl{uo@)} + FFT {r1 (n) }

Ì (5.7)

(5.8)F

Each of these sequences transformed into the frequency domain maintains its length 2p-

1. By doing this, the number of multiplications per iteration can be reduced down to 2p-

I which would be a remarkable saving in computation time. However, since this matrix

multiplications is equivalent to convolution of the sequences only as indicated by Eqn'

(5.6), the above linearity property is no longer valid.
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Once FFT is obtained from Eqn. (5.8), it needs to be transformed to the

time sequence {u¡rç1(n)}. However, since the sequence {u¡*1(n)} contains the redundant

elements, bu@ + l) ... btQp - 1) , these must be replaced by zeros' Then the FFT of

the corrected AR coefficient sequence {ut*t@)l is computed and used in Eqn' (5'8) to

{uo*rØ)}

obtain the FFT Note that FFT {m (n) } and FFT {yt (n ) } are com-

puted once only, since the sequences {m(n)} and {y1(n)} do not vary with number of iter-

ations

If we let L be the length of the sequences {m(n)} and {ø(n) } and assum e I; 2' , then the

total number of multiplications in each iteration would be

element by element multiplication

{uo*r@) }

,"(i) logr(L) +L = Lxlogr(2L) =zPx rogr( p) (5.9)

2 FFT operations

since l-Zp-l =2P .

To compare this number with the pz , the number required for matrix-vector multiplica-

tion, the two numbers are plotted against the model order in Fig' 5'2'In Fig' 5'2' It is

observed that if p is greater than 11 then the solid line lies below the dotted line. Since p

is usually greater than l2 for the recursive method to yield good results, this graph sug-

gests that incorporating FFT reduces the computational complexity of the recursive

method.

For illustrative purposes, Fig. 5.3 depicts the computation of an N=8 point DFT' We

observe that the computation is performed in three stages, beginning with the computa-

tion of four two-point DFTs, then two four-point DFTs, and finally, one eight-point DFT'

The combination of the smaller DFTs to form the larger DFTs is also clearly illustrated in
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FIGURE 5.2 Number of multiplications per iteration

x(0)

x(4)

x(2)

x(6)

x(1)

x(s)

l)

)

4)

x(3)

x(7)

6)

FIGURE 5.3. Three stages in the computation of an 8-point DFT.

The basic computation performed at every stage includes taking two complex numbers,

say the pair (a,b),multiplying å by twiddle factor Wrr,i.e., W:=r-lzn'/L ,undthen add-

ing and subtracting the product from a to form two new complex numbers (A'B)' This

basic computation, depicted in Fig. 5.4, is called a butterfly computation' The resulting

2-point DFT

2-point DFT
2-point
DFTs

Combine

2-point DFT

2-point DFT
Combine

Combine

FFT algorithm is called atlecimatíon-in-time FFT algorithm, see Fig' 5'5
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A=a+Wt.b

b
W'r B=a-W.b

-l

FIGURE 5.4. Basic butrerfly computation in the decimation-in-time FFT algorithm.

Stage 1 Stage 2 Stage 3

x(4) x(l)
I

rs/0
x(2)

a

x(0)x(0)

x(2)

ïrp

v/0

w0

wo

x(6) x(3)

x(4)

x(s)

I I

x(5)

x(l)

x(3)

I

II

I I I

w0

w0

1
x(6)

x(7)x(7)

FIGURE 5.5. Eighrpoint decimation-in-time FFT algorithm.

Another important radix-2 FFT algorithm, called the decimation-in-frequency algorithm,

is illustrated in Fig. 5.6. V/e observe that the basic computation in Fig. 5.6 involves the

butterfly operation illustrated in Fig' 5.7.
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We observe from Fig. 5.6 that a decimation-in-time algorithm has the input occurring in

bit-reversed order and the output occurring in natural order. Whereas a decimation-in-

frequency algorithm contains the input occurring in natural order and the output occur-

ring in bit-reversed order. Both the decimation-in-time and decimation-in-frequency

algorithms require the shuffling of the input and the output data, respectively'

These algorithms are based on the assumption that the lengths of the input and the output

sequences of the algorithm are equal and the length is a power of 2.

If the length of the input and the output sequences is not a power of two, extra zeros, to

make up for the shortage of the length, must be padded into the sequence in the follow-

lng manner,

extra padded zeros

{m(n)} = l*Q)m(r)...m(p- 1), m, m@-r)m(p-2) "'mii|rf (s.10)

extra padded zeros

{u(n)} = u(r) u(2) ...u(p) --\,0...0 , 
'0...0 lt

(s.11)

2p-l

The sequences now have a length of 2' -
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Stage I

x(l)

x(3)

x(4)

x(5)

x(6)

x(0)
Stage 2

I

I

Stage 3

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

w0

w0

w0

uf

v/0

!\p

x(2)

I

I

1

x(7)x(7)
I I

FIGURE 5.6. Eight-point decimation-in-frequency FFT algorithm.

The circular convolution of these two sequences does not violate the matrix multiplica-

tioninEqn.(5.2).Forexamp|e,ifp=6,thenthelengthoftheSequence{m(n)}without

any extra padded zeros woul dbe Zp-l = 11. Since 11 is greater than23 = 8' L must be

chosen tobe24 = l6 and this requires 5 extra zeros. Therefore in the sequence {ø(n)} we

have l6-6=10 padded zeros in total.

{u(n)} = tø(l) u(2) u(3) '..u(6) 0 0...0 0 l
10 zeros

(s.r2)
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A=a+b

wr B=(a-b)W

FIGURE 5.7 Basic butterfly computation in the decimation-in-frequency FFT

Going back to the previous discussion on the recursive equation, by observing the decimation-

in-time radix-2 FFT algorithm in Fig.5.5, we realise that the zeros padded in the sequence

{u(n)l enable us to skip the first stage and also some of the butterfly computations in the second

stage. This is true because, in all cases, the total number of zeros padded in the sequence {u(n)l

is always greater than half the length of the sequence. Likewise, in the decimation-in-frequency

algorithm, every lower part of the butterfly output in the last stage and some of the butterfly

computations in the second stage can be skipped since they are to be replaced by zeros immedi-

ately after the comPutations.

When p = 6 and L = 16 correspondingly, the last ten zeros in the sequence {u(n)l simplify the

last two stages in the IFFT algorithm and the first two stages in the FFT algorithm. This is illus-

trated in Fig. 5.8. The number of complex multiplications is reduced by 24 and the total number

of multiplication is now 40 instead of 64.

This strategy is called pruning with a subset of non-zero data points: first devised by Markel

[67] and later improved by Skinner [81], Screenivas and Rao [84], [85], and Nagai [73]' It

should be noted that choosing the decimation-in-time algorithm for FFT operation, the decima-

tion-in-frequency algorithm for IFFT operation, and concatenating the IFFT and FFT enable us

to complete the first three steps in each iteration of the recursive algorithm together with a

reduction in the number of butterfly computations. Furthermore, using this cascaded structure'

we can skip the inherent bit reversal steps in FFT and IFFT algorithms alone, leading to further

.i*-lifi¡orinn Rer-cnrìv rrvô verv comnufationallv efficient algorithms have been developed:

a

b

|'l

t
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one is split-radix FFT t99l and the other is transþrm decomposition 182f, [83] which

uses a mixture of a Cooley-Tukey FFT tlTl and a computational structure similar to

Goertzel's algorithm. The split-radix FFT is very efficient if 2p - t >l U"tsince this is

not the case here, the saving would not be gfeat. It is documented by Sorensen and Bur-

rus [83] that the transformation decomposition methods are normally better than the

pruning methods for any length of non-zero subset in ^L input points or output points'

Incorporating this method is of great interest for further research'

I
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Chapter 5: Implementation

5.3 C omputationøl c omPlexitY

The objective of this section is to analyse the computational complexities of the recur-

sive method with and without the FFT algorithm, and to make comparisons with other

conventional methods.

First, the number of FFT points, denoted by L, in a L-point FFT needs to be evaluated' In

the previous section, we assumed that L=Zp-l and also L=2' ' However this is just a ten-

tative assumption for the sake of simplifying the discussion' It is apparent that 2p-1 is an

odd number, and this can not be equal to 2u . By taking into account the extra zeros that

are padding the sequences {t?x(n)} and {ø(n)}, we can define I as follows:

b2' if 2'-' .2p - I <2' (5.13)

where v is a positive integer. Then the total number of multiplications per iteration, I

without pruning is

T= Lxlogr(2L) (s.14)

By carefully observing Fig. 5.8, we can realise that L/2 multiplications in the last stage of

the radix-2 IFFT and the first stage of the radix-2 FFT are skipped; therefore, z multipli-

cations are saved. Also by observing the second last stage of IFFT and the second stage

of FFT, we can see that in each stage there is L-2p skipped multiplications, contributing

to a total rcduction of ZL- pmultiplications. In total, we have a saving of 3L-4p multipli-

cations. Therefore the total number of multiplications involved in each iteration is

T = Lx log, (2L) 4L+ap (s.15)

..,'..:

! ,.:.r.

,1 .. i,.Ìi-, 
;ri

:r

!
,i

t
I
I

i
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FIGURE 5.9 Number of multiplications per iteration

Figure 5.9 shows both I x log2 QL) 4L+ap and p2 against p' The dotted graph has a

parabolic shape as it is a quadratic function of p, and the solid line is a stair-step function

with gradual increase in the step size. For very low p, the number of multiplications

without FFT seem to be smaller than with FFT. In fact the recursive equation without

FFT has smaller number of multiplications Iuntil P=11 except for the equality when

p=8. For p212, the recursive equation without FFT has smaller T except for

16<p< 18, but the differences are not significant. Asp becomes larger and larger' the

difference becomes more significant. Since with the recursive method, the good choice

of p is p >- 12 as experimentally verified, incorporating the FFT into the recursive equa-

tion definitely has an advantage.

Now let us consider a rough comparison with the computational complexity of conven-

rional AR model based PSD estimation methods, [5], [18], [20], l52l' 176l' For easy

comparison, the number of multiplications is tabulated below.

T=Lxlogr(2L) -3L+4P: solid line

T= p2t dotted line

with FFT

without FFT
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TABLE 5.1 Computational complexity

* This is the computational complexity per iteration

. N = Number of data samples

. p = Order of Model

. L = Length of sequences entering the modified FFT

. S = Number of spectral samples computed

. NA = Not Applicable

It is quite apparent that the other conventional methods have higher computational com-

plexities than the recursive method has. The O(p2) operations for the Yule-V/alker is pro-

vided by the Levinson-Durbin recursion [18], [21], t601, [105]' These computations,

when performed by p parallel processors, can be accomplished in O(plog p)' The Burg

method operates directly on the data; that is, it does not include lag estimates. The O@2)

operations for the LS method is obtained using an order recursive algorithm developed

by Marple [69]; the LS algorithm is almost as computationally efficient as the Burg algo-

rithm requiring typically about 20Vo more computations than the Burg algorithm does.

According to the literature 1521, U6l, other PSD estimation methods such as the eigena-

nalysis methods are also subject to high computational complexity' In conclusion, the

recursive method has a computational complexity comparable with the conventional AR

based PSD estimation techniques.

pSpSpSpSPSD Esti-
mates

Np*p2Np*p2p2Lxlogr(ZL)
-3L+4p*

AR Coeffi-
cients

p2 w -p)NANpNpLag Estimates

BurgYule-WalkerRecursiveComplexity
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CHAPTER 6 Conclusion and Further Studíes

6.1 Conclusion

This thesis has addressed some major issues in the fìeld of PSD estimation: spectral res-

olution, and computational complexity. A new recursive high-resolution parametric

method was devised for PSD estimation. This technique was intended to provide an iter-

ative approach for finding the Yule-Walker solution for PSD estimation. The principal

objective of applying this approach to PSD estimation is to obtain a high-resolution PSD

estimate, which is free of some inherent limitations imposed on the conventional meth-

ods: spurious peaks, spectral line split, sensitivity to initial phase, and bias in estimated

frequency.

The formulation of this method traces back to the idea of linear prediction. We showed

how the minimization of mean square value of one-step forward prediction error using the

steepest descent method led to a simple recursive equation for AR parameter estimation.

We discussed the use of a preconditioner matrix and its contribution to improvement in

stability. We then related this result to determination of step size parameter; a new param-

eter called step multiplication factor (smf) was introduced to provide a simple way for

generating a value for the step size parameter.

for researchers to

lines or formulae for system design and evaluation. The measures in Chapter 4 reflected
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some perforïnance characteristics of the recursive method and also performance compar-

isons between the recursive and Yule-Walker methods.

We conducted extensive tests using a short length data record comprising single sinusoid

comrpted with additive Gaussian noise. The recursive method proved to yield a very high

spectral resolution and small bias in estimated frequency. The 3-dB bandwidths obtained

by the recursive method were consistently good over a wide SNR range; i.e., ldB - 30 dB.

The recursive method could detect a peak having a frequency value below 0.03 cps. A test

was carried out to find the optimum smf values, and to examine the sensitivity of 3-dB

bandwidth to smf. The result indicated that the optimum smf was about 0.6 and the sen-

sitivity was moderate. 'We tested the recursive method and the Yule-Walker method by

varying the frequency of sinusoid and by introducing an initial phase' The 3-dB band-

width versus frequency was symmetric about f=0.25 cps, and the variations of 3-dB band-

width and frequency bias were periodic. The peak resolving ability of the two methods

was examined. The recursive method could resolve peaks closer than À/ = 0.06 cps

while the Yule-V/alker method could not. Throughout the various tests, the recursive

method held its superiority over the Yule-Walker method.

The recursive method was then implemented using the FFT algorithms; the computational

complexity was reduced to a level at least comparable with that of other AR PSD estima-

tion methods.

The significance of this method lies in its high resolution and easy-to-implement struc-

ture. Additional merits include no spurious peaks, no spectral line splitting, and small sen-

sitivity to initial phase. This technique can be implemented using p parallel processors to

achieve Oþ) operations.

6.2 Further Studies

It is clear from the limitations and qualifications concerning the results of this thesis, that

there is a need for further work on several issues. A fraction of many ideas that should be

pursued to extend the work of this thesis is presented.
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. Chapter 4 illustrates the performance comparisons with the Yule-'Walker method since

it is more related to the recursive method than others are. Since the Yule-Walker

method is not outstanding among the conventional AR PSD estimation methods,

comparisons with other high-performance PSD estimation methods should be consid-

ered.

. Subsecti on 4.2.3 addresses the selection of optimum smf. More rigorous tests and

analysis on selection criteria for optimum smf and optimum model order should be

pursued in the hope of establishing more concrete criteria.

. In chapter 5, it is briefly mentioned that the transformation decomposition methods by

Sorensen and Bum¡s [83] might yield greater savings in computational complexity'

Further research on this or seeking alternative approaches would be of interest.

. Hardware implementation of the recursive method would be desirable. Development

of cost-effective and fast hardware for implementing this method on real data is

essential, and exploring its adequacy for real time applications should also be consid-

ered.

. To assist the validity of this method, a research to find an analytic explanation to the

performance of the recursive method is suggested.
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