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Abstract. The Finite-Time Lyapunov Exponent (FTLE) is a well-established
numerical tool for assessing stretching rates of initial parcels of fluid, which
are advected according to a given time-varying velocity field (which is often
available only as data). When viewed as a field over initial conditions, the
FTLE’s spatial structure is often used to infer the nonhomogeneous transport.
Given the measurement and resolution errors inevitably present in the unsteady
velocity data, the computed FTLE field should in reality be treated only as
an approximation. A method which, for the first time, is able for attribute
spatially-varying errors to the FTLE field is developed. The formulation is,

however, confined to two-dimensional flows.Knowledge of the errors prevent
reaching erroneous conclusions based only on the FTLE field. Moreover, it is
established that increasing the spatial resolution does not improve the accuracy
of the FTLE field in the presence of velocity uncertainties, and indeed has the
opposite effect. Stochastic simulations are used to validate and exemplify these
results, and demonstrate the computability of the error field.

1. Introduction. In many situations (computational fluid dynamics simulations,
satellite observations of the ocean, particle image velocimetry of industrial flows)
fluid velocities are available as data in time and space. Understanding the spa-
tiotemporal transport resulting from this data is important in determining, for
example, how a pollutant spreads, how energy is transported, and which regions
remain unmixed. There are a multitude of approaches which have been suggested
for this, reviewed for example in [24, 10, 22, 51, 56, 62]. A crucial point is that
Eulerian (viewed in time-slices) information is inadequate when the velocity is time-
dependent; Lagrangian evolution of trajectories is necessary to reach any conclusions
regarding transport.

One well-established tool in this endeavor is the Finite-Time Lyapunov Exponent
(FTLE), which is computed as a field on the space of initial conditions [63, 24].
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It measures the elongation of a tiny fluid parcel placed at each initial location,
due to the flow over the given time-duration. In computing the FTLE field, the
gradient of the flow map is usually approximated; this provides information on
infinitesimal changes in the initial location. There continue to be methods put
forward to improve the efficiency of FTLE computations [54, 47, 69, 3, 19, 15, 46,
1, 65, 18, 42, 41, e.g.] and discuss their legitimacy and relevance [9, 23, 25, 48, 68].
A related quantity is the Finite-Size Lyapunov Exponent (FSLE), which does the
computation differently: each initial condition is evolved until nearby trajectories
get further away than a specified threshold, at which point the relative elongation is
computed [17, 35, 38, 33, 29, 40, 27]. Once a field has been obtained, an important
characteristic sought is whether there are codimension-1 ridges present in the field
(for example for two-dimensional flows, whether there are curves in the field at
which the value is sharply larger than just off the curve). The precise identification
of a ‘ridge’ is not always easy, and has resulted in various computational techniques
being advanced [1, 43, 60, 61]. The expectation—though this has been shown to
be not always true [23, 9, 1]—is that these ridges are analogous to stable/unstable
manifolds in smooth infinite-time flows (which are difficult to compute for unsteady
flows [6, 5]), and therefore form flow separators. Given the unsteadiness of realistic
velocity fields, these ridges move as time evolves, and thereby the hope is to capture
the moving flow barriers (which demarcate moving coherent regions of fluids). While
persuasive indications of this abound in the literature, slight problematic issues
cannot be ignored: ridges are not guaranteed to evolve with the flow [24], can have
a nonzero flux across them [63], and in any case the ambiguity of stable/unstable
manifolds in finite-time situations [58, 67] renders the comparison questionable.
Indeed, an exact understanding of what a ‘flow barrier’ means in this situation
continues to be debated. Irrespective of this connection to flow barriers, though,
the FTLE field indubitably quantifies the rates of elongation of fluid elements, and
therefore offers valuable information on the flow evolution.

While there are many articles in oceanography [64, 17, 59, 39, 55, 30, 31, 33,
29, 40, 50, 36, e.g.], atmospheric science [20, 13, 14, 66, 32, 12, e.g.], industrial and
experimental flows [54, 34, 16, 70, 57, 26, 45, e.g.] and biology [4, 44, e.g.] which
use FTLE fields to reach conclusions regarding transport, the robustness of the
procedure is not always clear. Indeed, several studies have pointed to the fact that
the FTLE field can be uncertain [54, 50, 36, 11, 27, 52, 13], often demonstrated
by methods such as artificially downsampling extant data and comparing with the
‘true’ FTLE field for the highly-sampled data. This highly cautionary evidence is
difficult to put into practical usage in quantifying an error when using the best
available data and consequently, in most situations, computed FTLE fields at the
best resolution are treated as the ground truth in reaching conclusions from the
field. However, in all realistic situations uncertainties in the (best available) Euler-
ian velocity data are inevitable due to many reasons, which include observational
uncertainty, resolution limitation, modelling uncertainty in transforming proxy data
into velocities, etc. How do such uncertainties affect the FTLE field, and are con-
clusions reached legitimate? In particular, is it possible to quantify an error in the
computed FTLE field? A recent article by Guo et al [21] takes a step in answering
this by computing a range of FTLE fields arising from introducing stochasticity.
Each field is computed via many stochastic simulations, and statistically analyzed.
This process is computationally expensive and does not give uncertainty thresholds
on the base FTLE field. The current article instead seeks theoretical error estimates
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for the FTLE field, based on parameters such as the spatial resolution which are
known to the practitioner, and which has been identified as a definite cause for error
in many cases [54, 52, 50, 27, 13, 11, e.g.].

The basis for quantifying the FTLE error is a recent article which enables the
characterization of an uncertainty in Lagrangian particle positions due to the pres-
ence of uncertainties in Eulerian velocity fields [7]. Given an initial condition (‘a
particle’), the stochastic differential equations approach in [7] assigns an error, pro-
jected in each general direction, for the particle’s eventual location after advecting
over a finite time by a two-dimensional velocity field. In this paper, the theory
from [7] is leveraged to compute an uncertainty in the FTLE field. In addition to
being able to estimate errors for the particular instance of FTLEs, this constitutes
an in-principle approach of adapting location uncertainties (as computed by [7]) to
uncertainties in spatial fields generated from the corresponding flows.

This paper is organized as follows. In Section 2, the aforementioned theory [7] is
adapted to compute a spatially-varying uncertainty range for the FTLE field in un-
steady flows. It is only possible to assess the FTLE uncertainty for two-dimensional

flows, since the particle uncertainty theory [7] has this restriction. In formulating
the theory, the Eulerian velocities are assumed to possess uncertainties which are
Gaussian. By quantifying the probabilistic impact of small stochastic variation in
the velocity data, ‘error-bars’ are obtained. These errors form a nonhomogeneous

field, highlighting that the FTLE computations have spatially-varying errors. Since
variations in the computed FTLE field are often used as diagnostics for transport,
these errors imply that any conclusions need to be tempered appropriately. The
inaccuracies in identifying coherent structures by simply computing FTLEs (by
effectively treating the velocity field as highly-resolved and deterministic) are ex-
emplified via several numerical examples in Section 3. Moreover, the performance
of the theoretical error is validated by comparing with error measures generated
from stochastic simulations. Some concluding remarks are given in Section 4.

2. The FTLE and its error. Consider a flow in two dimensions from time t0
to t0 + T , where T > 0 is the time-of-flow. Assuming that Eulerian velocity data
u(x, t) is available on a spatiotemporal grid, particle trajectories are obtained by
solving

d

dt
x = u(x, t) ; x(t0) = x0 (1)

for x0 ∈ Ω0, where Ω0 is the space of initial conditions, and the time t ∈ (t0, t0+T ).
The ordinary differential equation (1) is numerically solved till time t0 + T by
interpolating u as necessary.

Let F be the flow map from t0 to t0 + T , i.e.,

F (x0) = x(t0 + T ) (2)

where x(t) is the solution to (1). The Finite-Time Lyapunov Exponent (FTLE)
associated with the flow from time t0 to t0+T is a scaled field on Ω0 which captures
the stretching σ of fluid blobs due to the flow. If y is a small quantity, such stretching
is given by

σ(x0) =
|F (x0 + y)− F (x0)|

|y| ≈ |∇F (x0)y|
|y| , (3)
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where the stretching must be positive according to this definition (‘shrinking’ has
a stretching value of less than unity). The FTLE is defined by

Λ(x0) :=
1

|T | ln
[

sup
y 6=0

|∇F (x0)y|
|y|

]

, (4)

where sup stands for the supremum taken over all directions associated with the
small vector y. The FTLE has dimensions of reciprocal time. Given the numerical
resolution, computing the local stretching rate—the quantity in square brackets in
(4)—is limited by an estimate such as (3). An alternative is that it is equivalent to
the square-root of the largest eigenvalue of the Cauchy-Green tensor

C(x0) := [∇F (x0)]
⊤

∇F (x0) . (5)

It is clear that in computing the FTLE field Λ, the gradient of the flow map must
be computed. Typically, one takes the initial conditions x0 on a spatial grid in Ω0,
advects them forward to time t0 + T (using spatiotemporal interpolation as needed
because u is only available on spatial and temporal grids). The eventual location
of the nearest neighbours of each point x0 enables an estimate of ∇F (x0)—once
again, essentially optimising the discretisation σ as given in (3) over all directions.
Various methods in improving the efficiency of the general FTLE computation de-
scribed here have been proposed [54, 47, 69, 3, 19, 15, 46, 1, 65, 18, 42, 41] , as have
been methods [1, 43, 60, 61] for extracting ridges in the field (which, analogous to
stable manifolds in infinite-time flows, strongly separate blobs of fluid perched on
them in forward time, and consequently are barriers between coherent structures).
Moreover, the implications of the FTLE field (and the Finite-Size Lyapunov Expo-
nent, which is an alternative for computing the same quantity but leads to some
differences) on fluid transport continues to be an active area of study [63, 35, 9].

The above is based on deterministic knowledge of the velocity field u. However,
in realistic situations the Eulerian velocity u must have uncertainties, because

• There aremeasurement errors in u, whether one is using a computational fluid
dynamics method, or observations using instrumentation;

• If u is computed from a proxy (e.g., oceanic sea-surface height from satellite
measurements converted to a velocity using the geostrophic approximation, or
estimated using data assimilation techniques), then there aremodelling errors;

• Given that u is on a spatiotemporal grid, since interpolation must be used to
approximate F , there are resolution errors.

What are the impacts of these uncertainties on the computed FTLE field?
Imagine two nearby initial conditions, evolved by the given velocity field as if it

were deterministic (using smooth interpolation between gridpoints to estimate the
velocity at intermediate times as needed). Their final locations will be close, and
this means (see 3) that the gradient estimate will be small. However, imagine now
that each of these trajectories is evolved with an ongoing uncertainty overlaid on
the deterministic velocity field. In this case, the accumulated effect of the uncer-
tainties can potentially make their eventual locations far apart, and thus gradients
can be large. This means that estimates for the FTLE field may have very large
uncertainties. The idea now is to quantify these uncertainties, to enable informed
decisions to be taken from a computed FTLE field.

To proceed, some assumptions on the uncertainties in the Eulerian velocity field u

are needed. Gaussian uncertainties are an obvious first-case scenario. This assump-
tion means that fluid trajectories will evolve according to the stochastic differential



UNCERTAINTY IN FTLES 5

equation

dxt = u(xt, t)dt+ ε dW t ; xt0 = x0 (6)

instead of (1). The standard stochastic differential equations notation xt is used for
flow trajectories rather than x(t). The Wiener process dW t in two-dimensions—
with independence in each of the two spatial dimensions— captures the Brownian
motion in time, i.e., the Gaussian nature of the Eulerian velocity uncertainties. The
quantity ε is small, indicating that there is some confidence in the velocity data.

Now, the eventual location xt0+T obtained from (6) is random, and so it makes
sense to examine means and variances in relation to many implementations of the
Brownian motion. Recent work [7] (which is in a more general framework than (6))
quantifies this, in the limit of small ε:

• The leading-order—to O (ε)—mean of the location of xt0+T is the determin-
istic location x(t0 + T ) obtained from (1);

• The leading-order—to O(ε)— variance xt0+T − x(t0 + T ), optimized over all
directions, is given by the stochastic sensitivity field S2(x0), whose numerical
computation from the Eulerian velocity data is outlined in Appendix A. (The
form of the distribution is not specified by the theory; only its variance in the
sense described.)

It should be noted that the divergence of u is permitted to be nonzero in this theory;
there are many instances in which, even though the fluid is incompressible, the
divergence of u computed from the data may be nonzero. This is no surprise given
the uncertainties mentioned previously, but also can occur because of other reasons
(e.g., flow on ocean’s surface is not strictly two-dimensional, methodology used
to obtain proxies for velocities, etc). How to numerically compute the stochastic
sensitivity field S2 is also discussed in Appendix A. This field will now be used in
the quantification of error bounds for the FTLE field.

In the context of the current problem, it makes sense to have ε dimensional, and
given by

ε =
√

Lrvr (7)

where Lr is the spatial resolution lengthscale, and vr is the velocity-scale associated
with the velocity error. This scaling arises from dimensional analysis, bearing in
mind the standard convention [49, 37] that dWt ∼

√
dt, as used in the derivations [7]

of the S2 field.Thus, two main uncertainties are captured within ε: the first, Lr, is
known from the data, while an informed guess for the other, vr, is assumed available
(e.g., based on apparatus precision of velocity measurement, or an estimate for
deviation from geostrophy for oceanic velocities obtained from satellite sea-surface
height measurements).

The interpretation would be, then, that the data that is available results from one

realization of the stochastic system (6). In the absence of any additional information
on this realization, it makes sense to think of this as the ‘most likely’ realization
in that Brownian motion has expectation zero over each of the time subintervals
considered. Thus, the ‘most likely’ realization of (6) is (1), which is used to compute
the FTLE field. However, there must be a ‘true’ flow map which is in general
different from the flow map of (1). This uncertainty will lead to an error in the
computed FTLE field. Unadorned variables will be used for the computed states
from the data, and tilde variables for the true states (which are unknown):

F (x0) = x(t0 + T ) and F̃ (x0) = xt0+T . (8)
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The true flow map F̃ needs to be obtained from a particular (but unknown) realisa-
tion of (6). The stochastic sensitivity theory [7] described above therefore enables
an estimate of the uncertainty in final location as

∣

∣

∣
F (x0)− F̃ (x0)

∣

∣

∣
. ε
√

S2(x0) , (9)

because S2 is the variance. The vector y in (4) can be taken to have a length Lr

(smaller values are not measurable), and so by setting y = Lrn̂ where n̂ is a unit
vector,

∇F (x0)y

|y| ∼ F (x0 + Lrn̂)− F (x0)

Lr
. (10)

Even though Lr is assumed small, the above is O(1) in Lr because the numerator
and denominator are both O(Lr). For the same y, an estimate for the true gradient

is therefore given by the above expression, with the F replaced by F̃ . This means
that
∣

∣

∣

∣

∣

∇F (x0)y

|y| − ∇F̃ (x0)y

|y|

∣

∣

∣

∣

∣

.
1

Lr

∣

∣

∣
(F (x0 + Lrn̂)− F (x0))−

(

F̃ (x0 + Lrn̂)− F̃ (x0)
)∣

∣

∣

≤ 1

Lr

∣

∣

∣
F (x0 + Lrn̂)− F̃ (x0 + Lrn̂)

∣

∣

∣
+

1

Lr

∣

∣

∣
F (x0)− F̃ (x0)

∣

∣

∣

.
ε

Lr

√

S2(x0 + Lrn̂) +
ε

Lr

√

S2(x0)

. 2

√

vr S2(x0)

Lr
, (11)

since S2(x0) is a good approximation to S2(x0 +Lrn̂), and the small quantity ε in
the stochastic differential equation formulation is given here by (7). This gives an
estimate for the error within the square-brackets term in the FTLE expression (4).

The actual Λ̃ FTLE value at x0 must include the above error term, and so

Λ̃(x0) =
1

|T | ln



 sup
|y|6=0

|∇F (x0)y|
|y| ± 2

√

vr S2(x0)

Lr





=
1

|T | ln



eΛ(x0)|T | ± 2

√

vr S2(x0)

Lr





=
1

|T | ln
[

eΛ(x0)|T |

(

1± 2
√

vr S2(x0)

eΛ(x0)|T |
√
Lr

)]

=
1

|T |

{

ln
[

eΛ(x0)|T |
]

+ ln

[(

1± 2
√

vr S2(x0)

eΛ(x0)|T |
√
Lr

)]}

≈ Λ(x0)±
2
√

vr S2(x0)

eΛ(x0)|T |
√
Lr |T |

,

where the last step is based on the standard Taylor expansion ln(1+b) ≈ b assuming
that b is small. Thus, an interval for the FTLE is

Λ̃(x0) ∈ [Λ(x0)− E(x0),Λ(x0) + E(x0)] , (12)
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in which the FTLE error is

E(x0) =
2
√

vr S2(x0)

eΛ(x0)|T |
√
Lr |T | . (13)

As required, the error E has dimensions of inverse time because (see Appendix A)
S2 has dimensions of the square-root of time in the way that it is defined here. An
important first step in calculating (13) is in fact the computation of S2(x0), which is
detailed in Appendix A. This only requires knowledge of the same data that is used
to compute the FTLE field, and is a slightly more elaborate computation (the flow
map gradient needs to be computed at each time-step, and then an integration over
time needs to be computed). Now, the error E can be viewed as a field on the space
of initial conditions x0, allowing for the error, and an appropriate interval as in (12),
to be computed as fields. As will be demonstrated, the nonhomogeneous nature of
the error field allows for assigning different certainties to the FTLE values across
the domain, thereby tempering any conclusions related to heterogeneous transport
implications from the FTLE field.

An important observation is that one cannot make the FTLE error smaller by
simply increasing the resolution, while keeping the velocity uncertainty fixed but
nonzero. Having spatially higher-resolved data in which the uncertainty at the data
points remains high does not improve conclusions; it actually decreases certainty
of the calculated FTLE value. This is due to the necessity of computing the flow
map gradient in which the location uncertainty ∼

√
Lr vr while the spatial scale

which divides this goes as ∼ Lr. It is the ratio vr/Lr which must be made small,
if possible. (If vr were zero, then the analysis needs adjustment, because then the
stochasticity is ignored and errors are simply caused by the O(Lr) interpolation
error in determining ∇F . This will lead to the error decreasing with Lr. However,
this is not the situation which is examined in this paper, which assumes nonzero
velocity uncertainties.)

The fact that improving the spatial resolution does not increase the certainty
in the FTLE field will be demonstrated in the next section, using stochastic sim-
ulations. Put another way, the theoretical error expression gives the unexpected
implication that it is the smallness of the ratio vr/Lr, rather than making vr or
Lr small by themselves, that leads to a diminished error. Since this ratio has di-
mensions of inverse time, it is suggested that the FTLE field has a higher degree of
certainty if

Lr

vr
≫ Tr , (14)

in which Tr is the time-resolution of the data. Blindly reducing Lr without taking
this into account is likely to decrease the accuracy of an FTLE field.

The conclusions here are based on using a first-order method (10) to approximate
the gradient of F . Using higher-order methods will result in higher powers of Lr

in the denominator of (13); for example, an nth order scheme will generate L
n+1/2
r .

Consequently, E ∼ v
1/2
r L

−n−1/2
r , and the basic conclusions (error decays with vr

but increases with Lr) will continue to hold. Interestingly, higher-order schemes
will result in worse behavior as Lr is decreased.

3. Validations and implementations. In this Section, several examples are ex-
amined numerically. The first example demonstrates the potential for spurious
conclusions if treating the FTLE field as exactly known, and shows that taking
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(a) (b)

Figure 1. Double-gyre computations with Lr = 0.005 and vr =
2× 10−5: (a) FTLE field Λ, and (b) the error field E .

the theoretical error into account avoids this. Probability distributions generated
from stochastic simulations with 100, 000 realizations validate the correctness of the
error bounds. The second example examines in more depth the spatial variation
of the FTLE field, in particular the spatial correlation of the FTLE error field and
statistically computed FTLE ‘spread’ indicators based on stochastic simulations.
Furthermore, the dependence of these statistical measures on vr and Lr is exam-
ined, validating the direct and inverse square-root relationships implication from
the theoretical error (13). The third example shows the computability of the FTLE
error field for oceanographic velocity data.

3.1. Double-gyre. For these FTLE computations, the double-gyre flow [63] with
x = (x1, x2), and velocity field given by

u(x1, x2, t) =

( −πA sin (πf(x1, t)) cos (πx2)

πA , cos (πf(x1, t)) sin (πx2)
∂f
∂x1

(x1, t)

)

,

in which

f(x1, t) = εdg sin (ωt)x
2
1 + (1− 2εdg sin (ωt))

is used. Highly popular in Lagrangian coherent structure analysis (see citations in
[53], the double-gyre is defined on the invariant rectangle [0, 2]× [0, 1]. In keeping
with the original simulations [63], the parameter values A = 0.1, ω = 2π/10, εdg =
0.1, t0 = 0 and T = 15 will be used throughout. The same spatial resolution, Lr,
will be used in the x- and y-directions.

First, let Lr = 0.005 and take vr = 2 × 10−5. Since the velocity scale in the
problem can be considered order-unity, this corresponds to the velocity field being
known to extraordinary accuracy (a highly unlikely scenario in realistic situations).
Fig. 1 shows the result of simulations for this case, with (a) displaying the computed
FTLE field, and (b) the error field. Nearby errors, being less than 0.02, indicate
that the blue ridge (at value ∼ 0.35), remains sufficiently distinct from adjacent
regions (with values ∼ 0.2 or lower) even when the uncertainty in the FTLE values
is taken into account. With the aid of the error field, one can therefore conclude
that the ridge is genuine, and not an artefact of the resolution and velocity un-
certainties. The two almost elliptical regions in (b) centered near (0.5, 0.6) and
(1.5, 0.4) with approximate radius 0.1, are likely to be genuinely coherent regions
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0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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(a)
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0.4
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0.8

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(b)

Figure 2. As in Fig. 1, but with Lr = 0.05 and vr = 0.002.

of small stretching, since the uncertainties are small. On the other hand, there is
slightly less confidence in the two regions (‘two-pronged’ lightest yellow patches) of
comparably small FTLE values in (a), near (0.4, 0.1) and (1.85, 0.85), because the
errors from (b) are about 0.08. On the whole, this highly-resolved FTLE field and
its error field indicate a very high certainty in the results.

Any realistic data set is unlikely to possess the level of resolution above, with
lengthscale 0.5% of the system lengthscale. Thus, the same calculations are shown in
Fig. 2, with Lr = 0.05 (a ten-fold reduction in resolution, yet still 5% of the system
lengthscale) and vr = 0.002 (a Eulerian velocity uncertainty remaining generous
at 0.2%). The values of the FTLE field in (a) have not changed that much in
comparison to the higher resolution of Fig 1, but the spatial variation is instructive.
Firstly, the ‘smudges” in the FTLE field in (a) (despite the smoothness of the
velocity field) highlights that understanding errors is paramount when dealing with
realistic data. In Fig. 2(a), while the actual ridge is ill-defined, the tiny region of
low Λ near (1.05, 0.1) seems inconsistent; this is where Fig. 1(a) identifies the well-
defined ridge associated with the stable manifold whose ‘beginning’ is just about
here. Now Fig. 2(b) has correctly identified that there is an uncertainty as high as
1.4, which is significantly more than the computed FTLE values. Thus, having the
uncertainty theory helps analyse the accuracy of the FTLE calculations. There are
other regions which are identified by (b) as having high uncertainty (about 0.3);
these are near the ‘two-pronged’ regions.

To investigate in detail the adequacy of the error field of Fig. 2, stochastic sim-
ulations are now performed using 100, 000 realizations of the stochastic differential
equation (6). The value ε =

√
Lr vr is used, with Lr = 0.05 and vr = 0.002. The

numerics are performed using the Euler-Maruyama algorithm [37] with ∆t = 0.01.
To obtain the most realistic conditions, within each of the 100, 000 simulations,
each initial condition is assumed to be subject to independently chosen Brownian
motions (as opposed to choosing one initially, and then applying it to all initial con-
ditions as is the understanding in the ‘random dynamical systems viewpoint [2]).
Since nearby trajectories evolve with independent uncertainties, this results in flow
map gradients having high variability. For each realization, having computed the
final location of all the initial conditions, the flow map gradient is computed, and
thereby the FTLE field determined for each realization. Fig. 3 shows the results
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Figure 3. (a,b,c) Three (of the 100, 000) sample FTLE fields, and
(d) the mean FTLE field, computed when using stochastic simula-
tion of (6) for the double-gyre system with Lr = 0.05 and vr =
0.002.
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Figure 4. (a) The standard deviation of the FTLE fields com-
puted from the 100, 000 stochastic simulations, and (b) the theo-
retical error field (the same as Fig. 2(b), but scaled to elucidate
variation at values of FTLE comparable to (a)).
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(a) (b)

Figure 5. The probability density of the FTLE value from the
stochastic simulations of the double-gyre at two selected points
indicated in Figs. 4(a) and 3(d): (a) maximum standard-deviation
point (at red ‘x’), and (b) minimum standard deviation point (at
red circle).

of computing the FTLE field for three of the 100, 000 realizations. Some common
features seem to be indistinctly seen.

The mean (average) of the 100, 000 FTLE fields displayed in Fig. 3(d). The
mean field captures many of the features of the highly-resolved Fig. 1(a), with
respect to the heterogeneity and magnitude. However, smaller-scale details are not
obtained, in particular, the two-pronged valleys and (more importantly) the sharp

FTLE ridge. The FTLE ridge is approximately obtained as a softer ridge. The
lack of sharpness is of course understandable, because it is obtained from averaging
stochastic simulations. Using a smaller ε value would sharpen it; however, since
ε =

√
Lr vr, this would physically mean having better spatial resolution, or more

certainty in the velocity field. This is not always controllable in a realistic system,
and so obtaining a picture such as Fig. 3(d) is probably the best one can expect. It
is clear that performing stochastic simulations, thereby allowing for uncertainties
to be present but then averaging them out, provides a significantly better approach
than simply computing the FTLE by pretending that there are no uncertainties
(compare Figs. 3(d) and 2(a)).

A computational proxy for the uncertainty in the FTLE field would be the stan-
dard deviation (obtained at each point by computing the standard deviation of
the 100, 000 FTLE values from the samples). This standard-deviation field com-
puted from the stochastic simulations is shown in Fig. 4(a). The red ‘x’ is the
point corresponding to the maximum value, and the red circle to the minimum
value, of the standard deviation. These two points are also similarly labelled in
Fig. 3(d). The comparison of Fig. 4(a) should be to the theoretical error as shown
in Fig. 2(b). Unfortunately, the preternaturally large value near (1.05, 0.1) renders
the smaller variations in the field to not be observable. Thus, the same error field
of Fig. 2(b) is displayed in Fig. 4(b), but with the scaling changed to be comparable
to the standard-deviation in Fig. 4(a). The patchiness of the theoretical error field
is inevitable, given the relatively low resolution here. The positioning and size of
the smaller error regions (yellow) in the two subfigures of Fig. 4—the first from
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Figure 6. The probability density of the FTLE value from the
stochastic simulations of the double-gyre with Lr = 0.05 and
vr = 0.002; the red star is the value from the standard FTLE
computation: (a) at (1.05, 0.1) and (b) at (1.15, 0.1).

stochastic simulations and the second from the theoretical error— are consistent.
Therefore, the theoretical error is once again important.

However, the subfigures are different in many aspects. The reason is anticipated
to be the fact that the distributions of the FTLE values are not symmetrical in
general. To understand this further, the point at which the standard deviation is
maximum (red ‘x’ in Figs. 4(a) and 3(d)) is identified, as is the point at which
the standard deviation is the least (red circles in the same figures). It should be
mentioned that the location of these points in the FTLE field in Fig. 3(d) has no
obvious relationship to ‘standard’ points of interest (ridges, flat areas) in the field.
The empirical probability distribution of the FTLE values at these points, from
the 100, 000 stochastic simulations, is displayed in Fig. 5. Panel (a) corresponds to
the maximum standard deviation point, and as expected, there is a large spread in
the FTLE values. The red star in the figure corresponds to the deterministically
computed FTLE value, and the arrows emanating in the two directions show the
uncertainty interval of the FTLE value from the theoretical expression. There is
a strange structure in the FTLE distribution, with a narrow but very high spike
near 0.2, but a solid peak near 0.14. The theoretical error bounds very nicely
encapsulate the extent of the FTLE distribution, but do not give any insights into
the nature of this distribution. The FTLE distribution at the (red circle) point of
minimum standard deviation, shown in (b) has a very pronounced but asymmetric
peak. The uncertainty interval—which is symmetric by construction— captures
the larger spread (towards the left), thereby overestimating the uncertainty interval
towards the right. In general though, the theoretical uncertainty interval is strongly
validated by the stochastic simulations here.

Are the stochastic simulations consistent with the error bound near the point
(1.05, 0.1), near where the FTLE field produced an unexpectedly shallow trough?
The empirical probability distribution for the FTLE field at this point is illustrated
in Fig. 6(a), with the computed FTLE value once again as a red star, and the
interval indicated by the red line. In this case, the theoretical error is enormous
(specifically, 1.3131), and so the theoretical FTLE interval extends far beyond the
entire range of the stochastic simulations. The stochastic simulations return an
average FTLE value of around 0.21; a large discrepancy with the deterministic
FTLE computation yielding −0.04. That is, large stretching is to be expected, in
contrast to shrinking as predicted from the deterministic FTLE. The theoretical
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Figure 7. Wobbly Duffing from from t0 = 4 with time-of-flow
T = 4, with Lr = 0.2 and vr = 0.002: (a) FTLE field, and (b)
FTLE error field.

error bound remains correct, but is a large overestimate in this case. Reasons
for why the FTLE computation returns such a ‘bad’ value near here at his low
resolution, but is not too unexpected in the remainder of the domain is not obvious.
Nevertheless, the theoretical error bound correctly identifies this as a highly suspect
value (as highlighted in Fig. 2(b)), demonstrating the usefulness of the uncertainty
procedure. The corresponding picture at the nearby point (1.15, 0.1) in Fig. 2(b)
displays how the FTLE distributions can take on complicated shapes, but once
again the uncertainty bounds work well.

An observation related to the asymmetry of the FTLE distributions is in order.
The theoretical errors were initially obtained for the stretching field, whose loga-
rithm needed to be taken to compute the FTLE. If one assumes that the errors
are symmetric in the stretching field, this would imply an asymmetry in the FTLE
because of this logarithm. Indeed, the Taylor approximation ln(1 ± b) ∼ ±b used
in the derivation of the error bound ignores this asymmetry, because b is assumed
small. The logarithm would tend to give a longer tail in the negative direction, with
sharper descent in the positive direction, for the distribution. This is observed in
Figs. 5 and 6, and in many other calculations that were performed.

3.2. Wobbly Duffing. To generalize the previous example, an unsteady system in
which the flow is not time-periodic, bounded or area-preserving is next considered
to demonstrate that these issues are not impediments to the calculations. This
example however is one in which the stable and unstable manifolds are known
exactly if considered as an infinite-time flow. In finite-time situations, defining
these entities becomes ambiguous [58, 67]. The unsteady Eulerian velocity field is
[6]

u(x1, x2, t) =
1

h2 +m2

(

hḣ+mṁ+ 2mh h2 −m2 + ṁh−mḣ

h2 −m2 − ṁh+mḣ hḣ+mṁ− 2mh

)(

x1

x2

)

−
(

hx1 −mx2

h2 +m2

)3 (
m
h

)

,

where the choice

h(t) = 1 + a tanh t cos (ωt) and m(t) = −a tanh t sin (ωt)
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is made, and the overdot denotes the time-derivative. (Different h and m functions
are permitted; the following information still holds within appropriate parameter
regimes [6].) As explained in [6], the velocity field is obtained by converting the
classical Duffing system [28, 5] to a frame of reference which rotates in a ‘wobbly’
fashion. The ‘figure-8’ structure of the heteroclinic manifolds (surrounding two
coherent eddies) of the classical steady system [28, 5] lies on the wobbly curve

[m(t)x1 + h(t)x2]
2
= [h(t)x1 −m(t)x2]

2

[

1− 1

2

(

h(t)x1 −m(t)x2

h(t)2 +m(t)2

)2
]

(15)

for any choice of a ∈ (−1, 1) or ω (and indeed any consistently taken choice of the
functions h and m), as time t progresses [6]. However, restricting to finite time
means that one can only expect to see these structures in some approximate way
from the FTLE field. The parameters used throughout this Section are a = 0.4,
ω = 8, t0 = 4 and T = 4, and the domain at time t0 is always the rectangle
(x1, x2) ∈ [−2.5, 2.5]× [2.0, 2.0].

With the choice Lr = 0.2 and vr = 0.002, the computed FTLE field and its error
are shown in Fig. 7. The available spatial resolution Lr is used in evaluating (15),
and is overlaid in red. There is a blue ridge emanating from near (0, 0) in the FTLE
field, which straddles the stable manifold. The FTLE error plot in (c) indicates
that errors on and near the ridge are around 0.05, and since the ridge exhibits a
sharp drop in FTLE value of around 0.4 as one goes across it, the identification of
this ridge in (a) is justifiable. If vr is changed (not shown), the only difference that
occurs is that the scaling of (b) changes; increasing the velocity uncertainty can
therefore change this conclusion.

The FTLE field also identifies low stretching regions, which are expected to be
related to low mixing. In Fig. 7(a), there are two triangular yellow regions (the
valleys) which are such low regions. With our prior knowledge of the existence
of the (red) manifolds cutting these, the indications are that where the manifolds
cross these regions, there must be some level of stretching (since these regions will
eventually get towards the moving hyperbolic trajectory located at the point of
intersection of the heteroclinic manifolds). However, because the flow considered is
for finite time, it is not clear whether T = 4 is sufficient to obtain a high stretching
rate in this region. On the other hand, having the FTLE field identify this as a
low stretching region may be suspect under conditions of velocity uncertainty, given
our prior knowledge. Access to the error plot in (b), however, identifies exactly
these regions (darkest blue regions) as being places where the FTLE field could
have an error of ±0.2, and hence the FTLE values may not be that small. An
intuitive understanding of the reason for this error is that exponential stretching
is only experienced in a small neighborhood of the hyperbolic trajectory [9]. The
FTLE uncertainty is likely capturing the fact that the uncertainty in the location
of evolved particles is on the boundaries of such a neighborhood. In contrast, for
regions of low FTLE which are well within the manifold structure, the error is not
as large, and these are identifiable as being more likely to have low stretching (and
consequently more coherent).

How well does the theoretical error stand up to stochastic simulations? To un-
derstand this further, stochastic simulations were performed as in Section 3.1, and
using 1000 realizations. If the theoretical error is a good indicator of the stochastic
simulations, then there must be a good correlation between it and measures for the
error obtained from the stochastic simulations. For each data point in the spatial
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Figure 8. Scatter plots of the theoretical error with (left) the
standard deviation, and (right) the range, obtained from 1000 sto-
chastic simulations. Each point (red circle) in the plot corresponds
to a point in the spatial domain at time t0, and the blue line is a
linear fit. The values chosen are (top) Lr = 0.2 and vr = 0.002,
and (bottom) Lr = 0.05 and vr = 0.00002.

domain, the standard deviation and the range (from the 1000 simulations) was com-
puted. These are two different ways of computing an ‘error’ or ‘spread’ from the
stochastic simulations. However, associated with every data point, there is available
a theoretical error (illustrated for example in Fig. 7(b)). Thus, it is possible to view
the correlation—across all the spatial data points—between each of the two error
measures from the stochastic simulations and the theoretical error. These scatter
plots are shown in Fig. 8 for two choices of the parameters: (top) Lr = 0.2 and
vr = 0.002, and (bottom) Lr = 0.05 and vr = 0.00002. The linear correlations are
∼ 0.79 for the upper plots, and ∼ 0.94 for the lower ones. This means that un-
der some choices of the parameters Lr and vr, there is excellent spatial correlation
between the theoretical, and stochastically-obtained, FTLE. (In most cases exam-
ined the correlations were greater than 0.78, but in certain parameter regimes, they
were well above 0.94.) In other words, the FTLE error field developed here offers a
persuasive measure of the nonhomogeneous distribution of errors in any computed
FTLE field.

A deeper analysis of how the errors change with the velocity uncertainty vr is
undertaken in Fig. 9. With Lr = 0.2 kept fixed, and a choice of vr, 1000 stochastic
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Figure 9. The vr dependence analyzed for the theoretical and
stochastically-determined errors in the FTLE field, for the wobbly
Duffing system with Lr = 0.2: (a) theoretical (red-solid), standard
deviation (green-dashed) and range (blue-dot-dashed) norms, and
(b-d) investigations on the dependence of vr on the FTLE spreading
measures ‖theory‖, ‖std‖ and ‖range‖ respectively.

simulations were performed for a range of values of vr. Each point in the spatial
domain has a standard deviation of the FTLE field which can be computed based
on this; a standard deviation norm across the domain is obtained by taking the
maximum of these standard deviation values. Similarly, each point has a range of
FTLE based on the stochastic simulations, from which a range norm is constructed
by taking the maximum across all spatial points. These shall be denoted by ‖std‖
and ‖range‖ respectively, while the theoretical norm is ‖theory‖ = supx0

E(x0).
This procedure was followed for a range of vr. The variation of the three norms
as vr is changed in displayed in Fig. 9(a). The theoretical error norm lies between
the standard deviation and the range norms for all values of vr. Indeed, its value is
about double the standard deviation of the FTLE field computed from the stochastic
simulations. The second inequality used in (11) in estimating the error is likely to be
a highly conservative one, and the indications from the current computational work
is that perhaps a better empirical estimate of the standard deviation of the FTLE
field would be given by E(x0)/2 in general. This observation is also consistent with
the double-gyre simulations shown in Fig. 4. In any case, providing a single number
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Figure 10. The Lr dependence analyzed for the theoretical and
stochastically-determined errors in the FTLE field, for the wobbly
Duffing system with vr = 0.00002: (a) theoretical (red-solid), stan-
dard deviation (green-dashed) and range (blue-dot-dashed) norms,
and (b-d) investigations on the dependence of vr on the FTLE
spreading measures ‖theory‖, ‖std‖ and ‖range‖ respectively.

for the ‘spread’ of a probability distributions when it can have forms such as shown
in Figs. 5(a) and 6(b) is ambiguous, and E or E/2 has been shown to be effective.

The theoretical error ‖theory‖, based on the expression (13), is expected to

depend on vr in the form
√
vr = v

1/2
r . For the values of vr considered here, this

is indeed the case (Fig. 9(b)). One way of evaluating the theory is to see whether
stochastic measures for the FTLE’s spread, notably ‖std‖ and ‖range‖, also exhibit
this dependence. Figs. 9(c) and (d) give strong evidence that both measures have
consistent dependence with the theoretical bound, thereby adding credence to the
theory.

The theoretical error (13) exploded the naive expectation that the FTLE would
become more accurate by decreasing Lr. To investigate this, exactly the same
type of analysis as for Fig. 9 is performed for changing Lr, and shown in Fig. 10.
While (a) suggests that the theoretical error is about double the standard deviation
computed from the stochastic simulations (as previously), (b) demonstrates that
the theoretical error decreases with Lr roughly as 1/

√
Lr. Since this was computed

from the theoretical expression (13), this is no surprise. However, the lower panels
are based on stochastic simulations, computed by ignoring anything to do with
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(13). Both the standard deviation and range norms decrease with Lr at roughly the

same exponent, indicating that higher resolution (with other parameters kept fixed)
lowers the FTLE error. This—initially surprising—result is perfectly consistent
with the theory developed here.

3.3. Oceanographic FTLEs. Next, realistic data from an unsteady flow is ana-
lyzed from this viewpoint. Unlike in the previous cases, the absence of a known
truth impedes the validation of the results. However, it is shown that the error in
the FTLE field can be computed, thereby allowing any results from the field to be
treated within an uncertainty range, as would be scientifically appropriate. The
data used is that available from the European Commission’s Copernicus Marine
Environment Monitoring Service, comprising ocean surface geostrophic velocities in
the Gulf Stream extension region based on sea-surface height observations. It has
a resolution of 0.5 degrees (in both latitude and longitude), and the reported daily
geostrophic velocity data is computationally not exactly divergence-free. The in-
tention of this Section is to demonstrate the computability of the FTLE error bound
in such realistic situations to complement the FTLE field, rather than to reach any
particular scientific conclusions. Future work in using this tool is to be anticipated.

Fig. 11 demonstrates some examples of the calculations, with the axes being the
longitude and latitude. The left panels are the FTLE fields (in units of day−1)
under the stated time-ranges, and the right panels are the corresponding FTLE
error fields with the choice vr = 0.001 deg/day (the typical velocity scale is in the
data ∼ 1 deg/day). The white regions are the north American continent. The
darker areas—appearing as curves in some cases—in the FTLE fields (left pictures)
are regions of large stretching, while the yellow patches are sometimes construed
as eddy-like structures on the flanges of the Gulf Stream because they have low
stretching. While the FTLE field demonstrates some smoothness and features,
the fact that the uncertainty field has a ‘patterned’ nature is a signal: since the
data has resolution of 0.5 degrees, regions which are away from the gridpoints
must have uncertainties associated with them. The low error bands (in yellow) in
the error plots do indeed conform to the locations of gridpoints. The FTLE field
contours—obtained as they are by automatic smooth interpolation by the software
used (Matlab in this case)—hides this fact.

The general observation from these calculations (and others not shown) is that
the FTLE fields determined from this data must be treated with much caution. The
spatial resolution appears to be a significant stumbling block in inferring smoothly
defined ridges and regions of low stretching from the left panels in Fig. 11, purely
based on this data.

4. Concluding remarks. FTLE fields are often computed in realistic flows, and
used to reach conclusions regarding stretching and transport of fluid. The Eulerian
data that is used in such endeavors can never be known accurately on the full spatial
domain because of resolution and measurement/modelling uncertainties. Until now,
there has not been a systematic way to evaluate the accuracy of FTLE fields. This
article does so in the context of two-dimensional finite-time (potentially non-area-
preserving) flows, by computing an uncertainty interval (akin to providing error-bars
at each spatial location) for the FTLE field. While the theoretical development
in Section 2 works in three dimensions as well, at present, there only exists a
methodology for computing the required S2-field in two dimensions [7].
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Figure 11. FTLE fields (left) and FTLE error fields (right) for
several situations based on the Copernicus data: (top) from 30
January 2016 to 29 February 2016 (middle) 25 February 2011 to
26 April 2011, and (bottom) 25 February 2011 to 13 September
2011.

To validate the results, it was necessary to examine systems in which detailed
information was known. The impact, in particular, of identifying FTLE ridges and
valleys was viewed through this lens. Using the FLTE uncertainty was shown to be
necessary to avoid reaching unjustified conclusions. In realistic data—in which the
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ground truth is unknown—the FTLE uncertainties developed here should be used
to mollify any conclusions reached from a standard computation of the FTLE field.

While the results presented here have mostly assumed that the time-of-flow T
were positive, the results are equally valid for T < 0. This corresponds to the
computation of backwards-time FTLE fields. The error expression (13) is therefore
also valid for T < 0 (and the required expressions for S2 as given in Appendix A
have also been written to be correct even for T < 0).

The investigations here indicate that performing many stochastic simulations of
(6) and then averaging them will provide a better estimate for the FTLE field than
simply computing it using (1), i.e., as if it were deterministic. This supports the
work of Guo et al [21] who provided several ways of stochastically averaging the
FTLE field. Doing so, however, is computationally expensive, since a multitude of
stochastic simulations needs to be performed for each and every point in the spatial
domain. Another slight issue is that, even if FTLE ridges are relevant and exist in
the flow, averaged stochastic simulations will make them less sharp, and hence more
difficult to identify. (This is as it should be: uncertainties do mean that the ridge
is less certain [8].) Having a theoretical error field—computable directly from the
deterministic data, and incorporating the spatial resolution Lr and Eulerian velocity
uncertainty scale vr—is a more desirable approach. The stochastic simulations
performed here, and their comparison to the theoretical FTLE error, provide good
evidence to support this approach. The spatial heterogeneity of the error field is
particularly important in reaching conclusions based on the features observed in
the FTLE field, and this is captured well by the theoretical error field. Thus, it
is hoped that this paper will help generate more informed conclusions from FTLE
fields computed in the future.

An important caution, implied by the theoretical error (13) and subsequently
demonstrated in stochastic simulations, is that simply reducing the spatial resolu-
tion does not make a computed FTLE field more accurate. The dependence on
the spatial resolution Lr and the Eulerian velocity uncertainty vr is more subtle;
the error reduces as

√

vr/Lr. (If ignoring the velocity uncertainty, of course, the
leading-order dependence on Lr is as expected; the error decreases with Lr.) The
intuitive reason for the inverse dependence with Lr is that in computing the stretch-
ing (3), the numerator possesses an uncertainty of O(

√
Lr) which interacts with the

O(Lr) in the denominator. There is no evidence in the literature that this fact has
as yet been realized, despite the multitudinous computations of FTLE fields across
many disciplines. A simple sanity check on whether the FTLE field is believable is
given in (14): the spatial resolution should be significantly larger than the velocity
uncertainty times the temporal resolution. The ‘best’ resolution for usage must be
chosen based on an assessment of the velocity uncertainty vr as well, and needs to
be sufficiently large in comparison with vrTr, where Tr is the temporal spacing.

Appendix A. Stochastic sensitivity and its computation. The theory de-
veloped in [7] is associated with a more general system than (6): it additionally
includes a dimensional spatiotemporally-dependent diffusion matrix. This has been
set to the identity, and its dimensions transferred to ε, in explaining the results for
the special case of (6) in this Appendix.

Suppose that an initial condition x0 at time t0 progresses to a point X at time
t0 + T according to the deterministic flow (1). For this deterministic flow, let F t2

t1
be the flow map from a time t1to t2, each of which is in the interval (t0, t0 + T )
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(this notation allows for t2 to be less than t1; this would then be flow in backwards

time according to (1)). Thus X = F t0+T
t0 (x0) and x0 = F t0

t0+T (X).

For a trajectory xt evolving according to the stochastic flow (6) with initial
condition x0, define the random two-dimensional deviation vector

z =
xt0+T − x(t)

ε
=

xt0+T − F
t0+T
t0 (x0)

ε
,

Define a general vector n̂ pointing in a direction associated with the polar angle θ
from the point X, and the orthogonal rotation matrix J , by

n̂ =

(

cos θ
sin θ

)

and J =

(

0 −1
1 0

)

.

Let E and V be the expectation and variance operators, with respect to many
realizations of the stochastic dynamics (6). Then, the relevant results from [7] are
that

lim
ε→0

E [z] = 0 and lim
ε→0

sup
θ

√

V [z · n̂] =
√

S2(x0) , (16)

where the stochastic sensitivity field S2 is computed by the following procedure.
Construct the 2× 2 matrix

H(X, t) := exp

[

∫ t0+T

t

[∇ · u]
(

F
ξ
t0+T (X), ξ

)

dξ

]

J ∇F
t
t0+T (X) ,

and define in terms of its components

P (X) =

∣

∣

∣

∣

∣

∣

1

2

2
∑

i=1

2
∑

j=1

∫ t0+T

t0

H2
ij(X, t) dt

∣

∣

∣

∣

∣

∣

,

L(X) =
1

2

∫ t0+T

t0

[

2
∑

i=1

H2
i2(X , t)−

2
∑

i=1

H2
i1(X, t)

]

dt ,

M(X) =

∫ t0+T

t0

2
∑

i=1

[Hi1(X, t)Hi2(X , t)]dt , and

N(X) =
√

L2(X) +M2(X) .

Each of these quantities can be computed for a given X easily; the complication
(in comparison to a standard FTLE computation) is that the flow gradient needs
to be evaluated at all instances in time as opposed to only at the final instance.
This is necessary in computing H , and then its elements need to be appropriately
integrated over time to generate P , L, M and N . Having computed these, the
stochastic sensitivity S2(x0) on the t0-space is now [7]

S2(x0) = P (X) +N(X) . (17)

Since S2 at x0 is given in terms of its deterministic image X at time t0 + T ,
there are several ways in which S2 can be computed as a field over the space of
initial conditions x0. One is to take a grid of particles x0 at the time-slice t0, follow
deterministic advection and findX, and then use deterministic advection backwards
fromX while keeping track of nearby trajectories, hence computingH(X, t) at each
time and then performing the necessary time integrals. In doing so—and indeed
in all the other methods to be described—it is necessary to interpolate available
velocity values to the inevitable non-grid locations that the particles venture. The
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second method is to take a uniform grid of X in the time-slice t0 + T and perform
the backwards advection as described above; this will generate information on a
nonuniform grid of x0 in the time-slice t0. Then, one can use an operation such
as Matlab’s gridfit algorithm to extend to a uniform grid to enable visualization.
A third method is to take the points X at time t0 + T generated from forward
advection, supplement this nonuniform set with their nearest neighbors (2n points
at distance Lr in each coordinate direction when doing the computations in R

n).
By advecting this nonuniform collection backwards in time, it is possible to keep
track of the various gradients required. The second approach was followed in the
analytical examples described here, while the third was used for the oceanographic
data set because it was more robust in preventing particles landing on land (at
which the oceanic velocities are undefined). There is clear scope of determining
more efficient and robust ways of computing S2.

It is noted that the uncertainty lengthscale ε
√

S2(x0) (as presented in (9)) arises
because εz gives the deviation in location. By projecting this over all possible
directions n̂ and then maximizing the variance over all such directions, and then
taking the square-root (to convert a variance to a standard-deviation) yields the
result, valid to leading-order in the small quantity ε.
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