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Source-based artifact-rejection techniques available in TESA, an open-
source TMSeEEG toolbox
Dear Editor,

Two recently published artifact-rejection techniques [1,2];
designed for analyzing electroencephalography (EEG) data
following transcranial magnetic stimulation (TMS), are now
included in an open-source data-analysis toolbox TESA [3]. The
new implementations of signal-space-projectionesource-
informed-reconstruction (SSPeSIR) [1] and source-utilized noise-
discarding algorithm (SOUND) [2] (see Fig. 1) are computationally
efficient and easy to use, allowing the TMSeEEG researchers to sup-
press unwanted signal components, such as the TMS-evoked mus-
cle artifact and TMS-pulse-elicited auditory or somatosensory
responses [1,2,4].

TMSeEEG is a powerful, non-invasive technique to study, e.g.,
effective connectivity, reactivity, or inhibitory and excitatory mech-
anisms in vivo in the human cortex (for review see, e.g. Ref. [5]). Un-
fortunately, the fully flexible use of TMSeEEG is still hindered by
the TMS-evoked muscle artifacts, which are particularly prominent
when lateral brain regions are targeted [6]. Moreover, auditory and
somatosensory responses to TMS may mask the genuine TMS-
evoked EEG activity, causing a risk of misinterpretation of the
data [7,8]. Additionally, TMSeEEG suffers from other noise sources,
including electrode-polarization-decay artifacts, line noise, DC
drifts, and constant muscle tension [3].

The standard approach to tackle these disturbances is to reject
the contaminated data segments or bad channels, based on heuris-
tic visual inspection [3]. The popularity of visual rejection methods
and independent component analysis (ICA) [6] might be partially
explained by their prevalence in several open source analysis tool-
boxes (e.g., Ref. [9]). However, both using heuristics to reject data
and applying ICA to TMS-evoked EEG have their shortcomings
[10], suggesting that more objective data-cleaning methods are
needed. Recently, SSPeSIR was developed to suppress TMS-
evoked muscle artifacts, while controlling the level of distortions
in the neuronal signals of interest [1]. In short, SSP rejects topogra-
phies (signal-space directions) that are estimated to best capture
the artifact. Because SSP also distorts the brain-signal topographies,
an additional SIR step is needed; SIR uses inverse and forward cal-
culations to reconstruct the original artifact-free EEG signals.

After SSPeSIR, a closely related method SOUND was developed
to automatically detect and remove noise or artifacts from
TMSeEEG signals [2]. SOUND uses an iterative minimum-norm-
1 Optimal in the sense that the expectation value of the root-mean-square differ-
ences between the estimated and the true noiseless neuronal signals are
minimized.
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estimate-based cross-validation across the channels to find a
spatial Wiener filter that provides optimal1 estimates for the
neuronal EEG signals. SOUND filters out those signal components
that are not likely to originate from intracranial post-synaptic cur-
rents, e.g., electrode-polarization, line-noise, and electrode-
movement artifacts.

SSPeSIR and SOUND provide complementary tools and flexi-
bility to conventional TMSeEEG preprocessing. For instance, unlike
with ICA, the assumption for statistical independence between the
artifacts and brain signal is not needed. As semiautomatic methods,
SSPeSIR and SOUND can substantially enhance data analysis. Both
methods are now available in TESA, a TMSeEEG data analysis plu-
gin, which works inside the well-established EEG-analysis toolbox
EEGLAB [9]. The EEGLAB platform enables a flexible use of
completely graphical user interface (GUI) and/or MATLAB (The
Mathworks Inc., Natick, MA, USA) scripting with the researcher’s
own custom code. Furthermore, because of EEGLAB’s extensive
inputeoutput functionality, TESA and its SSPeSIR and SOUND func-
tions can now be used with a wide range of EEG systems.

SSPeSIR and SOUND utilize inverse and forward modelling of
the neuronal EEG signals (see Refs. [1,2] for details). For this, a
lead-field matrix, which describes the sensitivity of the EEG chan-
nels to all possible cortical sources, is needed. If the lead field is not
available, the SSPeSIR and SOUND functions (tesa_sspsir and
tesa_sound) automatize this process by computing a lead field
based on a spherical three-layer model and the theoretical channel
locations on the standard 10e20 layout. Both tesa_sspsir and
tesa_sound functions are very efficient, requiring only seconds
of processing time for a standard TMSeEEG dataset (e.g., consisting
of 140 x 2-s epochs, measured with 62 channels and 1000-Hz sam-
pling rate) on a standard desktop computer. For SOUND, this means
over a fivefold decrease in the computation time compared to the
original implementation [2].

In addition to muscle-artifact rejection, SSPeSIR appears to be
able to recover genuine TMS-evoked EEG signals under the TMS-
related sensory responses [4]. Using control data consisting of
only somatic and auditory responses to TMS, the most significant
sensory-response topographies were estimated and suppressed
from the actual TMSeEEG data. We provide the implementation
of this process in the new tesa_sspsir function. The process
can be easily generalized to suppress other artifacts, provided the
artifacts can be captured in additional control data and the topog-
raphies are uncorrelated from the TMS-evoked neural sources.

To conclude, TESA now includes new source-based spatial
filtering methods, SSPeSIR and SOUND, allowing a more flexible
removal of some of the most-challenging, unwanted TMS-evoked
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Fig. 1. An example of the application of the new TESA functions tesa_sound and tesa_sspsir. A: GUI for the tesa_sound function. B: TESA example data before (red curves)
and after (blue curves) applying the tesa_sound function with the default settings. The noisy channels, e.g., on the left lateral side, are cleaned while the good-quality channels are
preserved, e.g., Cz. C: GUI for the tesa_sspsir function. D: The EEGLAB visualizations of TESA example data before (top panel) and after (bottom panel) applying the
tesa_sspsir function with the default settings. After rejecting the muscle-artifact topographies, an early deflection at 20 ms is uncovered. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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signals (e.g., muscle and multisensory responses), as well as other
common recording artifacts. Additional upgrades with the latest
TESA version include improvements to the ICA visualization tool,
extended filtering options, and capacity to remove TMS-pulse arti-
facts from continuous data. Alongside with this publication, we
provide comprehensive documentation for the new methods and
an example script, showing how the functions can be incorporated
in practice inside a TMSeEEG preprocessing pipeline. In the future,
the TESA developers aim to keep publishing TMSeEEG-analysis
tools from voluntary contributors, to make novel methods more
accessible to a wide range of TMSeEEG researchers. Further infor-
mation on TESA, including code and training manual, is available
from: https://nigelrogasch.github.io/TESA/
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