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ABSTRACT
Diversity plays a crucial role in evolutionary computation. While

diversity has been mainly used to prevent the population of an

evolutionary algorithm from premature convergence, the use of

evolutionary algorithms to obtain a diverse set of solutions has

gained increasing attention in recent years. Diversity optimization

in terms of features on the underlying problem allows to obtain a

better understanding of possible solutions to the problem at hand

and can be used for algorithm selection when dealing with combi-

natorial optimization problems such as the Traveling Salesperson

Problem.

We consider discrepancy-based diversity optimization ap-

proaches for evolving diverse sets of images as well as instances

of the Traveling Salesperson problem where a local search is not

able to find near optimal solutions. Our experimental investiga-

tions comparing three diversity optimization approaches show that

a discrepancy-based diversity optimization approach using a tie-

breaking rule based on weighted differences to surrounding feature

points provides the best results in terms of the star discrepancy

measure.
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1 INTRODUCTION
Diversity plays a crucial role in evolutionary computation. Tradi-

tionally, diversity is used to avoid premature convergence and it is

generally assumed that crossover-based evolutionary algorithms

need a diverse population in order to produce good results.

During the last 10 years, using evolutionary algorithms to pro-

duce a diverse set of solutions has gained increasing attention.

Ulrich and Thiele [30] introduced evolutionary computation ap-

proaches that are able to produce diverse sets of solutions by evolv-

ing a population according to quality criteria and diversity mea-

sures.

Recently, this approach has been adapted to evolve diverse sets

of Traveling Salesperson Problem (TSP) instances [11] as well as

diverse sets of images [1]. In the case of the TSP, instances have

been evolved that are hard to be solved by a given solver. In this

case, diversity is measured according to different features that char-

acterize the problem instances. In the case of images, the population

of an evolutionary algorithm has been used to evolve images that

are close to a given one (in terms of an error measure) and that are

diverse with respect to different artistic features. Furthermore, an

evolutionary image composition approach based on a feature-based

covariance error function has been introduced in [22]. Both diver-

sity optimization approaches build on a simple diversity measure

that measures diversity according to a given feature. In order to

extend this approach to more than one feature, a diversity measure

weightening the different features has been used.

In this paper, we introduce a diversity optimization approach us-

ing the discrepancymeasure. This approach allows to evolve diverse

sets without having any assumption on the preferred weightening

of the different diversity criteria.

Discrepancy theory studies the irregularity of distributions in
the following sense. Given a metric space S and some n points

s1, . . . , sn ∈ S , the discrepancy of the set X := {s1, . . . , sn } is mea-

sured as the largest deviation from a perfectly evenly distributed

point set. When, as in our case, S = [0, 1]d is the d-dimensional

unit cube, we could measure the discrepancy with respect to all

axis-parallel boxes [a,b] := [a1,b1] × . . . × [ad ,bd ]. In an ideal

situation, we would like the number of points of X that are inside

such a box [a,b] to be proportional to its volume. In other words,

we would like the difference Vol([a,b]) − |X ∩ [a,b]|/n to be as

small as possible, simultaneously for all possible boxes [a,b]. The
discrepancy is set to be the largest deviation; i.e.,

D(X ,B) := sup{Vol([a,b]) − |X ∩ [a,b]|/n | a ≤ b ∈ [0, 1]d },

https://doi.org/10.1145/3205455.3205532
https://doi.org/10.1145/3205455.3205532
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where we abbreviate a ≤ b if and only if for every component

i ∈ d the inequality ai ≤ bi holds. The smaller the discrepancy of

a point set, the more regular is its distribution with respect to all

axis-parallel boxes.

Discrepancy theory plays an important role in numerical in-

tegration, where (under certain circumstances), low discrepancy

point sets are known to provide very good estimates for the in-

tegral of an unknown or difficult-to-analyze function. Classical

Monte Carlo integration is therefore often replaced by a so-called

Quasi-Monte Carlo integration, which uses low discrepancy point

sets instead of purely random ones, cf. [18] for an illustrated in-

troduction to discrepancy theory. In the context of evolutionary

computation, low discrepancy points sets such as Sobol and Halton

sequences have been used in the sampling routines of evolution

strategies [3, 25], CMA-ES variants [27–29], and other genetic algo-

rithms [15, 16], and are reported to bring efficiency gains over pure

random sampling. On the other hand, evolutionary algorithms have

been used to compute point sets of low discrepancy values [5, 10],

an optimization problem not admissible by traditional analytical

approaches. Finally, randomized search heuristics also play a crucial

role for the computation of discrepancy values of point sets in high

dimensions [13].

The arguably most intensively studied discrepancy notion is

the so-called star discrepancy, which measures the regularity with

respect to all axis-parallel boxes [0,b], b ∈ [0, 1]d that are anchored

in the origin. This is also the measure for which Sobol and Halton

sequences have been designed for. Here in this work, we use this

star discrepancy measure to evaluate how evenly the points are

distributed.

At first sight, one might conjecture that a regular

√
n ×
√
n grid

has a good and regular distribution. Its star discrepancy, however, is

rather large: we easily convince ourselves there are boxes of volume

1/
√
n which do not contain any point, so that the star discrepancy

is of at least this order. Random point sets also achieve a discrep-

ancy value of order 1/
√
n only. In contrast, the low-discrepancy

sequences mentioned above achieve a discrepancy value of order

log
d−1/n, and are thus much more evenly distributed with in terms

of discrepancy.

Apart from numerical integration and the mentioned applica-

tions in evolutionary computation, low discrepancy sequences also

play an important role in statistics, computer graphics, and stochas-

tic programming.

We investigate the use of the star discrepancy measure in evolu-

tionary diversity optimization for two settings previously studied

in the literature, namely diversity optimization for images [1] and

TSP instances [11]. In terms of images, we also introduce a new

and more effective mutation operator based on random walks than

the one introduced in [1]. This self-adaptive random walk operator

allows to reduce the number of iterations needed to construct good

diverse set of solutions from 1 − 4 million [1] to 2000 and there-

fore reduces the number of required generations by three orders of

magnitude.

Our experiments are carried out for diversity optimization tasks

using two and three features. We show that the previously used ap-

proach for images [1] and TSP instances [11] computing a weighted

diversity contribution in terms of the considered features constructs

Algorithm 1: (µ + λ)-EAD

1 Initialize the population P with µ instances of quality at least α .

2 Let C ⊆ P where |C | = λ.

3 For each I ∈ C , produce an offspring I ′ of I by mutation. If

q(I ′) ⩾ α , add I ′ to P .
4 While |P | > µ, remove an individual I = argminJ ∈P D∗(P \ J ).
5 Repeat step 2 to 4 until termination criterion is reached.

solution sets with a very high discrepancy compared to our ap-

proach using the discrepancy measure. Furthermore, we show that

the weighted diversity contribution approach can be used in an ef-

fective way for doing tie-breaking between sets of solutions having

the same discrepancy value.

The paper is structured as follows. In Section 2, we introduce our

discrepancy-based diversity optimization approach. In Section 3,

we introduce the new mutation operator for diversity optimization

of images and evaluate the discrepancy optimization approach for

images.We consider our approach for evolving sets of TSP instances

of low discrepancy with respect to the given features in Section 4.

Finally, we finish with some concluding remarks.

2 DISCREPANCY-BASED DIVERSITY
OPTIMIZATION

We consider evolutionary diversity optimization. Given a search

space S , our aim is to construct a diverse set of solutions P =
{X1, . . . ,Xµ } where each solution Xi ∈ S fulfills a given quality

criteria, i.e., we have q(Xi ) ≥ α for a given quality threshold α .
Properties of our potential solutions Xi are characterized by

features f1, . . . , fd which are problem specific. Let I ∈ S be an

individual in a population P . We associate with I its feature vector
f (I ) = (f1(I ), . . . , fd (I )).

Traditionally, the goal of constructing a set of points with a low

discrepancy is defined in [0, 1]d . Therefore, the feature values are
scaled before the calculation of discrepancy. Let f max

i and f min

i be

the maximum and minimum value of feature fi . We evaluate our

set of points in terms of discrepancy using the scaled feature values

f ′i (I ) = (fi (I ) − f min

i )/(f max

i − f min

i ).

We have f ′(I ) ∈ [0, 1]d for all scaled feature vectors f ′(I ) if f min

i ≤
fi (I ) ≤ f max

i , 1 ≤ i ≤ d . fmax and fmin are set based on initial

experiments. Feature values outside that range will be scaled to

0 and 1, respectively, to allow the algorithm to work with non

anticipated features values.

Let f ′(P) = ∪I ∈P f ′(I ) be the set of scaled features vectors in P .

We denote byD∗(P) the discrepancy of f ′(P) in [0, 1]d . Throughout
this paper, we use the star-discrepancy. Given P = {I1, . . . , Ik ) with
feature vectors f ′(I1), . . . , f ′(Ik ), we define

D∗(P) := sup

J ∈Y
D(J , P),

where

D(J , P) = |I ∈ P | f
′(I ) ∈ J |

k
− Vol(J ),
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Vol(J ) denotes the volume of the box J , and Y is the class of all

axis-parallel boxes of the form J =
∏d

i=1[0,ui ) with 0 ≤ ui ≤ 1 for

1 ≤ i ≤ d .
A key difficulty to overcome in the optimization for low star dis-

crepancy values is the computational hardness of its evaluation [12].

The best known algorithm for the star discrepancy computation

has a running time of order n1+d/2 [7], which is exponential in the

dimension d . As we are interested in dimension d = 2, 3, we can use

this algorithm, and make use of the implementation that is avail-

able on [31]. The reader interested in a discussion of computational

aspects of geometric discrepancies is referred to [9].

We use the (µ + λ)-EAD given in Algorithm 1 to compute a

diverse population where each individual meets a given quality

criteria q according to a given threshold α , i.e., we have q(I ) ≥ α for

all individuals in the population P . The population P is a multi-set,

i.e., it may contain an instance more than once. The algorithm is

initialized with a population where each individual meets the given

criteria. In each iteration λ offspring are produced. Offspring that do
not meet the quality criteria are directly discarded. Offspring that

meet the criteria are added to the population and survival selection

is performed afterwards to obtain a population of size µ. To do this,
individuals are removed iteratively. Having a population of size

k > µ, in each iteration an individual I is removed that leads to a

population P \ I of size k−1 having the smallest discrepancy among

all populations that can be constructed by removing exactly one

individual from P .
The discrepancy minimization algorithm is compared to the evo-

lutionary diversity optimization approach in [11], which aims at

maximizing the feature-based population diversity using aweighted

contribution measure for each individual. The weighted diversity

contribution of an individual I with feature vector f (I ) is defined
as c(I , P) = ∑k

i=1(wi · dfi (I , P)), where dfi (I , P) represents the nor-
malised contribution of individual I to the population diversity over

feature fi andwi represents the weight for feature fi .
The resulting algorithm (µ+λ)-EAC differs from (µ+λ)-EAD only

in step 4, and removes in each of these steps an individual I with the
smallest weighting contribution c(I , P) to the population diversity.

Furthermore, we consider the algorithm (µ +λ)-EAT that uses both

the discrepancy measure and the weighted contribution measure.

It is the same as (µ + λ)-EAD but uses the weighted contribution

measure as tie-breaking in step 4 of the algorithm; i.e. if there is

more than one individual whose removal leads to the minimum

discrepancy value, then the one among these with the smallest

contribution to the weighted diversity contribution is removed.

In the following, we evaluate our discrepancy-based diversity

optimization approaches for evolving diverse sets of images and TSP

instances. We also introduce a new mutation operator for images

based on random walks which significantly speeds up the diversity

optimization process when constructing a diverse set of images.

3 IMAGES
We consider the task of evolving a diverse set of images as previ-

ously investigated in [1]. Given an image S , the task is to compute

a diverse set of images P = {I1, . . . , Iµ } that meets a given quality

criterion q(I ) for each I ∈ P . For our experimental investigations,

an image I meets the quality criterion if the mean-squared error in

Figure 1: Image S

Figure 2: Selected images from the population after discrep-
ancy minimization for the Hue and Saturation features.

terms of the RGB-value of the pixels of the image I with respect to

the input image S (shown in Figure 1) is less than 500.

Many features have been used to measure the characteristics of

images.We focus on a selected set of features used in [1, 6],standard-
deviation-hue (SD-hue), mean-saturation, reflectional symmetry [6],

mean-hue, Global Contrast Factor (GCF) [17] and smoothness [23].
We carry out our discrepancy-based diversity optimization ap-

proach for these different features and use the evolutionary al-

gorithm to evolve diverse populations of images for each feature

combination.

We focus our experiments on the characterization of how the

chosen features may influence the generated images. In reference

to previous work [21] we choose three pairs of features: (SD-hue,
mean-saturation), (symmetry, mean-hue), and (GCF , smoothness). In
addition, we choose three feature sets consisting of three features

each as follows: (SD-hue, mean-saturation, symmetry) and (SD-hue,
mean-hue, symmetry), and (GCF , mean-hue, mean-saturation).

We are working with the scaled feature values when computing

the discrepancy of a given set of points. It should be pointed out

that not all feature vector combinations within the given feature

intervals are usually possible. To illustrate this we consider the

features SD-hue and Saturation and run the EA (using the mutation

operator described in Section 3.1) for 1000 iterations. Figure 3 shows

all feature vectors produced during 10 runs of the (20 + 1)-EAT
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Figure 3: All feature vectors generated in 10 runs of (µ + λ)-EAT with 1000 iterations each (left), one run with 1000 iterations
(middle), the final population after 1000 iteration with discrepancy 0.22637 (right).

Algorithm 2: OffsRandomWalkMutation (X , tmax)

1 Let X is a image with pixels Xi j ∈ X .

2 Y ← X .

3 Choose starting pixel Yi j ∈ Y uniformly at random.

4 Choose offset o ∈ [−r , r ]3 uniformly at random.

5 t ← 1.

6 while t ≤ tmax do
7 Yi j = Yi j + o.

8 Choose Ykl ∈ N (Yi j ) uniformly at random.

9 i ← k , j ← l .

10 t = t + 1.

11 Return Y .

(left), all feature vectors produced during one run (middle), and the

feature vectors of the final population (right). It can be observed

that the area where both feature values are high does not contain

any points (similarly if both feature values are very low). The seems

to indicate that the problem is constrained to a subspace of the unit

square. If this is true, then this has a direct consequence on the best

possible discrepancy value that can be obtained, as discrepancy is

a measure in [0, 1]d .

3.1 Self-Adjusting Offset RandomWalk
Mutation

The algorithm uses a variant of the random walk mutation intro-

duced in [22] for evolutionary image composition. This speeds up

the process of diversity optimization by three orders of magnitude

compared to [1] where for a mutation operator changing in each

step a single pixel 1−4million iterationswhere required to construct

a diverse set of images. Our new mutation operator enables us to

construct diverse sets of images for all three algorithms (including

the (µ + λ)-EAC investigated in [1]) within just 2000 generations.

The random walk in this paper differs from the one for image

composition given in [22] by changing the RGB values by an offset

vector o ∈ [−r , r ]3 chosen in each mutation step uniformly at

random. The mutation operator is shown in the Algorithm 2.

The random walk causes movement from the current pixel Xi j
to the next pixel by moving either right, left, down or up. We define

the neighborhood N (Xi j ) of pixel Xi j as

N (Xi j ) =
{
X(i−1)j ,X(i+1)j ,Xi(j−1),Xi(j+1)

}
.

The random walk chooses an element of N (Xi j ) uniformly at

random in every step. Furthermore, the random walk is wrapped

around the boundaries of the image. We produce an offspring Y
from X by setting each visited pixel Xi j to the value of Xi j + o.
Given a current image X , our (µ + λ) − EAD algorithm uses the

random walk mutation to alter all visited pixels. Note that pixels

may be visited more than once and the offset may be applied several

times in this case. The random walk paints all the visited pixels by

adding the chosen offset vector o. Each random walk mutation is

run for tmax steps, where tmax is chosen in an adaptive way.

3.1.1 Self-Adjustment. We decrease the length of random walks

through decreasing tmax when the discrepancy value does not de-

crease as a result of an unsuccessful mutation. We increase tmax

if the discrepancy decreases as a result of a successful mutation.

This builds on the assumption that mutations doing less change

to the image are needed to obtain an improvement if it is hard

to make progress with the current choice of tmax. On the other

hand, a better progress may be achievable if the current setting

of tmax is already able to decrease the discrepancy. Our adaptive

approach makes use of the parameter adjusting scheme recently

used in [8]. This method, originally proposed in [14], applies the

classical 1/5-success rule from evolution strategies to a discrete

setting.

Our approach increases tmax for a successful outcome or de-

creases tmax in the case that the new offspring is not accepted. In

our algorithm, tmax can take on values in tLB ≤ tmax ≤ tUB, where
tLB is a lower bound on tmax and tUB is an upper bound on tmax.

For a successful mutation, we set tmax B min {F · tmax, tUB}
and for an unsuccessful mutation, we set tmax B

max

{
F−1/k · tmax, tLB

}
, where F > 1 is a real value and

k ≥ 1 an integer which determines the adaptation speed.

For our experimental investigations, we set tLB = 1000, tUB =
20000, F = 2, k = 8, and tmax = 1000 at initialization based on

preliminary experimental investigations.

3.2 Experimental settings
All algorithms were implemented inMatlab (R2017b). We ran all of

our experiments on single nodes of a Lenovo NeXtScale M5 Cluster
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Figure 4: Feature vectors for final population of (µ + λ)-EAC (top) and (µ + λ)-EAD (bottom) for images based on two features
from left to right: (SDHue, Saturation), (Symmetry, Hue), (GCF, Smoothness).

(µ + λ)-EAC (1) (µ + λ)-EAD (2) (µ + λ)-EAT (3)
min mean std stat min mean std stat min mean std stat

( f1, f2 ) 0.2014 0.3234 0.0595 2
(−)

,3
(−)

0.1272 0.2038 0.1157 1
(+)

0.1119 0.1530 0.0269 1
(+)

( f3, f4 ) 0.1964 0.2945 0.0497 2
(−)

,3
(−)

0.1574 0.2280 0.0592 1
(+)

,3
(−)

0.1051 0.1417 0.0179 1
(+)

,2
(+)

( f5, f6 ) 0.1997 0.2769 0.0344 2
(−)

,3
(−)

0.1363 0.2025 0.0538 1
(+)

0.1457 0.1800 0.0234 1
(+)

( f1, f2, f3 ) 0.3389 0.4327 0.0613 2
(−)

,3
(−)

0.1513 0.3335 0.1062 1
(+)

0.2253 0.2814 0.0422 1
(+)

( f1, f4, f3 ) 0.2754 0.3395 0.0483 2
(−)

,3
(−)

0.2100 0.3118 0.1309 1
(+)

0.2224 0.2600 0.0123 1
(+)

( f5, f4, f2 ) 0.4775 0.6488 0.0841 2
(−)

,3
(−)

0.2021 0.3007 0.1467 1
(+)

0.1983 0.2229 0.0125 1
(+)

Table 1: Statistics of discrepancy values for images. f1, f2, f3, f4, f5, f6 denote features SD-hue, Saturation, Symmetry, Hue, GCF
and Smoothness, respectively.

with two Intel Xeon E5−2600 v4 series 16 core processors, each

with 64GB of RAM.

Firstly, we consider the discrepancy-based diversity optimization

for two features. We select features in order to combine different

aesthetic and general features based on our initial experimental

investigations and previous investigations in [21]. Furthermore, we

set f min
and f max

as follows. The f min
values used for SD-hue ,

Hue , Saturation, Smoothness , GCF , Symmetry are 0.42, 0.25, 0.42,

0.42, 0.906, 0.0245, and 0.715, respectively. The corresponding f max

values are 0.7, 0.4, 0.5, 0.5, 0.918, 0.0275, and 0.74, respectively.

After considering the combination of two features, we investigate

sets of three features. Here, we select different features combining

aesthetic and general features together used in the previous experi-

ment. In order to obtain a clear comparison between experiments,

we apply the same range of feature values as before.

Furthermore, we run the (µ + λ)-EAC diversity algorithm

from [21] using the self-adjusting random walk mutation operator

in order to compare the two approaches for diversity optimization.

We use the same settings for the (µ+λ)-EAC as for our discrepancy-

based diversity algorithm, the (µ +λ)-EAD . Finally, we consider the

(µ + λ)-EAT , which uses discrepancy-based diversity optimization

plus tie-breaking according to weighted feature contributions when

more than one individual exists whose removal would result in the

same minimal discrepancy value.

We run each algorithm for 2000 generations with a population

size of µ = 20 and λ = 1. In order to evaluate our results using

statistical tests, each algorithm is run 30 times with the same setting

applied to each considered pair and triple of features.

3.3 Experimental Results
We perform a series of experiments to evaluate the performance

of our discrepancy-based diversity evolutionary algorithm. Our

experiments establish that global constraints like mean-squared
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error can be used to produce more diverse images than equivalent

constraints which are limited to the range of the color or luminosity

channel for each pixel.

The images displayed in Figure 2 match the color features. In

particular, images are produced using the SDHue and Saturation
feature. The values for SDHue and Saturation are displayed above

each image for features, respectively. The color spectrum is red at

each end with individuals of the population spread along it. Images

which have a low score for this feature will be monochromatic

and will appear in the middle of the spectrum. Images with a high

score will be red as it is a sample from both of the extremes. Low-

scoring images in the Saturation feature are monochromatic whilst

high-scoring individuals are almost entirely saturated.

Figure 4 shows feature plots of the final populations of the (µ+λ)-
EAC (top) and the (µ+λ)-EAD (bottom) for 3 pairs of feature combi-

nations. It can be observed that the discrepancy value for the (µ+λ)-
EAD and the combination (SD − hue, Saturation) is 0.1389. This is
significantly smaller than the one for the (µ + λ)-EAC at 0.3394.

The middle row shows the combination of Hue and Symmetry. The
discrepancy value of Symmetry and Hue for (µ + λ)-EAD is 0.1544

whereas it is 0.2305 for (µ + λ)-EAC . In Figure 4 the right column

shows the final populations of the diversity optimization when con-

sidering GCF and Smoothness. The discrepancy value for GCF and
Smoothness is 0.1366 for (µ + λ)-EAD and 0.2769 for (µ + λ)-EAC .
This is an indication of the difficulty of evolving images which are

smooth as well as scoring high in GCF in our current setup. How-

ever, this conflict is expected as the GCF highly scores in the case

of strong contrast between adjacent pixels. The Smoothness scores
have a high value for low contrast between neighboring pixels.

We now consider the results of the (µ + λ)-EAC from [21] using

the self-adjusting random walk mutation operator in greater detail.

Looking at Figure 4 (top) which shows the population of instances

for (SDHue, Saturation), (Symmetry, Hue), and (GCF, Smoothness),
respectively, we observe that the distribution of the points for the

features vectors for final population follows a linear pattern. This

is due to the chosen weights which favor lines of feature vectors

orthogonal to the used weight vector (1, 1).
We use the Kruskal-Wallis test with 95% confidence in order to

measure the statistical validity of our results. We apply the Bonfer-

roni post-hoc statistical procedure that is used for multiple compar-

ison of a control algorithm to two or more algorithms. For more

detailed description on the statistical tests we refer the reader to [4].

In Table 1 we provide statistics on the discrepancy values for the

final populations of (µ + λ)-EAC , (µ + λ)-EAD and (µ + λ)-EAT ,
respectively. For each algorithm and feature combination the min-

imum, mean, and standard deviation of the discrepancy value of

the final population of 30 runs is shown. X (+) is equivalent to the

statement that algorithm in the column outperformed algorithm

X , and X (−) is equivalent to the statement that X outperformed

the algorithm given in the column. In the case if the algorithm X

not appears this means that no significant difference was deter-

mined between algorithms. (µ + λ)-EAD clearly outperforms the

(µ +λ)-EAC for all feature combinations. Furthermore, (µ +λ)-EAT
which uses tie-breaking according to weighted feature contribution

leads to a further improvement of (µ+λ)-EAD for almost all feature

combinations in terms of the mean and minimal discrepancy value

achieved within 30 runs.

4 TRAVELLING SALESMEN PROBLEM
Another problem we considered as application of Algorithm 1 is

the Traveling Salesman Problem (TSP), which is a NP-hard combi-

natorial optimization problem with many real world applications.

We consider the classical Euclidean TSP, which takes a set of cities

in the Euclidean plane and where the goal is to find a Hamiltonian

cycle with the minimal sum of edge distances.

In this research we focus on TSP instances in the space of [0, 1]2
with 50 cities, which is a reasonable size of problem for feature

analysis of TSP. The instances are qualified with respect to the

approximation ratio, which is calculated by αA(I ) = A(I )/OPT (I )
where A(I ) is value of the solution found by algorithm A for the

given instance I , and OPT (I ) is value of an optimal solution for in-

stance I that is calculated using the exact TSP solver Concorde [2].

Within this study, A(I ) is the tour length obtained by three inde-

pendent repeated runs of the 2-OPT algorithm for a given TSP

instance I .
Following the same setting as in [11], the approximation ratio

threshold for hard TSP instance of size 50 is set to 1.18, which means

only instances with approximation ratio equal or greater than 1.18

are accepted into the population.

As we shall discuss in the next section, a particular interest is the

relationship between problem hardness and the feature values [19,

20, 26].

4.1 Experiments settings
There have beenmany features designed for the TSP with the aim of

describing the hardness and characteristics of a certain TSP instance.

In this paper, we focus on a selected set of feature values described

in [19]. In line with [11] we focus on the following combination of

features:

• angle_mean: the mean value of the angles made by each

point with its two nearest neighbor points

• mst_depth_mean: the mean depth of the minimum spanning

tree in the TSP

• centroid_mean_distance_to_centroid: the mean value of the

distances from the points to the centroid

• mst_dists_mean: the mean distance of the minimum span-

ning tree

Note that, while multiple MSTs can exist in principle, we only

consider the one returned by the R function spantree, implementing

Prim’s method.

As mentioned in Section 2, the feature values are normalized

before discrepancy calculation. The maximum and minimum val-

ues f max
and f min

for each feature are determined based on

the results gathered from initial runs of feature-based diversity

maximization. The f max
used for the feature angle_mean, cen-

troid_mean_dist_centroid, nnds_mean and mst_dists_mean are 2.8,

0.6, 0.7 and 0.15, respectively. The corresponding f min
values are

0.8, 0.24, 0.1 and 0.06.

Different combinations of features are tested in this research.

The algorithms are designed to work with multiple features. As

experiment, we choose three two-feature combinations and three
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Figure 5: Feature vectors for final population of (µ + λ)-EAC (top) and (µ + λ)-EAD (bottom) for TSP based on two fea-
ture from left to right: (angle_mean, mst_dists_mean), (centroid_mean_distance_to_centroid, mst_dists_mean), (nnds_mean,
mst_dists_mean)

.

three-feature combinations which are good combinations for clas-

sifying problem hardness suggested in [11].

All three algorithms are implemented in R and run in R environ-

ment [24]. We use the functions in tspmeta package to compute

the feature values [19]. All of the experiments are executed on a

machine with 48-core AMD 2.80GHz CPU and 128GByte RAM.

Each algorithm is run for 20 000 generations and the final dis-

crepancy is reported. In order to obtain statistics, each feature

combination is tested with each algorithm for 30 times. These 30

runs are independent to each other.

4.2 Experimental results and analysis
Figure 5 shows the final population of TSP instances from the run

that gets the minimum discrepancy value out of the 30 runs after

applying Algorithm (µ + λ)-EAD and (µ + λ)-EAC in the feature

space. The average initial discrepancy values for each feature com-

bination in Table 2 are 0.5786, 0.6090, 0.7227, 0.7997, 0.8142 and

0.7699, respectively.

The bottom row of Figure 5 shows the feature vectors for the

final population of the (µ+λ)-EAD . Compared to their counterparts

in the top row, the discrepancy minimization approach generates a

more diverse set for the feature combination of angle_mean and

mst_dist_mean. For the feature combination shown in the middle

and on the right, it is not so obvious which algorithm generates a

more diverse population than the other in the feature space. Each

approach obtains a population that explores more over one fea-

ture value. For example, the (µ + λ)-EAD generates a population

more diverse with respect to the feature of mst_dists_mean, while

the (µ + λ)-EAC focuses more on exploring the feature space of

centroid_mean_distance_to_centroid. Looking at the discrepancy

values, it can be observed that the final population obtained by the

(µ + λ)-EAD has a significantly smaller discrepancy than the one

obtained by the (µ + λ)-EAC for all 3 pairs of features.

Table 2 shows the statistics about the discrepancy values of the

final populations after running each of the three algorithms on

three 2-feature combinations and three 3-feature combinations.

The first two large columns contains the statistical results from

(µ + λ)-EAC and (µ + λ)-EAD . The (µ + λ)-EAD significantly out-

performs the (µ + λ)-EAC in all feature combinations. The average

discrepancy value is reduced by more than 30% in all six cases.

During the discrepancy minimization process, there exist many

individuals which have the same least contribution to the discrep-

ancy value in each iteration. Breaking ties according to the weighted

feature contribution can help to improve the discrepancy of the

population. The (µ + λ)-EAT provides breaking ties with respect to

the contribution to the weighting population diversity. The third

column in Table 2 shows the respective statistics for the (µ + λ)-
EAT . For the statistics, it shows that the (µ + λ)-EAT is able to

improve the discrepancy values of the final population. In five out

of six examined feature combinations, the (µ + λ)-EAT achieves

smaller discrepancy values than the (µ + λ)-EAD . For the first two

two-feature combinations, (µ + λ)-EAT outperforms (µ + λ)-EAD
significantly.

5 CONCLUSIONS
Constructing point sets of low discrepancy has a prominent role in

mathematics and a set of low discrepancy can be seen as being one

that is covering the considered space [0, 1]d in a good way as they
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(µ + λ)-EAC (µ + λ)-EAD (µ + λ)-EAT
min mean std stat min mean std stat min mean std stat

(f1,f4) 0.4836 0.5535 0.0362 2
(−)

,3
(−)

0.2229 0.2942 0.0512 1
(+)

,3
(−)

0.2013 0.2354 0.0252 1
(+)

,2
(+)

(f2, f4) 0.4657 0.5192 0.0256 2
(−)

,3
(−)

0.3229 0.3708 0.0414 1
(+)

,3
(−)

0.2816 0.3363 0.0435 1
(+)

,2
(+)

(f3, f4) 0.5743 0.6296 0.0219 2
(−)

,3
(−)

0.3590 0.4422 0.0534 1
(+)

0.3831 0.4113 0.0175 1
(+)

(f1, f3, f4) 0.7765 0.7997 0.0204 2
(−)

,3
(−)

0.4303 0.4585 0.0183 1
(+)

0.4372 0.4604 0.0422 1
(+)

(f2, f3, f4) 0.7641 0.7962 0.0198 2
(−)

,3
(−)

0.4197 0.4563 0.0215 1
(+)

0.3730 0.4514 0.0327 1
(+)

(f1, f2, f3) 0.7593 0.7836 0.0111 2
(−)

,3
(−)

0.3900 0.4095 0.0160 1
(+)

0.3547 0.3988 0.0217 1
(+)

Table 2: Statistics of discrepancy values for TSP. f1, f2, f3, f4 denote the feature angle_mean, centroid_mean_dist_centroid,
nnds_mean, mst_dists_mean respectively.

aim for a good balance of points in every hyper-box with respect to

their volume.We have introduced a discrepancy-based evolutionary

diversity optimization approach that constructs sets of solutions

meeting a given quality criteria and having a low discrepancy with

respect to the considered features. Our experimental results for

evolving diverse sets of images and TSP instances show that this ap-

proach constructs sets of solutions with a much lower discrepancy

that the previously used weighted contribution approach according

to the given features. Our discrepancy-based diversity optimization

process for images makes use of a new random walk mutation op-

erator which reduces the number of required generations to obtain

a good diverse set of images by 3 orders of magnitude The best

results across all our experimental investigations are obtained by

the (µ + λ)-EAT , which uses discrepancy-based diversity optimiza-

tion in conjunction with a tie-breaking rule based on the weighted

contribution diversity measure.
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