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ABSTRACT

Solution transport across nanoporous membranes occurs in many different biologically and
industrially relevant processes such as filtration of waste by the kidneys and desalination
of seawater. The same theoretical framework can be used to understand both of these pro-
cesses, as well as many others. In general, a flux of solution is driven across a porous
membrane due to an externally applied force. This external force can be a gradient in pres-
sure, temperature, concentration, or electrical potential. At the entrance and exit of a pore
the fluid streamlines and electric field lines experience a significant constriction in going
from the bulk reservoirs to the narrow pores. This effect can become significant for short
pores and pores with low friction and thus must be appropriately taken into account to
correctly predict solution fluxes.

In the first study, continuum mechanics is used to investigate the entrance effects on
charge flux of electrolytes across porous membranes. The access electrical resistance, which
is the electrical resistance associated with the electric field lines bending into and out of the
pores, has previously been shown to make up a significant fraction of the total electrical
resistance when the fluid—pore friction is low.” Although several papers have studied the
access electrical resistance,*™ none has explicitly considered the effect of surface charge on
the surfaces of the membrane facing the bulk solution even though this charge has been
shown to have a significant effect on the access electrical resistance.® In this thesis, finite
element method (FEM) calculations are carried out in order to systematically study the
access electrical resistance of charged pores in charged and uncharged membranes. The
results are compared with predictions from two existing continuum-based theories and a
new theory derived in this thesis. It is found that the FEM results agree with different
theories depending on whether or not the outer-membrane surface is charged.

In the second study an existing molecular dynamics (MD) algorithm is used to simulate
concentration differences across pores connected to bulk reservoirs. The algorithm is found
to require a modification at high solute concentrations, which had not previously been
considered.

In the third study the modified MD algorithm is used to investigate possible non-continuum
and non-ideal effects on concentration-gradient-driven flows at high solute concentrations.
Entrance effects are considered in the context of diffusio-osmotic flows, which are flows
driven by forces acting on the inhomogeneous fluid layer near the membrane pore surfaces
as a result of an applied concentration gradient. The access diffusio-osmotic resistance,
which is the resistance to the diffusio-osmotic flux associated with the fluid streamlines
bending into and out of the pores, is calculated and compared with a new theory that is
derived in this thesis. The assumptions made in deriving the new theory include, amongst
others a dilute solution and continuum theory. Despite these assumptions, the theory pre-
dicts the correct scaling of the MD results at two different high solute concentrations.

It is found that both electrical and diffusio-osmotic access resistances can be separated
from their respective total (access and pore) resistances. Depending on whether the length
scales of interest, such as the pore radius, are comparable with the pore length, the access
resistance can be a significant factor in determining the total resistance of the system. This
is explored in this thesis in the context of both electrical and diffusio-omsotic resistance,
which affect a wide range of different systems.
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INTRODUCTION

1.1 SIGNIFICANCE OF SOLUTION TRANSPORT

Solution transport processes occur in a wide range of natural and artificial systems such
as cell membranes,® kidneys,? and membranes for desalination and filtration.'® In kidneys,
urea waste is filtered from water and salt, while in desalination, salt is filtered from water.
Both of these processes require energy to produce gradients in electrolyte concentration.
Conversely, energy can be produced by mixing solutions of different electrolyte concentra-
tion. As an example, this form of energy is harvested in electric eels (Electrophorus electricus)
to defend themselves and subdue prey.'* Electrolyte concentration gradients are a source
of chemical potential energy. They can be created with an input of energy or converted
to different forms of energy. Natural systems are typically more efficient at converting dif-
ferent forms of energy to chemical potential energy than synthetic systems. For example,
kidneys reclaim water from waste using 30 times less energy than is required in desalina-
tion.'* These natural systems could be mimicked to build next generation membranes for
desalination, filtration, and energy harvesting, which may help to solve some of the world’s
biggest problems, such as depleting potable water resources, '3 and increasing pollution due
to reliance on fossil fuels.# Understanding how solutions are transported in both natural
and artificial systems is the key to improving membrane-based technologies. One of the
barriers to improving these technologies is the significant resistance to solution transport
that is encountered at the entrance and exit of the membrane pores.*37'57'7 This occurs
due to the dramatic transition between the bulk solution and the confined fluid within the
membrane pores.’” In this thesis, solution transport phenomena will be examined with a
focus on entrance effects, which refer to the effect of both the entrance and the exit of the
membrane pores. It is the hope that this knowledge will be used by experimentalists to
improve our technology, environment, and quality of life.

1.2 THEORY OF SOLUTION TRANSPORT

All of the processes mentioned above involve the transport of solutions across porous mem-
branes in response to applied forces. For most types of solutions, in general, the forces can
be gradients in pressure p, solute concentration c, or electrical potential ¢ (Figure 1.1).%*8
A gradient in pressure causes solutions to flow from regions of high to low pressure."
Similarly, osmotic flows are driven by the osmotic pressure difference arising from different
solute concentrations on either side of the membrane.%*° When the solute is adsorbed or
depleted at the surface of the membrane pores, a secondary flow occurs due to an osmotic—
pressure difference that develops within the interfacial fluid layer near the pore surface, in
a process known as diffusio-osmosis.** For pressure-driven flows, osmosis, and diffusio-
osmosis, the solute does not need to be charged.>>*>3 However, in order for a flow to occur
due to an electrical potential gradient (electro-osmosis) the solute must be charged.?+25

1.2.1  Fluid flux: bulk vs surface phenomena

The most intuitive way to drive a flow of fluid is by applying a pressure gradient. This
acts as an internal force on the fluid, which drives it from regions of high to low pressure.
Pressure gradients can either be applied mechanically (eg. using a piston), or by using a
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Figure 1.1: Forces driving solution flow through porous membranes. The flows through the pores
are driven by differences in pressure p, concentration c, or electrical potential ¢.

Figure 1.2: Bulk flow profile inside membrane pore.

Figure 1.3: In the presence of a concentration gradient, fluid is transported across a pore that has a
net solute adsorption (or depletion) at its surface. Due to the inhomogeneity in the fluid
at the pore surfaces, an osmotic pressure gradient develops parallel to the wall within
the interfacial fluid layer near the surface due to an applied concentration difference. The
pressure near the surface is larger at the high concentration side of the surface than at
the low concentration side. The difference in pressure along this region pushes the solute,
along with the solvent, down the concentration gradient. If there is a net solute depletion
then the flow generally reverses.

solute concentration gradient (osmosis). In each case the forces act on the bulk fluid within
the pore, which results in a parabolic flow profile (Figure 1.2).2°

Flows may also be driven by forces acting on the fluid near the pore surfaces, where
there are inhomogeneities in solute concentration. These include diffusio-osmosis?¥%7?® and
electro-osmosis.*? Diffusio-osmosis occurs when a concentration gradient is applied across
a porous membrane that has a net solute adsorption or depletion at the surface of the
membrane pores.?® Figure 1.3 illustrates diffusio-osmosis. In this diagram, there is a net
solute adsorption at the pore surfaces. When a concentration gradient is imposed across
the pore, an osmotic pressure gradient develops within the interfacial fluid layer, which
drives the fluid through the pore.?3> When the solute is charged, a flow may also be driven
by an electric field.'” Figure 1.4 shows the fluid near the surface for an electrolyte near a
charged surface. Due to different interactions of the ions with the surface, the counter-ions
(ions of opposite charge to the surface) and co-ions (ions of the same charge as the surface)
differ in concentration from the bulk electrolyte far from the pore surfaces. If an electri-
cal potential difference is applied across the pore then a flow arises due to electro-osmosis.
Electro-osmosis works by the electric field acting on the predominance of counter-ions close
to the pore surfaces.? In both diffusio-osmosis and electro-osmosis, the flows are driven
by forces acting on the fluid near the pore surfaces. Therefore, they have a characteristi-
cally plug-like flow profile3° (Figure 1.5), with the length scale on which the flow profile
varies near the interface related to the length scale on which the solute concentration profile
varies.3!
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Figure 1.4: Ion distribution away from charged pore wall.

Figure 1.5: Surface-driven flow profile inside membrane pore.

1.2.2  Solute flux

When solvents flow through nanoporous membranes, solutes are also transported along
with them.3* Solutes are transported by diffusion down a concentration gradient, convec-
tion with the solution, and migration in an electric field (charged solutes only).33 Figure 1.6
illustrates these different mechanisms of solute transport for a binary electrolyte. In the di-
agram, both a concentration gradient and an electrical potential gradient are present across
the membrane, which drives a flux of solution. In this case there will be a flux of solute due
to diffusion, migration in an electric field, and convection.

1.2.3 Entrance effects

Both solutes and solvents experience a resistance as they travel through a pore.3* There
is resistance to the fluxes within the pore, which is called the pore resistance, and at the
pore entrances, which is called the access resistance.3> The pore resistance occurs due to
viscous frictional, and electrostatic forces acting on the fluid by the pore walls. It is typically
significant for long pores and can become negligible for short pores.3® In contrast, the access

Figure 1.6: Mechanisms of ion flux through nanopores. Ions flow from regions of high to low concen-
tration due to the concentration gradient, the applied electric field, and due to convection
with the solvent.
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Figure 1.7: Diagram showing fluid streamlines/electric field lines bending into and out of a pore
connected to bulk reservoirs.

resistance occurs due to the fluid streamlines and electric field lines bending into and out
of the narrow pore from the bulk reservoirs (Figure 1.7).'7373% By definition it does not
depend on the length of the pore so it becomes the limiting resistance for short pores>'7
and pores with low friction (such that the pore resistance is negligible). 37 Note well that
the separation of the pore and access resistances from the total resistance is an assumption.

1.2.3.1  Access electrical resistance

The access electrical resistance is the electrical resistance (resistance to electrical current car-
ried by the solution) encountered at the pore entrance and exit.? In 1975 it was considered
by Hall3 to be the convergence resistance from a hemispherical electrode at infinity to an
equipotential disk covering the pore surface. The theory by Hall is often used to describe
the access electrical resistance.37:394° However, it does not take into account surface charge,
which is known to affect the access electrical resistance. %716

Lee et al.” derived an equation for the access electrical resistance of a charged pore. How-
ever, this equation was obtained heuristically, and has not been tested systematically against
numerical calculations. The derivation did not make any assumptions about the surface
charge on the surfaces of the membrane facing the bulk reservoirs, which is known to re-
duce the access electrical resistance relative to the predictions using the theory by Hall. %

1.2.3.2 Access diffusio-osmotic resistance

Not much is known about the access diffusio-osmotic resistance, being the resistance to
diffusio-osmotic flow encountered at the entrance and exit of a pore. However, a similar
quantity has been known since the 1800s. In 1891, Sampson +' calculated the pressure-driven
solution flux through a circular orifice in an infinitesimally thin membrane. This has since
been used to describe the access hydrodynamic resistance to a pore.'>374>5° However, there
is currently no equation to describe the access resistance due to diffusio-osmotic flux.

1.3 CONTINUUM MODELLING OF SOLUTION TRANSPORT

At the scale of a few nanometres or more, it has been found that solution transport phenom-
ena may be adequately described under the continuum assumption, which treats the fluid
as a continuous medium.>*

In the continuum assumption the motion of fluids in response to forces is governed by
the laws of fluid mechanics. These are derived from the law of conservation of mass and
Newton’s second law, which relates the force F' to the mass m and acceleration a through
the formula F' = ma. The Navier-Stokes equations relate the external and internal forces
on the fluid to its velocity. This assumes that the fluid is a continuous medium and that
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molecular effects can be ignored. This is a reasonable assumption at low Knudsen numbers,
being the ratio of the molecular interaction length scale to the characteristic length of the
system.>* By this definition the length scale at which continuum hydrodynamics breaks
down for liquid water is ~3 nm.>*

For an electrolyte the flow equations may also be coupled with equations for the elec-
trical potential and salt concentration, in which it is generally assumed that the ions are
uncorrelated point particles that interact only through electrostatic forces.>3 These are the
Poisson equation, which relates the electric field flux to the charge density, and the Nernst-
Planck equations, which relate the ion fluxes to the fluid velocity, concentration gradient,
and electric field (see chapter 2.1). In addition to ignoring molecular effects these equations
also assume an ideal (dilute) solution.

1.4 MOLECULAR EFFECTS ON SOLUTION TRANSPORT

In order to relax the assumptions of continuum hydrodynamics the fluid may be treated
explicitly as a collection of molecules through molecular dynamics (MD) simulations. In
simulating a molecular fluid in this way, the quantum effects on the dynamics are ignored
and the molecules interact with each other as classical particles. Their interactions are de-
fined by an intermolecular potential that generally includes van der Waals, electrostatic,
bonded, angle, and dihedral contributions. Newton’s equations of motion are then solved
numerically using the negative gradient of the intermolecular potential as the force, and the
system is evolved with time (see chapter 2.2).5%

It is not a simple matter to simulate a concentration gradient in MD, especially when
using periodic boundary conditions to simulate a bulk fluid. Figure 1.8 illustrates one of
the problems for a naive application of periodic boundaries. The periodic boundaries con-
nect the high and low concentration sides of the membrane, allowing them to mix. There
are several methods one can use to simulate a concentration-gradient-driven flow in MD.
These include transient-flux simulations, stochastic simulations with particle insertions and
deletions, and deterministic simulations in which an external field is applied to the system.

The simplest method to simulate a concentration gradient in MD is to use two reservoirs
with different solute concentrations on either side of a porous membrane and measure the
transient flux through the membrane. Many studies have used this method.>5757 For exam-
ple, Kalra et al.>® simulated the transient flux of water from a pure water reservoir sand-
wiched between two carbon nanotube membranes towards salt water reservoirs on either
side (Figure 1.9). There is a major problem with using this method to simulate concentration-
gradient-driven flows, which is that the concentration gradient changes throughout the
simulation, so statistical averaging to measure flow properties is poor unless very large
reservoirs are used, which is inefficient.

Various Monte Carlo algorithms have been devised to simulate a constant chemical po-
tential gradient in MD.5%%* For example, Heffelfinger and Swol 3 devised a method called
dual control volume grand canonical molecular dynamics (DCV-GCMD). In this method

Figure 1.8: Problem with simulating concentration gradient in system with periodic boundaries (de-
noted by dashed vertical lines). The two bulk solution reservoirs are in direct contact
through periodic boundary conditions and will readily mix.



6

INTRODUCTION

Figure 1.9: Transient flux simulations. Pure water is sandwiched between two carbon nanotube mem-
branes with salt water on either side. The pure water flows through the membrane to-
wards the high solute concentration sides until the water reservoir is depleted. (image
source: Kalra, A.; Garde, S.; Hummer, G. Proceedings of the National Academy of Sciences of
the United States of America 2003, 100, 10175-10180.5°)
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Figure 1.10: Dual control volume grand canonical molecular dynamics. Solute chemical potentials
are maintained in the two control regions using a Monte Carlo algorithm. (Image source:
Heffelfinger, G. S.; Swol, F. v. The Journal of Chemical Physics 1994, 100, 7548-7552.5%)

the two reservoirs are maintained at constant chemical potentials using a grand canonical
Monte Carlo algorithm, which inserts, deletes, and moves solute particles in the two reser-
voirs randomly in order to maintain their chemical potentials (Figure 1.10). However, for
simulations at liquid densities, these particle insertions are extremely inefficient. For exam-
ple, in Zheng et al. > 100-150 stochastic steps were required for each MD time step. Another
problem with DCV-GCMD is that the stochastic nature of these simulations interrupts the
course of MD simulations, which are deterministic.

To address the problems with stochastic simulations of concentration gradients, one can
use an algorithm that simulates a constant chemical potential gradient by applying an ex-
ternal field to the solute and solvent particles.&31'47'63 For example, Liu et al.4” used forces
to model a chemical potential gradient to calculate transport diffusion of methane, and
Yoshida et al. 3" used a force on each solute particle, and a counter-force on each solvent par-
ticle to model a constant chemical potential gradient. These methods do not explicitly sim-
ulate concentration differences. On the other hand, the algorithm by Khalili-Araghi et al.®
works by applying forces to the solute and solvent particles only within thin regions at
the ends of the periodic simulation cell. This method establishes a concentration difference
across a membrane, which drives flow of solute and solvent across it. Figure 1.11 illustrates
this method. Using this method Khalili-Araghi et al. were able to accurately reproduce ex-
perimental results of ion selectivities and open-circuit voltages (applied electrical potential
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Figure 1.11: Diagram showing transition regions where forces are applied to solute particles for non-
periodic energy step method. The force is applied to solute particles at the ends of the
simulation cell within thin slabs of width d/2 each. The energy step fixes the chemical
potential gradient across the membrane. (Image source: Khalili-Araghi, F.; Ziervogel, B.;
Gumbart, J. C.; Roux, B. Journal of General Physiology 2013, 142, 465-475.5)

differences at zero current) across a bacterial OmpF protein pore, which is a wide cation-
selective pore present in the outer membrane of Escherichia coli.>3 The algorithm was shown
to be able to accurately simulate ion fluxes at low salt concentrations. This algorithm will
be explained in more detail in section 2.2.6.

1.5 PROJECT OUTLINE

A wide range of solution transport processes can be described by considering a combination
of several general different transport phenomena. Understanding these phenomena using
general models has implications for many different processes such as desalination, filtration,
and energy harvesting.'? It is the goal of this thesis to shed some light onto these transport
phenomena with a particular focus on entrance effects.

For electrolyte transport, the access electrical resistance caused by the bending of electric
tield lines into the narrow pore from the bulk reservoirs can become the limiting factor for
ion transport in short pores and pores with low friction. There are several theories for the
access electrical resistance. The earliest theories assume that the pore is neutral,>3 which
often does not hold. A more recent theory by Lee et al.” considers the pore to be charged
but makes no assumptions about the surface charge on the outer-membrane surface. There
is currently no general theory for the access electrical resistance of charged pores in charged
membranes. Therefore, it is the aim of this thesis to clarify the scaling of the access electrical
resistance with surface charge density, salt concentration, and pore radius for pores with
charged versus uncharged outer-membrane surfaces. The scaling will then be compared
with existing theories, and the deviations from the theories will be discussed. Furthermore,
a new theory will be derived that accurately describes the access electrical resistance for
charged pores in charged membranes.

The conventional continuum equations for solution transport assume an ideal (dilute)
solution.® Tt is difficult to derive continuum equations for studying non-ideal solutions
(such as mixtures of arbitrary mole fraction). In this case MD simulations are more amenable
to studying solution transport. However, constraining the concentration difference across
a membrane pore is difficult to do in MD due to the periodic boundary conditions that
are used to simulate a bulk fluid. Due to periodic boundary conditions the two solution
reservoirs are in direct contact and are able to mix in the absence of applied forces. Several
different strategies have been used to overcome this problem, as outlined above.
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In this thesis the algorithm by Khalili-Araghi et al.® will be used, but with a modification
to allow it to function properly at high solute concentrations. The modified algorithm will
be used to simulate diffusio-osmotic flows through pores of different lengths in order to
investigate the entrance effects associated with diffusio-osmosis, which has not been pre-
viously studied systematically. In particular, the non-continuum and non-ideal effects on
the access diffusio-osmotic resistance will be investigated by comparing it with continuum
theory. A new continuum-based equation for the diffusio-osmotic flux and solute flux that
takes into account the access resistance will also be derived.
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2.1 CONTINUUM MECHANICS

The continuum assumption is often used for describing electrolyte transport across nanoporous
membranes. In this description, the fluid is considered as a continuous medium. This is a
reasonable assumption at a low Knudsen number, which is the ratio of the molecular in-
teraction length scale to the characteristic length of the system. By considering this length
scale for liquid water, it was found that the continuum assumption is likely to break down
when the smallest dimension of the nanofluidic system (eg. the pore radius) is smaller
than ~3nm.>* To model fluid transport under the continuum assumption the Navier-Stokes
equations are generally used. At the nano scale these equations can be simplified by ignor-
ing the inertial terms of the equations. This is justifiable for flows with a low Reynolds
number, being the ratio of inertial forces to viscous forces on the fluid. This assumption
is justifiable in modelling flows through nanopores as these are generally dominated by
viscous forces.>?

The continuum equations for describing the transport of an electrolyte with equal anion
and cation valences (Z:Z electrolyte) are the Poisson equation for the electrostatic potential
¢, the Nernst-Planck equations for the solute flux j; of species i, the Stokes equations for the
fluid velocity u, and pressure p, along with the continuity equation for an incompressible
flow:

—eegV2p = Ze(cy —c_); (2.1)
V-j4i=V-(cu—Zeric;N¢—D;Vc;) =0; (2.2)
uViu = Vp+eZ(cr —c-)V¢; (2.3)
V-u=0. (2.4)

Here, € is the dielectric constant, €g is the permittivity of free space, e is the elementary
charge, Z is the absolute valence for a Z:Z electrolyte, Z; are the ion valences for a Z:Z
electrolyte (Z; = —Z_ = Z), ¢4 and c_ are the cation and anion concentrations, respectively,
Ji are the ion fluxes (i = + or —), ¢; are the ion concentrations, A; are the ion mobilities,
D; are the ion diffusivities, and u is the fluid viscosity. The diffusivities are assumed to be
related to the mobilities through the Einstein relation (A; = D;/kgT, where kg is Boltzmann’s
constant, and T is the temperature). These equations are known as the Poisson-Nernst-
Planck-Stokes (PNPS) equations. In using these equations a dilute electrolyte is assumed.

2.1.1 Finite element method

In general the PNPS equations cannot be solved using analytical methods. Therefore, nu-
merical methods must be used to solve them. In this thesis the finite element method (FEM)
was used to solve the PNPS equations via COMSOL Multiphysics ® version 4.3a%. In FEM



10

COMPUTATIONAL METHODS

Il

Surface

Figure 2.1: Finite element mesh. Thin boundary layers were used at the solid boundary, which is
where quantities such as the electrical potential vary sharply.

mesh
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Figure 2.2: Pore geometry for solving PNPS equations via the finite element method. The boundaries
CDEF represent the solid membrane and pore surfaces, while the other boundaries are
liquid-liquid boundaries. The geometry has rotational symmetry about the boundary
AH.

the partial differential equations (PDEs) are discretized into a set of numerical model equa-
tions, which are then solved on a compuational grid, called a mesh. A mesh consists of all
the points at which the model equations are solved. The solutions to the model equations
approximate the true solutions to the PDEs.

In FEM the distribution and density of mesh points is chosen such that, for a given
geometry and system of equations, the solutions do not change when the density of the
mesh points is increased. A finer mesh is used in regions where the solutions vary sharply.
Figure 2.1 shows an example of a mesh composed of thin boundary layers. The mesh is finer
in the direction perpendicular to the surface, which is where variables such as the electrical
potential and ion concentrations vary sharply.

2.1.2 Pore model

To study electrolyte transport across a porous membrane only a single pore was consid-
ered. In this thesis it was assumed that the effects of neighbouring pores were negligible
and that the pores in the membrane were monodisperse (meaning they were all the same
size). Many synthetic pores, such as carbon nanotubes, can be manufactured with a nar-
row distribution of pore sizes.®® Furthermore, for a large aspect ratio (length to diameter
ratio) of the pores, the effect of neighbouring pores becomes small.®” Therefore, these are
reasonable assumptions to make. Figure 2.2 shows the model that was used in this thesis to
study the continuum effects on electrolyte transport with the FEM mesh superimposed. It
consisted of a single cylindrical pore between two cylindrical reservoirs. The geometry has
rotational symmetry about the boundary AH. This greatly reduces the computational cost
of the calculations. The size of the reservoirs was chosen to match those used in a previous
study.’

In order to solve the PNPS equations a set of boundary conditions are required. The
boundary conditions that were used for this study are listed in Table 2.1 with respect to the
boundaries in Figure 2.2. Conventionally, the fluid velocity is assumed to be zero at the solid
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Table 2.1: Boundary conditions for solving PNPS equations. The vector 7 is the surface normal, while
superscripts I and II refer to phases I and II, respectively. In general, the surface charge
density o of the pore was different from the surface charge density oy, of the membrane.

Boundary Conditions

AH n-Vog=n-Ve=n-u=n-Vu=0
AB p=¢,c,=c_=c,p=0
GH p=¢N,ci =c.=,p=0
BC&FG #n-Vog=n-ji=n-u=n-Vu=0

CD&EF #n-V¢=—0on/(eg), n-ji=n-u=0
DE V¢ =—0/(eep), N -ji=hn-u=0,A-Vu=u/b

S>>

surfaces. However, for low-friction surfaces the fluid velocity at the surface is non-zero due
to fluid slip. This effect is particularly relevant to nanoscale flows due to the high surface
area to volume ratios. The degree of fluid slip at the surface is quantified by the slip length,
being the distance from the surface at which the linearly extrapolated velocity profile goes
to zero (Figure 2.3). In this thesis the fluid velocity at the outer-membrane surfaces (CD and
EF) was assumed to be zero (u = 0), while at the pore surface (DE) the fluid velocity was
given by the Navier partial slip condition (7 - Vu = u/b with b the slip length).

2.1.3 Access electrical resistance

The total electrical resistance Rt of a nanopore is a combination of the access electrical
resistance R, of each pore end and the pore electrical resistance Ry,. It may not be possible
to separate these in practice. However, in ref. 1 it was shown that in many cases the access
electrical resistance does decouple from the pore electrical resistance. In this case the total
electrical resistance is approximated by

Rt =2Ra + Rp. (2.5)

In the limit that the pore electrical resistance is negligible, the total electrical resistance is
equal to twice the access electrical resistance of a single pore end.

7

Slip length, b ¢, Wall

f”
.

Flow with slip length, b

Figure 2.3: Definition of slip length, being the distance from the surface at which the linearly extrap-
olated velocity profile is equal to zero.
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Figure 2.4: Diagram of potential drop over reservoirs.

In calculating the access electrical resistance no gradients of salt concentration or fluid
pressure were applied across the pore, but different electrical potential differences were
applied and the resulting currents I were calculated by

I = 27'£Ze/ drr(js+ —3-)- 2, (2.6)
0

where r was the radial coordinate, defined as the radial distance from the centre of the pore,
a was the pore radius, and j, and j_ were the fluxes of the cations and anions, respectively,
and 2 is the unit vector in the axial direction. In this way a current-voltage curve was
obtained, which was used to calculate the resistance of the nanopore from the inverse of the
slope.

There are several ways that the access electrical resistance can be calculated. The most
straightforward way is to calculate the electrical potential drop over the reservoirs and
divide it by the current through the pore (cf. Yan et al.37), which due to charge conservation
is the same as the current through the reservoir. Figure 2.4 illustrates this method, which
will be referred to as the “potential drop method”. Here L is the pore length, w is the
reservoir length, A¢app is the applied electrical potential difference, I is the electrical current
through the pore, ¢! and ¢! are the electrical potentials far from the pore entrances, ¢' and
¢! are the electrical potentials at the pore entrances, and AP®® and APR® are the electrical
potential drops across the left and right reservoirs, respectively. In this method the potential
drops over the reservoirs are measured at different applied potentials (and hence different
electrical currents), which results in a current-voltage curve for each reservoir. The access
electrical resistance for each pore entrance is then calculated from the inverse slope of the
current-voltage curves for each of the reservoirs (Figure 2.5). The access resistance for one
pore entrance is then given by the average access resistance over the two pore entrances.

Another method for calculating the access electrical resistance is to measure the total
resistance (Rt = A¢app/I) for different pore lengths and extrapolate to zero pore length
using a linear fit to the data. This will be referred to as the “length method” (Figure 2.6).
In this method the access electrical resistance is approximated by half the total resistance in
the limit of zero pore length. This assumes that the access electrical resistance is uncoupled
from the pore electrical resistance (does not depend on pore length).

For pores with high slip lengths, the pore resistance becomes negligible.37 Therefore,
the access resistance may also be calculated from the total resistance in the limit of infinite
slip length. This is accomplished by fitting the total resistance versus slip length data to
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Figure 2.5: Example current-voltage curve for calculating the access resistance via the potential drop
method. The points are from numerical calculations while the line is a linear fit.
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Figure 2.6: Example of total resistance versus pore length. The access resistance for two pore en-
trances is estimated from the limit of the total resistance as the pore length approaches
zero. The points are from numerical calculations while the line is a linear fit.

Rt = A+ (B+Cb)~!, where A, B, and C are fitting parameters. The access resistance
is then given by half the total resistance at infinite slip length (i.e. A/2). This scaling of
the total resistance with slip length is quite general and holds in many cases for which
analytical expressions can be derived, including ion-selective pores, thin electric double
layers, and small electrostatic surface potentials, as shown in ref. 1. Figure 2.7 shows an
example of calculating the access resistance by this method, which will be referred to as the
“slip method”.

A comparison of the different methods for calculating the access electrical resistance is
given in chapter 3.
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Figure 2.7: Example of total resistance versus slip length. The access resistance is approximated as
half the total resistance at infinite slip length. The points are from the numerical calcu-
lations while the curve is a fit to Ry = A + (B + Cb)~!, where A, B, and C are fitting
parameters.

2.2 MOLECULAR DYNAMICS

When modelling flows through nanopores with extreme surface confinement, such as pores
with diameters of several solvent molecular diameters, the fluid can no longer be considered
as a continuous medium. In this case the molecular nature of the fluid must be taken into
account. Furthermore, for non-ideal solutions there is no general analytical equation for
the chemical potential of a mixture. In order to relax these assumptions the fluid can be
modelled explicitly using molecular dynamics (MD).

In classical MD the solute, solvent, and solid are all treated as explicit classical particles
that interact with each other via a realistic intermolecular potential (force field). The pa-
rameters used in the force field are often derived from experiments or quantum chemical
calculations so as to model a real system. Once the force field has been specified there are
four basic steps to an MD simulation:

1. Give the particles initial positions r; and velocities v;, which are sampled from a
specified distribution (Gaussian distribution used in this thesis) to give the desired
temperature T.

2. Calculate the forces on all particles from the negative gradient of the force field
F,(rN) = —V;U(rY), which depends on the positions of all of the N particles, .

3. Numerically integrate Newton’s equations of motion

dz’l“i

N
Ei(r™) =mi—y

= —VZ‘U(T‘N), (27)

d2 T

where m; is the mass of the ith particle with acceleration “37.

4. Increment simulation time by the time step At and update r; and v;.

The last three steps above are repeated until the properties of the system no longer change
with time. This is when the simulation has reached a steady state (eg. equilibrium). After
the system has reached a steady state the properties of interest are computed.

The above algorithm is for simulations of systems with a constant number of molecules,
volume, and energy (NVE), known as the microcanonical ensemble. To simulate a system
that also has a constant temperature, which is how the simulations in this thesis were carried
out, a thermostat must be applied to the system. This will be discussed in section 2.2.4.
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2.2.1  Force field

The force field gives the potential energy due to bonded and non-bonded interactions be-
tween atoms. The equation for the total potential is

utotal = ubondecl + unon—bondedr (28)

where Uponded is the potential for the bonded interactions and Upon—bonded 1S the potential
for the nonbonded interactions. The equation for the bonded potential is

Ubonded = Upond + uangle + Udihedral, (2.9)

where Upong is the potential due to bond vibration, Uangle is the potential due to angle
bending, and Ugjhedral is the potential due to dihedral twisting. The equation for the non-
bonded potential is

Unonfbonded = uvdw + uelectrostaticz (2'10)

where U, g, is the potential due to van der Waals forces, and Upgjectrostatic is the potential due
to electrostatic interactions. The different interactions contributing to the total potential are
illustrated in Figure 2.8.

One of the simplest fluids to model in MD is the Lennard-Jones fluid. In this model only
non-bonded (van der Waals) forces between particles are considered. The force field for the
Lennard-Jones fluid is given by

o £ ()" ()]

where 7;; is the distance between the it" and jth particle, €;; is the well depth of the potential
energy between particles i and j, and 0} is the distance between them at which the potential
is zero. By tuning the €;; and 0;; values different fluids can be modelled.

The Lennard-Jones potential is a reasonably accurate model for the interactions in simple
non-polar fluids, such as liquid argon and methane. The benefits of the Lennard-Jones
fluid are that it is computationally cheap to run, while still allowing for a systematic study
of transport phenomena without reference to any particular real system. Therefore, it is
useful for giving qualitative scaling laws, which are applicable to any solute and solvent
mixture.

Uvdw/electrostatic

o)
S N
r + Uangle
Ub d
or; Udihedral
— o

71\

Figure 2.8: Contributions to intermolecular potential.

15



16

COMPUTATIONAL METHODS

For the fluids studied in this thesis, a binary mixture of solute and solvent particles that
interacted via van der Waals forces only was considered (no Coulombic forces). Therefore,
the Lennard-Jones fluid model was employed. The solute and the solvent were identical
but for their interaction with the solid surfaces.

2.2.2  Periodic boundaries

To simulate a bulk fluid periodic boundary conditions must be used. For simulation box
lengths of L,,(m = x,y, or z) the following procedure is followed for the x coordinate of
particle i, x;, with analogous equations applying for the y and z coordinates:

if xi > Ly, x; — (xj — Ly), (2.12)

Zf x <0,x; — (xi + Lx). (2.13)

Therefore, when a particle travels farther than the box length in any direction, it appears
back on the other side of the simulation cell (Figure 2.9). This essentially simulates an
infinite number of simulation cells in each direction.

Calculating the non-bonded forces between all particles explicitly in an infinite array of
simulation cells would be impossible. Therefore, the minimum-image convention is used to
calculate the forces between particles and their periodic images. In this convention only the
closest periodic image of the particles contribute to the force. For two particles i and j, and
the periodic image of j (j') the minimum image convention is

if xij > Lx/2,x;; — (xjj — Lx), (2.14)

if xij < —Lx/2,xjj = (xij + L), (2.15)

where x;; is the distance between particles i and j in the x direction (similar conditions are
used for y;; and z;;). If the distance between particles i and j is larger than half the simulation
box length, then the force between particles i and the |’ is calculated instead (Figure 2.10).

Figure 2.9: Periodic boundary conditions. When a particle travels father than the box length in any
direction it appears back on the other side of the simulation cell. This essentially simulates
an infinite array of simulation cells in each direction.
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Figure 2.10: Minimum image convention. The force between i and ' is computed instead of the force
between i and j, according to the minimum image convention.

2.2.3 Cut-offs
In order to avoid explicitly calculating the non-bonded forces between each particle and all
other particles in the system, which would preclude molecular simulations on the scales of

interest, forces are only calculated between particles within a cut-off radius r.. The simplest
method of achieving this, which is used in this thesis, is the simple cut-off potential,

<
Ue(r) = { (L)[VdW(r)’ Tt (2.16)
, r>re

2.2.4 Thermostat

The methods described above make it possible to simulate a system with a constant number

of particles, volume, and energy (NVE), which is known as the microcanonical ensemble.

However, to simulate a realistic experimental system, the number of molecules, volume, and
temperature (NVT) should be held constant, which is known as the canonical ensemble. In
order to keep the temperature constant a thermostat needs to be applied to the system. The
thermostat used in this study is the Nosé~-Hoover thermostat.®® This thermostat works by
modifying the equations of motion according to

7 = p;i/m;, (2.17)

pi = F(r;) — {p;, (2.18)

and

N
(= [Zpiz/mi — XkgT| /Q. (2.19)
i=1

Here, p; are the particle momenta, X is the number of degrees-of-freedom, { = % (s = %
is a scaling factor for the virtual time 7), and Q is the coupling constant for the heat bath
that is in direct contact with the system.>*

17
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When there is a net flow of fluid ocurring in the system the fluid velocity field should
be separated from the particle velocities before computing the temperature to prevent the
thermostat from perturbing the fluid flow. To subtract the fluid velocity field it is assumed
that the velocity of each particle 7; can be broken down into a random thermal velocity v;,
and a streaming velocity u(r;),

T = v; + U(Ti). (2.20)
The streaming velocity depends on the coordinate r according to

_ Zf\il miﬁié(ri — 7')
Zfil mié(ri — T)

where ¢ is the Dirac delta function. The notation for the density in equation 2.21 is com-
monly used in statistical physics and implicitly assumes a spatial integral, which is achieved
in MD simulations by a spatial average over bins. 9 The spatial integral is defined, even
though 6 may not be defined at a particular point in space. Equation 2.2 is evaluated by
splitting the simulation box into finite-sized bins and summing over the bins after each
time step. This is only reasonable when there are a large number of particles in each bin.
The streaming velocity is then subtracted from the particle velocities at each time step before
the temperature is computed. The equation for the temperature is given by

u(r) (2.21)

d N - NxN NZ N
( 5 Y )kBT(’I") — Z
i=1

m;(v; — u(r))z, (2.22)

N[ =

where d is the dimensionality of the system, and N, N,, and N, are the numbers of bins
in the x, y, and z directions, respectively.”® Equation 2.22 suggests that there are three con-
straints for every bin. The summation in equation 2.21 is an instantaneous sum over the
bins. Therefore, using three constraints for each bin in equation 2.22 is only reasonable
when there are a large number of particles per bin. When applying a thermostat to a fluid
undergoing flow the average fluid velocity field is subtracted from the total particle ve-
locities before the thermostat is applied. After the thermostat is applied the average fluid
velocity field is then added back to the particles. In this way the thermostat is applied only
to the thermal velocities of the particles, while the streaming velocities remain unchanged.
This method is called the profile-unbiased thermostat (PUT).% In this thesis the normal
Nosé-Hoover thermostat was used for equilibration simulations, while the Nosé-Hoover
PUT was used for the concentration-gradient-driven flow simulations.

2.2.5 Pore model

The systems considered in this thesis comprised a single nanopore in between two walls,
both made of the same solid particles as the pore, with solute and solvent particles on either
side. During the simulations a thermostat was applied to the fluid particles but not to the
solid particles. Instead, they were frozen in place during the course of the simulation. There
are some possible limitations to applying a thermostat directly to the fluid as opposed to
applying a thermostat to the wall particles and allowing them to naturally heat the fluid.
For example, in ref. 71 different density and velocity profiles were observed for highly
confined fluids undergoing Couette flow when a thermostat was applied to the fluid directly,
compared with when it was heated naturally by applying a thermostat to the wall. For the
systems in this thesis, applying a thermostat to just the wall particles and allowing the fluid
to be naturally heated would be very inefficient due to the large number of fluid particles
compared with wall particles. However, the effect of applying a thermostat directly to the
fluid compared with applying a thermostat to the wall and allowing the wall to heat the
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Figure 2.11: Initial particle positions for MD simulation. The blue particles represent the solvent,
while the black particles represent the solid.

fluid is unlikely to affect the results presented in this thesis. This is because the smallest
pore diameter considered here is larger than the systems in ref. 71, and the fluid velocities
are orders of magnitude smaller.

In order to equilibrate the system at the desired pressure, pistons made of solid particles
were used on either side of the simulation cell to compress the fluid into the pore such that
it was at the desired pressure. The initial positions of the particles were generated using the
Moltemplate software package,”> while the Ovito software package”3 was used to remove
wall atoms at the pore ends to open the pore. Figure 2.11 shows an example of one of
the simulations before equilibration. Image snapshots were taken using the Ovito software
package.

The forces applied to the piston particles were initially set such that the total pressure ex-
perienced by the pistons was +p for the left and right pistons, respectively, where p was the
target pressure of the fluid. As the pistons compress the fluid, the fluid exerts a force back
onto them, corresponding to a pressure Fp’. Each time step the force on the piston particles
was set such that p — p’ = 0. After the pistons had reached their equilibrium positions they
were then frozen in place and the fluid was allowed to equilibrate (Figure 2.12).

For the equilibration the system was periodic in the lateral (x and y) directions and finite
in the axial (z) direction. Once the system had been equilibrated the pistons were removed
and the simulation cell was shortened in the z direction such that the system matched
up with its periodic image in that direction (Figure 2.13). Particle overlap at the periodic
boundary was avoided by making the new simulation cell length in the z direction equal
to the distance between the pistons at the end of the equilibration minus ¢. The value of ¢
was chosen as the Lennard—-Jones diameter of the solid and the solvent used were both ¢.
Therefore, when o was subtracted there were no gaps and also no particle overlap between
the periodic images.

The equilibration was initially carried out with only solvent particles in the fluid. Fol-
lowing the equilibration a fraction of the solvent particles were set to be solute particles in
each reservoir such that the desired concentration ratio was achieved. To avoid problems
associated with shortening the z direction abruptly, the new system that was periodic in

X

y

p4

Figure 2.12: Final particle positions after pistons had compressed fluid into nanopore. The blue par-
ticles represent the solvent, while the black particles represent the solid.
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primitive cell periodic image

Figure 2.13: Matching simulation cell with periodic images after equilibration in MD. The blue par-
ticles represent the solvent, while the black particles represent the solid.

the z direction was allowed to equilibrate further before applying forces to the solute and
solvent particles.

2.2.6 Constrained concentration-difference algorithm

The method used to constrain the concentration difference in this thesis was that used by
Khalili-Araghi et al.®. In this method a force is applied to the solute particles at the ends of
the simulation box, far from the membrane wall (Figure 2.14). This results in a non-periodic
energy step that acts only on the solute particles within this region (called the transition
region). The non-periodic energy step modifies the statistical distribution of the particles
such that one reservoir has a higher average number of solute particles than the other.®

The force to apply to the solute particles within the transition regions in order to maintain
a concentration ratio cyy/cy, for an ideal solution of non-interacting particles can be derived
from the Boltzmann equation,

N; 1
N elei—pe) /ksT” (2:23)
f—~ f~
d/2 d/2
phase | phase Il

Figure 2.14: Diagram showing region where forces are applied in constrained concentration-
difference algorithm. Forces are applied to the solute particles within a thin slab of
width d/2 at each end of the simulation cell.
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where N; is the number of particles with energy €;, and . is the chemical potential. There-
fore, assuming that the reservoirs have equal volumes the ratio of particles with energy e;
to particles with energy €; is

cn _ Ni_ (ae/kem)

0 N , (224)

where cy and cp, are the target solute concentrations in the high and low concentration
reservoirs, respectively, and Ae = €; — €; is the energy difference between states i and j. Re-
arranging this equation gives the energy step to apply in order to enforce a concentration
ratio of cy/cy, for a system of non-interacting particles,

Ae = kgT In <CH> . (2.25)
CL

The force to apply within the thin transition regions of width d/2 at the ends of the simula-
tion cell can then be given by

f=kgTIn <CH) /d. (2.26)
cL

Khalili-Araghi et al. initially applied this force to the solute particles, but then updated the
force every time step to correct for non-ideality of the MD system using the algorithm given

by

f(t+At) = f(t) + Af(t)At/ (aT), (2.27)
where
Af(t) = —k]iTT [(In (Z;)} —1In (if) ]. (2.28)

In equation 2.28 c¢; and c; are the instantaneous concentrations of the high and low con-
centration reservoirs, respectively, « and T are tunable parameters, At is the time step, and
angle brackets indicate a time average over a period of time T immediately preceding the
current time step. The applied force is gradually adjusted such that the target concentra-
tion gradient is reached over a period of at. In this thesis, instead of updating the applied
force every time step, they were updated every 10000 time steps. This was determined to
be adequate for convergence of the simulations (see chapter 4).

Constraining the solute concentration gradient using this algorithm results in a pressure
difference at high solute concentrations (see chapter 4). This can be fixed by constraining
the total pressure difference across the pore with the application of a counter-force to the
solvent particles within the transition region. A similar algorithm for applying the forces
can be used as for the solute, except that the applied force on the solvent is initially set to
zero and updated according to equation 2.27 with

A
Af(r) = S, (229)

where Ap is the difference in pressure between the two reservoirs, far from the membrane
wall and the region where the forces are applied, A is the cross-sectional area of the simula-
tion cell, and N/ is the number of solvent particles within the transition region. The applied
force on the solvent particles was updated every 10000 time steps, as for the solute. Without
this correction to the algorithm by Khalili-Araghi et al. at high solute molar fractions the
concentration ratio does not converge to the target ratio (see chapter 4). This modification
was not discussed by Khalili-Araghi et al. but their algorithm does not restrict the species
in the solution to which the energy step can be applied.
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Figure 2.15: Calculation of standard error using the block averaging method. The standard error X
reaches a plateau with respect to the number of blocking operations when the blocks
become uncorrelated from each other. The standard error at the start of the plateau is
used as the estimate of the standard error of the mean.

2.2.7 Error estimates

In order to calculate the error bars for the MD data the block averaging method from
Flyvbjerg and Petersen’+ was used. In this method the data xq,- - - x, is transformed into
a new data set that is half as large as the original one, xﬁ,- . -x;/, where n' = n/2. This is
carried out by averaging adjacent data points using the equation:

xXi = %(xzm + x2i), (2.30)
which is known as a block average. After the block averaging is completed, the average of
the new data set remains the same as the average of the original data set. This transforma-
tion (blocking operation) is repeated until the data points become uncorrelated from each
other. This is determined by estimating the standard error in the mean after each blocking
operation using the equation

B 1 e g 1
X = n'(n' —1) k:Zl(xk ) (1 * 2(n' — 1)> ’ (2:31)
where
X = % Zn: X;. (2.32)

When the standard error reaches a plateau with respect to the number of blocking opera-
tions the block averages become uncorrelated from each other. The true standard error is
estimated from the first point at which the blocks become uncorrelated (see Figure 2.15).
The error bars used in this thesis are calculated from twice the standard error.



ACCESS ELECTRICAL RESISTANCE

3.1 ABSTRACT

When electrolytes are transported across nanoporous membranes there can be significant
electrical resistance at the entrance and exit of the pores called the access electrical resistance.
In particular, the access electrical resistance becomes the limiting factor for ion/charge trans-
port for low-aspect-ratio (length-to-diameter ratio) pores or low-friction pores.'7'> The
equation that is widely used to describe the access electrical resistance, due to Hall,3 as-
sumes that the pore is neutral. However, this is often not an adequate assumption. Lee
et al.” have derived an equation for the access electrical resistance of charged pores but
did not consider the effect of the surface charge on the outer surface of the membrane,
which is known to reduce the access electrical resistance.® Up until now there has been
no systematic study of the effect of the pore and membrane surface charge on the access
electrical resistance. Here, the access electrical resistance is computed numerically using a
continuum theory-based model. The scaling of the access electrical resistance with salt con-
centration, pore radius, and surface charge density is clarified. Different scaling is observed
depending on whether the outer membrane surface is charged, which is not well described
by any previously existing theory. In this study an analytical expression is derived for the
access electrical resistance of a charged membrane in the regime of low surface potentials.
A closed-form equation was then derived assuming both low surface potentials and highly
overlapped electric double layers. The expression accounts for the outer-membrane surface
charge and gives quantitative agreement with the numerical results.

3.2 INTRODUCTION

In experiments the total electrical conductance (inverse of total electrical resistance) of a
porous membrane is often measured to characterise its ability and efficiency to transport
ions/charge. For short pores and pores with low friction the total electrical resistance can
be limited by the resistance at the pore entrances. This resistance occurs due to the bend-
ing of electric field lines from the bulk reservoirs into the narrow pores of the membrane
(Figure 3.1). This quantity, called the access electrical resistance, may be separated from
the total electrical resistance. The premise of calculating the access electrical resistance of
a nanopore is that it is separable from the electrical resistance of the pore. This has com-
monly been assumed throughout the literature, from the earliest established theories,*3 to
recent experimental studies carried out on biological pores.™® It is important to note that
the separation of the access and pore contributions to the total electrical resistance is an
approximation. This has been shown to previously be a reasonable approximation under
many conditions. /1637

It is often assumed that the total electrical resistance Rt is composed of the pore electrical
resistance and access electrical resistance added up in series, i.e.

Rt = Rp +2R,, (3.1)

where R; is the contribution of the pore to the total electrical resistance and 2R, is the
contribution of the two pore entrances, R, being the electrical resistance of a single pore
entrance.

An analytical expression for the access electrical resistance was derived by Hall,3 consid-
ering it to be the convergence resistance from a hemispherical electrode placed in the bulk
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Figure 3.1: The access electrical resistance occurs mainly due to the bending of the field lines from
the bulk reservoirs into the pore. The dotted lines show the liquid-liquid boundaries of
the system.

electrolyte, far from the pore entrance, to an equipotential disk covering the end of the pore.
The equation is

1
R, =

T (3-2)

where xy, is the bulk electrolyte conductivity and a is the pore radius. The bulk conductivity

of a binary Z:Z electrolyte (Z4 = —Z_ = Z) may be written as

ZilctoDy +|Z_|c_eoD_
=e2’ +les +kBT’ ’ ) (3.3)

Kb

where ¢ is the elementary charge, Z is the cation valence, ¢« is the cation concentration
far from any solid surface, D is the cation diffusivity, Z_ is the anion valence, c_« is the
anion concentration far from any solid surface, D_ is the anion diffusivity, kg is Boltzmann’s
constant, and T is the temperature of the solution.

From the Hall equation (equation 3.2) the scaling of the access electrical resistance with
pore radius is R, ~ 1/a. The access resistance can become the limiting factor for ion/charge
transport through nanoscopic pores, depending on the properties of the system being stud-
ied. One such property is the slip length b, which is related to the fluid—surface friction near
the pore surface. The slip length is defined as the distance from the pore surface at which
the fluid velocity profile within the pore linearly extrapolates to zero. The pore electrical
resistance for a pore with a thin electric double layer (EDL) and b = 0 scales as Rp, ~ L/a?.7
Therefore, when L ~ a the access electrical resistance becomes of similar order to the pore
electrical resistance. Furthermore, for an ion-selective pore with a large slip length the pore
electrical resistance scales as Ry, ~ L/ (abo?)," where ¢ is the surface charge density of the
pore. Therefore, for large slip lengths the pore electrical resistance can become negligible,
and thus the access electrical resistance can dominate.

The Hall equation assumes that the pore entrances are equipotential, perfectly conduct-
ing disks, which is only approximate for pores with low aspect ratios, as well as for charged
pores where there is no overlap of the EDLs. Nevertheless, Luan4° found that the assump-
tion of an equipotential disk at the pore ends is sufficient but not necessary for the equation
by Hall to be accurate. Luan considered moderately charged pores (surface charge density
o ~ 50 mCm~2) in a neutral membrane (Figure 3.2), and found good agreement between
numerical calculations of the electrical current and the theoretical electrical current, which
used the access electrical resistance equation by Hall. These calculations were carried out
for pores with radii comparable to their lengths, for which the access electrical resistance is
expected to be a significant fraction of the total electrical resistance. Furthermore, the salt
concentrations ranged from 50 to 1000 mM, which correspond to Debye lengths (charac-
terising the width of the EDL) of 1.3-0.3 nm. The pore radii that were used ranged from
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Neutral outer-membrane walls Charged outer-membrane walls

Figure 3.2: Charged pore in neutral (left) and charged (right) membranes. The dotted lines show the
liquid-liquid boundaries of the system.

~1-50 nm, which means that under most conditions there was no EDL overlap. Therefore,
the calculations by Luan were carried out under conditions for which the Hall equation is
not expected to hold (charged pores with no EDL overlap). Despite this, good agreement
with the theory was found, although the access electrical resistance was not calculated sep-
arately from the total electrical resistance.

The access electrical resistance is important in determining limiting effects of electrolyte
transport. In a recent paper, it was found to severely limit the maximum power output
obtainable from mixing salt water with fresh water, in a process known as reverse electro-
dialysis.* It was also found to depend significantly on both the surface charge density of
the pore and that of the outer surface of the membrane.

Lee et al.7 derived an equation heuristically in order to account for the effect of the pore
surface charge on the access electrical resistance,

1

a = m; (3-4)

where «; is the surface conductance, and « and f are numerical constants (« ~  ~ 1). This
equation can also be written in terms of the Dukhin length, being the ratio of the surface
conductance to the bulk conductivity (Ipy = xs/xp), as

1

Ra - Kp (206(1 + ‘BZDU) ) (35)

Assuming that the EDL width is small compared with the pore radius the Dukhin length is
given by7

l 12
Ibu ol [_E+ <€ 111, (3-6)

~ 2wt | Ap A%

where 0 is the surface charge density, c« is the average salt concentration far from any solid
walls (for a Z:Z binary electrolyte, with ion valences Z, = Z and Z_ = —Z), Agc is the
Gouy—Chapman length, and Ap is the Debye length. The Gouy—Chapman length, which
is the distance at which the thermal energy balances the ion—surface interaction energy, is
given by

_ 2€€0kBT

loc = TM’ (37)

while the Debye length, which is the characteristic width of the EDL, is given by

o1 / €€0kBT
)\D =K = —ZZZEZCOO’ (38)
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where « is the inverse Debye length (not to be confused with the bulk conductivity x;, or
surface conductance «s), € is the dielectric constant, and €y is the permittivity of free space.
Discrepancies between the equations by Lee et al. and Hall are only expected when the
Dukhin length is on the order of or larger than the pore radius. The basis for the derivation
of these equations was that a discontinuity in surface conductance at a charged surface im-
mersed in an electrolyte solution significantly alters the electric field in the bulk reservoirs.7”>
Inside the pore there is a non-zero surface conductance due to the surface charges on the
pore walls. However, directly outside the pore there is no surface conductance. Therefore,
in order to ensure the continuity of the ion fluxes, extra ions must be supplied from the
bulk reservoirs into the EDL of the pore, over a length scale given by the Dukhin length.
As ions are supplied to the EDL of the pore, their concentration at the pore ends is in-
creased, thereby reducing the access electrical resistance compared with the equation by
Hall. This derivation made no assumptions about the charge on the outer membrane sur-
face. Therefore, it could be expected that the same result would be achieved for a neutral
outer membrane surface versus a charged one. In this chapter it is clearly shown that this
is not the case.

A few papers have used the equation by Lee et al. to account for the effect of surface
conductance on the access electrical resistance of charged pores.'>™'7 However, none has
systematically studied the effect of the charge on the outer membrane surface on the access
electrical resistance, which is known to be significant.®® In this study the access electrical
resistance is calculated from numerical solutions to the PNPS equations for a charged pore
with neutral or charged outer-membrane surfaces. Firstly, different methods for extracting
the access electrical resistance from the total electrical resistance are discussed. Secondly,
the predictions of the equations by Hall and Lee et al. are compared with the numerical
calculations under a wide range of conditions, and the deviations from the theories are
discussed. Lastly, a new theory is derived that specifically accounts for the charge on the
outer membrane surface, which is then compared with FEM calculations and the equation
by Lee et al.. Good agreement is found between the new theory and the FEM simulations
under the conditions for which the theory was derived, whereas there were significant
deviations from the equation by Lee et al. under the same conditions.

3.3 COMPUTATIONAL METHODS

In determining the access electrical resistance from the numerical calculations a few simpli-
tying assumptions were made:

1. The electrolyte is a continuous medium and ions are uncorrelated point particles.
2. The Reynolds number (ratio of inertial to viscous forces) is small.
3. The pores are cylindrical and monodisperse (same length and radius).

4. The pore and outer membrane surfaces are perfectly flat and have a uniform surface
charge density.

5. Neighbouring pores have no interaction with each other so only a single pore may be
considered.

The assumption of continuum hydrodynamics (1) has been previously shown to be ac-
curate by comparison with molecular dynamics simulations.437% In terms of assumption
(2) the typical Reynolds number (Re = pua/u, where p is the fluid density, u is the char-
acteristic fluid velocity within the pore, and y is the viscosity of the fluid) for the systems
considered in this study is on the order of 1078, Assumptions (3) and (4) may be satis-
fied using modern manufacturing techniques, such as the electrochemical anodisation of
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Table 3.1: Parameters used in calculations. Where a range has been specified the values in parenthe-
ses were the default values used.

Quantity Symbol Value

dielectric constant € 78.4679

temperature T 298 K

fluid viscosity u 0.894 mPa s®

cation valence Z4 1

anion valence zZ_ -1

cation diffusivity D, 1.96 x 10~ m?s~ 18
anion diffusivity D_ 2.03 x 1079 m?s~ 18
pore radius a 2-70 nm (5nm)
pore length L 5-500 nm (200 nm)
reservoir radius\width w 4pm

surface charge density (pore wall) o -(0-30) mCm—2
surface charge density (membrane walls) o, Ooro

slip length (pore wall) b 0-200 nm (0)

slip length (membrane wall) bm 0

salt concentration in both reservoirs Cs 0.1-30 mM

applied potential difference A —35-35 mV
pressure difference Ap 0

aluminium.”7 It is noted that assumption (5) may not always hold, particularly when the
inter-pore distance is on the same order as the pore diameter. This has been shown to lead
to a non-extensive scaling of the conductance with the number of pores.®” For simplicity of
the theory only a single pore is considered in this study.

To model the electrolyte in this way the coupled PNPS equations, along with the con-
tinuity equation for an incompressible flow were solved for a single cylindrical pore be-
tween two cylindrical reservoirs using the finite element method (FEM) with COMSOL
Multiphysics® version 4.3a%. The equations were solved using a fully coupled solver, which
is a damped version of Newton’s method. The damping option used to achieve convergence
was “Automatic highly nonlinear (Newton)”. The direct solver that was used is the PAR-
DISO direct solver.” In order to vary the parameters in this study a parametric sweep was
used to vary parameters that affect geometry and mesh generation, along with the paramet-
ric continuation solver for all other parameters.

The partial differential equations and boundary conditions used have already been given
in chapter 2.1, so they will not be repeated here. The physical parameters that were used in
this study are listed in Table 3.1. The reservoir sizes were chosen to be the same as in ref. 1,
in which similar phenomena were studied. In most cases the no-slip condition (zero fluid
velocity at solid surfaces) was assumed at the walls of the pore. However, in calculating the
access electrical resistance via the “slip method” (see chapter 2.1) the slip length was varied
accordingly.

In the present study, different methods of calculating the access electrical resistance were
investigated. Each method requires the access electrical resistance to be separable from
the electrical pore resistance. In one method a distinction between the pore and access
contributions to the total resistance is made by separating the potential drop over the pore
from the potential drop over the reservoirs (“potential drop method”). The second assumes
that the access electrical resistance does not depend on the pore length and that the electrical
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pore resistance approaches zero in the limit of zero pore length (“length method”). The third
method assumes that the slip length has no effect on the access electrical resistance, but that
the electrical pore resistance approaches zero in the limit that the slip length approaches
infinity (“slip method”).

3.4 RESULTS AND DISCUSSION

3.4.1 Charged pore in neutral membrane

Figure 3.3 shows the access electrical resistance versus surface charge density for several
different salt concentrations, calculated using the three methods, for a membrane with a
neutral outer wall. The first thing to note is that under no conditions studied here do all
three methods for calculating the access electrical resistance agree with each other.

The slip method may be immediately ruled out as a viable method for calculating the
access electrical resistance. This is because it gives a much larger estimate of the access
electrical resistance than is given by the Hall equation, even at high salt concentrations and
low surface charge densities, where the Hall equation is expected to be most accurate. At
high salt concentrations the solution at the pore entrances would have a similar conductivity
to that of the bulk solution in the reservoirs. Furthermore, at low surface charge densities the
assumption of equipotential surfaces at the pore ends is more accurate. The discrepancies
may be due to the large solution fluxes that occur at high slip lengths. This would have an
effect on the ion concentrations near the pore ends due to concentration polarization, which
is an effect that can occur when ions flow at different rates through the pore relative to the
bulk solution. This results in either a higher or a lower concentration at the pore entrances,
depending on the direction of the flow and on the velocities of the ions in the pore relative
to those the bulk reservoirs. Concentration polarization is a known contributor to the access
electrical resistance.3” Furthermore, the regime of infinite slip length is far from that of
physical interest. This is because nonlinear effects on the flow are expected at such high
flow rates.

The length method agrees reasonably well with the Hall equation for the highest three
salt concentrations (3-30 mM), but deviates from it for the lowest two salt concentrations
(0.1-1 mM). The salt concentrations at which this occurs correspond to situations where the
Debye length is larger than the pore radius. For a salt concentration of 0.1 mM in water at
298K the Debye length is ~ 30nm, which is six times the pore radius. When the Debye
length is much larger than the pore radius the charge cloud within the pore spills out from
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Figure 3.3: Access electrical resistance versus surface charge density for a charged pore in a neu-
tral membrane calculated using different methods. The lines are from the Hall equation
(equation (3.2)). The pore radius was 5nm.
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the ends of the pore. In ref. 25 it was shown that the charge spillage is equivalent to having a
pore of shorter effective length than the actual pore length. Therefore, extrapolating the total
resistance to zero actual pore length is equivalent to extrapolating it to a negative effective
pore length. The effective length, as given in ref. 25, depends on the pore radius, the Debye
length (which depends on the salt concentration), and on the pore length. So extrapolating
with the actual pore length will not lead to accurate values of the access electrical resistance.
This effect is less noticeable for the higher salt concentrations studied here, due to the Debye
length being smaller than the pore radius.

In contrast to both the slip and length methods, the results of the potential drop method
are more reliable as they do not rely on extrapolating the total electrical resistance but
are calculated directly for a particular set of pore properties. Any effects of concentration
polarization or charge spillage from the pore ends is a constant of the pore properties being
studied. It makes no assumptions other than the access electrical resistance being decoupled
from the electrical pore resistance. Furthermore, it has the added benefit of requiring less
calculations than the previous two methods. The potential drop method also agrees with
the Hall equation under the conditions where this equation is expected to be accurate. As a
result of these factors, the access electrical resistance as calculated using the potential drop
method is used in this analysis.

The potential drop method agrees well with the equation by Hall under all but the lowest
salt concentration. At such a low salt concentration the effect of charge spillage from the
pore ends has a significant impact on the access electrical resistance. Quantitatively, the
amount of charge spilled from both pore ends is (for kL > 1)2>

16mac

Ak + a2’ (3.9)

q overspill ~

Therefore, when ax < 1, goverspin ~ a0 /%, and so the degree of charge spillage has a
strong dependence on the pore radius, the Debye length, and the surface charge density.
Charge spillage leads to an accumulation of charge at the pore entrances, which reduces the
access electrical resistance relative to the equation by Hall. In comparison, in ref. 37 similar
salt concentrations were used and the access electrical resistance was calculated using the
potential drop method. The results of this study showed that the calculated access electrical
resistance was above the prediction given by the Hall equation. The difference between this
study and ref. 37 is that the pore radius was comparable or larger than the Debye length
in ref. 37, while in this study the pore radii are comparable or smaller than the Debye
length. Extreme EDL overlap at the lowest salt concentration, resulting in significant charge
spillage from the pore ends, causes a reduction in access electrical resistance relative to the
predictions from the Hall equation. Ref. 37 also shows that the access electrical resistance
is independent of the surface charge density, which is roughly true for the results obtained
here.

Using the results obtained via the potential drop method, the access electrical resistance
can seen to be roughly independent of surface charge density for a membrane with an
uncharged outer wall. This is the same for all of the salt concentrations that were considered.
This conflicts with the results in ref. 1, in which it was shown that the access electrical
resistance depends strongly on the surface charge density. The method used to extract the
access electrical resistance in that paper was the slip method, which is shown here to be
inadequate. Therefore, a re-interpretation of the numerical results for the access electrical
resistance in this particular paper are required.

Figure 3.4 shows the scaling of the access electrical resistance (calculated with the poten-
tial drop method) with salt concentration for several different pore surface charge densities.
The first thing to note is that the equation by Hall agrees well with the FEM data. One
of the assumptions made in deriving this equation is that the solution is uniform at the
pore entrances. It might be expected that the presence of surface charges on the pore walls
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Figure 3.4: Access electrical resistance versus salt concentration for different surface charge densi-
ties for a charged pore in a neutral membrane. The points are calculated from FEM
simulations using the potential drop method, while the line is from the Hall equation
(equation (3.2)). The pore radius was 5nm.

would affect this assumption. However, the surface charge density of the pore seems to
have little effect on the access electrical resistance, particularly at high salt concentrations.
At low salt concentrations there is a slight dependence on the surface charge density. As
explained before, the degree of charge spillage depends strongly on the surface charge den-
sity when the pore radius is much smaller than the Debye length. This would likely explain
the slight dependence of the access electrical resistance on the surface charge density at low
salt concentrations.

Figure 3.5 shows the scaling of the access electrical resistance with pore radius for a salt
concentration of 0.1 mM and a surface charge density of —20 mC m~2. For large pore radii
the Hall equation adequately describes the scaling of the access electrical resistance with
pore radius. However, there are significant deviations from the theory at small pore radii.
As explained before, there is a significant dependence of the amount of charge spilled from
the pore ends when ax < 1. On the other hand when ax > 1, qoverspin ~ —160/ x% (ie. it
reaches a plateau with respect to increasing pore radius). Therefore, the amount of charge
spilled from the pore ends becomes insignificant compared with the amount of charge re-
maining in the pore (which increases with pore radius). This is supported by the fact that
when the pore radius is larger than the Debye length (Ap ~ 30nm) the numerical data
agrees very well with the theory. In spite of the deviations at low salt concentrations/small
pore radii, the Hall equation does at least give an upper bound on the access electrical resis-
tance and describes the scaling adequately under most of the conditions studied here. The
conditions studied here correspond roughly to those used in ref. 40, in which it was shown
that the Hall equation, along with a model for the pore electrical resistance, adequately
describes the total electrical current for charged pores in neutral membranes. While the con-
ditions are similar to those in ref. 40, the dependence of the access electrical resistance on
surface charge density, salt concentration, and pore radius was not studied quantitatively
in ref. 40, since only the total electrical resistance was measured in the FEM simulations in
that work, nor was the effect of charge spillage from the pore ends discussed. The fact that
the theory is able to adequately describe both the total electrical resistance and the access
electrical resistance, and that the potential drop method agrees reasonably well with the
length method under most of the conditions studied, supports the separability of the pore
and access contributions to the total electrical resistance.

The main result shown here is that the access electrical resistance does not depend
strongly on the pore surface charge density when the outer-membrane wall is neutral. As a
result, the Hall equation (equation 3.2), which does not take into account the pore surface
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Figure 3.5: Access electrical resistance versus pore radius for a pore with a salt concentration of
0.1mM, and a surface charge density of —20mCm~2 on the pore wall. The points are
calculated from FEM simulations using the potential drop method, while the line is from
the Hall equation (equation 3.2). Inset: access electrical resistance versus inverse pore
radius.

charge density, agrees well with the numerical data even when the pore is quite charged.
The exception to this is at very low salt concentrations when the Debye length is much
larger than the pore radius. In this case the access electrical resistance may be reduced due
to charge spillage from the pore ends.

3.4.2 Charged pore in charged membrane

When both the pore and outer-membrane walls are charged the situation is quite different.
Figures 3.6 and 3.7 show the dependence of the access electrical resistance on surface charge
density and salt concentration, respectively. In this case the equation by Hall fails to predict
the scaling. On the other hand, the numerical results are adequately described using the
equation by Lee et al.” (equation 3.4), with a numerical constant § equal to 1 instead of the
value of 2 used by Lee et al. In their paper, Lee et al. verified their equation for a limited set
of conditions. They considered surface charge densities ranging from 5 to 20 mCm 2, salt
concentrations from 0.2 to 30 mM, and pore radii from 20 to 300 nm. While most of these
conditions are similar to those used in the present study, the pore radii are around an order
of magnitude larger than those considered here. Therefore, a different value of f was used
here in order to fit the numerical results.

The equation by Lee et al. was derived assuming that the pore walls were charged, but did
not take into account the charge of the outer-membrane walls. However, this equation shows
significantly different scaling to the equation by Hall, which was shown in the previous sec-
tion to adequately describe the access electrical resistance when the outer-membrane wall is
neutral. The equation by Lee et al. does not make any assumptions about the charge on the
outer-membrane wall, so the physical reason for its agreement with the numerical results
for a charged-outer membrane wall and disagreement for an uncharged outer-membrane
wall is unclear.

Figure 3.8 shows the dependence of the access electrical resistance on the pore radius for
different surface charge densities and a salt concentration of 0.1 mM. The equation by Lee
et al. was used with different values of B to fit to the data. In general, a better agreement
between the numerical results and the theory was achieved using B = 1. However, at the
highest surface charge density, different values of B are required to achieve agreement with
the numerical results for small versus large pore radii. This indicates that § is in fact not
a numerical constant but that there is an additional radius-dependent scaling that is not
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Figure 3.6: Access electrical resistance versus surface charge density using different salt concentra-
tions for a charged pore and membrane wall. The points are calculated from FEM simula-
tions using the potential drop method, while the solid and dashed lines are from the Hall
equation (equation 3.2), and from the equation by Lee et al. (equation 3.4), respectively.
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Figure 3.7: Access electrical resistance versus salt concentration for a charged pore and membrane
wall. The points are calculated from FEM simulations using the potential drop method,
while the solid and dashed lines are from the Hall equation (equation 3.2), and from the
equation by Lee et al. (equation 3.4), respectively. The pore radius was 5nm.
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Figure 3.8: Access electrical resistance versus pore radius for different surface charge densities on the
pore and membrane walls. The salt concentration was 0.1 mM. The points are calculated
from FEM simulations using the potential drop method, while the lines are from the
equation by Lee et al. (equation 3.4) with different values of B. Inset: access electrical
resistance versus inverse pore radius for surface charge density of —20mC m2.

accounted for by the theory. At the highest surface charge density (=20 mC m~2) the Dukhin
length is 10-100 times larger than the pore radius. In this regime the scaling is qualitatively
incorrect, which is shown by plotting the access electrical resistance versus the inverse pore
radius (Figure 3.8(inset)). Therefore, a more complete theory is required in order to properly
understand this scaling.

3.4.3 Theory of access electrical resistance of a charged membrane

In order to derive an equation for the access electrical resistance of a charged membrane
the electrical current through a circular orifice in an infinitesimally thin, charged membrane
was considered (Figure 3.9). The total electrical resistance in this case can be considered to
be twice the access electrical resistance. An analogous equation has previously been derived
for the access hydraulic resistance by considering the fluid flux through a circular orifice
due to a pressure gradient across an infinitesimally thin membrane. 4444582 For the present
derivation the membrane is considered to have a surface charge density of ¢ and a pore
radius of a. The current through the pore is I, and the electrical potentials far from the
pore in the positive and negative z directions are, respectively, ¢+ and ¢_. A combination
of cylindrical (r,z) and oblate spheroidal (&,7,60) coordinates (Figure 3.10) were used to
model the current flux. The relationship between these two coordinate systems is given by
r =acosh¢siny and z = asinh ¢ cos 7, where the oblate spheroidal coordinates (¢, 77,6) are
defined on the intervals 0 < § < 00,0 <7 < 71,0 <6 < 71.82 Tt is noted that Mao et al. >4
used this same membrane model to derive an equation for electro-osmosis (electric-field-
driven fluid flow) across a circular orifice in an infinitesimally thin, charged membrane.

Consider an electrolyte with a fluid velocity u, electrical potential ¢, and salt concentra-
tion c; of the ih ion. If the applied potential is assumed to be small compared with the
equilibrium potential, then the lowest order terms of a perturbation expansion of the rele-
vant variables can be considered by expanding in powers of v = eA¢/kgT:

w=up+yu+ YU+, (3.10a)

¢ =do+ 101+ P2+--, (3.10b)
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Figure 3.9: Current flow [ through a circular orifice in an infinitesimally thin, charged membrane.
The potentials far from the membrane pore in the positive and negative z directions are
¢+ and ¢_, respectively.

¢=¢+
I

2a
=90

Figure 3.10: Diagram of oblate spheroidal (¢, #,6) coordinates.

and
ci=cio+ycn+rcnt+ (3-10¢)

where the subscripts refer to the different order terms in the expansion.*# The subscript 0
refers to equilibrium quantities. The fluid velocity at equilibrium is uy = 0 because there is
no applied field, while ¢y and ¢y are the equilibrium electrical potential and salt concentra-
tion, respectively.

The current density of the it ion j; is given by the Nernst-Planck equation,

ji = Ciu — ZieAiciV¢ — Dl‘VCl', (3'11)
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where Z;, D;, and A; are the valence, diffusivity, and the mobility of the i ion, respec-
tively. Substituting equation 3.10 into equation 3.11, and assuming a low Peclét number, the
current density of the i ion to O(7) is:

ji = —ZieAiciOchl — Dl-Vcl-l. (3.12)

In Mao et al.** the terms proportional to ¢; and c; were collected into a single effective
potential,

1 N
X=¢1+ kT 1221 eZici. (3.13)
However, it is assumed that ¢9 < kgT/e. Therefore the second term in equation 3.13 is
negligible, which means that ¢ = x. Using this result, and assuming the Einstein relation
holds (A; = D;/(kgT)), the total electrical current density for a binary Z:Z electrolyte with
i=*is

e2

j= —kB—T(ZiDJrcw + ZZ,D,C,O)'qubl. (3.14)
At equilibrium the concentration can be written as

—ZiE(Pg/kBT
7

C+0 = C+o0ol (3.15)

where c.« are the cation and anion concentrations far from the membrane surfaces, respec-
tively. The current density may then be written as

e2

§ =g (ZADscime W L 22D e e P 0T )y Vg, (516)
B

To calculate the total electrical current I the current density must be integrated over the
entire surface area S of the orifice,

= //S dsj -, (3.17)

where 7 is the normal to the orifice. Using the first order term in the electrical potential, >+

YP1 = % [1 — %tan_l <sin1hgﬂ , (3.18)

where Ap = ¢ — ¢_, the gradient in the potential is

1
(cosh? & — sin?)1/2 cosh &

YV = é?—i (3-19)

where £ is the unit vector in the ¢ direction. Substituting equation 3.16 into equation 3.17,
using equation 3.19 for the gradient in the potential, and integrating over the 6 coordinate,
the total electrical current through the orifice is given by

_ —2aA¢e?

/2
1= e /n dy siny [ZiD+c+ooe_Z+e4’0(0"7)/kBT + Z2 D_c_oe 200 Om/ksT | (3 50)
B 0

The access electrical resistance can be calculated using R, = A¢ /21, which gives

kT 2
Ra = 4(162{/0 dﬂ smiuy

-1
+Zz_DCooe_Z—e¢o(0ﬂ7)/kBT]} |

z2 D oo o900 /ksT

(3.21)
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Equation 3.21 may be simplified by using a Taylor expansion of the exponential terms in
the equation for the current density (equation 3.16),

2
j= =9V |(Z2Dicioo+Z2D o) — (Z3Dscioo + Zf’_D,c,oo)@
ksT kgT
5 (3.22)
1 4D 74D ) @ _
+2(Z+ +Ctoo +Z4°D_c_ kBT .
The electrical current is then given by
—2aA 2 /2
I= ”74’3/ dy sing | (Z2Dyc o+ Z2 Do) —
kgT 0
0,
(Z3Dicieo+ 72 D,C,W)M+ (3.23)
ksgT
L4 4 ego(0,7)
§(Z+D+C+oo + Z_chfoo) (m
Using equation 3.23 for the current, the access electrical resistance may be written as
1 kT /2 .
R, = M‘;{ /O dy siny [(Z2Dicioo+Z2D o) — (Z3DiCroot
(324)

-1
(ZiDicioo +ZED_c o) (‘34’0(0’7)>2 - ] } .

1
—=c ksT ' 2 kaT

Equations 3.21 and 3.24 rely on an equation for ¢p. In the limit of low surface potentials
the electrical potential corresponding to the equilibrium charge cloud is®3

(PO(T’/ Z) =

e [/Ooo de I (as)]o(rs)e[(_Kz_I_sz)]/zz] B e—Kz:| ’ (3.25)

€€ (k2 4 52)1/2 Ka

where ]y and |; are Bessel functions of the first kind. In the limit of low surface potentials
and highly overlapped EDLs (a/Ap < 1) the equilibrium potential can be simplified further
to

(o g

= — = . . 6
fo €€0K  €€9AD (3.26)

Therefore, the access electrical resistance can be calculated from the total electrical current
through an orifice in an infinitesimally thin charged membrane using different levels of ap-
proximations. Using equation 3.21 with equation 3.25 makes the assumption that the surface
potential ¢g. is much less than the thermal voltage kgT/Ze where Z = max{|Z|,|Z_|}
~ 26mV for Z = 1 at 298 K. In the limit of low surface potentials the surface potential may
be calculated using ¢s,s = cAp/(€€p). This equation can be used to test whether the low
surface potential assumption is accurate. Equation 3.21 with equation 3.26 uses this assump-
tion as well as the assumption that the EDLs are highly overlapped inside the pore, which
occurs when the Debye length is much larger than the pore radius. Lastly, equation 3.24
may be combined with equation 3.26 for the potential, which assumes a low surface poten-
tial, highly overlapped EDLs, and a series expansion for the current density. The regime for
which the series expansion to the current density is accurate is investigated in this study.
Using this last set of assumptions the access electrical resistance may be written

B 1
a — 7
4Ky, aefe

(3-27)
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where a. is the effective pore radius given by

B Di—D_\ [ p Ap\?
Aeff = 0 [1 -2 <D++D_> <ZGC> sgn(o) +2 (lcc> — ] , (3.28)

where sgn (o) is given by

1, >0
sgn(o) = { 0, c=0- (3-29)
-1, o<O0

The access electrical resistance of a charged membrane with low surface potentials and
highly overlapped EDLs can therefore be considered equivalent to the Hall equation, but
with an effective pore radius that depends on the ratio of the Debye length to the Gouy-
Chapman length.

To verify the theory it was compared with FEM calculations of the access electrical re-
sistance using the potential drop method. Figure 3.11 shows the dependence of the access
electrical resistance on the surface charge density for a pore radius of 2nm at three different
salt concentrations. Firstly, considering equation 3.21 with equation 3.25 for the potential,
which assumes a low surface potential (“low surf pot” in the legend), the theory agrees
very well for the highest two salt concentrations, while for the lowest salt concentration the
theory is only accurate for the smallest surface charge densities. The agreement between
the theory and the FEM simulations is best for the lowest surface potentials (highest salt
concentrations and lowest surface charge densities), while for the highest surface potentials
(lowest salt concentrations and highest surface charge densities) the agreement is worse. Us-
ing equation 3.21 with equation 3.26 for the potential, which assumes low surface potentials
and highly overlapped EDLs (“low surf pot + EDL” in the legend) shows similar agreement
when the surface potential is low. Although the theory fails at high surface charge densities,
this is also the regime where the access electrical resistance is small and can generally be
neglected in practice. Importantly, the new theory provides a much better estimate of the
access electrical resistance than the equation by Lee et al..

Figure 3.12 compares the theory curves calculated using varying levels of assumptions
with the FEM data. Equation 3.21 is used with equation 3.26 for the potential, which as-
sumes low surface potentials and highly overlapped EDLs. In addition to this, theory curves

10 T T T T T T T T T T

- mc=1 mM B
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N A c =10mM

- » — Lee(@=2,B=1) 1
W\ -~ low surf pot

6 m '\_\\\ .- low surf pot + EDL

access resistance (GQ)

0 2 4 6 8 10
-(surface charge density) (mC/mz)

Figure 3.11: Access electrical resistance versus surface charge density for different salt concentrations.
The points are calculated from FEM simulations using the potential drop method. The
solid lines are from equation 3.4 (“Lee, « = 2, = 1”), the dashed lines are from equa-
tion 3.21 with equation 3.25 for the potential (“low surf pot”), while the dash-dotted
lines are calculated using equation 3.21 with equation 3.26 for the potential (“low surf
pot + EDL”). The pore radius was 2nm.
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Figure 3.12: Access electrical resistance versus surface charge density for different salt concentrations.
The points are calculated from FEM simulations using the potential drop method. The
solid lines are predictions from the equation 3.21 with equation 3.26 for the potential
(“low surf pot + EDL”), while the dashed and dotted lines are predictions using equa-
tion 3.24 to second and fourth order, respectively, with equation 3.26 for the potential
(“low surf pot + EDL + SE2” and “low surf pot + EDL + SE4”, respectively).

are also plotted using equation 3.24 with equation 3.26 for the potential, which as well as
the previous assumptions use a series expansion for the exponential terms in the current
density. The series expansion is truncated at second and fourth order. For the conditions
where the low surface potential assumption holds the series expansion converges at second
order, while outside of this regime the series expansion shows divergence. Therefore, the
series expansion to the current density is a valid assumption to make when the surface po-
tential is low, which is also the assumption made in calculating ¢y from equation 3.26. Using
equation 3.24 to second order with equation 3.26 for the potential, which assumes low sur-
face potentials, highly overlapped EDLs, and a series expansion to the current density, gives
similar agreement with the FEM data as equation 3.21 with equation 3.25 for the potential,
which only assumes low surface potentials (ie. the theory with the fewest assumptions).

Figure 3.13 shows the access electrical resistance versus pore radius for a salt concentra-
tion of 0.1 mM at two different surface charge densities. The theory for a thin orifice in a
charged membrane with the low surface potential assumption (equation 3.21 with equa-
tion 3.25 for the potential) is compared with the theory by Lee et al. (equation 3.4). The
thin orifice theory agrees quantitatively with the FEM data, except for very small pore radii
when the surface charge density is —1mCm~2. The surface potential for this curve is ap-
proximately —44 mV, which is nearly twice the thermal voltage. Therefore the discrepancy
at small pore radii could be due to the fact that the low surface potential assumption is not
being met. Despite this the thin orifice theory predicts the access electrical resistance much
better than the equation by Lee et al. with § = 2, and interestingly agrees nearly perfectly
with the equation by Lee et al. when using B = 1. This could explain why using the equa-
tion by Lee et al. with B = 1 for this set of parameters resulted fortuitously in the correct
prediction for the access electrical resistance.

Both the theory by Lee et al. and the thin orifice theory considers the access electrical
resistance to be reduced compared with the Hall equation (equation 3.2) by way of an
effective pore radius, which when substituted into equation 3.2 provides the correct estimate
of the access electrical resistance. For the theory by Lee et al. this effective pore radius for
x=2and p=11is

1
Aeff = 4+ ZZDUI (3-30)
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Figure 3.13: Access electrical resistance versus pore radius for different surface charge densities and
a salt concentration of 0.1 mM. The points are calculated from FEM simulations using
the potential drop method. The solid and dashed lines are predictions from equation 3.4
with B = 2 and B = 1, respectively (“Lee, « = 2, = 2” and “Lee, « = 2,8 = 17,
respectively), while the dotted line is from equation 3.21 with equation 3.25 for the
potential (“low surf pot”).

while for the thin orifice theory derived in this thesis assuming low surface potentials,
highly overlapped EDLs, and a series expansion to the current density, it is given by equa-
tion 3.28. Figure 3.14 shows the access electrical resistance divided by the bulk resistivity
plotted against the inverse of the effective pore radius. The access electrical resistance is
calculated using equation 3.24 with equation 3.26 for the potential (“low surf pot + EDL
+ SE2”) and from equation 3.4 with = 1 (“Lee, &« = 2,8 = 1). These are plotted against
aegs from the two theories. The surface charge density is —3mC m~2, which for the lowest
salt concentration corresponds to a surface potential of —42mV. Each equation predicts a
universal curve for the access electrical resistance divided by the bulk resistivity versus the
effective pore radius. However, only the thin orifice theory (equation 3.24 with equation 3.26
for the potential) adequately predicts the FEM results. For this theory the FEM results fall
approximately onto a universal curve. Although the agreement is not perfect it does predict
the FEM results much better than the equation by Lee et al. (equation 3.4). The scaling is
not predicted properly by equation 3.4 for this set of parameters.

In the theory by Lee et al. the access electrical resistance is considered to be reduced
compared with the equation by Hall by way of having an effective pore radius that depends
on the Dukhin length. With B = 1 the effective pore radius from this theory is given by
equation 3.30. If it is assumed that Igc < Ap, the Dukhin length can be written as Ipy =
2A% /lgc. In this regime, the effective pore radius from the theory by Lee et al. is therefore
Aeff = a+ AZD/ (2lgc). If equation 3.28 is used for the effective pore radius to first order, then
the effective pore radius scales as aets ~ a + Apa/lgc. Therefore, the equation by Lee et al.
has an additional factor of Ap/(2a) in the second term in the effective radius, which may
explain qualitatively why the access electrical resistance decreases more rapidly with pore
radius in Figure 3.8 than what is predicted by equation 3.4. The theory by Lee et al. explains
that the reduction in the access electrical resistance compared with the Hall equation is
due to the discontinuity in surface conductance at the pore entrance, which results in a
perturbation in the electrical field that extends far into the bulk reservoirs over a length scale
given by the Dukhin length. Figure 3.15 shows the electric field lines and potential contours
for a 5nm pore with and without charge on the outer-membrane wall, while Figure 3.16
shows the same but for a 50nm pore. The first thing to notice is that the perturbation in
the electric field from the bulk applied field is only significant when the outer-membrane
wall is charged, which explains qualitatively why the theory by Lee et al. does not work
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Figure 3.14: Scaled access electrical resistance versus inverse effective pore radius for different salt
concentrations. The points are calculated from FEM simulations using the potential drop
method, while the solid lines are the predicted universal curves from the two theories.
The left subfigure shows the predictions from equation 3.24 with equation 3.26 for the
potential, while the right subfigure shows the predictions from equation 3.4. The effec-
tive pore radius for the left subfigure was calculated using equation 3.28, while for the
right subfigure it was calculated using equation 3.30. The surface charge density was
—3mCm~2.

when the outer-membrane wall is neutral. Secondly, when comparing the perturbation in
the electric field for the 5nm pore with that of the 50 nm pore, the length scale of the decay
in the potential it is not just proportional to the Dukhin length, which is constant for the
two pores, but also depends on the pore radius. This also shows qualitatively that there is
an extra radius-dependent factor that is not accounted for by the theory by Lee et al. but
is accounted for by considering the charge flux through an infinitesimally thin orifice in a
charged membrane.

The equation that was derived for the access electrical resistance in this study shows
that the access electrical resistance depends on the ratio of the Debye length to the Gouy-
Chapman length. In the regime where Igc < Ap it was shown to depend on the Dukhin
length and the ratio of the Debye length to the pore radius. The equations used to predict
the equilibrium potential for the access electrical resistance using this theory assume a
low surface potential, which means that the equation for the access electrical resistance
cannot be used to adequately predict the access electrical resistance at high surface charge
densities. However, if an equation for ¢y is derived in the thin EDL limit, then equation 3.21
could possibly be used to accurately describe the access electrical resistance in the regime
of high surface charge density. The thin orifice theory derived in this thesis accounts to
some extent for the radius dependence of B shown in Figure 3.8, although the form of
the equation that assumes low surface potentials, highly overlapped EDLs, and a series
expansion to the current density is different from the equation by Lee et al. The access
electrical resistance from the theory derived in this thesis, when scaled by the bulk resistivity
and plotted against the effective pore radius forms a universal curve onto which the FEM
results approximately fall. When carrying out the same procedure for the theory by Lee
et al. the FEM results do not fall onto the universal curve. This verifies that the theory
works to describe the access electrical resistance of a charged pore in a charged membrane.
Overall the new theory adequately describes the scaling of the access electrical resistance
with surface charge density and pore radius. In particular, it accounts for the surface charge
on the outer-membrane wall, which is not taken into account in the equations by Hall or
Lee et al. This equation shows that the access electrical resistance can be described by the
electrical current through a circular orifice in an infinitesimally thin, charged membrane.
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Figure 3.15: Electric field lines and potential contours at an applied potential of 35mV for a pore
with a radius of 5nm, a length of 200nm, using a salt concentration of 0.1 mM, and
a surface charge density of —7mCm~2 on the pore walls (top), and on the pore and
membrane walls (bottom). The Dukhin length is 307 nm. The values for the potential in
the legend, and on the graph, are in volts.
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Figure 3.16: Electric field lines and potential contours at an applied potential of 35mV for a pore
with a radius of 50nm, a length of 200 nm, using a salt concentration of 0.1 mM, and
a surface charge density of —7mCm~2 on the pore walls (top), and on the pore and
membrane walls (bottom). The Dukhin length is 307 nm. The values for the potential in
the legend, and on the graph, are in volts.
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3.5 CONCLUSION

The access electrical resistance of a nanopore immersed in an electrolyte was calculated
from numerical solutions to the PNPS equations. Three different methods were used to
separate the access electrical resistance from the total electrical resistance. The simplest and
most reliable method was the one in which the average potential drop over the reservoirs
was divided by the electrical current through the pore, called the potential drop method.
This method was then used to calculate the access electrical resistance for different sur-
face charge densities, salt concentrations, and pore radii, for charged pores with charged
versus uncharged outer-membrane walls. It was found that, depending on whether or not
the outer-membrane surface is charged, different scaling of the access electrical resistance
is observed. When the pore is charged but the outer-membrane wall is neutral the access
electrical resistance follows the equation derived by Hall for a neutral pore. In contrast to
this, when both the pore and outer-membrane walls are charged, the access electrical re-
sistance follows the equation derived by Lee et al., but with a radius-dependent numerical
pre-factor. However, this was found to conflict with the assumptions made by Lee et al. in
deriving their equation. They assumed that the pore was charged, but did not make any
assumptions about the charge of the outer-membrane wall. Despite this, excellent agree-
ment between their equation and the numerical results is shown here. However, the theory
fails to describe the radius-dependence of the access electrical resistance when the pore
was highly charged and the salt concentration was low. In particular, different values of a
numerical pre-factor were required for narrow versus wide pores. As the pre-factor was
found to be radius-dependent a more rigorous theory was derived. The access electrical
resistance was considered to be half the total electrical resistance of a circular orifice in an
infinitesimally thin charged membrane. The theory was found to agree quantitatively with
FEM calculations carried out at low surface potentials but fails at high surface potentials,
which was due to the assumptions made in calculating the equilibrium potential. Further
assumptions were made to derive a closed-form analytical expression, being highly over-
lapped EDLs and a series expansion for the current density. This approximate theory was
found to predict the FEM results better than the theory by Lee et al.. In both theories the
access electrical resistance is considered to be reduced compared with the equation by Hall,
which can be described by the pores having an effective radius, which when substituted
into the Hall equation predict the correct values for the access electrical resistance. Both the
theories therefore predict a universal curve when the access electrical resistance scaled by
the bulk solution resistivity is plotted against the inverse effective pore radius, however only
the thin orifice theory was found to accurately predict the FEM results. For future work, a
theory for the access electrical resistance that works in the high surface charge regime may
be derived using an equation for the equilibrium potential in the thin EDL regime.
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MODIFIED CONSTRAINED CONCENTRATION-DIFFERENCE
ALGORITHM

4.1 ABSTRACT

Molecular dynamics (MD) simulations of concentration differences applied across porous
membranes can be beneficial for understanding solution transport across both biological
and synthetic membranes. This is because concentration gradients are often the driving
force for solution flows in these systems of both fundamental and practical interest. How-
ever, simulating concentration differences in MD is not straightforward. One of the reasons
for this is that when periodic boundary conditions are applied to reduce finite-size effects,
the high and low concentration sides of the membrane are in direct contact. This results in
mixing across the periodic boundaries, which destroys the concentration difference. In this
study a previously published algorithm for simulating a concentration difference in MD,?
which addresses this issue, is used to simulate concentration-gradient-driven flows in the
high solute-concentration regime, which is not well understood using continuum theory.
The algorithm is found to require a modification at high concentrations that has not been
previously considered. This modification generalises the algorithm for use in simulating
concentration differences with arbitrary solute molar fractions.

4.2 INTRODUCTION

Concentration gradients drive flows of solution in natural systems, such as in the kidneys,?
and in artifical systems, such as in synthetic membranes for harvesting energy from salinity
gradients.® In general, these flows occur due to a combination of osmosis and diffusio-
osmosis. Osmosis is driven by an osmotic pressure difference in the bulk solution, while
diffusio-osmosis is driven by an osmotic pressure difference that develops within the thin
interfacial fluid layer at the surface of the membrane pores where there is a net solute ad-
sorption/depletion. The models used to understand these phenomena often assume that
the fluid is a continuous medium, and that the solute particles are uncorrelated point parti-
cles. The latter assumption limits the application of the theory to the dilute (ideal) solution
regime. It is difficult to derive accurate and general continuum equations for concentration-
gradient-driven flow in the high concentration (non-ideal solution) regime, although re-
cently there has been some progress in this area.>*3' Furthermore, in pores with diameters
less than around 1nm, or on the order of the solute or solvent molecular diameter, the
continuum assumption breaks down. In contrast to continuum theory, molecular dynam-
ics (MD) simulations are more amenable to studying concentration-gradient-driven flows
in the non-ideal solution regime. This is because they do not rely on the definition of the
chemical potential of the solute, which has no general equation in terms of its concentration
in the non-ideal regime. Furthermore, the fluid particles can be considered explicitly, which
avoids the need for the continuum assumption, which breaks down when the fluid is under
extreme confinement.

In MD it is not trivial to simulate a concentration difference across a porous membrane.
This is because the periodic boundaries connect the two solution phases together, which
leads to the destruction of the concentration difference through mixing across the periodic
boundaries (see chapter 1, Figure 1.8). Various methods exist for circumventing this prob-
lem. The simplest method is to restrict the periodic boundary conditions (PBCs) to the
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directions lateral to the membrane and measure the transient fluxes of solution as the con-
centration gradient relaxes to equilibrium.5” However, this suffers from a time-dependent
concentration difference. Large reservoirs would be required in order to minimise this effect.
A more feasible approach may be to employ a stochastic algorithm using a mixture of MD
and Grand Canonical Monte-Carlo (GCMC) steps.5** However, this relies on stochastically
removing and inserting solute particles into a liquid, which is a very inefficient process due
to the high rejection rate of particle insertions at liquid densities. On the other hand, there
are several deterministic simulation algorithms available that work by applying an external
field to the system in order to maintain a concentration difference/gradient.®31%3 The ben-
efit of these deterministic algorithms is that they do not require computationally expensive
reservoir sizes, the concentration differences are constant (when averaged over time), and
there are no stochastic steps to interrupt the course of the deterministic MD simulations.

The previously published algorithm by Yoshida et al.3" works by applying the same con-
stant force to each solute particle, and the same counter-force to each solvent particle, such
that a constant chemical potential gradient is simulated. However, it cannot be used when
there are surfaces perpendicular to the applied chemical potential gradient. This is because
it introduces a spurious force perpendicular to the surfaces that are not parallel to the ap-
plied chemical potential gradient as a result of the depletion or adsorption of solute particles
at the surface. Therefore, it cannot be used to study end effects for membrane pores connect-
ing two reservoirs. Furthermore, it does not explicitly simulate a concentration difference,
and so cannot model variations in inter-particle correlations with solute concentration. For
example, this algorithm would not model variations in the interaction length scale between
the pore and an electrolyte solution with electrolyte concentration, which is known to affect
flows like diffusio-osmosis.***3

In this study, the deterministic algorithm by Khalili-Araghi et al.® is used to simulate
concentration-gradient-driven flows across a nanopore connected to bulk solution reservoirs
on either side (Figure 4.1). This algorithm, which was originally used to simulate concen-
tration differences across biological pores in the dilute solution regime, is used to simulate
concentration-gradient-driven flows in both the low and high concentration regimes in this
study. Simulating concentration-gradient-driven flows in the high concentration regime is
of interest due to the limitations of the continuum theory in this regime.

In order to test the ability of the algorithm to simulate concentration-gradient-driven
flows, a theory for solution transport is required. Recently, Marbach et al.*° derived equa-
tions for the total solution flux across a porous membrane due to a concentration gradient,
generalised to the high-concentration regime. The assumptions they made included a fluid
that is a continuous medium, a pore much wider than the width of the inhomogeneous

Figure 4.1: Cylindrically symmetric pore geometry for studying concentration-gradient-driven flow
in MD. The radial coordinate is r, while the axial coordinate is z. The system is rotated
about the axis of symmetry (shown as a dotted horizontal line). Solid lines indicate liquid—
solid interfaces, while dashed lines indicate liquid-liquid interfaces.



4.2 INTRODUCTION

fluid layer, and local thermodynamic equilibrium. The equations were further simplified
by assuming that the solute mobility was independent of its concentration. In their theory
they considered the combined effects of osmosis and diffusio-osmosis on the flow. The total
solution flux Q from their theory is

Q = Lnya(9po + 00 — 0povo) AT, (4.1)

where ﬁhyd is the permeance of the membrane, cpo and oo are the diffusio-osmotic and
osmotic reflection coefficients, respectively, and AII is the osmotic pressure difference. The
osmotic reflection coefficient satisfies the condition —1 < 0o < 1 and depends on the
relative permeability of the membrane to the solvent and the solute. If 7o > 0 then the
membrane is more permeable to the solute than the solvent. A reflection coefficient of
0o = 1 means that the membrane is completely impermeable to the solute. Similarly, if
0o < 0 then the membrane is more permeable to the solute. The diffusio-osmotic reflection
coefficient determines the strength and direction of the diffusio-osmotic flow, and depends
on the degree of solute adsorption/depletion at the surface of the membrane pores. It is
positive for a net solute depletion, and negative for a net solute adsorption. The equations
for the reflection coefficients can be adapted from those derived in Yoshida et al.3" for a slit
pore, by assuming that the interaction length scale of the potential is small compared with
the pore radius. The equation for the osmotic reflection coefficient is

L
fOL dz Coopres/Coo(2)

o‘o —_= 1 — 7 (4'2)

where L is the pore length, z is the coordinate along the pore axis, ccores is the equilib-
rium solute concentration in the reservoirs far from any solid surfaces, and ce (z) is the
equilibrium solute concentration far from any solid surfaces, which depends on the axial
coordinate z. The equation for the diffusio-osmotic reflection coefficient is

1 e c(r,z)
0po = —KP/O drr (COO<Z) —1), (4-3)

where x;, is the permeability of the membrane (k, = uLLyyq, where p is the fluid viscosity),
r is the coordinate perpendicular to the pore wall, and ¢(r,z) is the equilibrium solute
concentration, which depends on r and z. The osmotic pressure difference is approximated
by the nonlinear van’t Hoff law at high concentrations, which was shown by Yoshida et al.3*
to be accurate for a Lennard-Jones fluid with a solute molar fraction of up to 0.48. The
nonlinear van’t Hoff law is

AT = kgT (v In(1 — x1) — pvr In(1 = xr)), (4-4)

where kg is Boltzmann’s constant, T is the temperature, py1, and p,r are the solvent densities
in the left and right reservoir, respectively, and X1, and xr are the solute molar fractions in
the left and right reservoirs, respectively. In the dilute solution regime the osmotic pressure
difference is given by the linear van’t Hoff law,

ATl = kgTAc, (4.5)

where Ac is the concentration difference between the two reservoirs on either side of the
pore. In general, the direction of the flow is predicted by the sign of the overall reflection
coefficient,

0 = 0po + 00 — 0DOUO- (4.6)

If o is positive, then the flow is from the low-concentration side of the membrane to the
high-concentration side, and vice versa for a negative reflection coefficient. For 0o = 0,
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which is true in this study, since the pore radii are large enough that the pore is fully
permeable to both solute and solvent, ¢ = opo. While this theory is not expected to give
perfect agreement with the MD results, due to end effects for example, it should at least
predict the direction and approximate magnitude of the flow. Once it is verified that the
algorithm works to simulate a concentration difference in the high-concentration regime, it
can be used to study non-ideal effects on concentration-gradient-driven flows. Furthermore,
it will allow the systematic investigation of the impact of entrance effects on concentration-
gradient-driven flows (access diffusio-osmotic resistance), which is not taken into account
in the theory by Marbach et al.

4.3 COMPUTATIONAL METHODS
4.3.1 System details

All MD simulations were performed using the LAMMPS software package (17 Nov 2016).%
The time integration was carried out using the velocity-Verlet integrator. In this study the
Lennard-Jones potential,

N\ 12 )
Ujj(ri) = 4ejj [(:Z) - (j:) ] ' 47)

was used to describe interactions between particles, where r;; was the distance between
particles i and j (i,j € w, f,s, where w corresponded to the solid (wall) particles, f to
the solvent (fluid) particles, and s to the solute particles), €;; was the well depth of the
potential energy between particles i and j, and 0;; was the distance between them at which
the potential was equal to zero. Reduced Lennard—Jones units were used for all quantities
such that all masses, distances, and energies were scaled by the reference Lennard-Jones
parameters m, o, and €, respectively. These parameters, along with Boltzmann’s constant
were all set to 1. The temperature was scaled by €/kg, and the time units were scaled by the
reference time T = v/mo?/e. The potential was cut-off at a distance of 40, and the time step
used in all simulations was 0.0057.

The system comprised a single cylindrical nanopore between two solid sheets, solution
particles on either side of the pore, and solid pistons at the ends of the simulation cell
(Figure 4.2). The solid particles were placed on a face-centred cubic (FCC) lattice with a
lattice constant of v/20, while the solution particles were initially placed on a primitive
cubic lattice. The solution initially comprised solvent particles only, a fraction of which
were relabelled as solute particles after the equilibration. The Lennard-Jones parameters
used for all particle-particle interactions, except for the solid—solute interactions, were set
to €;; = 0;; = 1. The parameters for the solid—solute interactions were set to (Esw, Osw) =
(0.5,0.8), which corresponds to those used by Yoshida et al.3" for repulsive solute-solid
interactions. By using this set of parameters the solute and solvent particles were identical,
except for their interaction with the solid.

X| 2

y

Figure 4.2: Initial particle positions for molecular dynamics simulations. The black particles repre-
sent the solid, while the blue particles represent the solution.
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4.3.2  Equilibration

To equilibrate the system, periodic boundary conditions (PBCs) were used only in the lateral
(x and y) directions. The solid pistons were used to compress the fluid into the pore such
that it was equilibrated at the target density corresponding to the target pressure of €/0°.
Throughout the equilibration the temperature of the solution particles was maintained at
a temperature of €/kg using a profile-unbiased thermostat (PUT). This thermostat acted
only on the thermal particle velocities by subtracting out a background streaming velocity
before the thermostat was applied (see chapter 2.2 for details). Once the system had reached
equilibrium the pistons were removed, and the simulation cell was shortened in the axial
(z) direction such that there were no gaps between periodic images (PBCs were applied
in the axial direction following equilibration). After the equilibration a fraction of solvent
particles in each reservoir were relabelled as solute particles. This was done such that both
the desired solute molar fraction and concentration ratio was achieved. The system was
then further relaxed for 10000 time steps (no external forces applied). Although changing
solvent particles into solute particles may cause the absolute pressure in the reservoirs to
change from the set value (e/0°) at high concentrations, due to the different interactions of
the solute and the solvent with the solid surfaces, the target solution density remains the
same. The density and temperature were maintained constant for all simulations.

4.3.3 Constrained concentration-difference algorithm

To constrain the concentration difference across the pore the algorithm by Khalili-Araghi
et al.® was used. In their paper they referred to the algorithm as the non-periodic energy
step method. This is because an energy step Ae is applied to solute particles at the ends of
the simulation cell over a region of width d in order to maintain a concentration ratio cy/cr,
between the reservoirs on either side of the porous membrane, cy being the concentraiton
of the high concentraiton reservoir, and cy, being the concentration of the low concentration
reservoir. For a system of non-interacting (ideal) particles, the energy step that will induce
this concentration ratio is given by

Ae_
cy/cr = e*sT, (4-8)

Therefore, an external force

f= kBThl(fE) (4.9)

was initially applied to the solute particles within thin regions of width d/2 at the ends
of the simulation cell in the z direction (Figure 4.3). This is the force required for non-
interacting particles, which provides a good starting value for the algorithm. However, to
account for the effects of particle—particle interactions the forces were adjusted dynamically
throughout the course of the simulation according to

F(+ a0 = fr) + AOAT (4.10)

KTe

with

87() =21 [ (2)) -1 (1) ], (411)

where At was the time step, « and 7. were tunable parameters, ¢; and ¢, were the instan-
taneous concentrations of the high and low concentration reservoirs, respectively, and the
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Figure 4.3: Illustration of forces applied to solute particles within transition regions for the con-
strained concentration-difference algorithm. Forces were applied to the solute particles,
only within the regions of width d/2 at the ends of the simulation cell (shown in red). The
black particles represent the solid, the blue particles the solvent, and the green particles
the solute.

angled brackets indicate a time average over the last period of time .. In the original appli-
cation of the algorithm?® the forces applied to the solute particles were updated every time
step. However, here the forces were updated every 10000 time steps, which was determined
to be adequate for convergence of the simulations. The values for « and 7. were tuned to
balance convergence of the concentration gradient with simulation time. The values for a
and 7. used in this study were chosen to be 0.01 and 50, respectively, because they resulted
in convergence of the concentration gradient within a reasonable simulation time (~ 60007).

The algorithm by Khalili-Araghi et al. does not refer to applying forces to any one par-
ticular species, and so it can be extended to applying forces to multiple species within a
mixture. This is required from the Onsager®® relations between fluid fluxes and external
fields. The two fluxes that need to be maintained are the solute flux, and the solution flux.
This requires two separate external fields to be constrained (ie. the concentration difference
and the pressure difference). This was carried out by constraining the pressure difference
to be zero, while constraining the concentration difference to the desired ratio.

To constrain the solution flux a force was also applied to the solvent particles within
the transition region such that the pressure difference across the porous membrane was
constrained to be zero. This was carried out by applying an initial force of f = 0 to the
solvent particles within the transition region, and updating it according to equation 4.10,
but with Af(t) given by

Af(t) = ApA/NL, (4.12)

where Ap was the difference in pressure between the reservoirs, A was the cross-sectional
area of the simulation cell, and NZ,T was the number of solvent particles within the transition
region averaged over the last period of time 7.. Although this is not a new algorithm, it uses
the algorithm by Khalili-Araghi et al. in a different way to the way in which it was applied
in their paper (they only applied the forces to solute particles). Particular at high concen-
trations, applying forces to the solute particles does have an effect on the solution pressure.
Therefore, the solution pressure must be constrained. This modified algorithm reduces to
the unmodified algorithm (as used by Khalili-Araghi et al.) in the limit of infinitesimal so-
lute molar fractions. This is because the pressure difference between the reservoirs tends to
zero at low solute concentrations.
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Figure 4.4 shows the scaled equilibrium solute density profile within a nanopore for differ-
ent solute molar fractions. The pore has a radius of 10.13c" and a length of 30.4c, where ¢ is
the Lennard—Jones distance unit. In this case, the total reflection coefficient (approximated
by equation 4.6 with equation 4.3 and 0o ~ 0) is positive. Therefore, the flow is predicted
to go from the low concentration side to the high concentration side of the pore.

After this equilibration, a concentration ratio of cy/c;, = 50 was applied to the system
using the original constrained concentration-difference algorithm. However, the concentra-
tions did not converge to those corresponding to the target concentration ratio, and a solu-
tion density gradient developed across the pore (Figure 4.5). This happened because at such
a high solute concentration, applying a force to the solute particles exerts a net force on the
solution, which in turn leads to a density difference across the pore. Figure 4.6 shows the re-
sulting pressure difference between the two reservoirs on either side of the pore versus time.
The pressures were measured far from the membrane walls so that they were not affected
by the inhomogeneities in the fluid at the solid surfaces, and far from the regions where the
external forces were applied. The pressure difference clearly converged to a non-zero value.
In contrast, using the modified constrained concentration-difference algorithm resulted in
the pressure difference converging to zero after around 40 0007 (Figure 4.7).

Figure 4.8 compares the axial solute and solution density profiles along the centreline of
the nanopore resulting from both the unmodified and modified algorithms using a solute
molar fraction of 0.2. From this figure it can be clearly seen that constraints must be applied
to both the concentration and pressure differences at high concentrations. If the pressure
difference is not constrained, then the concentrations do not converge to the target concen-
tration ratio. Furthermore, a pressure difference is induced due to the force applied to the
solute particles within the transition region. This occurs because the solute makes up a sig-
nificant fraction of the total number of solution particles at high concentrations. In contrast,
when the modified algorithm is used the correct concentration ratios and expected concen-
tration variation as a function of the axial coordinate are achieved. Furthermore, there are
no solution density gradients across the pore.

An additional test to make sure that the algorithm is producing physically meaningful re-
sults is to confirm that it correctly models the fluid dynamics. Under the conditions studied
here continuum fluid dynamical equations are expected to be reasonably accurate. This is
because the pore size considered is much larger than the characteristic sizes of the solution
particles. Furthermore, they have been shown to be reasonably accurate at the high concen-
trations considered here.3' One factor that is not considered by the model are end effects
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Figure 4.4: Scaled equilibrium solute density within nanopore versus radial distance from pore wall.
The pore had a radius of 10.13¢ and a length of 30.4c.
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Figure 4.5: Solute/solution density profile along centreline of nanopore resulting from unmodified
constrained concentration-difference algorithm at different solute molar fractions. The
pore had a radius of 10.13¢ and a length of 30.4c. The applied concentration ratio was
cy/cr, = 50. The vertical dashed, black lines indicate the start and end of the nanopore.
The solute density profile for x = 0.005 has been multiplied by 40 so that it can be
compared with the results for y = 0.2.
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Figure 4.6: Difference in pressure between the reservoirs versus time resulting from the unmodified
constrained concentration-difference algorithm with a solute molar fraction of x = 0.2.
The pore had a radius of 10.13¢ and a length of 30.4c. The applied concentration ratio
was cyy/cp = 50. Inset: pressure difference at short times.

associated with finite pore lengths. However, for the purposes of validating the modified
constrained concentration-difference algorithm they can be ignored, particularly as the pore
length is around three times the pore radius. End effects are considered in more detail in
chapter 5. Figure 4.9 compares the axial solution velocity profiles from both the unmodified
and modified constrained concentration-difference algorithms. Without the modification the
axial solution velocity profiles are parabolic (indicating a pressure-driven flow) and in the
opposite direction to what is predicted from equations 4.1-4.4. Furthermore, when compar-
ing the direction of flow with the direction of the pressure difference it is evident that these
flows are due to the induced pressure differences resulting from the unmodified algorithm.
In contrast, when the modified algorithm is used the axial solution velocity profiles agree
well with continuum hydrodynamics equations 4.1-4.4 with 0o = 0 (Figure 4.10).

Lastly, Figure 4.11 shows the total solution fluxes (scaled by the pore cross-sectional area)
versus the continuum hydrodynamics equations for low (x = 0.005) and high (x = 0.2)
solute molar fractions, with and without the modification to the algorithm. The results of
the unmodified algorithm agree reasonably well with the theory for the low solute molar
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Figure 4.7: Difference in pressure between the reservoirs versus time resulting from the modified
constrained concentration-difference algorithm at a solute molar fraction of x = 0.2. The
pore had a radius of 10.13c and a length of 30.4c. The applied concentration ratio was
cy/cr, = 50. Inset: pressure difference at short times.
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Figure 4.8: Solute/solution density profiles along centreline of nanopore resulting from the con-
strained concentration-difference algorithm at a solute molar fraction of y = 0.2, with
and without the modification. The pore had a radius of 10.13¢ and a length of 30.4c. The
applied concentration ratio was cyy/cr, = 50. The vertical dashed, black lines indicate the
start and end of the nanopore.

fraction, while the fluxes for the high solute molar fraction are clearly incorrect both in sign
and magnitude. On the other hand, the results for both high and low solute molar fractions
agree well with the theory for the modified algorithm.

In the original constrained concentration-difference algorithm the pressure difference was
not constrained. However, the study for which the algorithm was developed was concerned
with simulating a concentration difference across a biological pore at relatively low so-
lute concentrations. In the paper a solute concentration ratio of 1:0.1M, a pore radius of
~0.55nm, and a length of ~6 nm was considered. To maintain the concentration ratio across
the pore an external force of 0.557k/mol was applied to the solute particles within 2.5 A
wide regions at the ends of the simulation cell. This created a pressure difference across the
OmpF pore of

Ap =pr—ps=nf/A4, (4.13)

where pr is the pressure in the top reservoir, pg is the pressure in the bottom reservoir, n
is the number of solute particles within the transition regions, f is the applied force, and A
is the cross-sectional area of the transition regions. Using A = 123.5 A x 123.5 A, the total
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Figure 4.9: Axial solution velocity profiles for unmodified and modified constrained concentration-
difference algorithms, using a solute molar fraction of x = 0.2. The points are from
the MD simulations while the lines are the average axial solution velocity estimated
from continuum hydrodynamics equations 4.1-4.4 (with 0o = 0). The error bars were
calculated using the method of block averaging.
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Figure 4.10: Axial solution velocity profiles for modified constrained concentration-difference algo-
rithm, using a solute molar fraction of x = 0.2. The points are from the MD simulations
while the lines are the average axial solution velocity estimated from continuum hy-
drodynamics equations 4.1—4.4 (with oo = 0). The error bars were calculated using the
method of block averaging.
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Figure 4.11: Total solution flux divided by pore cross-sectional area versus continuum hydrodynam-
ical predictions from equations 4.1—4.4 (with oo ~ 0) for the unmodified and modified
constrained concentration-difference algorithms for low and high solute molar fractions.
A line intercepting the origin with a slope equal to unity is shown for the purpose of
comparison. The left and right graphs show the same data but with different y-axis
scales. The legends also correspond to both graphs. The error bars in the left graph are
smaller than the symbols due to the y-axis range chosen.
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transition region volume was V = 5A = 76261 A3 = 7.626 x 10~2 L. The total number of
mole of solute in the transition regions was n = ¢V = (0.1+ 1)V = 8.389 x 1072 mol ~ 50
solute particles. Using equation 4.13, the induced pressure difference was Ap = 2537 Pa.
The total flux resulting from Ap may be estimated from the Hagen—Poiseuille law,

Apra*
Q= gyL : (4.14)

Using this equation the solution flux induced by the algorithm is estimated to be (using
p = 894 x 10 *Pas for water®) 1.7 x 1072 m3s~1. The average solute concentration is
Cave = 0.55M. Therefore, the convective solute flux is estimated to be Jonvective = Cave@Q =
5630 s~ L. In ref. 8 the lowest total ion current was ~ 10 pA = —6.24 x 10” s~ L. The convective
flux was therefore only ~ 0.009% of the total ion flux. Therefore, the results of that paper
are unaffected by the induced pressure differences resulting from using the unmodified
algorithm. However, to investigate flows of high concentration solutions this modification
is essential. This modification, which has not previously been considered, opens the door
for simulating concentration-gradient-driven flow phenomena in non-ideal mixtures with
arbitrary mole fractions, such as water—ethanol mixtures.3' Furthermore, simulating a finite
pore connected to bulk reservoirs allows for the investigation of end effects on diffusio-
osmotic flow (access diffusio-osmotic resistance).

4.5 CONCLUSION

The constrained concentration-difference algorithm by Khalili-Araghi et al.® was used to
simulate concentration-gradient-driven flows across a nanopore in the regime of high solute
concentration. However, using the algorithm under these conditions resulted in a pressure
difference across the pore. Due to this pressure difference the flow profile inside the pore
was parabolic. This is inconsistent with the model for diffusio-osmosis, which assumes that
there is no bulk pressure gradient across the pore. The resulting flow profile contrasted with
both the direction and magnitude of the flow that was expected from the theory. By com-
paring the signs of both the pressure and concentration differences with the flow direction
it was determined that the flow was a result of the induced pressure difference and not the
concentration difference.

A modification to this algorithm was made that enabled it to be used at high concentra-
tions. In this modification forces were applied to the solvent particles within the transition
region such that the pressure difference across the pore converged to zero. Using the modi-
tied algorithm resulted in diffusio-osmotic flow profiles that agreed well with the theory. In
comparing the total concentration-gradient-driven solution fluxes with the theory at both
low and high solute molar fractions, it was found that the modification does not make
much of a difference to the fluxes at low solute molar fractions, but is essential at high
solute molar fractions. This modification therefore allows the simulation of concentration-
gradient-driven flows using arbitrary molar fractions. Furthermore, due to its ability to sim-
ulate flow through a pore connected to bulk reservoirs, it allows for the systematic study of
entrance effects on concentration-gradient-driven flows.
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ACCESS DIFFUSIO-OSMOTIC RESISTANCE

5.1 ABSTRACT

Diffusio-osmosis is a surface-driven phenomenon by which a flow of fluid occurs relative
to a solid surface due to a concentration gradient of solute. It differs from osmosis in that it
is due to an osmotic pressure difference that develops only within a thin layer of fluid near
the pore surface where there is a solute excess or depletion. The equations that are typically
used to describe this phenomenon assume an ideal (dilute) solution. Also, entrance effects
associated with the bending of fluid streamlines into the membrane pores from the bulk
solution are generally not taken into account. In this study a continuum model for diffusio-
osmosis is developed that takes into account entrance effects (access diffusio-osmotic resis-
tance). The model uses approximate equations that are derived under the assumption of
a dilute solution. The model is first validated by comparing it with finite-element method
(FEM) calculations that assume a dilute solution. It is then compared with molecular dy-
namics (MD) simulations of diffusio-osmosis using a constrained concentration-difference
algorithm at two different solute concentrations. This is done to investigate the effect of high
solute concentrations and non-continuum effects (if any) on the access diffusio-osmotic re-
sistance. The analytical equations, derived for the first time in this work, are found to show
quantitative agreement with the FEM results in terms of the pore diffusio-osmotic resistance,
and approximately the correct qualitative scaling for the access diffusio-osmotic resistance.
Furthermore, the same scaling as given by the theory holds even for MD simulations carried
out at high solute concentrations. Lastly, the relative effect of the access diffusio-osmotic re-
sistance on the total diffusio-osmotic resistance is discussed, so that it can be understood in
which regimes the access diffusio-osmotic resistance dominates.

5.2 INTRODUCTION

Diffusio-osmosis is a term given to the surface-driven fluid flux that occurs when a concen-
tration gradient is applied across a porous membrane. The driving force for this flow is an
osmotic pressure difference that develops within the inhomogeneous interfacial fluid layer
induced by the pore surfaces. In general, whether the solute is adsorbed or depleted at the
surface dictates the direction of the diffusio-osmotic flow. For an adsorbed solute the flow is
in the opposite direction to the concentration difference (high to low concentration), while
for a depleted solute it is in the same direction (low to high concentration).

The continuum theory-based models that are typically used to describe this phenomenon
assume an ideal (dilute) solution. Marbach et al.*° derived a continuum theory-based model
that generalised the continuum equations used to model diffusio-osmotic flows at low so-
lute concentrations to high solute concentrations. However, they did not consider entrance
effects on solution transport.

For short pores and pores with low friction, solution transport is limited at the pore en-
trances by the bending of fluid streamlines from the bulk reservoirs into the narrow pore.
This effect, called the access resistance, is fairly well understood in the context of pres-
sure and electric-field-driven flows, 54387 but not for diffusio-osmotic flows. In this study
a continuum theory-based analytical model for diffusio-osmosis that takes into account the
access diffusio-osmotic resistance is derived for the first time. The model is compared with
FEM simulations and MD simulations. The MD simulations are carried out using the re-

57



58

ACCESS DIFFUSIO-OSMOTIC RESISTANCE

cently modified constrained concentration-difference algorithm (see chapter 4) using pores
of different lengths. These simulations allow the extrapolation of the total diffusio-osmotic
resistance to the limit of zero pore length, giving the access diffusio-osmotic resistance. The
theory is compared with the FEM and MD results, and any discrepancies are discussed.
In this study it is of interest to investigate non-continuum effects (if any). Non-continuum
effects have been previously shown to be potentially useful. For example, carbon nanotubes
with diameters less than 1nm, for which the continuum assumption is expected to break
down,5" have been shown to have both high water permeabilities and a high ion selectivity
at salinities that exceed that of seawater.®® This makes them potentially useful for applica-
tions such as water desalination. Further to non-continuum effects, it is of interest to study
solution transport in the high concentration regime. This is because the equation of state
that relates the chemical potential to the concentration is not expected to be accurate at very
high concentrations. Lastly, the relative effect of the access diffusio-osmotic resistance on
the total diffusio-osmotic resistance will be discussed.

5.3 COMPUTATIONAL METHODS
5.3.1 Finite element method calculations

For the continuum model, a low Reynolds number was assumed, Re = puopa/pu, where p is
the fluid density, ug is the characteristic fluid velocity within the pore, a is the pore radius,
and y is the fluid viscosity. This is justifiable for nanoscale flows as these are generally
dominated by viscous forces. An incompressible Newtonian fluid was also assumed, which
means that the shear stress was assumed to be linearly related to the strain rate, a reasonable
assumption for liquids such as water. Lastly, the flow was assumed to be steady. The Stokes
equation for the fluid velocity is

~Vp—cVU + uV?u =0, (5.1)
the continuity equation for incompressible fluid flow is

V-u=0, (5.2)
and the continuity equation for the solute current (for a single neutral solute) is

—V.j3=-V-(=DVc—AcVU+uc) =0, (5.3)

where p is the fluid pressure, ¢ is the solute concentration, U is the potential acting on
the solute by the surface of the membrane pores, u is the shear viscosity of the solution,
J is the solute flux density, D is the solute diffusivity, and A is the solute mobility. The
interaction potential between the pore/membrane walls and the solute was modelled using
a hyperbolic tangent function,

U(ry) = GS’TW [—1 + tanh <Mv>:| , (5-4)

USW

where ry, is the distance from the membrane surfaces, and €, and o5, are the parameters
describing the strength and range of the potential between the solute and the wall. The
values of €5 and o5y were chosen to represent a solute depletion at the pore and outer-
membrane surfaces.

Equations 5.1-5.4 were solved using FEM calculations with COMSOL Multiphysics® ver-
sion 4.3a%. The equations were solved using a fully coupled solver, which is a damped
version of Newton’s method. The damping option used to achieve convergence was “Auto-
matic highly nonlinear (Newton)”. The direct solver used was the MUMPS direct solver.® A



5.3 COMPUTATIONAL METHODS

Table 5.1: Boundary conditions used to solve continuum equations for diffusio-osmosis of a neutral
solute. The energy and length values are in units of € and o, respectively. The vector 7 is
the surface normal, while superscripts I and II refer to phases I and II, respectively.

Boundary Conditions

AH n-Ve=n-u=n-Vu=0
AB c=cL, p=Ap

GH C=Cr, p=

BC and FG n-j=n-u=n-Vu=20
CD,DE,and EF #A-j=n-u=0

parametric sweep was used to vary parameters that affect geometry and mesh generation,
and the parametric continuation solver was used to vary all other parameters. Figure 5.1
shows the geometry that was used to solve equations 5.1-5.4. The corners D and E were
given a radius of curvature to avoid discontinuities in the potential. The radius of curvature
was chosen to be much smaller than the length scale of the potential between the solute
and the solid surfaces. Table 5.1 lists the boundary conditions that were used to solve the
equations. The parameters used in the simulations are listed in Table 5.2.

To check that the FEM simulation results are correct the diffusio-osmotic resistance was
calculated using both concentration-gradient-driven and pressure-driven flow simulations.
This is possible using the Onsager reciprocity relations,® which allow the total solution flux
due to a concentration difference to be related to the excess solute flux due to a pressure
difference in the regime where the fluxes respond linearly to the applied fields. The solution
and solute fluxes are related to the pressure and concentration differences by 23

Q _ |Mun M —Ap (5.5)

J —€eQ My Ma| | —kTAc/ceo
where Q is the solution flux, | is the solute flux, ¢ is the average solute concentration far
from any solid surfaces, M;; are the transport coefficients, p is the fluid pressure, and c is the

solute concentration. Using the Onsager reciprocity relations the relationship between the
transport coefficients for the pressure-driven solute excess flux (] — cxQ) and the diffusio-

B C F G

phase | phase Il

Figure 5.1: Cylindrical pore geometry used to solve continuum equations for diffusio-osmosis of a
neutral solute. The boundaries CDEF represent the solid membrane and pore surfaces
(solid lines), while the other boundaries are liquid-liquid boundaries (dashed lines). The
geometry has rotational symmetry about the boundary AH. The points D and E have a
radius of curvature.

59



60 ACCESS DIFFUSIO-OSMOTIC RESISTANCE

Table 5.2: Parameters used for FEM calculations of diffusio-osmotic flows. Specific values are spec-
ified in the main text. Lengths and energies are given in Lennard-Jones units of ¢ and e,

respectively.
Quantity Symbol Value
pore radius a 1.84-10.13¢
pore length L 0.20, 30.40
potential well depth Esw —2.84-—1.42¢
potential length parameter Osw 0.52-1.52¢
solution density 0 0.780 3
solution temperature T €/kg
solution viscosity U 1.8¢to 3
diffusivity of solute D 0.07902 /T
average concentration Cave 0.002 8503
applied concentration difference Ac 0-0.04cqave
applied pressure difference Ap 0-4 x 107603
radius of curvature Acurve 0.092¢
reservoir radius Wies 40000
reservoir length Lyes 40000

osmotic solution flux is M1 = M>;. The total diffusio-osmotic resistance can be defined in
terms of the fluid flux Q induced by a concentration gradient by

Ac
RT = 6

Therefore, from equation 5.5 and the reciprocity relation, by measuring the solute excess
flux | — cQ for different applied pressure differences in the absence of a concentration
difference the total diffusio-osmotic resistance can also be calculated from

(5.6)

_ Co  Ap
kBT (] — COOQ) )

To calculate the access diffusio-osmotic resistance from the FEM simulations the total diffusio-
osmotic resistance was calculated using equations 5.6 and 5.7 for a circular orifice in a very
thin membrane (L = 0.20), the width of which was smaller than cs,. This was done by
fitting a line to the solution flux versus concentration difference data, or the solute excess
flux versus pressure difference data, and taking the inverse of the slope of the line. The
total diffusio-osmotic resistance across the thin orifice was then halved to give the access
diffusio-osmotic resistance of a single pore entrance.

Rt (5-7)

5.3.2  Molecular dynamics simulations

The details of the systems simulated are equivalent to those in chapter 4, but in this study
the pore length, pore radius, and solute concentration were varied systematically in order to
investigate the effect of the access diffusio-osmotic resistance. Table 5.3 lists the parameters
used in the MD simulations in this study. For comparison with continuum theory the pore
radii were defined as a = ac_c — dgshear, Where a._. was the pore radius defined by the radial
distance from the pore centre to the centre of the solid particles of the pore wall, and dgpeqar
was the distance of the shear plane from the wall (the distance from the walls at which
the fluid velocity vanished). Similarly, the lengths were calculated using L = Lc—c + 2dghear,
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Table 5.3: Parameters used in MD simulations of diffusio-osmosis. The pore radii and lengths listed

are those measured with respect to the shear plane in order to compare with the continuum
simulations and theory. All Lennard—Jones length parameters and well depths were equal
to o and e, respectively, except for the solute-wall parameters.
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Quantity Symbol Value
Lennard-Jones length parameter (solute-wall) oy 0.80
Lennard—Jones well depth (solute-wall) Esw 0.50

pore radius a 4.48-9.430
pore length L 3.52-31.80
solution density 1Y 0.78073
solution temperature T €/kp
solution viscosity H 1.8¢to 2
diffusivity of solute D 0.07902/t
solute molar fraction X 0.1,0.2
concentration ratio (high:low) R 50
reservoir lateral width/height Whes 70.70
reservoir length Lres 500

where L._. was the centre-to-centre distance between the wall particles comprising the solid
membranes on either side of the pore. The distance of the shear plane from the wall was
determined from the solution velocity profiles within the pores (Figure 5.2). Its value was
found to be 0.7¢.

To calculate the total diffusio-osmotic resistance from the MD simulations the total solu-
tion flux was plotted against the applied concentration difference. The total diffusio-osmotic
resistance was then calculated from the inverse of the slope of a linear fit to the data using
equation 5.6. The total solution flux was calculated from the average solution particle veloc-
ity in the pore multiplied by the pore cross-sectional area,

A

Q= ¥ v (58)

POre jecpore

0.01 ; | . | . |
o a,,=518c
o ag.= 7.6506
¥ 0.005 0 a5,=10130) ]
N — shear plane
.’5
o
g
c o
Eel
=
[o]
(2]
s
%-0.0051
1 1 1
0.010 1 > 3 4

distance from pore wall (c)

Figure 5.2: Solution velocity versus distance from pore wall and location of shear plane for different
pore radii. The pore length was 30.4c, the solute molar fraction was 0.2, and the solute
concentration ratio was cyy/cp, = 50. The distance of the shear plane from the pore wall
was found to be 0.7¢.
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where Npore is the total number of solution particles in the pore, v, is the velocity of the i
particle in the z (axial) direction, and A is the pore cross-sectional area.

For the total resistance to the solute flux Rts only the diffusive solute flux /4 was used
as the solute concentrations were high enough that the low Péclet number assumption did
not hold. The total resistance to the solute flux was calculated using the equation

Ac
RT,S = . (59)
Jaite
The diffusive solute flux was calculated from
Jaitt = ] — 0 Q, (5.10)

while the total solute flux was calculated from the sum of the solute particle velocities in
the pore divided by the pore length,

=Ly (5.11)

i€poreNsolute

The access diffusio-osmotic resistance was calculated by extrapolating the total resistance
to the limit of zero pore length and dividing the result by two,
R, = 1limR (L) (5.12)
T 20s0 >
where R, is the access diffusio-osmotic resistance and Ry(L) is the total diffusio-osmotic
resistance that depends on the pore length L, and similarly for the access resistance to the
solute flux.

5.4 THEORY

To derive transport equations for diffusio-osmosis that take into account entrance effects,
the resistance of a long cylindrical pore and of a circular orifice in an infinitesimally thin
membrane were considered. The total resistance of a membrane comprising a single pore
of finite length was approximated as the resistance of a cylindrical pore with no ends of
the same length as the pore in the membrane added in series to the resistance of a circular
orifice in an infinitesimally thin membrane.

5.4.1 Fluxes through long, cylindrical pore

Consider the fluxes through a cylindrical pore with no ends (Figure 5.3). The pore length L
is assumed to be much larger than the pore radius (L > a).

The radial solute flux is assumed to be much smaller than the axial solute flux (j, < j.),
and the radial solution velocity is assumed to be negligible and much smaller than the axial

Figure 5.3: Cylindrical pore geometry for deriving fluxes through long pore. The pore has a radius
of a and a length of L. The dashed line indicates the axis of symmetry.
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solution velocity (0 ~ u, < u;). These assumptions are expected to be accurate for a < L.
Then equation 5.3 can be solved for the solute flux, giving

o Dol = ey (5.13)

where the fluid—surface potential U is assumed to depend only on the radial coordinate r.
Integrating this equation with respect to r, the solute concentration is

¢ = cs(z)e” Wk, (5.14)

where c5(z) is the solute concentration when U = 0.
If it is assumed that the Péclet number is much less than 1 then the solute flux density is

jo = —D(Vcs)e Uk, (5.15)

Integrating equation 5.15 over the pore cross-section then gives the solute flux as

Jp =2 /0 dr rjs, (5.16)

where the subscript z refers to the z component of the flux. Substituting equation 5.15 into
equation 5.16 gives

a
Jp = —ZNDVCS/ dr re"U/ksT (5.17)
0
Using e~Y/®T = ¢(r,z)/cs(z) this can be re-written as
B a d(Incs(z))
Jp = —27TD/0 dr rc(r,z)T. (5.18)

To derive simple scaling laws for the fluxes in terms of the pore radius and solute-wall
interaction range the solute excess/depletion at the membrane surface was approximated
by a step function in the potential,

, (5-19)

e*u/kBT: 1, 0<r<a-—d
a, a—d<r<ag

where d is the length scale of interaction of the potential acting on the solute by the mem-
brane surface, and a characterises the solute excess close to the membrane surface. Using
equation 5.19 the solute flux can be written in terms of « and d as

]p,step = —ﬂDC(l;; [(a — d)z + Dcd(ZLZ — d)] . (5.20)

As assumed earlier, 1, ~ 0, which when substituted into equation 5.1 gives
—=— —c— ~0. (5.21)

Re-arranging equation 5.13 gives

ac ou
kBTg = _Cﬁ‘ (5.22)

Then, substituting equation 5.22 into equation 5.21, and integrating gives

P = Poo + kpTcs(z) (e’u/kBT — 1) ) (5.23)
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Taking the derivative of equation 5.23 with respect to z, substituting it into the z component
of equation 5.1, and integrating twice (assuming fluid velocity at pore surface vanishes)
gives

B —kgT dcs (2 dr’ 1 (= U(r") /ksT _
. (r) = p E/’ /dr 1), (5.24)

where 1 (r) is the axial component of the solution velocity field. Integrating u(r) over the
pore cross-section gives the solution flux as

—7. _dlncs adrr(uz—f’z)[c(f’,z)—Cs(z>]' (5.25)

Finally, using the a and d variables, to determine the diffusio-osmotic flux for a step function
potential

des d?

Qpstep = 2 TS =) (2a- d)*. (5.26)

In the limit that d < a equation 5.26 may be written as

—ta? dcg

Qpstep ~ 20 kBTd—(zx - 1)d (5.27)

5.4.2 Fluxes through circular orifice in infinitesimally thin membrane

The fluxes through a circular orifice in an infinitesimally thin membrane (Figure 5.4) were
used to derive equations for the access diffusio-osmotic resistance and the access resistance
to the solute flux. The derivation assumes a dilute solution, and a sufficiently small concen-
tration gradient such that the perturbation expansion of the flow variables can be truncated
at first order with respect to their equilibrium values. A combination of cylindrical (r, z,
) and oblate spheroidal (v, ¢, 8) coordinates (Figure 5.5) were used in the derivation. The
coordinate r is the radial distance from the pore surface to the centre of the pore, z is the
distance along the pore axis (parallel to the pore), and 6 is the angle about the z axis. The
coordinates are defined on the intervals 0 < r < g, —c0 < z < o0, and 0 < 6 < 27. The
relationship between the cylindrical and oblate spheroidal coordinates is%*9°

z=av{ (5.28)

and

r=ay/(1+)(1-3), (5.29)

where v and ( are defined on the intervals 0 < v < o0 and —1 < ¢ < 1, respectively (note
these coordinates are different from the oblate spheroidal coordinates used in chapter 3). In
this model the solute flux is J, and the solution flux is Q. The concentrations far from the
membrane in the positive and negative z directions are cy and cy, respectively. The solution
pressures far from the membrane on both sides are the same (po).

Let the concentration difference between the two sides of the membrane be Ac = cy —
cL, and the average concentration far from the membrane be ¢, = (cy + c1)/2. Then the
boundary conditions far from the membrane (ie. at infinity) are

¢ = co+ 5, v— oo (in upper reservoir), (5.30)

€= Co— 5, v—o00 (inlower reservoir),

(5-31)
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Figure 5.4: Solution flux Q and solute flux | through a circular orifice in an infinitesimally thin
membrane. The solute concentrations far from the membrane in the positive and nega-
tive z directions are cyy and c, respectively, while the solution pressures are po, in both
directions. The pore radius is a.

C—= Cg, P = PH

Q,J

2a

C=C, p= DL

Figure 5.5: Diagram of oblate spheroidal (v, ¢, 6) coordinates.

and
P — P V— oo (in both reservoirs). (5.32)
The solution velocity and solute flux at the membrane surface satisfy the relationships
v =0 (5:33)
and
f-g =0, (5:34)

respectively, where 71 is the unit vector normal to the membrane surface.
The solute diffusivity is assumed to be related to the solute mobility by the Einstein
relation,

A= ﬁ/ (5.35)
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where kg is Boltzmann’s constant, and T is the temperature of the solution. By assuming
that the solution velocity field does not greatly affect the solute current (ie. assuming a low
Peclét number), and using equation 5.35, equation 5.3 can be re-written as

D
V.j=V.(-DVec— ——VU) =0. (5.36)
kgT
Putting j = 0 into this equation the equilibrium solute concentration (ie. in the absence of
the concentration difference Ac) can be written as

—U/ksgT

C = Cool (5-37)

A perturbation expansion of the variables from equilibrium can be used to derive the
solute and solvent fluxes for sufficiently small concentration gradients. The expanded vari-
ables are

p=potpit---, (5-38)

c=cg+c1+---, (5.39)
and

u=ug+u+- -, (5-40)

where the subscript 0 refers to the respective equilibrium fields, and the subscript 1 repre-
sents the first terms in the expansion away from equilibrium.

Truncating the expansion for the solute concentration (equation 5.39) at first order, and
using it in the equation for the solute current (equation 5.3) gives

V.j=V.(-Ve - -Lvu)=o. (5.41)
ksT

Assuming that j,; < jy,
c1(v, Q) = c15(v)e &) /T, (5-42)

Assume that the potential is a function of the distance from the membrane surface. For
small values of { the distance from the membrane surface depends only on (. Therefore, if
the potential is assumed to be very short ranged compared with the pore radius, then

U(v, ) = U(Q). (5.43)

Using equations 5.41, 5.42, and 5.43, the concentration, c;5, where U = 0 may be given by
the solution to the Laplace equation,

Vi, = 0. (5-44)

Equation 5.44 is subject to the boundary conditions at infinity,

a, v — oo (in upper reservoir)
C1s — —%, v — oo (in upper reservoir) . (5-45)
n-Ves =0 (at membrane surface)

The solution to equation 5.44 for 0 < v < oo is, subject to the boundary conditions in
equation 5.45,%

c1s(v) = % [1 - %tam’1 <11/>} . (5.46)
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From equations 5.42 and 5.46,

A 2 1
c(v,0) = cs(v)e U/ksT = {coo + 7C [1 - tan ! <>} }eU/kBT,v > 0. (5.47)

The gradient in cy; is

Ac 1
Ve =0 <7m> <\/(1/2 0 +v2)> , v >0, (5.48)

where © is the unit vector in the v direction. The solute flux density may then be written as
(using equations 5.36 and 5.42)

j=—De bTve,, (5.49)

The solute flux across the pore is then given by

h=[[asi-n (550)

where 7 is the normal to the orifice, and the integral is over the entire surface area of the
orifice. Through using the definitions of the gradient and Laplacian in oblate spheroidal
coordinates (see Appendix A), equation 5.50 can be written as

1
Ja = —2aDAc/0 dg e U/, (5.51)

Atv =0, % =1— (£)? so the solute flux in cylindrical coordinates is

adrre"U/kT “drre(r,z=0)
= —ZDAC/ = —2DAc / .52
Je 0 V-7 P (552

To derive the solution flux it is assumed that u, > u;. Then, taking the { component of
the Stokes equation (equation 5.1) and using equation 5.47, the solution pressure is

p = peo + kaTeo(v) e”H/40T —1] . (5:53)

Taking the derivative of the pressure with respect to v, and substituting it into the v compo-
nent of equation 5.1 gives

1 1+1/2 ap

J— 2 —_
A\ veray THY =0 (5.54)

Due to the symmetry of the system in the 6 coordinate, %% = 0. Assuming that %+ < aa”éi’,
using equation 5.47, assuming that the fluid velocity is zero at the membrane surface and
integrating twice, the fluid velocity at the orifice (v = 0) is

o kBTAC” 4 dgl 11 #11 //
uy(§) = i /O — %) / dg” ¢" ("), (5.55)
where
f(g) = e HO/BT 1, (5.56)

The solution flux is then given by

Q://Sdsu-'ﬁ,. (5-57)
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Using equations 5.55-5.57, the solution flux is

Q, = _szAC“B /01 dg g2 (e U/ —1). (5.58)

In terms of cylindrical coordinates (using equation 5.29) the solution flux through the orifice
(atz=0)is

—kgTAc [°
Q. = 7]3# ¢ / dr rv a2 —r? (e_u/kBT - 1) ) (5.59)
0
This can be written in terms of the equilibrium concentration profile as

Q. = _kBym /Ou dr rm(c(r,z =0) — (o) /Coo (5.60)

Using the additional approximation of a step potential (equation 5.19), equations 5.52 and
5.60 can be written in terms of the variables & and d as

Jastep = —2DAc [1 + (a —1)4/d(2a — d)] (5.61)
and
Qastep = _kByTAC (e = Y 1d(2a — a2, (5.62)

respectively. Furthermore, in the limit that d < a equations 5.61 and 5.62 may be written as

Jastep = —2DAc [1 + (a — 1)\/5(13/2] (5.63)
and
_n3/2 _
Qa,step ~ 2 kBTa3/2 G 1)d3/2/ (5-64)
H 3
respectively.

5.4.3 Transport equations for diffusio-osmosis including access resistance

To derive the transport equations for diffusio-osmosis, it will be assumed that the total
diffusio-osmotic resistance Rt and the total resistance to the solute flux Rt can be separated
into pore and access contributions. Let the pore diffusio-osmotic resistance be R, and the
access diffusio-osmotic resistance be R,. Furthermore, let the pore resistance to the solute
flux be Rps and the access resistance to the solute flux be R,s. Then the total diffusio-
osmotic resistance and the total resistance to the solute flux are assumed to be related to
the respective pore and access resistances by

RT = Rp + 2Ra (565)
and
RT,s = Rp,s + ZRa,S/ (566)

respectively. This assumes that the resistances can be added in series, and that they are
separable from each other.
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Assuming that the fluxes respond linearly to the applied external forces the pore resis-
tance to the solute flux may be defined in terms of the concentration difference (Ac) divided
by the solute flux through a long, cylindrical pore,

—Ac
Rp,s = 7 (5-67)
Tp

Equation 5.16 is defined in terms of the concentration gradient, so it must first be integrated
along the pore length, assuming that U has no z dependence. It is then given by

L “ —U(r) /ksT !
Rprs - m /O di’ re ’ (5.68)

or in terms of the solute concentration,

L a e(r,z)]!
Rps = —= . .
1% 27D |:/0 drr CS(Z) :| (5 69)
In terms of the step-function potential (using equation 5.20),
L 1
Rpsstep = 7D [(a —d)?+da(2a — d)} ' (5.70)

Similarly, the access resistance to solute flux may be defined in terms of half the concen-
tration difference divided by the solute flux through an orifice in an infinitesimally thin
membrane,

—Ac
2Ja

This is because there are two pore ends to the infinitesimally thin membrane. Using the full
theory

Ra,s -

(5-71)

1

R,s = —
& 74D

@ dp pe-U(N/ksT] !
— , (5.72)

22

or using equation 5.37 and assuming z independence of ¢(r,z)/cs(z) (see Appendix A),

-1
1 @ drre(r,z)
Ros =15 | [ ez .
=10 |y co)var 72] (5.73)
For a step-function potential (using equation 5.61),
1 -1
Ra,s,step = E [1 + (lX - 1) d(za - d):| . (574)

Applying the same method to the solution flux the pore diffusio-osmotic resistance (using
equation 5.25) is

_ 2pL _ U ket _1\]
Rp = ke T [/ dr r(a* —r? ( 1) , (5.75)

and in terms of the solute concentration is

Ro= [ L] [ [ arr ) (e2) ~ @) (2] 679
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Then, using equation 5.26 for a step-function potential

8L 1
R = . .
p,step ﬂkBT (OC — 1)d2(d _ 2ﬂ)2 (5 77)
If d < a then
2uL
R R . .

Similarly, the access diffusio-osmotic resistance is, using equation 5.60,

i [/Oﬂ dr (r\/m (e*U(f)/kBT — 1>)] B , (5.79)

R, =
& 2kgT

which in terms of the solute concentration profile is

K [/0 dr (rm[(c(r,z) —¢5(2)) /cs<z>])] _1. (5.80)

R, =
@ 2kgT

Then, using a step-function potential (equation 5.62),

_ o 1
Ra,step = 2kpT [((x B 1) [(2[1 B d)d]3/2] . (5.81)

In the regime where d < a,

3y
Rastep 25/2kpT(a — 1)a3/243/2" (582)

The fluxes may then be given in terms of the pore and access resistances as

—Ac
_ .8
J Rps +2Rqs (5-83)
and
—Ac
- = .8
Q R, 1 2K, (5-84)

The approximate scaling of the different types of pore and access resistances in terms of
the pore radius and the range of the solute-wall potential can be derived from the simplified
equations that use a step-function potential. From equation 5.70 the approximate scaling of
the pore resistance to the solute flux in terms of a and d is Rps ~ [(a — d)? + dx(2a — d)] -
From equation 5.74 the approximate scaling of the access resistance to the solute flux is

-1
Ras ~ [1 + (. —1)/d(2a — d)} . In terms of the pore diffusio-osmotic resistance the scal-
ing is Rp ~ [d*(d —2a)?] !, which when d < a is simplified to Ry ~ a~2d~2. Lastly, for

the access diffusio-osmotic resistance, R, ~ [(2a — d)d]~3/2, which when d < a simplifies
to Ry ~ a=3/2473/2,

5.5 RESULTS AND DISCUSSION
5.5.1 Finite element method results
To validate the theory, FEM simulations were carried out through pores with different radii

and solute-wall interaction parameters (esw and ogy). To check the accuracy of the FEM
simulations, both concentration-gradient-driven and pressure-driven FEM simulations were
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carried out. The Onsager reciprocity relations were used to relate the pressure-driven solute
excess flux with the diffusio-osmotic flux. In order for the Onsager reciprocity relations to be
correct, the fluxes must be in the linear response regime. Figure 5.6 shows the total solution
flux and total solute flux through a very thin orifice versus the applied concentration differ-
ence. As linear response holds for a very thin orifice, where deviations might be expected
to be more significant than for finite-length pores due to the larger fluxes, it is expected
to hold for pores of any length for these set of parameters. The access diffusio-osmotic
resistance calculated using both the concentration-gradient-driven and pressure-driven sim-
ulations were found to be exactly the same. As both simulations gave the same results, only
the concentration-gradient-driven FEM simulation results are shown in this thesis.

To compare with the theory the pore diffusio-osmotic resistance was calculated from the
FEM simulations for finite length pores by subtracting twice the access diffusio-osmotic
resistance from the total diffusio-osmotic resistance. The result was then divided by the
pore length and compared with equation 5.75. Figure 5.7 shows a comparison of the theory
with the FEM simulations for different pore radii and solute-wall interaction strengths. The
theory shows quantitative agreement with the FEM results and the same scaling from the
simplified theory (equation 5.78) holds when d < a. The length scale of interaction of the
potential d is directly proportional to the parameter os,. For these set of parameters the
scaling from the simplified theory holds for pore radii larger than around 5¢.

Figure 5.8 shows the access diffusio-osmotic resistance versus the pore radius. The theory
approximately shows the correct scaling of the access diffusio-osmotic resistance with pore
radius but there is a quantitative difference. To reconcile this disagreement further work
on the theory is required. Nevertheless, the approximate scaling from the simplified theory
(equation 5.82) holds in the limit that d < a (pore radii larger than around 5¢).

By comparing the approximate scaling of the access diffusio-osmotic resistance from the
simplified theory with the approximate scaling of the pore diffusio-osmotic resistance, it can
be calculated when the access diffusio-osmotic resistance becomes important. Immediately
from comparing Figure 5.7 with Figure 5.8 it can be ascertained that the pore and access
diffusio-osmotic resistances are on the same order for most of the pore radii considered
when the pore length is ¢. For the set of parameters considered here this equates to pore
aspect ratios (length to diameter ratios) of ~ 1/4, which could be easily realised using
available materials such as porous graphene.?*

Figures 5.9 and 5.10 show the pore diffusio-osmotic resistance per unit length and the
access diffusio-osmotic resistance versus o, respectively. The theory again agrees quanti-
tatively with the FEM results for the pore diffusio-osmotic resistance, including the approx-
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Figure 5.6: Total solution flux (left) and total solute flux (right) versus applied concentration differ-
ence. The pore length was 0.2¢, the pore radius was 10.13¢, the solute concentration was
2.85 x 107303, and the solute-wall interaction parameters were (€sw, Osw) = (—2.84¢,
0.920).
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Figure 5.7: Pore diffusio-osmotic resistance per unit length versus pore radius for different solute—
wall interaction strengths. The points are from the FEM simulations, the solid lines are
predictions using equation 5.75, while the dashed line shows the approximate scaling
from the simplified theory (equation 5.78) in the limit that d < a. The pore length used in
the FEM simulations was 30.4c, while the solute-wall interaction length scale parameter
was 0.920.
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Figure 5.8: Access diffusio-osmotic resistance versus pore radius for different solute-wall interaction
strengths. The points are from the FEM simulations, the solid lines are predictions using
equation 5.79, while the dashed line shows the approximate scaling from the simplified
theory in the limit that d < a (equation 5.82). The pore length used in the FEM simula-
tions was 0.20, while the solute-wall interaction length scale parameter was 0.92¢.

imate scaling in the limit of d < a. For the access diffusio-osmotic resistance, the approxi-
mate scaling from the simplified theory in the limit of d < a holds for solute-wall interac-
tion length scales smaller than around 0.72c. However, a similar disagreement between the
theory and the simulation results is seen as with the results of the access diffusio-osmotic
resistance versus pore radius. There is a quantitative disagreement between the theory and
the simulation results. Also, different scaling is observed when o, is larger than around
0.72¢.

The simplified theory shows that the diffusio-osmotic resistances have the same scaling
with the solute-wall interaction length scale as they do with the pore radius for d < a.
Therefore, increasing the solute-wall interaction length scale by a factor of 10 is equivalent to
increasing the pore radius ten-fold in terms of its effect on the diffusio-osmotic resistance. A
comparison can be drawn to diffusio-osmosis of an electrolyte. For weakly charged surfaces
the length scale of interaction of the potential is approximately half the Debye length (d ~
Ap/2),?3 which depends on the salt concentration. The salt concentration also affects the
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Figure 5.9: Pore diffusio-osmotic resistance per unit length versus solute-wall interaction length pa-
rameter 0sy. The points are from the FEM simulations, the solid lines are predictions
using equation 5.75, while the dashed line shows the approximate scaling from the sim-
plified theory in the limit that d < a (equation 5.78). The pore radius was 10.13c, the
solute-wall interaction strength was —2.84¢, and the pore length used in the FEM simu-
lations was 30.40.
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Figure 5.10: Access diffusio-osmotic resistance versus solute—wall interaction length parameter ogy.
The points are from the FEM simulations, the solid lines are predictions using equa-
tion 5.79, while the dashed line shows the approximate scaling from the simplified the-
ory in the limit that d < 4 (equation 5.82). The pore radius was 10.13¢, the pore length
was 0.20, the solute-wall interaction strength was —2.84e¢.

fluid-surface interaction strength (¢) due to the dependence of the surface potential on
the salt concentration. For a weak potential, the (x — 1) term in equations 5.78 and 5.82 is
proportional to the Debye length. The Debye length is proportional to 1/,/ce, which means
that the scaling of the access diffusio-osmotic resistance with salt concentration is R, ~ c3/4,
while the scaling of the pore diffusio-osmotic resistance is R, ~ c3/2. In particular, this
shows that the access diffusio-osmotic resistance scales more weakly with salt concentration
than the pore diffusio-osmotic resistance. So by decreasing the salt concentration, the access
diffusio-osmotic resistance decreases more slowly than the pore diffusio-osmotic resistance.

In this study concentration-gradient-driven FEM simulations were used to validate the
theory for the pore and access diffusio-osmotic resistances. It was found that the theory for
the pore diffusio-osmotic resistance agrees quantitatively with the FEM results, while the
theory for the access diffusio-osmotic resistance shows a quantitative disagreement with
the FEM results but approximately the correct scaling, particularly when the pore radius
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is small compared with the solute-wall interaction range. To fix the disagreement between
the theory and the FEM simulation results, further work on the theory is required.

The main results shown here are that the approximate scaling relations from the simpli-
fied theory in the limit that d < a agrees with the FEM simulations and shows that the
access diffusio-osmotic resistance can be on the same order as the pore diffusio-osmotic
resistance for experimentally realisable conditions. Furthermore, increasing the interaction
length scale of the potential effectively increases the pore radius in terms of its effect on the
diffusio-osmotic resistance. For an electrolyte, it was shown that the access diffusio-osmotic
resistance has a weaker scaling with salt concentration than does the pore diffusio-osmotic
resistance. Therefore, the access diffusio-osmotic resistance can become the main contribu-
tor to the total diffusio-osmotic resistance at low salt concentrations.

5.5.2  Molecular dynamics results

One of the challenges in using MD to simulate solution fluxes through pores connected to
reservoirs is the possible effect of reservoir sizes on the results. In this study the reservoir
volume was chosen to be around 2.5 x 10°c°. For this reservoir size for the solution flux
was found to be converged as a function of reservoir size (Figure 5.11).

Figure 5.12 shows the concentration-gradient-driven solution velocity profile inside the
widest simulated pore for both the largest and smallest pore lengths. The first thing that can
be seen is a plug-like flow for the long pore and a slightly parabolic flow inside the short
pore. This parabolic velocity profile inside the short pore is not unlike the one found for MD
simulations of planar Poiseuille flow of polymers through slit nanopores.®* In particular, in
ref. 92 a weak parabolic flow was observed towards the middle of a 140 wide nanoslit.
However, the flow-driving mechanism and pore geometry are different in ref. 92 to what is
studied here. The parabolic flow for the short pore in Figure 5.12 is due to end effects instead
of a variation in fluid density across the pore, as in ref. 92. This is clear when comparing with
the velocity profile inside the long pore, which does not have any statistically significant
parabolic flow in the middle of the pore. The flow profile of the short pore is similar to
the one observed in ref. 17 for electro-osmosis across a thin orifice. This was a result of
an induced pressure difference across the thin orifice. It is likely that similar end effects
are occurring in Figure 5.12 for the short pore. This confirms that the MD simulations are
capturing end effects.
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Figure 5.11: Total solution flux versus reservoir volume for MD simulations. The pore radius was
9.430, the pore length was 30.4c, the solute concentration was 1.64 x 10~ '¢~3, and the
solute concentration ratio was cy /¢y, = 50.
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Figure 5.12: Solution velocity versus distance from pore centre for two different pore lengths. The
pore radius was 9.43c¢, the solute concentration was 1.64 x 10~10—3, and the solute con-
centration ratio was cy/cp, = 50.
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Figure 5.13: Total solution flux versus applied concentration difference from MD simulations. The
points are from the MD simulations, while the line is a linear fit. The pore radius was
4.480, the pore length was 31.8c, and the solute concentration was 1.64 x 10~ ¢ 3.

To compare the diffusio-osmotic transport theory with the MD results it should first be
verified that linear response holds in these simulations. Figure 5.13 shows the total solu-
tion flux versus the applied concentration difference for a pore with a radius of 4.48c, a
pore length of 31.80, and a solute concentration of 1.64 x 10~ ¢ 3. The solute flux could
not be plotted versus the applied concentration difference due to the standard deviation
being comparable with the mean at the lower concentration differences. In order to re-
duce the standard deviation the simulation time would need to be very long, which was
found to be computationally infeasible. As linear response holds at a solute concentration
of 1.64 x 107103 it is also expected to hold for the lower solute concentration simulations.
Although linear response holds, the low Péclet number assumption does not hold as the
total and diffusive solute fluxes are not comparable (Figure 5.14). As a result of this only
the diffusive solute fluxes were used in calculating the resistances to the solute flux.

The pore resistance to the solute flux per unit length was calculated by dividing the total
resistance to the solute flux minus twice the access resistance to the solute flux by the pore
length. Figure 5.15 shows the pore resistance to the solute flux per unit length from the
MD simulations and from the theory. The theory shows quantitative agreement with the
MD results for a solute concentration of 8.24 x 10~2¢~3. For the MD results carried out
at a solute concentration of 1.64 x 107103 the pore resistance to the solute flux per unit
length is overestimated by the theory. However, at such high solute molar fractions, where
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Figure 5.14: Total and diffusive solute fluxes versus pore length for different pore radii using solute
concentrations of 1.64 x 10713 (left) and 8.24 x 102¢—3 (right). The points are from
the MD simulations (dotted lines are a guide to the eye). The closed symbols are the
total solute fluxes, while the open symbols are the diffusive solute fluxes. The pore
length was 31.80 and the concentration ratio was cy/cp, = 50.
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Figure 5.15: Pore resistance to the solute flux per unit length versus pore radius. The theory lines,
which are overlapping in the figure, were calculated from the MD concentration profiles
using equation 5.69. The solute fluxes used to calculate the resistances to the solute flux
were calculated using the diffusive solute fluxes only. The pore length was 31.8¢ and
the applied concentration ratio was cyy/cp, = 50.

the solute makes up 20% of the total number of solution particles, the solution may not
be ideal, which is one of the assumptions made in the continuum theory. The agreement
with the theory at lower solute concentrations also suggests that the discrepancy may be
due to non-ideal effects. Despite the discrepancy the MD results show the same scaling as
is predicted by the theory.

Figure 5.16 shows the access resistance to the solute flux versus pore radius. The theory
only slightly overestimates the MD results but shows the same scaling. In this case the
access resistance for both solute concentrations are overlapping, which contrasts with the
results of the pore resistance to the solute flux per unit length. Therefore, the possible non-
ideal effects mentioned in regards to the pore resistance to the solute flux do not have an
effect on the access resistance to the solute flux.

Figure 5.17 shows the pore diffusio-osmotic resistance per unit length versus pore radius.
The theory does not agree quantitatively with the MD results, which is in contrast with the
comparison between the FEM results and the theory in the previous section. One potential
issue is that the theory curves were calculated using a spline fit to the MD concentration
profiles. The spline fit was calculated using only the concentration profile for the largest
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Figure 5.16: Access resistance to the solute flux versus pore radius. The theory lines, which are
overlapping in the figure, were calculated from the MD concentration profiles using
equation 5.73. The solute fluxes used to calculate the resistances to the solute flux were
calculated using the diffusive solute fluxes only. The applied concentration ratio was
CH/ Cl, = 50.
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Figure 5.17: Pore diffusio-osmotic resistance per unit length versus pore radius for MD simulations.
The theory lines, which are overlapping in the figure, are calculated from the MD con-
centration profiles at two different solute concentrations using equation 5.76. The pore
length was 31.8¢ and the applied concentration ratio was cyy/cy, = 50.

pore radius as an input, while the smaller pore radii were interpolated from the spline fit.
This is a potential source of error. However, the MD simulations also show a significant
degree of layering close to the pore wall, which is shown by the solute concentration profile
(Figure 5.18). It is likely that non-continuum effects due to molecular layering close to the
pore surfaces is causing this disagreement with the theory. Nevertheless the results agree
well with the approximate scaling given by the simplified theory in the limit that d < a.
As demonstrated in the last section these approximate scaling relations can be used to
understand where the access diffusio-osmotic resistance becomes a significant contributor
to the total diffusio-osmotic resistance.

Figure 5.19 shows the access diffusio-osmotic resistance versus pore radius from the MD
simulations. The theory does not agree quantitatively with the MD results but the approx-
imate scaling from the simplified theory holds in the limit that 4 < 4. The quantitative
disagreement is more severe than that between the FEM results and the theory discussed
in the previous section. The MD results are a whole order of magnitude from the theory,
while the FEM results in the previous section are mostly within the same order of magni-
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Figure 5.18: Solute density versus distance from pore wall for MD simulations. The pore length was
31.80, the pore radius was 9.43c, and the concentration ratio was cyy/cp, = 50.
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Figure 5.19: Access diffusio-osmotic resistance versus pore radius for MD and theory. The applied
concentration ratio was cy/c, = 50. The theory lines, which are overlapping in the
figure, are calculated from the MD concentration profiles at two different solute concen-
trations using equation 5.80.

tude. This larger disagreement is likely due to the same non-continuum effects that cause
the discrepancy between the pore diffusio-osmotic resistance and the theory.

The main result shown in this section is that the MD simulations show the same scaling
behaviour predicted by the theory, but there is quantitative disagreement, likely due to
the inaccuracy of the continuum assumption. It is noted that there is also a quantitative
disagreement between the theory and the FEM simulation results for the access diffusio-
osmotic resistance shown in the last section. However, there was no disagreement between
the pore diffusio-osmotic resistance from the FEM results and the theory. Furthermore, the
theory is within an order of magnitude of the access difffusio-osmotic resistance from the
FEM simulations whereas there is more than an order of magnitude difference between
the theory and the access diffusio-osmotic resistance from the MD simulations. Therefore,
the quantitative disagreement between the MD results and the theory is likely due to non-
continuum effects and not for the same reasons as the disagreement between the FEM
simulations and the theory.

5.6 CONCLUSION

A complete analytical theory for diffusio-osmotic transport including entrance effects was
presented. The theory uses the solution and solute fluxes through a long cylindrical pore
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with no ends with the same length as the pore in the membrane to calculate the pore
resistance, and the fluxes through a circular orifice in an infinitesimally thin membrane
to calculate the access resistance. It assumes that the solution is dilute and that it can be
described using continuum theory. Simple scaling laws of the pore and access diffusio-
osmotic resistances were derived from the theory by assuming that the solute concentration
profile is a step-function, and that the interaction length scale of the solute-wall potential is
much smaller than the pore radius. In this regime, the pore diffusio-osmotic resistance scales
as ~ a~2d~2, where a is the pore radius and d is the range of the fluid-surface interactions,
while the access diffusio-osmotic resistance scales as ~ a~3/2d=3/2, The significance of this
scaling is that the diffusio-osmotic resistances depend similarly on the pore radius and on
the length scale of interaction of the potential, and that there is different scaling with these
parameters for the pore and access resistances. By considering an electrolyte, the range
and strength the potential can be related to the Debye length, which depends on the salt
concentration. The diffusio-osmotic resistance decreases with decreasing salt concentration
but the access diffusio-osmotic resistance decreases more slowly than does the pore diffusio-
osmotic resistance. Therefore, the access diffusio-osmotic resistance can dominate the total
diffusio-osmotic resistance for low salt concentrations.

When the theory was compared with FEM simulations of concentration-gradient-driven
flow, the theory showed quantitative agreement for the pore diffusio-osmotic resistance and
approximately the same qualitative scaling for the access diffusio-osmotic resistance. There
was a quantitative difference between the access diffusio-osmotic resistance from the FEM
simulations and from the theory, and a difference in scaling when the solute-wall potential
interaction length scale was not small compared with the pore radius. Further work on the
theory is required in order to fix this discrepancy. When the theory was compared with
the MD simulations the same scaling was observed as for the FEM results and the theory,
although there was quantitative disagreement between the pore diffusio-osmotic resistance
and the theory, and an even larger discrepancy between the theory and the access diffusio-
osmotic resistance compared with the FEM results. This disagreement is likely due to non-
continuum effects. The models used in the FEM simulations and the MD simulations are
quite different. In the FEM simulations the fluid is treated as a continuum and the solute
interacts with the solid walls using a simple function of the distance from the solid walls.
The total solution flow is calculated by integrating the Stokes equations with a body force
that depends on the solute-wall interaction and on the solute concentration gradient. On
the other hand, in the MD simulations the fluid is treated as explicit particles. The force on
each particle is the force due to all other particles in the system, within a pre-defined cut-off
distance. The solute-wall potential develops due to different interactions between solute
particles, wall particles, and solvent particles. The flow is calculated by measuring time-
averaged particle velocities within a specified region (the pore). When taking into account
these differences it is significant that the MD results still agree qualitatively with the theory.

79






CONCLUSION

In this thesis, the entrance effects on concentration-gradient-driven flows were studied us-
ing computation and theory. The phenomena that were investigated have very general ap-
plications due to their presence in many different systems of interest such as desalination,
filtration, and energy harvesting. In the first study, entrance effects were considered in the
context of a porous membrane immersed in an electrolyte solution. The access electrical re-
sistance of a charged pore in both neutral and charged membranes was studied using FEM
calculations. These were then compared with previously existing theories, and a new theory
that was derived in this thesis. In the second study, the continuum assumption was relaxed
using MD simulations. A previously existing algorithm was first modified to function at
high solute concentrations, which was subsequently used to study non-continuum and non-
ideal effects on the access diffusio-omsotic resistance in the third study. The results of the
MD simulations were compared with a new theory of access diffusio-osmotic resistance
developed in this thesis, which was first verified by comparing with FEM simulations.

In order to calculate the access electrical resistance of pores immersed in electrolyte solu-
tions, different methods were investigated. These were the slip method, the length method,
and the potential drop method. It was found that the potential drop method was the sim-
plest and most accurate method. Using this method the access electrical resistance was
shown to agree with the equation by Hall under most conditions when the pore was charged
but the outer-membrane wall was neutral. However, for a charged pore inserted into a
charged membrane the results showed completely different scaling with surface charge
density, salt concentration, and pore radius than is given by the Hall equation. The scaling
was found to follow an existing equation derived by Lee et al.,” but with a modified numer-
ical pre-factor. However, this pre-factor was found to depend on the pore radius. In order
to address this a new theory was developed that considered the access electrical resistance
to be half the total electrical resistance of a circular orifice in an infinitesimally thin mem-
brane. The theory was compared with finite element method (FEM) calculations carried
out under conditions for which it was expected to work, and excellent agreement with the
theory was observed. In particular, the new theory was able to explain to some extent the
radius-dependence of the numerical pre-factor used in the equation by Lee et al.

For the MD simulations an algorithm, called the non-periodic energy step method,® was
used to simulate a concentration-gradient-driven flow. In the original algorithm forces are
applied to solute particles in thin regions at the ends of the simulation cell in order to
maintain a target concentration ratio. However, this was found to require a modification at
high solute concentrations, which had not previously been considered. In the modified algo-
rithm an external force was applied to the solvent particles such that the pressure difference
across the reservoirs on either side of the pore converge to zero. The modified algorithm was
verified by comparing it with an existing theory for concentration-gradient-driven flow.*°

The modified algorithm was then used to simulate diffusio-osmotic flows across pores
of different lengths in order to calculate the access diffusio-osmotic resistance from the
total diffusio-osmotic resistance in the limit of zero pore length. New equations for diffusio-
osmosis were derived that take into account the access diffusio-osmotic resistance. The new
theory considers the total diffusio-osmotic resistance to be the diffusio-osmotic resistance
of a long cylindrical pore with no ends added in series with the diffusio-osmotic resistance
of a circular orifice in an infinitesimally thin membrane. The assumptions made in deriving
the theory included continuum theory and a dilute solution. This theory was first verified
by comparing it with FEM calculations and showed quantitative agreement for the pore

81



82

CONCLUSION

diffusio-osmotic resistance, and approximately the correct qualitative scaling for the access
diffusio-osmotic resistance. The theory was then compared with MD simulations carried
out at two different solute concentrations. The theory showed a significant quantitative
disagreement with the MD results, likely due to non-continuum effects. Nevertheless, the
same qualitative scaling, as given by the simplified theory (using a step-function solute-wall
potential), was observed for the MD results.

In this thesis two new theories were derived, one for the access electrical resistance, and
one for the access diffusio-osmotic resistance. In both cases it was shown that the access
resistance is separable from the total resistance, and that the access resistance can become a
significant fraction of the total resistance for low-aspect-ratio pores. Low-aspect-ratio pores
exist in real porous membranes such as graphene and hexagonal boron nitride, which may
be useful for harvesting energy from salinity gradients.?3 Therefore, understanding how
the access resistance impacts solution transport on a fundamental level may have a great
impact on improving renewable energy.



APPENDIX

A.1 DEFINITIONS OF GRADIENT AND LAPLACIAN IN OBLATE SPHEROIDAL COORDI-
NATES

To calculate the gradient in oblate spheroidal coordinates the general gradient in an orthog-
onal curvilinear coordinate system was used,

270 2,90 2 0
V=—n—+——+——, (A1)
h10q1  h20q2  h3dg3
where 71, 25, and 23 are the Cartesian unit vectors, g1, 92, and g3 are the orthogonal curvilin-
ear coordinates, and hy, hy, and h3 are their respective Lamé coefficients. Similarly, for the
Laplacian,

1 d (hahz 0 d (h3h 0 0 (Mmhy 0
h1h2h3 aq1 ]’ll aq1 alh hz aqz aq:>, h3 8q3 ( )
Considering oblate spheroidal coordinates with g1 = v, q2 = {,q3 = 0, hy = a\/(v2 + (%) /(1 +12),

hy =a\/(v2+2)/(1—?),and h3 = a+/(1 +v2)(1 — ¢?) (a is the pore radius), the gradient
in oblate spheroidal coordinates is

~ A

o9 & d 0 3

V= 2y 24 2, A.
12+72 v a V242 8@ a\/(l + 1/2)(1 — é’Z) d0 ( 3)
1+v2 1-22

where 0, {, and @ are the oblate spheroidal unit vectors. Similarly, the Laplacian in oblate
spheroidal coordinates is

d 9 d
a—v+a—€(1—gz)£+(

213 @

T+2)(1-0) a8 (A-4)

1 0
V= e e

A.2 VERIFYING THE Z-INDEPENDENCE OF THE SCALED MD CONCENTRATION PRO-
FILES

In order to derive the theory for diffusio-osmosis it was assumed that the solute concen-
tration profile divided by the average solute concentration is independent of the axial (z)
coordinate. Figure A.1 shows the solute concentration profile within a pore that has a radius
of 4480 and a length of 31.8¢ (taking into account shear plane), a solute molar fraction of
0.2, and an applied concentration ratio of cy/cr, = 33. As shown, the solute concentration
divided by the “bulk” solute concentration inside the pore is approximately constant with
z. The “bulk” solute concentration is the average solute concentration measured far from
the pore surface. It is dependent on the z coordinate. The percentage difference between the
green curve and the black curve is around 15%.
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Figure A.1: Solute concentration profile relative to “bulk” solute concentration at different positions
along pore. The pore radius is 4.480 and its length is 31.8¢ (taking into account shear
plane position). The solute molar fraction was 0.2, while the applied concentration ratio
was cy/cp, = 33.
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