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ABSTRACT 

This study examines the combined capacity of rubber powder inclusion and polymer–treatment in solving the 

swelling problem of South Australian expansive soils. The rubber powder was incorporated into the soil at three 

different rubber contents (by weight) of 10%, 20% and 30%. The preliminary testing phase consisted of a series 

of consistency limits and free swell ratio tests, the results of which were analyzed to arrive at the optimum 

polymer concentration. The main test program included standard Proctor compaction, oedometer swell–

compression, soil reactivity (shrink–swell index), cyclic wetting and drying, crack intensity, and micro–structure 

analysis by means of the scanning electron microscopy (SEM) technique. The improvement in swelling 

potential and swelling pressure was dependent on the rubber content, with polymer–treated mixtures holding a 

notable advantage over similar untreated cases. A similar dependency was also observed for the crack intensity 

factor and the shrink–swell index. The beneficial effects of rubber inclusion were compromised under the cyclic 

wetting and drying condition. However, this influence was eliminated where the rubber powder was paired with 

the polymer agent. A rubber inclusion of 20%, preferably paired with 0.2 g/l polymer, was suggested to 

effectively stabilize South Australian expansive soils. 

KEYWORDS: Geosynthetics; Expansive soil; Rubber powder; Polymer; Swelling potential; Swelling pressure; 

Crack intensity; Cyclic wetting and drying. 



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

1. Introduction 

Previous testing conducted in South Australia indicates that the majority of soils in the 

state are expansive clays. The predominant soils are Hindmarsh and Keswick clays, which 

are abundantly found in high–population commercial and residential areas. Where exposed to 

seasonal environments, such soils are prone to significant volume changes, i.e. heave and 

settlements, thereby bringing forth instability concerns to the overlying structures. These 

concerns have incurred a large amount of maintenance costs, and thus demand engineering 

solutions to alleviate the associated socio–economic impacts on human’s life. Chemical 

stabilization by means of traditional cementitious agents such as cement and lime is often 

implemented as a common soil improvement technique (e.g. Al-Rawas et al. 2005; Estabragh 

et al. 2014; Soltani et al. 2017
a
). Though effective, the application of such agents is often 

limited by leaching problems, and in some cases, may result in adverse effects when treating 

soils containing large amounts of organic matter, sulfates and salts (Sivapullaiah et al. 2000; 

Puppala et al. 2004; Hoyos et al. 2006). Other disadvantages include their inherent time–

dependency nature, reduction in material workability, low durability against local 

environmental conditions (e.g. acidic and alkaline flows), high transportation costs, and rising 

environmental concerns due to greenhouse gas emissions (Rao et al. 2001; Guney et al. 2007; 

Estabragh et al. 2013; Georgees et al. 2015; Alazigha et al. 2016). As the global community 

is shifting towards a more sustainable mindset, alternate stabilization techniques capable of 

replacing or minimizing the need for such traditional agents have been highly encouraged. 

Beneficial reuse of solid waste materials and industrial by–products, e.g. carpet waste fibers, 

kiln dusts, silicate/calcium chloride geopolymers and demolition wastes, can be regarded 

amongst the most well–received propositions in this context (e.g. Mirzababaei et al. 2013
a
, 

2013
b
; Arulrajah et al. 2017

a
, 2017

b
, 2017

c
; Kua et al. 2017; Mirzababaei et al. 2017

a
, 2017

b
; 

Suksiripattanapong et al. 2017; Phummiphan et al. 2018). 

In Australia, it is estimated that 48 million tires are disposed each year, meaning that there 

is a relative abundance of waste tires available for recycling and beneficial reuse (Hannam 

2014). Similar to fiber–reinforced soils, the rubber assemblage randomly distributes in the 

soil regime, and where optimized in dosage and geometry, amends the expansive soil with 

respect to moisture insensitivity (i.e. swell–shrink related volume changes), strength increase, 

and ductility improvement (e.g. Cetin et al. 2006; Akbulut et al. 2007; Özkul and Baykal 

2007; Seda et al. 2007; Patil et al. 2011; Trouzine et al. 2012; Kalkan 2013; Srivastava et al. 
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2014; Signes et al. 2016; Yadav and Tiwari 2017
a
). A literature survey indicates a rather 

common emphasis on the application of coarse–graded tire rubber material, e.g. long tire 

rubber fibers. Such materials, however, would be associated with implementation difficulties 

when dealing with cohesive soils. On this basis, less regarded types of recycled tires such as 

tire rubber powder take the advantage of better workability, and thus add value if introduced 

to treat expansive soils. 

Simple application procedures coupled with improved sustainability have promoted 

polymer–based additives as an attractive alternative to traditional cementitious agents. While 

commercially branded and readily accessible, such products have not yet received widespread 

acceptance among practicing engineers. This may be attributed to the lack of sufficient 

published data by independent establishments, and inadequate information provided by 

manufacturers regarding effective application rates or implementation procedures. A number 

of documented studies can be found which have assessed the efficiency of various polymer–

based additives in treating expansive soils, thus mitigating the effect of swell–shrink related 

subsidence (e.g. Rauch et al. 2002; Inyang et al. 2007; Mirzababaei et al. 2009; Yazdandoust 

and Yasrobi 2010; Onyejekwe and Ghataora 2015; Alazigha et al. 2016; Ayeldeen and 

Kitazume 2017; Soltani et al. 2017
b
). Though promising, the reported results are not 

consistent on defining an ad hoc stabilization solution, and thus demands further examination. 

The key to finding effective solutions to enhance the applications of expansive soils is to 

fundamentally understand their behavior in the face of changing moisture and temperature 

environments. For arid and semi–arid environments such as the Adelaide region of South 

Australia, this aspect is translated into alternate wetting and drying, incurred by changing 

periods of rainfall and drought. As such, prior promoting any stabilization technique as an 

effective scheme, its efficiency where exposed to periodic wetting and drying should be 

examined. A number of studies have assessed the volume change behavior of expansive soils 

treated with cementitious admixtures (e.g. Rao et al. 2001; Guney et al. 2007; Kalkan 2011; 

Estabragh et al. 2013) and polymer–based additives (e.g. Yazdandoust and Yasrobi 2010; 

Alazigha et al. 2016; De Camillis et al. 2017; Soltani et al. 2017
b
) during wetting and drying. 

However, the volume change behavior of expansive soil–rubber composites treated with 

polymer–based additives during wetting and drying has not yet been addressed in the 

literature. 
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The present study intends to examine the combined capacity of rubber powder inclusion 

and polymer–treatment in ameliorating the inferior engineering characteristics of a highly 

expansive soil found in Adelaide, South Australia. The experimental program was carried out 

in two phases consisting of preliminary and main tests. The preliminary testing phase 

consisted of a series of consistency limits and free swell ratio tests. The main test program 

included standard Proctor compaction, oedometer swell–compression, soil reactivity (shrink–

swell index), cyclic wetting and drying, desiccation–induced cracking, and micro–structure 

analysis by means of the scanning electron microscopy (SEM) technique. 

2. Materials 

2.1. Soil 

A large quantity of expansive clay was sourced from a landfill site in Adelaide, South 

Australia and was used for this study. This soil was characterized as clay with high plasticity 

(CH) in accordance with the Unified Soil Classification System (USCS). Mechanical 

properties of the soil, determined as per relevant ASTM and Australian standards, are 

summarized in Table 1. The grain–size distribution curve, as illustrated in Figure 1, 

indicated a clay fraction (<2 μm) of 44%, along with 36% silt (2–75 μm), 15% fine sand 

(0.075–0.425 mm), 4% medium sand (0.425–2 mm) and 1% coarse sand (2–4.75 mm). The 

swelling potential and free swell ratio (FSR) were, respectively, measured as 10.68% and 

2.27, from which the soil was graded into highly expansive with respect to the classification 

criteria suggested by Seed et al. (1962) and Sridharan and Prakash (2000). 

2.2. Tire Rubber Powder 

Commercially available recycled tire rubber powder, supplied by a local distributor, was 

used to stabilize the expansive soil. Figure 1 illustrates the grain–size distribution curve for 

the rubber particles, along with the used soil, determined as per the ASTM D422 standard. 

The rubber particles are similar in size to fine–medium sand, with particles ranging between 

1.18 mm and 75 μm. The particle diameters corresponding to 10%, 30%, 50%, 60% and 90% 

finer (or passing) were measured as d10=0.182 mm, d30=0.334 mm, d50=0.478 mm, d60=0.513 

mm and d90=0.864 mm (see Figure 1). In addition, the uniformity (i.e. Cu=d60/d10) and 

curvature (i.e. Cc=d30
2
/d10d60) coefficients were determined as Cu=2.81 and Cc=1.20, from 

which the rubber particles were classified as poorly–graded in accordance with the USCS 
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criterion. Figure 2 illustrates microscopic micrographs of the rubber particles at different 

magnification ratios. The rubber particles are non–spherical and irregular in shape (see 

Figure 2b at 50× magnification), with some cavities and micro–cracks propagated along the 

rubber's surface (see Figure 2c at 100× magnification), thus making for a rough surface 

texture. Such surface characteristics could potentially promote adhesion and/or induce 

interfacial friction between the rubber particles and the soil grains, thereby altering the soil 

fabric into a coherent matrix of restricted heave/settlement. Physical properties and chemical 

composition of the rubber particles, as supplied by the manufacturer, are provided in Table 2. 

The specific gravity (at 20
o
C) was found to be 1.09, which is in compliance with that reported 

in the literature (see Yadav and Tiwari (2017
b
) for details). 

2.3. Polymer 

A commercially manufactured polymer agent, hereafter referred to as PC, was used as the 

binder. PC, chemically referred to as polyacrylamide or PAM (–CH2CHCONH2–), is a 

water–soluble anionic synthetic polymer formed from acrylamide subunits. The anionic 

polymerization is accomplished through substituting NH2
–
 (amidogen) by OH

–
 (hydroxide) 

(Seybold 1994). PAM is often employed to increase the viscosity of water or to encourage 

flocculation of clay particles present in water (Seybold 1994; Lu et al. 2002; Graber et al. 

2006). PC, in particular, has been successfully implemented in Australian roadway 

construction as a suitable binder for a variety of clays, shales and gravels (Andrews and 

Sharp 2010; Camarena 2013; Georgees et al. 2015). It is supplied in granular form, and often 

diluted with water (i.e. 200 g of PC into 1000 l of water, as recommended by the 

manufacturer) for application. Other properties include a specific gravity (at 25°C) of 0.8 and 

a pH (at 25°C) of 6.9. 

3. Experimental Work 

The rubber powder was incorporated into the soil at three different rubber contents 

(defined as rubber to dry soil weight ratio), i.e. Rc=10%, 20% and 30%. The experimental 

program was carried out in two phases consisting of preliminary and main tests. The 

preliminary testing phase included a series of consistency limits and free swell ratio tests. The 

intention of the preliminary testing phase was to identify a PC concentration rate capable of 

yielding an effective soil–rubber stabilization scheme. The natural soil and various soil–

rubber mixtures were examined with three different PC concentrations (defined as weight of 
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PC to volume of water ratio), i.e. 0.2 g/l (manufacturer–recommended), 0.4 g/l and 0.6 g/l. 

The consistency limits, i.e. liquid limit, plastic limit, plasticity index and linear shrinkage, 

were measured as per Australian standards (see relevant standard designations in Table 1). 

The free swell ratio is defined as the ratio of equilibrium sediment volume of 10 g oven–dried 

soil passing sieve 425 μm in water (or in the case of this study PC solution) to that of 

kerosene (Sridharan and Prakash 2000). As a consequence of rubber particles floating on 

water, only the natural soil was tested for the free swell ratio. Hereafter, the following coding 

system is adopted to designate the various mix designs: 

NRxPy (1) 

where N=natural soil; Rx=x% rubber (x=0, 10%, 20% and 30%); and Py=y g/l PC (y=0, 0.2 

g/l, 0.4 g/l and 0.6 g/l). The natural with no additives is, therefore, denoted as NR0P0. As a 

typical example, NR20P0.4 represents the natural soil mixed with 20% rubber and treated with 

0.4 g/l PC. A total of 16 mix designs were tested for consistency limits during the preliminary 

testing phase, whereas only four scenarios, i.e. NR0P0, NR0P0.2, NR0P0.4 and NR0P0.6., were 

considered for the free swell ratio test. 

The main test program was carried out on the natural soil and various soil–rubber 

mixtures without and with the optimum PC concentration. Hereafter, the former will be 

referred to as untreated, while the latter will be denoted as treated. The optimum PC 

concertation was selected as 0.2 g/l based on the preliminary test results, which will be 

further discussed in Section 4.1. The main test program consisted of the following tests: i) 

standard Proctor compaction; ii) oedometer swell–compression; iii) soil reactivity (shrink–

swell index); iv) cyclic wetting and drying; v) desiccation–induced cracking; and vi) micro–

structure (SEM) analysis. The methodology associated with each component of the main test 

program will be further outlined in detail. 

3.1. Compaction Studies and Sample Preparation 

A series of standard Proctor compaction tests were carried out on the natural soil (NR0P0) 

and various soil–rubber mixtures, untreated and treated with 0.2 g/l PC, in accordance with 

the ASTM D698  standard. Samples for the oedometer swell–compression, soil reactivity 

(shrink–swell index), cyclic wetting and drying and SEM tests were prepared by the static 

compaction technique at the corresponding optimum moisture content and maximum dry unit 

weight of each mixture (see Table 3). The required amount of water or PC solution (with 0.2 
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g/l concentration) corresponding to the desired optimum moisture content was added to each 

mixture, and thoroughly mixed by hand. Extensive care was dedicated to pulverize the 

lumped particles, targeting homogeneity of the mixtures. Mixtures were then enclosed in 

plastic bags and stored under room temperature conditions for 24 hours, ensuring even 

distribution of moisture throughout the soil mass. A special split mold, similar to that 

described in Soltani et al. (2017
a
), was designed and fabricated from stainless steel to 

accomplish static compaction. The mold consisted of three sections, i.e. the top collar, the 

middle oedometer ring, and the bottom collar. The oedometer ring measures 50 mm in 

diameter and 20 mm in height, and accommodates the sample for oedometer testing 

conditions. The moist mixtures were compressed in the mold at three layers by a constant 

displacement rate of 1.5 mm/min to a specific compaction load, each layer having attained 

the desired/target maximum dry unit weight. The surface of the first and second compacted 

layers were scarified to ensure a good bond between adjacent layers of the mixture. Samples 

for the simplified core shrinkage test (i.e. a component of the soil reactivity test, as further 

outlined in Section 3.3) were prepared in a similar fashion. In this case, however, a different 

mold with a middle section measuring 50 mm in diameter and 100 mm in height, along with 

five compaction layers, was adopted. As a consequence of rubber particles floating on water, 

standard procedures outlined in the ASTM D854 (2014) standard for measuring the specific 

gravity of particles were not applicable. Therefore, the average specific gravity of various 

soil–rubber mixtures was estimated by the following theoretical equation (Trouzine et al. 

2012): 

ssrsrs

rssrss

sm

)(

GwGw

wwGG
G




  (2) 

where Gsm=specific gravity of soil–rubber mixture; wss=weight of dry soil; wr=weight of 

rubber particles; Gss=specific gravity of soil solids (=2.67); and Gsr=specific gravity of rubber 

particles (=1.09). 

Basic mechanical properties of the prepared samples used for the main tests are 

summarized in Table 3. A total of eight mix designs, divided into two groups of untreated 

(designated as NR0P0, NR10P0, NR20P0 and NR30P0) and treated with 0.2 g/l PC (designated as 

NR0P0.2, NR10P0.2, NR20P0.2 and NR30P0.2), were considered for the main experimental 

program. 



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

3.2. Oedometer Swell–Compression Test 

The prepared samples were subjected to a series of oedometer swell–compression tests as 

specified in the ASTM D4546 (2014) standard. The test included two stages, i.e. swell and 

compression. In the first stage, the desired sample was allowed to freely swell under a low 

nominal overburden stress of σ′0=7 kPa. The incurred axial swelling strain or heave was 

recorded during various time intervals to a point in which swell–time equilibrium, a state 

corresponding to the sample's swelling potential (defined as the ultimate axial swelling 

strain), was achieved. During the compression stage, the swollen sample was gradually 

loaded to counteract the built–up axial swelling strain. The stress required to retain the 

sample's initial placement condition (or void ratio e0, as outlined in Table 3) was taken as the 

swelling pressure (Sridharan et al. 1986). 

The conventional oedometer swell test has been regarded as the most common technique 

to assess the soil's expansive potential or degree of expansivity (Sridharan and 

Keshavamurthy 2016). Some limitations, however, include its dependency to the sample's 

initial moisture condition and not accounting for suction variations. Some of the more 

common classification procedures for expansive soils, developed with respect to percent 

expansion in oedometer under σ′0=7 kPa (Holtz and Gibbs 1956; Seed et al. 1962; Sridharan 

and Prakash 2000), are summarized in Table 5. 

3.3. Soil Reactivity Test and the Shrink–Swell Index 

The shrink–swell index, determined in accordance with the AS 1289.7.1.1 (2003) 

standard, can be characterized as a direct method of evaluating the soil's degree of 

expansivity (referred to as reactivity in Australian geotechnical practice). Other significant 

applications include its widespread use for predicting free surface ground movements 

(Cameron 1989; Fityus et al. 2005). Despite its successful adoption in routine geotechnical 

practice in Australia, its existence and use within Australia have not been widely recognized 

by the international geotechnical community (Fityus et al. 2005). The shrink–swell index 

requires incorporating test results obtained from the simplified core shrinkage and the 

modified oedometer swell tests, which are further presented in detail: 

 In the simplified core shrinkage test, the desired cylindrical sample, measuring 50 mm in 

diameter and 100 mm in height (see Section 3.1), is allowed to desiccate under room 

temperature conditions. The variations of axial shrinkage strain is monitored during 
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various time intervals to a point in which shrinkage ceases. The sample is then oven–

dried at 105
o
C to remove any remaining moisture. Final height measurements are taken 

by a Vernier caliper, from which the sample's ultimate shrinkage strain, denoted as εsh, 

can be derived. 

 The modified oedometer swell test is essentially similar to the first stage of the oedometer 

swell–compression test, as outlined in Section 3.2. In this case, however, a higher 

nominal overburden stress equal to σ′0=25 kPa is adopted. The ultimate axial swelling 

strain upon achieving swell–time equilibrium is denoted as εsw. 

Finally, the shrink–swell index Iss is obtained by the following (AS 1289.7.1.1 2003): 

81

sw2
1

sh

ss
.

εε
I


  (3) 

The denominator in Equation 3 is an empirical coefficient, which is defined as the range 

of total suction change with respect to the soil's volume increase from air–dry to near 

saturation condition. The range of total suction change is commonly taken as 1.8 pF 

(pF=potential of free energy, which is a unit for soil suction and is related to kilopascals 

through pF=1+log[kPa]) for the majority of reactive soils in Australia. This value was 

suggested based on collective experience of the AS 2870 (2011) code committee, and is 

supported by the observation that the majority of volume change takes place in a linear 

manner between the wilting point for trees and a moisture content close to saturation (Fityus 

et al. 2005). Previous studies have reported the wilting point suction to vary between 4.0 pF 

and 4.4 pF (Wray 1998; Cameron 2001). Furthermore, the variations of total suction at 

moisture contents near saturation state have been reported to fall in the range of 2.2 pF to 2.5 

pF (Fityus et al. 2005). As such, the suggested value of 1.8 pF can be deemed as reasonable. 

The shrink–swell index represents percentage axial strain, either swelling or shrinkage, per 

change in unit suction of the soil (i.e. %pF
–1

). Thus, it is expected to address some limitations 

associated with other expansive soil classification criteria which are either dependent on the 

soil's initial moisture condition or do not account for suction variations (e.g. the conventional 

oedometer swell test, as outlined in Table 5). Classification procedures for expansive soils 

with respect to the shrink–swell index, as suggested by Seddon (1992), are summarized in 

Table 6. 

3.4. Cyclic Wetting and Drying Test 
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Similar to the first step in the oedometer swell–compression test (see Section 3.2), the 

desired sample was allowed to freely swell under σ′0=7 kPa resulting from a cylindrical load 

directly applied to the sample. Upon completion of the wetting process (i.e. achieving swell–

time equilibrium), reservoir water was drained through a drainage valve embedded within the 

oedometer cell. The oedometer cell, along with the cylindrical load, were then transferred to 

an oven set to a constant temperature of 40
o
C for drying. The drying process was carried out 

for about five days to ensure shrinkage equalization. The combination of one wetting and the 

subsequent drying stage is designated as one wetting–drying cycle. Alternate wetting and 

drying of the sample was repeated in a similar fashion to a point in which the swelling 

potential subject to two successive cycles reached a nearly constant value. In this study, four 

mix designs, i.e. NR0P0, NR30P0, NR0P0.2 and NR30P0.2, were tested for cyclic wetting and 

drying. 

The swelling potential may either decrease or increase with increase in number of applied 

wetting–drying cycles, and regardless of the observed trend, further converges to a nearly 

constant value upon the completion of several cycles (Soltani et al. 2017
b
). This state is 

defined as swell–shrink (or elastic) equilibrium, which signifies a transitional deformation 

state where the plastic (or irreversible) deformation incurred in the soil structure (during 

wetting and drying) largely fades out, and thus change to elastic (or reversible) in character 

(Tripathy et al. 2002; Alonso et al. 2005; Estabragh et al. 2015). In this study, the equilibrium 

condition was achieved at the fourth cycle, thus only five cycles were implemented for the 

tested samples. 

3.5. Desiccation–Induced Crack Studies 

Desiccation–induced cracking can adversely influence the performance of various soil 

structures (e.g. excavations, earth slopes, highway embankments and clay liners), and thus 

assumes a significant role in fulfilling design criteria when constructing on expansive soils. 

The intensity of cracks is commonly quantified by means of the crack intensity factor (CIF) 

and the crack reduction factor (CRF), which are defined as (Yesiller et al. 2000; Miller and 

Rifai 2004): 

100CIF
0

c 
A

A
 (4) 
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n

sn

CIF

CIFCIF
CRF


  (5) 

where Ac=area of cracks; A0=initial area of the tested sample; CIFn=crack intensity factor for 

the natural soil (NR0P0); and CIFs=crack intensity factor for the stabilized sample. 

Desiccation–induced crack tests were carried out on the natural soil and various soil–

rubber mixtures (untreated and treated with 0.2 g/l PC) prepared by the slurry technique at 

their respective liquid limit, as commonly adopted in the literature (e.g. Tang et al. 2012; 

Costa et al. 2013; Chaduvula et al. 2017). The required amount of water or PC solution 

corresponding to the desired liquid limit (see Table 3) was added to each mixture, and 

thoroughly mixed to obtain slurries of uniform consistency. The resultant slurries were 

poured into petri dishes, measuring 100 mm in diameter and 15 mm in height, and gently 

tapped on a wooden platform to remove entrapped air. To simulate severe ambient conditions 

of the Adelaide region, samples were allowed to desiccate under a constant temperature of 

40
o
C. Upon the completion of drying (moisture equalization), still photographs were taken 

using a high resolution digital camera fixed at a vertical angle 50 cm above the desiccated 

samples. The ImageJ software package was then implemented to quantify the crack features. 

3.6. Scanning Electron Microscopy (SEM) 

Significant information on the micro–structure can be obtained by the scanning electron 

microscopy (SEM) technique. Typical mixtures including NR0P0, NR20P0, NR0P0.2 and 

NR20P0.2 were investigated. The desired samples, prepared as per Section 3.1, were allowed 

to air–dry for about 14 days. The samples were then carefully fractured into small cubic–

shaped pieces corresponding to a volume of approximately 1 cm
3
, as suggested in the 

literature (e.g. Tang et al. 2007; Mirzababaei et al. 2009; Yazdandoust and Yasrobi 2010), 

and further scanned over various magnification ratios ranging from 250× to 20,000×. In this 

study, the Philips XL20 SEM device, with a resolution of 4 μm and a maximum 

magnification ratio of 50,000×, was used for scanning electron microscopy imaging. 

4. Results and Discussion 

4.1. Consistency Limits and the Free Swell Ratio 

Figures 3a, 3b and 3c illustrate the variations of liquid limit LL, plasticity index PI and 

linear shrinkage LS against PC concentration for the tested mix designs (i.e. NRxPy; where 
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x=0, 10%, 20% and 30%, and y=0, 0.2 g/l, 0.4 g/l and 0.6 g/l), respectively. Untreated soil–

rubber mixtures (NRxP0) exhibited lower consistency limits compared with that of the natural 

soil (NR0P0). In this case, the higher the rubber content the lower the consistency limits, 

following a monotonic decreasing trend. For instance, the natural soil resulted in LL=78.04%, 

while the inclusion of 10%, 20% and 30% rubber resulted in LL=73.32%, 68.59% and 

65.58%, respectively. It is well–accepted that the consistency limits are primarily a function 

of the mixture's clay content. An increase in rubber content substitutes a larger portion of the 

clay content, and thus leads to lower consistency limits. The lower specific surface area and 

water adsorption capacity of the rubber particles compared with the soil grains also 

contributes to lower consistency limits (Cetin et al. 2006; Trouzine et al. 2012; Srivastava et 

al. 2014). As a result of PC–treatment, the natural soil experienced a notable increase in the 

consistency limits. The magnitude of increase, however, was observed to be independent 

from the adopted PC concertation, as all three concentrations exhibited similar results with 

marginal differences (see NR0Py in Figure 3). As a typical case, LL increased from 78.04% 

for the natural soil (NR0P0) to 87.61%, 87.22% and 85.80% for NR0P0.2, NR0P0.4 and NR0P0.6, 

respectively. An increase in the consistency limits, the liquid limit in particular, implies that a 

flocculated fabric dominates the clay–rubber matrix (Mitchell and Soga 2005). As opposed to 

a face–to–face aggregated (or dispersed) fabric, an edge–to–face flocculated fabric offers 

more resistance to shear (or cone penetration), thereby leading to an increased liquid limit. 

PAM molecules are hydrophilic in nature, and thus provide additional adsorption sites for 

water molecules, which in turn contributes to higher consistency limits (Kim and Palomino 

2009). 

The location of the tested mix designs on Cassgrande’s plasticity chart is illustrated in 

Figure 4. All mixtures lie within the CH region (clay with high plasticity) of the plasticity 

chart. The variations of PI against LL followed a linear path nearly parallel to the A–line of 

the plasticity chart, i.e. PI=0.73(LL–20). In this case, a conventional regression analysis 

indicated the existence of a strong linear agreement in the form of PI=0.77(LL–6.84) (with 

R
2
=0.989) for the tested mixtures. For a given PC concentration, an increase in rubber 

content relocated the soil towards lower plasticity regions (e.g. see the typical linear trendline 

for NRxP0 in Figure 4). On the contrary, for a given soil–rubber mixture (constant rubber 

content), PC–treatment repositioned the soil towards higher plasticity regions (e.g. see the 

typical arrowed path linking NR0P0 to NR0Py in Figure 4). The magnitude of increase in LL 
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and PI, however, was observed to be independent from the adopted PC concentration, as 

evident with the clustering of data points at constant rubber contents (compare NRxP0.2 with 

NRxP0.4 and NRxP0.6 in Figure 4 at any arbitrary x value). 

Results of the free swell ratio tests are summarized in Table 4. Suspension of the soil in 

distilled water (NR0P0) resulted in a free swell ratio of FSR=2.27. Where suspended in PC 

solutions of 0.2 g/l, 0.4 g/l and 0.6 g/l, FSR was measured as 1.67, 1.63 and 1.53, 

respectively. Classification procedures for expansive soils with respect to the FSR value, as 

suggested by Sridharan and Prakash (2000), are outlined in Table 4. The natural soil was 

classified as highly expansive, while PC–treated mixtures (NR0P0.2, NR0P0.4 and NR0P0.6) 

manifested a moderate degree of expansivity. As evident with the FSR values and their 

corresponding classifications, excessive PC concentrations, i.e. 0.4 g/l and 0.6 g/l, seem not 

to provide additional improvements. 

Basic geotechnical properties such as the consistency limits and the free swell ratio can be 

employed to infer the soil's fabric, and thus arrive at initial judgements on the performance of 

various polymer agents at different concentrations (Worth and Wood 1978; Prakash and 

Sridharan 2004; Mitchell and Soga 2005). Taking into account the discussed results, the three 

adopted PC concentrations were observed to yield similar results with marginal differences. 

Therefore, the manufacturer–recommended concentration of 0.2 g/l was deemed as 

satisfactory, and thus was used for the main tests the results of which will be further 

presented and discussed in detail. 

4.2. Compaction Characteristics 

Standard Proctor compaction curves, along with corresponding zero air void (ZAV) 

saturation lines, for the natural soil (NR0P0) and various soil–rubber mixtures untreated and 

treated with 0.2 g/l PC are provided in Figures 5a and 5b, respectively. As a result of rubber 

inclusion, the natural soil exhibited a notable reduction in both the maximum dry unit weight 

γdmax and the optimum moisture content ωopt (see the trendline in Figure 5a). As a result of 

PC–treatment, a marginal increase in both γdmax and ωopt was noted for the natural soil 

(compare NR0P0 with NR0P0.2 in Figure 5b), while treated soil–rubber mixtures exhibited a 

trend similar to that observed for similar untreated cases (see the trendline in Figure 5b). 

Decrease in γdmax and ωopt as a result of the rubber inclusions can be attributed to the lower 

specific gravity, specific surface area and water adsorption capacity of the rubber particles 
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compared with the soil grains (Akbulut et al. 2007; Özkul and Baykal 2007; Seda et al. 2007; 

Kalkan 2013; Signes et al. 2016). 

4.3. Swelling Characteristics 

4.3.1. Swelling Potential and Swelling Pressure 

Swell–time curves, represented by the two–parameter rectangular hyperbola function (e.g. 

Sivapullaiah et al. 1996; Sridharan and Gurtug 2004; Soltani et al. 2017
a
), for the natural soil 

(NR0P0) and various soil–rubber composites untreated and treated with 0.2 g/l PC are 

provided in Figures 6a and 6b, respectively. As a result of rubber inclusion and/or PC–

treatment, the swell–time locus experienced a major downward shift over the εa:logt space 

(εa=axial swelling strain; and t=time), indicating a significant reduction in the magnitude of 

exhibited swelling strain, and thus swelling potential (defined as the ultimate axial swelling 

strain) compared with the natural soil. At t=24 hr, for instance, the natural soil resulted in a 

swelling strain of εa(t)=9.65%, while the inclusion of 10%, 20% and 30% rubber resulted in 

εa(t)=7.55%, 6.35% and 4.85%, respectively (see Figure 6a). Similar treated samples 

exhibited a more pronounced decreasing trend, where the above given values dropped to 

εa(t)=6.45% (NR0P0.2), 5.25%, 3.25% and 2.43%, respectively (see Figure 6b). The natural 

soil and soil–rubber mixtures corresponding to Rc=10%, 20% and 30% resulted in swelling 

potential values of Sp=10.68%, 8.48%, 7.26% and 5.73%, respectively. As a result of PC–

treatment, however, the aforementioned values further decreased to Sp=7.15%, 6.20%, 4.28% 

and 3.20%, respectively. 

Figure 7 illustrates the variations of swelling pressure and swelling potential against 

rubber content for the tested samples. The variations of swelling pressure Ps followed a trend 

similar to that observed for swelling potential Sp, and indicated that, the higher the rubber 

content the greater the reduction in Sp and Ps, with treated samples holding a notable 

advantage over similar untreated cases (compare NRxP0 with NRxP0.2 in Figure 7). The 

natural soil (NR0P0) and soil–rubber mixtures corresponding to Rc=10%, 20% and 30% 

resulted in Ps=235 kPa, 131 kPa, 124 kPa and 93 kPa, respectively. Where treated with 0.2 

g/l PC, these values dropped to Ps=165 kPa (NR0P0.2), 107 kPa, 86 kPa and 35 kPa, 

respectively. The classification criterion proposed by Seed et al. (1962) (see Table 5) was 

implemented to assess the expansive potential of the tested samples, and the results are 

depicted in Figure 7. The two mix designs containing 30% rubber inclusion (NR30P0 and 
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NR30P0.2) were classified as moderately expansive (specified as ‘M’), while other samples 

were graded into highly expansive (specified as ‘H’). 

As demonstrated in Figure 8, the evolution of swelling with time, represented by an S–

shaped curve over the εa:logt space, takes place at three stages, i.e. the initial, primary and 

secondary swelling (Sivapullaiah et al. 1996; Sridharan and Gurtug 2004; Rao et al. 2006; 

Soltani et al. 2017
b
, 2018). The initial swelling phase, also recognized to as inter–void 

swelling, occurs at macro–structural level, and results in small volume changes mainly less 

than 10% of the total volume increase (<10%Sp). The primary swelling phase constitutes for 

up to 80% of the total volume increase (≈80%Sp), and is graphically represented by a steep–

sloped linear portion bounded by the initial and primary swelling time margins. The 

secondary swelling phase takes place as a result of double–layer repulsion, and accounts for 

small time–dependent volume changes. As opposed to the initial swelling phase, both the 

primary and secondary swelling phases evolve at micro–structural level where swelling of 

active clay minerals takes place. Critical variables obtained from the S–shaped curve, defined 

as swell–time characteristics, can be adopted to describe the time–dependency nature of the 

swelling phenomenon. These variables, as outlined in Figure 8, are characterized as: i) 

completion time of the initial and primary swelling phases (tis and tps); ii) initial, primary and 

secondary swelling strains (εais, εaps and εass; Sp=εais+εaps+εass); and iii) primary and secondary 

swelling rates (Cps and Css), which are defined as (Soltani et al. 2018): 
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where tss=completion time of the secondary swelling phase (=14,400 min). 

Swell–time characteristics for the tested samples are summarized in Table 7. The primary 

and secondary swelling strains mainly demonstrated a trend similar to that observed for the 

swelling potential Sp, meaning that Rc=30% promoted the lowest εaps and εass values for both 

untreated and treated soil–rubber mixtures (see NR30P0 and NR30P0.2 in Table 7). Figures 9a 

and 9b illustrate the variations of Cps and Css against rubber content for the tested samples, 

respectively. The rubber inclusions led to a noticeable reduction in both Cps and Css, 
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indicating a capacity of counteracting the heave in both magnitude and time. The higher the 

rubber content the lower the swelling rates, following a monotonic decreasing trend, with 

treated samples exhibiting more efficiency in reducing Cps and Css compared with similar 

untreated cases (compare NRxP0 with NRxP0.2 in Figure 9). For the natural soil (NR0P0), Cps 

and Css were measured as 4.85×10
–2

 and 1.07×10
–2

, respectively. As optimal cases, these 

values, respectively, dropped to 2.63×10
–2

 and 7.06×10
–3

 for NR30P0, and 1.50×10
–2

 and 

5.28×10
–3

 for NR30P0.2. 

4.3.2. Shrink–Swell Index 

Variations of the shrinkage and swelling strains, i.e. εsh and εsw, along with corresponding 

shrink–swell index values, are provided in Figure 10. Increase in rubber content led to a 

noticeable reduction in both εsh and εsw, and thus the shrink–swell index Iss. For the treated 

cases, however, a more pronounced decreasing trend can be observed (compare NRxP0 with 

NRxP0.2 in Figure 10). The degree of expansivity, in this case referred to as reactivity, was 

characterized in accordance with the Seddon (1992) classification criterion (see Table 6), and 

the results are depicted in Figure 10. The natural soil (NR0P0) was graded into highly 

reactive (H
R
) corresponding to Iss=4.21 %pF

–1
. For untreated cases, Rc=10%, 20% and 30% 

resulted in Iss=3.30 %pF
–1

, 2.12 %pF
–1

 and 1.49 %pF
–1

, and thus classified as 

moderately/highly reactive (M
R
/H

R
), moderately reactive (M

R
) and slightly reactive (S

R
), 

respectively. Where treated with 0.2 g/l PC, the aforementioned values dropped to Iss=2.51 

%pF
–1

 (M
R
), 1.88 %pF

–1
 (M

R
), 1.80 %pF

–1
 (M

R
) and 1.04 %pF

–1
 (S

R
), respectively. 

4.3.3. Amending Mechanisms 

Similar to fiber–reinforced soils, the rubber inclusions are able to amend the soil fabric 

through improvements achieved in three aspects: i) increase in non–expansive fraction, which 

is a function of rubber content; ii) interlocking of rubber particles and soil grains; and iii) 

interfacial frictional resistance generated as a result of soil–rubber contact (Tang et al. 2007; 

Al-Akhras et al. 2008; Viswanadham et al. 2009
a
, 2009

b
; Tang et al. 2010; Patil et al. 2011; 

Trouzine et al. 2012; Kalkan 2013; Estabragh et al. 2014; Phanikumar and Singla 2016; 

Soltani et al. 2018; Yadav and Tiwari 2017
a
). The randomly distributed rubber particles 

resemble a spatial three–dimensional network in favor of weaving (or interlocking) the soil 

grains into a coherent matrix of restricted heave. The greater the number of included rubber 

particles (i.e. increase in rubber content) the more effective the interlocking effect. Frictional 
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resistance grows as a consequence of rubber particles experiencing tensile stress in the 

presence of strong swelling forces. This interfacial resistance is a function of soil‒rubber 

contact area, with greater contact levels offering a higher resistance to swelling. 

Consequently, this amending mechanism is in line with rubber content. The greater the 

number of included rubber particles the greater the soil–rubber contact level, which in turn 

promotes an induced interfacial frictional resistance capable of counteracting swelling with 

more efficiency. 

The type of polymer charge, i.e. cationic, non–ionic or anionic, strongly influences the 

degree of polymer adsorption/attraction to clay particles. Positively charged polymers are 

electrostatically attracted to the negatively charged clay surface, while non–ionic polymers 

accomplish adsorption through van der Waals and/or hydrogen bonding (Theng 1982; 

Wallace et al. 1986; Miller et al. 1998). Even though anionic polymers, such as the one used 

in this study, tend to be repelled by clay particles (owing to charge repulsion), adsorption can 

still take place through the presence of cations acting as bridges. The degree of attraction in 

this case is dependent on the amount and type of exchangeable cations, clay content, pH and 

polymer molecular size (Theng 1982; Lu et al. 2002; Rabiee et al. 2013). Polyvalent cations 

such as Ca
2+

 and Mg
2+

, for instance, offer greater efficiency in attracting the carboxylate 

groups on the polymer chains compared with univalent cations such as Na
+
 (Letey 1994; 

Laird 1997). As such, the role of PC in controlling the effect of swelling can be attributed to 

its ability to form ionic bonds holding clay particles together through the cationic bridging 

mechanism, thereby shrinking the electrical double layer. This in turn induces flocculation of 

clay particles by forming coarse aggregates, which is further accompanied by a reduction in 

the clay content size, and thus a reduction in the swelling behavior. Where paired with 

rubber, PC–treatment may further enhance the interlocking of rubber particles and soil grains, 

thus promoting a greater reduction in swelling compared with similar untreated cases. 

4.3.4. Cyclic Wetting and Drying 

Figure 11 illustrates the variations of swelling potential Sp against number of applied 

wetting–drying cycles n for the samples NR0P0, NR30P0, NR0P0.2 and NR30P0.2. With regard to 

untreated cases (NR0P0 and NR30P0), Sp exhibited a rise–fall behavior, peaking at the second 

cycle and then decreasing to an equilibrium value upon the completion of five cycles. The 

treated samples (NR0P0.2 and NR30P0.2), however, demonstrated a monotonic decreasing trend 
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with lower Sp values compared with similar untreated cases. At the first cycle (n=1), the 

samples were allowed to swell from their respective optimum moisture content, thus the Seed 

et al. (1962) classification criterion, which complies with the initial placement condition (see 

Table 5), was implemented to assess the expansive potential of the tested samples. With 

regard to other cycles (n≥2), where the samples undergo swelling from an initially dry 

condition (due to the previous drying cycle), the two classification criteria suggested by Holtz 

and Gibbs (1956) and Sridharan and Prakash (2000) (see Table 5) were adopted. The 

classification results are summarized in Table 8. The classifications were either maintained 

or improved as a result of rubber inclusion and/or PC–treatment, thus indicating that the 

beneficial effects of both stabilization agents in counteracting the swell–shrink related 

volume changes were fairly preserved under the influence of alternate wetting and drying. 

Upon the completion of five cycles, a slight increase in Sp was noted for the untreated sample 

containing 30% rubber inclusion (see NR30P0 in Figure 11), i.e. Sp(1)=5.73% against 

Sp(5)=6.20%. This implies that the blending of rubber particles and soil grains, obtained by 

compaction, could potentially be compromised under the influence of alternate wetting and 

drying. As a result of PC–treatment, however, the interlocking of rubber particles and soil 

grains, enhanced by the polymer binder, remains intact during successive cycles (compare 

NR30P0 with NR30P0.2 in Figure 11). 

Reduction in swelling potential as a result of alternate wetting and drying can be 

attributed to the reconstruction of the clay micro–structure upon completion of the first or 

second cycle (Dif and Bluemel 1991; Zhang et al. 2006; Kalkan 2011; Estabragh et al. 2015). 

Capillary stresses generated as a consequence of drying facilitate the formation of strong van 

der Waals bonds, promoting cementation and aggregation of clay particles. This is followed 

by the development of some relatively large inter–pores among the aggregated soil lumps, 

which decreases the available surface for interaction with water, thereby reducing the specific 

surface area and plasticity of the clay content accompanied by a decreased tendency for 

swelling (Basma et al. 1996; Zhang et al. 2006; Estabragh et al. 2013; Soltani et al. 2017
b
). 

4.4. Crack Intensity 

Variations of the crack intensity factor (CIF), along with corresponding crack reduction 

factors (CRF), are provided in Figure 12. In addition, crack patterns observed for the tested 

samples are illustrated in Figure 13. The rubber inclusions were able to amend desiccation–

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.
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induced cracking. In this case, the higher the rubber content the greater the improvement, 

with PC–treated mixtures holding a notable advantage over similar untreated cases (compare 

NRxP0 with NRxP0.2 in Figure 12). A typical hierarchical cracking pattern can be observed 

for the natural soil, which divides the soil mass into a series of rather small cells with wide 

crack openings. On the contrary, soil–rubber mixtures manifested larger cells with relatively 

smaller crack openings (e.g. compare NR0P0 with NR20P0 and NR20P0.2). The natural soil 

(NR0P0) and soil–rubber mixtures corresponding to Rc=10%, 20% and 30% resulted in 

CIF=23.67%, 16.79%, 9.03% and 4.73% (i.e. CRF=29.06%, 61.86% and 80.01%), 

respectively. Similar mixtures treated with 0.2 g/l PC resulted in lower CIF and higher CRF 

values. In this case, the aforementioned values dropped to CIF=15.57%, 11.90%, 7.74% and 

2.47% (i.e. CRF=34.21%, 49.73%, 67.32% and 89.56%), respectively. 

As a consequence of internal restrains (e.g. non–uniform drying) and/or external restrains 

(e.g. boundary friction/adhesion) acting on the soil during drying, tensile stresses developed 

within the soil can exceed the soil's tensile strength, thus resulting in the development and 

propagation of cracks (Konrad and Ayad 1997; Kodikara and Chakrabarti 2005; Nahlawi and 

Kodikara 2006; Tang et al. 2012; Costa et al. 2013). The development and propagation of 

cracks are primarily a function of clay content, meaning that the higher the clay content the 

greater the intensity of cracks (Mitchell and Soga 2005). As such, the rubber inclusions are 

able to amend the soil fabric through clay–substitution. Consequently, this amending 

mechanism is a function of rubber content, with higher rubber inclusions substituting a larger 

portion of the clay content, and thus ameliorating the effect of cracking with increased 

efficiency. The ductile character of the rubber particles can complement a notable 

improvement in the soil's tensile strength, thus restricting the propagation of cracks. Increase 

in the soil's tensile strength may also be achieved through interlocking of rubber particles and 

soil grains. As previously discussed (see Section 4.3.3), the interlocking effect can be 

considered as a direct function of rubber content, and it is further enhanced in the presence of 

the polymer binder. 

4.5. Micro–Structure (SEM) Analysis 

Figures 14a–14d illustrate SEM micrographs for the samples NR0P0, NR20P0, NR0P0.2 

and NR20P0.2, respectively. The micro–fabric of the natural soil (NR0P0) included a number of 

large inter– and intra–assemblage pore–spaces formed between and within the clay 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.
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aggregates, respectively (see Figure 14a). The inter–assemblage pore–spaces are formed 

during sample preparation (or compaction), and thus are directly proportional to the sample's 

initial void ratio. The shape and extension of the pore–spaces, however, may change during 

the drying process of SEM sample fabrication (see Section 3.6), owing to the development of 

tensile stresses within the soil fabric during desiccation. As a result of rubber inclusion 

(NR20P0), the extent of the inter–assemblage pore–spaces were slightly reduced, which can be 

attributed to the role of rubber particles acting as physical anchors within the soil fabric, thus 

interlocking neighboring aggregates and withstanding tensile stresses developed during 

desiccation. However, as long as the rubber particles are relatively larger in size compared 

with the clay particles, the micro–fabric of the compacted soil–rubber mixture still includes a 

number of intra–assemblage pore–spaces, owing to the inconsistency in arrangement of the 

soil–rubber mixture's constituents (see Figure 14b). Treating the natural soil with PC 

(NR0P0.2) resulted in the formation of large uniform aggregates with relatively small intra–

assemblage pore–spaces, indicating that the polymer solution could effectively sip into the 

soil's micro–fabric, and thus bond the clay aggregates together. The larger clay aggregates 

with less number of intra–assemblage pore–spaces are less prone to water infiltration, which 

in turn mitigates the swelling behavior of the soil (see Figure 14c). Once the soil is included 

with rubber particles and treated with PC (NR20P0.2), the connection interface between the 

rubber particles and the clay matrices is markedly improved. In micro view, the addition of 

polymer contributes to the formation of composite aggregates, with rubber particles 

embedded within the clay aggregates (see the clothed rubber particles in Figure 14d). This 

improves the stability of the compacted soil–rubber mixture against wetting and drying 

cycles, as the rubber particles contribute to the shear strength of the mixture by providing 

tensile strength between the clay aggregates and the polymer solution improves the bonding 

quality of the rubber particles with the clay aggregates; therefore, harnessing the swelling 

potential of the soil subjected to desiccation cycles (see Figure 14d). 

5. Conclusions 

The following conclusions can be drawn from this study: 

 As a result of rubber inclusion and/or PC–treatment, the swell–time locus experienced a 

major downward shift over the semi–log space, indicating a capacity of counteracting the 

heave in both magnitude and time. The variations of swelling pressure followed a trend 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.
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similar to that observed for swelling potential, meaning that the higher the rubber content 

the greater the reduction in swelling potential and swelling pressure, with PC–treated 

mixtures holding a notable advantage over similar untreated cases. 

 Based on common expansive soil classification criteria, i.e. the conventional oedometer 

swell test and the shrink–swell index, a rubber inclusion of 20% by dry weight of soil 

(preferably paired with 0.2 g/l PC) would be required to mitigate the swelling problem of 

South Australian expansive soils. 

 The beneficial effects of rubber inclusion and PC–treatment in counteracting the swell–

shrink related volume changes were fairly preserved under the influence of alternate 

wetting and drying. The blending of rubber particles and soil grains, obtained by 

compaction, could potentially be compromised during wetting and drying. As a result of 

PC–treatment, however, the interlocking of rubber particles and soil grains, enhanced by 

the polymer binder, remained intact during successive cycles. 

 The rubber inclusions were able to amend desiccation–induced cracking. In this case, the 

higher the rubber content the greater the improvement in cracking intensity, with PC–

treated mixtures holding a slight advantage over similar untreated cases. 
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NOTATION 

Basic SI units are given in parentheses. 

Cc  coefficient of curvature (dimensionless) 

CIF  crack intensity factor (%) 

Cps  primary swelling rate (dimensionless) 

CRF  crack reduction factor (%) 

Css  secondary swelling rate (dimensionless) 

Cu  coefficient of uniformity (dimensionless) 

d10  particle diameter corresponding to 10% finer (m) 

d30  particle diameter corresponding to 30% finer (m) 

d50  particle diameter corresponding to 50% finer (m) 

d60  particle diameter corresponding to 60% finer (m) 

d90  particle diameter corresponding to 90% finer (m) 

e0  initial void ratio (dimensionless) 
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FSR  free swell ratio (dimensionless) 

Gsm  specific gravity of soil–rubber mixture (dimensionless) 

Iss  shrink–swell index (%Pa
–1

) 

LL  liquid limit (%) 

LS  linear shrinkage (%) 

n  number of wetting–drying cycle (dimensionless) 

PI  plasticity index (%) 

PL  plastic limit (%) 

Ps  swelling pressure (Pa) 

Rc  rubber content by dry weight of soil (%) 

Sp  swelling potential (%) 

Sp(n)  swelling potential with respect to the n
th

 wetting–drying cycle (%) 

t  elapsed time of swelling (s) 

tis  completion time of the initial swelling phase (s) 

tps  completion time of the primary swelling phase (s) 

tss  completion time of the secondary swelling phase (s) 

γdmax  maximum dry unit weight (N/m
3
) 

εa(t)  axial swelling strain with respect to elapsed time t (%) 

εais  initial swelling strain (%) 

εaps  primary swelling strain (%) 

εass  secondary swelling strain (%) 

εsh  ultimate shrinkage strain with respect to the shrink–swell index test (%) 

εsw  ultimate swelling strain with respect to the shrink–swell index test (%) 

ωopt  optimum moisture content (%) 

ABBREVIATIONS 

CH  clay with high plasticity 

E
R
  extremely reactive 

H  highly expansive 

H
R
  highly reactive 

L  lowly expansive 

M  moderately expansive 

M
R
  moderately reactive 

PC  polymer 

pF  potential of free energy (a unit for soil suction) 

SEM  scanning electron microscopy 

S
R
  slightly reactive 

USCS  unified soil classification system 

VH  very highly expansive 
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Table 1. Physical and mechanical properties of the soil. 

Properties Value Standard designation 

Specific gravity, Gs 2.76 ASTM D854 

Grain–size distribution 

Clay (<2 μm) (%) 44 

ASTM D422 

Silt (2–75 μm) (%) 36 

Fine sand (0.075–0.425 mm) 15 

Medium sand (0.425–2 mm) 4 

Coarse sand (2–4.75 mm) 1 

Consistency limits 

Liquid limit, LL (%) 78.04 AS 1289.3.9.1 

Plastic limit, PL (%) 22.41 AS 1289.3.2.1 

Plasticity index, PI (%) 55.63 AS 1289.3.3.1 

Linear shrinkage, LS (%) 15.78 AS 1289.3.4.1 

USCS soil classification CH ASTM D2487 

Swelling properties 

Swelling potential, Sp (%)
 †

 10.68 
ASTM D4546 

Swelling pressure, Ps (kPa) 235 

Free swell ratio, FSR
 ‡

 2.27 Sridharan and Prakash (2000) 

Compaction characteristics 

Maximum dry unit weight, γdmax (kN/m
3
) 15.9 

ASTM D698 
Optimum moisture content, ωopt (%) 21.0 

Notes: 
† 

% expansion in oedometer from optimum moisture content to saturated condition under σ′0=7 kPa; and 
‡ 

ratio of 

equilibrium sediment volume of 10 g oven–dried soil passing sieve 425 μm in distilled water to that of kerosene. 
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Table 2. Physical properties and chemical composition of tire rubber powder (as supplied by 

the manufacturer). 

Properties Value/Description 

Physical properties 

Physical appearance Fine black powder 

Solubility in water Insoluble 

Water adsorption Negligible 

Resistance to acid and alkaline Excellent 

Specific gravity (at 20
o
C), Gs 1.09 

Softening point (
o
C) 170 

Chemical composition 

Styrene–Butadiene copolymer (%) 55 

Acetone extract (%) 5–20 

Carbon black (%) 25–35 

Zinc oxide (%) 2.5 

Sulphur (%) 1–3 

 

Table 3. Mix designs and their properties used for the main experimental program. 

Soil (%) Rc (%) PC (g/l) Designation LL (%)
 †

 ωopt (%)
 ‡

 γdmax (kN/m
3
)
 ‡

 Gsm
 *

 e0
 ‡

 

100 0 0 NR0P0 78.04 21.0 15.9 2.76 0.706 

90 10 NR10P0 73.32 18.1 15.4 2.42 0.538 

80 20 NR20P0 68.59 16.5 15.2 2.20 0.422 

70 30 NR30P0 65.58 15.0 14.7 2.04 0.359 

100 0 0.2 NR0P0.2 87.61 22.0 16.2 2.76 0.668 

90 10 NR10P0.2 83.67 18.9 15.6 2.42 0.524 

80 20 NR20P0.2 77.73 17.0 15.1 2.20 0.424 

70 30 NR30P0.2 72.14 15.5 14.9 2.04 0.344 

Notes: 
† 

initial placement condition for desiccation–induced crack tests; 
‡ 

initial placement condition for oedometer swell–

compression, soil reactivity (shrink–swell index), cyclic wetting and drying and SEM tests; and 
* 

specific gravity of mixtures 

obtained as per Equation 2. 
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Table 4. Free swell ratio (FSR) for the natural soil treated with various PC concentrations. 

Mixture 
Vk 

(cm
3
) 

Vd 

(cm
3
) 

Vp 

(cm
3
) 

FSR 
Degree of 

expansivity 

Classification procedures with respect to 

FSR 

(Sridharan and Prakash 2000) NR0P0 15.0 34.0 — 2.27 High 

NR0P0.2
 

†
 

15.0 — 25.0 1.67 Moderate ≤1 
1–

1.5 
1.5–2 2–4 >4 

NR0P0.4 15.0 — 24.5 1.63 Moderate 
Negligible Low Moderate High 

Very 

High NR0P0.6 15.0 — 23.0 1.53 Moderate 

Notes: 
† 

manufacturer–recommended concentration; FSR=Vd/Vk or Vp/Vk; and Vk, Vd and Vp=equilibrium sediment volume of 10 g 

oven–dried soil passing sieve 425 μm in kerosene, distilled water and PC solution, respectively. 

 

Table 5. Classification procedures for expansive soils with respect to the oedometer swell 

test. 

Degree of expansivity Holtz and Gibbs (1956)
 †

 Seed et al. (1962)
 ‡

 Sridharan and Prakash (2000)
 †

 

Low (L) <10 0–1.5 1–5 

Moderate (M) 10–20 1.5–5 5–15 

High (H) 20–30 5–25 15–25 

Very High (VH) >30 >25 >25 

Notes: 
† 

% expansion in oedometer from air–dry to saturated condition under σ′0=7 kPa; and 
‡ 

% expansion in oedometer from 

optimum moisture content to saturated condition under σ′0=7 kPa. 

 

Table 6. Classification procedures for expansive soils with respect to the shrink–swell index 

(Seddon 1992). 

Degree of expansivity/reactivity Shrink–Swell index, Iss (%pF
–1

) 

Slightly reactive (S
R
) 0.8–1.7 

Moderately reactive (M
R
) 1.7–3.3 

Highly reactive (H
R
) 3.3–5.8 

Extremely reactive (E
R
) >5.8 
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Table 7. Summary of the swell–time characteristics for the tested samples. 

Mixture tis (min) tps (min) εais (%) εaps (%) εass (%) Sp (%) Cps (×10
2
) Css (×10

3
) 

NR0P0 21 939 1.40 8.00 1.27 10.68 4.85 10.71 

NR10P0 26 1161 1.11 6.46 1.03 8.60 3.92 9.38 

NR20P0 28 1167 0.95 5.38 0.93 7.26 3.32 8.53 

NR30P0 34 1441 0.74 4.28 0.71 5.73 2.63 7.06 

NR0P0.2 18 753 0.94 5.33 0.88 7.15 3.28 6.84 

NR10P0.2 29 1343 0.79 4.71 0.70 6.20 2.83 6.79 

NR20P0.2 35 1412 0.54 3.20 0.53 4.28 1.99 5.30 

NR30P0.2 62 2387 0.41 2.38 0.41 3.20 1.50 5.28 

 

Table 8. Degree of expansivity for the tested samples during wetting and drying cycles. 

Mixture n Sp(n) (%) Degree of expansivity Degree of expansivity 

NR0P0 1 10.68 High
 †

 High
 †

 

2 13.28 Moderate
 ‡

 Moderate
 *

 

3 9.23 Low
 ‡

 Moderate
 *

 

4 7.45 Low
 ‡

 Moderate
 *

 

5 7.55 Low
 ‡

 Moderate
 *

 

NR30P0 1 5.73 High
 †

 High
 †

 

2 7.03 Low
 ‡

 Moderate
 *

 

3 6.63 Low
 ‡

 Moderate
 *

 

4 6.35 Low
 ‡

 Moderate
 *

 

5 6.20 Low
 ‡

 Moderate
 *

 

NR0P0.2 1 7.15 High
 †

 High
 †

 

2 5.10 Low
 ‡

 Moderate
 *

 

3 4.10 Low
 ‡

 Low
 *

 

4 3.70 Low
 ‡

 Low
 *

 

5 3.80 Low
 ‡

 Low
 *

 

NR30P0.2 1 3.20 Moderate
 †

 Moderate
 †

 

2 2.75 Low
 ‡

 Low
 *

 

3 2.00 Low
 ‡

 Low
 *

 

4 1.80 Low
 ‡

 Low
 *

 

5 1.70 Low
 ‡

 Low
 *

 

Notes: 
† 

classified as per Seed et al. (1962) (see Table 5); 
‡ 

classified as per Holtz and Gibbs (1956) (see Table 5); and 
* 

classified 

as per Sridharan and Prakash (2000) (see Table 5). 
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Figure 1. Grain–size distribution curves for the soil and tire rubber powder. 

Figure 2. Tire rubber powder at different magnifications: (a) without magnification; (b) 50× 

magnification; and (c) 100× magnification. 

Figure 3. Consistency limits for the natural soil (NR0P0) and various soil–rubber mixtures 

treated with different PC concentrations: (a) liquid limit; (b) plasticity index; and (c) linear 

shrinkage. 

Figure 4. Location of various soil–rubber–PC mix designs on Casagrande’s plasticity chart. 

Figure 5. Standard Proctor compaction curves for the natural soil (NR0P0) and various soil–

rubber mixtures: (a) untreated; and (b) treated with 0.2 g/l PC. 

Figure 6. Swell–time curves for the natural soil (NR0P0) and various soil–rubber mixtures: 

(a) untreated; and (b) treated with 0.2 g/l PC. 

Figure 7. Variations of swelling pressure and swelling potential against rubber content for 

the tested samples (H=highly expansive; and M=moderately expansive). 

Figure 8. Swell–time characteristics with respect to the oedometer swell test (modified from 

Soltani et al. (2017
b
 and 2018)). 

Figure 9. Variations of the (a) primary and (b) secondary swelling rates against rubber 

content for the tested samples. 

Figure 10. Variations of the shrinkage and swelling strains, along with corresponding shrink–

swell index values, against rubber content for the tested samples (H
R
=highly reactive; 

M
R
=moderately reactive; and S

R
=slightly reactive). 

Figure 11. Variations of swelling potential against number of applied wetting–drying cycles 

for the samples NR0P0, NR30P0, NR0P0.2 and NR30P0.2. 

Figure 12. Variations of the crack intensity factor, along with corresponding crack reduction 

factors, against rubber content for the tested samples. 

Figure 13. Observed crack patterns for the tested samples. 

Figure 14. Scanning electron micrographs (SEM): (a) NR0P0; (b) NR20P0; (c) NR0P0.2; and 

(d) NR20P0.2. 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 
 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.



Accepted manuscript doi: 
10.1680/jgein.18.00009 

 

 

Downloaded by [ University of Saskatchewan] on [02/04/18]. Copyright © ICE Publishing, all rights reserved.


