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Introduction

Game theory is a subject that uses mathematics to model and analyze the
interaction between rational players. The main founders of game theory
are Zermelo, Borel and von Neumann. Later, von Neumann and Morgen-
stern (1944, [81]) systematized and formalized game theory for the first
time. Then, Nash (1950, [60]) proved the existence of equilibrium points
using a fixed point theorem, which laid a solid foundation for the gener-
alization of game theory. It is generally believed that game theory can be
divided into cooperative games and non-cooperative games. The main dif-
ference between cooperative games and non-cooperative games is whether
a binding agreement is signed among the players. The game is a cooper-
ative game if such an agreement exists, otherwise it is a non-cooperative
game. These two classes of games have attracted a large number of schol-
ars. Non-cooperative games mainly study the players’ choice of strategies
when each player wants to maximize his utility, given each other’s strate-
gies. On the other hand, cooperative games mainly study how to find a
fair and reasonable payoff vector to distribute the benefits generated by
the players when they cooperate.

Fuzziness is everywhere in the real world. There are many fuzzy con-
cepts in general language. For example, there is no absolute boundary
between such opposing concepts as tall and short or clean and polluted. To
reflect the fuzzy phenomenon scientifically, Zadeh (1965, [86]) published
his paper Fuzzy set. Zadeh (1965, [86]) defined a fuzzy set as a class of ob-
jects with continuous membership grade, generalizing the notion of a set.
A fuzzy number is a fuzzy set that satisfies specific conditions, generalizing
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2 Introduction

the notion of a real number. In cooperative games, the uncertainty in the
process of cooperation will lead to a fuzzy worth of a coalition. In eco-
nomic models, preference reflects an agent’s attitude to different consump-
tion vectors. Here, the uncertainty of each agent’s attitude to consumption
vectors can be reflected in a fuzzy preference relation. Moreover, there can
be uncertainty regarding the payoff allocation.

This thesis discusses solutions for cooperative games and exchange econ-
omies, giving special attention to fuzziness in these models. Starting with
solutions for cooperative games with transferable utility (TU-games) (Chap-
ters 1 and 2), we enrich the model by considering fuzzy payoffs in TU-
games (Chapter 3), and finally consider fuzzy preferences in a model of an
exchange economy (Chapter 5).

Overview of the thesis

TU-games describe situations in which players can form a coalition and ob-
tain the worth of cooperation based on a binding agreement. Excess in a
TU-game is usually regarded as a measure of the dissatisfaction of a coali-
tion or a player with a given payoff vector, expressed by the excess of the
coalition and the excess of the player, respectively. Roughly said, the ex-
cess of a coalition in a payoff vector is the difference between what this
coalition can generate in cooperation and what the players in the coalition
will receive. When considering a weight system that assigns a weight to
each coalition, the weighted excess of a coalition is defined by multiply-
ing the excess by the assignated weight in Derks and Haller (1999, [27]).
When the weight system assigns to a coalition the inverse of the number
of players in the coalition, the weighted excess of this coalition is called
the per-capita excess. Sakawa and Nishizaki (1994, [70]) were the first to
define the excess of a player by summing up the excesses of all coalitions
to which he belongs. Later, Vanam and Hemachandra (2013, [80]) defined
the per-capita excess of a player by summing up all the per-capita excesses
of all coalitions to which he belongs. Moreover, Yanovskaya (2002, [85])
proposed a proportional excess, where the dissatisfaction of a coalition is
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measured as the ratio between the worth of a coalition and the assigned
payoff.

A solution for TU-games assigns a payoff vector to every game, reflect-
ing how the worth generated by cooperation is allocated over the players.
Based on different excesses of coalitions or players as introduced above,
several solutions for TU-games in the literature are defined by lexicograph-
ically minimizing excesses or balancing excesses over different players. For
example, the nucleolus in Schmeidler (1969, [71]), the prenucleolus in
Sobolev (1973, [77]), the prekernel in Maschler et al. (1972, [51]), the
least square value in Ruiz et al. (1998, [69]), the lexicographical solution
in Sakawa and Nishizaki (1994, [70]), the per-capita excess-sum allocation
in Vanam and Hemachandra (2013, [80]), and the proportional prenucle-
olus in Yanovskaya (2002, [85]).

In TU-games, we need to find a reasonable method to distribute the
worth of cooperation. This is also the main goal for cooperative games
with fuzzy payoffs. An important way to evaluate a solution is to analyze
its properties and characterize it. Shapley (1953, [72]) first characterized a
new value (called Shapley value) using efficiency, symmetry, additivity and
the null player property. The well-known solutions mentioned in the previ-
ous paragraph are axiomatized by different researchers. Peleg (1986, [65])
provided an axiomatization of the prekernel using nonemptiness, Pareto
optimality, covariance under strategic equivalence, the equal treatment
property, a reduced game property, and the converse reduced game prop-
erty. Calvo and Gutiérrez (1996, [19]) characterized the prekernel by
strong stability and balanced surplus properties. Ruiz et al. (1998, [69])
characterized the family of least square values by efficiency, linearity, sym-
metry, inessential game, and coalitional monotonicity.

Allocation in economic models depends on the preferences of the agents.
In case of uncertainty about the preferences, we need a model of prefer-
ences that reflects the uncertainty of each agent’s attitude to every pair of
consumption vectors. The usual 0 − 1 binary relation reflects that each
agent’s satisfaction degree of one consumption vector relative to another
is either 0 or 1. Based on this, the preference relation can be defined by
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comparing the relative satisfaction degree of each pair of consumption vec-
tors. To express the uncertainty of each agent’s attitude to each pair of
consumption vectors, Nakamura (1986, [59]) defined the [0, 1] binary re-
lation where each agent’s satisfaction degree for either one of each pair of
commodity vectors is a constant in the closed interval [0, 1]. Based on this, a
new preference relation can be defined in the same way as the above men-
tioned preference relation. Researchers applied these preference relations
to exchange economies, defined different economic models, and studied
the existence of competitive equilibria.

The first part of this thesis (Chapters 2, 3 and 4) mainly studies solu-
tions of cooperative games by defining different excesses. First, in Chap-
ter 2, we consider the weighted excess of a player by summing up all the
weighted excesses of all coalitions to which he belongs. Thus, we define
a new measure of agent’s dissatisfaction for a given allocation, and then
we analyze corresponding solutions for cooperative games and their prop-
erties. Second, in Chapter 3, we consider affine (and convex) combina-
tions of the (classical) excess and the proportional excess, which provides
a new approach to measure the dissatisfaction for coalitions of players.
We further study the associated solutions for cooperative games. Third, in
Chapter 4, we define the fuzzy excesses of coalitions for cooperative games
with fuzzy payoffs (cooperative fuzzy games) introduced by Mallozzi et al.
(2011, [49]). Then, we define solutions for cooperative fuzzy games based
on fuzzy excesses and study their properties.

Finally, in Chapter 5, we mainly focus on studying a fuzzy preference
relation that better reflects the ambiguous attitude of agents towards con-
sumption vectors in real life and apply it to exchange economies. Then, we
use a fixed point theorem and quasi-variational inequalities to study the
existence of fuzzy competitive equilibria in the new economic model with
fuzzy preferences.

A more detailed organization of this work, which consists of 5 chapters,
is as follows.

Chapter 1 contains known definitions and notations about coopera-
tive games, fuzzy numbers, cooperative fuzzy games and pure exchange
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economies.

In Chapter 2, we deal with the weighted excesses of players in cooper-
ative games which are obtained by summing up all the weighted excesses
of all coalitions to which they belong. We first show that lexicographically
minimizing the individual weighted excesses of players gives the same min-
imal weighted excess for every player. Moreover, we show that the asso-
ciated payoff vector is the corresponding least square value. Second, we
show that minimizing the variance of the players’ weighted excesses on the
preimputation set, again yields the corresponding least square value. Third,
we show that these results give rise to lower and upper bounds for the core
payoff vectors. Using these bounds, we define the weighted super core as a
polyhedron that contains the core, which is one of the main set-valued so-
lutions for both cooperative games as well as exchange economies. It turns
out that the least square values can be seen as a center of this weighted
super core, giving a third new characterization of the least square values.
Finally, these lower and upper bounds for the core inspire us to introduce
a new solution for cooperative TU games that has a strong similarity with
the Shapley value.

In Chapter 3, we introduce a new approach to measure the dissatis-
faction for coalitions of players in cooperative transferable utility games.
This is done by considering affine (and convex) combinations of the clas-
sical excess and the proportional excess. Based on this so-called α-excess,
we define new solution concepts for cooperative games, such as the α-
prenucleolus and the α-prekernel. The classical prenucleolus and prekernel
are special cases when α = 0. We characterize the α-prekernel by strong
stability and the α-balanced surplus property. Also, we show that the payoff
vector generated by the α-prenucleolus belongs to the α-prekernel.

In Chapter 4, we propose a total order relation of fuzzy numbers based
on the expected values of fuzzy numbers. We show that three concepts of
the indifference fuzzy core, nucleolus and bargaining sets of cooperative
games with fuzzy payoffs are well-defined using this total order relation.
Moreover, we obtain that the indifference fuzzy bargaining sets coincide
with the indifference fuzzy core for convex cooperative games with fuzzy
payoffs. Moreover, we characterize the class of superadditive cooperative
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games with fuzzy payoffs for which these sets coincide.

In Chapter 5, we set up a new fuzzy binary relation on consumption sets
to evaluate fuzzy preferences. Besides, we prove that there exists a contin-
uous fuzzy order-preserving function on a reference set for a given fuzzy
preference relation. Subsequently, we focus on a model of a pure exchange
economy with fuzzy preferences. The existence of a fuzzy competitive equi-
librium for a pure exchange economy with fuzzy preferences is shown by
using a fixed point theorem. Finally, we show that fuzzy competitive equi-
libria can be characterized as a solution to an associated quasi-variational
inequality, giving rise to an equilibrium solution.



Chapter 1

Preliminaries

1.1 Cooperative games

1.1.1 TU-games

A characteristic function game with transferable utility (TU-game for short)
is a pair (N, v) consisting of a set N = {1, 2, · · · , n} of n players, and a
characteristic function v : 2N → R, such that v(∅) = 0. The power set 2N

denotes the set of all subsets or coalitions of N . Since the set of players
is fixed, we often shortly write v instead of (N, v). For each coalition S ⊆
N , v(S) represents the worth that coalition S achieves when its members
cooperate. The number of players in coalition S ⊆ N is denoted by s. The
set of all TU-games with player set N is denoted by GN .

A game v ∈ GN is said to be balanced if for every map λ : 2N → R+

such that
∑

S⊆N
i∈S

λ(S) = 1 for every i ∈ N ,

v(N) ≥
∑
S⊆N

λ(S)v(S).

The class of all balanced games is denoted by GNB .

7



8 Chapter 1. Preliminaries

A game v ∈ GN is convex if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for every S, T ∈ 2N .

A game v ∈ GN is superadditive if

v(S) + v(T ) ≤ v(S ∪ T )

for every S, T ∈ 2N with S ∩ T = ∅.
It is obvious that a convex game must be superadditive.

A well-known basis ofGN is the collection of unanimity games (N, uT )T∈2N ,
where the unanimity game (N, uT ) is defined as

uT (S) =

{
1 if S ⊇ T ,
0 otherwise.

(1.1)

1.1.2 Solutions

A vector x ∈ Rn will be called a payoff vector, and x(S) =
∑

i∈S xi for every
S ∈ 2N . For a game v, we say that a payoff vector x ∈ Rn is

• efficient if x(N) = v(N);

• individually rational if xi ≥ v({i}) for all i ∈ N ;

• coalitionally rational if x(S) ≥ v(S) for all S ⊆ N .

A solution is a function ϕ that assigns to every game v ∈ GN a set of n-
dimensional payoff vectors. A solution ϕ is single-valued if ϕ(N, v) consists
of exactly one payoff vector for every game v. In that case, we usually
write it as a function ϕ : GN → Rn with ϕ(N, v) ∈ Rn being the unique
payoff vector assigned to the game. A single-valued solution is also called
a value. A payoff vector x is said to be a preimputation if it is efficient. A
preimputation is called an imputation if it is also individually rational. Let
I ∗(N, v) and I (N, v) be the preimputation set and the imputation set of
game v, respectively. The core of game v consists of the set of efficient and
coalitionally rational payoff vectors, and is denoted by C (N, v).
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For every payoff vector x ∈ Rn and every nonempty coalition S, the
excess of S at x is

e(S, x) = v(S)− x(S). (1.2)

The excess, e(S, x), can be viewed as a measure of the dissatisfaction of
coalition S with respect to the payoff vector x. The core of a game v ∈ GN

can be written as

C (N, v) = {x ∈ Rn | x(N) = v(N) and e(S, x) ≤ 0 ∀ S ⊆ N}.

The core is stable in the sense that each of its elements cannot be blocked
by any coalition.

For every ε ∈ R, the strong ε-core (Shapley and Shubik 1963, 1966,
[73,74]) of a game v ∈ GN is given by

Cε(N, v) = {x ∈ I ∗(N, v) | e(S, x)− ε ≤ 0 ∀S ∈ 2N \ {∅, N}},

and thus allows coalitions to get ‘a bit’ less than their worth. Using this, the
least core of a game v ∈ GN is defined as Cλ(N, v), where λ = min{ε ∈ R |
Cε(N, v) 6= ∅}. We denote the least core of game v by L C (N, v). Another
well-known solution is the prekernel (Maschler et al. 1972, [51]), which
tries to balance the payoffs of players in a pairwise comparison. We denote
by Γij(N) the set of all coalitions containing player i, but not player j, that
is, Γij(N) = {S ⊆ N | i ∈ S, j /∈ S}. If there is no confusion about the
player set, we will shortly write Γij instead of Γij(N). To formally define
the prekernel of a game, we first need to calculate the maximal surplus of
player i over another player j at x ∈ Rn in the game v ∈ GN :

svij(x) = max
S∈Γij

e(S, x) (1.3)

is the maximal surplus (in terms of excess) that player i can obtain in a
coalition without player j. The prekernel PK (N, v) of a game v ∈ GN bal-
ances, within the preimputation set, the surpluses by equalizing for every
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pair of players the maximal surplus of one player over the other. Formally,

PK (N, v) = {x ∈ I ∗(N, v) | svij(x) = svji(x) for all i, j ∈ N, i 6= j}.
(1.4)

Next, we define the lexicographic order on Rm, and the vector θ(x)

which orders the coordinates of x in nonincreasing order. Let m ∈ N and
x, y ∈ Rm. The lexicographic order ≤L is defined as follows:

(i) x <L y if there exists an integer k ∈ N, 1 ≤ k ≤ m such that xi = yi

for 1 ≤ i < k and xk < yk,

(ii) x ≤L y if x <L y or x = y.

Moreover, θ(x) is the vector where the coordinates of x are ordered in
nonincreasing order: θ1(x) ≥ θ2(x) ≥ . . . ≥ θm(x).

The prenucleolus of game v (Sobolev 1973, [77]) is the unique preim-
putation x ∈ I ∗(N, v) satisfying

θ(e(S, x)S∈2N\{∅}) ≤L θ(e(S, y)S∈2N\{∅}) ∀y ∈ I ∗(N, v).

Similarly, for games with nonempty imputation set, the nucleolus (Schmei-
dler 1969, [71]) of game v is the unique imputation x ∈ I (N, v) satisfying

θ(e(S, x)S∈2N\{∅}) ≤L θ(e(S, y)S∈2N\{∅}) ∀ y ∈ I (N, v).

For a game v ∈ GN , the minimal right vector a(N, v) ∈ Rn is defined by

ai(N, v) = max
S3i

[
v(S)−

∑
j∈S\{i}

µj(N, v)
]

for all i ∈ N,

where µ(N, v) ∈ Rn given by µj(N, v) = v(N) − v(N\{j}) is the utopia
vector of game v. A game v is called quasi-balanced if ai(N, v) ≤ µi(N, v)

for all i ∈ N and
∑

i∈N ai(N, v) ≤ v(N) ≤
∑

i∈N µi(N, v). For a quasi-
balanced game v, the τ value, or compromise value, τ(N, v) (Tijs 1981, [79],
Borm et al. 1992, [16]), is the solution that assigns to every quasi-balanced
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game the linear combination of the utopia vector and the minimal right
vector that is efficient, i.e.,

τi(N, v) = λµi(N, v) + (1− λ)ai(N, v),

with λ ∈ [0, 1] such that
∑

i∈N τi(N, v) = v(N).

For every game v ∈ GN , every player i ∈ N , and every coalition S ∈
2N\{∅}, the marginal contribution of i to S in v, denoted by mS

i (N, v), is
given by

mS
i (N, v) =

{
v(S)− v(S\{i}) if i ∈ S,
v(S ∪ {i})− v(S) if i /∈ S.

(1.5)

The most well-known single-valued solution is the Shapley value (Shap-
ley 1953, [72]). It assigns to every player in game v its expected marginal
contribution, by assuming that all possible orders of entrance of the players
to the grand coalition occur with equal probability,

S H i(N, v) =
∑
S⊆N
S3i

(n− s)!(s− 1)!

n!
[v(S)− v(S\{i})] for all i ∈ N.

The Banzhaf value (Dubey and Shapley 1979, [32]), originally intro-
duced in Banzhaf (1965, [12]) as a power index for voting games, assigns
to every player in every game its expected marginal contribution, by as-
suming that every coalition not containing this player is equally likely to
occur,

BA i(N, v) =
1

2n−1

∑
S⊆N
S3i

[v(S)− v(S\{i})] for all i ∈ N.

Davis and Maschler (1963, [24]) introduced the Davis-Maschler bar-
gaining set by considering objections and counter-objections made by single
players.

For every v ∈ GN and x ∈ I (N, v), let i, j ∈ N, i 6= j. We say that an
objection of i against j at the imputation x in the game v is a pair (S, y)
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where S ∈ Γij and y = (yk)k∈S satisfying

y(S) = v(S), (1.6)

yk > xk for all k ∈ S. (1.7)

We further say that a counter-objection of j to the objection (S, y) of i at x
is a pair (T, z) where T ∈ Γji and z = (zk)k∈T satisfying

z(T ) = v(T ), (1.8)

zk ≥ yk for all k ∈ T ∩ S, (1.9)

zk ≥ xk for all k ∈ T \ S. (1.10)

The Davis-Maschler bargaining set M ind
1 (N, v) of v is a set of payoff

vectors satisfying

M ind
1 (N, v) = {x ∈ I (N, v) | no player has a justified objection at x},

where the justified objection is an objection that has no counter-objection.

Moreover, Mas-Colell (1989, [52]) defined the Mas-Colell bargaining
set by considering objections and counter-objections made by nonempty coali-
tions.

For every v ∈ GN and x ∈ I (N, v), we say that an objection of coalition
S at x in the game v is a pair (S, y) where S is a nonempty coalition,
y = (yk)k∈S satisfying (1.6) with

yk ≥ xk for all k ∈ S, (1.11)

and at least one of the inequalities in (1.11) is strict. We further say that a
counter-objection of coalition T to the objection (S, y) at x is a pair (T, z)

where T is a nonempty coalition, z = (zk)k∈T satisfying (1.8),(1.9),(1.10)
and at least one of the inequalities in (1.9) or (1.10) is strict.
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The Mas-Colell bargaining set MB(N, v) of v is defined as

MB(N, v) = {x ∈ I (N, v) | no nonempty coalition

has a justified objection at x}.

Observe that for every v ∈ GN , a pair (S, y) can be used as an ob-
jection by the players of S or coalition S at x if and only if e(S, y) > 0.
Furthermore, a pair (T, z) is both types of counter-objections at y if and
only if e(T, z) ≥ 0. Consequently, it is true that C (N, v) ⊆M ind

1 (N, v) and
C (N, v) ⊆MB(N, v).

1.2 Cooperative fuzzy games

First, we recall some definitions and notations about fuzzy sets and fuzzy
numbers (see Zadeh (1965, [86]), Dubois (1980, [33])).

1.2.1 Fuzzy numbers

Denote the set of all real numbers by R. A fuzzy set Ã in R is characterized
by a membership function µÃ : R → [0, 1]. The value of µÃ(x) can be
interpreted as the degree of membership of x to Ã.

Let Ã be a fuzzy set in R with membership function µÃ. The fuzzy
set is a fuzzy number if µÃ : R → [0, 1] is a mapping with the following
properties:

(i) µÃ is upper semi-continuous, i.e., for every x0 ∈ R and every ε > 0,
there exists a neighbourhood U of x0 such that

µÃ(x) ≤ µÃ(x0) + ε

for all x ∈ U ,

(ii) µÃ is convex, i.e.,

µÃ(λx+ (1− λ)y) ≥ min{µÃ(x), µÃ(y)}
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for all x, y ∈ R, λ ∈ [0, 1],

(iii) µÃ is normal, i.e., ∃ x0 ∈ R for which µÃ(x0) = 1,

(iv) support(Ã) = {x ∈ R | µÃ(x) > 0} is the support of Ã and its closure
cl(support(Ã)) is compact.

Let FR be the set of all fuzzy numbers in R.

For every Ã ∈ FR, there exist a, b, c, d ∈ R, L : [a, b] → [0, 1] nonde-
creasing and R : [c, d] → [0, 1] nonincreasing such that the membership
function µÃ(x) is given as follows:

µÃ(x) =


L(x) if a ≤ x < b,

1 if b ≤ x ≤ c,
R(x) if c < x ≤ d,
0 otherwise.

(1.12)

A fuzzy number is said to be trapezoidal and denoted by ba, b, c, dc if the
functions L and R are linear. We denote the set of all trapezoidal fuzzy
numbers by TR.

For every A ∈ R, the corresponding fuzzy number Ã is defined by

µÃ(x) =

{
1 if x = A,

0 if x 6= A.
(1.13)

That is the situation of a = b = c = d = A in (1.12).

For every J = [J, J ] ∈ IR, where IR is the set of all closed intervals in
R, the corresponding fuzzy number J̃ is defined by

µJ̃(x) =

{
1 if J ≤ x ≤ J,
0 otherwise.

(1.14)

That is the situation of a = b = J, c = d = J in (1.12).
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The α-level set of a fuzzy number Ã ∈ FR, 0 ≤ α ≤ 1, denoted by Ã[α],
is defined as

Ã[α] =

{
{x ∈ R|µÃ(x) ≥ α} if 0 < α ≤ 1,

cl(support(Ã)) if α = 0.

It is clear that the α-level set of a fuzzy number is a closed bounded interval
[A∗(α), A∗(α)], where A∗(α) denotes the left-hand endpoint of Ã[α] and
A∗(α) the right-hand endpoint of Ã[α].

Let Ã, B̃ be two fuzzy numbers and λ a real number. The arithmetic
fuzzy addition Ã+̃B̃, subtraction Ã−̃B̃, and scalar multiplication λB̃ are
fuzzy numbers which have the membership functions µ(Ã+̃B̃)(z), µ(Ã−̃B̃)(z),
and µλÃ(z) defined, for every z ∈ R, by

µ(Ã+̃B̃)(z) = sup
y∈R
{min{µÃ(y), µB̃(z − y)}},

µ(Ã−̃B̃)(z) = sup
y∈R
{min{µÃ(y), µB̃(y − z)}},

µλÃ(z) =

{
µÃ( zλ) if λ 6= 0,

0 if λ = 0,

We denote fuzzy summation by
∑̃

.

For α ∈ [0, 1], the α-level sets of the fuzzy addition and the scalar mul-
tiplication have the following properties:

(Ã+̃B̃)[α] = [A∗(α) +B∗(α), A∗(α) +B∗(α)],

(λÃ)[α] = [λA∗(α), λA∗(α)] if λ > 0,

(λÃ)[α] = [λA∗(α), λA∗(α)] if λ < 0.

Let Ã = ba1, a2, a3, a4c, B̃ = bb1, b2, b3, b4c be two trapezoidal fuzzy
numbers and λ a real number. The fuzzy addition Ã+̃B̃ and the scalar
multiplication λB̃ are trapezoidal fuzzy numbers, defined as follows:

Ã+̃B̃ = ba1 + b1, a2 + b2, a3 + b3, a4 + b4c,
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λÃ = bλa1, λa2, λa3, λa4c if λ > 0,

λÃ = bλa4, λa3, λa2, λa1c if λ < 0.

The expected value E(Ã) of a fuzzy number Ã is defined by Heilpern
(1992, [39]) as

E(Ã) = 1
2

∫ 1

0
(A∗(α) +A∗(α))dα.

For every Ã, B̃ ∈ FR, the expected values of fuzzy numbers satisfy the
following properties:

E(Ã+̃B̃) = E(Ã) + E(B̃), E(Ã−̃B̃) = E(Ã)− E(B̃).

A partial order relation of intervals was defined in Branzei et al. (2010,
[18]). Let J,K ∈ IR with J = [J, J ],K = [K,K]. We say J D K if and
only if J ≥ K and J ≥ K; J B K if and only if J D K and J 6= K.

A total order relation of intervals was proposed by Han et al. (2012,
[37]). Let J,K ∈ IR with J = [J, J ],K = [K,K]. We say J & K if and
only if 1

2(J + J) ≥ 1
2(K +K); J ∼ K if and only if 1

2(J + J) = 1
2(K +K);

J > K if and only if 1
2(J + J) > 1

2(K +K).

A partial order relation of fuzzy numbers was defined in Mallozzi et al.
(2011, [49]). Let Ã, B̃ ∈ FR. Ã � B̃ if and only if Ã[α] D B̃[α] for
every α ∈ [0, 1], where Ã[α] D B̃[α] if and only if A∗(α) ≥ B∗(α) and
A∗(α) ≥ B∗(α).

LetX be a subset of Rl and f̃ : X → FR a fuzzy mapping parameterized
by f̃(x) = {(f(x)∗(α), f(x)∗(α), α) : α ∈ [0, 1]} for each x ∈ X. The
expected mapping fE(x) for every x ∈ X defined as

fE(x) =
1

2

∫ 1

0
[f(x)∗(α) + f(x)∗(α)]dα,

is a real-valued function. The expected values of fuzzy numbers may be
used as a ranking function. For example, Chanas and Kasperski (2003,
[20]) compared every pair of fuzzy numbers and said that Ã is not less than
B̃ if and only if E(Ã) ≥ E(B̃). However, there exist distinct fuzzy numbers
Ã and B̃ such that E(Ã) = E(B̃), which means that the definition of this
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ranking criterion is a partial order relation.

1.2.2 Solutions of cooperative fuzzy games

TU-games only consider situations where coalitional values are real num-
bers. However, there exist many uncertain factors during the process of
negotiation and coalition forming. As a result, the players often only know
imprecise information about the outcome of cooperation. Intervals can
express the lower and upper bounds of the coalitional values, and hence
researchers proposed interval games, such as Alparslan Gök et al. (2008,
2010, [4, 5]). To generalize interval games, Mareš (1999, [50]) and Mal-
lozzi et al. (2011, [49]) formulated the vagueness of the coalitional values
by fuzzy numbers and introduced cooperative games with fuzzy payoffs
(cooperative fuzzy games for short).

An interval game introduced by Alparslan Gök et al. (2008, [4]) is a
pair (N, ν) where N = {1, 2, · · · , n} is the set of players, and ν : 2N → IR
is the characteristic function such that ν(∅) = 0. We often shortly write
ν instead of (N, ν). For each coalition S ⊆ N , ν(S) represents the worth
that coaliton S achieves when its members cooperate. In other words, the
coalitional values are intervals. Denote the set of all interval games with
player set N by IGN . An interval game ν ∈ IGN is said to be I-balanced
if for every map λ : 2N → R+ such that

∑
S⊆N
i∈S

λ(S) = 1 for every i ∈ N ,

we have ν(N) D
∑

S⊆N λ(S)ν(S). The interval imputation set I (N, ν) and
the interval core C (N, ν) of an interval game ν are defined by the partial
order relation D of intervals, which is defined by comparing the endpoints
of the intervals, as follows:

I (N, ν) = {(J1, · · · , Jn) ∈ IRn |
∑
i∈N

Ji = ν(N) and Ji D ν(i) ∀i ∈ N},

C (N, ν) = {(J1, · · · , Jn) ∈ IRn |
∑
i∈N

Ji = ν(N) and
∑
i∈S

Ji D ν(S) ∀S ⊆ N},

where
∑

i∈S Ji = [
∑

i∈S Ji,
∑

i∈S Ji] for every S ⊆ N .
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Han et al. (2012, [37]) introduced the total order relation & of inter-
vals, which is defined by comparing the midpoints of the intervals. They
defined an alternative imputation set and interval core of an interval game
ν. The indifference interval imputation set I

′
(N, ν) is

I
′
(N, ν) = {(J1, · · · , Jn) ∈ IRn |

∑
i∈N

Ji ∼ ν(N) and Ji & ν(i) ∀i ∈ N},

and the indifference interval core C
′
(N, ν) is

C
′
(N, ν) = {(J1, · · · , Jn) ∈ IRn |

∑
i∈N

Ji ∼ ν(N) and
∑
i∈S

Ji & ν(S) ∀S ⊆ N},

where
∑

i∈S Ji = [
∑

i∈S Ji,
∑

i∈S Ji] for every S ⊆ N .

A cooperative fuzzy game introduced in Mallozzi et al. [49] is a pair
(N, ṽ), where N = {1, 2, · · · , n} is the set of players and ṽ : 2N → FR is
a mapping which assigns to every coalition S ∈ 2N a fuzzy number with
ṽ(∅) = 0. We often shortly write ṽ instead of (N, ṽ). For every coalition
S ⊆ N , ṽ(S) denotes the fuzzy worth that coalition S achieves when its
members cooperate. The class of all cooperative fuzzy games with player
set N is denoted by FGN . A cooperative fuzzy game ṽ ∈ FGN is said
to be F -balanced if for every map λ : 2N → R+ such that

∑
S⊆N
i∈S

λ(S) =

1 for every i ∈ N , we have ṽ(N) �
∑̃

S⊆Nλ(S)ṽ(S). For simplicity, we
write ṽ(i) instead of ṽ({i}) for every i ∈ N , and use the standard notation
x̃(S) :=

∑̃
i∈S x̃i for every ∅ 6= S ⊆ N and x̃(∅) = 0. A solution of ṽ ∈ FGN

is a function Ψ : FGN → FRn assigning to every cooperative fuzzy game
ṽ a set of n-dimensional payoff vectors with fuzzy numbers. Mallozzi et
al. (2011, [49]) defined the fuzzy core (F -core for short) of a cooperative
fuzzy game ṽ using the partial order relation� of fuzzy numbers as follows:

C F (N, ṽ) = {(x̃1, · · · , x̃n) ∈ FRn | x̃(N) = ṽ(N) and x̃(S) � ṽ(S) ∀S ⊆ N}.
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1.3 Pure exchange economies

First, we recall different definitions of binary relations and the correspond-
ing preference relations.

1.3.1 Preference relations

Preference reflects an individual’s attitude toward a collection of objects.
Next, we recall the 0− 1 binary relation.

Let X be a reference set. A 0− 1 binary relation R1 in X ×X is a pair
(X,µR1), where µR1 : X × X → {0, 1} is the satisfaction function of R1,
and for x, y ∈ X, µR1(x, y) represents the satisfaction degree of x relative
to y; µR1(y, x) represents the satisfaction degree of y relative to x; µR1(x, y)

and µR1(y, x) are the relative satisfaction degree of x and y.

Based on the 0 − 1 binary relation R1, the preference relation %R1 on
X can be defined as follows:

For any x, y ∈ X, if µR1(x, y) ≥ µR1(y, x), we say that x is weakly
preferred to y, denoted by x %R1 y; if µR1(x, y) = µR1(y, x) = 1, we say
that x is indifferent to y, denoted by x ∼R1 y; if µR1(x, y) > µR1(y, x), we
say that x is strongly preferred to y, denoted by x �R1 y.

Since the 0 − 1 binary relation is complete, any two elements x, y ∈ X
are comparable.

An agent i’s preference relation on a collection of objects is denoted
by %i

R1
. According to a conclusion in Debreu (1954, [26]), under certain

conditions, there exists a utility function: ui : Rl+ → R such that ui(xi) ≥
ui(x

′
i) if and only if xi is preferred or indifferent to x′i for agent i.

Often an agent is not that definite about its preference with respect to
two alternatives as reflected in µR1 . Therefore, Nakamura (1986, [59])
introduced the following fuzzy binary relation.

Let X be a reference set. A fuzzy binary relation R2 in X ×X is a pair
(X,µR2), where µR2 : X×X → [0, 1] is the satisfaction function of R2, and
for x, y ∈ X, µR2(x, y) represents the satisfaction degree of x relative to y.
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Based on the fuzzy binary relation R2, the fuzzy preference relation
%R2 on X can be defined as follows:

For any x, y ∈ X, if µR2(x, y) ≥ µR2(y, x), we say that x is weakly
preferred to y, denoted by x %R2 y; if µR2(x, y) = µR2(y, x) ∈ (0, 1], we
say that x is indifferent to y, denoted by x ∼R2 y; if µR2(x, y) > µR2(y, x),
we say that x is strongly preferred to y, denoted by x �R2 y; if µR2(x, y) =

µR2(y, x) = 0, we say that x is uncomparable to y.

Under certain conditions, there exists a fuzzy utility function: ûi : Rl+ →
[0, 1] such that ûi(xi) ≥ ûi(x′i) if and only if xi is preferred or indifferent to
x′i for agent i.

1.3.2 Existence of a competitive equilibrium

In this thesis, all the vectors in exchange economy models are in bold to
make them more transparent. For every pair of vectors x,y ∈ Rm, x > y

means xi > yi for all i; x = y means xi ≥ yi for all i; and x > y means
x = y but not x = y. The scalar product

∑m
i=1 xiyi of two members x and

y of Rm is denoted by 〈x,y〉.
In a pure exchange economy, we consider a marketplace consisting of

l different goods, indexed by h ∈ H = {1, · · · , l}, and n agents, denoted
by i ∈ N = {1, · · · , n}. Every agent i has an initial endowment vector:
wi = (wi1, · · · , wil) ∈ Rl+. The consumption vector of agent i is xi =

(xi1, · · · , xil) ∈ Xi ⊆ Rl+, where xih is consumption of agent i of commodity
h. Xi is interpreted as the consumption set of agent i. We denote a price
vector by p = (p1, · · · , pl) ∈ Rl+, where ph is the price of commodity h.
As it is standard in economic theory, an agent’s choice from a given set
of alternative consumption vectors is assumed to be made in accordance
with his preference %i

R1
(see page 19), which is represented by the utility

function ui explained in Subsection 1.3.1. We denote a pure exchange
economy by E = (H,N, (Xi,%i

R1
,wi)i∈N ).

An agent wants to maximize his utility among all consumption vectors
that belong to his budget set. The budget set Bi(p) of agent i is the set of
admissible consumption vectors that are affordable for the agent at price
vector p = (p1, · · · , pl) with the value generated by his initial endowment
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vector wi, i.e.,

Bi(p) = {xi ∈ Xi | 〈p,xi〉 ≤ 〈p,wi〉}.

This leads to the following optimization problem, for all i ∈ N and p ∈ P ,

max
xi∈Bi(p)

ui(xi). (1.15)

In turn, the agent’s income can be regarded as the receipts from sales
of the initial endowments. The market for every good is usually considered
to be in equilibrium if the supply of the good equals the demand for it.
However, the price of some good may be zero, which means supply will
exceed demand. The aggregate excess demand is z = (z1, · · · , zl) ∈ Rl,
where zh =

∑
i∈N

(xih−wih) and xih−wih is agent i’s excess demand of good

h ∈ H.

Definition 1.1. For the pure exchange economy E , a pair (p̄, x̄) is said to
be a competitive equilibrium of E if it satisfies the following conditions:

(1) x̄i ∈ arg max
xi∈Bi(p̄)

ui(xi).

(2) p̄ ∈ P = {p | p ∈ Rl,p = 0,
∑
h∈H

ph = 1}.

(3) z̄ 5 0, 〈p̄, z̄〉 = 0, where z̄h =
∑
i∈N

(x̄ih − wih)

Notice that in Condition (1), ui(x̄i) depends on the value of p̄ and
represents the utility function of agent i. Condition (2) implies that prices
should be nonnegative and not all zero. Without any loss of generality, we
can normalize the vector p̄ by restricting the sum of its coordinates to be
1. The first part of Condition (3), i.e., z̄ 5 0, indicates that agents in the
economy cannot consume more than their initial endowments. The second
part of Condition (3), i.e., 〈p̄, z̄〉 = 0, implies that the net value of trade is
zero. All money that is paid for demanded goods by consumers, is received
by consumers who have the initial endowments.

We introduce an abstract economy and define an equilibrium of an ab-
stract economy.
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An abstract economy consists of n agents N = {1, · · · , n}, each of whom
has an action set Hi ⊆ Rl and a payoff function fi defined over H =

H1×H2× · · · ×Hn. The choice of agent i is restricted to the set Ai(a−i) ⊆
Hi, which is a set-valued function defined for each point a−i ∈ H−i =

H1 ×H2 × · · · × Hi−1 ×Hi+1 × · · · × Hn. Formally, we denote an abstract
economy as (N, (Hi, fi, Ai(a−i))i∈N ).

Definition 1.2. Let (N, (Hi, fi, Ai(a−i))i∈N ) be an abstract economy. ā is
an equilibrium point if

fi(ā−i, āi) = max
ai∈Ai(ā−i)

fi(ā−i,ai) for all āi ∈ Ai(ā−i), i ∈ N.

We recall some definitions in Debreu (1952, [25]). The graph ofAi(a−i)
is the set {a | ai ∈ Ai(a−i)}. The set-valued function Ai(a−i) is said to be
continuous at a0

−i if for every sequence {a(k)
−i } converging to a0

−i, there exists

a sequence {a(k)
i } converging to a0

i such that a(k)
i ∈ Ai(a

(k)
−i ) for all k.

Lemma 1.3. An abstract economy (N, (Hi, fi, Ai(a−i))i∈N ) has an equilib-
rium point if

(i) for each i,Hi is compact and convex, fi(a−i,ai) is continuous on H and
quasi-concave in ai;

(ii) for every a−i, Ai(a−i) is a continuous function whose graph is a closed
set; and

(iii) for every a−i, the set Ai(a−i) is convex and nonempty.

This lemma gives conditions for the existence of an equilibrium of an
abstract economy. Under the following assumptions, Arrow and Debreu
(1954, [8]) prove the existence of a competitive equilibrium of pure ex-
change economy E by defining an abstract economy whose equilibrium
points have all the properties of a competitive equilibrium.

What follows are certain assumptions about the consumption units in a
pure exchange economy.

For every good h = 1, · · · , l, the rate of consumption of agent i =

1, · · · ,m is necessarily non-negative, i.e., xih ≥ 0.
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Assumption I The set of consumption vectors Xi available to an indi-
vidual i = 1, 2, · · · ,m is a closed convex subset of Rl+.

Assumption II For all x′i ∈ Xi, the sets {xi ∈ Xi | xi -i x′i} and
{xi ∈ Xi | x′i -i xi} are closed.

Assumption II ensures the continuity of ui(xi).

Assumption III For every xi ∈ Xi, there is x′i ∈ Xi such that ui(x′i) >
ui(xi).

Assumption III assumes that there is no saturation point, no consump-
tion vector that an individual would prefer to all others.

Assumption IV If ui(xi) > ui(x
′
i) and 0 < λ < 1, then ui[λxi + (1 −

λ)x′i] > ui(x
′
i).

Assumption IV corresponds to the usual assumption that the indiffer-
ence surfaces are convex in the sense that the set {xi ∈ Xi | ui(xi) ≥ a} is
a convex set for every fixed real number a.

We also suppose that agent i possesses an initial endowment vector wi

of different goods available.

Assumption V For some xi ∈ Xi, xi < wi.

Assumption V ensures that every agent could exhaust his initial endow-
ments in some feasible way and still have a positive amount of each good
available for trading in the pure exchange economy.

Theorem 1.4. For a pure exchange economy E , if E satisfies Assumptions I-V,
then there is a competitive equilibrium of E .

Next, we recall the assumptions needed to prove the existence of a
competitive equilibrium of a pure exchange economy by using the quasi-
variational inequality .

We assume for i ∈ N :

(i) ui is continuous and strictly concave on Xi.

(ii) For every p ∈ P and xi ∈ Bi(p), ∇ui(xi) 6= 0.

(iii) For each p ∈ P and xi ∈ ∂Bi(p), ∂ui(xi)∂xih
> 0 when xih = 0, h ∈ H.

(iv) lim
‖xi‖→+∞
xi∈Bi(p)

ui(xi) = −∞.
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(v) Every agent is endowed with a positive quantity of at least one good,
i.e.,

∀i ∈ N, ∃h : wih > 0.

Under Assumptions (i)–(v), for all i ∈ N , the maximization problem (1.15)
has a unique solution x̄i(p) for each p ∈ P , denoted by x̄i.

The competitive equilibrium of Definition 1.1 is equivalent to the fol-
lowing statement:

Proposition 1.5. For the pure exchange economy E , let p̄ ∈ P and x̄ ∈
B(p̄) =

∏
i∈N

Bi(p̄). The pair (p̄, x̄) ∈ P × B(p̄) is a competitive equilibrium

if and only if
ui(x̄i) = max

xi∈Bi(p̄)
ui(xi) for all i ∈ N,

and

zh =
∑
i∈N

(x̄ih − wih) ≤ 0 for all h ∈ H.

In order to characterize a competitive equilibrium of a pure exchange
economy as a solution to a related quasi-variational inequality, Anello et al.
(2010, [6]) provide the following theorem.

Theorem 1.6. Let E = (H,N, (Xi,%i
R1
,wi)i∈N ) be a pure exchange econ-

omy. The pair (p̄, x̄) ∈ P × B(p̄) is a competitive equilibrium of a pure
exchange economy if and only if (p̄, x̄) is a solution to the following quasi-
variational inequality

∑
i∈N
〈−∇ui(x̄i), (xi − x̄i)〉 −

〈∑
i∈N

(x̄i −wi), (p− p̄)

〉
≥ 0. (1.16)



Chapter 2

Individual weighted excess
and least square values

2.1 Introduction

In cooperative games with transferable utility, the lexicographical frame-
work can provide a wide variety of objectives to be minimized, and it has
given rise to an entire class of solution concepts. Two of the most pop-
ular solutions, the nucleolus defined by Schmeidler (1969, [71]) and the
prenucleolus proposed by Sobolev (1973, [77]), are the outcome of a lex-
icographic minimization procedure over the excess vector that can be con-
nected with every coalition. For every payoff vector, the excess of a coali-
tion is the difference between the coalitional value and the total payoff al-
located to the members of the coalition, and thus can be seen as a measure
of dissatisfaction for the coalition. Since the sum of all excesses is constant
over the preimputation set, a decrease of the highest excess will definitely
result in the increase of at least one other excess. Based on the above fact,
Ruiz et al. (1996, [68]) introduced the least square prenucleolus which
minimizes the variance of the excesses of the coalitions under the assump-
tion that all coalitions are equally important, i.e., all the excesses are given
the same weight. Later, Ruiz et al. (1998, [69]) relaxed this assumption by
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allowing different weights for different coalitions. Hence, they introduced
a function of coalitional weights and studied a family of symmetric values,
called the LS family, obtained by minimizing the weighted variance of the
excesses of all coalitions. Successively, Derks and Haller (1999, [27]) con-
sidered the weighted excess obtained by multiplying the ordinary excess of
each coalition with a coalition specific positive coefficient or weight, and
presented the weighted nucleolus.

The solutions mentioned above are based on the excesses of all coali-
tions, reflecting the dissatisfaction of the coalitions. Aiming to evaluate a
payoff vector by means of the dissatisfaction of every player, Sakawa and
Nishizaki (1994, [70]) presented the excess of a player by summing up all
the excesses of all coalitions which he belongs to, and defined the lexico-
graphical solution in view of the players’ excesses. Vanam and Hemachan-
dra (2013, [80]) took into account the per-capita excess-sum of every
player, and proposed the per-capita excess-sum allocation in a TU cost
game.

The goal of the current chapter is to explore the effect of allowing dif-
ferent weights for different coalitions, but considering individual excesses.
We consider the weighted excess of a player by summing up all the weighted
excesses of coalitions to which he belongs. It can be interpreted as the
weighted dissatisfaction of a player with respect to the proposed payoff.
Firstly, we show that lexicographically minimizing the weighted excesses
of players yields the same weighted excess for every player. Moreover, tak-
ing the same weighted excess for all players as in Sakawa and Nishizaki
(1994, [70]) and Molina and Tejada (2002, [56]), it turns out that the
corresponding solution is a least square value as proposed by Ruiz et al.
(1998, [69]). Second, by minimizing the variance of the weighted excesses
of all players, we again obtain the corresponding least square value. This
insight leads us to obtain an alternative axiomatic characterization of the
least square (LS) family by efficiency and an equal weighted dissatisfaction
property. Third, the results above give rise to an upper bound and a lower
bound for the core and, using these bounds, we define the weighted super
core. It is further shown that every least square value is obtained as some
center of the corresponding weighted super core for every weight system.
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Inspired by the midpoint of these two bounds, a Shapley-like value is pro-
posed by assigning to every player in every game its expected weighted
marginal contribution. Moreover, this value can be characterized simi-
larly to the Shapley value by weighted efficiency, weighted dummy player
property, additivity and symmetry. However, it is not efficient. To obtain
an efficient solution, we consider two different methods of normalization,
an additive and a multiplicative, respectively introduced by Hammer and
Holzman (1987, [36]) and Dubey and Shapley (1979, [32]). It turns out
that the additive normalization coincides with the corresponding ESL-value
defined by Ruiz et al. (1998, [69]).

The chapter, which is based on Zhang et al. (2021, [89]), is organized
as follows. Section 2.2 recalls some definitions for cooperative games. Sec-
tion 2.3 introduces the individual weighted excess of a player and shows
that lexicographically minimizing these excesses yields the corresponding
least square value with equal excess for every player. In Section 2.4, we
show that minimizing the variance of the weighted excesses also yields the
least square values. In Section 2.5, we introduce the weighted super core
as a polyhedron using core lower and upper bounds that are determined
using the insights from the previous sections. We show that the least square
value is the center of the corresponding weighted super core. Section 2.6
introduces a Shapley-like value based on the core bounds determined be-
fore. Section 2.7 concludes with a brief summary. In the Appendix, we give
an axiomatization of the p-weighted Shapley value.

2.2 Definitions and Notations

In this section, we discuss some definitions that are variations of concepts
discussed in Chapter 1, specifically on concepts related to the excesses of
coalitions and the pre(nucleolus).

Lexicographically minimizing the excess over the set of imputations (re-
spectively preimputations) gives the so-called nucleolus defined by Schmei-
dler (1969, [71]) (respectively prenucleolus proposed by Sobolev (1973,
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[77])) as solution. Instead of minimizing the (coalitional) excesses, in or-
der to better reflect the dissatisfaction of the players themselves, Sakawa
and Nishizaki (1994, [70]) proposed the excess of a player at a payoff vector
x by summing up all the excesses of coalitions (see Eq. (1.2)) to which he
belongs,

w(i, x) =
∑
S⊆N
S3i

e(S, x). (2.1)

On the basis of the lexicographical order ≤L (see page 10), Sakawa and
Nishizaki (1994, [70]) defined the lexicographical solution, which mini-
mizes the excesses of all players.

Vanam and Hemachandra (2013, [80]) took into account the per-capita
excess-sum of player i at an imputation x, i.e.,

pcei(x) =
∑
S⊆N
S3i

1

s
e(S, x), (2.2)

and proposed the per-capita excess-sum allocation of a TU cost game1, which
minimizes the per-capita excess-sum of every player in the lexicographical
order ≤L.

Given weights pNS > 0 for ∅ ⊂ S ⊂ N for every game v ∈ GN and
every payoff vector x ∈ I (N, v), Derks and Haller (1999, [27]) defined
the weighted excess

ep(S, x) = pNS e(S, x) = pNS (v(S)− x(S)), (2.3)

and the corresponding weighted nucleolus by lexocographically minimiz-
ing the weighted excess.

Since in this thesis we take the player setN to be fixed, from now on we
will suppress the superindex N and write the weight of coalition S simply
as pS .

1A cost game is defined similar as a (profit) game, except that the interpretation of the
worth of a coalition is the total cost that a coalition of players has to face jointly. Some
solutions need to be redefined accordingly, for example the (anti-)core of a cost game is the
set of efficient payoff vectors such that no coalition pays more than its own cost.
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Ruiz et al. (1998, [69]) also regarded games with coalitional weights
and restricted their attention to symmetric weight systems, which assign
the same weight to coalitions of the same size. In that case, a weight system
p = (pS)S⊆N can be written as p = (ps)1≤s≤n, where pS = ps for every
S ⊆ N with |S| = s. They considered the following minimization problem,

min
x∈Rn

∑
S⊆N

ps(e(S, x)− ē(v))2 s.t.
∑
i∈N

xi = v(N), (2.4)

where
ē(v) = ē(v, x) =

1

2n − 1

∑
S⊆N

e(S, x)

is the average excess for x, which is constant for every efficient payoff
vector.

Given a weight system p = (ps)1≤s≤n, the corresponding p-least square
value (p-LS value for short), is the value that assigns to every game v the
solution of the minimization problem (2.4), and is given by

LSpi (N, v) =
v(N)

n
+

1

nα

napi (v)−
∑
j∈N

apj (v)

 for every i ∈ N, (2.5)

where

α =

n−1∑
s=1

ps

(
n− 2

s− 1

)
and api (v) =

∑
S⊆N
S3i

psv(S). (2.6)

A value ϕ : GN → Rn belongs to the least square family (LS family for
short) if there exists a weight system p such that ϕ(N, v) = LSp(N, v) for
all v ∈ GN .

In order to establish some basic properties of the solutions of the LS
family, Ruiz et al. (1998, [69]) restated (2.5) as

LSpi (N, v) =
v(N)

n
+
∑
S⊂N
S3i

%s
v(S)

s
−
∑
S⊂N
S 63i

%s
v(S)

n− s
, (2.7)
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where %s = s(n−s)
n

ps
α .

We recall the following well-known axioms for a solution ϕ,

• Efficiency: For each game v ∈ GN ,
∑

i∈N ϕi(N, v) = v(N).

• Symmetry: For each game v ∈ GN and each permutation σ : N →
N , let σv ∈ GN be given by σv(S) = v(σ(S)), S ⊆ N . Then,
ϕσ(i)

(N, σv) = ϕi(N, v) for all i ∈ N .

• Linearity: For every two games v, w ∈ GN and a, b ∈ R, ϕ(N, av +

bw) = aϕ(N, v) + bϕ(N,w), where (av + bw)(S) = a · v(S) + b ·w(S)

for all S ⊆ N . Particularly, this property is called additivity when
a = b = 1.

Ruiz et al. (1998, [69]) further showed that a value ϕ onGN is efficient,
linear and symmetric if, and only if, there exists a unique collection of real
constants {%s}s=1,··· ,n−1 such that for every game v ∈ GN , the payoff vector
(ϕi(N, v))i∈N is given by formula (2.7). These values are called ESL-values.

Consider the grand coalition N in the game v. For given constants dij
for all i, j ∈ N , we say that they are compatible if dii = 0, dij = −dji
and dij + djk = dik for all i, j, k ∈ N . We say that a payoff vector (xi)i∈N

preserves differences according to dij if

xi − xj = dij for all i, j ∈ N.

Given compatible constants {dij}i,j∈N , Hart and Mas-Colell (1989, [38])
verified that there exists a single efficient payoff vector x that preserves dif-
ferences:

xi =
1

n

v(N) +
∑
j∈N

dij

 , xj = xi − dij .
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2.3 p-least square values and the p-weighted excess-
sum prenucleolus

In the remaining of this chapter, we use a system of weights p = (pS)S⊆N

satisfying

pS ≥ 0 for all S ∈ 2N \ {∅} and pS > 0 for some coalition S 6= N.

Inspired by the ideas of Ruiz et al. (1998, [69]), but considering the indi-
vidual excess as in Sakawa and Nishizaki (1994, [70]) (see Eq. (2.1)) and
using weights as in Derks and Haller (1999, [27]) (see Eq. (2.3)), we rep-
resent the weighted dissatisfaction of the players by defining the weighted
excess of every player.

Definition 2.1. Given a system of weights p, a game v ∈ GN , a preimputa-
tion x ∈ I ∗(N, v) and a coalition S ⊆ N ,

wp(i, x) =
∑
S⊆N
S3i

pSe(S, x) (2.8)

is called the weighted excess of player i with respect to preimputation x.

The weighted excess of a player is the sum of all the weighted excesses
of the coalitions to which he belongs, and as such it may be interpreted
as the weighted dissatisfaction of the player towards the proposed payoff.
Notice that the weight system only depends on coalition S and the player
set N , and not on the worth of the coalition or the preimputation.

Consider the n-dimensional vector θ(wp(i, x)i∈N ), whose components
are arranged in nonincreasing order. Just like the prenucleolus is obtained
by lexicographically minimizing the coalitional excesses over all preimputa-
tions, we lexicographically minimize the individual weighted excesses over
all preimputations (see page 10).

Definition 2.2. For every weight system p and every game v ∈ GN , the
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p-weighted excess-sum prenucleolus is the set of payoff vectors that lexico-
graphically minimizes the vector of excesses (wp(i, x))i∈N over the preim-
putation set

PN p(N, v) = {x ∈ I ∗(N, v)|θ(wp(i, x)i∈N ) ≤L θ(wp(i, y)i∈N )

∀y ∈ I ∗(N, v)}.

If the weight system pS = 1 for all S ⊆ N , then the p-weighted excess-
sum prenucleolus is the lexicographical solution defined by Sakawa and
Nishizaki (1994, [70]) and lexicographically minimizes (2.1). The p-weighted
excess-sum prenucleolus becomes the per-capita excess-sum allocation of
a cost game as defined by Vanam and Hemachandra (2013, [80]) if the
weight system is given by pS = 1

|S| , see Eq. (2.2).

Remark 2.1. According to the results in Justman (1977, [43]), we have
the following statements.

(i) If I ∗(N, v) is nonempty and compact, and if all wp(i, x), i ∈ N , are
continuous, then PN p(N, v) 6= ∅.

(ii) If I ∗(N, v) is convex and allwp(i, x), i ∈ N , are convex, then PN p(N, v)

is convex andwp(i, x) = wp(i, y) for all i ∈ N and all x, y ∈PN p(N, v).

Inspired by the method provided by Peleg and Sudhölter (2007, [66]),
let y ∈ I ∗(N, v) and define

I ′(N, v) = {x ∈ I ∗(N, v) | e(S, x) ≤ max
S⊆N

e(S, y) ∀S ⊆ N}.

Since I ′(N, v) is nonempty, convex, and compact, from Remark 2.1, we
obtain that the p-weighted excess-sum prenucleolus is a singleton.

Theorem 2.3. Given every weight system p, the p-weighted excess-sum prenu-
cleolus is a singleton for every game.

The weight system pS has several interpretations: the probability of
coalition S to form; the power of coalition S in the bargaining process; the
stability degree of coalition S. Next, as in Ruiz et al. (1998, [69]), we
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consider symmetric weight systems p = (ps)1≤s≤n where coalitions of the
same size have the same weight. It turns out that in the p-weighted excess-
sum prenucleolus, the individual weighted excesses are the same for every
player.

Theorem 2.4. Let p = (ps)1≤s≤n be a symmetric weight system and let v ∈
GN . For each x ∈PN p(N, v) and i, j ∈ N , it holds that

wp(i, x) = wp(j, x) =
1

n

(∑
k∈N

apk(v)− (α+ nβ)v(N)

)
, (2.9)

where β =
n∑
s=2

ps
(
n−2
s−2

)
and α and api (v) are given by (2.6).

Proof. We prove the theorem in four steps.

(i) Recall that api (v) =
∑

S⊆N
S3i

psv(S), i ∈ N . For every x ∈ I ∗(N, v)

and i ∈ N , we have

wp(i, x) =
∑
S⊆N
S3i

ps(v(S)− x(S))

=
∑
S⊆N
S3i

psv(S)−
∑
S⊆N
S3i

psx(S)

= api (v)−

∑
S⊆N
S3i

psxi +
∑

j∈N\{i}

∑
S⊆N
S3i,j

psxj


= api (v)−

n−1∑
s=0

(
n− 1

s

)
ps+1xi +

∑
j∈N\{i}

n−2∑
s=0

(
n− 2

s

)
ps+2xj


= api (v)−

n∑
s=1

(
n− 1

s− 1

)
psxi −

∑
j∈N\{i}

(
n∑
s=2

(
n− 2

s− 2

)
psxj

)

= api (v)−
n−1∑
s=2

(
n− 1

s− 1

)
psxi −

(
n− 1

0

)
p1xi −

(
n− 1

n− 1

)
pnxi
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−
∑

j∈N\{i}

n∑
s=2

(
n− 2

s− 2

)
psxj

= api (v)−

(
n−1∑
s=2

(
n− 1

s− 1

)
ps + p1 + pn

)
xi

−

(
n∑
s=2

(
n− 2

s− 2

)
ps

) ∑
j∈N\{i}

xj

= api (v)−

(
n−1∑
s=2

((
n− 2

s− 1

)
+

(
n− 2

s− 2

))
ps + p1 + pn

)
xi

−

(
n∑
s=2

(
n− 2

s− 2

)
ps

)
(v(N)− xi)

= api (v)−

(
n−1∑
s=2

(
n− 2

s− 1

)
ps + p1 + pn −

(
n− 2

n− 2

)
pn

)
xi

−

(
n∑
s=2

(
n− 2

s− 2

)
ps

)
v(N)

= api (v)−

(
n−1∑
s=1

(
n− 2

s− 1

)
ps

)
xi −

(
n∑
s=2

(
n− 2

s− 2

)
ps

)
v(N)

= api (v)− αxi − βv(N) (2.10)

(ii) Adding up the individual excesses over all individual players gives∑
i∈N

wp(i, x) =
∑
i∈N

(api (v)− αxi − βv(N))

=
∑
i∈N

api (v)− α
∑
i∈N

xi − β
∑
i∈N

v(N)

=
∑
i∈N

api (v)− (α+ nβ)v(N). (2.11)

(iii) Next, we show that the individual weighted excess is the same for
every player. On the contrary, assume that x ∈PN p(N, v) such that there
are i, j ∈ N , i 6= j, with wp(i, x) 6= wp(j, x). Without loss of generality, fix
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i, j ∈ N with wp(i, x) > wp(j, x) and wp(i, x) = maxk∈N w
p(k, x). Define

c = wp(i,x)−wp(j,x)
2 and then construct a payoff vector x′ meeting

wp(k, x′) =


wp(i, x)− c if k = i,

wp(j, x) + c, if k = j,

wp(k, x), if k 6= i, j.

(2.12)

Obviously, (wp(i, x′) − wp(i, x)) + (wp(j, x′) − wp(j, x)) = 0 and, by Eq.
(2.11) ∑

k∈N
wp(k, x′) =

∑
k∈N

wp(k, x) =
∑
i∈N

api (v)− (α+ nβ)v(N).

By Eq. (2.10), we have

wp(i, x′)− wp(i, x) = α(xi − x′i) and wp(j, x′)− wp(j, x) = α(xj − x′j).

Thus, we have (xi−x′i)+(xj−x′j) = 0. Therefore, x′ ∈ I ∗(N, v). However,
from the construction of the payoff vector x′,

wp(j, x′) = wp(i, x′) < wp(i, x)

and, for k ∈ N \ {i, j},

wp(k, x′) = wp(k, x) ≤ wp(i, x)

and θ(wp(k, x′)k∈N ) <L θ(wp(k, x)k∈N ). This establishes a contradiction
to our premise x ∈ PN p(N, v) and, therefore, wp(i, x) = wp(j, x) for all
i, j ∈ N .

(iv) From (ii) and (iii) above, we can directly derive that the individual
weighted excesses for every x ∈ I ∗(N, v), i ∈ N , are given by

wp(i, x) =
1

n

∑
j∈N

wp(j, x) =
1

n

∑
j∈N

apj (v)− (α+ nβ)v(N).

It turns out that, for every symmetric weight system, the p-weighted
excess-sum prenucleolus coincides with the corresponding least square value
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given by Eq. (2.5).

Proposition 2.5. Let p be a symmetric weight system and v ∈ GN . Then,

PN p(N, v) = LSp(N, v).

In the proof of Proposition 2.5, we use the following lemma.

Lemma 2.6. For every v ∈ GN and i, j ∈ N , we have

(i) api (v)− apj (v) =
∑

S⊆N\{i,j}
ps+1[v(S ∪ {i})− v(S ∪ {j})].

(ii) napi (v)−
∑
j∈N

apj (v) =
∑

j∈N\{i}

∑
S⊆N\{i,j}

ps+1[v(S ∪ {i})− v(S ∪ {j})].

(iii) ap−i(v)− ap−j(v) =
∑

S⊆N\{i,j}
ps+1[v(S ∪ {j})− v(S ∪ {i})].

Proof.

(i) api (v)− apj (v) =
∑
S⊆N
S3i

psv(S)−
∑
S⊆N
S3j

psv(S)

=
∑

S⊆N\{i,j}

[ps+1v(S ∪ {i}) + ps+2v(S ∪ {i, j})]

−
∑

S⊆N\{i,j}

[ps+1v(S ∪ {j}) + ps+2v(S ∪ {i, j})]

=
∑

S⊆N\{i,j}

ps+1[v(S ∪ {i})− v(S ∪ {j})].

(ii) napi (v)−
∑
j∈N

apj (v) =
∑
j∈N

[api (v)− apj (v)]

=
∑

j∈N\{i}

[api (v)− apj (v)]

=
∑

j∈N\{i}

∑
S⊆N\{i,j}

ps+1[v(S ∪ {i})− v(S ∪ {j})],

where the last equality follows from part (i).



2.3. p-least square values and the p-weighted excess-sum prenucleolus 37

(iii) ap−i(v)− ap−j(v) =
∑

k∈N\{i}

apk(v)−
∑

k∈N\{j}

apk(v)

= apj (v)− api (v)

=
∑

S⊆N\{i,j}

ps+1[v(S ∪ {j})− v(S ∪ {i})],

where the last equality follows from part (i).

Proof of Proposition 2.5. For every x ∈ I ∗(N, v), by Eq. (2.10), the
weighted excess of player i with respect to x,

wp(i, x) = api (v)− αxi − βv(N), (2.13)

is a constant. Let x be a preimputation meeting Eq. (2.9). Then,

xi − xj =
1

α
[api (v)− apj (v)] =

1

α

∑
S⊆N\{i,j}

ps+1[v(S ∪ {i})− v(S ∪ {j})]

for all i, j ∈ N , where the first equality follows from Eq. (2.10) and the
second equality follows from Lemma 2.6 (i).

Let us consider the constants dpij = 1
α [api (v) − apj (v)], for all i, j ∈ N .

It is easily seen that the system {dpij}i,j∈N satisfies dpii = 0, dpij = −dpji and
dpij + dpjk = dpik, for all i, j, k ∈ N . Furthermore, x preserves differences
according to {dpij}i,j∈N , i.e., xi − xj = dpij for all i, j ∈ N . Thus, by Hart
and Mas-Colell (1989, [38]), there exists a unique efficient payoff vector x
that preserves {dpij}i,j∈N and it is given by

xi =
1

n

v(N) +
∑
j∈N

dpij

 and xj = xi − dpij .
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That is, for every i ∈ N ,

xi =
v(N)

n
+

1

nα

napi (v)−
∑
j∈N

apj (v)

 .

As a direct consequence of Lemma 2.6 (ii), the p-LS value can be written
as

LSpi (N, v) =
v(N)

n
+

1

n
n−2∑
s=0

ps+1

(
n−2
s

) ∑
j∈N\{i}

∑
S⊆N\{i,j}

ps+1[v(S ∪ {i})

−v(S ∪ {j})] (2.14)

This expression makes clear that a least square value assigns to every
player i an equal share in the worth of the grand coalition, but corrects this
by the average weighted difference in contributions of player i and every
other player j to coalitions they do not belong to. (Here,

∑n−2
s=0 ps+1

(
n−2
s

)
is the sum of the weights put on all coalitions containing i and every other
player j 6= i.)

We conclude this section with the following remark. Given every weight
system p, the solution satisfying that all individual weighted excesses are
equal is defined as follows

E S p(N, v) = {x ∈ I ∗(N, v)|wp(1, x) = · · · = wp(n, x)}. (2.15)

If the weight system pS = 1 for all S ⊆ N , this solution becomes the
equalizer solution of a crisp game defined by Molina and Tejada (2002,
[56]).
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2.4 Minimizing the variance of individual weighted
excesses

In the previous section, we gave a characterization of the least square val-
ues by lexicographically minimizing the (weighted) individual player ex-
cesses. In this section, we consider a least square method, but using the
individual weighted excesses as considered in Section 2.3.

Ruiz et al. (1998, [69]) minimize the sum of squared differences from
the coalitional excesses and average excess to obtain the least square val-
ues. We now minimize the sum of squared diffferences of the individual
weighted excesses and the per capita weighted excess

w̄(v) =
1

n

∑
i∈N

wp(i, x) =
1

n

(∑
i∈N

api (v)− (α+ nβ)v(N)

)
.

Given a symmetric weight system p, we consider the following problem
for a game v ∈ GN :

Problem 1:

min
x∈Rn

∑
i∈N

∑
S⊆N
S3i

pse(S, x)− w̄(v)


2

s.t.
∑
i∈N

xi = v(N).

Notice that for c ∈ R,

∑
i∈N

∑
S⊆N
S3i

pse(S, x)− c


2

=
∑
i∈N

∑
S⊆N
S3i

pse(S, x)


2

+nc2−2c
∑
i∈N

∑
S⊆N
S3i

pse(S, x),
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where the last summation is constant over the preimputation set since∑
i∈N

∑
S⊆N
S3i

pse(S, x) =
∑
i∈N

wp(i, x) =
∑
i∈N

api (v)− (α+ nβ)v(N).

As a consequence, substituting w̄(v) in the objective function in Problem 1
by a constant c, the resulting objective function differs only in a constant,
and the optimal solution remains unchanged. Particularly, for c = 0, the
optimal solution of Problem 1 is that of the following problem.

Problem 2:

min
x∈Rn

∑
i∈N

∑
S⊆N
S3i

pse(S, x)


2

s.t.
∑
i∈N

xi = v(N).

This gives another characterization of the least square values.

Theorem 2.7. For each symmetric weight system p and for each game v ∈
GN , the unique solution of Problem 1 is LSp(N, v).

Proof. By working out the Hessian matrix, it can easily be checked that
the objective function in Problem 2 is strictly convex in Rn. Moreover, it
is obvious that the objective function is continuous. Since the feasible set
is convex and determined by an equality constraint, there is at most one
optimal solution, and the Lagrange conditions are necessary and sufficient
for a point to be the optimal solution. The Lagrangian of Problem 2 is

L(x, λ) =
∑
i∈N

∑
S⊆N
S3i

pse(S, x)


2

+ λ(
∑
i∈N

xi − v(N)).
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Then, the partial derivative with respect to xi, i ∈ N , of L(x, λ) is given by
Lxi(x, λ)

= −2
n∑
s=1

ps

(
n− 1

s− 1

) ∑
S⊆N
S3i

ps(v(S)− x(S))

−2

n∑
s=2

ps

(
n− 2

s− 2

) ∑
j∈N\{i}

∑
S⊆N
S3j

ps(v(S)− x(S)) + λ

= −2

n∑
s=1

ps

(
n− 1

s− 1

)
(api (v)− αxi − βv(N))

−2β
∑

j∈N\{i}

(apj (v)− αxj − βv(N)) + λ

= −2
n∑
s=1

ps

(
n− 1

s− 1

)
api (v) + 2

n∑
s=1

ps

(
n− 1

s− 1

)
αxi + 2

n∑
s=1

ps

(
n− 1

s− 1

)
βv(N)

−2β

 ∑
j∈N\{i}

apj (v) + αxi − (α+ (n− 1)β)v(N)

+ λ

= −2

n∑
s=1

ps

(
n− 1

s− 1

)
api (v)− 2β

∑
j∈N\{i}

apj (v) + 2α

(
n∑
s=1

ps

(
n− 1

s− 1

)
− β

)
xi

+2β

(
n∑
s=1

ps

(
n− 1

s− 1

)
− β + α+ nβ

)
v(N) + λ

= −2γapi (v)− 2βap−i(v) + 2α2xi + 2β(2α+ nβ)v(N) + λ = 0

where

γ =

n∑
s=1

ps

(
n− 1

s− 1

)
and ap−i(v) =

∑
j∈N\{i}

apj (v), (2.16)

the second equation follows from Eq. (2.10) and the last equation holds
for γ − β = α.
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Evidently, the derivative about λ gives the efficiency constraint

Lλ(x, λ) =
∑
i∈N

xi − v(N) = 0.

A simple calculation solves this linear system and shows that the unique
point x satisfying these conditions is given by

xpi =
v(N)

n
+

γ

nα2

napi (v)−
∑
j∈N

apj (v)

+
β

nα2

nap−i(v)−
∑
j∈N

ap−j(v)


(2.17)

for every i ∈ N , α =
n−1∑
s=1

ps
(
n−2
s−1

)
, api (v) =

∑
S⊆N
S3i

psv(S), β =
n∑
s=2

ps
(
n−2
s−2

)
,

and ap−i(v) =
∑

j∈N\{i} a
p
j (v), as defined in (2.6), (2.9) and (2.16). From

Lemma 2.6 (iii) and γ − β = α, Eq. (2.17) becomes

xpi =
v(N)

n
+

1

nα

napi (v)−
∑
j∈N

apj (v)


=

v(N)

n
+

1

n
∑n−2

s=0 ps+1

(
n−2
s

) ∑
j∈N\{i}

∑
S⊆N\{i,j}

ps+1[v(S ∪ {i})

−v(S ∪ {j})].

This coincides with Eq. (2.5) of the p-LS value.

So far, we have seen that p-least square values can be obtained both
as the allocation that lexicographically minimizes the individual weighted
excesses and as the allocation that minimizes the variance of the individual
weighted excesses. Using this, we propose a new axiomatic characteriza-
tion of the p-LS values which requires equal individual weighted excesses
for each player.

• Equal p-weighted dissatisfaction property: Let p be a symmetric weight
system. The solution ϕ satisfies equal p-weighted dissatisfaction if for
every game v ∈ GN , wp(i, ϕ(v)) = wp(j, ϕ(v)) for every i, j ∈ N with
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i 6= j.

Together with efficiency, this property characterizes the corresponding
p-least square value.

Theorem 2.8. Let p be a symmetric weight system. A value ϕ : GN → Rn

satisfies efficiency and the equal p-weighted dissatisfaction property if, and
only if, ϕ is the p-LS value.

Proof. It can be easily checked that each value defined by (2.5) satis-
fies the two axioms with the corresponding weight system p. To see the
converse, let ϕ be a value satisfying the two axioms for some symmetric
weight system p. On the contrary, suppose that there are two different val-
ues ϕ1(v), ϕ2(v) ∈ Rn that verify the two properties. On account of the
equal p-weighted dissatisfaction property, it is true that

wp(i, ϕ1(v)) = wp(j, ϕ1(v)) andwp(i, ϕ2(v)) = wp(j, ϕ2(v)) for every i, j ∈ N.

Since the sum of the weighted excesses of all players is constant, (see The-
orem 2.4), it holds that

wp(i, ϕ1(v)) =
1

n

(∑
k∈N

apk(v)− (α+ nβ)v(N)

)
= wp(i, ϕ2(v)).

Moreover,
wp(i, ϕ1(v)) =

∑
S⊆N
S3i

ps(v(S)− ϕ1(S))

and
wp(i, ϕ2(v)) =

∑
S⊆N
S3i

ps(v(S)− ϕ2(S))

imply
∑

S⊆N
S3i

psϕ
1(S) =

∑
S⊆N
S3i

psϕ
2(S). Since ps ≥ 0 for all 1 ≤ s ≤ n, and

ps > 0 for at least one 1 ≤ s < n, and the equality should hold for every
game, it must be ϕ1

i (v) = ϕ2
i (v) for every i ∈ N .
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2.5 The p-LS value as center of the weighted super
core

In this section, we consider balanced games, i.e. games v ∈ GN with a
nonempty core. We denote by GNB the class of balanced games on player
set N . Let v ∈ GNB and x ∈ C (N, v). It is obvious that e(S, x) ≤ 0 for every
S ⊆ N . Consequently,

wp(i, x) =
∑
S⊆N
S3i

pse(S, x) ≤ 0, i ∈ N,

which allows us to define lower bounds lopi (v), i ∈ N , for core elements.
From (2.13) in the proof of Proposition 2.5, it follows that

xi ≥
api (v)− βv(N)

α
= lopi (v).

Besides, summing over all core constraints with i /∈ S, it holds that∑
S⊆N\{i}

psx(S) ≥
∑

S⊆N\{i}

psv(S). (2.18)

Since

∑
S⊆N\{i}

psx(S) =
∑

j∈N\{i}

∑
S⊆N\{i}
S3j

psxj =
∑

j∈N\{i}

n−1∑
s=1

ps
∑

S⊆N\{i}
S3j, |S|=s

xj


=

∑
j∈N\{i}

n−1∑
s=1

(
n− 2

s− 1

)
psxj =

n−1∑
s=1

(
n− 2

s− 1

)
ps

∑
j∈N\{i}

xj

= α
∑

j∈N\{i}

xj = α(v(N)− xi),

by (2.18), we obtain upper bounds uppi (v), i ∈ N , given by

xi ≤
αv(N)−

∑
S⊆N\{i} psv(S)

α
= uppi (v).
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This inspires us to define the following set valued solution that contains
the core.

Definition 2.9. For every game v ∈ GN and every weight system p, the
p-weighted super core of a game is given by

S C p(N, v) = {x ∈ Rn | lopi (v) ≤ xi ≤ uppi (v)} ∀i ∈ N

Observe that these bounds of the weighted super core have the follow-
ing properties:

(i) The midpoint of each of these bounds of the p-weighted super core
for v ∈ GN is2

lopi (v) + uppi (v)

2
=

∑
S⊆N\{i}(ps+1v(S ∪ {i})− psv(S)) + (α− β)v(N)

2α

for every i ∈ N .

(ii) The difference between these bounds of the p-weighted super core of
v ∈ GN is the same for every player, and is given by3

lopi (v)− uppi (v) =

∑
S⊆N psv(S)− (α+ β)v(N)

α
for every i ∈ N.

For the symmetric weight system ps = 1, that is, α = β = 2n−2, these
bounds coincide with those in Vanam and Hemachandra (2013, [80]). In
this case, the midpoint of each of these bounds gives rise to the Banzhaf
value defined by Banzhaf (1965, [12]).

It is easily seen that the core is contained in the weighted super core
of a game v. It turns out that, for every weight system, the vector that

2This follows from substituting api (v) in lopi (v) + uppi (v) =
a
p
i (v)−βv(N)

α
+

αv(N)−
∑

S⊆N\{i} psv(S)

α
=

∑
S⊆N\{i} psv(S)+(α−β)v(N)−

∑
S⊆N,S3i psv(S)

α
=∑

S⊆N\{i}(ps+1v(S∪{i})−psv(S))+(α−β)v(N)

α
.

3This follows from substituting api (v) in lopi (v) − uppi (v) =
a
p
i (v)−βv(N)

α
−

αv(N)−
∑

S⊆N\{i} psv(S)

α
=

∑
S⊆N\{i} psv(S)−(α+β)v(N)+

∑
S⊆N,S3i psv(S)

α
=∑

S⊆N psv(S)−(α+β)v(N)

α
.
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equalizes the difference between the realized payoff and the lower bound
payoff over all players is the payoff vector assigned by the corresponding
least square value. In this sense, the p-LS value can be seen as the center
of the weighted super core.

Theorem 2.10. Let v ∈ GN and p a weight system. If x ∈ Rn with xi −
lopi (v) = xj − lopj (v) for each i, j ∈ N , then x = LSp(N, v).

Proof. Let i ∈ N . Obviously, for j ∈ N \ {i}, xi − lopi (v) = xj − lopj (v)

implies

xi−xj = lopi (v)−loj(v) =
api (v)− βv(N)

α
−
apj (v)− βv(N)

α
=
api (v)− apj (v)

α
.

Adding over all j ∈ N and by efficiency of x, nxi−v(N) =
napi (v)−

∑
j∈N apj (v)

α .
Then,

xi =
v(N)

n
+

1

nα

napi (v)−
∑
j∈N

apj (v)

 .

From (2.5), we conclude that x = LSp(N, v).

2.6 A weighted Shapley-like value

Inspired by the midpoint of the two bounds of the payoff in the p-weighted
super core, we can define the p-weighted Shapley value for a weight system
p as

S H p
i (N, v) =

∑
S⊆N\{i}

s!(n− s− 1)!

n!
(ps+1v(S ∪ {i})− psv(S)), i ∈ N.

Here, s!(n−s−1)!
n! is the probability that player i joins coalition S and that

the weighted marginal contribution ps+1v(S∪{i})−psv(S) is paid to player i
for joining coalition S. Hence, the p-weighted Shapley value is the expected
weighted contribution of player i in the game v ∈ GN . Unfortunately, the
p-weighted Shapley value need not be efficient. Next, we characterize the
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p-weighted Shapley value for a symmetric weight system. For this, we need
to introduce new properties.

Let p be a symmetric weight system. Player i ∈ N is called a p-weighted
dummy in the game v ∈ GN if

ps+1v(S ∪ {i})− psv(S) = p1v(i).

• p-weighted dummy player property: For every v ∈ GN and every p-
weighted dummy player i ∈ N , it holds that ϕi(v) = p1v(i).

• p-weighted efficiency: For every game v ∈ GN ,
∑

j∈N ϕj(N, v) =

pnv(N).

The following result follows straightforward from the definition of the
weighted Shapley value. The proof is therefore omitted.

Proposition 2.11.
∑

j∈N S H p
j (N, v) = pnv(N) for every v ∈ GN and

every symmetric weight system p = (ps)1≤s≤n.

Similar as the axiomatization of the Shapley value by efficiency, symme-
try, the dummy player property and additivity, we can prove the following.

Theorem 2.12. Let p be a symmetric weight system. The p-weighted Shapley
value S H p : GN → Rn is the unique value on GN with the following four
properties: symmetry, p-weighted dummy player property, additivity and p-
weighted efficiency.

The proof follows the same lines as the original proof in Shapley (1953,
[72]). The only difference is that, instead of using unanimity games as a
basis for the class of games with player set N , we need to use p-weighted
unanimity games, upT , ∅ 6= T ⊆ N , defined as upT (S) = 1

ps
if T ⊆ S and

upT (S) = 0 otherwise. The proof is, therefore, in Appendix.

Efficiency is a crucial requirement if one is looking for a solution that
can be accepted by all the players. This leads us to consider an “efficient
normalization” of the p-weighted Shapley value. One can obtain an effi-
cient normalization by adding the same constant to all its components as
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in Hammer and Holzman (1987, [36]). Consequently, the additive normal-
ized weighted Shapley value Ŝ H

p

i (N, v) in GN is given by

Ŝ H
p

i (N, v) = S H p
i (N, v) +

1

n

v(N)−
∑
j∈N

S H p
j (N, v)


for every i ∈ N . Actually, this normalized p-weighted Shapley value is an
ESL-value proposed by Ruiz et al. (1998, [69]).

Another possible normalization is to multiply all components by the
same constant as in Dubey and Shapley (1979, [32]), and obtain the mul-
tiplicative normalized p-weighted Shapley value

S H
p
i (N, v) =

S H p
i (N, v)∑

i∈N S H p
i (N, v)

v(N) =
1

pn
S H p

i (N, v), i ∈ N,

the second equality is only possible when pn > 0.

We illustrate these solutions with two well-known examples. First, we
study a bankruptcy game as introduced in O’Neill (1982, [63]).

Example 2.1. A bankruptcy problem is described by a tuple (N,E, d) where
a set N of agents have rightful demands, given by d ∈ RN+ , over the scarce
estate E, that is, E ≤ d(N). The associated bankruptcy game, (N, vE,d), is
defined, for S ⊆ N , as vE,d(S) = max{0, E − d(N \ S)}.

Let (N,E, d) be a bankruptcy problem with N = {1, 2, 3}, estate E =

80, and three claims d1 = 30, d2 = 40, d3 = 60, and consider the associated
bankruptcy game (N, vE,d) given by vE,d({1}) = vE,d({2}) = 0, vE,d({3}) =

10, vE,d({1, 2}) = 20, vE,d({1, 3}) = 40, vE,d({2, 3}) = 50, vE,d({1, 2, 3}) =

80. Let p = (p1, p2, p3) be a symmetric weight system. Then,

Ŝ H
p

i (N, v) = LSp(N, v) =

(
80

3
− 10

3

p1 + 4p2

p1 + p2
,
70

3
,
80

3
+

10

3

2p1 + 5p2

p1 + p2

)
and

S H
p
i (N, v) =

(
80

3
− 5

3

p1 + 4p2

p3
,
80

3
− 5

3

p1 + p2

p3
,
80

3
+

5

3

2p1 + 5p2

p3

)
.
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Next, we compare the outcomes of these solutions with the allocations
proposed by some well-known bankruptcy rules: the constrained equal
awards (CEA), constrained equal losses (CEL), and Talmud (Tal) rules (cf.
Auman and Maschler (1985, [11]), for Talmud rule see contested garment
consistent rule); the random arrival (RA) rule (cf. O’Neill (1982, [63]) as
recursive completion); and the adjusted proportional (AP) rule (cf. Curiel
et al. (1987, [21]).4

CEA(N,E, d) =

(
80

3
,
80

3
,
80

3

)
, CEL(N,E, d) =

(
40

3
,
70

3
,
130

3

)
,

Tal(N,E, d) =

(
15,

45

2
,
85

2

)
, RA(N,E, d) =

(
55

3
,
70

3
,
115

3

)
,

and AP(N,E, d) =

(
35

2
,
70

3
,
235

6

)
.

Moreover, for the 3-person bankruptcy game with weight system p, it holds
that

LSp(N, v) =


CEL(N,E, d) if p1 = 0,

RA(N,E, d) if p1 = p2, p1 6= 0,

AP(N,E, d) if p2 = 7
5p1, p1 6= 0,

and

S H
p
i (N, v) =



CEA(N,E, d) if p1 = p2 = 0,

CEL(N,E, d) if p3 = 1
2p2, p2 6= 0, p1 = 0,

Tal(N,E, d) if p3 = p1 = 2
3p2, p2 6= 0,

RA(N,E, d) if p3 = p1 = p2, p2 6= 0,

AP(N,E, d) if p3 = 6
5p1, p2 = 7

5p1, p1 6= 0.

4Let (N,E, d) be a bankruptcy problem. The constrained equal awards rule is defined
by CEAi(N,E, d) = min{α, di} for each i ∈ N with α such that

∑
i∈N CEAi(N,E, d) =

E; the constrained equal losses rule is defined by CELi(N,E, d) = max{0, di − β}
for each i ∈ N with β such that

∑
i∈N CELi(N,E, d) = E; the Talmud rule is de-

fined by Tal(N,E, d) = CEA(N,E, 1
2
d) if

∑
i∈N

di
2
≥ E and Tal(N,E, d) = 1

2
d +

CEL(N,E − 1
2
d(N), 1

2
d) otherwise; the random arrival rule is defined by RAi(N,E, d) =∑

S⊆N\{i}
s!(n−s−1)!

n!
min{di,max{0, E − d(S)}} for each i ∈ N .
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Next, we consider an airport game as introduced in Littlechild and
Owen (1973, [46]).

Example 2.2. In an airport problem, a group of aircrafts need different
landing lengths which have different associated costs. Smaller aircrafts can
use the same runway as bigger aircrafts, but not the other way around. Let
C1, . . . , Cn represent the costs associated to the different types of aircrafts,
with C1 ≤ C2 ≤ . . . ≤ Cn. Littlechild and Owen (1973, [46]) modelled
the corresponding allocation cost problem using an associated cost game
defined by c(S) = max{Ci|i ∈ S} for each S ⊆ N .

Let (N,C) be an airport problem with N = {1, 2, 3}, three different
needs on runways, and three costs C1, C2, C3, C1 ≤ C2 ≤ C3, and con-
sider the associated airport game (N, c) given by c({1}) = C1, c({2}) =

c({1, 2}) = C2, c({3}) = c({1, 3}) = c({2, 3}) = c({1, 2, 3}) = C3. Let
p = (p1, p2, p3) be a symmetric weight system. Then, the components of
the p-LS value are

x1 =
C3

3
+

1

3(p1 + p2)
[p1(2C1 − C3 − C2) + p2(C2 − C3)] ,

x2 =
C3

3
+

1

3(p1 + p2)
[p1(2C2 − C3 − C1) + p2(C2 − C3)] ,

x3 =
C3

3
+

1

3(p1 + p2)
[p1(2C3 − C2 − C1) + 2p2(C3 − C2)] ,

and the components of the p-weighted Shapley value are

x1 =
C3

3
+
p1(2C1 − C2 − C3) + p2(C2 − C3)

6p3
,

x2 =
C3

3
+
p1(2C2 − C1 − C3) + p2(C2 − C3)

6p3
,

x3 =
C3

3
+
p1(2C3 − C1 − C2) + p2(2C3 − 2C2)

6p3
.

Next, we compare the outcomes of these solutions with the allocation
proposed by some well-known rules for airport problems: the sequential
equal contributions (SEC) rule (cf. Littlechild and Owen (1973, [46]), for
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the sequential equal contributions rule see the Shapley value of the airport
problem), the slack maximizer (SM) rule (cf. Littlechild (1974, [47]), for
slack maximizer rule see the nucleolus of the airport problem proposed by
Albizuri et al. (2018, [2])), and the constrained equal benefits (CEB) rule5

(cf. Potters and Sudhölter (1999, [67])).

SEC(N,C) =

(
C1

3
,
C1

3
+
C2 − C1

2
,
C1

3
+
C2 − C1

2
+ C3 − C2

)
,

SM(N,C) =

(
min{C1

2
,
C2

3
}, C2

2
−min{C1

4
,
C2

6
}, C3 −

C2

2
−min{C1

4
,
C2

6
}
)
,

and

CEB(N,C) =

(
2C1 − C2

3
,
2C2 − C1

3
,
3C3 − C2 − C1

3

)
.

Furthermore, for the 3-person airport game with weight system p, it holds
that

LSp(N, v) =

{
SEC(N,C) if p1 = p2 6= 0,

CEB(N,C) if p2 = 0, p1 6= 0;

LSp(N, v) =

{
SM(N,C) if p1 = 2C2−3C1

2C2−C1
p2 6= 0, and C1 ≤ 2

3C2,

SM(N,C) if p1p2 6= 0, and C1 = C2;

and

S H
p
(N, v) =

{
SEC(N,C) if p1 = p2 = p3 6= 0,

CEB(N,C) if p1 = 2p3 6= 0, p2 = 0;

S H
p
(N, v) =


SM(N,C) if p1 = 2C2−3C1

2C2−2C1
p3, p2 = 2C2−C1

2C2−2C1
p3, p3 6= 0,

and C1 ≤ 2
3C2,

SM(N,C) if p1p2 6= 0, and C1 = C2.

5Let (N,C) be an airport problem. The sequential equal contributions rule is defined
by SECi(N,C) =

∑i
k=1

Ck−Ck−1

n+1−k , for each i ∈ N ; the slack maximizer rule with n ≥ 2

is given inductively by SMi(N,C) = minn−1
l=i

Cl−
∑i−1

k=0
SMk(N,C)

l−i+2
, for each i = 1, · · · , n − 1

and SMn(N,C) = SMn−1(N,C) + Cn − Cn−1 beginning with SM0(N,C) = C0 = 0; the
constrained equal benefits rule is defined by CEBi(N,C) = max{ci − β, 0} for each i ∈ N
with β ∈ R+ such that

∑
i∈N CEBi(N,C) = Cn.
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2.7 Conclusions

In this chapter, we give three characterizations of the least square values for
cooperative TU-games: (i) by lexicographically minimizing the individual
weighted excesses of players, (ii) by minimizing the variance of the play-
ers’ weighted excesses on the preimputation set, and (iii) by showing that
they are the center of the weighted super core defined by certain lower and
upper bounds for the core payoff vectors. Based on these lower and upper
bounds, we present a new solution similar to the Shapley value for coop-
erative TU-games. Finally, we illustrate these solutions in two well-known
examples that are studied in the literature: bankruptcy games and airport
games.

These results not only give more insight in the least square values,
specifically regarding the effect of weights assigned to individuals instead
of coalitional weights, but also provide inspiration for new solutions such as
the p-weighted super core and the p-weighted Shapley value. Some ideas
for further investigation are the following. First, it would be interesting
to consider other solutions by dividing the weighted marginal contribution
(ps+1v(S ∪ i)− psv(S)) according to other different ratios, such as dividing
them equally. Second, since the p-weighted Shapley value is not efficient,
it is relevant to characterize the (additive or multiplicative) normalized p-
weighted Shapley value. Third, it is of interest to study the efficient point
on the segment between the lower and upper bounds, similar as the τ -
value proposed by Tijs (1981, [79]), which is defined as the efficient point
between the minimal right vector and the utopia vector.

Appendix: the proof of Theorem 2.12

It is obvious that the p-weighted Shapley value satisfies symmetry, p-weighted
dummy player property, additivity and p-weighted efficiency. It remains to
show that there exists only one solution satisfying these properties. Let
ϕ : GN → Rn be a value with the four mentioned properties. For every
∅ 6= T ⊆ N and p = (ps)1≤s≤n, consider the weighted unanimity n-person
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game upT as

upT (S) =

{
1
ps
, if T ⊆ S,

0, otherwise.
(2.19)

Let ∅ 6= T ⊆ N and α ∈ R. Every player i ∈ N \ T is a weighted dummy
player in the n-person game αupT , and hence, by the weighted dummy
player property for ϕ, it is true that

ϕi(αu
p
T ) = αp1u

p
T (i) = 0 for each i ∈ N \ T.

Let j, k ∈ T . There is a permutation σ : N → N satisfying σ(j) = k and
σ(i) ∈ T for all i ∈ T . Then σ(αupT ) = αupT , and hence, by the symmetry
property for ϕ, we get

ϕk(αu
p
T ) = ϕσ(j)(σ(αupT )) = ϕj(αu

p
T ), for each j, k ∈ T.

Moreover,
∑
r∈N

ϕr(αu
p
N ) = αpnu

p
T (N) = α by the weighted efficiency prop-

erty for ϕ. Thus, it yields that

ϕi(αu
p
T ) =

{
α
|T | , if i ∈ T,
0, if i ∈ N \ T.

It is well known that the set {uT ∈ GN | ∅ 6= T ⊆ N} of all unanimity
games forms a basis of the linear space GN , where

uT (S) =

{
1, if T ⊆ S,
0, otherwise.

For every v ∈ GN , it holds that

v =
∑
T⊆N
T 6=∅

4v(T )uT , (2.20)
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where4v(T ) =
∑
S⊆T

(−1)(|T |−|S|)v(S). Taking4p
v(T ) =

∑
S⊆T

(−1)(|T |−|S|)psv(S),

(2.20) is equivalent to

v =
∑
T⊆N
T 6=∅

4p
v(T )upT , for every v ∈ GN .

Together with the additivity property, we have

ϕi(v) =
∑
T⊆N
T3i

4p
v(T )

|T |
.



Chapter 3

The prekernel of cooperative
games with α-excess

3.1 Introduction

The excess of a coalition at a given payoff vector in transferable utility (TU)
games represents the gain or loss of the coalition if its members withdraw
from the game in order to form their own coalition. Usually, the excess
of a coalition can be viewed as the dissatisfaction of the coalition at the
proposed payoff vector. The classical excess is defined by the difference
between the worth of a coalition and the payoff assigned to the coalition
members. The most popular solutions such as the core [35], the Shapley
value [72], the nucleolus [71], the prenucleolus [77] and the (pre)kernel
[51] can be characterized on the basis of this classical excess. Especially, Pe-
leg and Sudhölter [66] provided an axiomatization of the prekernel, which
avoids any reference to interpersonal comparison of utilities. They veri-
fied that there is a unique solution on the set of all TU-games that satisfies
nonemptiness, Pareto optimality, covariance under strategic equivalence, the
equal treatment property, a reduced game property, and the converse reduced
game property. In view of the stability of a preimputation, which means
that no player has incentives to move from the preimputation, Calvo and

55
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Gutiérrez (1996, [19]) first defined the strong stability property. The least
core of a TU-game is characterized using this property. They also proposed
the balanced surplus property similar to the balanced contributions property
of Myerson (1980, [58]). By means of these two properties, they gave a
new characterization of the prekernel of a TU-game.

Thereafter, Lemaire (1991, [45]) presented the relative excess to mea-
sure the dissatisfaction of every coalition as the quotient of the usual excess
and the coalitional value, and defined the proportional nucleolus. In addi-
tion, Yanovskaya (2002, [85]) defined proportional solutions for the class
of positive TU-games with all nonempty coalitional values strictly positive,
depending only on the proportional excess, which is defined as the quotient
of the coalitional value and the coalitional payoff. Actually, the relative
excess is ordinally equivalent to the proportional excess. Successively, the
proportional prenucleolus and nucleolus were characterized by Naumova
(2014, [61]).

Which definition of excess is most appropriate, depends on the appli-
cation one has in mind. To avoid ignoring some player’s benefit for the
general case, our aim in this chapter is to define a more general excess
(called α-excess) by considering affine combinations of the classical excess
and the proportional excess for the class of positive TU-games. Based
on this α-excess, we modify solutions like the core, ε-core, least core,
(pre)nucleolus and prekernel for positive TU-games. In this way, corre-
sponding α-solutions for positive TU-games are obtained. First, we show
that the core and the α-core coincide for positive TU-games. However,
we will see that this is not the case for the modifications of the preker-
nel, the least core, and the prenucleolus. Second, we prove that the α-
prenucleolus is always contained in the α-prekernel. Third, we characterize
the α-prekernel by strong stability and an α-balanced surplus property.

This chapter, which is based on Zhang et al. (2021, [90]), is organized
as follows. In Section 3.2, we recall some related preliminaries about co-
operative game theory. Section 3.3 introduces the α-excess of a coalition,
defines modifications of solutions using this modified excess, and charac-
terizes the α-least core and α-prekernel by strong stability and α-balanced
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surplus properties. In Section 3.4, we define the α-prenucleolus and α-
nucleolus. Also, we verify that the α-prenucleolus is contained in the α-
prekernel for all α. Section 3.5 concludes with a brief summary.

3.2 Definitions and Notations

In this section, we add some definitions and notations that are specific for
this chapter, but are not mentioned in Chapter 1.

The class GN+ of positive TU-games where all worths of nonempty
coalitions are positive is given by

GN+ = {(N, v) | v(S) > 0 ∀S ⊆ N,S 6= ∅}.

Positive versions of solutions are defined in such a way that they only
consider positive payoff vectors. Specifically, the positive preimputation set
of a game v ∈ GN is given by

I ∗++(N, v) = {x ∈ Rn++ | x(N) = v(N)}.

The positive imputation set of a game v ∈ GN is given by

I++(N, v) = {x ∈ I ∗++(N, v) | xi ≥ v({i}) ∀i ∈ N}.

The positive core of a game v ∈ GN is given by

C++(N, v) = {x ∈ I ∗++(N, v) | x(S) ≥ v(S) ∀S ⊆ N}.

Yanovskaya (2002, [85]) considers a proportional excess function, where
the dissatisfaction of a coalition is measured as the ratio between the worth
of a coalition and the assigned payoff. Formally, for v ∈ GN+ , x ∈ Rn++ and
S ⊆ N , the proportional excess of S at x is

e(S, x) =
v(S)

x(S)
.

Whereas the classical excess (see (1.2), page 9) of a coalition that exactly
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gets its worth is equal to 0, for such a coalition the proportional excess is
equal to 1.

3.3 The α-prekernel in TU-games

We begin with an example that illustrates the difference between the clas-
sical and proportional excesses introduced before.

Example 3.1. Let N = {1, 2, 3} be three companies. Assume that these
three companies lost money in cooperation. Let v be defined by v({1, 2, 3}) =

1194, v({1}) = 10, v({2}) = v({3}) = 1000, and v(S) = ρ otherwise,
ρ being a sufficiently small positive number. For the given payoff vector
(2, 992, 200), it holds that e({1}, x) = e({2}, x) = 8, e({3}, x) = 800, how-
ever, ē({1}, x) = ē({3}, x) = 5, ē({2}, x) = 125

124 .

Considering Example 3.1, now comes the question, which excess is bet-
ter to measure the dissatisfaction of the companies at the payoff vector
(2, 992, 200)? The rich company can “tolerate" a moderate or small loss
more than the poor company. However, it does not “tolerate" a very large
loss either. From our perspective, it is not obvious that one should consider
either the classical excess or the proportional excess. In such cases, an
affine (or convex) combination of these two excesses might be more rea-
sonable. Consequently, also variations of solutions, such as the prekernel
and the prenucleolus, based on an affine or convex combination of these
two excesses, might be reasonable solution concepts.

Definition 3.1. Given α ∈ R, a game v ∈ GN+ , a positive payoff vector
x ∈ Rn++ and a coalition S ⊆ N , S 6= ∅, the α-excess of coalition S with
respect to x is given by

eαv (S, x) = α
v(S)

x(S)
+ (1− α)(v(S)− x(S)). (3.1)

For S = ∅, we define eαv (∅, x) = 0 for all v ∈ GN+ and x ∈ Rn++.

If there is no confusion about the game v ∈ GN+ , we will shortly write
eα(S, x) instead of eαv (S, x). Specifically, when α ∈ [0, 1], we speak about a
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convex combination of the classical and proportional excess. Observe that
we obtain the classical excess as a special case of α-excess by taking α = 0,
and the proportional excess as special case when taking α = 1. Similar as
the classical and proportional excess, the α-excess represents the gain (or
loss, if it is less than 1) to the coalition S if its members depart from an
agreement that yields x in order to form their own coalition, but allow a
trade-off between the classical and proportional excess.

In view of the concept of α-excess, the definition of the core of a positive
game v ∈ GN+ could be modified by considering those imputations which
α-excess is at most equal to α, i.e. one could consider

C α(N, v) = {x ∈ I ∗++(N, v) | eα(S, x) ≤ α ∀S ⊆ N}.

However, it turns out that for every α ∈ [0, 1] this coincides with the classi-
cal core (α = 0) as long as we consider only positive payoff vectors.

Proposition 3.2. For every α ∈ [0, 1] and v ∈ GN+ , we have C α(N, v) =

C (N, v).

Proof. Notice that for v ∈ GN+ , C (N, v) = C++(N, v) since v({i}) > 0

∀i ∈ N . For every α ∈ [0, 1], v ∈ GN+ , and x ∈ Rn++, we have

eα(S, x) ≤ α ⇔ α
v(S)

x(S)
+ (1− α)(v(S)− x(S)) ≤ α

⇔ αv(S) + (1− α)(v(S)− x(S))x(S)

x(S)
≤ α

⇔ αv(S) + (1− α)(v(S)− x(S))x(S) ≤ αx(S)

⇔ α(v(S)− x(S)) + (1− α)(v(S)− x(S))x(S) ≤ 0

⇔ (v(S)− x(S))(α+ (1− α)x(S)) ≤ 0

⇔ v(S)− x(S) ≤ 0⇔ e(S, x) ≤ 0

where the last but one equivalence follows since α + (1 − α)x(S) > 0 for
all x ∈ Rn++.

From this proposition, we can conclude that considering different α-
excesses from our class to measure the dissatisfaction of coalitions, has no
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effect on the definition of the core. However, we will see that it does affect
the definition of the prekernel, the least core, and the prenucleolus.

First, modifying the ε-core of a game v ∈ GN+ , we obtain the αε-core
given by

C α
ε (N, v) = {x ∈ I ∗++(N, v) | eα(S, x)− ε ≤ α ∀S ⊆ N,S 6= ∅},

and the α-least core of a game v ∈ GN+ being C α
λ (N, v), where λ = λv,α =

min{ε ∈ R | C α
ε (N, v) 6= ∅}. We denote the α-least core of game v by

L C α(N, v). If there does not exist a minimal ε ∈ R such that C α
ε (N, v) 6= ∅,

then L C α(N, v) = ∅.

Example 3.2. Consider the 3-person game v defined as v({1, 2, 3}) = 1,
v({1, 2}) = v({1, 3}) = 1

2 , and v(S) = ρ otherwise, ρ being a sufficiently
small positive number. The symbol conv indicates the convex hull exclud-
ing the boundary points with a component of 0. We find out that

C++(N, v) =

{
x ∈ R3

++ | x1 + x2 + x3 = 1, x2 ≤
1

2
, x3 ≤

1

2

}
= conv

{
(1, 0, 0), (

1

2
,
1

2
, 0), (

1

2
, 0,

1

2
), (0,

1

2
,
1

2
)

}
,

see the area ABCD in Fig.3.1. We show that the αε-cores are different for
the classical and proportional excess. For α = 0, we have

C 0
ε (N, v) =

{
x ∈ R3

++ | x1 + x2 + x3 = 1, x1 ≥ −ε,−ε ≤ x2 ≤
1

2
+ ε ,

−ε ≤ x3 ≤
1

2
+ ε

}
.

Then, for ε ≥ 0, we have

C 0
ε (N, v) = conv

{
(1, 0, 0), (

1

2
− ε, 1

2
+ ε, 0), (

1

2
− ε, 0, 1

2
+ ε) ,

(0,
1

2
− ε, 1

2
+ ε), (0,

1

2
+ ε,

1

2
− ε)

}
,

see the area ABCDE in Fig.3.2. If ε < 0,
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FIGURE 3.1: The positive core C+(N, v)

C 0
ε (N, v) = conv

{
(1 + 2ε,−ε,−ε), (1

2
,
1

2
+ ε,−ε), (1

2
,−ε, 1

2
+ ε) ,

(−2ε,
1

2
+ ε,

1

2
+ ε)

}
,

see the area ABCD in Fig.3.3. Moreover, C 0
ε (N, v) 6= ∅ iff ε ≥ −1

4 . Thus,
L C 0(N, v) = {(1

2 ,
1
4 ,

1
4)}.

Next, consider the case that α = 1.

C 1
ε (N, v) =

{
x ∈ R3

++ | x1 + x2 + x3 = 1, x1 ≥
−ε
ε+ 1

, x2 ≤
2ε+ 1

2(ε+ 1)
,

x3 ≤
2ε+ 1

2(ε+ 1)

}
.

If ε ≥ 0,

C 1
ε (N, v) = conv

{
(1, 0, 0), (

1

2(ε+ 1)
,

2ε+ 1

2(ε+ 1)
, 0), (

1

2(ε+ 1)
, 0,

2ε+ 1

2(ε+ 1)
) ,

(0,
1

2(ε+ 1)
,

2ε+ 1

2(ε+ 1)
), (0,

2ε+ 1

2(ε+ 1)
,

1

2(ε+ 1)
)

}
.
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FIGURE 3.2: The 0ε-core, C 0
ε (N, v), when ε ≥ 0

Now, the shape of C 1
ε (N, v) is the same as that of C 0

ε (N, v) when ε ≥ 0 in
Fig.3.2, but it is determined by different extreme points. If −1 < ε < 0,

C 1
ε (N, v) = conv

{
(1, 0, 0), (

1

2(ε+ 1)
,

2ε+ 1

2(ε+ 1)
, 0), (

1

2(ε+ 1)
, 0,

2ε+ 1

2(ε+ 1)
) ,

(
−2ε

2(ε+ 1)
,

2ε+ 1

2(ε+ 1)
,

2ε+ 1

2(ε+ 1)
)

}
,

see the area ABCD in Fig.3.4. Hence, C 1
ε (N, v) 6= C 0

ε (N, v) as long as ε 6= 0

or ε 6= −1
2 . Also, C 1

ε (N, v) 6= ∅ iff ε > −1
2 . Thus, L C 1(N, v) = ∅ 6=

L C 0(N, v).

Example 3.2 indicates that the αε-core and the α-least core are different
for different α. To define the α-prekernel, we first adapt the definition of
maximal surplus.

Definition 3.3. Given α ∈ [0, 1], v ∈ GN+ , and x ∈ Rn++, the maximal
α-surplus of player i over another player j at x in the game v is given by

sv,αij (x) = max
S∈Γij

eα(S, x). (3.2)
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FIGURE 3.3: The 1ε-core, C 0
ε (N, v), when ε < 0

Notice that a maximal surplus not less than (or not greater than) 1 of i
over j at a payoff vector x can be interpreted as the maximal (or minimal)
amount that player i can gain (or lose) without cooperation with j. Con-
sequently, the maximum α-surplus can be regarded as another measure of
the power of player i to threaten player j at the preimputation x.

Definition 3.4. Given α ∈ [0, 1], and x ∈ I ∗++(N, v), the α-prekernel
PK α(N, v) of the game v ∈ GN+ is the set of preimputations x given
by

PK α(N, v) = {x ∈ I ∗++(N, v) | sv,αij (x) = sv,αji (x) for all i, j ∈ N, i 6= j}.
(3.3)

Obviously, for α = 0, the closure of the α-prekernel coincides with
the traditional prekernel. Similar as the prekernel, for every α ∈ [0, 1],
the corresponding α-prekernel balances the surpluses pairwise, but using
the modified α-excess where dissatisfaction is measured by a mix of the
difference and the ratio of potential and realized payoffs v(S), respectively
x(S).
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FIGURE 3.4: The 1ε-core, C 1
ε (N, v), when −1 < ε < 0

We illustrate that the α-prekernel is different for different α with the
following example.

Example 3.3. Let N = {1, 2, 3, 4} and let v be defined by v({1, 2, 3, 4}) =

v({1, 2}) = v({3, 4}) = 1, v({2}) = v(4) = 2ρ and v(S) = ρ otherwise,
ρ being a sufficiently small positive number. For α = 0, we find that
e({12}, x) = 1 − x1 − x2, e({34}, x) = 1 − x3 − x4, e({2}, x) = 2ρ − x2,
e({4}, x) = 2ρ− x4, e(S, x) = v(S)− x(S) otherwise. Thus,

sv,013 (x) = sv,014 (x) = max{ρ− x1, 1− x1 − x2},

sv,023 (x) = sv,024 (x) = max{2ρ− x2, 1− x1 − x2},

sv,031 (x) = sv,032 (x) = max{ρ− x3, 1− x3 − x4},

sv,041 (x) = sv,042 (x) = max{2ρ− x4, 1− x3 − x4},

sv,034 (x) = ρ− x3, s
v,0
43 (x) = 2ρ− x4,

sv,012 (x) = ρ− x1, s
v,0
21 (x) = 2ρ− x2.
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Following from the definition of the 0-prekernel, i.e., sv,0ij (x) = sv,0ji (x) for
all i, j ∈ N, i 6= j, and ρ being a sufficiently small positive number, we
know that the 0-prekernel is the set

{x ∈ I++(N, v) | x1 = x3 =
1

4
− 1

2
ρ and x2 = x4 =

1

4
+

1

2
ρ}.

For α = 1, it is found that ē({12}, x) = 1
x1+x2

, ē({34}, x) = 1
x3+x4

, ē({2}, x) =
2ρ
x2

, ē({4}, x) = 2ρ
x4

, ē(S, x) = ρ
x(S) otherwise. Thus,

sv,113 (x) = sv,114 (x) = max{ ρ
x1
,

1

x1 + x2
},

sv,123 (x) = sv,124 (x) = max{2ρ

x2
,

1

x1 + x2
},

sv,131 (x) = sv,132 (x) = max{ ρ
x3
,

1

x3 + x4
},

sv,141 (x) = sv,142 (x) = max{2ρ

x4
,

1

x3 + x4
},

sv,134 (x) =
ρ

x3
, sv,143 (x) =

2ρ

x4
,

sv,112 (x) =
ρ

x1
, sv,121 (x) =

2ρ

x2
.

By the definition of the 1-prekernel, sv,1ij (x) = sv,1ji (x) for all i, j ∈ N, i 6= j,
and ρ being a sufficiently small positive number, we get that x4 = 2x3,
x2 = 2x1 and x1 = x3. Therefore, the 1-prekernel is (1

6 ,
1
3 ,

1
6 ,

1
3), which is

different from the 0-prekernel as long as ρ 6= 1
6 .

Now, given v ∈ GN+ and α ∈ R, we define the surplus function as the
map sv,α : I ∗++(N, v)→ Rn with

sv,αi (x) = max{eα(S, x) | S ⊂ N, i ∈ S} for all i ∈ N, x ∈ I ∗++(N, v),

i.e., sv,αi (x) is the maximum α-surplus that player i can obtain by cooper-
ation given payoff vector x. Recall that sv,αij (x) gives the potential gain of
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player i with respect to player j (see Definition 3.3). Thus, sv,αij (x) is a re-
lational surplus comparing the positions of two players in a game, whereas
the α-surplus of player i, sv,αi (x), is an individual measure for player i’s
position in the game. We call a preimputation α-strongly stable if the indi-
vidual α-surplusses are equal for all players.

Definition 3.5. Given α ∈ [0, 1], the preimputation x ∈ I ∗++(N, v) is said
to be α-strongly stable for game v ∈ GN+ if sv,αi (x) = sv,αj (x) for all i, j ∈ N .

We now provide another characterization of the α-least core L C α(N, v)

for a positive game, by showing that it consists of all α-strongly stable pay-
off vectors for every α ∈ [0, 1]. For notational convenience, we often write
λ instead of λv,α if there is no confusion about v and α.

Theorem 3.6. For every α ∈ [0, 1] and v ∈ GN+ , x ∈ L C α(N, v) if and only
if x ∈ I ∗++(N, v) and λv,α = sv,αi (x)− α,∀i ∈ N .

Proof. Take α ∈ [0, 1] and v ∈ GN+ .

‘Only if’: Assume that x ∈ L C α(N, v). Then, by definition x(N) =

v(N) and eα(S, x) ≤ α + λ, for every S ∈ 2N \ {∅, N}. In addition, owing
to the definition of λ = λv,α, there is a coalition T ∈ 2N \ {∅, N} such that
eα(T, x) = α + λ. Denote T = {T ∈ 2N \ {∅, N} | eα(T, x) = α + λ}.
We assert that for every i ∈ N , there exists T ∈ T , such that i ∈ T . On
the contrary, assume that ∃i ∈ N such that eα(S, x) < α + λ, for every
S ⊂ N, S 6= N with i ∈ S. Let β1 = max{eα(S, x) | i ∈ S, S 6= N} < α+ λ,
and let y ∈ Rn++ be defined by

yk =

{
xk − β2, if k = i,

xk + β2

n−1 if k 6= i,
(3.4)

where 0 < β2 < min
S∈2N\{∅,N}

{λ−β1

1−α ,
(n−1)xx(S)
(n−s)(v+x)}, x = min

S∈2N\{∅,N}
x(S), and

v = max
S∈2N\{∅,N}

v(S).

If S = {i}, then 0 < β2 < min
S∈2N\{∅,N}

{λ−β1

1−α ,
xxi

(v+x)}. We obtain that

xi > β2 since xi >
x
v+xxi and β2 <

x
v+xxi. Thus, y ∈ I ∗++(N, v). We show
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that eα(S, y) < α+λ for every S ∈ 2N \ {∅, N} establishing a contradiction
to the definition of λ.

In the case that i 6∈ S 6= ∅, it holds that

eα(S, y) =α
v(S)

x(S) + sβ2

n−1

+ (1− α)(v(S)− x(S)− sβ2

n− 1
)

<α
v(S)

x(S)
+ (1− α)(v(S)− x(S))− (1− α)

sβ2

n− 1

=eα(S, x)− (1− α)
sβ2

n− 1

<eα(S, x) ≤ α+ λ.

In the case that i ∈ S 6= N , we obtain that

eα(S, y) = α
v(S)

x(S)− β2 + (s−1)β2

n−1

+ (1− α)

(
v(S)− x(S) + β2 −

(s− 1)β2

n− 1

)

= α

(
1 +

n−s
n−1β2

x(S)− n−s
n−1β2

)
v(S)

x(S)

+(1− α)

(
v(S)− x(S) + β2 −

(s− 1)β2

n− 1

)
= α

v(S)

x(S)
+ α

(
n−s
n−1β2

x(S)− n−s
n−1β2

)
v(S)

x(S)

+(1− α)(v(S)− x(S)) + (1− α)

(
β2 −

(s− 1)β2

n− 1

)
< eα(S, x) + α

n−s
n−1β2

x(S)− n−s
n−1β2

v

x
+ (1− α)β2

≤ β1 + α+ (1− α)β2 < α+ λ,

where the second inequality follows from 0 < α
n−s
n−1

β2

x(S)−n−s
n−1

β2

v
x < 1 (which

follows since, by definition of β2,
(
x(S)− n−s

n−1β2

)
x > (x(S) − xx(S)

v+x )x =

xvx(S)
v+x > n−s

n−1β2v), and the last inequality follows from (1− α)β2 < λ− β1.

Hence, eα(S, y) < α + λ for every S ∈ 2N \ {∅, N}, which contradicts
with the definition of λ. Therefore, sv,αi (x) = α+ λ for every i ∈ N .
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‘If ’: Assume that x ∈ I ∗++(N, v) and sv,αi (x) = α + λ for every i ∈ N .
Then, for every S ∈ 2N \ {∅, N}, there exists i ∈ S such that eα(S, x)− λ ≤
sv,αi (x) − λ = α. Therefore, eα(S, x) ≤ λ + α for every S ∈ 2N \ {∅, N}.
That is to say, x ∈ L C α(N, v).

Above, we considered two ways to evaluate the position of a player i in
a game v. First, with respect to every other player j 6= i, the surplus sv,αij (x)

compares the relative position of i with respect to every other player j.
In the prekernel, these surpluses are α-balanced for every pair of players.
Second, the α-surplus sv,αi (x) is a measure of the overall position of player
i in the game. Instead of comparing payoff vectors by only the individual
or pairwise surpluses separately, we combine these surpluses, and compare
payoff vectors by balancing the differences between the pairwise and indi-
vidual surpluses.

Definition 3.7. For a given α ∈ [0, 1], x ∈ I ∗++(N, v) satisfies the α-
balanced surplus property if

sv,αi (x)− sv,αij (x) = sv,αj (x)− sv,αji (x) for every i, j ∈ N.

We can characterize the α-prekernel using α-strong stability and this
α-balanced surplus property.

Theorem 3.8. Given α ∈ [0, 1], x ∈PK α(N, v) if and only if x ∈ I ∗++(N, v)

is α-strongly stable and satisfies the α-balanced surplus property.

Proof. ‘Only If:’ Let x ∈PK α(N, v) and take every i, j ∈ N, i 6= j. By the
definition of the α-prekernel, it holds that sv,αij (x) = sv,αji (x). Hence, we get
that

sv,αi (x) = max{sv,αij (x),max{eα(T, x) | {i, j} ⊆ T 6= N}}

= max{sv,αji (x),max{eα(T, x) | {j, i} ⊆ T 6= N}}

= sv,αj (x),

which implies that x is α-strongly stable. Since, additionally x ∈PK α(N, v),
and thus sv,αij (x) = sv,αji (x), x satisfies the α-balanced surplus property.
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‘If:’ Let x be α-strongly stable and satisfy the α-balanced surplus prop-
erty. By x being α-strongly stable, sv,αi (x) = sv,αj (x) for every i, j ∈ N ,
i 6= j. Then, since x verifies the α-balanced surplus property, it holds that
sv,αij (x) = sv,αji (x) for every i 6= j, and therefore x ∈PK α(N, v).

3.4 The α-prenucleolus and the α-nucleolus

In this section, based on the lexicographical order ≤L (see page 10), con-
sidering the 2n-dimensional vector θ(eα(S, x)S⊆N ), whose components are
arranged in nonincreasing order, we propose the α-prenucleolus and α-
nucleolus of a cooperative game as follows.

Definition 3.9. Let α ∈ [0, 1]. For every game v ∈ GN+ , the α-prenucleolus
PN α(N, v) and the α-nucleolus N α(N, v) which minimize the excess
eα(S, x) of every coalition over the preimputation set, respectively, the im-
putation set, are defined as follows

PN α(N, v) = {x ∈ I ∗++(N, v)|θ(eα(S, x)S⊆N ) ≤L θ(eα(S, y)S⊆N )

∀y ∈ I ∗++(N, v)}

and

N α(N, v) = {x ∈ I++(N, v)|θ(eα(S, x)S⊆N ) ≤L θ(eα(S, y)S⊆N )

∀y ∈ I++(N, v)}.

Remark 3.1. Owing to the results obtained by Justman (1977, [43]), we
have the following statements. For every given α ∈ [0, 1],

(i) If I++(N, v) is nonempty and compact and if all eα(S, x), S ⊆ N , are
continuous with respect to the second variable, then N α(N, v) 6= ∅.

(ii) If I++(N, v) is convex and all eα(S, x), S ⊆ N , are convex with re-
spect to the second variable, then N α(N, v) is convex and eα(S, x) =

eα(S, y) for all S ⊆ N and all x, y ∈ N α(N, v).
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Inspired by the method provided by Peleg and Sudhölter (2007, [66]),
define

I ′++(N, v) = {x ∈ I ∗++(N, v)|max
S⊆N

eα(S, x) ≤ max
S⊆N

eα(S, y)

∀y ∈ I ∗++(N, v)}.

Following from Remark 3.1, we obtain that the α-nucleolus is a singleton.
Also, for every x ∈ I ∗++(N, v), in the definition of PN α(N, v), we may
replace I ∗++(N, v) by the compact, nonempty, and convex set I ′++(N, v).
Thus, the α-prenucleolus is also a singleton.

Theorem 3.10. Given α ∈ [0, 1], for every game v ∈ GN+: (i) the α-nucleolus
is a singleton, and (ii) the α-prenucleolus is a singleton.

From now on, we often write the α-prenucleolus of game v just as its
unique element, and denote it by να(N, v) ∈ Rn++. Next, we show that the
α-prenucleolus is an element of the α-prekernel.

Theorem 3.11. For every game v ∈ GN+ and for all α ∈ [0, 1], να(N, v) ∈
PK α(N, v).

Proof. Let α ∈ [0, 1] and xα = να(N, v). We show that xα ∈ PK α(N, v).
On the contrary, assume that there exists ᾱ ∈ [0, 1] such that xᾱ /∈PK ᾱ(N, v).
For easiness of notation, let x = xᾱ. Since x ∈ I ∗++(N, v), there exist two
distinct players i, j ∈ N with sv,ᾱij (x) > sv,ᾱji (x).

First, we show that there exists δ with 0 < δ < x̂ = min
S∈Γji(N)

x(S) such

that

sv,ᾱji (x) = sv,ᾱij (x)− δ − ᾱδv̂

(x̂− δ)x̂
, (3.5)

where v̂ = max
S∈Γji(N)

v(S). This is equivalent to showing that the second

degree equation on δ

x̂δ2 − [(sv,ᾱij (x)− sv,ᾱji (x))x̂+ x̂2 + ᾱv̂]δ + (sv,ᾱij (x)− sv,ᾱji (x))x̂2 = 0 (3.6)
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has at least one real solution. This is true when the discriminant of the
equation is non-negative, i.e.,

[(sv,ᾱij (x)− sv,ᾱji (x))x̂+ x̂2 + ᾱv̂]2 − 4x̂3(sv,ᾱij (x)− sv,ᾱji (x)) ≥ 0,

or, equivalently after some algebra1,

[(sv,ᾱij (x)− sv,ᾱji (x))x̂− x̂2]2 + ᾱ2v̂2 + 2[(sv,ᾱij (x)− sv,ᾱji (x))]x̂v̂ᾱ ≥ 0. (3.7)

The formula (3.7) holds since every term in the inequality is non-negative.
Therefore, the quadratic equation (3.6) has at least one solution, and there-
fore there exists δ ∈ (0, x̂) for which (8) holds.

Second, we define y ∈ Rn++ as

yk =


xk + δ, if k = i,

xk − δ, if k = j,

xk, otherwise,
(3.8)

and show that y ∈ I ∗++(N, v) with θ((eα(S, y))S⊆N ) <L θ((e
α(S, x))S⊆N ).

On the one hand, x ∈ I ∗++(N, v) implies∑
k∈N

yk =
∑
k∈N

xk = v(N),

while x ∈ I ∗++(N, v) and 0 < δ < x̂ = min
S∈Γji(N)

x(S) ≤ xj imply yk > 0 for

all k ∈ N . Thus, y ∈ I ∗++(N, v).

On the other hand, to show θ((eα(S, y))S⊆N ) <L θ((e
α(S, x))S⊆N ), we

consider the following three cases. Denote

S = {S ∈ 2N \ Γij(N) | eα(S, x) ≥ sv,αij (x)} and s̃ = |S|.

1This follows since [(sv,ᾱij (x)−sv,ᾱji (x))x̂+x̂2+ᾱv̂]2−4x̂3(sv,ᾱij (x)−sv,ᾱji (x)) = (sv,ᾱij (x)−
sv,ᾱji (x))2x̂2 + x̂4 + ᾱ2v̂2 + 2x̂3(sv,ᾱij (x) − sv,ᾱji (x)) + 2(sv,ᾱij (x) − sv,ᾱji (x))x̂v̂ᾱ + 2x̂2v̂ᾱ −
4x̂3(sv,ᾱij (x) − sv,ᾱji (x)) = (sv,ᾱij (x) − sv,ᾱji (x))2x̂2 − 2x̂3(sv,ᾱij (x) − sv,ᾱji (x)) + x̂4 + ᾱ2v̂2 +

2(sv,ᾱij (x) − sv,ᾱji (x))x̂v̂ᾱ + 2x̂2v̂ᾱ = [(sv,ᾱij (x) − sv,ᾱji (x))x̂ − x̂2]2 + ᾱ2v̂2 + 2[(sv,ᾱij (x) −
sv,ᾱji (x))]x̂v̂ᾱ.
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(i) First, if S ∈ 2N \ (Γij(N) ∪ Γji(N)) then eα(S, y) = eα(S, x) in view of
the form of y as in (3.8).

(ii) Second, if S ∈ Γij(N),

eα(S, y) = α
v(S)

x(S) + δ
+ (1− α)(v(S)− x(S)− δ) < eα(S, x).

(iii) Third, if S ∈ Γji(N), then

eα(S, y) =α
v(S)

x(S)− δ
+ (1− α)(v(S)− x(S) + δ)

=α
x(S)

x(S)− δ
v(S)

x(S)
+ (1− α)(v(S)− x(S)) + (1− α)δ

=α

(
1 +

δ

x(S)− δ

)
v(S)

x(S)
+ (1− α)(v(S)− x(S)) + (1− α)δ

=eα(S, x) + α
δ

x(S)− δ
v(S)

x(S)
+ (1− α)δ

≤sv,αji (x) +

(
α

x(S)− δ
v(S)

x(S)
+ 1

)
δ

≤sv,αij (x)− α(vmax − v(S))

(xmin − δ)xmin
δ

<eα(S, x)

where the first inequality follows by definition of sv,αji (x), and the
second from (3.5) and the definition of xmin.

Let S1, S2 ∈ 2N be such that eα(S1, x) ≥ eα(S, x) for every S ∈ 2N and
eα(S2, y) ≥ eα(S, y) for every S ∈ 2N . From the above three cases, it holds
that eα(S, y) ≤ eα(S, x) for every S ∈ 2N . Thus, eα(S2, y) ≤ eα(S2, x) ≤
eα(S1, x). Therefore, it holds that2 θt(y) ≤ θt(x) for all t ≤ s̃, and θs̃+1(y) <

sv,αij (x) = θs̃+1(x) if θt(y) = θt(x) for all t ≤ s̃, for every α ∈ [0, 1]. That is
to say, θ(y) <L θ(x), and thus x 6= να(N, v) and the desired contradiction
has been obtained.

2If there is no confusion, we sometimes shortly write θ(x) and θ(y) instead of
θ(eα(S, x)S⊆N ), respectively, θ(eα(S, y)S⊆N )
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From Theorems 3.10 and 3.11, we obtain the following corollary.

Corollary 3.12. For every game v ∈ GN+ and every α ∈ [0, 1], PK α(N, v) 6=
∅.

3.5 Conclusions

In this chapter, we propose a family of excesses (α-excess) for positive
TU-games that measure the dissatisfaction of every coalition and general-
izes the classical and proportional excesses. Then, the corresponding solu-
tions, such as the α-least core, the α-(pre)nucleolus, and the α-(prekernel)
are defined based on the α-excess. We give a characterization of the α-
prekernel by strong stability and the α-balanced surplus property. Mean-
while, the α-least core of a positive TU-game can be characterized in terms
of strong stability. Finally, we introduce the α-prenucleolus and α-nucleolus,
and showed that, for every game, these are singletons and the unique α-
prenucleolus element belongs to the corresponding α-prekernel.

For future research, we intend to modify the famous Davis and Maschler
reduced game (Davis and Maschler (1965)), taking account of the modified
excess. There is a large literature on reduced game consistency. Reduced
game consistency requires that, after some players leave the game with the
payoffs assigned to them by a solution, applying the same solution on the
reduced game on the remaining players gives these remaining players the
same payoff as in the original game. Different solutions can be character-
ized by different reduced game properties, where the difference is in the
way the reduced game is defined. For the α-prekernel, we might consider
the following reduced game. Let α ∈ [0, 1]. Given a game v ∈ GN+ , a
nonempty coalition S, and a positive payoff vector x, the α-reduced game
on S at x, denoted (S, vαx,S), is the game defined by

vαx,S(T ) =



0, if T = ∅,
v(N)− x(N \ T ), if T = S,

α
α+(1−α)x(T ) max

Q⊆N\S

{
v(T∪Q)x(T )
x(T∪Q)

}
+

(1−α)x(T )
α+(1−α)x(T ) max

Q⊆N\S
{v(T ∪Q)− x(Q)}, if T ( S.
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It can be shown that the α-prekernel satisfies the corresponding reduced
game property. However, a characterization of the α-prekernel using the
α-reduced game property is still an open problem.



Chapter 4

On the core, nucleolus and
bargaining sets of cooperative
games with fuzzy payoffs

4.1 Introduction

Cooperative games with fuzzy payoffs (cooperative fuzzy game in short)
were introduced by Mareš (1999, [50]) to model cooperative situations
where the worth of every coalition is a fuzzy number. They are useful to
analyze and resolve cooperative situations under fuzzy environments. In
Mallozzi et al. (2011, [49]), the authors motivate the analysis of coopera-
tive fuzzy games by relating them to bankruptcy problems.

For a bankruptcy problem, an estate has to be divided among some
creditors. In the classical model, every creditor has an individual claim on
a certain amount of the estate, and the total claim is weakly larger than the
estate. The individual claim is the best value c of a creditor, while nothing
is said about the minimum value c that a creditor is willing to accept. It is
not surprising that every creditor can try to improve his situation by giving
bounds c and c for what he is willing to accept. In this way, it becomes
an interval bankruptcy problem introduced by Branzei et al. (2003, [17]).

75
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Actually, if a creditor claims with his minimum and best value bounds, it is
natural to assume that the creditor prefers the amounts in the interval [c, c]

according to some increasing utility function. In addition, the result of asset
evaluation may vary for different assessment methods. Accordingly, the es-
tate and the claims of creditors become fuzzy numbers, resulting in a fuzzy
bankruptcy problem. Obviously, the classical bankruptcy problem and the
interval bankruptcy problem are special cases of the fuzzy bankruptcy prob-
lem. The main question is how to share the estate among the creditors. To
answer this question, we can make use of fuzzy bankruptcy games. Im-
portant for this aim are the core and bargaining set for cooperative fuzzy
games, which are the focus of this chapter.

Based on the partial order relation defined by the α-level sets of fuzzy
numbers, the F -core proposed by Mallozzi et al. (2011, [49]) is a set-
valued solution that distributes the worth of the grand coalition and guar-
antees that the players of every coalition gain at least what they could
obtain by themselves. In other words, the F -core consists of feasible out-
comes which cannot be improved upon by every coalition. Depending on
the partial order relation of fuzzy numbers, Mallozzi et al. (2011, [49])
introduced F -balancedness for fuzzy interval cooperative games, which re-
quires (in the spirit of Bondareva (1962, [15]) and Shapley (1967, [75]))
that allowing players to work part time in different coalitions is less prof-
itable than working full time in the grand coalition. They showed that if the
F -core is not empty, then the cooperative fuzzy game is F -balanced, but
the opposite need not be true as opposed to balancedness for cooperative
games. Wang and Zhang (2016, [84]) gave three sufficient conditions for
non-emptiness of the F -core.

Mallozzi et al. (2011, [49]) used a partial order relation to compare a
pair of fuzzy numbers. This partial order relation can only compare every
pair of fuzzy numbers with one’s left-hand endpoint being greater than
or equal to the other’s left-hand endpoint and one’s right-hand endpoint
being greater than or equal to the other’s right-hand endpoint of the α-
level set. There exist many pairs of fuzzy numbers with one’s left-hand
endpoint being greater than the other’s left-hand endpoint, but one’s right-
hand endpoint being less than the other’s right-hand endpoint of the α-level
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set. In this case, we don’t know which fuzzy number is greater by the partial
order relation used in Mallozzi et al. (2011, [49]). The F -core provides
a possible way out in decision making processes where the vagueness over
the worth of every coalition is given by means of a fuzzy number. Due to
the partial order relation, payoffs that are uncomparable with coalitional
values do not belong to the F -core. What’s worse, it may be empty in
many cases for the same reason. As a consequence, we may hardly select
some reasonable allocations to keep the grand coalition stable. Another
issue is that given an allocation in the F -core, players may hesitate on
whether to depart from the grand coalition or not, since they are not sure
that their allocated payoff is greater than the worth they may obtain on
their own. The common root of these issues lies in the ranking criterion of
fuzzy numbers.

In this current chapter, which is based on Zhang et al. (2019, [87]), we
settle these issues by defining a total order relation based on the expected
values of fuzzy numbers, where the expected value of a fuzzy number is the
mean of the midpoints of the α-level sets of fuzzy numbers with a uniform
distribution in the interval [0, 1]. By defining a total order relation based
on the expected values of fuzzy numbers, we can now easily compare each
pair of fuzzy numbers. This allows to give better definitions for the core
and bargaining set of cooperative fuzzy games.

The indifference fuzzy core defined in this chapter contains all indiffer-
ently efficient payoff vectors for which the players of every coalition receive
at least what they could gain by themselves in view of the total order re-
lation of fuzzy numbers. In this case, the above-mentioned drawback of
the F -core is overcome. Simultaneously, the players are determined to
join the grand coalition so long as they receive in the allocation no less
than the worth obtained by themselves. Moreover, we conclude that the
indifference fuzzy core is nonempty for convex cooperative fuzzy games.
However, the indifference fuzzy core may be empty. We introduce a nec-
essary and sufficient condition for non-emptiness of the indifference fuzzy
core called balancedness. This improves upon F -balancedness defined by
the partial order relation of fuzzy numbers, which is a necessary but not
sufficient condition for non-emptiness of the F -core.
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Each player aspires to obtain his maximum payoff in the indifference
fuzzy core. This creates tension among the players since not all of them
can achieve their maximum payoffs in an element of the indifference fuzzy
core. It is, then, hard to say which of the payoff vectors is better in the indif-
ference fuzzy core. Here, we introduce the indifference fuzzy nucleolus by
lexicographically minimizing the excesses of coalitions over the nonempty
compact convex indifference fuzzy imputation set, which is based on the
total order relation. We show that there exists at least one fuzzy payoff
vector in the indifference fuzzy nucleolus. It is also proved that the indif-
ference fuzzy nucleolus is a subset of the indifference fuzzy core when the
indifference fuzzy core is nonempty.

The indifference fuzzy core of the cooperative fuzzy game may be empty,
which makes us to consider other solution concepts. Additionally, the con-
cepts which have been introduced in the previous paragraphs neglect the
bargaining process that may actually take place during the cooperative pro-
cess. No agreement will be reached if every player demands the maximum
he can get in the coalition. In this chapter, we assume that all players can
bargain together, and settle at a unanimous outcome which is based on the
threats and counterthreats that they possess. Following this idea, we define
and analyze the indifference fuzzy bargaining set as the set of all the unani-
mous outcomes for cooperative fuzzy games. Based on the allowed threats
and counterthreats, we introduce two indifference fuzzy bargaining sets:
the Davis-Maschler indifference fuzzy bargaining set in which no player
has a justified objection at an indifference fuzzy imputation against every
other player; and the Mas-Colell indifference fuzzy bargaining set in which
no coalition has a justified objection at an indifference fuzzy imputation
against every other coalition. Only objections without counter-objections
are considered as justified. Consequently, the indifference fuzzy core is a
subset of the indifference fuzzy bargaining set since blocking a fuzzy allo-
cation becomes more difficult. Moreover, we characterize the class of su-
peradditive cooperative fuzzy games for which the indifference fuzzy bar-
gaining set and the indifference fuzzy core coincide. We further conclude
that the Davis-Maschler indifference fuzzy bargaining set of a superaddi-
tive cooperative fuzzy game is a subset of the Mas-Colell indifference fuzzy
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bargaining set. Similarly as for TU-games, the Davis-Maschler indifference
fuzzy bargaining set, the Mas-Colell indifference fuzzy bargaining set, and
the indifference fuzzy core of convex cooperative fuzzy games coincide.

The chapter is organized as follows. Section 4.2 introduces the indiffer-
ence fuzzy core and the balanced condition for cooperative fuzzy games.
The indifference fuzzy nucleolus is defined in Section 4.3. Section 4.4 pro-
poses two indifference fuzzy bargaining sets, both of which are equal to the
indifference fuzzy core for convex cooperative fuzzy games. In Section 4.5,
we provide the proof of the equality between the two indifference fuzzy
baragining sets and the indifference fuzzy core for superadditive coopera-
tive fuzzy games. The last section concludes with a brief summary.

4.2 Indifference fuzzy core

We start this section with an example to explain a problem caused by the
partial order relation � in Mallozzi et al. (2011, [49]).

Example 4.1. Let’s consider a fuzzy bankruptcy problem with an estate ẽ
divided among n creditors. Let the estate ẽ = b1, 3, 5, 8c and the first credi-
tor’s claim c̃1 = b2, 8

3 ,
11
2 ,

15
2 c. We work out ẽ[α] = [1 + 2α, 8 − 3α], c̃1[α] =

[2 + 2
3α,−2α + 15

2 ], α ∈ [0, 1]. Obviously, ẽ and c̃1 are non-comparable by
the partial order relation � used by Mallozzi et al. (2011, [49]). Hence, it
is impossible to give an allocation of this fuzzy bankruptcy problem.

As illustrated in Example 4.1, the partial order relation in Mallozzi
et al. (2011, [49]) may bring problems to provide a “fair” allocation.
The difficulty raises when we have two fuzzy numbers Ã, B̃ ∈ FR with
A∗(α) < B∗(α) but A∗(α) > B∗(α) for every α ∈ [0, 1]. In this case, Ã and
B̃ cannot be compared with the partial order relation �. A total order re-
lation of fuzzy numbers should be defined to solve such difficult situations.
Following from the total order criterion for intervals presented by Han et
al. (2012, [37]), we define the following order relation of fuzzy numbers.

Definition 4.1. Let Ã, B̃ ∈ FR.
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Ã ' B̃ if Ã[α] & B̃[α] for every α ∈ [0, 1], where Ã[α] & B̃[α] if
A∗(α)+A∗(α)

2 ≥ B∗(α)+B∗(α)
2 .

Ã w B̃ if Ã[α] ∼ B̃[α] for every α ∈ [0, 1], where Ã[α] ∼ B̃[α] if
A∗(α)+A∗(α)

2 = B∗(α)+B∗(α)
2 .

For Example 4.1, 1
2(1 + 2α + 8 − 3α) = 9−α

2 , 1
2(2 + 2

3α − 2α + 15
2 ) =

−2
3α + 19

4 , α ∈ [0, 1]. It is obvious that ẽ and c̃1 are non-comparable yet by
the order relation ' introduced in the above paragraph. Thus, the order
relation ' is a partial order relation for fuzzy numbers.

Definition 4.2. Let Ã, B̃ ∈ FR.

Ã is weakly superior to B̃, denoted by Ã < B̃, if E(Ã) ≥ E(B̃).

Ã and B̃ are indifferent, denoted by Ã ≈ B̃, if E(Ã) = E(B̃).

Ã is superior to B̃, denoted by Ã � B̃, if E(Ã) > E(B̃).

For Example 4.1, E(ẽ) = 17
4 , E(c̃1) = 53

12 , we know ẽ ≺ c̃1 by Definition
4.2. Thus, the first creditor’s claim c̃1 is greater than the estate ẽ.

Particularly, for every symmetrical trapezoidal fuzzy number ba, b, c, dc,
i.e., b − a = d − c, L(x) and R(x) are linear, the α-level set is [(b − a)α +

a, (c−d)α+d]. Thus, the sum a+d of the endpoints of the α-level set does
not depend on α. In this case, the midpoint a+d

2 of the α-level set is equal to
the expected value E(ba, b, c, dc) = 1

2

∫ 1
0 (a+d)dα of the symmetrical trape-

zoidal fuzzy number. Thus, for symmetrical trapezoidal fuzzy numbers, the
partial order relation ' in Definition 4.1 by comparing the midpoints of the
α-level sets of fuzzy numbers is the total order relation < in Definition 4.2
by comparing the expected values of fuzzy numbers.

Remark 4.1. (i) If Ã � B̃ as defined in Mallozzi et al. (2011, [49]),
then Ã < B̃.

(ii) For every A,B ∈ R, if A ≥ B, then A < B.

(iii) For every A,B ∈ IR, if A & B as defined in Han et al. [37], then
A < B.

From the definition of the total order relation of fuzzy numbers, it is
easily seen that for every Ã, B̃ ∈ FR, the maximum and minimum values
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are defined as

C̃ ≈ max{Ã, B̃} ⇔ E(C̃) = max{E(Ã), E(B̃)},

C̃ ≈ min{Ã, B̃} ⇔ E(C̃) = min{E(Ã), E(B̃)}.

The F -core may contain few payoff vectors, or even no one, just because
of the partial order relation. Even worse, players may not know whether to
take part in the grand coalition or not, since they may not be sure whether
their payoff is greater than their coalitional value. The key to solve such
problems is the total order relation of fuzzy numbers. Here, we propose the
indifference fuzzy core of a cooperative fuzzy game based on the total order
relation < of fuzzy numbers. In a cooperative fuzzy game ṽ (For details we
refer to page 18), we say that a payoff vector x̃ ∈ FRn is indifferently
efficient if x̃(N) ≈ ṽ(N); individually rational if x̃i < ṽ(i) for all i ∈ N ;
and coalitionally rational if x̃(S) < ṽ(S) for all S ⊆ N . A payoff vector x̃
is called an indifference fuzzy imputation if it is indifferently efficient and
individually rational. I (N, ṽ) denotes the indifference fuzzy imputation
set being the set of indifference fuzzy imputations.

Definition 4.3. The indifference fuzzy core C (N, ṽ) of a cooperative fuzzy
game ṽ ∈ FGN (see page 18) is defined as

C (N, ṽ) = {(x̃1, · · · , x̃n) ∈ FRn | x̃(N) ≈ ṽ(N) and x̃(S) < ṽ(S) ∀S ⊆ N}.

Remark 4.2. (i) Obviously, it is true that C F (N, ṽ) ⊆ C (N, ṽ) (see page
18).
(ii) If the cooperative fuzzy game ṽ ∈ FGN degenerates into the classical
game v ∈ GN , C (N, ṽ) = C (N, v). If the cooperative fuzzy game ṽ ∈ FGN

degenerates into the interval game ν ∈ IGN , C (N, ṽ) = C ′(N, ν), where
C ′(N, ν) is the indifference interval core of an interval game defined by
Han et al. (2012, [37]) (see pages 17-18).

Example 4.2. Let the cooperative fuzzy game ṽ ∈ FGN with N = {1, 2, 3}
and ṽ(i) = b0, 0, 0, 0c, i = 1, 2, 3, ṽ(12) = b1, 2, 2, 3c, ṽ(23) = b1, 1, 2, 2c,
ṽ(13) = b4, 5, 6, 7c, ṽ(123) = b4, 5, 7, 8c. On Table 4.1, we give the coali-
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S ∅ {1} {2} {3} {12} {13} {23} N

E(ṽ(S)) 0 0 0 0 2 11
2

3
2 6

TABLE 4.1 Coalitional expected values in Example 4.2

tional expected values of ṽ.

We may check the fuzzy payoff vector (x̃1, x̃2, x̃3) ∈ C (N, ṽ), where
x̃1 = b0, 1, 3, 6c, x̃2 = b0, 0, 1, 1c and x̃3 = b2, 3, 3, 4c. On Table 4.2, we give

S ∅ {1} {2} {3} {12} {13} {23} N

E(x̃(S)) 0 5
2

1
2 3 3 11

2
7
2 6

TABLE 4.2 Coalitional expected payoffs given by x̃ in Ex-
ample 4.2

the coalitional expected payoffs given by x̃. By Tables 4.1 and 4.2, it readily
follows that x̃1+̃x̃2+̃x̃3 ≈ ṽ(123), x̃i � ṽ(i), x̃1+̃x̃2 � ṽ(12), x̃1+̃x̃3 ≈ ṽ(13)

and x̃2+̃x̃3 � ṽ(23). However, x̃1+̃x̃2 and ṽ(12) are non-comparable by the
partial order relation � of fuzzy numbers since (x̃1+̃x̃2)[α] = [α, 7 − 3α]

and ṽ(12)[α] = [α+ 1, 3− α]. Thus, (x̃1, x̃2, x̃3) /∈ C F (N, ṽ).

From Example 4.2, we see that C (N, ṽ) ⊆ C F (N, ṽ) need not be true
for every ṽ ∈ FGN , meaning that there exist payoff vectors in the indiffer-
ence fuzzy core that do not belong to the F -core defined by Mallozzi et al.
(2011, [49]). In other words, players determine to join in the grand coali-
tion, since their payoffs from those allocations in the indifference fuzzy
core are greater than the worths acquired on their own by the total order
relation < of fuzzy numbers.

The expected game (N, vE) of ṽ ∈ FGN , defined by vE(S) = E(ṽ(S))

for every S ∈ 2N , is a TU-game.

For Example 4.2, we consider the expected game (N, vE). Obviously,
the expected vector (E(x̃1), E(x̃2), E(x̃3)) = (5

2 ,
1
2 , 3) ∈ C (N, vE). Con-

versely, suppose that there is a fuzzy payoff vector (ỹ1, ỹ2, ỹ3) such that
(E(ỹ1), E(ỹ2), E(ỹ3)) = (5

2 ,
1
2 , 3) ∈ C (N, vE), then (ỹ1, ỹ2, ỹ3) ∈ C (N, ṽ). It

turns out that such relation holds for every cooperative fuzzy game. There-
fore, the indifference fuzzy core is nonempty if and only if the associated
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expected game is balanced.

Theorem 4.4. For every ṽ ∈ FGN , C (N, ṽ) 6= ∅ if and only if C (N, vE) 6= ∅.

Proof. Let ṽ ∈ FGN .

‘Only if’: assume that C (N, ṽ) 6= ∅. There exists a fuzzy payoff vector
(x̃1, · · · , x̃n) such that

x̃(N) ≈ ṽ(N) and x̃(S) < ṽ(S) for every S ⊆ N.

Let (y1, · · · , yn) = (E(x̃1), · · · , E(x̃n)). We have∑
i∈N

yi =
∑
i∈N

E(x̃i) = E(
∑̃
i∈N

x̃i) = E(ṽ(N)) = vE(N),

and ∑
i∈S

yi =
∑
i∈S

E(x̃i) = E(
∑̃
i∈S

x̃i) ≥ E(ṽ(S)) = vE(S),

for every S ⊆ N . Hence, C (N, vE) 6= ∅.
‘If’: let C (N, vE) 6= ∅. Then, there exists a real payoff vector (x1, · · · , xn)

such that ∑
i∈N

xi = vE(N) and
∑
i∈S

xi ≥ vE(S) for every S ⊆ N.

Let (z̃1, · · · , z̃n) with z̃i = bxi2 , xi, xi,
3xi
2 c for every i ∈ N . It is easily seen

that E(z̃i) = xi for each i ∈ N . Then,

E(
∑̃
i∈N

z̃i) =
∑
i∈N

E(z̃i) =
∑
i∈N

xi = vE(N) = E(ṽ(N)),

and

E(
∑̃
i∈S

z̃i) =
∑
i∈S

E(z̃i) =
∑
i∈S

xi ≥ vE(S) = E(ṽ(S)),
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which implies ∑̃
i∈N

z̃i ≈ ṽ(N) and
∑̃
i∈S

z̃i < ṽ(S).

Therefore, C (N, ṽ) 6= ∅.

We say that ṽ ∈ FGN is convex if

ṽ(S)+̃ṽ(T ) 4 ṽ(S ∪ T )+̃ṽ(S ∩ T ) for every S, T ∈ 2N .

The class of all convex cooperative fuzzy games is denoted by CN .

Shapley (1971, [76]) established that the core of a convex TU-game is
nonempty. By Theorem 4.4, we know that the indifference fuzzy core is
nonempty if the expected game is convex. It turns out that if the coopera-
tive fuzzy game is convex, then the expected game is convex.

Theorem 4.5. If ṽ ∈ CN , then the expected game (N, vE) of ṽ is a convex
game.

Proof. Since ṽ ∈ CN , it holds that for all S, T ∈ 2N ,

ṽ(S)+̃ṽ(T ) 4 ṽ(S ∪ T )+̃ṽ(S ∩ T ).

By the properties of the expected value and the definition of 4, for all
S, T ⊆ N ,

vE(S) + vE(T ) ≤ vE(S ∪ T ) + vE(S ∩ T ),

which means that (N, vE) is convex. Thus, C (N, vE) 6= ∅.
From Theorems 4.4 and 4.5, we obtain the following immediate result.

Corollary 4.6. C (N, ṽ) 6= ∅ for every ṽ ∈ CN .

Definition 4.7. For every ṽ ∈ FGN , we say that ṽ is balanced if

ṽ(N) <
∑̃
S⊆N

λ(S)ṽ(S)

for every map λ : 2N → R+ with
∑

S⊆N
i∈S

λ(S) = 1 for all i ∈ N .
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Remark 4.3. Definition 4.7 is in line with F -balancedness introduced by
Mallozzi et al. (2011, [49]), I-balancedness defined by Alparslan Gök et
al. (2008, [4]), and balancedness presented by Bondareva (1962, [15])
and Shapley (1967, [75]).

Example 4.3. Let ṽ ∈ FGN with N = {1, 2, 3} and ṽ(i) = b0, 0, 0, 0c, i =

1, 2, 3, ṽ(12) = b8, 8, 9, 9c, ṽ(23) = b7, 8, 9, 10c, ṽ(13) = b4, 6, 10, 14c, ṽ(123)

= b10, 12, 14, 16c. We check all the minimal balanced collections1:

1 · ṽ(1)+̃1 · ṽ(2)+̃1 · ṽ(3) = b0, 0, 0, 0c 4 ṽ(123) = b10, 12, 14, 16c;
1 · ṽ(1)+̃1 · ṽ(23) = b7, 8, 9, 10c 4 ṽ(123) = b10, 12, 14, 16c;
1 · ṽ(3)+̃1 · ṽ(12) = b8, 8, 9, 9c 4 ṽ(123) = b10, 12, 14, 16c;
1 · ṽ(2)+̃1 · ṽ(13) = b4, 6, 10, 14c 4 ṽ(123) = b10, 12, 14, 16c;
1

2
· ṽ(12)+̃

1

2
· ṽ(23)+̃

1

2
· ṽ(13) = b19

2
, 11, 14,

33

2
c 4 ṽ(123) = b10, 12, 14, 16c.

So ṽ is balanced. However, (1
2 · ṽ(12)+̃1

2 · ṽ(23)+̃1
2 · ṽ(13))[α] = b19

2 , 11, 14,
33
2 c[α] = [3

2α + 19
2 ,

33
2 −

5
2α], ṽ(123)[α] = [10 + 2α, 16 − 2α]. Obviously,

b19
2 , 11, 14, 33

2 c and ṽ(123) are non-comparable by the partial order relation
� of fuzzy numbers. Thus, ṽ is not F -balanced.

Furthermore, we consider the expected game (N, vE) of the game ṽ,
which coalitional values are given in Table 4.3. It can be verified that

S ∅ {1} {2} {3} {12} {13} {23} N

vE(S) 0 0 0 0 8.5 8.5 8.5 13

TABLE 4.3 Expected game in Example 4.3

(13
3 ,

13
3 ,

13
3 ) ∈ C (N, vE). By Theorem 4.4, it directly follows that C (N, ṽ) 6=

∅. We find that the conclusion is true for every ṽ ∈ FGN .

Theorem 4.8. For every ṽ ∈ FGN , C (N, ṽ) 6= ∅ if and only if ṽ is balanced.

1A coalition {S} ⊆ 2N is minimally balanced if it is balanced and does not contain a
proper balanced subcollection. It is known that a TU-game is balanced if and only if all
minimally balanced inequalities are satisfied (c.f. Shapley (1967, [75])). Following the
same line as in the proof for TU-games, it is easily seen that a cooperative fuzzy game is
balanced if and only if all minimally balanced inequalities are satisfied.
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Proof. Let ṽ ∈ FGN . From Theorem 4.4, C (N, ṽ) 6= ∅ if and only if
C(N, vE) 6= ∅, which is equivalent to (N, vE) being balanced, i.e.,

vE(N) ≥
∑
S⊆N

λ(S)vE(S)

for each map λ : 2N → R+ with
∑

S⊆N
i∈S

λ(S) = 1 for all i ∈ N . This is

equivalent to

ṽ(N) <
∑̃
S⊆N

λ(S)ṽ(S)

for each map λ : 2N → R+ with
∑

S⊆N
i∈S

λ(S) = 1 for all i ∈ N . Thus,

C (N, ṽ) 6= ∅ if and only if ṽ is balanced.

Remark 4.4. Balancedness is a necessary and sufficient condition for non-
emptiness of the indifference fuzzy core, but F -balancedness is only a nec-
essary condition for non-emptiness of the F -core.

4.3 Indifference fuzzy nucleolus

Given a cooperative fuzzy game ṽ, for every x̃ ∈ I (N, ṽ) and every coali-
tion S ∈ 2N , the excess ẽ(S, x̃) of S at x̃ is defined to be

ẽ(S, x̃) = ṽ(S)−̃x̃(S).

It can be easily checked that for every payoff vector x̃ ∈ FRn, if x̃ ∈
C (N, ṽ), then ẽ(S, x̃) 4 0̃ for all S ⊆ N , where ẽ(S, x̃) ≈ 0̃ implies that
E(ẽ(S, x̃)) = 0, i.e., E(ṽ(S)) = E(x̃(S)), which means that ṽ(S) ≈ x̃(S).

The nucleolus of TU-games defined by Schmeidler (1969, [71]) con-
sists of payoff vectors which minimize the excesses of coalitions in the lex-
icographic order over the compact convex imputation set. We define the
indifference fuzzy nucleolus for cooperative fuzzy games. First, we define
the fuzzy lexicographic order 4L by the total order relation in Definition
4.2.
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Let m ∈ N and x̃, ỹ ∈ FRm. The fuzzy lexicographic order 4L is defined
as follows:

(i) x̃ ≺L ỹ if there exists an integer k ∈ N, 1 ≤ k ≤ m such that x̃i ≈ ỹi

for 1 ≤ i < k and x̃k ≺ ỹk.

(ii) x̃ 4L ỹ if x̃ ≺L ỹ or x̃ ≈ ỹ.

Moreover, θ̃(x̃) is the vector where the coordinates of x̃ are ordered in
nonincreasing order: θ̃1(x̃) < θ̃2(x̃) < · · · < θ̃m(x̃).

Definition 4.9. For every cooperative fuzzy game ṽ ∈ FGN , the indiffer-
ence fuzzy nucleolus is the set of fuzzy payoff vectors that lexicographically
minimizes the vector of fuzzy excesses (ẽ(S, x̃))S⊆N over the imputation set

N (N, ṽ) = {x̃ ∈ I (N, ṽ)|θ̃(ẽ(S, x̃))S⊆N 4L θ̃(ẽ(S, ỹ))S⊆N

∀ỹ ∈ I (N, ṽ)}.

Remark 4.5. The indifference fuzzy nucleolus of a cooperative fuzzy game
that degenerates into a TU-game coincides with the nucleolus of that TU-
game.

Theorem 4.10. For every ṽ ∈ FGN , N (N, ṽ) 6= ∅.

Proof. Let X0 = I (N, ṽ). Denote

S1 ∈ arg min
x̃∈X0

max
S∈2N

ẽ(S, x̃) and θ̃1(x̃) ≈ ẽ(S1, x̃),

X1 = {x̃ ∈ X0 | max
S∈2N

ẽ(S, x̃) ≈ θ̃1(x̃)},

S2 ∈ arg min
x̃∈X1

max
S∈2N\S1

ẽ(S, x̃) and θ̃2(x̃) ≈ ẽ(S2, x̃),

X2 = {x̃ ∈ X1 | max
S∈2N\S1

ẽ(S, x̃) ≈ θ̃2(x̃)},

· · ·

Si ∈ arg min
x̃∈Xi−1

max
S∈2N\{S1,S2,··· ,Si−1}

ẽ(S, x̃) and θ̃i(x̃) ≈ ẽ(Si, x̃),
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Xi = {x̃ ∈ Xi−1 | max
S∈2N\{S1,S2,··· ,Si−1}

ẽ(S, x̃) ≈ θ̃i(x̃)}.

Notice that for any i ∈ N , Xi, Si are well-defined, since X0 is a compact
set and ẽ(S, x̃) is continuous on x̃ for each S ∈ 2N \ {∅}. Since n is a finite
number, it holds that

S2n = arg min
x̃∈X2n−1

max
S∈2N\{S1,S2,··· ,S2n−1}

ẽ(S, x̃),

and
θ̃2n(x̃) ≈ ẽ(S2n , x̃),

X2n = {x̃ ∈ X2n−1 | max
S∈2N\{S1,S2,··· ,S2n−1}

ẽ(S, x̃) ≈ θ̃2n(x̃)}.

Therefore, X2n is the indifference fuzzy nucleolus of the cooperative
fuzzy game ṽ.

From the proof of Theorem 4.10, we deduce the following corollary
immediately.

Corollary 4.11. For every ṽ ∈ FGN , if x̃, ỹ ∈ N (N, ṽ), then x̃ ≈ ỹ.

Remark 4.6. The indifference fuzzy nucleolus of a cooperative fuzzy game
is nonempty. Unlike for TU-games, it may consist more than one point,
since two indifferent fuzzy payoff vectors may belong to the indifference
fuzzy nucleolus.

Theorem 4.12. For every ṽ ∈ FGN with C (N, ṽ) 6= ∅, N (N, ṽ) ⊆ C (N, ṽ).

Proof. Suppose that there exists an indifference fuzzy imputation satisfying
x̃∗ ∈ N (N, ṽ) with x̃∗ /∈ C (N, ṽ). Let θ̃(x̃∗) ≈ (θ̃1(x̃∗), θ̃2(x̃∗), · · · , θ̃2n(x̃∗)),
where θ̃i(x̃∗) := ẽ(Si, x̃

∗), Si ∈ 2N defined as in the proof of Theorem 4.10.
Since x̃∗ /∈ C (N, ṽ), there exists a coalition S ∈ 2N satisfying ẽ(S, x̃∗) � 0̃.
Moreover, there exists an indifference fuzzy imputation ỹ ∈ C (N, ṽ) such
that for every Ti ∈ 2N , ẽ(Ti, ỹ) 4 0̃ and θ̃(ỹ) ≈ (θ̃1(ỹ), θ̃2(ỹ), · · · , θ̃2n(ỹ)),
where θ̃i(ỹ) := ẽ(Ti, ỹ). It is concluded that ẽ(S, x̃∗) 4 θ̃1(x̃∗) 4 θ̃1(ỹ) 4 0̃

which establishes a contradiction to our premise x̃∗ ∈ N (N, ṽ) . Hence,
x̃∗ ∈ C (N, ṽ).
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4.4 Indifference fuzzy bargaining sets

4.4.1 Two types of indifference fuzzy bargaining sets

In this section, we pay attention to two indifference fuzzy bargaining sets
based on objections and counter-objections. Let i, j ∈ N be such that i 6= j.
The set of all coalitions containing player i, but not player j, is denoted by
Γij = {S ⊆ N | i ∈ S, j /∈ S}.

For every ṽ ∈ FGN and x̃ ∈ I (N, ṽ), we say that an objection of i
against j at the indifference fuzzy imputation x̃ in the cooperative fuzzy
game ṽ is a pair (S, ỹ) where S ∈ Γij and ỹ = (ỹk)k∈S satisfying

ỹ(S) ≈ ṽ(S), (4.1)

ỹk � x̃k for all k ∈ S. (4.2)

We further say that a counter-objection of j to the objection (S, ỹ) of i at x̃
is a pair (T, z̃) where T ∈ Γji and z̃ = (z̃k)k∈T satisfying

z̃(T ) ≈ ṽ(T ), (4.3)

z̃k < ỹk for all k ∈ T ∩ S, (4.4)

z̃k < x̃k for all k ∈ T \ S. (4.5)

Definition 4.13. The Davis-Maschler indifference fuzzy bargaining set M ind
1 (N, ṽ)

of the game ṽ is defined by

M ind
1 (N, ṽ) = {x̃ ∈ I (N, ṽ) | no individual player has a

justified objection at x̃},

where a justified objection is an objection that has no counter-objection.

For every ṽ ∈ FGN and x̃ ∈ I (N, ṽ), we say that an objection of
coalition S at x̃ in the cooperative fuzzy game ṽ is a pair (S, ỹ) where S is
a nonempty coalition, ỹ = (ỹk)k∈S satisfying (4.1) with

ỹk < x̃k for all k ∈ S, (4.6)
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and at least one of the inequalities in (4.6) is strict. We further say that a
counter-objection of coalition T to the objection (S, ỹ) at x̃ is a pair (T, z̃)

where T is a nonempty coalition, z̃ = (z̃k)k∈T satisfying (4.3),(4.4),(4.5)
and at least one of the inequalities in (4.4) or (4.6) is strict.

Definition 4.14. The Mas-Colell indifference fuzzy bargaining set MB(N, ṽ)

of the game ṽ is defined by

MB(N, ṽ) = {x̃ ∈ I (N, ṽ) | no nonempty coalition

has a justified objection at x̃},

where a justified objection is an objection that has no counter-objection.

Remark 4.7. Observe that for every ṽ ∈ FGN , a pair (S, ỹ) can be used as
an objection by the players of S or coalition S at x̃ if and only if ẽ(S, ỹ) �
0̃. Furthermore, a pair (T, z) is both types of counter-objections at ỹ if
and only if ẽ(T, z̃) < 0̃. Thus, C (N, ṽ) ⊆ M ind

1 (N, ṽ) and C (N, ṽ) ⊆
MB(N, ṽ).

These two indifference fuzzy bargaining sets of a cooperative fuzzy
game that degenerates into a TU-game conincide with the corresponding
bargaining sets of that TU-game defined by Davis and Maschler (1963,
[24]) and Mas-Colell (1989, [52]) (see pages 12-13).

4.4.2 Equality between solutions on convex cooperative fuzzy
games

Maschler et al. (1972, [51]) proved that the Davis-Maschler bargaining set
(see page 12) of a convex TU-game equals the core of the game. In this
section, we prove that both the Davis-Maschler indifference fuzzy bargain-
ing set and the Mas-Colell indifference fuzzy bargaining set are equal to
the indifference fuzzy core for convex cooperative fuzzy games. The proofs
are based on an excess fuzzy game and a monotonic fuzzy cover.

Given a payoff vector x̃ ∈ FRn, the excess fuzzy game (N, ω̃x̃) of ṽ ∈
FGN is defined by

ω̃x̃(S) = ẽ(S, x̃) for all S ⊆ N.
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Notice that, if ṽ is convex, then (N, ω̃x̃) is convex for every x̃ ∈ FRn as
well.

The monotonic fuzzy cover (N, ṽm) of ṽ ∈ FGN is given by

ṽm(S) :≈ max
T⊆S

ṽ(T ) for all S ⊆ N.

Proposition 4.15. For every ṽ ∈ FGN and its associated monotonic fuzzy
cover (N, ṽm), the following statements hold,

(i) ṽm(S) < ṽ(S) for all S ⊆ N .

(ii) ṽm(S) 4 ṽm(T ) for all S ⊆ T ⊆ N .

(iii) If ṽ is convex, then (N, ṽm) is convex.

Proof. The statements (i) and (ii) follow immediately from the definition
of monotonic fuzzy cover. It remains to prove statement (iii). Let ṽ be
convex. For every S ⊆ N and T ⊆ N , there exists S1 ⊆ S, T1 ⊆ T such that
ṽm(S) ≈ ṽ(S1) and ṽm(T ) ≈ ṽ(T1). It follows that

ṽ(S1)+̃ṽ(T1) 4 ṽ(S1 ∪ T1)+̃ṽ(S1 ∩ T1).

Then,

ṽm(S)+̃ṽm(T ) ≈ ṽ(S1)+̃ṽ(T1)

4 ṽ(S1 ∪ T1)+̃ṽ(S1 ∩ T1)

4 ṽm(S1 ∪ T1)+̃ṽm(S1 ∩ T1)

4 ṽm(S ∪ T )+̃ṽm(S ∩ T ).

Hence, (N, ṽm) is convex.

Given a cooperative fuzzy game ṽ, for every payoff vector x̃ ∈ FRn, we
define the maximal excess fuzzy game (N, ω̃x̃,m) on the player set N by

ω̃x̃,m(S) :≈ max
T⊆S

ẽ(T, x̃) for all S ⊆ N.

Obviously, for every payoff vector x̃ ∈ FRn,
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(i) ω̃x̃,m(∅) = 0;

(ii) ω̃x̃,m(S) < max{ẽ(S, x̃), 0̃} for all S ⊆ N ;

(iii) S ⊆ T implies ω̃x̃,m(S) 4 ω̃x̃,m(T ), i.e., (N, ω̃x̃,m) is monotonic;

(iv) x̃ is individually rational if and only if ω̃x̃,m(i) ≈ 0̃ for all i ∈ N ;

(v) x̃ is coalitionally rational if and only if ω̃x̃,m(N) ≈ 0̃.

Notice that (N, ω̃x̃,m) is the monotonic fuzzy cover of the excess fuzzy game
(N, ω̃x̃).

The restricted game (T, ṽT ) of ṽ ∈ FGN is given by ṽT (S) := ṽ(S) for
every S ⊆ T ⊆ N .

Theorem 4.16. C (N, ṽ) = M ind
1 (N, ṽ) for every ṽ ∈ CN .

Proof. For every ṽ ∈ CN , from Therorem 4.5 and Remark 4.7, it follows that
C (N, ṽ) ⊆M ind

1 (N, ṽ). Next, we need to show that M ind
1 (N, ṽ) ⊆ C (N, ṽ).

It is sufficient to prove that I (N, ṽ) \C (N, ṽ) ⊆ I (N, ṽ) \M ind
1 (N, ṽ). Let

x̃ ∈ I (N, ṽ)\C (N, ṽ). Choose T ⊆ N as a maximal coalition of the largest
fuzzy excess at the indifference fuzzy imputation x̃, i.e., a coalition T ⊆ N

satisfying that

ẽ(T, x̃) < ẽ(S, x̃) for all S ⊆ N,
ẽ(T, x̃) � ẽ(S, x̃) for all S ⊆ N with T ⊆ S, S 6= T.

Now x̃ ∈ I (N, ṽ) \C (N, ṽ) implies ẽ(T, x̃) � 0̃ and 2 ≤ |T | ≤ n− 1 for the
specific coalition T . Thus, for its maximal excess fuzzy game (T, ω̃x̃,m), it
should be ω̃x̃,m(T ) � 0̃, ω̃x̃,m(i) ≈ 0̃ for all i ∈ T .

Obviously, convexity of (T, ṽ) implies convexity of (T, ω̃x̃). As a result,
the monotonic fuzzy cover (T, ω̃x̃,m) is also convex by Proposition 4.15 (iii).
It follows from Theorem 4.5 that C (T, ω̃x̃,m) 6= ∅. Then, there exists z̃ =

(z̃k)k∈T such that z̃ ∈ C (T, ω̃x̃,m). In particular, z̃(T ) ≈ ω̃x̃,m(T ) � 0̃ and
z̃i < ω̃x̃,m(i) < 0̃ for all i ∈ T , from this, it is clear that there exists i∗ ∈ T
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with z̃i∗ � 0̃. Define ỹ∗ = (ỹk)k∈T by

ỹi =

{
x̃i+̃z̃i+̃β̃ if i ∈ T, i 6= i∗,

x̃i+̃z̃i−̃(|T | − 1)β̃ if i = i∗,

where β̃ is a fuzzy number satisfying 0̃ ≺ β̃ ≺ (|T | − 1)−1z̃i∗ , and then,

E(ỹi) =

{
E(x̃i) + E(z̃i) + E(β̃) if i ∈ T, i 6= i∗,

E(x̃i) + E(z̃i)− (|T | − 1)E(β̃) if i = i∗,

where E(β̃) is a real number satisfying 0 < E(β̃) < (|T | − 1)−1E(z̃i∗).
For the selected coalition T ,

E(ỹ(T )) = E(x̃(T )) + E(ω̃x̃,m(T )) = E(ṽ(T )), T ⊆ N,
E(ỹi) > E(x̃i) if i ∈ T,

which implies

ỹ(T ) ≈ ṽ(T ), T ⊆ N,
ỹi � x̃i if i ∈ T.

From this, we deduce that (T, ỹ∗) is an objection of player i∗ against any
player in N\T at the indifference fuzzy imputation x̃ in the cooperative
fuzzy game ṽ. Next, we show that there exists no counter-objection to
the above objection (T, ỹ∗). Consider any coalition R ⊆ N\i∗ satisfying
R ∩ (N\T ) 6= ∅. Because R ∪ T 6= T , the coalition T specified above yields

ẽ(R ∪ T, x̃) ≺ ẽ(T, x̃).

The strict inequality and convexity of ṽ ∈ FGN imply

ẽ(R, x̃) 4 ẽ(R ∩ T, x̃)+̃ẽ(R ∪ T, x̃)−̃ẽ(T, x̃) ≺ ẽ(R ∩ T, x̃),

and
ẽ(R ∩ T, x̃) = ω̃x̃(R ∩ T ) 4 ω̃x̃,m(R ∩ T ) 4 z̃(R ∩ T ).
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Then,

ẽ(R, x̃) ≺ ẽ(R ∩ T, x̃) 4 z̃(R ∩ T )

= ỹ(R ∩ T )−̃x̃(R ∩ T )−̃|R ∩ T |β̃
4 ỹ(R ∩ T )−̃x̃(R ∩ T ).

It follows that

ṽ(R) = ẽ(R, x̃)+̃x̃(R)

≺ ỹ(R ∩ T )−̃x̃(R ∩ T )+̃x̃(R)

= ỹ(R ∩ T )+̃x̃(R\T ).

The strict inequality expresses that the coalition R cannot be used for a
counter-objection. Since R is an arbitrary coalition including at least one
player in N\T except for player i∗, we may conclude that there exists no
counter-objection to the above objection (T, ỹ∗) of player i∗ against any
player in N\T with respect to the indifference fuzzy imputation x̃ in the
cooperative fuzzy game ṽ. Therefore, x̃ /∈M ind

1 (N, ṽ).

Following the same lines as in the proof of Theorem 4.16, we have the
following result for the Mas-Colell indifference fuzzy bargaining set.

Theorem 4.17. C (N, ṽ) = MB(N, ṽ) for every ṽ ∈ CN .

From Theorem 4.16 and Theorem 4.17, we have the following immedi-
ate consequence.

Corollary 4.18. C (N, ṽ) = M ind
1 (N, ṽ) = MB(N, ṽ) for every ṽ ∈ CN .
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4.5 Characterizing the class of superadditive coop-
erative fuzzy games for which the indifference
fuzzy core and the indifference fuzzy bargaining
sets coincide

In Subsection 4.5.2, we have shown that the indifference fuzzy core and
the indifference fuzzy bargaining sets of convex cooperative fuzzy games
coincide. Convexity is stronger than superadditivity for cooperative fuzzy
games. In this section, we characterize the class of superadditive coopera-
tive fuzzy games for which all solution concepts in this chapter coincide in
a similar way as for convex cooperative fuzzy games. The characterization
generalizes the results in Solymosi (1999, [78]) for TU-games. First, we
provide the definition of a superadditive cooperative fuzzy game.

We say that ṽ ∈ FGN is superadditive if

ṽ(S)+̃ṽ(T ) 4 ṽ(S ∪ T ),

for all S, T ∈ 2N with S ∩ T = ∅. Denote the set of all superadditive
cooperative fuzzy games by SN .

Notice that if ṽ is superadditive, then (N, ω̃x̃) is superadditive for every
x̃ ∈ FRn.

Theorem 4.19. Let ṽ ∈ SN and x̃ ∈M ind
1 (N, ṽ). x̃ ∈ C (N, ṽ) if and only if

the maximal excess fuzzy game (N, ω̃x̃,m) induced by x̃ is balanced.

Proof. For each ṽ ∈ SN , it is easily seen that I (N, ṽ) 6= ∅ and M ind
1 (N, ṽ) 6=

∅.
‘Only if’: If x̃ ∈ C (N, ṽ), then ω̃x̃,m(S) ≈ 0̃ for all S ⊆ N and the

induced game is trivially balanced.

‘If’: we proceed by contraposition and contradiction. Let x̃ /∈ C (N, ṽ).
Suppose (N, ω̃x̃,m) is balanced, in which case ω̃x̃,m(N) � 0̃. Let ũ ∈
C (N, ω̃x̃,m). From ũi < 0̃ and ũ(N) ≈ ω̃x̃,m(N) � 0̃, it follows that
the set P = {i ∈ N | ũi � 0̃} is nonempty. For every S ⊆ N with
ẽ(S, x̃) ≈ ω̃x̃,m(N), it should be that P ⊆ S. In fact, ẽ(S, x̃) 4 ω̃x̃,m(S) 4
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ũ(S) 4 ũ(S)+̃ũ(N\S) = ũ(N) ≈ ω̃x̃,m(N) ≈ ẽ(S, x̃) implies ũj ≈ 0̃ for all
j ∈ N\S.

Let Ŝ be a maximal coalition for which ẽ(Ŝ, x̃) ≈ ω̃x̃,m(N). Clearly,
∅ 6= Ŝ 6= N and ẽ(Ŝ, x̃) ≈ ũ(Ŝ). Moreover, ṽ superadditive implies that
for T 6= ∅ with T ∩ Ŝ = ∅, ẽ(Ŝ, x̃) � ẽ(Ŝ ∪ T, x̃) < ẽ(Ŝ, x̃)+̃ẽ(T, x̃). Thus,
ẽ(T, x̃) ≺ 0̃ for every nonempty T ⊆ N with T ∩ Ŝ = ∅. Fix i ∈ P ⊆ Ŝ, and
define the vector ỹ = (ỹk)k∈Ŝ by

ỹi = x̃i+̃
ũi

|Ŝ|
,

ỹk = x̃k+̃ũk+̃
ũi

|Ŝ|
if k 6= i, k ∈ Ŝ.

Since ũk < 0 for every k ∈ Ŝ and by the above definition, it is clear that

ỹ(Ŝ) ≈ ṽ(Ŝ),

ỹk � x̃k for all k ∈ Ŝ.

Namely, (Ŝ, ỹ) is an objection of i against j at x̃.

Since x̃ ∈ M ind
1 (N, ṽ), there must exist j ∈ N \ S with a counter-

objection (T, z̃) for the objection (Ŝ, ỹ) of player i. By Remark 4.7, a pair
(T, z̃) can be used for a counter-objection if and only if ẽ(T, z̃) < 0̃, which
means that T ∩ Ŝ 6= ∅. It holds that

z̃(T ) < x̃(T\Ŝ)+̃ỹ(T ∩ Ŝ)

= x̃(T\Ŝ)+̃x̃(T ∩ Ŝ)+̃ũ(T ∩ Ŝ)+̃
ũi

|Ŝ|
|T ∩ Ŝ|

� x̃(T )+̃ũ(T ) < x̃(T )+̃ẽ(T, x̃) = ṽ(T ),

where the strict inequality is a direct consequence of ũk ≈ 0̃ for all k ∈ N\Ŝ
and ũi � 0̃. We establish a contradiction to the premise z̃(T ) ≈ ṽ(T ).
Therefore, we conclude that every x̃ ∈ M ind

1 (N, ṽ) for which (N, ω̃x̃,m) is
balanced, belongs to C (N, ṽ).

Corollary 4.20. For every ṽ ∈ SN ,
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(i) C (N, ṽ) 6= ∅ if and only if (N, ω̃x̃,m) is balanced for some x̃ ∈M ind
1 (N, ṽ);

(ii) M ind
1 (N, ṽ) = C (N, ṽ) 6= ∅ if and only if (N, ω̃x̃,m) is balanced for every

x̃ ∈M ind
1 (N, ṽ).

For the Mas-Colell indifference fuzzy bargaining set, similar conclusions
hold.

Theorem 4.21. Let ṽ ∈ SN and x̃ ∈MB(N, ṽ). x̃ ∈ C (N, ṽ) if and only if
the maximal excess fuzzy game (N, ω̃x̃,m) induced by x̃ is balanced.

Corollary 4.22. For every ṽ ∈ SN ,

(i) C (N, ṽ) 6= ∅ if and only if (N, ω̃x̃,m) is balanced for some x̃ ∈MB(N, ṽ);

(ii) MB(N, ṽ) = C (N, ṽ) 6= ∅ if and only if (N, ω̃x̃,m) is balanced for every
x̃ ∈MB(N, ṽ).

Holzman (2001, [41]) proved that the Davis-Maschler bargaining set
of superadditive classical games is a subset of the Mas-Colell bargaining
set. Here, we obtain the following theorem which extends this result to
cooperative fuzzy games.

Theorem 4.23. M ind
1 (N, ṽ) ⊆MB(N, ṽ) for every ṽ ∈ SN .

Proof. We proceed by contradiction. Assume that x̃ ∈M ind
1 (N, ṽ)\MB(N, ṽ).

Let (S, ỹ) be a justified objection (for details we refer to Definition 4.14) at
x̃. Choose S as a maximal coalition among all justified objections (i.e., if
(U, ỹ) is a justified objection with S ⊆ U , then, U = S). Let k ∈ S be such
that the corresponding inequality in (4.6) is strict. According to the defi-
nition of an objection, it holds that S 6= N . Let l ∈ N\S. We can modify
ỹ such that its k-component decreases but the inequalities in (4.6) for the
elements in S \ {k} are strict while ensuring that the total payoff does not
change. Then, we obtain ỹ

′
as follows∑̃
j∈S

ỹ
′
j =

∑̃
j∈S

ỹj ,

ỹ
′
j � ỹj < x̃j for all j ∈ S\{k},
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ỹ
′
k � x̃k.

By dividing (ỹk−̃ỹ
′
k) into |S|−1 equal amounts, i.e., q̃ =

(ỹk−̃ỹ
′
k)

|S|−1 and setting

ỹ
′
j = ỹj+̃q̃ for every j ∈ S\{k}, it can be easily seen that (S, ỹ

′
) is an

objection of player k against l at x̃ in the sense of Davis-Maschler (for
details we refer to Definition 4.13). Since x̃ ∈ M ind

1 (N, ṽ), there exists a
counter-objection (T, z̃) to the objection (S, ỹ

′
) for player l against k at ỹ

′
,

where (T, z̃) satisfies

z̃(T ) ≈ ṽ(T ) and T ∈ Γlk,

z̃j < ỹ
′
j � ỹj for all j ∈ T ∩ S,

z̃j < x̃j for all j ∈ T\S.

If T∩S 6= ∅, then one of the inequalities above is strict and, therefore, (T, z̃)

is also a counter-objection to (S, ỹ) in the sense of Mas-Colell, establishing
a contradiction with the choice of (S, ỹ). If T ∩ S = ∅, by superadditivity, it
should be that

ỹ(S)+̃z̃(T ) ≈ ṽ(S)+̃ṽ(T ) 4 ṽ(S ∪ T ).

Then, we can find ỹ∗ and z̃∗ with ỹ∗ < ỹ and z̃∗ < z̃ such that ((ỹ∗, z̃∗), S ∪
T ) is a justified objection in the sense of Mas-Colell, establishing a con-
tradiction with the choice of (S, ỹ) with S being maximal. Consequently,
there exists no x̃ ∈ M ind

1 (N, ṽ)\ MB(N, ṽ). Therefore, M ind
1 (N, ṽ) ⊆

MB(N, ṽ).

The inclusion in Theorem 4.23 may be strict, as is illustrated in the
following example.

Example 4.4. Let ṽ ∈ FGN with N = {1, 2, 3}. For S ⊆ N ,

ṽ(S) =

{
b−1, 0, 0, 1c if |S| = 1,

b1
2 , 1, 1,

3
2c if |S| ≥ 2.

Notice that these coalitional values are trapezoidal fuzzy numbers. One can
see that M ind

1 (N, ṽ) = {(x̃1, x̃2, x̃3)}, where x̃1 ≈ x̃2 ≈ x̃3 = b0, 1
3 ,

1
3 ,

2
3c,
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while

MB(N, ṽ) = {(x̃1, x̃2, x̃3)|x̃1+̃x̃2+̃x̃3 ≈ ṽ(123),

x̃i ≺ ỹ, i = 1, 2, 3},

with ỹ = b1
6 ,

1
2 ,

1
2 ,

5
6c. Therefore, M ind

1 (N, ṽ) ⊂MB(N, ṽ).

4.6 Conclusion

The order relation defined in this chapter can compare fuzzy numbers that
the partial order relations cannot. The relation established by the partial
order relation in Mallozzi et al. (2011, [49]) for two comparable fuzzy
numbers is inherited by the total order relation defined in this chapter.

To improve the F -core of cooperative fuzzy games, we define the in-
difference fuzzy core in this chapter using the total order relation of fuzzy
numbers. The indifference fuzzy core may be empty. We define the indif-
ference fuzzy nucleolus and the indifference fuzzy bargaining sets based
on the total order relation of fuzzy numbers. Actually, these three concepts
of solutions for cooperative fuzzy games rely on the expected values of
fuzzy numbers. Alternatively, we can select payoff vectors for cooperative
fuzzy games by selecting payoff vectors of associated expected games and
translating them back to fuzzy numbers.

TU-games and interval games are special cases of cooperative fuzzy
games. The results in this chapter are generalizations of results for TU-
games. If the cooperative fuzzy game degenerates into a TU-game, the
introduced solution concepts can be easily identified with the correspond-
ing solution concepts for TU-games. Moreover, when a cooperative fuzzy
game degenerates into an interval game, we can define the nucleolus, bar-
gaining sets for the interval games similarly to Definitions 4.9, 4.13, 4.14.
Besides, the results obtained in this chapter can be translated to interval
games.





Chapter 5

Existence of an equilibrium
for pure exchange economies
with fuzzy preferences

5.1 Introduction

The theory of competitive equilibrium was set up by Walras (1874, [83]).
He established a system of simultaneous equations that described an econ-
omy, and also derived the equilibrium prices and equilibrium allocation.
The first rigorous result on the existence of an equilibrium was reached
by Wald (1951, [82]). With advances in linear programming, nonlinear
analysis and game theory, some discoveries about the existence of an equi-
librium were made by other researchers, like Gale (1955, [34]), McKen-
zie (1959, [53]), Aumann (1964, [9]), Aumann (1966, [10]), Hilden-
brand (1970, [40]), Bewley (1972, [13]), Liu (2017, [48]), and Alon and
Lehrer (2019, [3]). In particular, Arrow and Debreu (1954, [8]) consid-
ered the application of fixed point theory to equilibrium problems, gen-
eralizing Nash’s theorem on the existence of equilibrium points for non-
cooperative games (1950, [60]), and derived the existence of an equi-
librium in an abstract economy, which is a variation on the notion of a

101
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non-cooperative game. Recently, the use of variational inequalities has al-
lowed an alternative approach to the study of equilibria, c.f. Donato et
al. (2008, 2016, [28–31]), Anello et al. (2010, 2012, [6, 7]), Joré et al.
(2007, [42]), Milasi et al. (2019, [55]), Bianchi et al. (2019, [14]) and
Milasi (2014, [54]).

In a pure exchange economy (PXE), there is a set of agents, each with
an initial commodity bundle for trading. Each agent has a definite prefer-
ence order (shortly preference) on the set of all commodity bundles. More-
over, it is often assumed that each agent’s preference is measured by a real
utility function. Thus, the agent’s goal is to select the consumption vector
that maximizes his utility. The concept of competitive equilibrium, as in-
troduced by Aumann (1964, [9]), is a state of the market abiding by “the
law of supply and demand”. It consists of a price structure, where the total
supply of each good exactly balances the total demand, and an allocation
that results from trading at these prices.

It is worth mentioning that preference can be seen as an individual’s
attitude toward a set of consumption vectors in the economy. In classical
economic theory, an agent’s satisfaction degree of one consumption vector
relative to another is either 0 or 1. According to a conclusion in Debreu
(1954, [26]), under certain conditions, there exists a real utility function
over the set of consumption vectors which is order-preserving with respect
to the binary relation. Therefore, we can associate to each consumption
vector a real number a that reflects the satisfaction experienced by the
agent when in possession of this consumption vector. Following Naka-
mura (1986, [59]), the comparision of two consumption vectors may be
ambiguous. For that reason, Nakamura (1986, [59]) introduced a fuzzy bi-
nary relation and showed that, under mild assumptions, there is an order-
preserving fuzzy utility function. Notice that an agent’s attitude is not nec-
essarily clear or coherent when facing a variety of consumption vectors. In
such a situation, a real utility function is no longer reasonable. Agent i’s
utility of a consumption vector is better represented by an interval [a, a].

When agent i’s utility of a consumption vector is given by lower and
upper bounds, it is natural to suppose that i’s utility value falls into the
interval [a, a]. Hence, each agent’s utility of a consumption vector becomes
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a fuzzy number ã. This immediately leads us to a challenging problem of
determining the agent’s preference if his utility for a consumption vector
is a fuzzy number. Actually, under the above assumption about an agent’s
satisfaction degree of this consumption vector relative to another, the sat-
isfaction degree is not a constant value in [0, 1], but varies continuously in
[0, 1]. For the case where the agent’s satisfaction degree of this consumption
vector relative to another monotonically increases with respect to his utility
from lower bound to upper bound, we propose to evaluate the degrees of
relative satisfaction for every pair of consumption vectors using fuzzy pref-
erences. Thus, we mainly study some relevant issues derived from fuzzy
preferences in this chapter.

We put forward the pure exchange economy with fuzzy preferences
(PXE-FP) model, where each agent has an initial commodity bundle for
trading and a fuzzy preference on the set of all commodity bundles. On
the basis of this model, there are three key problems: (1) how to evaluate
the utility of different consumption vectors while taking account of fuzzy
preferences; (2) how to determine whether a fuzzy competitive equilibrium
exists; and (3) how to compute a fuzzy competitive equilibrium.

The main problem with which an agent is confronted in a PXE-FP is
choosing one or more consumption vectors from his budget set. The budget
set is the set of admissible commodity vectors that an agent can afford at
given prices with the value of his initial endowment. Thus, a selection
criterion is necessary for the agent. One approach to formalize this criterion
is to suppose that the agent has a fuzzy utility index, that is, to define a
fuzzy-valued function on the set of consumption vectors. It is assumed
that the agent would fuzzily prefer one consumption vector to another if
his fuzzy utility of one is greater than that of the other, and would be
fuzzily indifferent if the fuzzy utilities of the two vectors are equal. A total
order relation of fuzzy numbers is needed to compare the fuzzy utilities of
different consumption vectors. This allows to address the agent’s problem
by finding all the consumption vectors that maximize the fuzzy utility on
his budget set.

We provide solutions to the three problems mentioned above when
considering fuzzy preference orders (shortly fuzzy preferences). Firstly,
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as mentioned earlier, it is essential to define a fuzzy order that allows to
represent an agent’s fuzzy preference by a fuzzy utility function that maps
the consumption set to the set of fuzzy numbers. This enables each agent
to choose a consumption vector based on the value of his fuzzy utility. For
this, we formulate a fuzzy binary relation for every two elements in a ref-
erence set (usually a consumption set in this thesis). A total order relation
defined by Zhang et al. (2019, [87]) using expected values of fuzzy num-
bers plays an important role in searching for the best consumption vector,
i.e., finding the maximal fuzzy utility.

Secondly, after developing a link between the agent’s fuzzy preferences
and the fuzzy utility function, we establish the existence of a fuzzy compet-
itive equilibrium that provides market prices and redistribution of goods
for the PXE-FP. Based on the total order relation of fuzzy numbers and the
expected mapping of the fuzzy utility function, we apply Kakutani’s theo-
rem (1941, [44]) to prove the existence of a fuzzy Nash equilibrium for
fuzzy non-cooperative games, in which the payoffs of all strategy profiles
for each agent are fuzzy numbers. Then, we generalize fuzzy Nash equilib-
ria and prove that a fuzzy competitive equilibrium exists under some mild
assumptions.

Thirdly, variational inequalities allow an alternative approach to ex-
plain economic equilibria, whose relevance lies in the analysis of the prop-
erties for the equilibrium price and allocation. We define the expected
utility function according to the expected value of the fuzzy utility for ev-
ery consumption vector. Finally, by maximizing the expected utility of each
agent, we can characterize a fuzzy competitive equilibrium as a solution
to a related quasi-variational inequality, which results in an alternative ex-
istence proof of the fuzzy competitive equilibrium. As an application, an
example of the PXE-FP with two goods and two agents is provided.

The main contributions of this chapter are (1) to propose a fuzzy prefer-
ence order; (2) to prove the existence of a continuous fuzzy order-preserving
function (utility) on the consumption set under certain conditions; and (3)
to show the existence of a fuzzy competitive equilibrium.

The chapter, which is based on Zhang et al. (2020, [88]), is organized
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as follows. Section 5.2 proposes the fuzzy preference relation and illus-
trates the link between the fuzzy preference relation and the fuzzy order-
preserving function. The PXE-FP is introduced and the existence of a fuzzy
competitive equilibrium is proved in Section 5.3. Section 5.4 concludes
with a brief summary.

5.2 Fuzzy preference relation and fuzzy utility func-
tion

In this section, we define a fuzzy preference relation and conclude that
there exists an order-preserving fuzzy utility function for a given fuzzy pref-
erence relation on a reference set, following the same lines as the classical
0− 1 binary relation. For definitions and notations used in this chapter, we
refer to Subsections 1.2.1 and 1.3.1.

Based on the analysis of preference relations in Subsection 1.3.1, it
is natural to assume that an agent’s satisfaction degree of a consumption
vector relative to another monotonically increases as his utility changes
from lower bound to upper bound. Consequently, the agent’s satisfaction
degree of this consumption vector relative to another is not a constant value
in [0, 1], but varies continuously in [0, 1]. Therefore, we define the following
fuzzy binary relation R of a reference set X (usually in the finite vector
space of commodity bundles in this thesis).

Definition 5.1. [c.f. page 13-14] Let X be a reference set. A fuzzy binary
relation R in X ×X is a pair (X,µR), where µR : X ×X → FR is the satis-
faction function of R, and for x, y ∈ X, µR(x, y) represents the satisfaction
degree of x relative to y.

Based on the fuzzy binary relation R and the total order relation < as
in Definition 4.2, we define a fuzzy preference relation %R on a reference
set X.

Definition 5.2. Let x, y ∈ X.

x is fuzzily weakly preferred to y, denoted by x %R y, if µR(x, y) <

µR(y, x).
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x is fuzzily indifferent to y, denoted by x ∼R y, if µR(x, y) ≈ µR(y, x).

x is fuzzily strongly preferred to y, denoted by x �R y, if µR(x, y) �
µR(y, x).

The fuzzy preference relation %R is considered to be “consistent” if %R

is transitive, i.e., µR(x, y) < µR(y, x) and µR(y, z) < µR(z, y) imply that
µR(x, z) < µR(z, x).

We assume the fuzzy preference relation %R is “consistent”. Owing to
the total order relation of fuzzy numbers defined by Zhang et al. (2019,
[87]), the fuzzy preference relation %R of a reference set X satisfies the
following properties:

(1) For each x ∈ X, x %R x (reflexivity);

(2) For each x, y, z ∈ X, x %R y and y %R z implies x %R z (transitivity);

(3) For each x, y ∈ X, x %R y and/or y %R x (completeness);

(4) For each x, y ∈ X, if x %R y and y %R x, then x ∼R y (antisymmetry).

We say that the fuzzy preference relation %R is a completely ordered rela-
tion and (X,%R) is a completely ordered space. The associated completely
ordered topology on X is generated by the sets {z ∈ X | x -R z} and
{z ∈ X | z -R x} for all x ∈ X.

Definition 5.3. For each x, y, z ∈ X, if z satisfies

x -R z -R y,

then we say that z belongs to the fuzzy interval [x, y]. If

x ≺R z ≺R y,

then we say that z belongs to the fuzzy interval (x, y).

A natural topology on a reference setX is a completely ordered topology
for which the sets {z ∈ X | z -R y} and {z ∈ X | x -R z} are closed for
all x, y ∈ X. Recall that a set Y ⊆ X is closed if each convergent sequence
{x(k)} of points in Y converges in Y .
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Definition 5.4. For each ã, b̃, c̃ ∈ FR, if c̃ satisfies

ã 4 c̃ 4 b̃,

then we say that c̃ belongs to the fuzzy number interval [ã, b̃]. If

ã ≺ c̃ ≺ b̃,

then we say that c̃ belongs to the fuzzy number interval (ã, b̃).

A fuzzy function f̃ : X → FR defined on a reference set X is said to be
order-preserving if x -R y is equivalent to f̃(x) 4 f̃(y). The image of the
function f̃ is denoted by f̃(X).

For x ∈ X, let qx = {y ∈ X | y ∼R x} be the collection of all elements
fuzzily indifferent to x in X. The quotient set X/∼ is the set of all fuzzy
indifference classes in a reference set X. Formally, X/∼ = {qx | x ∈ X} and
is often denoted by Q. For each q ∈ Q, q is a fuzzy indifference class in X.

Following the same lines as in the proofs by Debreu (1954, [26]), we
get the existence of a fuzzy utility function for a given reference set X with
a fuzzy preference relation %R.

Lemma 5.5. Let X be a reference set with a fuzzy preference relation %R. Let
the quotient set Q of X be countable. There exists a fuzzy order-preserving
function which is continuous in any natural topology on X.

Lemma 5.6. Let X be a reference set with a fuzzy preference relation %R.
Let R be a countable subset of X satisfying that for every pair x, y ∈ X,
x -R y, there is an element r ∈ R such that x -R r -R y. Then there exists
a continuous fuzzy order-preserving function in any natural topology on X.

A completely ordered topological space (X,%R) is perfectly separable
if there exists a countable class of open sets such that every open set in
(X,%R) is the union of sets of the countable class.

Theorem 5.7. Let X be a reference set with a fuzzy preference relation %R.
Let (X,%R) be a perfectly separable space. If for every x′ ∈ X, the sets
{x ∈ X | x -R x′} and {x ∈ X | x′ -R x} are closed, then there exists a
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fuzzy order-preserving function which is continuous in any natural topology
on X.

Finally, for a given reference set X with fuzzy preference relation %R, a
fuzzy utility function is an order-preserving function ũ(x) that maps X into
the set of all fuzzy numbers.

Corollary 5.8. Let X be a reference set with a fuzzy preference relation %R.
If for every x′ ∈ X the sets {x ∈ X | x -R x′} and {x ∈ X | x′ -R x} are
closed, then the fuzzy utility function ũ(x) on X is continuous.

5.3 Existence of fuzzy competitive equilibria

In this section, we establish a pure exchange economy with fuzzy pref-
erences (PXE-FP) model and prove the existence of a fuzzy competitive
equilibrium.

5.3.1 Pure exchange economy with fuzzy preferences

Given several possible alternative consumption vectors, the agent’s choice
may be uncertain. In this Subsection, we define pure exchange economy
with fuzzy preferences (PXE-FP) and fuzzy competitive equilibria. In the
remaining of this chapter, an agent i’s fuzzy preference relation on a con-
sumption set Xi is denoted by %i

R.

Definition 5.9. A Pure exchange economy with fuzzy preferences (PXE-FP)
consists of n agents, indexed by i ∈ N = {1, · · · , n}, who trade on l goods,
indexed by h ∈ H = {1, · · · , l}. Each agent i has a fuzzy preference %i

R, an
initial endowment vector wi = (wi1, · · · , wil) ∈ Rl+, and a consumption set
Xi ⊆ Rl+. Each element xi = (xi1, · · · , xil) is called a consumption vector
of i. Formally, we denote a PXE-FP as Ẽ = (H,N, (Xi,%i

R,wi)i∈N ).

Remark 5.1. (i) By Theorem 5.7 and Corollary 5.8, the fuzzy preference
%i

R as in Definition 5.9 can be measured by a fuzzy utility function ũi.
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(ii) The classical pure exchange economy is a special case of the PXE-FP
when the agent’s satisfaction degrees for each pair of consumption
vectors is only 0 or 1.

An agent wants to maximize his fuzzy utility among all consumption
vectors that belong to his budget set. The budget set of agent i is the set of
admissible consumption vectors that are affordable for the agent at price
vector p = (p1, · · · , pl) with the value generated by his initial endowment
vector wi, i.e.,

Bi(p) = {xi | xi ∈ Xi, 〈p,xi〉 ≤ 〈p,wi〉}.

This leads to the following optimization problem. For all i ∈ N and p ∈ P ,

max
xi∈Bi(p)

ũi(xi), (5.1)

In turn, the agent’s income can be regarded as the receipts from sales of the
initial endowments. In the literature, the market for each good is usually
considered to be in equilibrium if the supply of a good equals its demand.
However, the price of some good may be zero, which means that supply
will exceed demand. The aggregate excess demand is z = (z1, · · · , zl) ∈ Rl,
where zh =

∑
i∈N

(xih−wih) and xih−wih is agent i’s excess demand of good

h ∈ H.

Definition 5.10. For a PXE-FP Ẽ , a pair (p̄, x̄) is said to be a fuzzy competi-
tive equilibrium of Ẽ if it satisfies the following conditions:

(1) x̄i ∈ arg max
xi∈Bi(p̄)

ũi(xi).

(2) p̄ ∈ P = {p | p ∈ Rl,p = 0,
∑
h∈H

ph = 1}.

(3) z̄ 5 0, 〈p̄, z̄〉 = 0, where z̄h =
∑
i∈N

(x̄ih − wih)

Notice that in Condition (1), ũi(xi) depends on the value of p̄ and rep-
resents the fuzzy utility function of agent i. Condition (2) states that prices
should be non-negative and not all zero. Without any loss of generality, we
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can normalize the vector p̄ by restricting the sum of its coordinates to be
1. The first part of Condition (3), i.e., z̄ 5 0, indicates that agents in the
economy cannot consume more than their initial endowments. The second
part of Condition (3), i.e., 〈p̄, z̄〉 = 0, implies that the net value of trade is
zero. All money that is paid for demanded goods by consumers, is received
by consumers who have the initial endowments.

A fuzzy competitive equilibrium is a state of the market that emerges
by “the law of supply and demand”. It consists of a competitive equilibrium
price p̄ and a competitive equilibrium allocation x̄ such that for each agent
i, the fuzzy utility of x̄i is maximal in his budget set.

Based on the total order relation of fuzzy numbers and the expected
function of a fuzzy mapping, we show the existence of a fuzzy competitive
equilibrium by two methods. The first method mainly generalizes the ex-
istence of a fuzzy Nash equilibrium using the fixed point theorem in Nash
(1950, [60]). However, uniqueness of the fuzzy competitive equilibrium
cannot be shown in this way. Therefore, we propose a second method
which applies an associated quasi-variational inequality. Under some spe-
cific conditions, the solution of the corresponding quasi-variational inequal-
ity is unique and, therefore, there exists only one fuzzy competitive equilib-
rium of the PXE-FP. Furthermore, this unique fuzzy competitive equilibrium
can be characterized by the solution of the corresponding quasi-variational
inequality.

Before substantiating the existence of a fuzzy competitive equilibrium
for a PXE-FP, we obtain the existence of fuzzy Nash equilibria for fuzzy
non-cooperative games.

5.3.2 Fuzzy non-cooperative games

A non-cooperative game consists of a set of n players N = {1, · · · , n}, each
of whom has a strategy set Si and a payoff function. The set of strategy

profiles of the game is denoted by S =
n∏
i=1

Si. The set of all strategy profiles

concerning players except i is denoted by S−i = S1 × · · · × Si−1 × Si+1 ×
· · · × Sn. Given a strategy profile s−i ∈ S−i and a strategy si ∈ Si, we
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denote s = (si, s−i) ∈ S the strategy profile selected by all players. The
strategy profile s ∈ S chosen by the players determines the payoff for each
player. Generally, ui : S → R is used to denote the payoff function of the
i-th player and G = (N, (Si, ui)i∈N ) denotes a non-cooperative game.

Imprecise information in the decision-making process results in the im-
precision of payoffs. Thus, we define a fuzzy non-cooperative game by
formulating the imprecise payoff by a fuzzy number.

Definition 5.11. A fuzzy non-cooperative game consists of a set of players
i ∈ N = {1, · · · , n}, each of whom has a strategy set Si and a fuzzy payoff

function ũi : S → FR, where S =
n∏
i=1

Si is the set of strategy profiles. For-

mally, we denote a fuzzy non-cooperative game as GF = (N, (Si, ũi)i∈N ).

Definition 5.12. Let GF = (N,Si, ũi) be a fuzzy non-cooperative game.
The strategy profile (s?i , s

?
−i) is said to be a fuzzy Nash equilibrium if

ũi(s
?
i , s

?
−i) < ũi(si, s

?
−i) for each si ∈ Si, i ∈ N,

where s?−i = {s?1, · · · , s?i−1, s
?
i+1, · · · , s?n}.

To improve the players’ choices, we formally define a randomized strat-
egy, called a mixed strategy. In a mixed strategy, players can choose a
probability distribution over their sets of possible strategies and evaluate
the random payoff using the expected fuzzy payoff of the mixed strategy.
Using fuzzy addition and scalar multiplication (see Subsection 1.2.1), the
expected fuzzy payoff of the mixed strategy is still a fuzzy payoff. Thus, a
fuzzy Nash equilibrium in mixed strategies can be similarly defined as in
Definition 5.12.

5.3.3 Fixed point method in an abstract economy

The following result on existence of fuzzy Nash equilibria follows from the
total order relation of fuzzy numbers as in Definition 4.2 (see page 80),
the continuity of the fuzzy payoff functions, and the fixed point theorem in
Nash (1950, [60]). The proof is, therefore, omitted.
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Theorem 5.13. Let GF = (N, (Si, ũi)i∈N ) be a fuzzy non-cooperative game.
If Si is a nonempty, compact, and convex set for all i ∈ N , then there exists a
fuzzy Nash equilibrium in mixed strategies.

Next, we introduce a generalization of fuzzy non-cooperative games
named fuzzy abstract economy and define a fuzzy equilibrium of a fuzzy
abstract economy.

Definition 5.14. A fuzzy abstract economy consists of n agents N = {1, · · · ,
n}, each of whom has an action set Hi ⊆ Rl and a fuzzy payoff function
f̃i defined over H = H1 × H2 × · · · × Hn. For each point a−i ∈ H−i =

H1×H2×· · ·×Hi−1×Hi+1×· · ·×Hn, the choice of agent i is restricted to
a set-valued function Ai(a−i) ⊆ Hi. Formally, we denote a fuzzy abstract
economy as (N, (Hi, f̃i, Ai(a−i))i∈N ).

To understand the above definition, we consider the special case where
the functions Ai(a−i) are constant, i.e., Ai(a−i) is a fixed subset of Hi,
independent of a−i. Let Ai(a−i) = Hi. The following interpretation may
be given: There are n agents. Agent i can choose each element ai ∈ Hi.
After all agents have made their choices, agent i receives f̃i(a). In this
case, the fuzzy abstract economy degenerates into a fuzzy non-cooperative
game.

The choice of an action by one agent in a fuzzy abstract economy can
affect both the fuzzy payoff and the domain of actions of other agents.
In economic models, an agent i’s actions can be regarded as alternative
consumption vectors, which are restricted by the budget constraint. The
budget constraint of i is that the cost of the goods chosen at current prices
does not exceed his income determined by choices made by other agents.
Hence, for an agent in economic models, the function Ai(a−i) must not be
regarded as a constant.

Definition 5.15. Let (N, (Hi, f̃i, Ai(a−i))i∈N ) be a fuzzy abstract economy.
ā is said to be a fuzzy equilibrium point if

f̃i(ā−i, āi) ≈ max
ai∈Ai(ā−i)

f̃i(ā−i,ai) for all i ∈ N, āi ∈ Ai(ā−i).
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We recall some definitions in Debreu (1952, [25]). The graph ofAi(a−i)
is the set {a | ai ∈ Ai(a−i)}. The set-valued function Ai(a−i) is said to be
continuous at a0

−i if for each sequence {a(k)
−i } converging to a0

−i, there exists

a sequence {a(k)
i } converging to a0

i such that a(k)
i ∈ Ai(a

(k)
−i ) for all k.

The following result generalizes Theorem 5.13, giving conditions for
the existence of a fuzzy equilibrium of a fuzzy abstract economy. The proof
is based on the total order relation of fuzzy numbers and the expected
function of a fuzzy mapping. The proof is, therefore, omitted.

Lemma 5.16. A fuzzy abstract economy (N, (Hi, f̃i, Ai(a−i))i∈N ) has a fuzzy
equilibrium point if

(i) for each i ∈ N ,Hi is compact and convex, f̃i(a−i,ai) is fuzzy continuous
on H and fuzzy quasi-concave in ai;

(ii) for every a−i, Ai(a−i) is a continuous function whose graph is a closed
set; and

(iii) for every a−i, the set Ai(a−i) is convex and nonempty.

We make the following assumptions about the consumption units in a
PXE-FP. Afterwards, we show existence of a fuzzy competitive equilibrium
for PXE-FP.

Let Ẽ = (H,N, (Xi,%i
R,wi)i∈N ) be a PXE-FP. For each good h ∈ H, the

consumption of every agent i ∈ N is necessarily non-negative , i.e., xih ≥ 0.
For each i ∈ N and h ∈ H:

Assumption I The set of consumption vectors Xi available to i is a
closed convex subset of Rl+.

Assumption II The sets {xi ∈ Xi | xi -i
R x′i} and {xi ∈ Xi | x′i -i

R xi}
are closed for all x′i ∈ Xi.

Assumption II ensures the continuity of ũi(xi) as shown in Theorem
5.7.

Assumption III For each xi ∈ Xi, there is x′i ∈ Xi such that ũi(x′i) �
ũi(xi).

Assumption III assumes that there is no saturation point, i.e., no con-
sumption vector that an individual would fuzzily prefer to all others.
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Assumption IV If ũi(xi) � ũi(x
′
i) and 0 < λ < 1, then ũi[λxi + (1 −

λ)x′i] � ũi(x′i).
Assumption IV corresponds to the usual assumption on convexity of the

fuzzy indifference surfaces, in the sense that the set

{xi ∈ Xi | uiE(xi) ≥ a}

is a convex set for each fixed real number a, where uiE(xi) is the expected
utility function of the fuzzy utility function ũi(xi).

Recall that agent i has an initial endowment vector wi of different goods
available.

Assumption V For some xi ∈ Xi, xi < wi.

Assumption V states that any agent could exhaust his initial endow-
ments in some feasible way and still have a positive amount of each good
available for trading in the PXE-FP.

Following the same lines as in the proofs by Arrow and Debreu (1954,
[8]), we get the existence of a fuzzy competitive equilibrium of a PXE-FP
Ẽ .

Theorem 5.17. For a PXE-FP Ẽ , if Ẽ satisfies Assumptions I-V, then there is a
fuzzy competitive equilibrium of Ẽ .

Proof. We prove the theorem in five steps.

(1) We establish the following fuzzy abstract economy Ẽ.

For x ∈ X and p ∈ P , let y = (x,p). For each agent i, y−i = (x−i,p)

denotes a point in X1× · · · ×Xi−1×Xi+1× · · · ×Xn×P and y−(n+1) = x.
Define

Ai(y−i) = {xi ∈ Xi | 〈p,xi〉 ≤ 〈p,wi〉}.

Then, we consider the fuzzy abstract economy

Ẽ = (N ∪ {n+ 1}, (Xi, ũi, Ai(y−i))i∈N∪{n+1}),

where n+1 represents a fictitious agent that chooses the market price of the
goods, Xn+1 = An+1(y−(n+1)) = P , ũn+1(y) = 〈p, z〉, z = (z1, · · · , zl), and
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zh =
∑
i∈N

(xih − wih). Each of the n consumption agents chooses a vector

xi from Xi, subject to xi ∈ Ai(y−i), and receives ũi(xi); the (n + 1)-th
fictitious agent, i.e., the market participant, chooses p from P and obtains
〈p, z〉.

(2) We show that if there exists a fuzzy equilibrium point of the fuzzy
abstract economy Ẽ, then this fuzzy equilibrium point is also a fuzzy com-
petitive equilibrium of the PXE-FP Ẽ as described in Definition 5.10.

Let (p̄, x̄) be a fuzzy equilibrium point for the fuzzy abstract economy Ẽ.
Obviously, Conditions (1) and (2) follow immediately from the definition
of a fuzzy equilibrium point of Ẽ.

It remains to verify Condition (3). Obviously, each agent spends his
entire income because of the absence of saturation. To be more precise,
Assumption III ensures that there exists at least one consumption vector
x′i ∈ Xi such that

ũi(x
′
i) � ũi(x̄i).

Let λ ∈ [0, 1]. By Assumption IV,

ũi[λx
′
i + (1− λ)x̄i] � ũi(x̄i).

In other words, in every neighbourhood of x̄i, there is at least one point of
Xi fuzzily preferred to x̄i. Due to Condition (1), 〈p̄, x̄i〉 ≤ 〈p̄,wi〉. Assume
that the strict inequality holds. We can choose a point of Xi for which
the inequality still holds and which is fuzzily preferred to x̄i, establishing
a contradiction to Condition (1). Hence, 〈p̄, x̄i〉 = 〈p̄,wi〉. In order to
attain his equilibrium consumption plan x̄i, agent i must actually receive
the total income given by the initial endowments. Thus, he cannot withhold
any initial holdings of any good h from the market if ph > 0. Since z̄ =

(z̄1, · · · , z̄l), where z̄h =
∑
i∈N

(xih − wih), it follows that

〈p̄, z̄〉 = 0. (5.2)

Let eh denote the vector with all coordinates equal to 0, except the h-th
which is 1. Obviously, eh ∈ P . Also, by Definition 5.15, 0 = 〈p̄, z̄〉 ≥
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〈eh, z̄〉 = z̄h. Since this holds for any h ∈ H,

z̄ 5 0. (5.3)

By (5.2) and (5.3), we get that Condition (3) holds. It has been shown
that any fuzzy equilibrium point of Ẽ satisfies Conditions (1)-(3), so it is a
fuzzy competitive equilibrium of Ẽ . The converse is obviously also true.

(3) We establish a new abstract economy Ẽ′, which is a modification of
Ẽ. Then, we show the existence of a fuzzy equilibrium point of this abstract
economy Ẽ′.

Unfortunately, Lemma 5.16 is not directly applicable to Ẽ, because the
action space is not compact. Let X ′i be the set of consumption vectors
available to agent i, taking the resource limitations into account. Formally,

X ′i = {xi ∈ Xi ⊆ Rl+ | for each j 6= i there exists xj ∈ Xj such that z 5 0}.

We show that X ′i is bounded. Clearly, if there exists a fuzzy equilibrium
point x̄i of Ẽ, then the fuzzy equilibrium point x̄i belongs to X ′i.

Let xi ∈ X ′i. By the definition of X ′i, there exists xj ∈ Xj , j ∈ N \ {i},
such that ∑

j∈N
xj −

∑
j∈N

wj ≤ 0.

Since xj = 0 for all j ∈ N by Definition 5.9, we have

0 5 xi 5
∑
j∈N

wj −
∑

j∈N\{i}

xj 5
∑
j∈N

wj .

Thus, X ′i is bounded for all i.

For each i, we can select a positive real number ci so that the hypercube
Ci = {x ∈ Rl | |xh| ≤ ci for all h} is contained in the interior of X ′i. Let
X ′′i = Xi∩Ci. We propose a new abstract economy Ẽ′, which is a modifica-
tion of Ẽ by replacing Xi by X ′′i . Let A′i(y−i) be the corresponding modifi-
cation of Ai(y−i), and thus Ẽ′ = (N ∪{n+ 1}, (X ′′i , ũi, A′i(y−i))i∈N∪{n+1}),
where X ′′n+1 = A′n+1(y−(n+1)) = P . We now show that all the conditions
of Lemma 5.16 are satisfied for Ẽ′.
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(i) For each i ∈ N ∪ {n+ 1}, X ′′i is compact and convex and ũi is fuzzy
continuous and fuzzy quasi-concave:

For i ∈ N , X ′′i is compact and convex because it is the nonempty inter-
section of Ci and Xi which are compact and convex (c.f. Assumption I).
Moreover, ũi is fuzzy continuous and fuzzy quasi-concave in xi because Ẽ′

is a fuzzy abstract economy.

For i = n+ 1, P is evidently compact and convex and ũn+1(y) = 〈p̄, z̄〉
is clearly fuzzy continuous and fuzzy quasi-concave.

(ii) For each i ∈ N ∪ {n + 1} and each y−i, A′i(y−i) is a continuous
function whose graph is a closed set:

For i ∈ N , since the budget constraint is a weak inequality between
two continuous functions of p, it is easily seen that the graph of A′i(y−i) is
closed.

For i = n+ 1, A′n+1(y−(n+1)) = P and it is easily seen that the graph of
A′n+1(y−(n+1)) = P is closed.

Furthermore, from the Remark in Section 3.3.5 in Arrow and Debreu
(1954, [8]), if Assumption V holds, then for any i ∈ N ∪ {n + 1}, A′i(y−i)
is continuous at the point y−i = (x1, · · · ,xi−1,xi+1, · · · ,xn,p).

(iii) For each i ∈ N ∪ {n + 1} and each y−i, the set A′i(y−i) is convex
and nonempty:

For agent i ∈ N , the set A′i(y−i) is defined by a linear inequality in
xi and hence is convex. For each i, let x′i ∈ Xi satisfy Assumption V, i.e.,
x′i 5 wi. Since

∑
i∈N

(x′i −wi) 5 0,x′i ∈ X ′i for each i, it holds that x′i ∈ Ci.

Therefore, x′i ∈ Ai(y−i) for all y−i. Since A′i(y−i) = Ai(y−i) ∩ Ci, A′i(y−i)
contains x′i and therefore is nonempty.

For i = n+ 1, P is convex and nonempty.

Following from Lemma 5.16, we obtain the existence of a fuzzy equilib-
rium point ȳ = (x̄1, · · · , x̄n, p̄) for the fuzzy abstract economy Ẽ′.

(4) We show that the fuzzy equilibrium point ȳ = (x̄1, · · · , x̄n, p̄) of the
fuzzy abstract economy Ẽ′ is also a fuzzy equilibrium point of the fuzzy
abstract economy Ẽ.



118 Chapter 5. Existence of an equilibrium for fuzzy exchange economies

Let ȳ = (x̄1, · · · , x̄n, p̄) be a fuzzy equilibrium point of the fuzzy ab-
stract economy Ẽ′. From the definition of A′i(y−i), it follows that 〈p̄, x̄i〉 ≤
〈p̄,wi〉. If we sum over i, then 〈p̄,

∑
i∈N x̄i〉 ≤ 〈p̄,

∑
i∈N wi〉 or 〈p̄, z̄〉 ≤ 0.

For a fixed z̄, p̄ is the optimal value of the maximization problem 〈p, z̄〉
for p ∈ P . Following the same lines as in the proof of formula (5.3) in
(2), it follows that formula (5.3) holds. From (5.3) and the definition of
X ′i and Ci, x̄i ∈ X ′i and x̄i is an interior point of Ci for all i. We proceed
by contradiction. Assume that for some x′i ∈ Ai(ȳ−i), ũi(x′i) � ũi(x̄i). By
Assumption IV,

ũi[λx
′
i + (1− λ)x̄i] � ũi(x̄i) if 0 < λ < 1.

However, for λ ∈ [0, 1] small enough, λx′i + (1 − λ)x̄i ∈ Ci. By convexity
of Ai(ȳ−i), it holds that λx′i + (1 − λ)x̄i ∈ Ai(ȳ−i). Consequently, λx′i +

(1−λ)x̄i ∈ A′i(ȳ−i), establishing a contradiction to the definition of x̄i as a
fuzzy equilibrium point of Ẽ′. Thus,

x̄i ≈ arg max
xi∈Ai(ȳ−i)

ũi(xi).

That p̄ maximizes 〈p, z̄〉 for p ∈ P is directly obtained by the definition of
a fuzzy equilibrium point for Ẽ′, since the domain of p is the same in both
fuzzy abstract economies Ẽ and Ẽ′. Hence, the point ȳ = (x̄1, · · · , x̄n, p̄)

is also a fuzzy equilibrium point for Ẽ. The converse is obvious.

(5) From (2) and (4), it follows that the fuzzy equilibrium point of Ẽ′

is a fuzzy competitive equilibrium of Ẽ . Also, by (3), it follows that there is
a fuzzy competitive equilibrium of a PXE-FP Ẽ .

5.3.4 Variational approach

From the total order relation of fuzzy numbers given in Definition 4.2 and
the expected utility function uiE(xi) (see page 16) of the fuzzy utility func-
tion ũi(xi), we get that (5.1) is equivalent to

uiE(x̄i) = max
xi∈Bi(p)

uiE(xi). (5.4)
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We assume for i ∈ N :

(i) uiE is continuous and strictly concave on Xi.

(ii) For each p ∈ P and xi ∈ Bi(p), ∇uiE(xi) 6= 0.

(iii) For each p ∈ P and xi ∈ ∂Bi(p), if xih = 0, h ∈ H, then ∂uiE(xi)
∂xih

> 0.

(iv) lim
‖xi‖→+∞
xi∈Bi(p)

uiE(xi) = −∞.

(v) Any agent is endowed with a positive quantity of at least one good,
i.e.,

∀i ∈ N, ∃h : wih > 0.

Under Assumptions (i-v), for all i ∈ N , the maximization problem (5.4),
i.e., (5.1), has a unique solution x̄i(p) for each p ∈ P , denoted by x̄i.

Therefore, the fuzzy competitive equilibrium of Definition 5.10 is equiv-
alent to the following statement:

Proposition 5.18. For a PXE-FP Ẽ , let p̄ ∈ P and x̄ ∈ B(p̄) =
∏
i∈N

Bi(p̄).

The pair (p̄, x̄) ∈ P × B(p̄) is a fuzzy competitive equilibrium of Ẽ if and
only if

ũi(x̄i) ≈ max
xi∈Bi(p̄)

ũi(xi) for all i ∈ N, (5.5)

and

zh =
∑
i∈N

(x̄ih − wih) ≤ 0 for each h ∈ H.

Based on the expected utility function (see page 16), (5.5) is equivalent
to

uiE(x̄i) = max
xi∈Bi(p̄)

uiE(xi).

Notice that x̄i depends on p̄ through the budget set Bi(p̄). We write x̄i

instead of x̄i(p̄) for easiness of notation.
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By Theorem 1 in Anello et al. (2010, [6]), it is obvious that the pair
(p̄, x̄) ∈ P × B(p̄) is a fuzzy competitive equilibrium of a PXE-FP if and
only if it is a solution to the following quasi-variational inequality:∑

i∈N
〈−∇uiE(x̄i), (xi − x̄i)〉−

〈
∑
i∈N

(x̄i −wi), (p− p̄)〉 ≥ 0, (5.6)

for each (p,x) ∈ P ×B(p̄).

Donato et al. (2008, [28]) proved that (p̄, x̄) ∈ P × B(p̄) is a solution
of (5.6) if and only if for all i ∈ N , x̄i(p) is a solution to

〈−∇uiE(x̄i), (xi − x̄i)〉 ≥ 0 for all xi ∈ Bi(p), (5.7)

and p̄ is the solution to

〈−
∑
i∈N

(x̄i −wi), (p− p̄)〉 ≥ 0 for all p ∈ P. (5.8)

Notice that when the operator −∇uiE(x̄i) is strongly monotone, variational
inequality (5.7) has a unique solution. If x̄i is a continuous function (on
p), then the variational inequality problem (5.8) admits a solution p̄ ∈ P ,
since P is closed, convex, and bounded.

Therefore, we get the following theorem about the existence of fuzzy
equilibrium solutions immediately by an associated quasi-variational in-
equality.

Theorem 5.19. For a PXE-FP Ẽ , the pair (p̄, x̄) ∈ P×B(p̄) is a fuzzy compet-
itive equilibrium of Ẽ if and only if (p̄, x̄) is a solution to the quasi-variational
inequality (5.6).

The following example will illustrate how to obtain fuzzy competitive
equilibria by a related quasi-variational inequality. Due to the fuzzy utilities
of different consumption vectors, the PXE-FP in the example has a unique
fuzzy competitive equilibrium.
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Example 5.1. We consider a market consisting of two different goods, de-
noted by good h = 1, 2, and two agents, i.e., agent i = 1, 2. Each agent is
endowed with an initial vector wi = (wi1, wi2). The consumption vector of
each agent i = 1, 2 is xi = (xi1, xi2). It is assumed that each commodity
is sold and purchased at only one price and the price vector is p = (p1, p2)

satisfying p1 + p2 = 1. Following from the existence of an order-preserving
fuzzy utility function given in Theorem 5.7, we assume that each agent has
a fuzzy utility function defined as follows:

ũi(xi1, xi2) = −̃b0, 1

2
,
1

2
, 1c(xi1)2−̃b0, 1

3
,
2

3
, 1c(xi2)2

−̃b2bi1, bi1, bi1, 0cxi1−̃b2bi2,
3

2
bi2,

1

2
bi2, 0cxi2

+̃b2ci, ci, ci, 0c,

where bi1, bi2, ci ∈ R.

It is easily shown that

uiE(xi1, xi2) = −1

2
(xi1)2 − 1

2
(xi2)2 − bi1xi1 − bi2xi2 + ci.

For agent i = 1, 2, −∇uiE(xi) = (xi1 + bi1, xi2 + bi2), we fix p ∈ P and find
x̄i ∈ Bi(p) = {xi = (xi1, xi2) | p1(xi1 − wi1) + p2(xi2 − wi2) ≤ 0} such that
for all xi ∈ Bi(p),

(x̄i1 + bi1)(xi1 − x̄i1) + (x̄i2 + bi2)(xi2 − x̄i2) ≥ 0. (5.9)

Notice that xih is a function of p. Since the operator −∇uiE(xi) is strongly
monotone, there exists a unique solution x̄i to the variational inequality.
Assumption (ii) is satisfied if we assume−bih > wih. Obviously, the solution
to (5.9) lies in the following set:

{xi ∈ R2
+ | p1(xi1 − wi1) + p2(xi2 − wi2) = 0}. (5.10)
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Moreover, we need to find the solution p̄ = (p̄1, p̄2) ∈ P such that for
all p = (p1, p2) ∈ P ,

− z1(p1 − p̄1)− z2(p2 − p̄2) ≥ 0, (5.11)

where zh = (x̄1h − w1h) + (x̄2h − w2h) is the aggregate excess demand
function of each good h = 1, 2. Since p1 + p2 = 1, from (5.11), it holds that

(z1 − z2)(p2 − p̄2) ≥ 0 for p2 ∈ [0, 1]. (5.12)

Notice that when p2 = 0, (z1 − z2)(−p̄2) ≥ 0 implies z1 − z2 ≤ 0. Similarly,
when p2 = 1, (z1 − z2)(1 − p̄2) ≥ 0 implies z1 − z2 ≥ 0, since p2 ∈ [0, 1].
Besides, since inequality (5.12) has to hold for each p2 ∈ [0, 1], and since
p̄ ∈ P , solving (5.12) is equivalent to solving

z1 − z2 = 0. (5.13)

Recall that p̄ needs to be in P . Then,

p̄1 = 1− p̄2, p̄2 ∈ [0, 1]. (5.14)

Next, we discuss the solution to (5.9) and (5.12). First, we show that
the prices of these two goods satisfy p1 > 0 and p2 > 0.

(i) If p1 = 0 and p2 = 1, the budget set of agent i = 1, 2 is Bi(0, 1) =

{xi ∈ R2
+ | xi2 ≤ wi2}. Hence, the solution to (5.9) is (x̄i1(0, 1), x̄i2(0, 1)) =

(−bi1, wi2). Moreover, p = (0, 1) is the solution to (5.12) if and only if
z1−z2 < 0. But from (x̄i1(0, 1), x̄i2(0, 1)) = (−bi1, wi2), we get that z1−z2 =

−b11 − w11 − b21 − w21 > 0, establishing a contradiction to z1 − z2 < 0.
Therefore, p = (0, 1) is not the solution to (5.12).

(ii) If p1 = 1 and p2 = 0, the budget set of agent i = 1, 2 is Bi(1, 0) =

{xi ∈ R2
+ | xi1 ≤ wi1}. Thus, the solution to (5.9) is (x̄i1(1, 0), x̄i2(1, 0)) =

(wi1,−bi2). Furthermore, p = (1, 0) is the solution to (5.12) if and only
if z1 − z2 > 0. However, from (x̄i1(1, 0), x̄i2(1, 0)) = (wi1,−bi2), we show
that z1 − z2 = b12 + w12 + b22 + w22 < 0, establishing a contradiction to
z1 − z2 > 0. Thus, p = (1, 0) is not the solution to (5.12).
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Then, we can assume p1 > 0, p2 > 0. For agent i = 1, 2, by (5.10), it
follows that

xi2 = wi2 −
p1

p2
(xi1 − wi1), (5.15)

and xi ∈ R2
+ implies

0 ≤ xi1 ≤ wi1 + wi2
p2

p1
(5.16)

Furthermore, by substituting (5.15) for xi2 and x̄i2 in (5.9), it can be seen
that[

p2
1 + p2

2

p2
2

x̄i1 − (wi2 + bi2)
p1

p2
− wi1(

p1

p2
)2 + bi1

]
(xi1 − x̄i1) ≥ 0. (5.17)

Since (5.16) has to hold for any xi ∈ Bi(p), by taking x1
i1, x

2
i1 ∈ Bi(p) with

x1
i1 ≤ x̄i1 ≤ x2

i1, (5.16) is equivalent to solving the equality

p2
1 + p2

2

p2
2

x̄i1 − (wi2 + bi2)
p1

p2
− wi1(

p1

p2
)2 + bi1 = 0, (5.18)

while (5.16) and (5.17) applied to x̄i becomes

0 ≤ x̄i1 ≤ wi1 + wi2
p2

p1
, x̄i2 = wi2 −

p1

p2
(xi1 − wi1). (5.19)

The solution to (5.18) and (5.19) is
x̄i1 =

p2
2

p2
1+p2

2

[
wi1(p1

p2
)2 + (wi2 + bi2)p1

p2
− bi1

]
,

x̄i2 =
p2

1

p2
1+p2

2

[
wi2(p2

p1
)2 + (wi1 + bi1)p2

p1
− bi2

]
,

(5.20)

under the condition that (p1, p2) ∈ P , and since x̄i ≥ 0, we have{
wi1(p1

p2
)2 + (wi2 + bi2)p1

p2
− bi1 ≥ 0,

wi2(p2

p1
)2 + (wi1 + bi1)p2

p1
− bi2 ≥ 0.

(5.21)

Case 1. If system (5.18)-(5.19) has a solution for each agent i = 1, 2,
i.e., condition (5.21) holds for each agent i = 1, 2, then the solution to the
variational inequality (5.9) is (5.20). Combining formulas (5.13), (5.14)
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and (5.20), one can see that{
Bp2

1+(B−A)p1p2−Ap2
2

p2
1+p2

2
= 0,

p2 = 1− p1.
(5.22)

Consequently, the solution to (5.22), i.e., (5.12) is
p̄1 = A

A+B ,

p̄2 = B
A+B ,

where A = w11 + b11 + w21 + b21, B = w12 + b12 + w22 + b22.

Case 2. If system (5.18)-(5.19) does not have any solution, then we
find the solution to (5.9) on the boundary of the set {xi ∈ R2

+ | p1(xi1 −
wi1) + p2(xi2 − wi2) = 0}, which is either x̄i1 = 0 or x̄i2 = 0. The pair{

x̄i1 = 0,

x̄i2 = wi2 + wi1
p1

p2
,

(5.23)

is the solution to variational inequality (5.9) when (5.18) turns out to have
x̄i1 < 0, which happens if and only if

wi1(
p1

p2
)2 + (wi2 + bi2)

p1

p2
− bi1 < 0, (5.24)

for (p1, p2) ∈ P .

If (5.24) does not hold, it follows that{
x̄i1 = wi1 + wi2

p2

p1
,

x̄i2 = 0,
(5.25)

is the solution to variational inequality (5.9) when (5.20) turns out to have
x̄i2 < 0, which happens if and only if

wi2(
p2

p1
)2 + (wi1 + bi1)

p2

p1
− bi2 < 0, (5.26)

for (p1, p2) ∈ P .
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Notice that solution (5.23) or (5.25) in this case is continuous in P .

If condition (5.24) holds, for each agent i = 1, 2, the solution to (5.18)
is (5.23). In this situation, solving (5.12) is equivalent to solving the system

1 +
p1

p2
= 0, (5.27)

Since p̄ ∈ P , we have

p̄1 = 1− p̄2 ≥ 0, p̄2 > 0. (5.28)

It is found that (5.27)-(5.28) have no solution, which shows the solution
to (5.12) in the boundary of P , i.e., p̄ = (0, 1).

If (5.26) holds for every agent i = 1, 2, the solution to (5.18) is (5.25).
In this situation, the solution of (5.12) is the same as the solution to the
following system

1 +
p2

p1
= 0, (5.29)

Recall that p̄ needs to be in P . Then,

p̄1 = 1− p̄2 > 0, p̄2 ≥ 0. (5.30)

It follows that (5.29)-(5.30) have no solution, which implies that the solu-
tion to (5.12) lies in the boundary of P , i.e., p̄ = (1, 0).

Therefore, (p̄1, p̄2) = ( A
A+B ,

B
A+B ) is the unique solution to (5.12). As

a consequence, the fuzzy competitive equilibrium of the PXE-FP is (p̄, x̄),
where

p̄ = (
A

A+B
,

B

A+B
),

x̄ =


w11A2+(w12+b12)AB−b11B2

A2+B2
w12B2+(w11+b11)AB−b12A2

A2+B2

w21A2+(w22+b22)AB−b21B2

A2+B2
w22B2+(w21+b21)AB−b22A2

A2+B2

 .

We explain the solution of the quasi-variational inequality from the defini-
tion of a fuzzy competitive equilibrium as follows:
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(i) The supply of good h = 1, 2 equals the demand following from

x̄11 + x̄21 =
(w11 + w21)A2 +AB2 − (b21 + b11)B2

A2 +B2

=
(w11 + w21)A2 + (w11 + w21)B2

A2 +B2

= w11 + w21.

Similarly, it holds that x̄12 + x̄22 = w12 + w22.

(ii) At the equilibrium price, both agents can afford their allocation for
their given initial endowments, i.e.,

p̄1(x̄11 − w11) + p̄2(x̄12 − w12) =

A

A+B

[
w11A

2 + (w12 + b12)AB − b11B
2

A2 +B2
− w11

]
+

B

A+B

[
w12B

2 + (w11 + b11)AB − b12A
2

A2 +B2
− w12

]
=

A

A+B

[
(w12 + b12)AB − (b11 + w11)B2

A2 +B2

]
+

B

A+B

[
(w11 + b11)AB − (b12 + w12)A2

A2 +B2

]
= 0.

Similarly, p̄1(x̄21 − w21) + p̄2(x̄22 − w22) = 0.

(iii) Agent i = 1, 2 fuzzily weakly prefers the consumption bundle (x̄i1, x̄i2)

to the initial endowment vector (wi1, wi2), i.e.,

E(ũ1(x̄11, x̄12))− E(ũ1(w11, w12)) =

w2
11(A2 +B2)2 − [w11A

2 + (w12 + b12)AB − b11B
2]2

2(A2 +B2)2

− w2
12(A2 +B2)2[w12B

2 + (w11 + b11)AB − b12A
2]2

2(A2 +B2)2

− b11[w11A
2 + (w12 + b12)AB − b11B

2]

A2 +B2

− b12[w12B
2 + (w11 + b11)AB − b12A

2]

A2 +B2
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+ b11w
2
11 + b12w

2
12

=
[(w11 + b11)B − (w12 + b12)A]2

2(A2 +B2)
≥ 0.

Hence, ũ1(x̄11, x̄12) < ũ1(w11, w12). If the equality holds, (w11+b11)B =

(w12 + b12)A. In this case, x̄1h = w1h, h = 1, 2, which means that the ini-
tial endowment vector for agent 1 is optimal. Similarly, we can get that
ũ2(x̄21, x̄22) < ũ2(w21, w22). The two goods are distributed efficiently be-
tween the two agents after the exchange of goods.

5.4 Conclusion

In this chapter, we build a fuzzy binary relation to evaluate the fuzzy pref-
erence relation of various alternative consumption vectors. Following the
same lines as in classical theory for the 0 − 1 binary relation, we conclude
that there exists a continuous fuzzy order-preserving function on the con-
sumption set under some assumptions. Furthermore, the existence result of
a fuzzy competitive equilibrium for the pure exchange economy with fuzzy
preferences (PXE-FP) is obtained in two different ways. When each agent’s
attitude is uncertain to different consumption vectors, we can obtain the
redistribution and price vector of goods for pure exchange economies with
fuzzy preferences as proposed in this chapter.

We show the existence of fuzzy competitive equilibria for the PXE-FP
under some assumptions. Future research on the PXE-FP is needed to de-
termine uniqueness and stability of the fuzzy competitive equilibrium. The
latter study would require the specification of a dynamic competitive mar-
ket with fuzzy preferences. Finally, the existence and stability of an equi-
librium could be shown by applying the generalized linear discrete-time
system (see [22], [23], [62], [1], [57]) with fuzzy dynamic PXE-FP. A con-
crete dynamic PXE-FP simulation model could also be provided to confirm
the results. Besides, further investigation could be on generalizing differ-
ent economic models to fuzzy preferences as the abstract fuzzy economies
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studied by Patriche (2014, [64]) and the restricted participation on finan-
cial markets proposed by Donato et al. (2020, [31]).



Summary

This thesis considers solutions of cooperative games based on different def-
initions of excess, also for cooperative fuzzy games. Moreover, we propose
the exchange economy model with fuzzy preferences based on a fuzzy bi-
nary relation. This fuzzy binary relation means that each agent’s satisfac-
tion degree for either one of each pair of consumption vectors is not a
constant value in [0, 1], but varies continuously in [0, 1].

In Chapter 2, we define weighted excesses of players in TU-games which
are obtained by summing up all the weighted excesses of all coalitions
to which they belong. Next, we give three characterizations of the least
square values for TU-games: by lexicographically minimizing the individ-
ual weighted excesses of players, by minimizing the variance of the players’
weighted excesses on the preimputation set, and by showing that they are
the center of the weighted super core defined by certain lower and upper
bounds for the core payoff vectors. Finally, these lower and upper bounds
for the core inspired us to introduce a new solution for cooperative TU-
games that has a strong similarity with the Shapley value.

In Chapter 3, we consider a more general definition of excess to mea-
sure the dissatisfaction for coalitions of players in cooperative games. This
is done by considering affine combinations (specially convex combinations)
of the classical excess and the proportional excess. In view of this so-called
α-excess, we define new solution concepts for cooperative games, such as
the αε-core, α least core, α-prenucleolus, and α-prekernel. We illustrate
that the αε-core, α-least core and α-prekernel are different for different
values of α with the specific examples. We characterize the α-least core
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in terms of α-strong stability and the α-prekernel by strong stability and
the α-balanced surplus property. Further, we show that the payoff vector
originated by the α-prenucleolus belongs to the α-prekernel. This shows
that the α-prekernel is nonempty.

In Chaper 4, we define a total order relation of fuzzy numbers based
on expected values of fuzzy numbers. In view of the total order relation of
fuzzy numbers, we show that the introduced concepts of the indifference
fuzzy core, nucleolus and bargaining sets of cooperative games with fuzzy
payoffs are well-defined. Moreover, we obtain a necessary and sufficient
condition for non-emptiness of the indifference fuzzy core. It is shown that
there is at least one fuzzy payoff vector in the indifference fuzzy nucleolus.
We show that the indifference fuzzy core and the two indifference fuzzy
bargaining sets of convex cooperative fuzzy games coincide. Moreover, we
characterize the class of superadditive cooperative fuzzy games for which
the two indifference fuzzy bargaining sets and the indifference fuzzy core
coincide.

Finally, in Chapter 5, we focus on a new model of pure exchange econ-
omy with fuzzy preferences (PXE-FP) and analyze the existence of equilib-
ria. The proposed model integrates exchange, consumption and the agent’s
fuzzy preference on the consumption set. We set up a new fuzzy binary re-
lation on the consumption set to evaluate fuzzy preferences. For a given
fuzzy preference relation, we prove that there exists a continuous fuzzy
order-preserving function on the consumption set under certain mild condi-
tions. Existence of a fuzzy competitive equilibrium for the PXE-FP is proved
through a new result on the existence of fuzzy Nash equilibra for fuzzy non-
cooperative games. Finally, we show that fuzzy competitive equilibria can
be characterized as a solution to an associated quasi-variational inequality,
giving rise to equilibria.
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