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General introduction



Chapter 1

Most of us will encounter, at some point in life, the consequences of common
diseases, be it personally or through a friend or family member. As human
beings we have a tendency for wanting to know what our future beholds; hence
the current interest in our DNA as predictive factor for disease is not surprising.
In recent years, polygenic risk scores (PRS) were introduced in science, to
summarize the effects of multiple variations in our DNA that are associated with
the development of disease. Recently, some researchers have claimed that
PRSs are ready for implementation in clinical practice, while others argue that the
clinical usefulness has yet to be proven. This thesis focuses on the methodology
that is used to evaluate the predictive performance of PRSs and other predictive
tools, which is an essential step in the implementation of new health applications
in practice. The introduction gives an overview of the progress in the field of risk
prediction for common diseases, the evaluation of prediction models, current
methodological challenges in the field of genetic risk prediction and concludes
with the aims and scope of the research presented in this thesis.

Risk prediction for common diseases

More than 70% of deaths globally are due to non-communicable diseases; also
known as common chronic diseases (1). Among the leading causes of death
are cardiovascular diseases, cancers, diabetes, chronic respiratory diseases
and mental health conditions. Studying common diseases improves insight
into their causes and possible preventive and therapeutic interventions. The
focus of preventing common diseases is often on reducing the associated risk
factors (1). Risk factors can also be used for the prediction of common diseases.
Predictors can be causally related to the disease, such as risk factors typically
are, but do not necessarily have to be. They are incorporated in statistical
models to predict occurrence of disease, are used in differential diagnosis for
patients, and are used to predict outcomes after diagnosis. This means that
in healthcare, prediction models can be used to identify at-risk groups for
preventive interventions, support physicians in medical decision making, and
inform individuals about their risk or progression of the disease, to ultimately
improve patients’ health and decrease the number of deaths. For example, in
young adults a prediction model could predict the 10-year risk of type 2 diabetes
to stratify prevention with a supervised exercise program for the high-risk group.
In this thesis | focus on the prediction of disease.
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Personalized medicine

More accurately assessed risks are desirable for optimizing decision making to
provide the best care for each patient. Personalized-, precision- or sometimes
called stratified medicine was introduced to individualize care and move away
from a ‘one size fits all’ approach. Although the term ‘personalized medicine’
is relatively new, tailoring treatments and care to the individual patient is not
a new approach at all, it dates back to the Greek physician Hippocrates who
stated that “it is more important to know what sort of person has a disease than
to know what sort of disease a person has” and later to one of the founders
of the Johns Hopkins Hospital, the Canadian physician Sir William Osler, who
recognized that “variability is the law of life, and as no two faces are the same,
so no two bodies are alike, and no two individuals react alike and behave alike
under the abnormal conditions we know as disease” and warned to “Care more
particularly for the individual patient than for the special features of the disease”
(2,3). Today, personalized medicine means a healthcare approach in which
interventions are targeted to the individual or to subgroups rather than to the
population at large by considering individual variability in genes, the environment
and people’s lifestyle. This is especially warranted when an intervention cannot
be given to the target population at large because health care budgets are
scarce or because the intervention is not beneficial for all individuals from the
target population.

Architecture of common diseases

Common diseases are often caused by a complex interplay between multiple
genetic and nongenetic factors, such as environmental and lifestyle factors. In
common diseases there is no straight link between common genetic variants and
the development of disease, because for most variants the pathophysiological
mechanisms have not yet been identified and the variants that have been
identified are often only statistically associated to the disease. The heritability
of common diseases, the proportion of phenotypic variation that is attributed
to genetic variation, is for many of these diseases estimated to be moderate to
high, yet only a very small amount of the genetic variants has been unraveled
(4). Apart from rare mutations and copy number variations, most of the genetic
contribution to common diseases that has been unraveled appears to reflect
the effect of many common single nucleotide polymorphisms (SNPs) that have
individually small effects. SNPs are variations occurring at a single nucleotide of
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the genome (adenine, thymine, cytosine, or guanine, denoted by the letters A, T,
C, or G) that are present in >1% of the general population. SNPs are biological
markers and may occur in coding or non-coding regions of the DNA, which
means that they may or may not play a direct role in disease.

Gene discovery

Over the past decade, genome-wide association studies (GWASs) have
identified many SNPs, that are robustly associated with risk of common diseases,
including type 2 diabetes, cardiovascular disease, cancer, psychiatric disorders
and many other diseases (3-8). Among the primary aims of the study of these
SNPs is to improve understanding of the genetic architecture of common
diseases, elucidate the role of relevant biological pathways, and implicate novel
therapeutic targets (4). But, the study of SNPs has also fueled expectations that,
one day, genetic testing can be used to predict risk of common diseases, their
prognosis, and the response to treatment. The individual effects of SNPs are
small; in the early days of GWAS they reflected odds ratios often close to 1.1°
(3-5), and only a small fraction of the heritability could be explained (9). Initially
it was hoped that when many GWAS samples were collected, a larger fraction of
the heritability could be explained. Although these samples were collected, and
many more SNPs were found with even smaller effects, the fraction of heritability
that could be explained remained small. For a while, this suggested that a
realization of the expectations of SNPs for the prediction of common diseases
would never be possible. Until a few years ago, when several developments led
to a resurgence of interest in using SNPs for the prediction of common diseases

(5).

Polygenic risk scores

For common diseases it is agreed that SNPs with small effects will have no useful
predictive value on their own, therefore multiple SNPs are combined into one
score, frequently referred to as polygenic risk score (PRS) or genetic risk score
(GRS). PRSs quantify the combined contribution of multiple SNPs to the risk of
common diseases. The scores are calculated by 1) multiplying the number of
risk alleles of a SNP (0, 1 or 2 alleles) with the effect of the variant on the risk
of disease, and then 2) adding these products. Although the concept of a sum
score was proposed in the early 20th century (6), in the start of the 21st century

" Individual with risk allele ‘X" is 1.1 times more likely to develop disease ‘Y’ than individual
without risk allele X".



General introduction

PRSs were used as a solution to include larger numbers of genetic variants
in the prediction model instead of adding each identified SNP as separate
variable. Recently the construction of PRSs has become more advanced by the
introduction of new statistical methods such as LDpred (7), which contributed to
the renewed interest in utilizing SNPs to predict common diseases (8). Whereas
earlier studies included only SNPs that passed the genome-wide significance
line (P<5.107-8) (9), later studies allowed PRSs to also include variants that are
below the traditional significance line. This has resulted in PRSs made up of
millions of SNPs (10-12) and it is argued that these may be used to estimate an
individual’s genetic risk of disease and identify groups that are most at risk and
may benefit most from preventive interventions (13). Another factor contributing
to the resurgence of PRSs for common diseases is recently published articles
(11,14), including the publication in Nature Genetics by Khera et al., who claimed
that the PRSs identified individuals with “risk equivalent to monogenic mutations”
(11). The studies were enthusiastically received in the field of genomic medicine,
but received criticism a well (5).

Predictors

Despite some have argued that PRSs have shown to be promising for future
clinical applications for common diseases including breast cancer (15), diabetes
and cardiovascular disease (11), PRSs on their own often have low predictive
ability. Because the factors that contribute to the development of common
diseases are multifactorial, also other predictors are relevant to consider in the
prediction of these diseases, such as lifestyle, demographics, family history,
and biomarkers. PRSs are often added to prediction models containing
multiple of those predictors to improve the predictive ability of the model. In
this thesis | consider clinical or genetic models that provide risk predictions for
a dichotomous outcome (event vs. no event), since these are most commonly
used in prediction studies.

Clinical application of PRSs

Due to the recent developments in genetics some researchers are now, as
mentioned earlier, convinced that PRSs could be a promising personalized
application for common diseases (11,15). The ongoing interest in this application
of PRSs has also been fueled by the expanding offer of genetic tests by direct-
to-consumer (DTC) companies as 23andMe, Helix, DNAfit, Ancestry, and
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MyHeritage. Whilst some of the consumers of these genetic tests are initially
interested in their ancestry, some people use their retrieved genetic data for
health (16). Another boost to the provision of PRS by DTC companies was given
in 2017 by the U.S. Food and Drug Administration, by allowing DTC companies
to offer genetic test for disease prediction directly to consumers (17). There are
now several companies who directly offer PRSs, for example a PRS for type
2 diabetes by 23andMe and a PRS for heart disease by MyHeritage (18,19).
Next, | describe some examples of possible future clinical application of PRSs
that have been suggested in scientific literature as such, including applications
for breast cancer and other cancers, cardiovascular disease, and psychiatric
disorders.

Today, apart from population screening for all women in a certain age
category (e.g. 50-75y), the risk assessment of breast cancer to determine the
optimal strategy for surveillance is mainly focused on clinical risk factors and
high-penetrant genetic risk factors such as BRCA1 and BRCAZ2. Carriers of the
BRCA1 and BRCA2 genetic variants, and women with a breast cancer family
history in general, have a higher risk of breast cancer compared to non-carriers
or women without family history, to such an extent that earlier and more frequent
screening including MRI and mammography is proven to decrease breast
cancer mortality (20). Moreover, prophylactic surgery is available for women
in the highest risk stratum. In the past decade many common low risk genetic
variants have been identified that together may be of clinical interest to improve
prediction of breast cancer and hence the management of the disease (21).
Combining traditional risk factors for the prediction of breast cancer with PRSs
might improve the predictive ability (11,22) and influence the management
of the disease. For instance, women with a high PRS for breast cancer could
be advised to start breast cancer screening at a younger age or be under
surveillance more frequently (23). The risk assessment of other cancers, such
as prostate- and colorectal cancer, are also being investigated to include PRSs.
For example, to incorporate the score into risk stratified population screening
programs (24-28), to refine risk assessment for high-risk families (29,30) and
improve prostate-specific antigen (PSA) testing in screening for prostate cancer
(31,32). But, the emerging evidence is not entirely positive about the harms,
benefits and costs of using PRSs for screening. For example, risk-stratified
colon cancer screening is unlikely to be cost-effective in comparison with
uniform screening (33), and although results of a modeling study suggest that a
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breast cancer PRS combined with family history could have greater benefit than
screening based on family history alone, more overdiagnoses and false positive
results should be expected (34).

The risk assessment of cardiovascular diseases is traditionally done with
well-known risk factors, such as age, sex, hypertension, smoking and obesity
(35). In recent studies researchers suggested that the use of PRSs may improve
the prediction of, for example, coronary heart disease (11,14,24). It is argued
that improved predictive ability could support management of cardiovascular
diseases, for example, by providing preventive therapies or lifestyle advice to
individuals with a high PRS. The recent studies were covered positively by the
media, however, the analysis that formed the basis for their conclusions about
PRSs for the prediction of coronary heart disease were unconventional (36).
The added value of PRSs has yet to be proven and the results of these studies
will likely not hold up when conventional approaches are used. Previously it has
been stated that especially for individuals with high PRSs, adherence to a healthy
lifestyle was related to a significantly decreased risk of cardiovascular disease,
but at the same time it was emphasized that a healthy lifestyle is recommended
for everyone (37). The utility of a PRSs thus depends also on the availability of
effective interventions for each risk group. When these are present, the PRS
could possibly support physicians in decision making about, for example,
additional statin treatment as preventive measure for cardiovascular disease.

Furthermore, the use of PRSs in psychiatric disorders (such as major
depression, schizophrenia, bipolar disorder, psychosis and Alzheimer’s disease)
is being investigated, for example, to improve diagnosis, predict diagnostic and
treatment outcomes (38-41). However, for most applications evidence of clinical
validity and utility is currently lacking.

Evaluation of prediction models for common
diseases

From gene discovery to health application

Successful and responsible implementation of new health applications requires
the necessary research. The continuum of this translational research process
starts with association studies, such as GWAS, from which the candidate
predictors (SNPs) are selected, followed by prediction studies. Prediction studies
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focus on the use of risk prediction in health care, by assessing the predictive
performance and utility of the prediction model (e.g., a PRS or a clinical
prediction model) in the intended setting. Once a new or updated prediction
model is worth implementing in healthcare, several other types of studies that
together should prepare the implementation and use of the model, should be
conducted. Examples of these studies include risk communication studies,
behavioral and psychological research, implementation and cost-effectiveness
studies. For example, before safe implementation of a breast cancer PRS can
be guaranteed, i.e., to rule out any adverse events, questions about how it may
change the patient’'s perception of risk need to be answered.

From 2000 to 2004, the CDC'’s office of Public Health Genomics
developed a framework, the ACCE model, for collecting, evaluating, interpreting,
and reporting data about genetic tests in a format that could support policy
makers in decision making. Meanwhile the framework has been expanded (42),
however its main components form the basis of every analytical process that
is followed to evaluate scientific data on emerging (genetic) applications. The
ACCE model (Figure 1) is composed of a standard set of questions that address
disease and clinical setting, the analytical validity, clinical validity, clinical utility
and associated ethical, legal and social issues (ELSIs) (43). The clinical setting
refers to the intended use of the prediction model; analytical validity to how well
the model performs in the laboratory (addressed in association studies); the
clinical validity to how well the model performs in the clinical setting; the clinical
utility to how useful the model is; and the ELSIs to the ethical, legal and social
implications of the prediction model. Clinical validity is typically addressed in
prediction studies.

Designing prediction studies
The main objective of prediction studies is to determine the probability of an
outcome with a set of predictors in a population (44). Prediction studies address
the development of a prediction model, the validation of a prediction model or
both. A development study selects predictors, estimates relative weights and
assesses the model performance. A validation study re-applies a prediction
model in another population using the same relative weights to reassess the
model performance.

When prediction models are foreseen to be implemented in healthcare
it is important that the prediction study is designed with the intended use in
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mind. The healthcare scenario specifies what needs to be predicted, in whom,
how and for what purpose. This means that the intended use informs what the
outcome, study sample, and predictors need to be in the prediction study. All
these, and other key elements such as the study design, statistical model, and
statistical analysis should be well defined beforehand and reported following
existing guidelines (45-48), such as ‘The Genetic Risk Prediction Studies’
(GRIPS) statement, to maximize the transparency, quality, and completeness of
reporting on the research methodology and findings in prediction studies. The
reporting guidelines are in line with the set of standard questions accompanying
the ACCE model.

GUINICAL UTy /-8

Effective
Intervention
(Benefit)

Quiality
Assurance

Natural

Clinical
Specificity

Ethical, Legal, &
Social Implications
(safeguards & impediments)

Economic
Evaluatio

Figure 1. ACCE Model for the evaluation of genetic testing. CDC’s Office of Public Health
Genomics supported the establishment of the first publicly available analytical model for
evaluating scientific data on emerging genetic tests. ACCE stands for the main criteria for
evaluating genetic tests: analytical validity, clinical validity, clinical utility, and ethical, legal
and social implications. At the heart of the model is the ‘disorder and setting’, which refers
to the intended use of the test. (source: https://www.cdc.gov/genomics/gtesting/acce/index.
htm).
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Outcome, study population and selection of predictors

Prediction studies should focus on outcomes that are clinically relevant to the
stakeholders involved (providers, patients) and should include a risk period,
for example, the 10-year risk of type 2 diabetes. The study population needs to
be representative of the population in which the model will be used, the target
population. The study sample includes a selection of the general population,
a subgroup defined by, for example, age, gender, or the presence of certain
risk factors. The best design to answer prediction questions is a cohort study,
preferably a longitudinal prospective study as it allows to measure the outcome
and predictors over time. Case-control studies are sometimes used, but as the
design is not longitudinal it does not consider the risk period, and as participants
are selected based on the presence or absence of disease, absolute risks cannot
be calculated, hence, this design is not preferred for prediction research. The
selection of predictors refers to the selection of candidate variables for inclusion
in the prediction model, and is based on their association with the development
of disease and with the intended use in mind. As indicated above, they include
demographics, type/severity of disease, history characteristics, comorbidity,
physical functional status, subjective health status, and genetic predisposition
(49).

Developing a prediction model

Prediction models express the relation between the predictors in the model and
the selected outcome. The most commonly used statistical models in empirical
prediction studies are logistic regression and Cox proportional hazards
regression. Other methods, such as machine learning, have been investigated,
but it has been argued that these do not outperform traditional regression
approaches (50). Before the development of the prediction model is started,
several decisions need to be made concerning the selection of candidate
predictors, the quality of data, missing data, outliers, data handling decisions,
how to model continuous variables, studying possible interaction between
predictors, and variable reduction (51).

Metrics to evaluate the clinical validity and clinical utility of ge-
netic prediction models

An important step in the translation of prediction models to useful applications
in healthcare is the evaluation of the predictive performance. The ACCE model
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and GRIPS guideline both recommend the assessment of several metrics to
evaluate the clinical validity and clinical utility of prediction models. These
include the following metrics of model assessment and validation: model fit,
calibration metrics, positive and negative predictive value, sensitivity, specificity,
discriminative ability and reclassification metrics. Next, | discuss each of these
metrics briefly.

Model fit and calibration

The goodness of fit of a genetic prediction model describes how well the model
fits the observations; it indicates how likely the estimates from the prediction
model would conform to the observed data. Goodness of fit is assessed by the
Akaike Information Criterion (AIC) and calibration metrics. The AIC estimates the
model fit, plus it takes into account the number of predictors in the model (52).
The metric can be used to compare models; the model with the lower AIC has a
favorable balance between fitting and overfitting the data. Calibration commonly
refers to how well the predicted risks from the prediction model match the actual
observed event rates (53) and is often graphically displayed in a calibration plot
(Figure 2) (54). Calibration can be quantified by ‘calibration in the large’ and
the Hosmer-Lemeshow test. Calibration in the large measures the difference
between the average of all predicted risks and the average risk of disease in
the study population. The Hosmer-Lemeshow test compares observed and
expected outcomes within deciles of predicted risk. A disadvantage of the latter
is its inability to detect substantial miscalibration in small samples and over-
sensitiveness to minor miscalibration in large samples (55).

Clinical validity

Clinical validity refers to how well the prediction model estimates risks and is
indicated by the predictive ability and discriminative ability. Predictive ability
refers to the variation in predicted risks and is indicated by the distribution
of predicted risks and by the positive predictive value (PPV) and negative
predictive value (NPV) at (possible) risk thresholds. A risk distribution refers to
the frequencies of the predicted risks in the population. Higher predictive ability
requires more variation in predicted risk. The PPV and NPV indicate, respectively,
the risk of disease and 1-risk of disease for risk groups that are defined by a
certain risk threshold (Figure 3). The PPV is the percentage of individuals with
the event among all individuals who test positive. The NPV is the percentage of
individuals that remain free of the event among those with a negative test.
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Figure 2. Calibration plot
Predicted risks (x-axis) against the observed outcomes (y-axis) for groups defined by for
example, deciles of predicted risks. Figure 2a shows the calibration curve of a well calibrated
prediction model, i.e. the predicted and observed risks agree, yielding a calibration curve
that follows a 45-degree line (slope = 1) (563). This suggests that the predicted risks are
correct, for example, among patients with a predicted risk of 20% to develop breast cancer
in 5 years, 2 out of 10 indeed develop breast cancer in 5 years. Figure 2b shows is poorly
calibrated model. The deviations from the reference line indicate underestimations (or in
other cases overestimations) of the predicted risks by the prediction model.
Discriminative ability indicates how well a prediction model can
distinguish between patients and nonpatients. The discriminative ability is
assessed by the area under the receiver operating characteristic curve (ROC
curve; AUC) (56) and by the sensitivity and specificity for specific risk thresholds.
Metrics of discrimination are best understood when the risk distribution is
presented separately for patients and nonpatients (Figure 3). Sensitivity is
the percentage of patients that test positive, and specificity is the percentage
of nonpatients that test negative (Figure 3). Lowering the risk threshold, i.e.,
moving the risk threshold to the left in the figure, typically increases sensitivity
and decreases specificity. Depending on the intended use of the model, the
minimal or sufficient level of sensitivity and specificity is determined. There is no
general level for what sensitivity and specificity is good or excellent. If they would
both be 100%, the prediction model would not produce any false positive and
false negative predictions. For the prediction of common diseases this is never
seen, therefore, the required level of sensitivity and specificity is based on the

percentage of false positive and false negative predictions that are considered

20
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acceptable. Some applications require prediction models with a risk threshold
that has high specificity with acceptable sensitivity. For example, for newborn
screening on cystic fibrosis, a low percentage of false positives is desirable, to
minimize unnecessary follow-up testing and negative effects of the false positive
test results for infants and parents (57). Other applications (such as first tier
screening tests) require high sensitivity with acceptable specificity, in order to
maximize the detection of the disease and therefore the need for an as low as
possible percentage of individuals who will receive false negative result. For
again other applications (such as selection for invasive, irreversible procedures
or the non-invasive prenatal test, NIPT) both sensitivity and specificity need to
be very high. False negative and false positive results in the latter are to be
avoided as the choices made based on these test results may have far reaching
consequences, for example, termination of pregnancy.

The most well-known metric of discrimination for binary outcomes is the
AUC (also seen as AUROC or c-statistic). The ROC curve is drawn in a ROC plot
that presents sensitivity against 1-specificity (Figure 4). The curve connects the
combinations of sensitivity and specificity for all possible risk thresholds. AUC
is the magnitude of the area under this curve and is explained as the probability
that a randomly chosen patient has a higher predicted risk than a randomly
chosen nonpatient (56). Frequently, PRSs are evaluated for their ability to
improve existing clinical prediction models, as PRS alone generally have lower
predictive ability compared to clinical models. For example, AUCs of 0.61, 0.66,
and 0.62 compared to 0.76,0.73, and 0.71 for coronary artery disease, type 2
diabetes, and breast cancer, respectively (568-60). When a PRS is added to a
clinical model, the difference in AUC, denoted as AAUC, between the clinical
model and the updated model with a PRS is used to assess the improvement in
discriminative ability (61,62). The increment in AUC from PRSs is generally low,
often below 0.02 (24,63,64).

There are many other ways of expressing the predictive ability and
discriminative ability, but these are less frequently used. For example, box
plots can be used to show the means and distributions of risks in patients and
nonpatients, and the difference in means is known as the discrimination slope.
When a prediction model is extended by adding predictors, the integrated
discrimination improvement (IDI) assesses the improvement in the discrimination
slope. IDI is calculated by taking the difference of the risk difference between
patients and nonpatients for the initial and extended models (65).

21
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Figure 3. From risk distributions to a contingency table for a certain risk threshold. The
threshold determines whether a positive or negative test result is reported; moving the
threshold to the left means that more individuals have a predicted risk above the threshold
and hence test positive. Positive predictive value (PPV), negative predictive value (NPV),
sensitivity (se) and specificity (sp) are metrics to calculate the clinical validity of the test.
Sensitivity and specificity indicate the test's ability to detect the presence of disease in
people with the disease and its absence in those without. Positive and negative predictive
values represent the probability of having the disease when the test result is positive and the
probability of not having the disease when the result is negative. Figure 3a shows a 2 by 2
contingency table from which all metrics can be calculated. Figure 3b shows how the same
percentages are calculated from the separate risk distributions of patients and nonpatients.

Validation
The model fit and performance (clinical validity) of genetic prediction models
tend to be highest in the population that was used to develop the model (66).

22
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Validation of a prediction model in the target population is therefore warranted
and refers to the re-assessment of the prediction model. This can be done using
other data within the same population (internal validation) or in an independent
population (external validation).

0.8 1.0
I

Sensitivity
08
1

04

00
1

T T T T T T
00 02 04 06 08 10

1 - Specificity

Figure 4. Receiver operating characteristic curve. In general, specificity and sensitivity are
related. Choosing a risk threshold with higher sensitivity, comes at the cost of lower specificity
and vice versa. To choose a threshold for reporting a result as positive or negative, a balance
between the two has to be achieved, which depends on the intended use of the test. A test
performs better, when the ROC curve is placed more to the left and upper lines of the figure,
i.e. has a bigger area under the curve.

Internal validation uses a subset of the same population that was used for
the development of the prediction model. There are several methods for internal
validation, including a split sample method and bootstrap sample method (53).
Internal validation is a good first step to preventing overoptimistic interpretations
about the predictive ability, but it is not sufficient. Internal validation still tends to
give an optimistic predictive accuracy because the data in the development and
validation study come from the same population, collected by the same methods
and researchers, using the same variable definitions. Temporal validation
concerns the validation of the model on individuals of a cohort at another point
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in time, for instance, if the prediction model is developed on patients that are
treated between 2007 and 2014, the validation of the model could be executed
in patients that are treated at the same hospital, but between 2014 and 2021.
Temporal validation is sometimes regarded as a validation approach that lies
between internal- and external validation (67).

External validation is done to investigate the generalizability of the
prediction model by evaluating its performance in a different, but similar target
population. When a prediction model is constructed, its regression coefficients
are estimated in such a way that the model best fits the data. External validation
evaluates whether the model is robust to changes in the population and
measurement of variables. Even with the same inclusion criteria for the study
population and the same definition and measurement of variables, differences
occur when other researchers collect the data at a different location. External
validation may concern validation of the model in a different region or country
(geographical validation) and fully independent external validation, which means
that the performance of the model is tested in data collected by independent
researchers, generally at a different site (68). Generally, the predictive ability and
discriminative ability are lower when assessed in an independent population. For
example, the discriminative ability (AUC) of the PREDICT model for breast cancer
was 0.82 at development stage and 0.72 when validated (69). Ethnicity also
plays a role in the predictive ability of the model, due to possible differences in
genetic make-up between populations. PRSs developed from data of Caucasian
individuals may not hold up for other ethnicities, for instance, risk estimates for
individuals of European ancestry were less accurate in individuals of African
ancestry (39,70). Approximately 80% of GWAS is conducted in populations of
European ancestry (70), which unfortunately means that PRSs based on these
studies are less accurate for other ethnic populations and more research should
be focused on non-Caucasian populations (29,71).

Changing risk category

The clinical utility of a prediction model provides information about the usefulness
of the prediction model in health care, usually referring to the ability of the model
to improve health outcomes (72). When considering to add a prediction model to
an existing health care service, a first step in the evaluation of clinical utility is the
assessment of reclassification metrics and proof of positive reclassification is a
prerequisite for clinical utility. The rationale for the use of reclassification statistics
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is that updating a prediction model by adding new predictors is only warranted
when people change between risk categories and therefore receive different
health care, for instance in terms of surveillance or prophylactic medication.
When updating a prediction model changes predicted risks but people will still
be classified in the same risk category, the new model does not lead to different
decisions about treatment. There are several different metrics of reclassification
that quantify how many people change between risk categories. These metrics
are calculated from a reclassification table and include total reclassification
and the net reclassification improvement. Total reclassification calculates the
percentage of individuals who change risk category, in any direction (73). This
metric does not consider whether individuals move in the ‘right’ direction and
its use has therefore been discouraged. The net reclassification improvement
(NRI) does consider whether people move in the right direction (65). For patients
and nonpatients separately, it counts the ‘net’ good moves (good moves — bad
moves), meaning that more people move in the right than wrong direction. Good
moves mean that patients move to a higher risk category and nonpatients to a
lower; bad moves are vice versa. NRI is the sum of the percentage of net good
moves in patients and nonpatients. Because the bases for these percentages
are different when the number of patients and nonpatients not equal, the metric
is generally not easy to interpret and is advised to report separately for patients
and nonpatients (74).

Challenges in genetic risk prediction studies

During the past decades, the field of genetic risk prediction for common
diseases has developed rapidly. Upfront genotyping costs have dropped and
several researchers have expressed the readiness of PRSs for implementation
in the field, however, the field still faces many challenges before PRSs can
successfully be implemented in practice. Several of the challenges concerning
the design and evaluation of prediction studies and metrics are addressed in
this thesis.

The rationale behind developing genetic prediction studies

With the ongoing discovery of genetic variants that are statistically significantly
associated with common diseases, it is expected that even more prediction

25



Chapter 1

models will be developed, and existing models updated. For research
this means that empirical studies are needed to investigate the predictive
performance of the (updated) genetic prediction models. Preferably these
are conducted in prospective cohort studies, with a study population that is
unselected for the outcome of interest and the outcome measured over time. The
study population, predictors and the outcome are determined by the intended
use of the prediction model. Without taking into account the intended use for
the development of prediction models, models may or may not be clinically
relevant and of interest to the public. Furthermore, understanding whether the
predictive performance of the model is high enough becomes hard when the
purpose of using the prediction model is unknown. As conducting prospective
studies can be time consuming and expensive, researchers often rely on readily
available data from convenience cohorts. These cohorts were developed for
studying epidemiological questions, not prediction. When these cohorts are
used for prediction studies, they rely on data from the same sample as used for
the discovery of genetic variants or PRSs, or publicly made available datasets
such as from the UK biobank cohort. Performing the prediction analyses on
these data means that the predictive performance of the models in the target
population remains unknown. Reporting guidelines and frameworks mention the
importance of describing the key information that is relevant for the interpretation
and validation of genetic prediction models (43,75), but an explanation of why
these are important and how the intended use of a prediction model determines
design choices and informs interpretations of genetic prediction studies is
lacking.

The area under the receiver operating characteristic curve

There is a general agreement among researchers that methodological and
reporting standards for prediction studies are often not met and should be
improved (46,76-81). For example, the interpretation of one of the most
commonly used metrics of predictive performance, the AUC, has been a
challenge since its introduction in medicine (56). The AUC value is generally
described as the probability that predicted risks correctly identify a random
pair of a patient and nonpatient, but this explanation is perceived clinically
irrelevant as a physician does not see two random people during a consultation.
A more intuitive explanation of the AUC value is lacking, which could improve
the understanding of the metric and possibly nullify the argued limitations.
Subsequently, because the AUC is considered not intuitive, researchers often
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think of AUC as an insensitive metric and criticize its usefulness because even
statistically significant new risk factors or PRSs yield a minimal improvement in
the AUC when added to existing prediction models, especially when the AUC
of this model is already high (72,73,82,83). Previous studies have shown that
both AAUC and IDI are higher when the effect size of the added risk factor is
higher (84-86). However, little is known about the size of IDI in the situation when
AAUC is small, for example, lower than 0.01, at which it is generally concluded
that the discriminative ability of the model is not improved (84). Insight into the
characteristics of the metrics may explain whether the argued insensitivity of the
AUC is justified.

Assessing multiple metrics of predictive performance

Partly because AUC is considered insensitive, other metrics gained popularity
since their introduction in 2008 (65). These metrics include the NRl and the IDI that
focus on reclassification and risk differences between patients and nonpatients
respectively. Both metrics have been argued to be too sensitive for identifying
changes in predicted risks (87-89). NRI has been shown to reflect improvement
when AUC does not, but whether this means that there is indeed improvement
or whether the NRI reports noise complicates interpretation. The focus in the
interpretation of the improvement in performance is often, surprisingly, on the
statistical significance of NRI rather than on the AUC value, especially when
the latter shows approximately no improvement. This suggests that researchers
may not know the difference between the AUC and NRI, and do not know how to
interpret the absolute values. For IDI, it remains unknown whether researchers
also emphasize the statistical significance of IDI in the absence of statistically
significant improvement in AUC. Moreover, researchers often use NRI and IDI in
addition to AUC in the assessment of the predictive performance of genetic and
clinical prediction models, which may complicate and deteriorate interpretation
even more. Although the three metrics provide complementary information
and it therefore has been advised (84) to report all three alongside, whether
researchers are aware of the differences between the metrics when they use all
three, and how they deal with discording findings remains unknown.
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Scope of this thesis

Aim, objectives and research questions
The overall aim driving the research described in this thesis is to contribute to
the understanding of the design, evaluation and interpretation of genetic risk
prediction studies for common diseases. | want to provide insight and guidance
to support researchers, physicians, and policymakers who work with (genetic)
risk prediction models. The objective of this thesis is to improve understanding
and use of multiple metrics that are used to assess the predictive performance
of genetic risk prediction models and to provide insight into key topics and
considerations that are made in (genetic) prediction research. The main research
questions that will be addressed in this thesis are:
1. How does the intended use of risk prediction models determine the
design and interpretation of prediction studies?
2. Why is the area under the ROC curve a metric of discrimination?
3.  What do different metrics of predictive performance measure?
a. Can the predictive ability of a model improve when
discrimination does not?
b. How do researchers describe the use and interpret the results
of multiple metrics in the assessment of improvement in
predictive performance of risk prediction models?

Outline

An overview of the key topics and considerations in the design and evaluation
of genetic prediction studies is presented in Chapter 2. The purpose of this
chapter was to explain how the intended use of PRSs in health care guides the
design and evaluation of prediction studies (Question 1). Chapter 3 continues
with the exploration of the most commonly used metric for the assessment of
genetic prediction models, the ROC. We investigated how the ROC is another
way of presenting the risk distributions of patients and nonpatients and how
the shape of the ROC curve is informative of these underlying risk distributions
(Question 2). In Chapter 4 we investigated using simulated data whether a
genetic risk factor that minimally improves the AUC (AAUC) may nevertheless
improve the predictive ability of the model, assessed by the IDI. Additionally,
we investigated the assessment of AAUC and IDI empirically in prediction
studies that had investigated the addition of SNP(s) to a model containing
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clinical risk factors (Question 3a). In Chapter 5 we reviewed how researchers
defined and calculated multiple metrics of predictive performance (AUC, NRI
and IDI) and how they interpreted their results when simultaneously used in the
assessment of genetic prediction models (Question 3b). Chapter 6 continuous
with an assessment of the generalizability of the results of Chapter 5 to non-
genetic prediction models by evaluating the simultaneous use of multiple
performance metrics in non-genetic prediction studies (Question 3b). Chapter
7 includes two letters to the editor, to demonstrate the importance of scientific
communication and to point out how understanding of the main concepts and
metrics in prediction research may lead to different conclusion of the prediction
studies. In Chapter 8 we conclude with a general discussion of our findings and
provide guidance for future design and evaluation of prediction studies as well
as directions for future research.
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Chapter 2

Abstract

Purpose of review To explain how the intended use of polygenic risk scores
(PRSs) in healthcare guides the design and evaluation of prediction studies.
Recent findings The advances in gene discovery in common complex diseases
have fueled the interest in the potential of PRSs to predict risks and improve the
prevention and early detection of disease. As the predictive ability of a PRS
differs between populations and settings, it is important that prediction studies
are designed and evaluated with the intended use of the risk scores in mind, but
this is rarely done.

Summary The intended use indicates in whom and how the PRS will be used
in healthcare and for what purpose. This intended use dictates what outcome
needs to be predicted in which population using which predictors. It also tells
which other variables or clinical risk models might be available to improve the
prediction. The intended use also provides the necessary context to evaluate
whether the predictive ability of the PRS or the risk model that includes PRS is
high enough for the score to be potentially useful in healthcare. The intended
use should be leading risk prediction research.
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Introduction

Over the past decade, genome wide association studies (GWASs) have
identified many genetic variants (single nucleotide polymorphisms, SNPs) that
are robustly associated with the risk of common diseases. Researchers combine
SNPs into polygenic risk scores (PRSs) to identify individuals at increased risk of
common diseases such as type 2 diabetes, cardiovascular disease and cancer
(1-3). In contrast to monogenic diseases that are caused by a single mutated
gene, common diseases are caused by an interplay of multiple SNPs, and non-
genetic factors such as lifestyle.

After years of polygenic risk research in which PRSs mostly had a
modest predictive ability and little value added to clinical risk models (4-8),
the tide recently seems to have changed. Several recent studies reported that
people with the highest PRSs were at much higher risk compared to the rest of
the study population (1,9,10), with risks comparable to the increased risks of
genetic mutations (1,10). These studies concluded that PRSs may be useful in
healthcare and that it is time to consider their implementation (1,11).

PRSs quantify the combined contribution of multiple SNPs to the risk
of these diseases. The scores can consist of a few up to millions of SNPs. The
scores are weighted or unweighted sums of the risk alleles across all SNPs
that are included. The SNPs are generally selected from GWASs based on the
GWAS effect sizes, the weights, or their P values. Individual risk estimates are
obtained from a regression model that includes the PRS with or without clinical
risk factors.

Prediction studies aim to investigate the performance of tests and
models for predicting diseases in a population. In the framework of translational
genomics research (12), prediction research is part of the second of four phases.
Following the first phase of association studies, this second phase investigates
potential applications of genetic tests: what is their predictive ability and, if
applicable, what is the potential utility? If the application has potential utility, the
third phase is to investigate the implementation in healthcare and the fourth to
monitor whether the application delivers as anticipated.

The intended use of PRSs that informs how their predictions will be
used in healthcare: which medical decisions will be supported and for whom
will these decisions be relevant? This intended use specifies in whom the PRS
will be used, what outcome needs to be predicted, and what the purpose of
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prediction is. Therewith, the intended use of PRSs has two major implications for
their scientific study.

First, as the predictive ability of PRSs varies between populations
and settings, the intended use dictates the design of the study. It defines what
population needs to be studied, what outcome predicted, and what additional
or other opportunities for prediction are available. A PRS that predicts a disease
in one population does not evidently predict the disease in another, which is
relevant to keep in mind when a PRS is studied in readily available datasets
as these may not be relevant for the population in which the use of the PRS
is foreseen. A PRS needs to be studied in a population in which the PRS is
intended to be used (13).

Second, and related, the intended use provides context for the
interpretation of the results and the evaluation of the predictive ability. The
intended use can serve as a benchmark to judge whether the observed
performance of the risk model may be high enough to expect health benefits
or improved efficiency of care when the risk model is used in clinical or public
health practice.

Researchers rarely specify the intended use in their studies. They may
state that the PRS can be used to identify high-risk groups that can benefit from
early intervention or low-risk groups that can benefit from delaying treatment or
surgery without specifying which treatment or when high-risk individuals qualify
(14-16). They may state that PRS can be used to support decision making,
motivate risk reduction behaviors, or impact prevention strategies without
clarifying the decisions, behaviors, and preventive strategies (17,18). And they
certainly do not specify how high the predictive ability at least needs to be to
make the PRS worth considering in practice. When the intended use is not
specified, it is difficult to appreciate the relevance of the study and the results
may need to be inferred from the design of the study.

In this paper, we elaborate on how the intended use of PRSs guides the
design of studies that aim to investigate its predictive ability and how it provides
context for the evaluation of the results.
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Design of PRS studies

As the goal of a prediction study is to develop and evaluate PRSs for predicting
disease in clinical practice (19), the purpose of testing should be clearly
specified, and the outcome of interest, the study population and predictors
should be carefully chosen so that the study is relevant for the intended use of
the PRS.

Purpose of testing

Prediction models in health care are used to identify at-risk groups for preventive
interventions or the early detection of disease; assist and support doctors in
making medical decisions about procedures, treatments, medications, and
other interventions; and inform individuals about their risks or progression of the
disease to allow them making plans for the future.

Identifying and specifying the purpose of testing is essential because
the same test may be predictive enough for one application, but not for another.
It helps distinguishing whether, for example, the predictive ability of a PRS for
breast cancer is high enough for improving the efficiency of mammography
screening or even high enough for recommending prophylactic mastectomy to
high-risk women, as, evidently, the latter predictive ability needs to be very high
to prevent that women are erroneously classified as being at high-risk.

Outcome
The outcome of interest specifies what needs to be predicted, such as the
10-year risk of developing type 2 diabetes (20), the 7-year risk of developing
Alzheimer disease (21), or the 5-year risk of breast cancer (22). Researchers
often leave the risk period unreported, referring to it as the risk of prostate cancer
or breast cancer without further specification (23,24). In such instances, the risk
period and its relevance may be inferred from the follow-up duration of the study.
The outcome of interest will often be self-evident, but large cohort
studies may have data on related diagnoses and disease (sub)types so that
the selection of the outcome may involve a decision. PRSs can, for example, be
developed for the prediction of the risk of dementia (25) or for Alzheimer disease
(21), vascular dementia (26), and other subtypes separately. When the purpose
of testing is to identify people for preventive drug treatment, the outcome of
interest may be the risk of disease, but can also be treatment response,
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prognosis, or side effects, depending on what is most relevant in making the
decision about treatment.

Study population

The target population is the population in which the PRS will be used if proven
predictive. This population is a selection of the general population that is defined
by one or more risk factors of disease, such as age, sex, family history, or early
symptoms. Selection of the target population is in part determined by the course
of a disease process over time in the absence of interventions. This natural
history tells at which ages a disease may manifest and how it may progress and
is the reason why the risk of Alzheimer disease is predicted in the elderly and
autism and attention-deficit/hyperactivity disorder (ADHD) in the young (27,28).

The target population consists of people who are expected to develop
the disease within the risk period of interest and people who will not. The latter
group also includes people who will develop the disease later, those who may
already have developed risk factors that increase the risk of disease, have
a preclinical stage of disease, or early stages that do not yet formally meet
the diagnostic criteria. Disease diagnoses are most difficult to predict in the
context of this variety in symptom and disease presentation at follow-up,
which is why a PRS ideally is investigated in a prospective longitudinal cohort
study: a population unselected for the outcome of interest and with predictors
and outcomes measured prospectively over time. Case-control studies may
overestimate the predictive ability when the selection of the two groups excludes
people with ambiguous or inconclusive symptoms and when recall bias distorts
the assessment of nongenetic risk factors. The latter also makes the cross-
sectional study design less suitable for prediction research.

The question of what would be the optimal study population is seldom
asked. Researchers do not set up data collections for investigating the predictive
ability of PRSs, but they also do not weigh the pros and cons of datasets that
could be available to them through collaboration either. Prediction analyses are
generally performed in datasets that researchers have direct access to, and
the relevance of that dataset for evidencing the clinical applicability of the PRS
generally remains undiscussed.

These days, researchers frequently use the UK Biobank for assessing
the predictive ability of PRSs (1,2,29,30). The UK biobank is an epidemiological
cohort providing data of up to 500,000 participants (31). The prospective
collection of data is ideal for prediction studies, but the wide age range, from 40

40



How the intended use of polygenic risk scores guides the design and evaluation of prediction
studies

to 69 at baseline (31), makes it less a relevant population for the prediction of
diseases that come with age (32-34). The younger participants are too young
to develop Alzheimer disease and too young to die (21,35), whereas the older
participants are too old to develop type 1 diabetes or multiple sclerosis (36,37).
Using the entire UK biobank population for the development of a risk model will
likely include age as a very strong predictor and inflate the performance of the
risk model.

The handling of age and other covariates also alludes to an essential
difference between epidemiological and prediction studies. In epidemiological
research, the association of a PRS with the risk of disease is studied with
adjustment for covariates, while in prediction analyses these covariates become
part of the risk model. When researchers write that, for example, the area under
the receiver operating characteristic curve (AUC) of a type 2 diabetes PRS was
0.75, adjusted for age, sex, BMI, and other factors, it means that the AUC was
for a risk model that included the PRS and all other factors, not for the PRS alone
(38). In such instances, a comparison between risk models with and without a
PRS is warranted to evaluate the value added by including PRS in the risk model
(see below).

Predictors

When the target population is known, it follows which predictors will or can
be available to predict the outcome of interest. The risk model can include a
PRS, alone or in combination with other predictors such as demographic data,
family history, biomarkers, comorbidity, and subjective health status. If a PRS
alone can predict the risk of disease as good as a clinical model or clinical
plus a PRS model, then the PRS may suffice, depending on whether the type
of risk factors matters. If the aim is to monitor high-risk individuals for the early
detection of disease, it is less relevant whether the high risk is due to modifiable
or non-modifiable genetic risk factors. If the aim is a behavioral intervention of
modifiable risk factors, then it seems counterintuitive not to include these in the
risk model.

When implementation of the PRS or risk model is the goal, and
generalizability of the model is essential, the selection of its predictors is
preferably based on replicated associations, such as from GWAS for SNPs and
from meta-analyses for nongenetic predictors. Also, and evidently, predictors
need to be available or obtainable, measurable, and affordable.
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Evaluation of PRS studies

The predictive ability of risk models varies with the population, the outcome, and
predictors that are used. In the evaluation of prediction studies, the following
questions are relevant:

Are the predictions accurate?

When a risk model predicts a risk of 25%, is the risk 25%7 Accuracy of risk
predictions is assessed using measures of calibration that compare predicted
risks with observed risks in study data (39). Calibration of a PRS is important
because the score assumes that the effects of all genetic variants can be added
into a (weighted) sum score, that all variants are relevant for the risk in all people,
and that, when combined with clinical risk factors, the genetic factors are an
independent risk factor. When the intended use is to identify high-risk individuals,
calibration of the risks in the tails is particularly important. Calibration is essential
as inaccurate risk predictions may lead to wrong medical decisions and cause
unnecessary harm (40).

What is the distribution of predicted risks?

Risk distributions show whether the predicted risks range from 0 to 100% or
spread narrowly around the average risk. They also help identify a skewed
distribution with a long flat high-end tail that indicate a (small) group of people
with a substantially higher risk than the rest.

Can predicted risks identify people who will develop the disease?
A risk model can identify people who will develop the disease when they have
higher predicted risks than those who will not develop the disease, or in statistical
terms, when the distribution of risks of cases and noncases show no overlap.
The farther these distributions are separated, the better the discriminative ability.
This degree of separation is assessed using measures of discrimination such
as the AUC or c-statistic (41). Measures of discrimination are rank tests, they
assess whether cases tend to have a higher risk than noncases, but not how
much higher. How much higher the predicted risks are is learned from the risk
distributions or from the difference in average risks of the two groups.
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How well does the model classify people at risk?

Risk models are often used to classify people in risk categories by one or more
risk thresholds (42). Ideally, a risk model would have a threshold that classifies
all cases above and all noncases below the threshold, thus having sensitivity,
specificity, positive, and negative predictive values all at 100% (43,44). When
risk distributions of cases and noncases overlap, selecting an optimal threshold
requires weighing the benefits and costs of true and false risk classifications.

When a PRS is added to clinical risk factors or vice versa, the same
questions apply: Is the new risk model well-calibrated? Did the addition of
the PRS change the distribution of risk? Did it improve discrimination? And
did it change the classification of risk groups? The improvement in the AUC
or c-statistic assesses the improvement in discrimination (45), the integrated
discrimination improvement (IDI) indicates the increase in the risk difference (46),
and measures of reclassification assess whether updating a risk model changes
the classification of risk in the right direction (46,47). Assessing reclassification
is only meaningful when the risk thresholds are clinically relevant, i.e., when
management of people at risk differs between the risk categories, as the amount
of reclassification varies with the cutoff thresholds (48).

The intended use provides context for evaluating whether the predictive
ability will be good enough for the risk model to be used in practice and, if a PRS
is added to clinical risk factors, whether the improvement provides meaningful
changes in predicted risks. When there is no information about the intended
use, then the performance of the risk model can only be judged by its statistical
significance, as the values of the metrics have no benchmark (49). Evaluation
studies of existing risk models for the same outcome may provide quantitative
reference points for the interpretation. For example, a recent diabetes study
reported that that the AUC of the PRS was the same as that of a model with only
age, sex, and body mass index (3).

When the predictive ability is promising (50), validation of the model
in independent populations is warranted as the predictive ability tends to be
higher in the people whose data were used to develop the PRS (51). External
validation should re-assess both calibration and discrimination (51). The
requirement of external validation underscores the importance of selecting
established predictors: the best risk model is the one with the best predictive
ability at external validation.
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Examples

The intended use of PRSs not only guides the design and evaluation of
prediction studies but also helps interpreting the results of published studies
when the intended use is not specified. The intended use can be inferred from
the selected study population, outcome, and predictors used in the study, which
informs whether the study addresses a relevant healthcare scenario. Table 1
illustrates three recent studies that did not report about the intended use of the
PRS, which suggests that the studies were conducted without a specific public
health scenario in mind. Here are examples of inferences and questions that
follow from the study design and analyses.

The study of Zhang et al. is a case-control study, which tells that we
should review the inclusion criteria for the selection of cases and controls to
evaluate whether the discriminative ability of the PRS might be overestimated
(22). The researchers added several risk factors to an existing model, which
warrants an assessment of each separately to learn which risk factor (or all)
meaningfully improved the predictive ability. And finally, since the percentage of
reclassification depends on the risk threshold that is chosen, it is worth reviewing
what the rationale for the 2.27% threshold was.

The study of Abraham et al. predicts the risk of coronary heart disease
in two population-based cohorts, which suggest that they may or could have
used one for the development of the risk model and the other for its validation
(52). Their study distinguished four risk categories, and it is of interest to question
how these match with the lifestyle modifications and medical interventions that
are the purpose of testing.

Finally, the study of Pitk&nen et al. investigates the risk of type 2
diabetes in children (38). The researchers did not specify a risk period and risk
thresholds, which raises additional questions about the purpose of testing. While
type 2 diabetes occurs at younger ages these days, the question is whether the
risk is high enough and the clinical risk factors prevalent enough in children to
be of interest for prevention.
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Table 1. Inferring the intended use of polygenic risk score from the study methods
Zhang et al., 2018 Abraham et al., 2016 Pitkdnen et al., 2016

(22) (52) (38)
What is the purpose Identification of Early identification Early identification
of testing? women at higher of individuals at of individuals at
risk who would increased risk of high risk for type 2
benefit most from coronary heart diabetes
chemoprevention disease for preventive
lifestyle modifications
and medical
interventions
What is predicted?  5-Year risk of 10-Year risk of Risk of type
invasive breast incident coronary 2 diabetes in
cancer heart disease adulthood
In whom? Female registered Population-based Population-based
nurse cases and cohorts, mean age 46 cohort, age 3-18
controls, age range  and 44 years years
34-70 years
How? Adding 67 SNP PRS, Adding 49K SNP PRS Adding 73 SNP PRS
mammographic to existing risk models to clinical risk factors

density and hormone
levels to existing risk
models

Risk thresholds <2.27% and >2.27% <7.5%, 7.5-10%, None
10-20%, and >20%

PRS polygenic risk score, SNP single nucleotide polymorphism

Conclusions

This paper discusses considerations in the design and conduct of studies that
aim to investigate the predictive ability of PRSs. The intended use of a risk model
dictates the design of the study and provides context for the interpretation of
the scores’ predictive ability. The importance of considering the intended use
applies to the study of all prediction models, also those that do not include
genetic variants.

To be sure, many researchers use PRSs in epidemiological research
with no interest in the predictive ability or utility of the PRS. They may report
that the PRS was a “powerful predictor” of schizophrenia (53) and that the PRS
“predicted educational achievement” (54). “Predict” is often used to describe
a statistically significant association, without claiming that the predictive ability
is high enough to identify high-risk individuals. Our paper is not about these
association studies.
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Risk models not only predict risk, they also inform which risk factors are
(most) important. Often researchers test multiple models and select the model
with the highest AUC as the best model, even though its AUC is only minimally
higher than other models. The addition of variables should be worth the “costs”
(55), also when the data are available and free. It is not only the financial costs
and collection of data that is deciding this, but also the reception by the target
population. The latter is a relevant consideration with the new methods that
build PRS using millions of SNPs (1,10,56), but these million SNPs often do not
outperform the statistically significant SNPs by much. Risks that are calculated
from millions of SNPs may be perceived as more deterministic, and therefore,
implications of a PRS on behavior should be considered when developing the
score.

Scientists increasingly claim that the time is right to consider inclusion
of PRSs in clinical care based on the observation that a group at the end of the
risk distribution has an increased risk that is comparable to that of monogenic
risk (1,11). Our paper and those of others have summarized that the predictive
ability cannot be judged from a relative risk alone (39,57). When making claims
about utility or implementation in health care, then the predictive ability should be
investigated using the appropriate metrics and an informative comparison with
other models. Uniform reporting facilitates the synthesis of research findings
across studies (568,59).

Whether it is time to consider the implementation of PRSs in health care
does not depend on their predictive ability, but on their usability, usefulness, and
meaningfulness. Does the PRS improve prediction beyond clinical risk models?
What interventions can be recommended to people at high genetic risk? And
what will be offered to those with a high PRS in the absence of traditional
risk factors? Can PRSs help to change behavior? Evidence of clinical utility
determines when the time has come. We are not there yet.
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Chapter 3

Summary

The area under the receiver operating characteristic (ROC) curve (AUC) is
commonly used for assessing the discriminative ability of prediction models
even though the measure is criticized for being clinically irrelevant and lacking
an intuitive interpretation. Every tutorial explains how the coordinates of the ROC
curve are obtained from the risk distributions of diseased and non-diseased
individuals, but it has not become common sense that therewith the ROC plot is
just another way of presenting these risk distributions. We show how the ROC
curve is an alternative way to present risk distributions of diseased and non-
diseased individuals and how the shape of the ROC curve informs about the
overlap of the risk distributions. For example, ROC curves are rounded when
the prediction model included variables with similar effect on disease risk and
have an angle when, for example, one binary risk factor has a stronger effect;
and ROC curves are stepped rather than smooth when the sample size or
incidence is low, when the prediction model is based on a relatively small set of
categorical predictors. This alternative perspective on the ROC plot invalidates
most purported limitations of the AUC and attributes others to the underlying
risk distributions. AUC is a measure of the discriminative ability of prediction
models. The assessment of prediction models should be supplemented with
other metrics to assess their clinical utility.
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In 1971, Lee Lusted introduced the receiver operating characteristic (ROC)
curve in medicine to contrast the percentage of true positive against false
positive diagnoses for different decision criteria applied by a radiologist (1). A
decade later, Hanley and McNeil proposed the area under this ROC curve (AUC)
as a single metric of diagnostic accuracy for ‘rating methods or mathematical
predictions based on patient characteristics’ (2). The AUC is the most commonly
used metric for assessing the ability of predictive and prognostic models to
discriminate between individuals who will or will not develop the disease (here
referred to as diseased and non-diseased individuals).

Despiteits popularity, the AUC is frequently criticized and its interpretation
has been a challenge since its introduction in medicine (2). The AUC value
is generally described as the probability that predicted risks correctly identify
a random pair of a diseased and non-diseased individual. This probability is
considered clinically irrelevant as doctors never have two random people in
their office (3, 4); they are only interested in the clinically relevant thresholds of
the ROC curve, not in others (5); and they often want to distinguish multiple risk
categories for which they need more than one threshold (6). Also, the AUC is
considered insensitive, as the addition of substantial risk factors may improve
AUC only minimally when they are added to a baseline model that already has
good discrimination (4, 7-9). Most of this criticism on the AUC concerns the
irrelevance of the ROC curve suggesting that a more intuitive interpretation of
the ROC could change the appreciation of the AUC.

Every tutorial explains how the coordinates of the ROC curve are
obtained from the risk distributions of diseased and non-diseased individuals. In
this paper, we show that the ROC curve is an alternative graphical presentation
of these risk distributions. We explain how the ROC curve gives information
about the shapes and overlap of the underlying risk distributions, and re-evaluate
the interpretation and purported limitations of the AUC from this alternative
perspective.

From risk distributions to ROC curve
In empirical studies that investigate the development or validation of prediction

models, predicted risks can be presented as separate distributions for
diseased and non-diseased individuals (Figure 1a). The separation between the
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distributions, indicated by the non-overlapping areas, gives a prediction model
its discriminative ability: the further the distributions are separated, the better the
model can differentiate between the two populations because more diseased
individuals have higher risks than the non-diseased.

These risk distributions can also be presented as cumulative
distributions, where the y-axis presents the proportion of individuals who have
equal or lower predicted risks at each predicted risk (Figure 1b). The separation
between the distributions of diseased and non-diseased reflects the same
separation as the distributions in Figure 1a. The two non-overlapping areas are
now one area, ‘connected’ at the same predicted risk that separated them in
the previous figure. At each predicted risk, if interpreted as a threshold, the
proportion of diseased individuals is the sensitivity and the proportion of non-
diseased individuals is 1 minus the specificity. Calculating the sensitivity and
specificity for every possible risk threshold and plotting them is the best known
method for constructing the ROC curve.

In a further transformation, the predicted risks on the x-axis can be
replaced by the (cumulative) proportion of non-diseased individuals at each
predicted risk (Figure 1c). With this proportion on the x-axis, the distribution
of non-diseased individuals is now a diagonal line as its x and y-axes are
the same, and the distribution of diseased individuals is the curved line. This
transformation shows that the diagonal line is not just a reference line of no
discrimination (2), but represents one of the two risk distributions. The difference
between the curve and the diagonal line still reflects the separation between the
risk distributions in Figure 1a. In a final transformation, the ROC plot is obtained
by flipping both axes (Figure 1d).
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Figure 1. From risk distributions to the receiver operating characteristic (ROC) curve. (a)
Risk distributions of diseased and non-diseased individuals. Separation of the distributions
creates two nonoverlapping (grey) and one overlapping (white) areas. (b) Cumulative risk
distributions. The two nonoverlapping areas are now one area, connected at the same
predicted risk that separated them in (a). (c) Transformed cumulative risk distributions. The
x-axis presents the proportion of non-diseased individuals (p ) at each predicted risk instead
of the predicted risk. The proportion p equals p, for diseased and p,, for non-diseased
individuals. (d) ROC plot. This plot is obtained by reversing both the x-axis and y-axis of (c).
The same ROC plot is obtained when the x-axis in (c) has shown the proportion of diseased
individuals. Sensitivity (Se) is the percentage of diseased individuals who have predicted
risks higher than the threshold (1-p,). Specificity (Sp) is the percentage of non-diseased who
have predicted risks lower than the threshold (p ;).
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Figure 2. Inferring the risk distributions of diseased and non-diseased individuals from
the receiver operating characteristic (ROC) curve. (a) Risk distributions of diseased (right)
and non-diseased individuals (left) with the thresholds that can be inferred from the ROC
curve. (b) Thresholds of risks that mark where the risk distributions do and do not overlap.
(c) Threshold at which the risk distributions ‘cross’. (d) Modus of each risk distribution. Se,
sensitivity; Sp, specificity.

From ROC curve to risk distributions

When the ROC plot is an alternative way of presenting the risk distributions of
diseased and non-diseased individuals, it follows that the shapes and overlap of
the distributions can be deduced from the ROC curve. This can only approximate
the risk distributions; the information is not enough to draw the exact risk
distributions on a probability x-axis. This would require the presentation of risk
thresholds on the ROC curves or further information about population risk, the
effect sizes of individual predictors and calibration.

First, the extremes of the ROC curve represent the tails of the risk
distributions: the lowest possible risk threshold is in the upper right corner of the
ROC plot and the highest possible threshold in the lower left corner (Figures 2a
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and 2b). The ROC curve follows the border of the plot when the risk distributions
do not overlap in the tail: the sensitivity remains at 1 (100%) while specificity is
gradually increasing until threshold A; and the specificity is at 1 (100%) while
sensitivity is still decreasing beyond threshold B. The risk distributions overlap
across the entire range of predicted risks when changing the threshold in the
tails changes both sensitivity and specificity.

Second, the changes in sensitivity is equal to the change in 1- specificity
between all two points on the diagonal line. The tangent line of the ROC curve
that runs parallel to the diagonal line (Figure 2c) identifies the threshold where
the risk distributions ‘cross’ (threshold C in Figure 2a). The change in specificity
is larger than the change in sensitivity on the left of this threshold and vice versa
on the right. This threshold is the one with the highest discriminative ability,
where sensitivity + specificity — 1, known as Youden index, has its maximum
value (Supplementary Figure 1, available as Supplementary data at IJE online)
(10). The higher the Youden index, the more the distributions are separated, the
higher the AUC.

Third, when we draw straight lines from this ‘optimal’ threshold to both
ends of the ROC curve (Figure 2d), we see that the ROC curve moves away from
the straight line and then reconvenes at each end of the ROC curve. The tangent
line that runs parallel to each straight line indicates the highest point (modus) of
each distribution: at the right (point d) the modus of the non-diseased, and on
the left (point e) of the diseased populations. The modus and median are equal
when the tangent lines touch the ROC curve where the sensitivity for diseased
or the specificity for non-diseased individuals is 0.50 (50%).

Fourth, ROC curves have a ‘rounded’ shape when prediction models
are constructed from continuous variables or binary variables that have similar
effects on disease risk (Figure 2), but they may have an ‘angle’ (Figure 3) when,
for example, one binary predictor has a stronger effect on disease risk than all
other variables in the prediction model or one category of a categorical variable
has a stronger effect on disease risk than the others (11). When ROC curves
have an angle, the risk distributions of diseases and non-diseased individuals
do not cross there where sensitivity and specificity are equal.

Finally, ROC curves differ in the smoothness of the curve. When a ROC
curve is stepped rather than smooth (Figure 4), it may be that the overall sample
size of the study is low, that the incidence is low or the that the prediction model
is based on a relatively small set of categorical predictors that generate a small
number predictor combinations.
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Figure 5 gives two examples of ROC curves from published empirical
studies (12,13). In Figure 5a we see, starting in the lower left corner of the plot,
that the ROC curve follows the border until sensitivity is approximately 40%. This
pattern is not seen at the upper right corner of the plot. The skewed shape of the
curve suggests that there is a categorical predictor that has a strong impact on
disease risk that may put 40% of the diseased individuals at higher risk than all
non-diseased. In Figure 5b, we see a ROC curve that is stepped. This study had
a sample size of only 57 lesions: 28 verruca and 29 clavus lesions. As a result,
each verruca and clavus lesion contribute 3% to the sensitivity and specificity.
When changing the risk threshold moves one or more lesions to the other side of
the threshold, the change in sensitivity or specificity is at least 3%.

a.q b.1

Se
Se

0 1-Sp 1

0 1-Sp 1

0 Predicted Risk 1 0 Predicted Risk 1 0 Predicted Risk 1

Figure 3. Rounded and non-rounded shapes of receiver operating characteristic (ROC)
curves and their underlying risk distributions. (a), (b) Rounded ROC curve when the prediction
model includes continuous variables or multiple categorical variables that have a similar
effect on disease risk. (c) ROC curve when (here) one binary predictor has a stronger effect
on disease risk than other variables in the model. Se, sensitivity; Sp, specificity.

Reappraisal of AUC limitations

We explained that the ROC curve is an alternative way of presenting risk
distributions and cumulative risk distributions and that the diagonal line is not
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merely a reference line but it is the risk distribution of non-diseased individuals
(Figure 1). The separation of the risk distributions is indicated by the area between
the ROC curve and the diagonal: the larger the area, the more separation
between the distributions and the higher the discriminative ability. The size of
the area is related to Somers’ D (14), a non-parametric rank correlation that can
be used to obtain the AUC as (D+1)/2 (15).

When the ROC plot is nothing more than an alternative graphical
presentation of risk distributions, it follows that the ROC curve does not need to
assume risk thresholds. The ROC curve can be used to determine the sensitivity
and specificity of a single risk threshold, but this does not need to be its primary
and only interpretation. The risk distributions of diseased and non-diseased
individuals and the separation between them are relevant for prediction models,
irrespective of the number of thresholds that is considered.

The AUC is commonly described as the probability that a random
individual from the diseased population is more likely to have a higher predicted
risk than a random individual from the non-diseased population. This explanation
still holds: this probability is higher when the risk distributions are further
separated. These random individuals can be considered as pairs, which is how
the AUC value is calculated from Somers’ D (14), but the consideration of pairs
is not essential or required for the interpretation of the AUC.

AUC has been criticized for being insensitive to detect improvements in
the prediction that result from adding risk factors with stronger effects (7-9, 16).
As the ROC curve is nothing more than an alternative presentation of the risk
distributions, it follows that this insensitivity is not a limitation of the metric: when
a predictor does not change the ROC, it does not change the underlying risk
distributions. Improving prediction models requires adding common predictors
with strong impact on disease risk to further separate the risk distributions,
which is difficult especially when prediction models have higher ‘baseline’ AUC
and their risk distributions are already separated. When adding predictors does
not improve the AUC, it means that the ROC curves of the baseline and updated
models are virtually the same. Adding the predictors may have changed the
predicted risks, and individuals may have moved between risk categories, but
each sensitivity comes with the ‘same’ specificity and vice versa. That said,
AUC is a metric for the big picture. The metric is unable to detect the improved
prediction due to rare risk factors with strong effects. When changes in predicted
risks are of interest, other metrics such as the integrated discrimination
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improvement (IDI) or Brier score need to be considered (17).

Finally, the criticism that the AUC lacks clinical relevance and omits
the consideration of costs and harms in weighing false-positives against false-
negatives (18, 19) is valid, but concerns the inappropriate use of the measure
rather than its shortcomings. The AUC is a measure of the discriminative ability
of a prediction model or continuous test in a certain population, quantifying the
separation of the risk distributions of diseased and non-diseased individuals.
It is not a measure of utility. For some clinical applications, an AUC of 0.65 will
be high enough, whereas for others 0.90 might be too low. Also, the optimal
threshold on the ROC curve (Youden index) may be irrelevant and suboptimal
from a clinical perspective.
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Figure 4. Examples of ‘stepped’ receiver operating characteristic (ROC) curves and their
underlying risk distributions. ROC curve when overall sample size or incidence is low. Se,

sensitivity; Sp, specificity.

The decision whether a prediction model is useful to guide medical
decisions is not determined by its discriminative ability alone, but requires
additional evaluations such as the prevalence, predictive value, the decision
impact of the test results, the implications of false-positive and false-negative
results, and others.
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Figure 5. Examples of empirical ROC curves. Receiver operating characteristic curves for (a)
the diagnosis of hepatitis B virus infection-related hepatocellular carcinoma using a serum
marker, reprinted under Creative Commons license CC BY 3.0 from Yao et al. 2016 (12) and
b) a predictive model for differentiating between two skin diseases, verruca and clavus, using

electrical impedance indices, reprinted under Creative Commons license CC BY 4.0 from
Hung et al. 2014 (13).
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Supplementary data

Predicted Risk

Predicted Risk

Predicted Risk

Supplementary Figure 1. Risk distributions and Youden index. Sensitivity (light grey) and
specificity (dark grey) for different risk thresholds, showing that sensitivity + specificity is
optimal when the threshold is where the risk distributions ‘cross’ (Figure b). Youden index is
sensitivity + specificity — 1.
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Abstract

Objective Adding risk factors to a prediction model often increases the area
under the receiver operating characteristic curve (AUC) only slightly, particularly
when the AUC of the model was already high. We investigated whether a risk
factor that minimally improves the AUC may nevertheless improve the predictive
ability of the model, assessed by integrated discrimination improvement (1DI).
Study Design and Setting \We simulated data sets with risk factors and event
status for 100,000 hypothetical individuals and created prediction models with
AUCs between 0.50 and 0.95. We added a single risk factor for which the effect
was modeled as a certain odds ratio (OR 2, 4, 8) or AUC increment (AAUC 0.01,
0.02, 0.03).

Results Across all AUC values of the baseline model, for a risk factor with the
same OR, both AAUC and IDI were lower when the AUC of the baseline model
was higher. When the increment in AUC was small (AAUC 0.01), the IDI was also
small, except when the AUC

of the baseline model was > 0.90.

Conclusion When the addition of a risk factor shows minimal improvement in
AUC, predicted risks generally show minimal changes too. Updating risk models
with strong risk factors may be informative for a subgroup of individuals, but
not at the population level. The AUC may not be as insensitive as is frequently
argued.
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Introduction

The area under the receiver operating characteristic (ROC) curve (AUC, or
c-statistic) is the most commonly used metric to evaluate prediction models for
their ability to discriminate between individuals with and without an event, and
improvement in AUC (AAUC) is the standard for assessing the value of adding
new risk factors to prediction models (1-4). Yet, AAUC has been criticized for
being insensitive to detect improvements in prediction that result from adding
clinically established risk factors (2, 5-9).

In recent years, researchers have widely adopted novel measures such
as the net reclassification improvement (NRI) and integrated discrimination
improvement (IDI) (2, 5). These measures can produce statistically significant
results even when AAUC is small, which may explain their popularity. Inferences
about improvement in prediction are generally based on the statistical
significance of the NRI and IDI, and the small absolute values for the measures
are often ignored (article in preparation).

The argument that AUC is insensitive suggests that there may be
improvements in the predictive performance that are not detected by AUC. AUC
is a measure of discrimination. It considers the rank of the predicted risks of
individuals who will develop an event and those who will not, not the absolute
values of the predicted probabilities. A measure that does focus on changes in
the absolute predicted risks is the IDI (2). IDI quantifies the improvement of the
risk difference between individuals with and without an event that results from
adding risk factors to a prediction model (2). In the case of a risk factor that
adds to a model’s predictive ability, the risk factor increases predicted risks for
individuals who will develop the event and decreases predicted risks for those
who will not, leading to a larger risk difference, and hence a positive IDI value.
However, the absolute value of IDI is strongly determined by the overall event
rate in the population (10), which hampers a clear and uniform interpretation of
IDI across studies with different event rates.

Previous studies have shown that both AAUC and IDI are higher when
the effect size of the added risk factor is higher (10-12). However, little is known
about the size of IDI in the situation when AAUC is small, for example, lower
than 0.01, at which it is generally concluded that the discriminative ability of the
model is not improved (10). When AUC is insensitive, as is argued (2, 5-9), small
values of AAUC might still go together with IDI values that are of clinical interest.

67



Chapter 4

In other words, there might be worthy improvement in predicted risks that is not
apparent from the small values of AAUC.

In this paper, we investigate whether and when the addition of risk
factors may show minimal improvement in discrimination (AAUC) but have
a major impact on the predictive ability, which we define as the difference in
predicted risks between individuals who will develop the event and those who
will not, assessed by IDI. Using simulated data, we assessed the improvement
in AUC and IDI for prediction models that were updated by adding a single risk
factor for which we varied the frequency and effect size.

Methods

This study was conducted using simulated data, which allows us to vary the
parameters that determine the predictive performance. We created datasets of
risk factors and event status and constructed baseline prediction models that
we updated by adding a single risk factor. Between scenarios, we varied the
AUC of the baseline prediction models, the population event incidence, and the
frequency and effect size of the added risk factor.

Data simulation

To construct simulated datasets, we used a modeling procedure that has been
described in detail elsewhere (11, 13). In short, the procedure creates a dataset
of risk factors for a hypothetical population of 100,000 individuals. Risk factors
were assigned in such a way that their frequencies matched prespecified
values. By changing the number, frequency and odds ratios (ORs) of simulated
risk factors, we created baseline models with an AUC ranging between 0.50 and
0.95 (see the following). We then added a single binary risk factor for which we
varied the frequency and OR between scenarios. Event status was simulated
on the basis of event probabilities, which were estimated using Bayes’ theorem
using the ORs and frequencies of the risk factors. Bayes’ theorem specifies that
the posterior odds of developing an event is obtained by multiplying the prior
odds by the likelihood ratios of the individual’s status on all risk factors. Events
were then assigned based on a procedure that for each individual compared
the calculated probability to a randomly drawn value between 0 and 1 from a
uniform distribution. An individual was assigned to develop an event when the
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probability was higher than the random value and to not develop an event when
it was lower than the random value. This procedure ensures that the percentage
of individuals who experience an event closely approximates the predicted
event risk at each level of risk. This means that, for example, approximately 60%
of the individuals with a predicted baseline event probability of 60% experience
the event in our simulated data. Predicted risks for each individual for the
baseline and updated models were obtained using logistic regression analysis,
and rounded to two decimal points.

To obtain the risk data for a specific value of the AUC, we used aniterative
procedure in which we added as many genetic variants until the AUC of the
prediction model reached a prespecified value (14). To this end, we calculated
predicted risks using Bayes’ theorem, assigned disease status and obtained the
AUC of the prediction model after each variant added, as described previously.
The procedure was stopped when the AUC value exceeded the prespecified
value, and then the risk distribution for which the AUC value was closest to the
prespecified value was considered. The AUC value, the population disease risk,
the ORs, and frequencies of the risk alleles that were used to construct the risk
distributions, were varied between scenarios.

Statistical analyses

AAUC was calculated as the difference between the AUC of the baseline and
updated models, with AUC assessed using the c-statistic (4). IDI was calculated
as improvement in the risk difference of mean predicted risks in individuals with
and without events between the baseline model and the updated model (2).

To understand the relationship between AUC and IDI, we first show how
the OR of the added risk factor affects both metrics. We show the relationship
between AAUC and the OR of the added risk factor across different AUC values
of the baseline prediction model (8, 15). We show AAUC when the baseline
models are updated with a single risk factor, for which we considered fixed ORs
of 2, 4, and 8 in separate scenarios. We also show the value of the OR that was
needed to improve the prediction model by different levels of AAUC, for which
we considered AAUC of 0.01, 0.02, and 0.03. For each value of the baseline
AUC, we added a risk factor for which we increased the OR until the specified
AAUC (£0.0025) was reached. ORs were increased by increments of 0.1, and
by 0.01 when AAUC was close to the lower end of the range. For example, to
simulate a AAUC of 0.01, we increased the OR until the observed AAUC was
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between 0.0075 and 0.0125.

Next, we show the relationship between IDI and the OR of the added risk
factor across different AUC values of the baseline model (8, 15). The absolute
value of IDI is determined by the overall event rate (e.g., disease incidence) in
the population: larger differences between subjects with and without events will
be observed for the same OR when event rates are higher. In addition, when the
frequency of the risk factor is higher than the event rate, we will find that also
subjects without the event will have the risk factor and that the risk difference
will be smaller. For these reasons, we varied the event rate and the frequency
of the added risk factor between scenarios. The event rates were 5%, 10% or
20%, and the risk factor frequencies were set at half, equal or twice the value of
the event rate to reflect scenarios in which the added risk factor was half, equal
or more twice as frequent as the event. For example, when the event rate was
5%, the frequency of the added risk factor was 2.5%, 5%, and 10% in separate
scenarios.

To investigate IDI for fixed increments of AUC, we constructed baseline
risk models for which the AUC ranged from 0.50 to 0.95. We added a single
binary risk factor to each risk model for which we varied the ORs so that
AAUC was 0.01, 0.02, and 0.03. In separate scenarios, we additionally varied
the event rate and the frequency of the added risk factor, in a similar way as
specified previously. All analyses were performed using R software version 3.1.0
(R-project.org) (16).

Finally, to investigate the assessment of AAUC and IDI empirically, we
conducted a literature review of genetic prediction studies in which both AAUC
and IDI were assessed. Using Thomson Reuters Web of Knowledge (version
5.17, Thomson Reuters, Philadelphia, USA) we retrieved all publications that
cited the article by Pencina et al. that first introduced IDI (search date 28 April,
2015) (2). We limited our analysis to empirical studies that had investigated the
addition of one or more single-nucleotide polymorphisms (SNPs) to a model
containing clinical risk factors. The search yielded 1,962 unique publications
(Appendix Fig. 1 at www.jclinepi.com), of which 40 reported both AAUC and IDI.
Seven studies were excluded because they only reported the P-value for the IDI
without the IDI value. Thirty-three studies were included in our analysis.
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Results

Figure 1a shows how AAUC declines with increasing baseline AUC when the
effect size of the added risk factor is held constant. The OR of the added risk
factor needed to be higher at higher baseline AUC to achieve a specific AAUC,
particularly when the AUC of the baseline model exceeded 0.90 (Figure 1b).
For example, to increase the AUC by 0.03 (AAUC 0.083), the OR of the added
risk factor needed to be 1.7 when the baseline AUC was 0.61 and 5.0 when the
baseline AUC was 0.90. The exact values of AAUC and the OR varied some with
the event rate and the risk factor frequency (data not shown).

A) B)
0
CiN — (ORU2 2 — AAUC 0.01
***** OR 4 === AAUC 0.02

OR 8 AAUC 0.03

04

AAUC
03
OR

02

0.1

00

T T T T T T T T T T T T
05 06 07 08 09 10 05 06 07 08 09 10

Baseline AUC Baseline AUC

Figure 1. Relationship between the odds ratio (OR) of the added risk factor and the
improvement in the area under the receiver operating characteristic curve (AAUC) by AUC
value of the baseline prediction model. (A) Observed AAUC for fixed values of OR and (B)
Required OR for fixed values of AAUC. AAUC and odds ratios were calculated for scenarios
in which the event rate was 10%, and the frequency of the added risk factor was 20%.

Figure 2 shows how IDI decreased with increasing baseline AUC.
Where AAUC showed a “linear” decline with increasing baseline AUC (Figure
1a) the IDI was constant for most values of baseline AUC. For higher values of
ORs, this constant IDI was observed when the frequency of the risk factor was
higher than the rate of the event (Appendix Figure 2 at www.jclinepi.com). As
expected, the absolute values of IDI varied with the event rate and the frequency
of the added risk factor (see Appendix Figure 2 at www.clinepi.com).

When the effect of updating the prediction model was fixed in terms
of AAUC, we observed a larger IDI when the AUC of the baseline model was
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higher (Figure 3). This relation was observed across all scenarios in which the
event rate and the frequency of the added risk factor were varied (Appendix
Figure 3 at www.jclinepi.com). The higher IDI is explained by the fact that the
risk factor needed to have a larger OR to yield the same AAUC at higher levels
of baseline AUC (Figure 1b). Yet, IDI remained low across baseline AUCs when
AAUC was 0.01. For example, when the AUC of the baseline model was 0.90
and the event rate was 10%, IDI was 0.02, indicating that the risk differences
between individuals with and without events increased by 0.02.

Figure 4 shows a scatterplot of IDI by AAUC values from 33 genetic
prediction studies that reported the extension of clinical prediction model with
one or more SNPs. The figure shows that IDI values tended to be higher for
higher values of AAUC. Yet, when AAUC was lower than 0.01, IDI was also lower
than 0.01, indicating a 1% absolute increase in the risk difference between
individuals with and without events.
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— OR2
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IDI
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Figure 2. Relationship between the odds ratio (OR) of the added risk factor and integrated
discrimination improvement (IDI) by the area under the receiver operating characteristic
curve (AUC) of the baseline prediction model. IDI was calculated for scenarios in which the
event rate was 10% and the frequency of the added risk factor was 20%.
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Figure 3. Integrated discrimination improvement (IDI) for fixed increments in the area under
the receiver operating characteristic curve (AAUC) by AUC value of the baseline prediction
model. In all scenarios, the event rate was 10% and the frequency of the added risk factor

was 20%.
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Figure 4. Increment in the area under the receiver operating characteristic curve (AAUC)
and integrated discrimination improvement (IDI) in empirical studies on genetic prediction of
multifactorial diseases.
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Discussion

This study showed that adding risk factors to prediction models may improve
the predictive ability when the increase in AUC is minimal, but only when the
AUC of the baseline model was high (AUC > 0.90). In the range of commonly
observed AUC values, those between 0.60 and 0.80, a small increase in AUC
(AAUC <0.01) was accompanied with small improvements in predictive ability
both in the simulation analyses and the review of empirical studies.

The aim of our paper was to investigate whether updating risk models
may change predicted risks in the absence of an apparent improvement in
AUC. The most basic metric that assesses changes in predicted risks on the
group level is the comparison of the risk differences between individuals who
will develop an event and those who will not, before and after updating the risk
model. This change in predicted risks is indicated by the IDI. In absence of a
change in predicted risks, and hence absence of improved risk differences, all
other metrics that operate from the absolute predicted risks will show effectively
zero improvement, such as Brier score. When updating does not improve AUC
all combinations of sensitivity and specificity will remain unchanged, and their
ROC curves will overlap perfectly. This also means that other measures that
depend on sensitivity and specificity, such as decision curve analysis and net
benefit, will also show that updating of the model will result in no improvement.

AUC has been criticized for being an insensitive metric to evaluate
improvement in predictive performance (2, 5, 8, 9), as the measure was unable
to detect improvements that result from adding risk factors, even those with
strong effects. In line with earlier studies we found that the effect size of a risk
factor needs to be higher to improve the discriminative ability further when
prediction models have a higher baseline AUC (8-12). Rather than concluding
that AUC is an insensitive measure, it seems more justified to infer that prediction
models with higher discriminative ability at baseline need stronger risk factors to
improve further.

In line with previous studies, we also observed that IDI varied with the
effect size and frequency of the added risk factor as well as with the event
rate (10-12). Where an earlier study suggested that IDI was relatively constant
across values of baseline AUC (10), we found that IDI clearly declined (Figure
2 and Appendix Figure 2 at www.jclinepi.com). This might be explained by the
fact that we considered higher AUC values for the baseline prediction models,
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up to AUC 0.95 as compared to 0.90 (10).

Pepe et al. (17) demonstrated that measures for evaluating the value of
addingrisk factors to a prediction model have the same null hypothesis. This does
not, however, mean that the measures can be used interchangeably (12). When
two measures have the same null hypothesis, such as AAUC and IDI, they still
assess different aspects of model performance. AAUC quantifies improvement
in discrimination and IDI assesses improvement in predictive ability. If risk
factors improve discrimination, they will also improve the predictive ability, but
they inform about different aspects of model performance. In the evaluation of
genetic and diagnostic tests, this distinction is commonly accepted: sensitivity
and specificity are always assessed together with measures of predictive value
such as penetrance or positive and negative predictive values. Statistically, to
assess whether a risk factor adds information to a risk model, the likelihood ratio
test is preferred (15, 17).

The most important finding from this study is that strong risk factors
added to prediction models with higher baseline AUC that did not yield
substantial improvement of AUC can improve predictions of risk, as assessed
by the IDI. This means that adding risk factors to models that already have
excellent discrimination does not further improve the discriminative ability but
can improve the predictive ability: the risk difference between individuals who
will develop the event and those who will not may become larger when models
with high AUC are updated with strong risk factors. However, when the increment
in AUC of the prediction models was small (AAUC = 0.01), the changes in
predicted risk were also small across all AUC values of the baseline model. The
same was observed in the empirical genetic prediction studies (see Figure 4).
When AUC improves by 0.01, which is commonly observed in empirical studies,
the effect of added risk factor(s) was not strong enough to improve the model’'s
discriminative and predictive ability.

The reason why adding strong risk factors can show improvement in
the predictive ability and only minimal improvement in discrimination is that, at
higher levels of baseline AUC, many individuals who will experience an event
already have higher predicted risks than many of those who will not. Because
AUC is a rank order test, which compares the average ranks of individuals
with and without events, increasing the predicted risks of individuals who will
experience and event and were already at higher risk or further decreasing the
risks of those who will not experience an event has no or limited impact on the
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ranking. In contrast, IDI specifically measures these changes in predicted risks
and may observe improved prediction not indicated by AAUC.

Measures of predictive performance are used to assess and identify
the best prediction model for making medical decisions and informing
patient in a certain health care context. The intended use of the model sets
the standard to decide whether the best model is predictive enough but also
which measure(s) should be used for the assessment of predictive performance
and its improvement. AUC and IDI, and other measures such as NRI, are
complementary, they each assess a different aspect predictive performance,
and their results may not evidently lead to the same inferences about its
improvement. For example, when the model is used to identify risk groups, the
interest is in improving the sensitivity and specificity at various risk thresholds.
Thus, the updated model should yield more favorable combinations of sensitivity
and specificity, which is indicated by a change in the ROC curve and by a
positive AAUC. When AAUC is small, then the updated model does not perform
markedly better. Yet, when the model is used to inform individual patients, the
interest is in improving predicted risks, which is indicated by IDI.

When IDI is used to assess the predictive performance improvement,
the value may be statistically significant even when the improvement in AUC
is minimal. When AAUC was lower than 0.01 in the empirical studies of the
literature review, IDI values were statistically significant in 7 out of 14 studies (see
Appendix Table 1 at www.jclinepi.com). Yet, the improvement in performance
should not be concluded from the statistical significance of IDI (15) but from
its absolute value. The essential question is whether risk factors meaningfully
improve the model’s predictive ability. What degree of improvement is clinically
relevant varies between scenarios. In large studies, small values of IDI may be
statistically significant, but not relevant. Furthermore, note that the absolute value
of IDI is affected by the event rate (10). Given the same baseline AUC and AAUC,
IDI will be higher for events that are more common. This dependence on the
event rate hampers a clear and uniform interpretation of IDI across populations
with different event rates. What level of IDI is clinically relevant depends on the
specific health care scenario and by the question what is to be gained from
the additional information. Note that only three studies used validation data or
a validation approach (bootstrapping/cross validation) for the assessment of
predictive performance (Appendix References 15, 16, 21 at www.jclinepi.com).
Overfitting of the risk models in derivation data may lead to overestimation of the
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improvement in predictive performance.

Our study showed that there were no major improvements in predicted
risks when improvements in discrimination were minimal. Only for prediction
models with exceptionally high discriminative accuracy, predictive ability may
have improved when increments in AUC are small. In all other instances, small
improvements in AUC indicate small changes in predicted risks. The AUC may
not be as insensitive as is frequently argued.
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Articles from citing Pencina
et al., 2008 (n = 1,962)

Articles not considered:
e Not selected by keywords*:
1,749

A\ 4

A 4

Articles screened (n = 213)

Articles excluded (n =107):
e Not empirical study: 83
e Not germline DNA: 24

A 4

v

Full-text articles assessed
for eligibility (» = 106)

Articles excluded:

e Not simultaneously
assessed AUC and IDI: 66

A\ 4

\4
Articles included (n = 40)

Articles excluded:
Not absolute value IDI: 7

A 4

Articles available for
analyses (n = 33)

Appendix Figure 1. Summary of literature search and selection. * Keywords that were
used: genetic, genomic, polygenic, polymorphisms, or DNA. AUC = area under the receiver
operating characteristic curve; IDI = integrated discrimination improvement; SNP = single
nucleotide polymorphism
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Small improvement in the area under the receiver operating characteristic curve indicated small
changes in predicted risks

Event rate 5% Event rate 10% Event rate 20%
Disease risk 5% Disease risk 10% Disease risk 20%
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=]

Baseline AUC Baseline AUC Baseline AUC

Appendix Figure 2. Relationship between the odds ratio (OR) of the added risk factor
and integrated discrimination improvement (IDI) by the area under the receiver operating
characteristic curve (AUC) of the baseline prediction model. IDI was calculated for scenarios
in which the population disease risk (event rate) and the frequency (p) of the added risk
factor were varied.
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Appendix Figure 3. Integrated discrimination improvement (IDI) for different increments in
the area under the receiver operating characteristic curve (AAUC) by the area under the
receiver operating characteristic curve of the baseline prediction model. IDI was calculated
for scenarios in which the population disease risk (event rate) and the frequency (p) of the
added risk factor were varied.
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Abstract

Purpose The area under the receiver operating characteristic curve (AUC) is
commonly used for evaluating the improvement of polygenic risk models and
increasingly assessed together with the net reclassification improvement (NRI)
and integrated discrimination improvement (IDI). We evaluated how researchers
described and interpreted AUC, NRI, and IDI when simultaneously assessed.
Methods We reviewed how researchers described definitions of AUC, NRI and
IDI and how they computed each metric. Next, we reviewed how the increment
in AUC, NRI and IDI were interpreted; and how the overall conclusion about the
improvement of the risk model was reached.

Results AUC, NRI and IDI were correctly defined in 63%, 70%, and 0% of the
articles. All statistically significant values and almost half of the non-significant
were interpreted as indicative of improvement, irrespective of the values of the
metrics. Also, small, nonsignificant changes in the AUC were interpreted as
indication of improvement when NRI and IDI were statistically significant.
Conclusion Researchers have insufficient knowledge about how to interpret the
various metrics for the assessment of the predictive performance of polygenic
risk models and rely on the statistical significance for their interpretation. A better
understanding is needed to achieve more meaningful interpretation of polygenic
prediction studies.
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Introduction

The area under the receiver operating characteristic (ROC) curve (AUC or
c-statistic) (1) is the most commonly used measure for the evaluation of prediction
models. AUC quantifies the ability to discriminate between individuals who will or
will not manifest the outcome of interest (referred to as events and nonevents in
this article). When a model is updated with new risk factors, such as biomarkers,
genetic factors or imaging results, the improvement in the discriminative ability
is assessed by the increment in AUC (AAUC) (Box 1) (2-4).

In recent years, alternative measures for the evaluation of prediction
models have been proposed, including reclassification measures such as the net
reclassification improvement (NRI) and integrated discrimination improvement
(IDI) (2,5,6). NRI quantifies the extent to which the addition of risk factors leads
to improved classification of risks, and IDI assesses the improvement of the
risk difference between events and nonevents (2). NRI and IDI are increasingly
used in addition to AUC, but the rationale and value of adding these metrics
remain often unclear. NRI and IDI are frequently described as measures of
discrimination (7,8) and IDI is often labeled as measure of reclassification (9,10).
When the purpose and meaning of the metrics are unclear, it is challenging to
interpret the findings, especially when these are discordant.

Discordant findings are often attributed to shortcomings of the metrics.
AUC is argued to be insensitive as it often fails to detect improvements in
prediction that result from adding clinically relevantrisk factors (2,5,11-14). Others
argue that NRI and IDI are too sensitive for identifying changes in predicted
risks, which may lead to false positive conclusions about the improvement
of prediction models (15-17). We earlier showed that findings might also be
discordant because the metrics assess different aspects of the improvement
in predictive performance: AAUC assesses the gain in discriminative ability,
NRI assesses changes in risk classification, and IDI assesses changes in the
risk differences (18). For example, adding genetic factors might increase the
risk differences without improving discriminative ability when the AUC of the
baseline prediction model is already high (18).

The aim of this study was to evaluate how researchers describe
and interpret the simultaneous use of multiple metrics in the assessment of
improvement in predictive performance of polygenic risk models. Following
the recommendations given by the Statement on the reporting of genetic risk
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prediction studies (GRIPS) (19), we reviewed how researchers described what
the metrics are assessing; how the metrics were obtained, how their results were
interpreted, and how the overall conclusion was reached.

Box 1. Evaluating the predictive performance of polygenic models using AUC, NRI, and IDI:
a tutorial

a Clinical prediction model b Clinical-genetic prediction model c 1 ROC plot
0.8
30 30
Threshold P Threshold
% 0.6
254 517 £
® 201 % g 20 ? é
1%
g 7 % Nonevents g 174 % Nonevents &3 04
§ 1517 W Events §15177 7 W Events
8 1047 8101555 i
Z 7277 02 ¢ Clinical prediction model
517 51%2%% — Clinical-genetic prediction model
0 7 P o %5 A ok « Threshold figure A and B
0 0.2 0.4 06 0.8 1 0 02 04 06 08 1 0 0.2 04 06 0.8 1
Predicted risk Predicted risk 1-Specificity

Genetic factors are added to clinical prediction models to improve the prediction of
disease. If these genetic factors improve the model, these improvements are reflected in
the distributions of predicted risks. Figure A shows the distributions of predicted risks using
a clinical prediction model for participants in a hypothetical study. The participants who did
not develop the disease during the duration of the study (referred to as nonevents) tended to
have lower predicted risks than those who did develop the disease (events): the distribution
of predicted risks for nonevents is skewed toward lower risk as compared with the distribution
of predicted risks for events. When genetic factors are added to the clinical prediction model,
we see that the distribution for nonevents “moves” even more toward lower risk, and the
distribution for events moves toward higher risk (Figure B). There are several ways how
these changes in the distributions of predicted risks can be quantified. The most commonly
known is the area under the receiver operating characteristic curve (AUC) (1), but the net
reclassification improvement (NRI) and integrated discrimination improvement (IDI) became
popular once introduced (2). We will explain the measures in reverse order.

IDI: increase in risk difference

Instead of presenting distributions of predicted risks for events and nonevents, we can
calculate the average predicted risks in both groups for each prediction model. When the risk
distributions of events and nonevents entirely overlap, the difference between the averages
is zero. When the risk distributions “move” further apart—in our example, because genetic
factors were added—the difference between the two averages becomes larger. The increase
in the risk differences between the clinical and the clinical-genetic prediction model is the
DI (2).

NRI: reclassification into correct risk category

Prediction models are often used to classify people in risk categories by setting one or
more risk thresholds. In our example, we have a single threshold that divides the population
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into a low- and high-risk group. The proportion of events that have predicted risks above
the threshold is the sensitivity and the proportion of nonevents with predicted risks below
the threshold is the specificity. The sensitivity and specificity are the proportions of correct
classifications. A perfect prediction model would classify all events above the threshold
and all nonevents below, and have sensitivity and specificity of 100%. When predicted risks
change because genetic factors are added to the clinical model, we want the sensitivity and/
or specificity to increase. The increase in sensitivity plus the increase in specificity is the NRI.
In general, and if more thresholds are considered, NRI is the sum of the proportion of events
that are reclassified to higher risk categories and the proportion of nonevents reclassified to
lower categories (2).

AUC: classification across all risk thresholds

NRI assesses the improvement in discrimination for specific risk thresholds and varies with
the number of thresholds and their values (22). When a clinical prediction model has no known
risk thresholds, we can assess the improvement by calculating and comparing sensitivity and
specificity across all possible risk thresholds. The lines that connect the sensitivity—specificity
of all thresholds of a prediction model is the receiver operating characteristic (ROC) curve
and the area underneath is the AUC (Figure C) (1). The figures show that the clinical-genetic
prediction model has more favorable combinations of sensitivity and specificity than the
clinical model: each sensitivity comes with a higher specificity (or each specificity with a
higher sensitivity). The combinations are more favorable, because there is less overlap
between the risk distributions of events and nonevents using the clinical-genetic model as
compared with the clinical model. This leads to a larger area under the ROC curve and thus
a higher AUC. The improvement in discriminative ability between the models is the increment
in AUC (AAUC) (4).

Materials and methods

Literature search

We performed a literature search to find empirical studies that evaluated the
improvement in predictive performance of risk models by assessing AAUC, NRI,
and IDI. Using Thomson Reuters Web of Knowledge (version 5.17) we retrieved
all publications that cited the article by Pencina et al. in which the NRI and
IDI were introduced (search date 28 December 2016) (2). To limit the number
of articles, we focused on studies that investigated the improved predictive
performance of adding genetic variants (single nucleotide polymorphisms,
or SNPs) to clinical risk models. For this purpose, we selected publications
using the keywords genetic, genomic, polygenic, polymorphisms, or DNA. We
excluded studies on non-germline DNA, such as circulating cell-free DNA or
tumor DNA. Full-text articles and supplementary materials were obtained for
data extraction.
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Data extraction

For each study, we recorded sample size, event rate, clinical risk factors in
the clinical prediction models as well as the number of SNPs that was added.
The event rate is the proportion of individuals with the outcome of interest in
the study population, which was the incidence, prevalence or the size of case
population, depending on the design of the study. We extracted AUC values of
the baseline and updated models, as well as the values of NRI and IDI along with
P values and confidence intervals. We recorded whether NRI was used with or
without categories: categorical NRI is a metric that is based on the proportions
of people that move between risk categories, and continuous NRI is based on
the proportions of people that have higher or lower risks after updating the risk
model. When multiple prediction models were investigated in one article, we
selected the model that was described in the abstract, the model that had the
highest number of risk factors in the baseline model, or the model that had the
highest number of SNPs added.

We extracted, verbatim, descriptions of the definitions and calculations
of AUC, NRI, and IDI from the methods section of the articles. From the results
and discussion sections, we extracted descriptions of the numerical results of
the metrics, the interpretation of each measure, and the general conclusions.
All descriptions were imported into Microsoft Excel (Microsoft Corporation,
Redmond, WA, USA).

Analysis

We evaluated the point estimates and statistical significance of NRI and IDI in
relation to AAUC. Statistical significance was based on the confidence intervals
or the reported P values using the threshold of statistical significance mentioned
in the articles, which was P < 0.05 in all of them.

Using the excerpts of the methods section, we reviewed how the
measure and calculation of AUC, NRI and IDI were described, and evaluated
whether these followed common definitions and approaches. For the latter, we
required that the definition of AUC should at least have mentioned that it is a
measure of discrimination or the concordance between predicted and observed
survival, that NRI is a measure of reclassification, and that IDI assesses the
improvement in risk differences or discrimination slopes (Box S1). Descriptions
of the calculations needed to give insight in the computation. For AUC the
description needed to refer to the c-statistic or nonparametric trapezoidal rule. For
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NRI the description needed to include that it was the sum of the net percentage
of correct reclassification in events and nonevents, with reclassification refering
to changes between risk categories for categorical NRI and changes in risk
for continuous NRI. The description of IDI needed to refer to the difference of
the mean increments and mean decrements in estimated probabilities between
models or the difference in discrimination slopes of the baseline and updated
model (Box S1).

Using the excerpts of the results section, we assessed how the values
of AUC, NRI and IDI were described. We documented whether the results were
described by their effect sizes, P values or confidence intervals, or both, and
whether and how the results were interpreted in terms of model improvement.
We documented whether authors reported the presence or absence of
improvement, and considered “minimal improvement” when they described the
improvement or increase in the estimates as being small or minimal.

Finally, using excerpts from the discussion, we evaluated how the
overall improvement of the model was interpreted. In addition to the presence
or absence of improvement, we distinguished “minimal improvement” when the
reported improvement was considered minimal or marginal, and “inconclusive”
when the authors concluded that improvement was demonstrated from
some metric(s) but not others. Two researchers independently evaluated the
descriptions and disagreements were discussed to reach consensus.

Results

Of the 2509 articles that had cited the article of Pencina et al., 250 articles
reported polygenic risk studies of which 32 met the inclusion criteria (Figure
S1). Most excluded articles did not report empirical analyses (such as reviews
and commentaries, n = 94) or did not report on all three measures (n = 83).
The majority of the 32 included articles evaluated cardiovascular (n = 15) and
cancer prediction models (n = 8; Table S1).

Definitions of AUC and NRI and IDI were given in 84, 81, and 72% of
the articles, of which 63, 70, and 0% were correct (Table 1). IDI was frequently
described as a metric of reclassification (30%) and discrimination (22%), and
five articles described NRI and IDI together, for example, as measures of “model
performance” or “utility”. Half of the articles (56%) described how AUC was
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obtained, of which all mentioned the c-statistic, but only three (9%) explained the
calculation of NRI and three others (9%) explained IDI. The three descriptions
for the calculation of IDI were correct, but none of the articles described NRI as
the sum of two net percentages.
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Figure 1. a Net reclassification improvement (NRI) and b integrated discrimination
improvement (IDI) by increments in the area under the receiver operating characteristic curve
(A AUC). Excluded are studies that used continuous NRI or that did not report the value of the
NRI (a) and articles that did not report the value of IDI (b)
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AUC values of the baseline clinical risk models ranged from 0.56 to 0.87
(Table S2), and AAUC ranged from -0.001 to 0.09 (median 0.01, interquartile
range [IQR] 0.002-0.02; Table 2). Most (94%) AAUC values were 0.04 or lower.
Of the 24 articles that computed the categorical NRI, the values ranged from
-0.02 to 0.54 (median 0.044, IQR 0.012-0.142;) and the 7 articles that computed
the continuous NRI reported values ranging from 0.07 to 1.24 (median 0.233;
IQR 0.137-0.356; Table 2). Of the 24 articles that reported absolute IDI, values
ranged from 0.00062 (a 0.062% absolute increase in risk difference between
events and nonevents) to 0.128 (median 0.011; IQR 0.002-0.021). NRI and IDI
values were, as expected, higher for higher values of AAUC (Figure 1).

AAUC was statistically significant in 13 articles, NRI in 21, and IDI in
26 (Table 2). When AAUC was higher than 0.01 (n = 15 studies), IDI and NRI
were both statistically significant in all but 1 of 14 studies (Table 2). Of the 17
studies in which AAUC was equal or lower than 0.01, NRI and IDI values were
still statistically significant in 7 out of 16 of them.

When the value of a metric was statistically significant, the metric was
interpreted as indicating improvement of the model in all articles, with several
reporting that the improvement was minimal (Table 3). When a metric was not
statistically significant, almost half were still described as indicative of model
improvement, now with most acknowledging that the improvement was minimal.
All AAUC values that were not statistically significant and interpreted as no
indication of improvement were lower than 0.005, whereas those that were
considered to indicate (minimal) improvement were all equal or higher than
0.005. All statistically significant AAUC values were interpreted as indicating
improvement of the model, irrespective of their absolute values.

In 17 of the 27 articles that reported all three values in the results section
(Table 2), the authors interpreted that all three metrics showed improvement of
the model. Among these were 7 studies in which all three metrics were statistically
significant and 7 studies in which NRI and IDI were statistically significant but
AAUC was not. In 6 of the 27 articles, the authors interpreted that the AAUC
showed no improvement of the model but that the NRI and IDI did. In all of these,
AAUC was equal or lower than 0.003, and NRI was not statistically significant in
2 of them. Only 1 of the 27 articles interpreted that none of the metrics indicated
an improvement of the prediction model; in this study, the absolute values of
AAUC, NRI and IDI were all lower than 0.001 and not statistically significant.

All but five articles concluded that, overall, the prediction model had
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improved from the addition of genetic factors (Table 2). Half of them mentioned
that the improvement was minimal. All articles in which the individual metrics
were evaluated as indicative of improvement, also had a overall positive
evaluation, except one in which all three metrics were interpreted as showing
minimal improvement leading to an overall conclusion of no improvement. Of
the six articles that reported improvement indicated by NRI and IDI but not by
AAUC, five concluded that the model had improved albeit minimally, and one
refrained from making an overall conclusion.
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Table 3. Inferences about model improvement in the results section of the article in relation to
the statistical significance of the metrics

Model improvement

Yes Yes, but minimally % No
% (articles) (articles) % (articles)
Statistically significant
AAUC 85 (11) 15 (2) 0(0)
NRI 90 (18) 10 (2) 0(0)
IDI 83 (19) 17 (4) 0(0)
Not statistically significant
AAUC 8 (1) 33 (4) 59 (7)
NRI 11(1) 33(3) 56 (5)
IDI 25 (1) 25 (1) 50 (2)

Statistical significance was based on reported P values and confidence intervals and the
criterion of statistical significance in the articles, which was P < 0.05 in all of them. Articles
that did not report P values or confidence intervals for AAUC (n = 6), NRI (n= 1) and IDI (n
= 2), or did not interpret AAUC (n = 1), NRI (n = 2) and IDI (n = 3) are excluded from this
table. AAUC = increment in the area under the receiver operating characteristic curve; IDI =
integrated discrimination improvement; NRI = net reclassification improvement

Discussion

AUC, NRI, and IDI are three metrics that are increasingly used together in
the assessment of polygenic risk models. Our analysis showed that authors
provided minimal information about the purpose and assessment of the three
metrics and that they mostly relied on statistical significance when interpreting
the results. None of the articles distinguished, in their conclusions, between the
different aspects of model performance that the metrics address.

Three observations can be made from this study. First, one-third of the
articles did not specify what was measured by IDI and one-fifth did not do so
for AUC and NRI. When authors did describe the metrics, only two-thirds were
correct about what is measured by AUC and NRI, namely discrimination and
reclassification, but were mostly wrong about IDI, which they described as a
metric of discrimination, reclassification, or more general as a measure of model
performance. These findings suggest that researchers may not know what each
of the metrics assesses, and that the measures assess different aspects of
predictive performance.

Second, only roughly half of the articles reported how AUC (n = 18)
was obtained and only 9% (n = 3) reported how NRI and IDI were calculated.
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When researchers did provide details, they gave the correct description for the
calculation of AUC and IDI, but not of NRI. The three studies that mentioned the
calculation of NRI did not describe that NRI is obtained by the sum of the two
net proportions. Mentioning the sum of the two net percentages is important
to make clear that NRI is not merely the percentage of reclassified people in
a population. These findings confirm that researchers may not know what is
measured by NRI and IDI. Whether researchers understand AUC cannot be
concluded from this review; evidently, reporting that they obtained the c-statistic
may not imply that they understand how the c-statistic is calculated.

And third, inferences about each metric, and hence the overall
conclusion about improvement of predictive performance, were largely based
on their statistical significance while absolute values of the metrics were small.
When the values of the metrics would have been rounded to two decimals,
the estimates would be 0.00 for 11 AUC, 2 NRI, and 12 IDI values. Of these,
3 AUC, 1 NRI, and 9 IDI values were interpreted as showing improvement of
the model. Small values of AUC, IDI, and NRI may be statistically significant in
large studies, but not clinically relevant. Relying on the statistical significance
may lead to false claims about the improvement of prediction. Therefore, the
interpretation should focus on the absolute values of the metrics rather than the
statistical significance of their estimates (20,21). What degree of improvement is
clinically relevant varies between scenarios and by the answer to the question
what is to be gained from the additional information.

The interpretation of polygenic risk studies is straightforward when
all measures show the same large and statistically significant improvement in
predictive performance. When values are small and inferences are discordant,
the question is whether the discordance is due to limitations in the assessment
of the metrics or reflecting differential impact on the various aspects of predictive
performance. For example, AUC is often criticized for being an insensitive metric
to evaluate improvement in predictive performance (2,5,11-14), but improving
discrimination requires a substantial change in the rank order of predicted
risks that should not be expected when minor risk factors are added to the
risk model. In such instances, IDI, which assesses the mean of predicted risks
between events and nonevents before and after updating of the risk model,
might still be able to show improvement in risk differentiation. Another example
is that changes in risk classification as indicated by NRI may not imply that
discrimination is improved as well. NRI has been shown to be too sensitive for

103



Chapter 5

identifying minor changes in predicted risks (15-17) and it may be statistically
significant, while AUC remains virtually unchanged (22,23).

All but four studies concluded that the addition of genes to clinical
risk models improved the predictive performance of clinical risk models. In
most studies, the values of AAUC, NRI, and IDI were small and none of them
were externally validated. The latter is relevant for the few studies in which the
improvement in predictive performance would be of interest if it were replicated
in independent data. Judging if clinical risk models improve by the addition
of genes is challenging when researchers have limited understanding of the
metrics used for evaluation of the models. Our study suggests that this limited
understanding leads to false positive conclusions about the value of adding
genes to clinical risk models.

Interpretation of polygenic risk studies is straightforward when there is
no or substantial improvement in predictive performance, but it is challenging
in between. Discordant results from multiple metrics may indicate that there is
no improvement but that some metrics are sensitive enough to detect very small
effects. Yet, it may also mean that there is improvement in prediction but not
on all aspects of predictive performance. A better understanding is needed to
achieve more meaningful interpretations of prediction studies. Overinterpretation
of small improvements in predictive ability will unlikely improve the management
of people at risk in public health practice.
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Supplementary data

Box S1. Definitions and calculation methods of AUC, NRI and IDI

Metric Definition Calculation method

AUC Discrimination C-statistic, or trapezoidal rule

NRI Reclassification Categorical: sum of net percentages of correctly

reclassified persons with and without an event;

Continuous: sum of net percentages of persons

with and without an event correctly assigned a

higher (event) or lower (no event) predicted risk
IDI Improvement in discrimination Difference between discrimination slopes of

slopes or risk differences baseline and updated models
Difference of mean predicted risks of persons
with and without an event between models

Definitions and calculations are based on references (1,2,3). Abbreviations: AUC = area under
the receiver operating characteristic curve; IDI = integrated discrimination improvement; NRI
= net reclassification improvement
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Figure S1. Summary of literature search and selection. @ Keywords: genetic, genomic,
polygenic, polymorphisms, DNA. Abbreviations: AUC = area under the receiver operating
characteristic curve; IDI = integrated discrimination improvement; NRI = net reclassification
improvement; SNP = single nucleotide polymorphism
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Abstract

For evaluating the improvement in risk predictions, the net reclassification
improvement (NRI) and integrated discrimination improvement (IDI) are
increasingly used in addition to the area under the receiver operating
characteristic (ROC) curve (AUC or c-statistic). We evaluated how researchers
defined, calculated and interpreted these when simultaneously used in the
assessment of the improvement in predictive performance of clinical prediction
models. Fifty-six articles met our inclusion criteria. Researchers defined the
AUC as measure of discriminative ability in over 69% of the articles, the NRI
in 17% and the IDI 22%. Values of the metrics were interpreted as indicative of
improvement when they were statistically significant, irrespective of their values.
Hence, also the overall conclusions were based on the statistical significance
of the metrics. When the interpretations were discordant (n = 9) the conclusion
appears based on the statistical significance of the NRI or IDI values in most
of them (7 out of 9). Better understanding of the meaning and relevance of the
metrics can facilitate more meaningful interpretation of prediction studies.
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Introduction

The area under the receiver operating characteristic (ROC) curve (AUC or
c-statistic) (1) is the most commonly used metric for the evaluation of prediction
models for their ability to discriminate between individuals who will or will
not manifest an outcome of interest (referred to as events and nonevents in
this article). The increment in AUC (AAUC) is the standard for assessing the
improvement in discrimination after adding new risk factors, such as biomarkers,
genetic factors or imaging results to existing models (2—4).

In the past decade, researchers have widely adopted new metrics for
evaluating the improved predictive performance of updated prediction models,
including the netreclassification improvement (NRI) and integrated discrimination
improvement (IDI) (2,5,6). While these are all metrics of discrimination (7), they
are computationally different. AUC gives the probability that predicted risks
correctly identify a random pair of an event and nonevent (rank order of events
and nonevents), NRI quantifies the improvement in the classification of risks and
IDI assesses the increase in the risk difference between events and nonevents
(2,7). Often IDI is described as a measure to assess improvement in integrated
sensitivity without compromising integrated specificity (2), but this does not
immediately provide insight in what is measured, and may hamper an easy
interpretation. It also appears that researchers frequently use NRI and IDI in
addition to AUC without explaining the differences between the metrics and why
each metric is assessed (8). For example, NRI is often referred to as metric of
the discriminative ability of a model without elaborating on what is specifically
quantified by the measure, namely reclassification (9,10). Moreover, researchers
often define, for example, IDI as a measure of reclassification instead of
improvement in the risk differences between events and nonevents (11,12).
Interpreting findings is challenging when it is not clear among researchers what
each metric adds to the evaluation of prediction models, especially when the
findings contradict.

Contradictory findings are frequently attributed to limitations of the
metrics. The AUC is criticized for being insensitive to detect improvements in
prediction that result from adding clinically relevant risk factors (2,5,13-16),
and the NRI and IDI may pick up subtle changes in predicted risks suggesting
improvement in prediction while the rank order of events and nonevents has
not changed (17-19). In previous work, we showed that results can contradict
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as each metric assesses a different aspect of the improvement in predictive
performance (20). AAUC quantifies changes in rank order, NRI assesses
changes in risk classification, and IDI changes in the risk differences. Because
of this different emphasis, the addition of novel risk factors might increase the
risk differences between events and nonevents measured by the IDI, but not
change the rank order of events and nonevents, for example when the AUC of
the baseline model is high (20).

We recently evaluated how researchers describe and interpret results of
the AAUC, NRI and IDI when the three metrics are simultaneously used to assess
the improvement in predictive performance (further referred to as “improvement”)
of polygenic prediction models (8). We found that AUC and NRI were defined as
discrimination and reclassification in two thirds of the articles (63% and 70%),
but that none of the definitions for IDI referred to improvement in risk differences.
However, we have not evaluated whether researchers elaborated on what the
AUC measures and how the c-statistic is calculated. Furthermore, we observed
that the evaluation of the metrics generally followed their statistical significance
irrespective of their values and small non-statistically significant AAUC values
were interpreted as indicative of improvement when NRI and IDI were significant.
It is unknown whether the results of our previous study are specific to polygenic
risk studies, because the field of polygenic prediction is new and researchers
may have relatively little experience with these metrics. In this paper, we evaluate
the simultaneous use of the three metrics in the assessment of improvement in
prediction of disease and elaborate on researchers’ understanding of the AUC,
focusing on recently published clinical prediction studies.

Methods

Literature search

We collected empirical studies that stated in the methods that the improvement
in predictive performance of clinical prediction models was evaluated by
assessing AAUC, NRI, and IDI and that reported the results of all metrics in the
article. Using Thomson Reuters Web of Knowledge (version 5.23) we retrieved
all publications from 2016 that cited the article by Pencina et al. that introduced
the NRI and IDI (search date 28 December 2016) (2). Articles were excluded
when they performed a simulation or methodological study or discussed a
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genetic prediction model. For articles in which multiple prediction models were
discussed we chose one baseline model with its updated model. For example,
when different risk factors were added to the same baseline model, the same
risk factors were added to different baseline models, the same baseline and
updated models were used but in different study populations or when the same
models were used for different outcomes. Our selection of models was done in
the following order: the outcome of the model was the main focus of the paper
(i.e., the main conclusions were drawn for this model), the baseline model with
the highest number of risk factors included, the highest number of risk factors
added to the baseline model, or the model for which the largest sample was
used.

Box 1. Definitions and calculation methods of AUC, NRI and IDI

Metric Definition Calculation method

Area Under the Receiver Discrimination / the C-statistic / c-index /

Operating Characteristic probability that predicted trapezoidal rule / the

Curve (AUC)* risks correctly identify a proportion of all possible
random pair of an event and pairs (an event and
nonevent nonevent) in which the event

had a higher predicted risk
than the nonevent

Net reclassification Reclassification / Categorical: sum of net
improvement (NRI) improvement in risk percentages of correctly
classification reclassified persons with

and without an event;

Continuous: sum of net
percentages of persons
with and without an event
correctly assigned a higher
(event) or lower (no event)
predicted risk

Integrated discrimination Improvement in Difference between
improvement (IDI) discrimination slopes™* discrimination slopes of
/ improvement in risk baseline and updated

differences improvementin ~ models / difference between
integrated sensitivity without mean predicted risks of
compromising integrated persons with and without an
specificity event between models

Definitions and calculations are based on references (1,2,37).
*AAUC isthe AUC of the updated model minus the AUC of the baseline model; ** discrimination
slope is the mean predicted risk of events minus the mean predicted risk of nonevents
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Data extraction

For all selected models, we recorded study characteristics, including sample
size, event rate, clinical risk factors in the baseline prediction models and the
risk factor(s) added. Depending on the study design that was used, the event
rate was the incidence, prevalence or the proportion of cases in the population.
Furthermore, we extracted AUC values of the baseline and updated models,
AAUC, NRI and IDI with corresponding P values or confidence intervals, and the
version of NRI that was used: categorical or continuous (Box 1).

Definitions of AUC, NRI and IDI and their calculation methods were
extracted verbatim from the methods section of the included articles. The
numerical results, the interpretation of AUC, NRI and IDI and the overall
conclusions were extracted from the results and discussion sections. We
imported all extracted texts into a spreadsheet for a content analysis.

Table 1. Examples of concordant and discordant interpretations of the performance metrics

Our
From the publication assessment
Metrics Model improved? Interpretations
discordant?
Study AAUC NRI IDI AAUC NRI IDI
Dhana (32) 0.001 (NR) 0.05 0.001 No No No No
(-0.01t0 0.12) (-0.001 to
0.001)
Kim (33) 0.0047 0.104 0.0041 Yes Yes Yes No
(0.0001 to (0.031to (0.0001 to
0.0128) 0.247) 0.0120)
Graversen 0.006 (0.032) 0.01 0.006 Yes No Yes Yes
(34) (0.718) (0.029)
Wotherspoon 0.008 (0.17) 0.306 0.009 No Yes Yes Yes
(35) (0.003) (0.11)
Vandenput 0.01 (NS) 0.178 0.004 No [Yes] [Yes] Yes
(36) () (S)
Nagahara 0.06 (0.07) 0.60 0.054 No Yes Yes Yes
(10) (0.0049) (0.0072)

Values are point estimates with P values or 95% confidence intervals between brackets.
Labeling of researchers’ interpretations of the metrics is described in the Methods. Square
brackets indicate that the researchers considered the observed improvement of the model
to be minimal.

Abbreviations: AAUC = increment in the area under the receiver operating characteristic curve;
IDI = integrated discrimination improvement; NR = not reported; NRI = net reclassification
improvement; NS = not statistically significant; S = statistically significant (per researchers’
reporting).
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Content analysis

We evaluated whether common definitions and approaches were used (Box 1).
We used excerpts of the results section or from the discussions section when
no description was given, to assess how the values of AAUC, NRI and IDI were
described and interpreted. We documented effect sizes, Pvalues or confidence
intervals, as well as whether and how the values were interpreted in terms of
improvement in predictive performance. We documented “not reported” when
no interpretation was described, and “yes” or “no” when the researchers wrote
that the value of the metric was or was not indicative of improvement. When they
wrote that a metric indicated slight or marginal improvement, we documented
“‘minimal improvement.” Interpretations were considered discordant when some
of the metrics were described as indicative of improvement and others were
not (see Table 1 for examples). Lastly, using excerpts from the discussion,
we evaluated how the overall improvement of the predictive performance of
the model was concluded. Descriptions of improvement were categorized as
“‘improvement”, “minimal improvement”, “no improvement” or “inconclusive”.
We marked conclusions as “inconclusive” when researchers could not come to
an overall conclusion because of discordant observations. Two reviewers (F.K.M
and E.C.M.T) independently evaluated the descriptions and disagreements
were resolved by discussion.

Results

In 2016, 309 publications cited the 2008 article that introduced the NRI and DI
(Appendix Figure 1). Of these, 182 were excluded because they did not use all
three metrics, 47 because they did not present empirical data, and 24 because
they did not present non-genetic clinical risk models that were updated with
clinical risk factors. Fifty-six articles were included. Outcomes of the included
prediction models were cardiovascular related diseases (n = 20), mortality (n
= 20), diabetes related (n = 3) and other disease related outcomes (n = 13;
Appendix Table 1).

In most of the 56 included articles, researchers reported a definition
of AUC (n = 47; 84%), NRI (n = 49; 88%) and IDI (n = 45; 80%; Table 2). In
all others, they merely stated that the measures were calculated. AUC was
described as discrimination in 69% of the 47 articles that gave its definition and
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as the probability that the predicted risks correctly identify a random pair of an
event and nonevent in 2%. NRI was described as a measure of reclassification
in 24% of the 49 articles, and IDI as improvement in discrimination slopes or
risk differences in 18% of the 45 articles. In the 66% of the articles that reported
definitions of all three metrics, the same definition was used for all three, namely
a metric of discrimination (n = 5) or more general descriptions such as risk
estimation, model performance, predictive ability or improvement (n=4).

In 57% of the articles, researchers indicated how AUC was calculated
and all of these mentioned the c-statistic of which only one added how this was
done (Table 2). Only in 16% and 21% of the articles, researchers explained
how NRI and IDI were calculated, of which 56% were correct for NRI, and 67%
for IDI. When the formula of NRI was not correctly described, the ‘errors’ were
often in the details, for example, omitting to mention that NRI is the sum of
net percentages of individuals with and without an event or the proportion of
participants reclassified.

When estimates of the AAUC, NRI, or IDI were statistically significant,
they were always interpreted as indicating that the model had improved (Table
3). Only in four articles, researchers added that the improvement in AUC, while
statistically significant, was minimal and in one article they considered the
improvement in NRI minimal. When values were not statistically significant, six
out of 13 AAUC values, one out of six NRI values and five out of six IDI values
were still interpreted as being indicative of improvement. For these, three of
the AAUC values were low (0.01, 0.01, 0.02) and three were higher (0.03, 0.04,
0.05), the NRI was 0.0027, and the IDI values were all 0.03 or lower, meaning
a less than 3% absolute increase in the risk differences between events and
nonevents. All 5 non-statistically significant IDI values were accompanied by a
statistically significant NRI.

In 45 (80%) out of 56 articles, researchers had interpreted whether all
three values of the metrics were indicative of improvement; in others, they only
interpreted some of the values (n = 8) or none of them (n = 3) (Appendix Table
2). In 35 (78%) of the 45 articles, researchers reported that AAUC, NRI and
IDI values all showed evidence for improvement of the predictive performance.
Only in one article, in which reported values for AAUC and IDI were virtually
zero and NRI 0.05, researchers reported that none of the metrics indicated
improvement. In nine (20%) of the 45 articles, the interpretations of metric
improvement as described by the researchers were discordant. In seven of
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these, the researchers wrote that NRI and IDI suggested that the model had
improved, but AAUC did not.

Finally, researchers concluded in 48 (86%) of the 56 articles that the
predictive performance of the clinical model had improved from the additional
risk factor(s), three of which commented that the improvement was minimal
(Appendix Table 2). Others concluded that the model did not improve (n = 4),
were inconclusive (n = 1) or refrained from making an overall conclusion (n =
3). As expected, most (n = 32) of the 35 articles in which the three metrics were
considered to be improved concluded overall improvement of the model. Also,
when the interpretations of the metrics were discordant (n = 9), in all but one of
the articles, researchers concluded that the prediction model improved from the
additional risk factor(s).
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Table 3. Improvement in predictive performance based on reported interpretations of AAUC,
NRI and IDI values by the statistical significance of the point estimates

Model improved?

Yes Yes, but No
minimally

Statistically significant

AAUC 26 4 0
NRI 44 1 0
IDI 40 0 0
Not statistically significant

AAUC 5 1 7
NRI 1 0 5
IDI 5 0 1

Values are number of articles. Interpretations of AAUC, NRI or IDI not counted in this table
when the articles did not interpret the metrics (AAUC, n = 4; NRI, n = 5; IDI, n = 9) or did
not report P values or confidence intervals (AAUC, n = 11; IDI, n = 1). Abbreviations: AAUC
= increment in the area under the receiver operating characteristic curve; IDI = integrated
discrimination improvement; NRI = net reclassification improvement

Discussion

In the evaluation of the predictive performance of prediction models, the AUC
is frequently complemented with NRI and IDI. When the results of the metrics
are contradictory about the improvement in prediction, the interpretation of
the findings is challenging. In this study we observed that articles often lack
information about the meaning and calculation of AUC, NRI and IDI and what
the added value is of using all three metrics. Researchers heavily relied on the
statistical significance of the metrics to interpret their findings and reach their
conclusions. When interpretations of the values of the metrics were discordant,
researchers often concluded that the predictive performance of the prediction
model was improved by the addition of the risk factor(s). In none of the articles,
the researchers critically reflected on the different aspects of performance that
are assessed by the three metrics.

Before interpreting the observations of our study, a limitation of the
study needs a mention. We inferred researchers’ knowledge about the metrics
based on what they reported, but researchers may have a better understanding
of the metrics that they didn't display in their articles (21). This may change the
number of more extensive definitions and calculation methods, but does not
change how their interpretation of the improved predictive performance mainly
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followed the statistical significance.

Several observations in this study suggest that researchers have limited
understanding of what aspects of the performance are measured by each of
the metrics and how their values should be interpreted. First, in approximately
16%, 12% and 20% of the articles, researchers did not provide any definition
of the AUC, NRI or IDI. When AUC was defined, only one article (2%) gave a
more extensive description, where others defined AUC as discrimination (69%).
Also, NRI was only defined as reclassification in half of the articles that gave a
definition (49%) and IDI as improvement in risk differences (or related definition)
in 18%. Moreover, in 5 out of 10 articles where IDI was defined as discrimination
also NRI and AUC were, which suggests that researchers may not be aware
or not care that IDI quantifies the improvement in risk differences and NRI the
improvement in risk classification. When researchers provided definitions for all
three metrics (66%), they often (24%) did not distinguish between the three as
they described them with the same term, such as metrics of “discrimination”,
“risk estimation”, “predictive ability”, “improvement” or “model performance”.
The variety of definitions for NRI and IDI suggests that researchers may have
insufficient understanding of the aspects of predictive performance that are
assessed by each metric.

Second, researchers rarely described how NRI and IDI were calculated.
While the calculation method of AUC was described in almost two thirds, the
methods of NRI and IDI were only described in one fifth of the articles. It should
be noted that the descriptions for the calculation method of AUC was generally
no more than a mention of the c-statistic; whether researchers understand what
exactly is calculated by the c-statistic cannot be concluded from our study.
Since, the description of the calculation method of IDI was often taken verbatim
from the article that introduced the metric (2), it cannot be concluded either
whether researchers understand how the IDI is calculated.

Third, the statistical significance of the individual metrics, not the
values of the metrics was the basis for inferences about the improvement in
prediction and hence the overall conclusions were based on the statistical
significance of the metrics, even when the values were low. As small values may
be statistically significant in larger studies but of limited utility in clinical or public
health practice, emphasis should be on the values rather than their statistical
significance when making conclusions about the improvement in predictive
performance of prediction models (22,23).
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In comparison with our previous published article about the simultaneous
use of AUC, NRI and IDI in polygenic prediction studies (8), researchers of the
clinical prediction studies in the present article described more often how they
calculated NRI and IDI. Definitions of IDI were more extensively described here,
compared to the previous article (18% to 0%), while only one article provided a
definition of AUC beyond discrimination, even though more articles defined AUC
(71% to 56%). The increase in IDI definitions may be explained by the fact that the
prediction studies in this article were more recently published and hence might
have gained more insight in the IDI. However, this does explain the increase in
AUC definitions, because this has been the standard for long. Additionally, there
seems no difference in the understanding of the AUC between researchers of
polygenic prediction studies and clinical prediction studies. Furthermore, in
our other study (8) researchers also followed the statistical significance of the
values in their interpretations of the metrics, however added more often that the
values of the metrics were indicative of a minimal improvement, and more often
considered in the conclusion that the overall improvement was only minimal.
These reservations in the interpretations may be due to the lower AAUC values in
the polygenic prediction studies (median 0.01; IQR 0.002-0.02) (24) compared
to the AAUC values in the present study (median 0.02; IQR 0.01-0.04).

The fact that some metrics indicate improvement of the model and
others do not is generally considered a problem of the metrics (17-19), whereas
it may also reflect that the addition of variables improves certain aspects of
predictive performance but not others. For instance, AUC has been criticized
for being insensitive and not intuitive (2,5,13-16), but improving the rank order
of events and nonevents requires a risk factor that can substantially change the
rank order when baseline AUC is higher. As a result, adding a strong risk factor
may not easily change that ranking, showing minimal improvement in AUC, but
it may widen the risk differences between events and nonevents, as indicated
by a positive IDI (20). Also, when a risk factor does not increase AUC, we may
see a positive NRI when risk thresholds are in the center of the risk distribution
where many individuals can move across thresholds with minimal changes in
predicted risks (25). That is why NRI is sensitive in identifying minor changes in
predicted risks (17-19) and may be statistically significant, while AUC remains
virtually unchanged (25,26).

The difficulty that researchers may have with the interpretation of the
metrics is understandable as the metrics are not intrinsically intuitive. The
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interpretation of the NRI is difficult because it is the sum of two fractions with
different denominators (the number of events and nonevents) and the value
cannot be interpreted as a percentage. Because there is no clear meaning of
the number itself, it has been recommended to report the NRI for events and
nonevents separately (27). Also, when IDI is explained as the differences in
discrimination slopes, it may not be obvious that it is a metric of improvement
in the risk differences between events and nonevents. Similarly, when AUC is
explained as the probability that predicted risks correctly identify a random pair
of an event and nonevent, it may not be apparent that AUC informs about the
shape and overlap of risk distributions of events and non-events (28).

Pepe et al. (22) demonstrated that metrics for evaluating the value
of adding risk factors to a prediction model have the same null hypothesis,
however, this does not mean that these metrics can be used interchangeably
(29), because they assess different aspects of model performance. Which metric
would be of interest is determined by the research question. When the question
is whether a prediction model can stratify a population in certain risk groups, the
primary interest is in how well the prediction model can classify events above
a threshold and nonevents below. Because the magnitude of the categorical
NRI depends on the number of thresholds, it is recommended to only use the
NRI with established clinically meaningful risk thresholds and report the NRI for
events and nonevents separately to facilitate interpretation (27,30). When the
interest is in whether individual risks improve, the IDI should be used; and when
the question is whether overall the ability of the model to discriminate events and
nonevents improved in the updated model, the AAUC is the preferred measure.

Determining whether the improvement in predictive performance is
high enough, depends on what the model will be used for (31). Relying on the
statistical significance when improvements are minimal leads to false positive
conclusions about the added value of the risk factor, because very small effects
that are statistically significant in large studies may have no clinical value.
Insight in the different aspects of the predictive performance and the meaning
and applicability of the metrics can facilitate the right use of the metrics and
enhance the interpretation of prediction studies.
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Articles published in 2016
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e Not an empirical study: 47
e Clinical model updated with
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e Baseline model included

genetic risk factor(s): 2
e Outcome of the model is
genetic: 1

\ 4

v

Full-text articles assessed
for eligibility (n = 252)

Articles excluded (n =196):
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e Not a clinical model updated
with risk factor(s): 14

\ 4

Articles available for
analyses (n = 56)

Appendix Figure 1. Literature search and selection.
Abbreviations: AUC = area under the receiver operating characteristic curve; IDI = integrated
discrimination improvement; NRI = net reclassification improvement
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Chapter 7

A research article that is published in a scientific journal has usually been peer
reviewed prior to publication. Peer review is the process of subjecting research
to the scrutiny of experts in the same field (1,2). A post-publication way of peer
review is the letter to the editor of the scientific journal that published the article.
Besides contributing to scientific discourse, they could also be of benefit to
other readers as it may provide additional insights and evidence that could help
understand the article (3). In this Chapter we discuss two letters to the editor on
two different topics, namely the external validation of prediction models and the
assessment of calibration and discriminative ability.

External validation of prediction models

As described in Chapter 1, external validation is required when prediction
models are planned to be used in healthcare. External validation determines
the replicability and generalizability of the prediction model to new and different
patients (4). This refers to the validation of the prediction model in a completely
new population or setting, which is similar to the original population. Although
temporal and geographical validation are regarded as an approach in between
internal- and external validation (5), sometimes they are considered a type of
external validation (6,7) and are included as such in the publication of Siontis
et al. that is subject of one of the two letters to the editor. Temporal validation
means that the prediction model is assessed in newer collected data within the
same care center, for example, among more recently included participants in
the study. Geographical validation means that the prediction model in assessed
in a same population but in a different place than where the prediction model
was developed, for example, in another region or a different care center. Siontis
et al. wrote a review about the external evaluation practices of newly developed
prediction models, in which they concluded that many prediction models lacked
external validation (8). Moreover, Siontis et al. describe that of the large number
of prediction models that are being developed, only a few are used in clinical
practice. The authors evaluated how often the validations were performed by
authors that did not publish the derivation model, and subsequently, how well
the prediction models performed in these validation studies.

The authors executed a literature search to find articles published until
2010 in which a new prediction model was presented. Articles that published an
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external validation of the selected eligible derivation studies were retrieved by
searching articles by either an overlapping author group or completely different
authors, that cited the derivation studies. External validation studies were
selected when the authors claimed to have validated the derivation model (same
model, disease and outcome) in different populations. For each derivation- and
validation study, the listed authors, several study- and model characteristics,
and performance metrics were recorded.

In their review of 88 derivations studies describing 127 newly developed
risk prediction models, Siontis et al. (8) found that only 32 models (25%) were
externally validated. Siontis et al. conclude that ‘the majority of the newly proposed
risk prediction models never undergo an external independent validation’ (8).
From their results, the authors argue that external validation ‘should be done
by default for all risk prediction models’ (8) and that in the absence of external
independent validation misleading high expectations are offered. Based on their
data, however, we conclude that the percentage of external validation may be
as high as 83% as many prediction models were already externally validated, as
explained below, and many others were not worth it.

First, the authors used a rather narrow and uncommon definition of
external validation, namely that the prediction models had to be independently
validated in a subsequent study; the common definition does not require that
the external validation is published separately (6). Siontis et al. provides ‘details
of the derivation studies of newly introduced risk prediction models without
any further validation studies’ in the supplementary eTable 1 and ‘details of the
derivation studies of newly introduced risk prediction models that were further
validated’ in eTable 2. Of the 62 studies that were not externally validated
according to the authors, seven had reported validation in entirely independent
data sets in the same article. Fourteen other studies had included independent
temporal and geographical validation efforts in the same article (Table 1).

Second, many of the remaining 41 studies (62 minus 21) that were not
externally validated may not have been worth validating. Twenty-eight studies
were conducted in less than 500 people, of which 19 studies in less than 200
people (Table 1). The prediction models estimated in these populations first
need to be re-estimated in larger data sets to obtain more robust coefficients
for the variables before external validation is warranted. In addition, the
authors of nine other articles warned that their results should be interpreted
with caution because of study limitations, such as a retrospective study design,
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nonrepresentative population, selection bias, missing relevant predictors, and
issues around variable assessment These limitations also require re-estimation
of the prediction models before external validation. Hence, only four studies
remain that were not externally validated but potentially worth it. Assuming that
all externally validated studies in eTable 2 conducted in >500 individuals (n =
19; Table 2) were worth validating, we calculate that the percentage of externally
validated studies is 83% (19 of 23).

Our reanalysis shows that the lack of external validation of the studies
reviewed by Siontis et al. seems entirely justified. External validation is crucial
before prediction models can be implemented in health care, but these efforts
should only be done for studies that are worth it.

Table 1. Sample sizes and validation of studies included in eTable 1 of Siontis et al.

Sample size Number Number Independent Temporal and Number
of studies of studies validation geographical of studies
without @ validation without
duplicates duplicates
and validated
studies
0-100 13 13 0 2 11
101-200 10 10 0 2 8
201-300 6 6 0 1 5
301-400 6 6 2 1 3
401-500 3 2 1 0 1
>500 28 25 4 8 13
Total 66 62 7 14 41

(1) Duplicate with study in eTable 2; (2) One geographically validated study among those
with sample size >500

Table 2. Sample sizes of studies included in eTable 2 of Siontis et al.

Sample sizes Number of studies

0-100 2
101-200 1
201-300 0
301-400 2
401-500 2
>500 19
Total 26
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Assessment of calibration and discriminative ability

Chapter 1 and 2 of this thesis describe that the evaluation of prediction models
should include the assessment of calibration and discrimination (9). Calibration
refers to how well the predicted risks from the prediction model match the
actual observed risks and discrimination how well a prediction model can
distinguish between patients and nonpatients. The second letter to the editor
is a comment on an article in which the authors investigated the predictive
ability of a polygenic risk score (PRS) and concluded that the risk of the top
1% of the study population was more than 30-fold compared to the bottom
1%. The evaluation of calibration and the discriminative ability was, however,
not reported on. The article by Amin Al Olama et al. was driven by the fact
that the risks associated with genetic variants that have been discovered in
genome wide association studies (GWASs) are argued to be useful for targeted
prevention (10). They reason that, because the associated risks are modest,
large studies are needed to provide more precise estimation of these risks.
This is what they aim to contribute to in their study, by genotyping 25 prostate
cancer susceptibility single nucleotide polymorphisms (SNPs) in studies from
the international prostate cancer consortium (PRACTICAL) (11).

Amin Al Olama et al. combined data of 25 studies from PRACTICAL
and GWASs, and genotyped 25 SNPs when these were not yet available. A total
of 40,414 samples (20,288 cases and 20,126 controls) were included in the
analyses. A PRS was derived based on the assumption of a log-additive model,
by summing the genotypes weighted by the per-allele log odds ratios (ORs) for
each of the SNPs, as estimated by logistic regression (10). The risk of prostate
cancer was estimated for percentiles of the PRS distribution, categorized into:
<1%, 1-10%, 10-25%, 25-75% (“median risk”), 75-90%, 90-99%, and >99%.

Amin Al Olama and colleagues investigated the predictive ability of
the PRS and observed that the risk of men in the top 1% of the distribution
was 30.6 fold compared with men in the bottom 1% and 4.2 fold compared
with the median risk (10). The authors conclude that ‘genetic risk profiling using
SNPs could be useful in defining men at high risk for the disease for targeted
prevention and screening programs’. Yet, such conclusion warrants a formal
assessment of calibration and discriminative ability.

First, assessment of calibration is essential because the reported risks
were not based on empirical observations but calculated from a risk model that
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was built assuming multiplicative effects between the SNPs. The authors verified
whether allelic effects within each SNP could be considered as multiplicative,
but not whether multiplicativity between SNPs could be assumed. Multiplicative
models are known to under- and overestimate risks at the extremes of the risk
distribution, especially when they include a large number of SNPs (12,13).
While the authors mentioned that “the predicted ORs for the top 1% and the
bottom 1% of the population, based on a log-linear model, did not differ from
that observed”, this needs to be evidenced by a formal calibration analysis of
the entire risk distribution and of the extremes if these are of special interest.

Second, the discriminative ability of the model should be assessed by
examining how well the predicted risks distinguish between men who did or did
not develop prostate cancer, quantified by the area under the receiver operating
characteristic curve (AUC), to compare its performance with other models.
Using the SNP data reported in their Table 2 and applying a validated simulation
algorithm (14), we estimated that the AUC of the polygenic risk score would be
0.64. If confirmed by their data, this AUC would be lower than other models,
including the prediction model from the Prostate Cancer Prevention Trial, which
AUC was 0.66 for any prostate cancer and 0.71 for clinical significant prostate
cancer (15).

Finally, the predictive performance is generally highest in the population
in which the prediction model is developed, because the coefficients of the
model are fitted to the data. The researchers have enough data to split their
sample in two and perform both the development and validation analyses in
one study. Independent validation of both calibration and discrimination will
likely lead to a more modest perspective of the predictive performance of the
polygenic risk score.
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Chapter 8

After almost a century of scientific breakthroughs in genetics, the development
of polygenic risk scores (PRSs) has fueled the interest in the use of genetic
information for personalized medicine and the management of common diseases
in healthcare practice. Moreover, genotyping is becoming cheaper, making
genotype information obtainable for billions of individuals. In both scientific and
public debate about PRSs, promises have been discussed, but much less has
been debated about the evidence that is needed to make claims about the value
of PRSs for the prediction of common diseases. The goal of this thesis was to
improve understanding of the design, evaluation and interpretation of genetic
risk prediction studies for common diseases. In this chapter the main findings
of this thesis are addressed and results discussed in a broader perspective,
followed by implications for methodology and practice. Finally, conclusions are
drawn and recommendations proposed.

Main findings

How does the intended use of risk prediction models determine
the design and interpretation of prediction studies?

Prediction models need to be usable and useful. This means that the models
should be designed with the healthcare scenario in which the application of the
prediction model is foreseen, in mind (Chapter 2). The intended use specifies
what needs to be predicted, in whom, how and for what purpose in practice
(Table 1). The outcome that is predicted, the target population and the selected
predictors determine the predictive ability of the model, while the purpose of
testing provides the context for deciding if the predictive ability is high enough
to be useful in health care. The outcome of interest, for instance, the risk of
developing type 2 diabetes should also include a relevant risk period as the
predictive performance may vary with the duration of the follow-up. The target
population defines in which population the prediction model should be studied,
for example, when the 10-year risk of type 2 diabetes for young adults is of
interest, then the study population could consist of individuals between, say, ages
18 and 25. When the target population is decided, it follows which predictors are
available to predict the outcome of interest and which predictors might be less
feasible or not affordable in the intended setting (1). For example, a prediction
model for type 2 diabetes that is to be used by primary care physicians should
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not include imaging variables, such as abdominal magnetic resonance imaging
(2), as this requires that individuals are first referred to an imaging center before
the model can be used.

The purpose of testing, for example, identifying young adults at high
risk for type 2 diabetes to offer special exercise programs (Table 1) or improving
the efficiency of breast cancer surveillance or prostate-specific antigen (PSA)
testing in screening for prostate cancer (3,4), is crucial for deciding whether the
predictive performance of the prediction model is high enough. For its intended
use, a prediction model requires a certain minimum sensitivity and specificity, it
needs to perform at least as good or better than existing stratification strategies
(5,6). In large scale screening programs the overall benefits of screening must
outweigh the harms, for which a minimum sensitivity and specificity are needed.
In current practice, breast cancer surveillance with mammography screening is
informed by a women'’s breast cancer risk, divided into different risk categories
(e.g., in the Netherlands into categories <20%, 20-30%, 30-60%, and >60%
lifetime risk (7)). The breast cancer risk is determined based on the presence
of traditional risk factors (especially age), family history, and, if pertinent, high-
penetrant genetic pathogenic variants. Itis argued that a PRS consisting of many
low-risk genetic variants could lead to improved risk stratification of the existing
strategy (8). Concluding, for both design and interpretation of prediction studies
the intended use of the prediction model is key.

Table 1. What is predicted, in whom, how, for what purpose?

Health care scenario Implications for research Example

What is predicted, Selection of outcome 10-year risk of type 2 diabetes

in whom, Selection of population Young adults

how, Selection of predictors and Age, sex, and 37 genetic

model susceptibility variants, in logistic

regression model

for what purpose? Specification of aim Stratify prevention with supervised
exercise program for the high-risk
group

Evaluation of the predictive performance

The evaluation of prediction models often includes the assessment of
discrimination with the area under the receiver operating characteristic (ROC)
curve (AUC), reclassification with the net reclassification improvement (NRI), and
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predictive ability with integrated discrimination improvement (IDI) (9-11). Partly
in response to the criticism on the AUC, Pencina et al. introduced the NRI and
IDI (16). Since the introduction of the two metrics in 2008, both gained popularity.
The AUC, NRI and IDI are commonly used in prediction studies, but they are
also criticized (12-18). AUC is criticized for lacking an intuitive interpretation
and being insensitive to new risk factors; NRI and IDI for being overly sensitive
to the addition of new risk factors. For example, the NRI may easily be non-zero
due to the reclassification of many individuals with a predicted risk close to the
risk threshold.

Why is the area under the ROC curve a metric of discrimination?
The interpretation of the AUC has been a challenge ever since its introduction in
medicine (10). Generally, the AUC is described as the probability that predicted
risks correctly identify a random pair of a patient and nonpatient, but this
explanation seems clinically irrelevant (12) and does not clarify why the AUC,
as the area under the ROC curve, is a metric of discrimination. The area under
the ROC curve is visualized in the ROC plot. We showed that the ROC curve is
a transformation of the distribution of predicted risk for patients (Chapter 3) and
the diagonal line in the plot, of the distribution of the nonpatients. The latter is
not simply a reference line. The space between the diagonal line and the curve
reflects the separation between the risk distributions of patients and nonpatients
and therewith the discriminative ability of the prediction model.

Can the predictive ability of a model improve when discrimination
does not?
Prediction models are updated, with a PRS or other risk factors, to improve
clinical care or prevention. To achieve this, new risk factors need, at least, to
improve the discriminative ability of the prediction model. The AUC has been
criticized that it is unable to show a change in discrimination even when strong
risk factors are added to the model (16-19). Is it possible that the predictive
ability improves when discrimination does not?

Using simulated data, we found that discrimination, assessed by the
AUC, and predictive ability, assessed by IDI, both increased when a strong risk
factor was added to a model that had an AUC up to approximately 0.80-0.90
(Chapter 4). Thus, in this case, updating prediction models with new risk factors
that do not improve the discriminative ability of a model, do not improve the risk
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difference between patients and nonpatients. When the AUC of the initial model
is already high, say above 0.90, we observed that in these instances the risk
differences between patients and nonpatients became wider, even when the
changes in predicted risks did not result noticeably in an increase of the AUC
(Chapter 4). Practically, as the baseline AUCs of prediction models for common
diseases do not often rise above 0.90, if the AUC does not improve from the
added risk factor this indicates that there is no significant improvement in the
predictive ability.

When AUC improves only minimally, IDI and NRI may be statistically
significant (Chapter 5-6). That is why others have argued that the metrics are
too sensitive for identifying changes in predicted risks (20-22). NRI may easily
be non-zero and statistically significant due to minor changes in predicted risks
resulting in the reclassification of many individuals with a predicted risk close
to the risk threshold (23) and when sample sizes are large. Also, NRI may be
positive when calibration of the models is poor (22,24,25). Reclassification
without improvement of the discriminative ability also implies that the model did
not make fewer but different errors than the initial model (23). In healthcare,
a positive NRI in absence of improvement in AUC means that, for example,
individuals may receive a different recommendation for breast cancer screening
but that at the population level no reduction in morbidity and mortality will be
observed.

How do researchers describe the use and interpret the results of
multiple metrics in the assessment of improvement in predictive
performance of risk prediction models?

The AAUC, NRI and IDI all have the same null hypothesis that the new PRS or
risk factor causes no incremental predictive information (24), but they measure
different aspects of predictive performance (27). The three metrics are often
used simultaneously, but it is unclear whether researchers know how to interpret
eventual discordant findings. Our study showed that most researchers give a
correct definition of the AUC and NRI, but that IDI often is wrongly described as
a metric of discrimination or reclassification. About half of the authors described
how AUC was calculated, but only few reported the formulas for the NRI and
IDI (Chapter 5-6). Authors of clinical prediction studies more often described
how they calculated the NRI and IDI and these were also more often correct
as compared to authors of polygenic prediction studies (Chapter 6). Based on
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these observations, we concluded that some researchers may not know what
each of the metrics assesses.

We found that the inferences from each of the metrics were largely
based on the statistical significance, also when their absolute values were small
(Chapter 5 and 6). Using statistical significance as a basis for conclusions about
the improvement in predictive performance is problematic, because in large
studies small values can be statistically significant easily. These small values
do not indicate clinically relevant improvement in the predictive performance of
the model.

Estimating predictive performance in simulated data

Simulations studies can be useful to explore the characteristics of performance
metrics (Chapter 4). Furthermore, when epidemiological information such
as effect sizes and frequencies of predictors and the event rate are known,
simulation studies can be used to calculate the AUC and other metrics. Having
an estimate of the discriminative ability of a prediction model allows to interpret
the performance of the model and compare it to similar prediction models in the
absence of real data. In a letter to the editor, we applied a simulation algorithm
for a prediction study in which the researchers did not report the AUC of their
model for the prediction of prostate cancer (28). We found it to be lower than
AUCs of similar already existing models, and concluded that a more modest
conclusion about the usefulness of the PRS for defining men at high risk for
prostate cancer would have been in place (Chapter 7).

Implications for research

The 21st century started off with some bold predictions about how genomic
medicine could possibly revolutionize the personalization of medicine (29).
Advances in DNA sequencing, dropped costs, the Human Genome Project, and
discoveries of many common genetic variants in GWAS, have fueled the interest
in genetic risk prediction for common diseases. And even today, several leading
organizations in the development of personalized medicine have PRSs on their
agenda forthe coming years (30-32). For many applications of PRSs the evidence
is still to be gathered and the usefulness yet to be proven. Some researchers,
however, have expressed that PRSs may be ready for implementation in clinical
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care, for example, for breast cancer and cardiovascular disease (33,34). Here |
describe several implications for the design of prediction studies and guidance
for the assessment of evidence presented in (polygenic) prediction articles.

Designing a prediction study

The intended use of prediction models in healthcare has implications for the
design of the prediction study. As described in Chapter 2, the intended use
should be the starting point of every prediction study design, which is visually
shown in the ACCE model where ‘disorder & setting’, referring to the intended
use and setting, are at the center of the ACCE model (Chapter 1). Data gathered
in prediction studies should be relevant for the intended use of the prediction
model. This means that when available data are used, the population, outcome
and available predictors should be evaluated in order to know how the data match
the intended setting. Today, many genetic prediction studies use data from the
UK biobank (35), but this dataset may overestimate the predictive performance.
The population of the UK biobank consist of individuals within a wide range of
age, from 40 to 69 at baseline (36), which inflates the AUC of prediction models
of age-related diseases that include age as a predictor. The chances for older
individuals to develop a common disease within the short follow-up time of the
cohort (6-7 years (37)) are higher for older than for younger individuals. Also
from the intended use perspective, the wide age range does not make sense,
because prediction models are generally used in individuals at a specific age.
For example, a cardiovascular risk profiling program in health care might invite
specific cohorts, for instance men aged 50 and women aged 60 years (38) while
a PRS for coronary heart disease developed in the UK biobank (33,39) implies a
target population between 40 and 69 years old. In this case, the wide age range
of the UK biobank is not representative of the target population, and hence the
performance of the model still undetermined.

When the design of the prediction study does not reflect the intended
use, it should be anticipated that the future predictive performance in the target
population may deviate from the study. A recent study applied a poststratification
method to match individuals from the UK biobank cohort to the target population
and concluded that the lack of cohort representativeness in the UK biobank may
lead to false effect estimates (40). The design of prediction studies should be
guided by the intended use. When existing cohort data are used, researchers
should consider to only use a selection of the study population that reflects the
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target population.

Evaluating a prediction study

External validation

Most articles describe the development of a new prediction model instead of
validating existing models externally (41-43). Only when prediction models show
sufficient (improvement in) predictive performance and can potentially improve
health outcomes or the efficiency of care, need external validation before they
can be considered further (Chapter 7). The performance of the model should be
reassessed in an independent, clinically relevant population (Chapter 1, 2 and
7) to investigate the generalizability of the prediction model. Validation of the
prediction models is needed, because predictive performance is usually higher
in the population that was used to fit the prediction model.

Calibration

To ensure that predicted risks agree with the observed event rates, prediction
models need to be well calibrated. This is graphically displayed in a calibration
plot and quantified by calibration in the large and the calibration slope (9,44).
The Hosmer-Lemeshow test is also often used as a calibration test, but, because
the metric is unable to detect substantial miscalibration in small samples and is
over-sensitive to minor miscalibration in large samples, its use is discouraged
(45,46). Under- or overestimation of risk may lead to under- and overtreatment
(45). Poor calibration may affect the values of all metrics, but NRI and IDI in
particular (22,25). Reporting calibration metrics is hence important (Chapter 7).

The area under the ROC curve

The AUC is a suitable and relevant metric for the evaluation of the discriminative
ability of prediction models for common diseases. The alternative explanation of
the ROC plot as an alternative way of presenting risk distributions (Chapter 3)
invalidates most purported limitations of the AUC (Chapter 3). Criticism remains
to whether the ROC plot provides information beyond the value of the AUC
(47). We argue that the curve may show an ‘angle’ which tells that the model
includes a binary predictor with a stronger effect on disease risk than all other
variables (48) and the curve may be stepped rather than smooth which tells that
the sample size is too low, the incidence is low, or that the prediction model is
based on a relatively small set of categorical predictors that generate a small
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number of predictor combinations. Knowing that the curve is skewed to the right
or left of the ROC plot informs whether the effect of the risk factor concerns
mostly individuals at high- or low risk, respectively. This provides insight into
the underlying risk distributions. Of course, information about predictors
and the required sample size should be discussed in the prediction article.
Additionally, the ROC plot can assist interpretation of the results by providing
visual information.

For rare diseases and low incidence, the AUC should be interpreted
with caution as a high AUC may be accompanied with low predictive values
(49,50). The predictive values are influenced by disease incidence; even
excellent models with very high sensitivity and specificity across relevant risk
thresholds may have poor positive predictive values (PPV is the risk of disease
and NPV 1-risk of disease for risk groups defined by a certain risk threshold,
see Figure 3 Chapter 1) when used in populations where the incidence of the
disease is low. For instance, when a test with sensitivity and specificity of 90%
for a certain risk threshold is used in a population in which the disease occurs
in 20%, PPV will be 69% and NPV will be 97%. Yet, when the same test is used
in a population in which the incidence of the disease is 1%, PPV will be 8%
while NPV will be higher than 99% (Figure 1). In other words, when the test is
used in a population in which the disease is less frequent, more individuals
test falsely positive. False positive test results may have negative psychosocial
consequences for individuals who receive such a false positive result and may
lead to unnecessary treatment with its associated costs and risks.

Interpretation of metrics of reclassification

AUC, NRI and IDI provide complementary information about the improvement
in predictive performance of prediction models (Chapter 5 and 6). They should
not be interpreted individually without regard of the results of the others. The
NRI and IDI are easily statistically significant in large studies, which means that
focusing on the statistical significance of the NRI and IDI without evaluating their
values could lead to the conclusion that the model improved, while the values
indicated minimal or no improvement. The evaluation should focus on the values
of the metrics, not on the statistical significance. We argue that the intended
use might determine which metric can be the decisive factor for the conclusion
about the improvement of the prediction model, for instance, the NRI when the
interest is improving classification.
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The NRI has two versions: a categorical and continuous one. Because
the categorical NRI evaluates the net changes between risk categories,
the selected risk thresholds should be well established and motivated in the
prediction article as the NRI varies with the chosen cutoff values (23). Justifying
thresholds is often omitted in empirical studies (51,52). When well established
thresholds are not available, the cutoff should at least be chosen such that it
potentially results in a meaningful change of medical decisions. The use of the
NRI is discouraged as the metric is often positive and statistically significant
from added risk factors with weak effects (25,53). The categorical NRI is the sum
of two fractions with different denominators, which is impossible to interpret as
it is a meaningless number, therefore, it is urged to report the reclassification of
events and nonevents separately (51).

Clinical outcome Clinical outcome

Patient ~ Nonpatient Total Patient ~ Nonpatient Total
Test + 18% 8% 26% Test + 0.9% 9.9% 10.8%
result - 2% 72% 74% result - 0.1% 89.1% 89.2%

Total 20% 80% 100% Total 1% 99% 100%

Sensitivity=90% Sensitivity=90%

Specificity=90% Specificity=90%

PPV=69% PPV=8%

NPV=97% NPV=>99%

Figure 1. Influence of incidence on predictive value of a test or model in a population in
which the disease occurs in 20% (left) versus 1% (right). Positive predictive values (PPV) and
negative predictive values (NPV) represent the probability of having the disease when the
test result is positive and the probability of not having the disease when the result is negative.
Sensitivity and specificity indicate the test’s ability to detect the presence of disease in people

with the disease and its absence in those without.

Reporting practices

The literature on polygenic risk prediction research is growing rapidly, but
suffers from a great variability in terminology, lack of information provided in
the articles and metrics reported. The intended use of the prediction models
is rarely elaborated on (Chapter 2) and definitions and calculation methods of
metrics insufficiently reported (Chapter 5 and 6). To provide the needed evidence
for the prediction models and to allow comparison between models, it is very
important that guidelines such as GRIPS and the GRIPS update, Polygenic Risk
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Score Reporting Standards (54,55) are followed and analysis described with
care. Better reporting hopefully contributes to improving the quality of prediction
studies.

What promising risk models have in common

Promising risk models that include a PRS show substantial improvement in
discrimination compared to current models, investigated in a population that
reflects the target population. What promising models tend to have in common is
the presence of several SNPs with strong effect on the development of disease,
and the availability of preventive measures and treatments for different risk
groups. Eventually, the ability to improve current models and the availability
of interventions determines whether PRSs could be a fruitful application for
personalized medicine. And, of course, a thorough evaluation of the PRS
following the ACCE model is needed to provide evidence of their utility, including
how PRSs are accepted by clinicians, patients and citizens, the ability to resolve
ethical aspects of genetic tests, social effects, accessibility, and more practical
aspect such as integration with electronic health records (56) as these aspects
will actually determine whether PRSs will be a success in practice.

Concluding remarks and recommendations

From the results of the studies presented in this thesis, | have the following

conclusions and recommendations:

- The intended use of a prediction model has a pivotal role in the design
and evaluation of prediction studies and should be clearly described in
scientific prediction articles, including specification of what needs to be
predicted, in whom, how and for what purpose.

- The ROC curve is an alternative way of presenting risk distributions and the
diagonal line is not only a reference line, but it is the risk distribution of the
nonpatients. The separation between the risk distributions represents the
discriminative ability of the model.

- The AUC is not insensitive; when a risk factor increases the AUC minimally
also a minimal improvement in predictive ability should be expected. Only
when the AUC of the initial model is high, say above 0.90, the predictive
ability may still improve while the improvement in discrimination does not.
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- The evaluation of prediction models, including definitions and calculation
methods of required metrics, should be clearly described in prediction
articles to improve their quality.

- The interpretation of the metrics of predictive performance should be based
on their absolute values and not on the statistical significance.

- PRSs can be taken into consideration for follow-up studies such as cost-
effectiveness, and implementation studies when improvement in the
discriminative ability of a model and calibration is proven and promising.

It is hoped that this thesis advances knowledge about prediction studies and
helps to promote better evaluation and understanding of prediction models
in the attempt to improve the prediction of common diseases and translate
prediction models into valuable applications in healthcare.
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For decades, researchers have been putting effort in advancing the prediction
of common diseases to improve the identification of at-risk groups for preventive
interventions, support physicians in medical decision making, and inform
individuals about their risk or progression of disease. Ultimately, this would lead to
health gain for many individuals. Current prediction models for common diseases
typically include clinical, demographical, environmental and lifestyle predictors,
but due to the multifactorial etiology of these diseases and the discoveries of
many common single nucleotide polymorphisms (SNP; a variation occurring
at a single nucleotide of the genome) over the past decades, there has been
a great interest in adding polygenic risk scores (PRSs) to the clinical models.
PRSs guantify the combined contribution of multiple SNPs to the risk of common
diseases. Since prediction models are developed with the aim of applying them
in healthcare, and hence medical decisions are based on the risk estimates,
adequate risk predictions are of great importance. Therefore, prediction studies
are needed to evaluate the predictive performance of prediction models and
provide the necessary evidence for claims about the clinical validity and utility.
This thesis describes methodological studies on (genetic) risk prediction of
common diseases and aims to improve understanding and use of traditional and
newer metrics of model performance and to provide insight into key concepts
and considerations in prediction research.

Chapter 1 comprises a general introduction of the progress in the field
of risk prediction for common diseases and offers an overview of the evaluation of
prediction models. It describes current methodological challenges and the three
research questions that have driven this project: 1) How does the intended use
of risk prediction models determine the design and interpretation of prediction
studies?, 2) Why is the area under the receiver operating characteristic (ROC)
curve (AUC) a metric of discrimination?, and 3) What do different metrics of
predictive performance measure?

The first research question pertains to the intended use of risk
prediction models. Chapter 2 describes how the intended use is defined and
what the main considerations are in prediction research that are of importance
in the design and evaluation of prediction studies. The intended use indicates
in which healthcare setting the prediction model is foreseen. This should
include a description of in whom and how the model will be used and for what
purpose it will be implemented. The described healthcare setting has two major
implications for scientific study. First, because the predictive ability of prediction
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models vary between populations and settings, the intended use dictates the
design of the prediction study; it defines the outcome that needs to be predicted,
the population that needs to be studied and with what predictors. Second,
the intended use of the model also provides the necessary context to decide
whether the predictive ability is high enough for the model to be potentially
useful in healthcare, because the same model may be predictive enough for
one application, but not for another. This is why the intended use should guide
the design of risk prediction research.

Our second objective is to explain how the area under the ROC curve
(AUC) is a metric of discrimination. To this day, the AUC is the most commonly
used metric for the evaluation of the discriminative ability of risk models, but is
the most criticized as well. It has been argued that the AUC is clinically irrelevant
and lacks an intuitive interpretation. Therefore, in Chapter 3 we explain the
relevance of the AUC as metric of discrimination by describing 1) how the ROC
curve can be seen as an alternative way of presenting the risk distributions
of patients and nonpatients. The separation between the distributions simply
determines the discriminative ability of the model. And 2) how the shape of the
ROC curve is informative of these underlying risk distributions. For example,
ROC curves are rounded when the prediction model included variables with
similar effect on disease risk; ROC curves have an angle when, for example, one
binary risk factor has a stronger effect; and ROC curves are stepped rather than
smooth when the sample size or incidence is low, or when the prediction model
is based on a relatively small set of categorical predictors. We show that this
perspective on the ROC plot invalidates most purported limitations of the AUC
and attributes other argued limitations to the underlying risk distributions. As
the AUC is a metric of the discriminative ability of prediction models, the model
assessment should be supplemented with other metrics to evaluate the clinical
utility before the decision can be made to implement a risk model in practice.
Clinical utility depends on effectiveness of interventions, so the evaluation
should include metrics of health gain.

Our third research question concerns what different metrics of predictive
performance measure. The AUC is also criticized because the metric would
be insensitive and unable to detect moderate improvements in discriminative
ability of prediction models. Adding SNPs to a clinical prediction model often
increases the AUC only slightly. The first sub question is whether the AUC hides
improvement from additional risk factors. In Chapter 4 we investigated with a
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simulation study whether risk factors that minimally improve the AUC, may still
improve the risk difference between people who will develop the disease and
those who will not. We found that risk factors with stronger effects on disease risk
resulted in larger increments in AUC (AAUC) and risk differences, as shown by
the integrated discrimination improvement (IDI). Across baseline AUC, for a risk
factor with the same odds ratio, both the AAUC and IDI were smaller when the
AUC of the baseline model was higher. When the AAUC was smaller than 0.01,
the improvement in the risk differences was also small, except when the AUC
of the baseline model was >0.90. Similarly, in 33 empirical genetic prediction
studies we observed that AAUC below 0.01 also yielded minimal improvements
of the risk difference. In the range of AUC values typically observed in studies
on polygenic risk prediction, small improvements in discrimination can only lead
to also small improvements in the risk difference between people who develop
the disease and those who will not. We argue that the AUC is not as insensitive
as thought.

The AUC is increasingly assessed together with the net reclassification
improvement (NRI) and IDI in the evaluation of the improvement of polygenic
risk prediction models. The NRI assesses the improvement in classification in
the updated model compared to the initial model. The second sub question
concernsthe knowledge and use of the multiple metrics of predictive performance
in prediction studies. The aim of Chapter 5 is to evaluate how researchers
defined, calculated and interpreted AAUC, NRI, and IDI in polygenic prediction
studies where these three metrics are simultaneously assessed. We performed
a literature search and included 32 articles that met the inclusion criteria (an
empirical study that evaluated the improvement in predictive performance from
SNPs added to clinical risk models by assessing AAUC, NRI, and IDI). In the
review of the articles we found that most authors correctly defined the AUC,
NRI, but none defined IDI correctly and in half of the articles it was correctly
described how the AUC was obtained, but only few authors described the
calculation methods of NRI and IDI. The interpretation of the values of the
metrics, almost all followed the statistical significance; when a metric was
statistically significant the values were interpreted as indicative of improvement,
irrespective of the absolute values of the metrics. Also, small, nonsignificant
changes in the AUC were interpreted as indication of improvement when NRI
and IDI were statistically significant.

Chapter 6 describes the evaluation of how researchers of non-genetic
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clinical prediction studies defined, calculated and interpreted the simultaneous
assessment of the AAUC, NRI, and IDI. In most of the fifty-six included articles
(an empirical study that evaluated the improvement in predictive performance
from added non-genetic factors to clinical risk models by assessing AAUC,
NRI, and IDI), researchers provided a correct definition of the AUC, about
half the articles for NRI and few authors correctly defined the IDI. In half of
the articles researchers correctly indicated how AUC was obtained. In fewer
articles, researchers described the calculation methods of NRI and IDI, and
when a description was provided more than half were correct. Similar to the
study presented in Chapter 5, the values of the metrics were interpreted as
indicative of improvement when they were statistically significant, irrespective of
the values’ magnitudes. The studies of Chapter 5 and 6 both show that there is
scope for improvement among researchers whom interpret the various metrics
for the assessment of the predictive performance of prediction models, as they
often rely solely on the statistical significance for their interpretation. Hence,
a better understanding of the metrics is needed to achieve more meaningful
interpretation of prediction studies.

In Chapter 7 we discuss two letters to the editor on two different
topics, namely the external validation of prediction models and the assessment
of calibration and the discriminative ability. The first example is a letter to the
editor in response to an article that found that only 25% of the risk models were
externally validated. The authors used a rather uncommon definition of external
validation. Based on a reanalysis of their data we conclude that the percentage
of external validation may be as high as 83% as many models were already
externally validated and many others were not worth it. We point out that external
validation is only needed when prediction models are worth it. This is determined
by, for example, the expected improvement of the current model in use or current
practice, the desirability of the model to the public, the intended use and the
estimated health gain. The second example is a letter to the editor in response
to an article, in which the predictive ability of a PRS for the prediction of prostate
cancer was investigated. The assessment of calibration and discrimination were
both not reported in the article. When we used the data presented in the article
and applied a validated simulation method we found that the AUC of the PRS
would be lower than other known models.
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Concluding remarks

The intended use of prediction models has a pivotal role in the design and
interpretation of prediction studies. As the predictive ability of prediction
models varies between populations and settings, the prediction study should
be conducted with the targeted healthcare setting in mind, and claims about
the readiness of PRSs for implementation in clinical care should be supported
with evidence of well calibrated models and improved discriminative ability of
the model compared to currently used prediction models. For the assessment
of discrimination we have shown that the AUC is the separation between the risk
distributions of patients and nonpatients. For the evaluation of all metrics applies
that the interpretation should not only rely on the statistical significance, but also
on their values in context of the intended use. The field of prediction research
could be improved by using the intended use as guidance and by explaining
prediction metrics more intuitively so that more researchers could have a greater
understanding of them. Whether it is time to consider the implementation of
PRSs in health care does not depend solely on the predictive performance of
prediction models, but proof of sufficient predictive performance is essential
before executing further studies on the usability, usefulness, and meaningfulness
of PRS in healthcare.

180



Summary | Samenvatting

Altientallen jaren spannen onderzoekers zich in om vooruitgang te boeken in het
voorspellen van veelvoorkomende ziekten om het identificeren van risicogroepen
voor preventieve interventies te verbeteren, om artsen te ondersteunen in hun
medische besluitvorming en om individuen voor te lichten over hunrisico op of het
verloop van een ziekte. Uiteindelijk zou dit kunnen leiden tot gezondheidswinst
voor velen. Huidige predictiemodellen voor veelvoorkomende ziekten omvatten
meestal klinische, demografische, omgevings- en leefstijl voorspellers, maar
door de multifactoriéle aard van deze ziekten en het ontdekken van talloze
veelvoorkomende genetische varianten (“single nucleotide polymorphisms”,
SNPs, een variatie van een enkele nucleotide in het genoom) gedurende de
afgelopen decennia, is er grote interesse om polygene risico scores (PRSs)
aan de Klinische predictiemodellen toe te voegen. PRSs kwantificeren de
gecombineerde bijdrage van meerdere van deze SNPs in het risico op
veelvoorkomende ziekten. Aangezien predictiemodellen worden ontwikkeld
voor toepassing in de gezondheidszorg, en men medische beslissingen
baseert op de gemaakte risicoschattingen, zijn kloppende risicovoorspellingen
van groot belang. Daarom zijn er predictiestudies nodig die het voorspellend
vermogen van de modellen kunnen evalueren en ook het noodzakelijke bewijs
kunnen leveren voor beweringen over de klinische validiteit en het klinisch nut.
Dit proefschrift beschrijft methodologische onderzoeken over (genetische)
risicovoorspelling van veelvoorkomende ziekten en stelt zich ten doel het
begrip en gebruik van traditionele en nieuwere maten van modelprestatie te
verbeteren en inzicht te verschaffen in de kernbegrippen en overwegingen in
predictieonderzoek.

Hoofdstuk 1 bevat een algemene inleiding met betrekking tot de
voortgang op het gebied van risicopredictie bij veelvoorkomende ziekten en
het geeft een overzicht over de evaluatie van predictiemodellen die aan de
risicovoorspellingen ten grondslag liggen. Het beschrijft de methodologische
uitdagingen van dit moment en de drie onderzoeksvragen die de basis
vormen van dit proefschrift: 1) Hoe bepaalt het beoogde gebruik van de
risicopredictiemodellen het ontwerp en de interpretatie van predictiestudies? 2)
Waarom is het gebied onder de ROC-curve (“receiver operating characteristic
curve”), de AUC (“area under the curve”), een maat voor discriminatie? en 3)
Wat meten verschillende maten van voorspellend vermogen?

De eerste onderzoeksvraag richt zich op het beoogde gebruik
van de risicopredictiemodellen. Hoofdstuk 2 beschrijft hoe het beoogde
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gebruik wordt gedefinieerd en welke de voornaamste overwegingen zijn
in het predictieonderzoek die van belang zijn bij ontwerp en evaluatie
van predictiestudies. Het beoogde gebruik laat zien op welk deel van de
gezondheidszorg het predictiemodel is gericht. Dit zou een beschrijving moeten
bevatten bij welke mensen en op welke manier het model zal worden gebruikt en
met welk doel hetzal worden geimplementeerd. De beschreven gezondheidszorg
setting heeft twee belangrijke implicaties voor wetenschappelijk onderzoek. Ten
eerste, omdat het voorspellend vermogen van predictiemodellen varieert tussen
verschillende populaties en settings, dicteert het beoogde gebruik het ontwerp
van de predictiestudie; het bepaalt de uitkomst die moet worden voorspeld, de
populatie die moet worden onderzocht en welke voorspellers worden gebruikt.
Ten tweede, het beoogde gebruik verschaft ook de benodigde context om te
beslissen of het voorspellende vermogen van het model groot genoeg is om
potentieel nuttig te zijn in de gezondheidszorg, aangezien een bepaald model
voorspellend genoeg zou kunnen zijn voor de ene toepassing, maar niet
genoeg voor een andere. Dit is waarom het beoogde gebruik, het ontwerp van
risicopredictieonderzoek, zou moeten leiden.

Onze tweede doelstelling is om uit te leggen hoe de oppervlakte onder
de ROC-curve (AUC) een maat voor discriminatie is. Tot de dag van vandaag
is de AUC de meest algemeen gebruikte maat voor de evaluatie van het
discriminerend vermogen van predictiemodellen, maar tegelijk de maat waar de
meeste kritiek op is. Er wordt beweerd dat de AUC klinisch irrelevant is en geen
intuitieve interpretatie kent. Daarom leggen we in Hoofdstuk 3 uit wat het belang
is van de AUC als maat van discriminatie door te beschrijven 1) hoe de ROC-
curve kan worden gezien als een alternatieve manier om de risicoverdeling van
patiénten en niet-patiénten weer te geven. De scheiding tussen de verdelingen
bepaalt simpelweg het onderscheidend vermogen van het model. En 2) hoe de
vorm van de curve een beeld geeft van de onderliggende risicoverdelingen.
Zo worden, bijvoorbeeld, ROC-curves rond als het predictiemodel variabelen
in zich had met een overeenkomstig effect op risico op ziekte; ROC-curves
hebben een hoek als, bijvoorbeeld, één binaire risicofactor een sterker effect
heeft; en ROC-curves zijn eerder getrapt dan gelijkmatig als de grootte van
de steekproef of de incidentie klein is, of als het predictiemodel gebaseerd
is op een relatief klein aantal categorische voorspellers. We laten zien, dat
dit perspectief op de ROC plot de meeste aangevoerde beperkingen van de
AUC minder valide maakt, en wijst andere beargumenteerde beperkingen toe
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aan de onderliggende risicoverdelingen. Aangezien de AUC een maat is van
het discriminerend vermogen van de predictiemodellen, zou de beoordeling
van het model moeten worden aangevuld met andere maten om de klinische
bruikbaarheid te evalueren, voordat het besluit kan worden genomen om het
risicopredictiemodel te implementeren in de praktijk. Klinische bruikbaarheid
hangt af van de effectiviteit van interventies, dus de evaluatie zou maten voor
gezondheidswinst moeten bevatten.

Onze derde onderzoeksvraag betreft wat precies de verschillende
maten van voorspellend vermogen meten. Er is ook kritiek op de AUC, omdat
de maat ongevoelig zou zijn en niet in staat bescheiden verbeteringen in het
discriminerend vermogen van predictiemodellen te onderscheiden. SNPs
toevoegen aan een klinisch predictiemodel doet de AUC vaak maar minimaal
toenemen. De eerste sub onderzoeksvraag is of de AUC, verbetering door
extra risicofactoren verbergt. In Hoofdstuk 4 onderzochten we met een
simulatiestudie of risicofactoren die de AUC maar minimaal verbeteren, toch
het verschil in risico tussen mensen die de ziekte zullen krijgen en die het niet
krijgen zou kunnen verbeteren. We ontdekten, dat risico factoren met sterkere
effecten op het risico op ziekte resulteerden in een grotere toename in de
AUC (AAUC) en risicoverschillen, zoals wordt getoond met de geintegreerde
discriminatie verbetering (IDI). Over alle baseline AUCs, voor een risico factor
met dezelfde odds ratio, waren zowel de AAUC en IDI kleiner als de AUC van
het baseline model hoger was. Wanneer de AAUC kleiner was dan 0,01, dan
was de verbetering in de risicoverschillen tussen patiénten en niet-patiénten
ook klein, behalve als de AUC van het baselinemodel groter was dan 0,90. Op
dezelfde manier zagen we dat in 33 empirisch genetische predictiestudies een
AAUC onder de 0,01 ook slechts minimale verbeteringen van het risicoverschil
opleverden. Binnen het bereik van AUC-waarden die typisch gezien worden in
onderzoeken over polygene risicopredictie, kunnen kleine verbeteringen in de
discriminatie slechts leiden tot kleine verbeteringen in het risicoverschil tussen
mensen die de ziekte krijgen en zij die niet ziek worden. Wij beweren, dat de
AUC niet zo ongevoelig is als gedacht wordt.

De AUC wordt steeds meer beoordeeld samen met de NRI (“net
reclassification improvement” = netto reclassificatieverbetering) en IDI bij de
evaluatie van de verbetering van de polygene risicopredictiemodellen. De NRI
beoordeelt de verbetering in de classificatie in het vernieuwde model vergeleken
met het oorspronkelijke model. De tweede sub onderzoeksvraag betreft de
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kennis en het gebruik van meerdere maten van voorspellend vermogen in
predictieonderzoeken. Het doel van Hoofdstuk 5 is om te evalueren hoe
onderzoekers AAUC, NRI en IDI in polygene predictieonderzoeken waarin
deze drie maten tegelijkertijd worden beoordeeld, definieerden, berekenden
en interpreteerden. We deden een literatuuronderzoek en includeerden 32
artikelen die aan de criteria voldeden (een empirische studie die de verbetering
in het voorspellend vermogen evalueerde van de SNP(s) toegevoegd aan de
klinische risicopredictiemodellen middels AAUC, NRI en IDI). In het beschouwen
van de artikelen ontdekten we, dat de meeste auteurs de AUC en NRI correct
definieerden, maar geen van de auteurs de IDI correct definieerde. In de
helft van de artikelen werd correct beschreven hoe de AUC werd verkregen,
maar slechts enkele auteurs beschreven hoe zij NRI en IDI berekenden.
De interpretaties over de waarde van de maten volgden bijna allemaal de
statistische significantie; wanneer een maat statistisch significant was, werden
de waarden geinterpreteerd als zijnde een indicatie van verbetering, los van de
absolute waarden van de maten. Kleine, niet significante veranderingen in de
AUC werden ook geinterpreteerd als een aanwijzing van verbetering als de NRI
en IDI statistisch significant waren.

Hoofdstuk 6 beschrijft de evaluatie van hoe onderzoekers van niet-genetische
klinische predictieonderzoeken de gelijktijdige beoordeling van de AAUC, NRI
en IDI definieerden, berekenden en interpreteerden. In de meeste van de
56 geincludeerde artikelen (een empirische studie die de verbetering in het
voorspellend vermogen evalueerde van toegevoegde niet-genetische factoren
aan klinische risico modellen middels AAUC, NRI en IDI), rapporteerden de
onderzoekers een correcte definitie van de AUC, voor ongeveer de helft van de
artikelen was dat zo voor de NRI en weinig auteurs definieerden de IDI correct.
In de helft van de artikelen gaven de auteurs correct aan hoe de AUC werd
verkregen. In nog minder artikelen beschreven de auteurs de rekenmethodes
voor de NRI en IDI, en wanneer een beschrijving werd gegeven, dan was meer
dan de helft incorrect. Vergelijkbaar met het onderzoek, dat in Hoofdstuk 5 werd
gepresenteerd, werden de waarden van de maten geinterpreteerd als wijzend
op verbetering wanneer ze statistisch significant waren, los van de absolute
waarden van de maten. De onderzoeken van Hoofdstuk 5 en 6 laten beide zien,
dat er ruimte is voor verbetering bij onderzoekers die de verschillende maten
voor de beoordeling van het voorspellend vermogen van predictiemodellen
interpreteren, omdat zij hun interpretaties vaak enkel baseren op de statistische
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significantie. Er is dus een beter begrip nodig van de maten om tot een meer
betekenisvolle interpretatie van predictiestudies te komen.

In Hoofdstuk 7 bespreken we twee brieven aan de “redactie”
over twee verschillende onderwerpen, namelijk de externe validatie van
predictiemodellen en de beoordeling van kalibratie en discriminerend
vermogen. Het eerste voorbeeld is een brief aan de redactie in antwoord op een
artikel, waarin gevonden werd, dat slechts 25% van de risicopredictiemodellen
extern gevalideerd werden. De auteurs gebruikten een tamelijk ongebruikelijke
definitie van externe validatie. Op basis van een heranalyse van hun data
concluderen wij, dat het percentage van externe validatie tot wel 83% hoog
kan zijn, omdat veel modellen al extern gevalideerd waren en veel andere het
niet waard waren. We wijzen erop dat externe validatie alleen nodig is wanneer
de predictiemodellen het waard zijn. Dat laatste wordt, bijvoorbeeld, bepaald
door de verwachte verbetering van het huidige model of de huidige praktijk,
de wenselijkheid van het model voor het publiek, het beoogde gebruik en
de verwachte gezondheidswinst. Het tweede voorbeeld is een brief aan de
redactie in antwoord op een artikel, waarin het voorspellende vermogen van een
PRS voor de voorspelling van prostaatkanker werd onderzocht. Zowel over de
beoordeling van de kalibratie als over de discriminatie werd niets gerapporteerd
in het artikel. Met behulp van een gevalideerde simulatiemethode en de data die
in het artikel gepresenteerd werden, ontdekten we dat de AUC van de PRS lager
zou zijn dan in andere bestaande modellen.

Slotopmerkingen

Het beoogde gebruik van predictiemodellen zou een centrale rol in het
ontwerp en de interpretatie van predictiestudies moeten hebben. Aangezien
het voorspellende vermogen van predictiemodellen varieert tussen populaties
en settings, zou het predictieonderzoek moeten worden uitgevoerd met
de gezondheidszorg setting waarop het gericht is in het achterhoofd en
beweringen over de geschiktheid van PRSs om in de klinische zorg te worden
geimplementeerd zouden moeten worden ondersteund met bewijs van goed
gekalibreerde modellen en een verbeterd discriminerend vermogen van
het model vergeleken met modellen die momenteel in gebruik zijn. Voor de
beoordeling van discriminatie hebben we laten zien, dat de AUC de scheiding
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is tussen de risicoverdelingen van patiénten en niet-patiénten. Voor de evaluatie
van alle maten geldt, dat de interpretatie zich niet alleen zou moeten baseren
op statistische significantie, maar op hun waarde in relatie tot het beoogde
gebruik. Het veld van predictieonderzoek zou kunnen worden verbeterd door
het beoogde gebruik als leidraad te gebruiken en door de predictiematen meer
intuitief te verklaren, zodat meer onderzoekers er een beter begrip van kunnen
krijgen. Of het tijd is om de implementatie van PRS in de gezondheidszorg
te overwegen hangt niet alleen af van het voorspellende vermogen van de
predictiemodellen, maar bewijs van voldoende voorspellend vermogen is een
belangrijke stap voordat kan worden voortgegaan naar verdere studies over
bruikbaarheid, nut en zinvolheid van de PRS in de gezondheidszorg.
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