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This dissertation develops statistical methods in genetics and with their 
application answers both old and new questions related to genetics, income 
and inequality. Chapter 2 develops a new method to support identification 
of causal effects in nonexperimental data. Additionally, a new method for 
estimating heritability using two polygenic indices (PGI) from independent 
genome-wide association studies (GWAS) is developed. In Chapter 3 this new 
heritability method is explored further and compared to the established and 
widely used method, genome-based restricted maximum likelihood (GREML). 
Chapter 4 aims to remove several barriers for researchers wanting to use PGI 
in their study. In this chapter a broad array of PGI are constructed, covering a 
wide range of phenotypes for a number of datasets used by social scientists. 
Furthermore, in this chapter a theoretical framework is introduced for interpreting 
associations with PGI. In Chapter 5, the first large scale GWAS on personal income 
is conducted, using data from the UK Biobank. It is shown that a higher PGI is 
linked to higher education and better health. Chapter 6 builds upon the results 
of the previous chapter and further investigates the genetic and environmental 
factors underlying socioeconomic and health inequality. A lower bound is estimated 
for the relevance of genetic factors and early-childhood environment for 
differences in education, income and body mass index. Chapter 7 presents 
the first results of an ongoing research project where the first large-scale 
GWAS meta-analysis on personal income is performed. The meta-analysis 
has a total sample size of 1,161,574 observations from approximately 756,000 
individuals.
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“The disposition to admire, and almost to worship, the rich and the powerful, and to despise, or, at least, 

to neglect persons of poor and mean condition is the great and most universal cause of the corruption of 

our moral sentiments.” 

Adam Smith (1759), The Theory of Moral Sentiments 
 

1.1 Why integrate genetics into economics?  

Economics is a social science that studies production, consumption and trades of goods and services. 

Usually, economics is split into two parts. Macroeconomics focusses on aggregate markets, studying the 

factors that affect production and consumption levels, as well as savings and investments. 

Microeconomics analyses individual economic agents: firms, households or individuals, and how they 

interact on markets. They are traditionally modelled as rational agents, who optimize their choices to 

maximize their profits or utility. Simple or complex models can be made to describe their behaviour.  

So why should economists care about genetics? At the end of the day, these economic agents are people 

making choices based on their personal preferences. While these choices and preferences may be put into 

consumption and utility functions, they remain a description of human behaviour and human traits. 

Moreover, half a century of twin studies have shown that every single human trait is heritable to a degree 

(Polderman et al., 2015). This observation, that all human traits are heritable, has also been coined “the 

first law of behaviour genetics” (Turkheimer, 2000). Of course, the researched traits includes 

economically relevant outcomes and descriptors like income (Benjamin, Cesarini, Chabris, et al., 2012; 

Hill et al., 2019; Taubman, 1976), educational attainment (de Vlaming et al., 2017; Lee et al., 2018; 

Okbay et al., 2016; Rietveld et al., 2013) and risk preferences (Karlsson Linnér et al., 2019).  

Many potential uses of genetic data in economics and other social sciences have been described in the 

literature (Beauchamp et al., 2011; Benjamin et al., 2012; Freese, 2018; Harden & Koellinger, 2020). I 

will summarise several of them below. Following this summary, I will describe the tools and methods 

available to include genetic data in social sciences. Next, I will describe the contributions this thesis 

makes to the literature, based on the research conducted in the following chapters. I will end with a 

statement of my personal contributions to each chapter. 

First, genetic research in economics provides an opportunity to measure otherwise unobserved 

differences between individuals. As genetic factors may be descriptive of differences between people, 
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they provide economists a chance to measure heterogeneity in economic agents. Economists may 

describe people as economic agents optimizing their utility based on how they value outcomes and costs. 

The differences in choices individual agents make, may be attributed to differences in individual 

preferences. However, measures of these preferences remain elusive as self-reported preferences are often 

mistrusted. The preferred option is to rely on revealed preferences (Samuelson, 1948). Genetic 

heterogeneity in economic agents may give alternative measures for individual preferences. For example, 

one could use the results of a recently published genome-wide association study (GWAS) of risk 

tolerance and risky behaviours (Karlsson Linnér et al., 2019) to create measures of individual risk 

preferences. While such GWAS-based measures are noisy and currently cannot be used for individual 

level predictions, they may be useful for analyses on the group level. 

Furthermore, as genetic factors may be descriptive of individual differences, they can serve as a measure 

to study the influences of policy measures in practice. Through gene–by–environment studies (i.e., 

considering interaction effects between genetic factors and environment), we can start to account for 

potential heterogeneity in the effects of policy measures. Such efforts may shine a light on who is 

benefiting most from certain policy measures, and who is benefitting least. For example, in a recent 

study, Barcellos, Carvalho and Turley (2018) analysed the effects of an increase in compulsory schooling 

on health and found that increased education leads to better health outcomes and those effects were 

stronger among people with a high genetic risk for obesity, thus mitigating (in part) the genetic risk 

factors. The uses of gene–by–environment studies are not limited to studying policy measures; such 

studies can also be used to investigate interactions between other environmental measures and genetic 

factors, as I show in Chapter 2.  

Second, measures of genetic factors may be used as control variables. One could simply include these 

variables to reduce variance in statistical models (Benjamin, Cesarini, Chabris, et al., 2012). More 

importantly though, when studying a relation between explanatory variable and outcome in non-

experimental data, confounding is always a serious concern. When genetic factors between explanatory 

variables and outcome are shared or correlated, not controlling for it would lead to biased estimation 

results. For example, a labour economist, interested in estimating the returns to schooling while 

controlling for confounding factors such as cognitive ability, may create a proxy for ability using the 

results from a genetic study on cognitive performance (Davies et al., 2018) or educational attainment 
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(Lee et al., 2018). In Chapter 2, I extensively explore such research designs using genetic factors as 

control variables. 

Third, as genotypes can be seen as random draws from parental genotypes, they are a good candidate for 

instrumental variable regression. The use of genotypes as instruments is called Mendelian 

Randomisation (MR; Davey Smith & Ebrahim, 2004). While MR is a promising concept and it could be 

used for medical outcomes that are only affected by a handful of genes, the use for social sciences is 

severely limited by several factors. First, socioeconomic outcomes and behavioural traits are generally 

genetically complex, meaning that they are affected by a large number of genes that individually have 

small effects (Chabris et al., 2015). Such genetic complexity could lead to the well-known problem of 

weak instruments (Hahn & Hausman, 2003), although the large increases in sample sizes of genotyped 

individuals in the last decade may abate this issue to some degree. Second, there is the possibility of genes 

affecting multiple outcomes, a phenomenon known as pleiotropy. As a result of pleiotropy, the genes 

that are used as instruments may affect both the explanatory variable and the outcome (Chen et al., 

2016), violating the basic assumptions of instrumental variable regression. Third, while genotypes are 

random draws of parental genotypes, the possibility exists that parental genotypes indirectly influence 

the outcomes of their offspring (Kong et al., 2018). This possibility might be especially true for 

socioeconomic outcomes. There are multiple promising augmentations of MR to address some of these 

issues (Bowden, Davey Smith, & Burgess, 2015; Verbanck, Chen, Neale, & Do, 2018; Zhu et al., 2018). 

However, these approaches are all dependent on varying sets of assumptions that may fail to hold in 

practice.   

Finally, the wealth of data and methods that genetics brings to economics not only helps us to re-

examine the answers to old questions, but also enables us to answer questions that we could not answer 

at all before. For example, in Chapters 5–7 we estimate the effects of genetic factors on inequality in 

income, education and health. We show, using random genetic differences between siblings, that these 

effects are partially causal. This result raises new questions about the underlying mechanisms that cause 

disparities in such important life outcomes. Moreover, the same result also raises questions about 

fairness, as these disparities are not caused by people themselves, but rather through a genetic lottery at 

conception. However, nothing in our research implies that the effects of genetic factors on 

socioeconomic outcomes are biologically predetermined. The channels through which genetic factors 

operate could be purely environmental. As mentioned above Barcellos, Carvalho and Turley (2018) 
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show that the genetic risk factors for obesity can (in part) be mitigated through additional education. 

Similarly, the genetic factors driving part of inequalities in income may be mitigated with policy changes.  

1.2 Methods in social-science genetics 

Twin studies have been a central tool in genetics since the 70s. A large meta-analysis of 2,748 

publications on twin studies has shown that all studied traits are heritable to some degree (Polderman et 

al., 2015). In twin studies, one compares the correlation of phenotypes between monozygotic (MZ) 

twins, also known as identical twins, with the correlation between dizygotic (DZ) twins, also known as 

fraternal twins. MZ twins share all of their DNA and DZ twins share the same amount of DNA as 

regular siblings. By studying differences in correlations between MZ twin pairs and DZ twin pairs, you 

can estimate the heritability of a trait (the proportion of phenotypic variance that may be attributed to 

genetic effects). Twin models can be extended to estimate more than just heritability. However, using 

only twin models constrains the range of possible studies that can be done as the underlying genetic 

markers are not measured in classical twin models and the models typically need constraining 

assumptions on the environments of twins.  

Fortunately, technological advances made way for many new opportunities to study genetics. Two 

decades ago, the International Human Genome Project published sequences of the human genome 

(Lander et al., 2001; Venter et al., 2001). The human genome consists of 23 pairs of chromosomes, each 

chromosome is a sequence of DNA molecules. They can be denoted by a chain of four letters, ‘G’, ‘C’, 

‘T’ and ‘A’, representing the four different possible nucleobases of the nucleotides forming the sequence 

(guanine, cytosine, thymine and adenine). Most of the sequence is identical for all human beings (The 

1000 Genomes Project Consortium, 2015). However, since there are approximately 3 billion nucleotide 

pairs in the human DNA sequence, there is still a plethora of variation to study. The most common 

variation comes in the form of single nucleotide polymorphisms (SNPs), these are variations in a single 

base-pairs creating two possible alleles. Where one person may have a ‘C’ in the sequence, another may 

have a ‘T’. As one inherits one copy of each chromosome from each parent (excluding the sex 

chromosomes), this can be summarized in simple count variables where one individual can have 0, 1, or 2 

of the reference alleles. 
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Since the International Human Genome Project, many more advances have been made and with cheap 

commercial genotyping arrays (chips that allow measurement of hundreds of thousands of markers at 

the same time) now available, the cost of genotyping has gone down substantially. This decrease in costs 

made it possible to genotype individuals on an increasingly larger scale and led to the creation of large 

scale Biobanks, like the UK Biobank which contains the genotypes of approximately half a million Brits 

(Fry et al., 2017; Sudlow et al., 2015). 

The availability of all this data has made it possible for researchers to test the associations of SNPs with 

various human traits on a much larger scale than ever before. The standard approach is to do hypothesis-

free testing in the form of genome-wide association studies (GWAS). In a GWAS all available SNPs are 

tested in separate regression models on their association with the phenotype. Here, the statistical 

significance thresholds are set very stringent to account for the testing of millions of SNPs. GWAS are 

typically done in samples of individuals with similar ancestries and the leading principal components 

from the genetic data are added as control variables to account for population structure (Price et al., 

2006), which limits the possibility of spurious findings due to unobserved variable bias where 

environments are correlated to individual markers due to ancestry being correlated to both environments 

and individual markers. Finally, GWAS studies often include replication in a sample that is independent 

from their discovery sample to further reduce the possibility of spurious findings. 

The results of GWAS studies allow for many follow-up analyses. For instance, bioinformatics tools 

allowed Lee et al. (2018) to find that the genes that lie close to the SNPs most strongly associated with 

educational attainment are overwhelmingly expressed in tissues related to the brain and central nervous 

system. Furthermore, by analysing the results of GWAS for multiple phenotypes, it is possible to 

calculate genetic correlations directly from the GWAS results (Bulik-Sullivan et al., 2015a; Bulik-Sullivan 

et al., 2015b), which can lead to new insights on how phenotypes are related to each other as well as aid 

in the discovery of the channels through which SNPs affect the studied phenotypes. This is even possible 

when two phenotypes have never been measured in the same sample. The creation of LD Hub (Zheng et 

al., 2017), an online repository to calculate genetic correlations, has made it especially convenient to 

include this in follow-up analyses to GWAS.  
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Finally, one of the most valuable tools for economists and social-scientists, who want to do genetically 

informed analyses, is the use of polygenic indices (PGI)1. The results of various GWAS of social-science 

outcomes show that those traits are usually genetically complex (Chabris et al., 2015), meaning that the 

effects of individual SNPs are very small, yet all SNPs combined can explain a substantial amount of 

variance. Of course, it’s impractical or impossible to include thousands or potentially millions of markers 

into a single regression model. A convenient work-around is to create a single index for every individual, 

wherein the effects of the individual SNPs are summed up. This can be as simple as a weighted sum of all 

genotypes, where the weights are the estimated GWAS effect sizes. However, more elegant solutions are 

advised to account for the correlation structure between SNPs (Vilhjálmsson et al., 2015). These PGI 

have proven to be very valuable in social-science genetics and play a crucial role throughout this thesis. 

The use of PGI to study within-sibling differences may be especially powerful as it provides the 

opportunity to control for family-specific environments while studying the effects of genetic factors on 

your outcome of interest.  

1.3 Contributions of this thesis 

The contributions of this thesis can be divided in two main categories. The first is providing fellow 

scientists with new tools to do research with. These tools come in the form of new statistical methods 

and the production of new variables and data made available for others to use (i.e., PGI and GWAS 

summary statistics). The second category of contributions is the applications of these new methods 

together with existing methods in answering both old and new questions related to genetics, income and 

inequality. The rest of this section will summarize the findings and contributions of each chapter.  

In Chapter 2 we develop a new method to support identification of causal effects in nonexperimental 

data. While some experiments may be done in economics and other social sciences, often ethical and legal 

considerations constrain them. Therefore, many analyses will be done using nonexperimental data, 

which often limits the causal interpretation of the findings.  

An often-used technique to circumvent this problem is using instrumental variable methods. One of the 

methods suggested by the literature is Mendelian Randomisation, discussed earlier in this chapter. Yet its 

 
1 Here I use the relatively new term PGI instead of the commonly used polygenic score (PGS) or polygenic risk 
score (PRS), which was suggested by members of the scientific community to make it less likely to be wrongly 
interpreted as a value judgement. 
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usefulness is limited due to SNPs possibly affecting multiple outcomes (pleiotropy). As socio-economic 

outcomes are often biologically distal and genetically complex, the channels through which SNPs 

operate are often unknown. This prohibits their use as instruments as they may violate the exclusion 

restriction for instrumental variables.  Moreover, the SNPs themselves may cause bias due to pleiotropy 

by possibly confounding relations when they are not controlled for.  

In this chapter we develop Genetic Instrumental Variables regression (GIV) to deal with the possible 

biases due to pleiotropic effects between an exposure and outcome. Naïvely using PGI as control 

variables is not sufficient in this case, because PGI are only noisy estimates of the underlying genetic 

architecture. This creates a problem equivalent to the classic econometric problem of errors-in-variables. 

This problem can be solved using instrumental variable methods if a suitable instrument can be found.  

We make use of the fact that multiple PGI can be constructed using GWAS results from independent 

samples. If the estimation error in both PGI is independent from each other, then one can be used as an 

instrument for the other. We use this idea to design two estimators (GIV-C and GIV-U), which provide 

upper and lower bounds for the effect of the exposure on the outcome. We test our method using 

simulations for a wide array of scenarios. Our estimator works in most scenarios, except when there is a 

strong environmental bias. In an empirical example we use GIV to show how the estimated effects of 

body height on education are biased due to pleiotropic effects.  

Additionally, during the development of this method, we found that two PGI from independent GWAS 

samples for the same trait can be used to estimate heritability. Using PGI for educational attainment we 

show that our estimates are close to the heritability estimates obtained using an established and widely-

used method, Genome-based restricted maximum likelihood (GREML; Yang et al., 2010).  

We further explored this method for estimating heritability in Chapter 3. While the project was shelved 

before a manuscript was written, a summary of the results is included in this thesis. In this project, we 

compare heritability estimates of our GIV method to GREML. While GIV requires the availability of 

two independent samples for GWAS, it does not require the same assumptions as GREML on trait 

architecture, because in this regard it is completely agnostic. Thus, GIV potentially provides better 

heritability estimates when the GREML assumptions on trait architecture are not met. We test both our 

method and GREML in various scenarios, where some scenarios violate the GREML assumptions. 

However, the GREML estimator proved surprisingly resilient to these violations and was proven to be a 
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more efficient estimator in all our simulation scenarios. Yet, there may still be applications for which 

GIV can be used. It may be possible, with some tweaking, to disentangle genetic nurture and heritability 

estimates using within-family GWAS. However, since large scale within-family GWASs are not yet 

available, we shelved further development of this method for the time being. 

Chapter 4 aims to remove several barriers for researchers wanting to use PGI in their study. First, 

creating PGI is a time-consuming process and requires knowledge of the specific software tools used. 

Second, to create the most accurate PGI possible one needs to use summary statistics from the largest 

GWAS sample possible. However, GWAS summary statistics are not always publicly available, adding 

additional hurdles. Third, publicly available GWAS summary statistics often includes the dataset in 

which the researcher wants to do their analyses. Such sample overlap may cause biases due to overfitting. 

Fourth, comparison of results between studies is often difficult due to different methodologies used by 

different researchers.  

To address the first hurdle, we construct a broad array of PGI covering a wide range of phenotypes for a 

number of datasets used by social scientists. These PGI will be made available for download through the 

providers of the datasets. For the second problem, the PGI are constructed from GWAS results from a 

meta-analysis for the largest GWAS sample size possible. These meta-analyses include novel GWAS 

results and GWAS summary statistics available to us that are not easily obtainable for most researchers. 

The third problem is solved by making sure that for each dataset, the provided PGI are constructed from 

summary statistics that exclude that dataset. Finally, the PGI are constructed using a uniform 

methodology across all phenotypes and datasets, so that results across studies are comparable.  

Furthermore, in this chapter a theoretical framework is introduced for interpreting associations with 

PGIs. Here, PGIs are shown to be noisy, but unbiased estimators of the additive SNP factor, a term that 

is introduced to describe the best linear predictor of the phenotype from the measured genetic variants.  

Within this theoretical framework we derive an estimator that corrects for the errors–in–variables bias 

that is encountered when using noisy variables in an ordinary least squares framework. This estimator 

tackles the same problem described in Chapter 2, but using a different methodology. In Chapter 2, an 

instrumental variables approach using multiple PGIs is introduced to derive a consistent estimator. Here, 

the errors–in–variables bias is corrected for using a newly derived estimator based on parameters that can 

be estimated in the sample where the estimator is implemented. 
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The last three chapters are about the effects of genetic factors on income and inequalities in income, 

education and health. It has long been recognized that parental socioeconomic status is a strong 

predictor for children’s health, educational attainment and income. As these traits are all heritable to 

some degree (Benjamin et al., 2012; De Vlaming et al., 2017; Polderman et al., 2015; Taubman, 1976), 

parents provide both the environment in which their children grow up as well as pass on their genes. In a 

way, one has already participated in two lotteries at birth: a social lottery that determines who your 

parents are and which environment you grow up in and a genetic lottery that determines which part of 

your parent’s genome you have inherited. The results of these two lotteries potentially provide inequal 

opportunities in life, through which they may affect disparities in education, income and health. 

Moreover, the results of these two lotteries could be correlated, which further exacerbates the resulting 

inequalities. Moreover, it provides a major challenge to distinguish different channels through which 

economic prosperity is passed on through generations. A better understanding of these channels would 

provide an important contribution to the study of causes of socioeconomic disparities and the 

mechanisms through which they affect health.   

In Chapter 5, we conduct the first large scale GWAS on personal income, using data from the UK 

Biobank. We find that approximately 10% of the variation in occupational wages is captured by common 

genetic variants. Our findings are validated in two US samples using PGI constructed from our GWAS 

results. These PGI capture approximately 1 percent of the variation in these US samples and 

approximately 3 percent using a holdout sample in the UK Biobank. A one–standard–deviation increase 

in the PGI is associated with a 6 to 8 percent increase in self-reported hourly wages. Using within-sibling 

differences in PGI in the UK Biobank we show that part of the covariance between the PGI and income 

is causal.  Furthermore, we find that a higher PGI is linked to higher education and better health. The 

relation between the genetic endowment and health is in part mediated by education. Finally, we show 

using GIV regression, that even after controlling for genetic confounding the returns–to–schooling is 

strong, suggesting that education may alleviate the inequalities caused by genetic endowments.   

In Chapter 6 we build upon the results of Chapter 5 and further investigate the genetic and 

environmental factors underlying socioeconomic and health inequality. Here, we estimate a lower 

bound for the relevance of genetic factors and early-childhood environment for differences in education, 

income and body mass index in a sample of 38,698 siblings in the UK Biobank. Our estimates are based 

on models that combine family-fixed effects with gene-by-environment interactions. We find that the 
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random differences between siblings in their genetic endowments clearly contribute towards inequalities 

in the outcomes we study. Our rough proxy of the environment people grew up in, which we derived 

from their place of birth, are also predictive of the studied outcomes, but not beyond the relevance of 

family environment. Overall, our estimates suggest that at least 13 to 17 percent of the inequalities in 

education, wages and BMI in the UK are due to inequalities in opportunity that arise from the outcomes 

of the social and the genetic lottery.  

In Chapter 7 we conduct the first large-scale GWAS meta-analysis on personal income. While this large 

project is still ongoing, this chapter presents the first phase of the project. The meta-analysis has a total 

sample size of 1,161,574 observations from approximately 756,000 individuals using four different 

measures of income: personal income, household income, occupational wages and parental income. In 

this chapter I present the first phase of the project by summarising the data collection process, the quality 

control protocol and presenting the first set of results of this project. The genetic variants underlying 

income capture between 4 and 7 percent of the variation in our measures of income. Combining the 

results of all four measures of income, we identify 160 independent genome–wide–significant SNPs that 

are associated with income. Furthermore, we find a very high genetic correlation with other 

socioeconomic variables like educational attainment. Finally, we find evidence of genetic heterogeneity 

between men and women. 

1.4 Statement of contributions 

Chapters 2–7 are all based on collaborative work with many colleagues, who all contributed in various 

ways. In this section I will state my personal contributions as well as possible and highlight the work of 

the main contributors to each chapter.  

Chapter 2 was the first project I worked on and it was an extension of my master’s thesis. All authors 

contributed to the development of the method. DiPrete extended the mathematical derivations to the 

final method. I conducted the simulations and the empirical analyses. All authors were involved in 

writing and editing the manuscript. 

For Chapter 3 De Vlaming, Koellinger and I designed the study. De Vlaming focussed on the theory and 

I focussed on the simulations. I wrote the manuscript, incorporating comments and notes from De 

Vlaming.  
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For Chapter 4, I was one of the analysts. The design and supervision of the study was done by Benjamin, 

Cesarini, Okbay and Turley. Okbay supervised the analyses and led the writing of the manuscript. 

Becker was responsible for the GWAS and MTAG analyses, quality control of the GWAS summary 

statistics and did the validation analyses for the PGI. I was involved in cleaning the genetic data and 

creating harmonized datasets, creating the UK Biobank phenotypes and constructing PGI and genetic 

principal components. Goldman conducted the illustrative application and wrote the Python code. 

Turley derived the measurement-error-correction estimator. Benjamin, Cesarini, Okbay and Turley 

wrote the manuscript.  

For Chapter 5, I was one of the analysts. Koellinger designed, lead and oversaw the study. Kweon was the 

lead analyst. He developed the method for imputing income in the UK Biobank and conducted many of 

the analyses. I mainly conducted analyses in the Health and Retirement Study. I contributed to the 

writing and editing of the manuscript, but Koellinger and Kweon made especially major contributions to 

the writing and editing.  

I was the lead analyst for Chapter 6 and lead the writing of the manuscript. Koellinger, Kweon and I 

designed the project. I conducted the MTAG analyses, created the PGI and conducted the analyses 

presented in the chapter. Kweon conducted the GWAS in UK Biobank, linked the neighbourhood data 

and prepared the phenotypic data. Koellinger supervised the study. 

Chapter 7 is the start of a very large collaborative study involving many researchers. I am the lead analyst 

for this project. Next to the many cohort analysts who conducted GWAS, Kweon and I conducted 

several GWAS. I was responsible for the quality control of the summary statistics. Kweon and I also 
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specifically responsible for the implementation in Dutch datasets. I also conducted the meta-analyses and 

LDSC analyses. Karlsson Linnér created the Manhattan plots of the results. Koellinger lead and oversaw 

the study. I wrote the chapter presenting first phase of this project included in this thesis, incorporating 

previous texts from Koellinger and Kweon.  
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Abstract 

Identifying causal effects in nonexperimental data is an enduring challenge. One proposed solution that 

recently gained popularity is the idea to use genes as instrumental variables [i.e., Mendelian 

randomization (MR)]. However, this approach is problematic because many variables of interest are 

genetically correlated, which implies the possibility that many genes could affect both the exposure and 

the outcome directly or via unobserved confounding factors. Thus, pleiotropic effects of genes are 

themselves a source of bias in nonexperimental data that would also undermine the ability of MR to 

correct for endogeneity bias from nongenetic sources. Here, we propose an alternative approach, genetic 

instrumental variable (GIV) regression, that provides estimates for the effect of an exposure on an 

outcome in the presence of pleiotropy. As a valuable by product, GIV regression also provides accurate 

estimates of the chip heritability of the outcome variable. GIV regression uses polygenic scores (PGSs) 

for the outcome of interest which can be constructed from genome-wide association study (GWAS) 

results. By splitting the GWAS sample for the outcome into nonoverlapping subsamples, we obtain 

multiple indicators of the outcome PGSs that can be used as instruments for each other and, in 

combination with other methods such as sibling fixed effects, can address endogeneity bias from both 

pleiotropy and the environment. In two empirical applications, we demonstrate that our approach 

produces reasonable estimates of the chip heritability of educational attainment (EA) and show that 

standard regression and MR provide upwardly biased estimates of the effect of body height on EA 

2.1 Introduction 

A major challenge in the social sciences and in epidemiology is the identification of causal effects in 

nonexperimental data. In these disciplines, ethical and legal considerations along with practical 

constraints often preclude the use of experiments to randomize the assignment of observations between 

treatment and control groups or to carry out such experiments in samples that represent the relevant 

population (McNeill, 1993). Instead, many important questions are studied in field data which make it 

difficult to discern between causal effects and (spurious) correlations that are induced by unobserved 

factors (Stigler, 2005). Obviously, confusing correlation with causation is not only a conceptual error; it 

can also lead to ineffective or even harmful recommendations, treatments, and policies, as well as a 

significant waste of resources (e.g., as in (Lawlor, Smith, & Ebrahim, 2004)). 



Genetic instrumental variable regression: Explaining socioeconomic and health 
outcomes in nonexperimental data 
 

 
 

 
21 

One important source of bias in field data stems from genetic effects: Twin studies (Plomin, 1999) as 

well as methods based on molecular genetic data (Yang et al., 2010; Yang, Lee, Goddard, & Visscher, 

2011) allow estimation of the proportion of variance in a trait that is due to linear genetic effects (so-

called narrow-sense heritability). Using these and related methods, an overwhelming body of literature 

demonstrates that almost all important human characteristics, behaviors, and health outcomes are 

influenced both by genetic predisposition and by environmental factors (Turkheimer, Haley, Waldron, 

D’Onofrio, & Gottesman, 2003; Polderman et al., 2015; Conley, 2016). Most of these traits are 

“genetically complex”, which means that the observed heritability is due to the accumulation of effects 

from a very large number of genes that each have a small, often statistically insignificant, influence 

(Chabris, Lee, Cesarini, Benjamin, & Laibson, 2015). 

Furthermore, genes often influence several seemingly unrelated traits, a phenomenon called direct or 

vertical pleiotropy (Paaby & Rockman, 2013; Solovieff, Cotsapas, Lee, Purcell, & Smoller, 2013). For 

example, a mutation of a single gene that causes the disease phenylketonuria is responsible for mental 

retardation and also for abnormally light hair and skin color (Low, 2001). Pleiotropy is not restricted to 

diseases. All genes involved in healthy cell metabolism and cell division can be expected to directly 

influence a broad range of traits such as body height, cognitive ability, and longevity, even if the effect on 

each of these traits may be tiny. Similarly, any gene involved in neurodevelopment and brain function is 

likely to contribute to human behavior and mental health in some way (Boyle, Li, & Pritchard, 2017). 

In addition to direct pleiotropic effects, genes can also have indirect or horizontal pleiotropic effects, 

where a genetic variant influences one trait, which in turn influences another trait (Paaby & Rockman, 

2013). The similarity of the genetic architecture of two traits is estimated by their genetic correlation 

(i.e., the correlation of the “true” effect sizes of all genetic variants on both traits) (Okbay, Beauchamp, et 

al., 2016), which captures both direct and indirect pleiotropic effects (Lynch & Walsh, 1998; S. H. Lee, 

Yang, Goddard, Visscher, & Wray, 2012; B. Bulik-Sullivan et al., 2015). Genetic correlations exist 

between many traits and often exceed their phenotypic correlations (Zheng et al., 2017), giving rise to 

the concern that direct pleiotropy may substantially bias studies that do not control for genetic effects 

(D’Onofrio et al., 2010). 
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If an experimental design is not possible, the gold standard in the presence of genetic confounds is to 

compare outcomes for monozygotic (MZ) twins (Asbury, Dunn, Pike, & Plomin, 2003; Caspi et al., 

2004), who are by definition genetically (almost) identical (Ehli et al., 2012). In addition, this approach 

also controls for effects that arise from shared parental environment. However, the practical challenge is 

that such studies require very large sample sizes of MZ twin pairs because differences within MZ twin 

pairs tend to be small or non-existent. Furthermore, unobserved environmental differences between the 

twins or reverse causation can still lead to wrong conclusions in this study design. 

Another popular strategy to isolate causal effects in nonexperimental data is to use instrumental variables 

(IVs) (Wooldridge, 2002). Valid IVs are conceptually similar to natural experiments: They provide an 

exogenous “shock” on the exposure of interest to isolate the effect of that exposure on an outcome. Valid 

IVs need to satisfy two important conditions.1 First, they need to be correlated with the exposure 

conditional on the other control variables in the regression (i.e., IVs need to be “relevant”). Second, they 

need to be independent of the error term of the regression conditional on the other control variables and 

produce their correlation with the outcome solely through their effect on the exposure (the so-called 

exclusion restriction). In practice, finding valid IVs that satisfy both requirements is difficult. In 

particular, satisfying the exclusion restriction is challenging.  

Epidemiologists have proposed to use genetic information to construct IVs and termed this approach 

Mendelian randomization (MR) (Smith & Ebrahim, 2003; Davey Smith & Hemani, 2014; Pickrell, 

2015; Davey Smith, 2015). The idea is in principle appealing because genotypes are randomized in the 

production of gametes by the process of meiosis. Thus, conditional on the genotype of the parents, the 

genotype of the offspring is the result of a random draw. So if it could be known which genes affect the 

exposure, it may be possible to use them as IVs to identify the causal influence of the exposure on some 

outcome of interest. However, there are four challenges to this idea. First, we need to know which genes 

affect the exposure and isolate true genetic effects from environmental confounds that are correlated 

with ancestry. Second, if the exposure is a genetically complex trait, any gene by itself will capture only a 

very small part of the variance in the trait, which leads to the well-known problem of weak instruments 

(Hahn & Hausman, 2003; Murray, 2006). Third, genotypes are randomly assigned only conditional on 

 

1 Two other conditions that valid IVs need to satisfy are monotonicity (everyone who is affected by the IV is 
affected in the same direction) and the stable unit treatment value assumption (SUTVA): the “treatment” of one 
unit does not affect the outcome variable for other units. 



Genetic instrumental variable regression: Explaining socioeconomic and health 
outcomes in nonexperimental data 
 

 
 

 
23 

the genotype of the parents. Unless it is possible to control for the genotype of the parents, the genotype 

of the offspring is not random and correlates with everything that the genotypes of the parents correlate 

with (e.g., parental environment, personality, and habits) (Hamer & Sirota, 2000). Fourth, if direct 

pleiotropic effects of genes are the source of the confound, these genes could obviously not be used as 

IVs. One could try to isolate a subset of genes that influence only the exposure, but such attempts are still 

hindered by our limited knowledge of the function of most genes (Bowden, Davey Smith, & Burgess, 

2015; Pickrell, 2015; Verbanck, Chen, Neale, & Do, 2017). 

Recent advances in complex trait genetics make it possible to address the first two challenges of MR. 

Array-based genotyping technologies have made the collection of genetic data fast and cheap. As a result, 

very large datasets are now available to study the genetic architecture of many human traits and a 

plethora of robust, replicable genetic associations have recently been reported in large-scale genome-wide 

association studies (GWASs) (Welter et al., 2014). These results begin to shed light on the genetic 

architecture that is driving the heritability of traits such as body height (Wood et al., 2014), body mass 

index (BMI) (Locke et al., 2015), schizophrenia (Ripke et al., 2014), Alzheimer’s disease (Lambert et al., 

2013), depression (Okbay, Baselmans, et al., 2016), and educational attainment (EA) (Okbay, 

Beauchamp, et al., 2016).  

High-quality GWASs use several strategies to control for genetic structure in the population, and 

empirical evidence suggests that the vast majority of the reported genetic associations for many traits is 

not confounded by ancestry (Price et al., 2006; Rietveld et al., 2014; B. K. Bulik-Sullivan et al., 2015; Loh 

et al., 2015). Polygenic scores (PGSs) have become the favored tool for summarizing the genetic 

predispositions for genetically complex traits (Purcell et al., 2009; Dudbridge, 2013; Okbay, Baselmans, 

et al., 2016; Okbay, Beauchamp, et al., 2016). PGSs are linear indexes that aggregate the estimated effects 

of all currently measured genetic variants (typically single nucleotide polymorphisms (SNPs)). The 

effects of each SNP on an outcome are estimated in large-scale GWASs that exclude the prediction 

sample. Recent studies demonstrate that this approach yields PGSs that begin to predict genetically 

complex outcomes such as height, BMI, schizophrenia, and EA (Rietveld et al., 2013; Wood et al., 2014; 

Locke et al., 2015; Ripke et al., 2014; Okbay, Baselmans, et al., 2016). Although PGSs still capture 

substantially less of the variation in traits than suggested by their heritability (Witte, Visscher, & Wray, 

2014) (an issue we return to below), PGSs capture a much larger share of the variance of genetically 
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complex traits than individual genetic markers. The third challenge to MR in the above list could in 

principle be addressed if the genotypes of the parents and the offspring are observed (e.g., in a large 

sample of parent–offspring trios) or by using large samples of siblings or dizygotic twins where the 

genetic differences between siblings are random draws from the parent’s genotypes. However, the fourth 

challenge (i.e., pleiotropy) remains a serious obstacle despite recent efforts to relax the exogeneity 

assumptions in MR (Bowden, Davey Smith, & Burgess, 2015; van Kippersluis & Rietveld, 2017; Zhu et 

al., 2018). 

Here, we address the implications of pleiotropy for modeling causal relationships using nonexperimental 

data. We demonstrate that pleiotropy is a serious source of bias in ordinary least-squares regression 

(OLS) and MR. We propose alternative estimation strategies that use PGSs for the outcome of interest 

to reduce bias arising from pleiotropy. In particular, we propose an approach that we call genetic 

instrumental variables (GIV) regression that can be implemented using widely available statistical 

software. GIV regression estimates practically useful upper and lower bounds for the causal effect of an 

exposure on an outcome even in the presence of substantial direct pleiotropy. 

We begin by providing intuition and laying out the assumptions of our approach. We go on to show that 

GIV regression produces accurate estimates for the effect of the PGSs on the outcome variable when the 

other covariates in the model are exogenous, when the true PGS is uncorrelated with the error term net 

of the included covariates, and when the GWAS sample sizes are sufficiently large relative to the number 

of SNPs. We then turn to the more complex case of when a regressor of interest (T)	is potentially 

correlated with unobserved variables in the error term because of pleiotropy, and we show with evidence 

from a comprehensive set of simulations that the bias under these assumptions with GIV regression is 

generally smaller than with OLS, MR, or what we term an enhanced version of MR (EMR). 

Next, we demonstrate the practical usefulness of our approach in empirical applications using the 

publicly available Health and Retirement Study (HRS) (Sonnega et al., 2014). First, we demonstrate that 

a consistent estimate of the so-called chip heritability (Witte et al., 2014) of EA can be obtained with our 
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method. Then, we estimate the effects of body height on EA. As a “negative control,” we check whether 

our method finds a causal effect of EA on body height (it should not).2 

Formal derivations and technical details are contained in Supplementary Information (SI), sections 

S2.1–S2.5. 

2.2 Theory 

2.2.1 Intuition 

To build intuition for our approach, we introduce the concept of the true PGS for y	which would be 

constructed using the true effects of each SNP on y. In theory, the true SNP effects could be estimated in 

a GWAS on y	in an infinitely large sample that is drawn from the same population as the prediction 

sample. The true PGS would capture the narrow-sense heritability of y. Of course, the true PGS is 

unknown. All one can practically obtain is a PGS from a finite GWAS sample that will capture a part, 

but not all, of the genetic influence on y	because the effect of each SNP is estimated with noise. The 

attenuated predictive accuracy of practically available PGSs (Daetwyler, Villanueva, & Woolliams, 2008; 

Dudbridge, 2013; Witte et al., 2014) is conceptually similar to the well-known problem of measurement 

error in regression analysis. It has long been understood that multiple indicators can, under certain 

conditions, provide a strategy to correct regression estimates for attenuation from measurement error 

(Bielby, Hauser, & Featherman, 1977; Bollen, 2002; Angrist & Pischke, 2009). We show below that by 

splitting the GWAS sample into independent subsamples, one can obtain several PGSs (i.e., multiple 

indicators) in the prediction sample. Each will have even lower predictive accuracy than the original 

score due to the smaller GWAS subsamples used in their construction, but these multiple indicators can 

be used as instrumental variables for each other, and the instruments will satisfy the assumptions of IV 

regression to the extent that the measurement errors (the difference between the true and calculated 

PGSs) are uncorrelated. Standard two-stage least-squares (2SLS) regression (Wooldridge, 2002) (readily 

available in statistics software packages) using at least one valid IV for the PGS of y	can then be used to 

back out an unbiased estimate of the heritability of y. 

 

2 Note that a clean experimental design which randomizes people into groups based on body height or EA is not 
possible. Thus, any attempt to study the causal relationship between the two variables must rely on observational 
data and naturally occurring experiments like the genetic endowment of individuals, which we exploit here. 
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Next, presume the matter of interest is not heritability, but the causal effect of some treatment T	on y, 

where T	is also heritable and some genes have direct pleiotropic effects on both. If these genes are not 

known and not controlled for, regressing y	on T	would result in omitted variable bias.3 Suppose the 

effects of all genes that influence y	through channels other than T	could be known. Theoretically, one 

could estimate these effects in a GWAS on y	that controls for T	in an infinitely large sample. That 

information could be used to construct a “true conditional” PGS in a prediction sample. Adding the true 

conditional PGS to a regression of y	on T	in the prediction sample would effectively eliminate bias 

arising from direct pleiotropy. However, the true conditional PGS is also unknown and all we can 

practically obtain is a noisy proxy of it from a finite GWAS sample. While it is not guaranteed, the 

general conclusion of the literature is that the use of proxy variables is an improvement over omitting the 

variable being proxied (Wickens, 1972; Aigner, 1974). Furthermore, having a valid IV for the conditional 

score would potentially correct for its noise and get us closer to estimating the true causal effect of T	on 

y. As before, a valid IV can be practically obtained by splitting the GWAS sample into independent parts 

and standard IV estimation techniques such as two-stage least squares can be used. We refer to this 

approach as conditional genetic IV regression (GIV-C). 

If conditional GWAS results are not available, one can still add the unconditional PGS for y	as a control 

variable and use IV regression with multiple indicators for this score to correct for measurement error. 

We refer to this as unconditional GIV regression (GIV-U). GIV-U still corrects for bias arising from 

direct pleiotropy, but this strategy will overcontrol and result in estimates for T	that are biased toward 

zero because the unconditional PGS also includes indirect pleiotropic effects of genes that affect y	only 

because they affect T. However, extensive simulations show that the combination of GIV-C and GIV-U 

turns out to produce reasonable upper and lower bounds for the effect of T	on y	across a broad range of 

scenarios if the only sources of bias are pleiotropic genes. 

The GIV strategy starts to break down when bias arises from unobserved nongenetic factors as well as 

from pleiotropic effects. We show below that both GIV and MR produce biased estimates in this case. 

However, we demonstrate that the combination of GIV-C and GIV-U still outperforms OLS and MR. 

Furthermore, the GIV approach has additional utility because it can be combined with other strategies to 

 

3 Unfortunately, that is the reality in most social scientific and epidemiological studies that use nonexperimental 
data 
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reduce the effects of environmental endogeneity (e.g., additional control variables or family fixed 

effects). We demonstrate that these combined strategies can potentially provide accurate information 

about the effects of an exposure in situations with both genetic and nongenetic sources of endogeneity. 

In contrast, the problems for MR that are produced by pleiotropy bias are not fixable in a similar 

manner. 

2.2.2 Assumptions  

GIV regression builds on the standard identifying assumptions of IV regression (Wooldridge, 2002). In 

the context of our approach, this implies six specific conditions: 

i) Polygenicity: The outcome is a genetically complex trait that is influenced by many genetic 

variants, each with a very small effect. 

ii) Complete genetic information: The available genetic data include all variants that influence the 

variable(s) of interest. 

iii) Genetic effects are linear: All genetic variants influence the variable(s) of interest via additive 

linear effects. Thus, there are no genetic interactions (i.e., epistasis) or dominant alleles. 

iv) Unbiased GWAS results: The available GWAS results are not systematically biased by omitted 

environmental variables. For example, failure to control for population structure can lead to spurious 

genetic associations (Hamer & Sirota, 2000). 

v) Nonoverlapping samples: It is possible to divide GWAS samples into nonoverlapping 

subsamples drawn from the same population. 

vi) The genetic effects on y	are the same in the GWAS and the prediction samples; i.e., the genetic 

correlation between samples is one. 

2.2.3 Estimating Narrow-Sense SNP Heritability from Polygenic Scores 

Under these assumptions, consistent estimates of the chip heritability of a trait (i.e., the proportion of 

variance in a trait that is due to linear effects of currently measurable SNPs) can be obtained from 

polygenic scores (for full details, see Supplementary Information, section S2.2). If y	is the outcome 

variable, X	is a vector of exogenous control variables, and 𝑆!|#∗  is a summary measure of genetic tendency 

for y	in the presence of controls for X, then one can write 

𝑦	 = 	𝛼	 + 	𝑋𝛽	 + 	𝛾𝑆!|#∗ 	+ 	𝜖 (2.1) 
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= 	𝛼	 + 	𝑋𝛽	 + 	𝛾(𝐺𝜁!|#) 	+ 	𝜖,  

where G	is an n	×m	matrix of genetic markers, and 𝜁!|#is the m	×1	vector of SNP effect sizes, where the 

number of SNPs is typically in the millions. If the true effects of each SNP on the outcome were known, 

the entire genetic tendency for y	would be captured by the true unconditional score Sy∗|X, and the 

marginal R2	of 𝑆!|#∗ 	in Eq. 2.1 would be the chip heritability of the trait. We refer to the estimate of the 

PGS from actually available GWAS data in the presence of controls for X	as Sy|X, where 

𝑆!|# 	= 	 𝑆!|#∗ +	𝑣% 	= 	𝐺𝜁!|# 	+ 	𝐺𝑢!|#		 (2.2) 

and 𝑢!|#	is the estimation error in 𝜁!|#and 𝑆!|#is substituted for 𝑆!|#∗ in Eq. 2.1. The variance of a trait 

that is captured by its available PGS increases with the available GWAS sample size to estimate 𝜁!|#  and 

converges to the SNP-based narrow-sense heritability of the trait at the limit if all relevant genetic 

markers were included in the GWAS and if the GWAS sample size were sufficiently large (Daetwyler et 

al., 2008; Dudbridge, 2013; Witte et al., 2014). 

Eq. 2.1 contains what is called in econometrics a “generated regressor” in that 𝑆∗ 	is a function of a set of 

variables (G)	and coefficients (𝜁!|#) from another model. As previous work (Pagan, 1984; Murphy & 

Topel, 2002) has established, OLS will provide consistent estimates of the parameters of Eq. 2.1 

(although corrections for standard errors are needed) if S	is substituted for 𝑆∗ 		under a set of reasonable 

assumptions that include convergence in probability of 𝜁1!|# 	to 𝜁!|#  as the sample size grows larger. 

However, the practical utility of this mathematical result is questionable in the current context, when the 

number of variables in G	is in the millions while the number of cases available to estimate 𝑆∗ 		is far smaller 

than that. The imposed ratio of coefficients to cases requires nonconventional estimation methods that 

use a combination of statistical assumptions to obtain estimates of S. Empirical studies using PGSs for a 

variety of traits have consistently demonstrated substantial attenuation in the estimate of γ	(Daetwyler et 

al., 2008; Dudbridge, 2013; Witte et al., 2014), and, while the bias diminishes with GWAS sample size, 

we are a long time away from having large enough sample sizes to bring this attenuation down to 

ignorable levels. This situation, therefore, calls for alternative strategies to address important questions 

with the datasets currently available. 

The most straightforward solution to the problem of attenuation bias is to obtain multiple indicators of 

the PGS by splitting the GWAS discovery sample for y	into two mutually exclusive subsamples with at 

least partially overlapping sets of SNPs. This produces noisier estimates of 𝑆!|#∗ ,	with lower predictive 



Genetic instrumental variable regression: Explaining socioeconomic and health 
outcomes in nonexperimental data 
 

 
 
 

29 

accuracy, but the multiple indicators can be used as IVs for each other. The 2SLS regression using 𝑆!%|#  

as an instrument for  𝑆!&|#  will then recover a consistent estimate of γ	in Eq. 2.1 under standard IV 

assumptions (Angrist & Pischke, 2009; Burgess, Small, & Thompson, 2015). 

As discussed more technically in SI, section S2.1, an additional important assumption for 𝑆!%|#  	to be a 

valid instrument for 𝑆!&|#  is that y	be a complex trait, meaning that it is influenced by a large number of 

genetic markers, each of which has a very small effect. If y	is primarily influenced by a relatively small 

number of markers, then the method proposed here would not work well. However, there would also be 

no need for the proposed method, because the markers with large effects could be easily identified and 

their effects estimated with reasonable precision using discovery sample sizes that are already obtainable. 

Another required assumption is that the genetic markers are independent of each other. In general, 

genetic markers are correlated if they are located close to each other on the same chromosome. However, 

it is currently possible to isolate several hundred thousand markers from the total set of millions of SNPs 

that have sufficient spatial separation in the DNA to be essentially mutually independent, which means 

that this assumption can be satisfied to a sufficient level of accuracy. 

Assuming that the variables in Eq. 2.1 are standardized to have mean zero and a SD of one, and further 

assuming that the variables contained in X	control for population stratification or are not correlated with 

genotype G, a consistent estimate of the chip heritability of y	can now be obtained from  

ℎ!
2! 	 = 	 𝛾"2𝜌(	𝑆𝑦1|𝑋, 𝑆𝑦2|𝑋), where ρ	is the correlation coefficient. The heritability estimate ℎ!

2!	is not 

equal to 𝛾5& simply because we regressed on 𝑆!|# 	= 	 𝑆!|#∗ + 	𝑣	instead of 𝑆!|#∗ . Thus, we stan- 

dardize with respect to the variance of 𝑆!|#  instead of 𝑆!|#∗ , which leads to a bias equal to 1/𝑉𝑎𝑟(𝑆!|#∗ ). 

Multiplying 𝛾5& 	with the correlation between 𝑆!%|# 	and 𝑆!&|# 	recovers a consistent estimate for 𝛾5& 		(SI, 

section SI 2.2.1).4  

 

4 For an alternative approach to correcting attenuation bias based on the use of multiple indicators in a structural 
equation modeling framework, see ref. Tucker-Drob, 2017. 
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2.3 Reducing bias arising from genetic correlation 

between exposure and outcome 

Polygenic scores also play a potentially important role in situations where the question of interest is not 

the chip heritability of y	per se, but rather the effect of some nonrandomized exposure on y	(e.g., a 

behavioral or environmental variable or a nonrandomized treatment due to policy or medical 

interventions). We can rewrite Eq. 2.1 by adding a treatment variable of interest T, such that 

𝑦 = 𝛿𝑇 + 𝑋𝛽! + 𝛾	𝑆!|#+∗ + 𝜖!  (2.3) 

= 𝛿𝑇 + 𝑋𝛽! + 𝐺𝜁!|#+ + 𝜖!   

 

where 

𝑇 = 𝛼	𝑆+|#∗ + 𝑋𝛽+ + 𝜖+  (2.4) 

= 𝐺𝜉+|# + 𝑋𝛽+ + 𝜖+,  

We assume that the disturbance term is uncorrelated with genetic variables.5 We now use the true 

conditional score 𝑆!|#+∗
	rather than 𝑆!|#∗  in the equation. Given that T	is in the model, the effect of 

individual SNPs on y	will generally involve a direct net effect of T	(ζ)	and an indirect effect stemming 

from the combination of their effect on T	(ξ)	and the effect of T	on y.	Having 𝑆!|#+∗
	 in the equation 

would effectively control for pleiotropic effects on T	and y. 

In standard MR, a measure of genetic tendency (𝑆+|#) for a behavior of interest (T	in Eq. 2.3) is used as 

an IV in an effort to purge 𝛿1 of bias that arises from correlation between T	and unobservable variables in 

the disturbance term under the assumption that 𝑆+|#  is exogenous (Burgess, Butterworth, Malarstig, & 

Thompson, 2012; Burgess et al., 2015). One such example would be the use of a PGS for height as an 

instrument for height in a regression of EA on height. The problem with this approach is that the PGS 

for height will fail to satisfy the exclusion restriction if (some of) the genes affecting height also have a 

direct effect on EA (e.g., via healthy cell growth and metabolism) or if they are correlated with 

unmeasured environmental factors that affect EA. (Classic MR typically does not use PGSs as 

 

5 We drop this assumption later. Also, we drop the subscript on the coefficients for the exogenous control variables 
X	below when it would not lead to confusion. 
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instruments. Instead, the idea is to use single genetic variants that are known to affect the exposure via 

well-understood biological mechanisms that make it unlikely to violate the exclusion restriction. In 

practice, limited knowledge about the biological function of most genes makes it difficult to argue that 

direct pleiotropic effects of the gene on the exposure and the outcome of interest exist.) 

If the true conditional (net of T) genetic propensity for y	could be directly controlled in the regression, 

pleiotropy would not bias coefficient estimates. For example, fixed-effects regression where the same 

individual is observed multiple times would effectively control for pleiotropy (which does not vary over 

time), but this strategy is often not available (e.g., in a study of the effect of height on EA).6 Direct 

control for the conditional genetic propensity for y	is, of course, not possible, because 𝑆!|#+∗  (more 

specifically, the coefficients 𝜁!|#+in Eq. 2.3) is not known. What is obtainable instead is a proxy  𝑆!|#+∗ , 

namely  𝑆!|#+, which contains measurement error due to finite GWAS sample size and potential bias in 

the estimate of T	in the GWAS. 

We refer to the combined use of 𝑆!|#+ 	as a control and 𝑆+|#  as an IV for T	as EMR. However, 

controlling for 𝑆!|#+ 		as a proxy for 𝑆!|#+∗  	is not a perfect solution to pleiotropy because it leaves a 

component of 𝑆!|#+∗  in the error term which is correlated with ST	due to pleiotropy. As a result, the 

EMR estimate for δ	will be biased. The practical question, then, is whether alternative strategies that 

split the GWAS sample for Y	to obtain multiple indicators of 𝑆!|#+ 	that can be used as IVs for each other 

(e.g., 𝑆!%|#+ 	and 𝑆!&|#+) are sufficient to rescue 𝑆+  as a practically useful IV for T.7	This is a practical 

question beyond the reach of formal mathematics and best answered by simulation analyses. 

Unfortunately, and as we show in SI, section S2.2, the pleiotropy-induced violation of the exclusion 

restriction when using genetic IVs for T	is sufficient to produce serious bias in the estimated effect of T	

even if one attempts to control for pleiotropy using such strategies. The magnitude of bias clearly 

 

6 Fixed-effects estimation with panel data would also preclude MR-type strategies because the IV does not vary over 
time, and genetic indicators for T would generally have a weak relationship to changes in T over time. Fixed-effects 
regressions based on other strategies (e.g., sibling or neighborhood fixed-effects models) would not control for 
pleiotropy. We discuss these strategies at greater length below. 
7 An earlier version of our paper pursued this approach and called it GIV regression. However, we later found that 
controlling for T in a GWAS for y induces a correlation of 𝑆!"|$%  with ST that invalidates the latter as an IV. The 
version of GIV-U and GIV-C regression we describe below does not have this problem because it does not use a 
genetic instrument for T anymore. Instead, GIV-U and GIV-C both rely on a proxy-control strategy that uses only 
an instrument for 𝑆!"|$%  or 𝑆!"|$  to correct for measurement error in these proxies for 𝑆!|$%∗

 and 𝑆!|$%∗ . 
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depends on the quality of the proxies for 𝑆!|#+∗  	. However, we find that pleiotropy leads to considerable 

bias in MR in virtually all scenarios we investigated (SI  sections S2.2 – S2.4 and Tables S2.2–S2.15). 

The problems posed by pleiotropy cannot be completely eliminated without knowledge of 𝑆!|#+∗  	 (SI, 

section S2.2). However, this situation does not mean that the estimation problems introduced by 

pleiotropy are intractable. When endogeneity bias is driven by genetic correlation, the PGS for y	can still 

be used to obtain more accurate estimates of the effect of T	than can be obtained with MR or, for that 

matter, with OLS that lacks controls for the direct effect of genetic markers on y. To gain insight into the 

best strategy, we consider the reasons for the pleiotropy bias. Regardless of whether the estimation 

strategy is OLS or the second stage of IV regression involving OLS on predicted variables from the first 

stage, the coefficient bias comes from the extent to which the expected estimate of the OLS coefficients 

differs from the true coefficients;8 namely, 

𝐸?𝛽1@𝑋A = 𝛽 + 	𝐸[(𝑋,𝑋)-%𝑋,𝜖|𝑋] (2.5) 

 

In other words, the coefficient bias from OLS is the expected regression coefficient of the error on the 

included variables in the regression. If 	is the sum of an omitted variable, z, which is correlated with the 

regressors, and additional variables that are uncorrelated with the regressors, then the bias for each 

coefficient βk	in Eq. 2.5 becomes the product of the regression coefficient for xk	in the regression of z	on 

all of the omitted variables multiplied by the effect of z	on the outcome. For simplicity, we assume that 

the only variables in the regression are T	and a potential proxy for 𝑆!|#+∗ , which we call 𝑆E!|#+. For any 

given proxy𝑆E!|#+, the bias in the estimate of 𝛿1	(the coefficient for T	in Eq. 2.3) comes from the expected 

coefficient of T	from a regression of 𝛾𝑆!|#+∗ − 𝛾G	𝑆E!|#+  on T	and 𝑆E!|#+. We consider three alternative 

approaches for the proxy 𝑆E!|#+, which we call simple OLS, GIV-C, and GIV-U. First, we use 𝑆!|#+  as a 

proxy for 𝑆!|#+∗
	in a simple OLS regression. Second, we observe that 𝑆!|#+ 	is correlated with T; its 

inclusion in the error (by virtue of its being controlled) may affect the bias in δˆ. So we construct an 

estimate for 𝑆!%|#+, namely 𝑆1!%|#+, by using 𝑆!&|#  (the unconditional PGS from the second GWAS 

sample) as its IV. We call this approach, where 𝑆1!%|#+  is used as the regressor in the second stage, GIV-C. 

 

8 It is possible to have finite-sample bias that disappears asymptotically, in which case the estimator is consistent. We 
use the expectation formula instead because it is arguably more straightforward to understand. 
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We also use a third estimator that uses the same IV as in GIV-C (i.e., 𝑆!&|#), but that substitutes the 

unconditional PGS for y	(i.e., substitutes Sy1|X		for the conditional PGS Sy1|XT) in the structural model in 

Eq. 2.3. We then use Sy2|X		to predict Sy1|X, obtaining 𝑆1!%|#  as the regressor in the second stage. We call 

this third approach GIV-U. 

We generally expect the use of GIV-C to perform better than the use of the proxy Sy|XT		in simple OLS. If 

the true effect of T	on y	is positive and positive pleiotropy is present, the estimated effect of T	on y	will 

have positive bias. This follows from the positive correlation between Sy∗|XT	and T	and from the positive 

effect of 𝑆!|#+∗
	on y. The presence of the proxy Sy|XT		in the first approach (simple OLS) adds a partially 

offsetting negative bias, because the correlation between Sy|XT		and T	is positive and the effect 𝛾G./0 is also 

positive, but 𝛾5./0𝑆!|#+  is being subtracted, which causes the offsetting bias to be negative. The net bias 

is expected to be positive, but we would expect it to be smaller with the inclusion of the proxy than with 

no proxy at all, both because the correlation between T	and Sy|XT		would be lower than between T	and 

Sy∗|XT	and because we expect 𝛾5./0 to be attenuated relative to γ. When GIV-C is used instead, the term in 

the error becomes 

 𝛾𝑆!|#+∗ − 𝛾5123𝑆1!%|#+. The presence in the first stage of GIV-C of T, which is correlated with 𝑆!|#+∗ , 

prevents the IV strategy from obtaining a consistent estimate of γ. Nonetheless, we would generally 

expect 𝛾5123 >	𝛾5./0, and therefore we expect the positive bias for the estimate of δ	to be smaller when 

using GIV-C than when estimating δ	using OLS and the proxy Sy1|X. We confirm this in the simulations 

in SI, Tables S2.2–S2.7. 

With GIV-U, the problem term in the error is 𝛾𝑆!|#+∗ − 𝛾5124𝑆1!%|#.  As before, the presence of the first 

term produces a positive bias in the estimate of δ, while the second term produces an offsetting negative 

bias. The offset will be stronger when the unconditional PGS for y	is the regressor in the structural 

model, because the coefficients of the genetic markers in Sy1	are 𝛿1𝜉1 + 𝜁1, where ξ	is the effect of the 

genetic marker on T. The presence of 𝛿1(𝐺𝜉1) in the second endogenous term in the error (i.e., the second 

term in 𝛾𝑆!|#+∗ − 𝛾G𝑆E!|#+) produces a stronger downward bias. This downward bias is made still stronger 

by the use of 𝛾5124 	instead of 𝛾5./0 	as the coefficient, because we expect the first-stage regression to reduce 

the downward bias of 𝛾5./0. In other words, we expect these three proxies to behave differently in the 

simulations, and, as we will see, this expectation is met in practice. We establish via a comprehensive set 
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of simulations that GIV-C and GIV-U provide upper and lower bounds for the effect of T	across a range 

of plausible scenarios for pleiotropy and for heritability (SI, Tables S2–S7). We further establish through 

simulation analyses that GIV-C and GIV-U perform similarly in the case when endogeneity arises from 

pleiotropy and when it arises from pleiotropy in combination with genetic confounds for reasons other 

than pleiotropy (epistasis, effects from rare alleles, or genetic nurturing effects, where the environment of 

ego is shaped by genetically related individuals to ego (Kong et al., 2017)) (SI, section S2.3 and Tables 

S2.8–S2.10). 

2.4 Simulations 

We explored the performance of GIV regression in finite sample sizes using three sets of simulation 

scenarios (SI, sections S2.2–S2.4). The simulations generated genetic and phenotypic data at the 

individual level from a set of known models in a training sample and a holdout sample using parameters 

that are realistic for genetically complex traits. We then estimated genetic effects on T	and y	using GWAS 

in the training sample and constructed polygenic scores with the estimated parameters for each SNP in 

the holdout sample. Thus, the polygenic scores in our simulations have the realistic property that their 

predictive accuracy increases with the size of the training (i.e., GWAS) sample and the average effect size 

of each SNP (Daetwyler et al., 2008; Dudbridge, 2013). Finally, we analyzed the extent to which various 

estimation strategies recover the effect of the PGS for y	on y	and the effect of T	on y	in the holdout 

sample. We produced these estimates using OLS, MR, EMR, proxy OLS, GIV-C, and GIV-U 

regression, and we compared these results with the true answer across a range of parameter values. We 

ran 20 simulations with different random seeds for each set of parameters to obtain a distribution of 

estimated effects.9 

The simulations specify that the true PGS scores for y	and T	covary as a result of genetic correlation. We 

made the conservative assumption that the entire genetic correlation between y	and T	is due to direct 

pleiotropy; i.e., all genes that are associated with both phenotypes have direct effects on both. In practice, 

this is unlikely to be the case, but it is equally unlikely that one can put a credible upper bound on (or 

completely rule out) direct pleiotropy. 

 

9 The computer code for these simulations is available at https://github.com/cburik/GIVsim. 
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In the first set of simulations, we assumed that the entire endogeneity problem arises from genetic 

confounds (SI, section S2.2). 

In the second set of simulations, we allowed endogeneity to arise from sources that are both correlated 

with genes and that cause the disturbance term in the structural equation for y	to be correlated with the 

disturbance term in the structural model for T	even if the true conditional PGS for y	were included in 

the structural equation (SI, section S2.3). This situation would occur if rare alleles were missing from the 

true PGS for T	and the true conditional PGS for y	based on known SNPs and if the effect of these alleles 

was correlated with the true PGS scores for T	and y. It would also occur under conditions of epistasis 

where nonlinear effects of genes were in the error and were correlated with the linear effects of genes in 

the PGS for T	and the conditional PGS for y.	Third, this situation would occur if the genetic factors that 

affect T	are correlated with the environmental factors in the disturbance term for y	that are caused or 

selected by parental genes, which are correlated with the genes of sample members and therefore also 

with variables (like T) that are affected by the genes of sample members, i.e., by genetic nurturing (Kong 

et al., 2017). 

In the third set of simulations, we specified the presence of a correlation between the error terms in the 

models for y	and T	that was not itself correlated with genetic variables (SI, section S2.4). This would 

occur in a situation where some environmental or behavioral factor that is unrelated to genetics produces 

both an effect on T	and an effect on y. 

A summary of these results is in Table 2.1 for the case where the effect of T	is set to 1.0 (see SI, Table 

S2.16 for details on the standardized effect size). Scenarios A–D in Table 2.1 refer to situations where 

pleiotropy is the only source of bias, scenario E contains pleiotropy plus other sources of genetic 

confounds, while scenarios F and G also include endogeneity from nongenetic (i.e., environmental) 

sources. The results provide considerable reason to be skeptical of estimates from MR. When pleiotropy 

is present, the MR strategy is undermined by the violation of the exclusion restriction for genetic IVs. 

Our results find that MR performs poorly even when nongenetic endogeneity is present along with 

pleiotropy. In contrast, GIV regression provides reasonable upper and lower bounds of the true effect of 

T	on y	if the source of endogeneity is only from pleiotropy or other genetic confounds (i.e., unobserved 

genetic variants, epistasis, or genetic nurturing) and the heritability of T	and y	is not extreme. GIV-C 
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generally overestimates the effect of T	but the overestimation is modest at low to moderate levels of 

pleiotropy and heritability and is more accurate than OLS without proxies, MR, or EMR. GIV-U 

generally underestimates the effect of T	on y	but provides an estimate that is reasonably close to the true 

answer under conditions of low to moderate levels of pleiotropy and heritability. Even at higher levels of 

pleiotropy and heritability, the combination of GIV-C and GIVU provides useful information about 

whether T	actually has a causal effect on y	and what the upper bound of this effect is likely to be. 

In the case where the true value of T	is zero (i.e., where the true model is Eq. 2.1), we expect that GIV-U 

will produce an estimate that is close to zero as long as the endogeneity comes either from pleiotropy or 

from other genetic confounds (see SI, sections SI 2.2–2.4, for details). The simulations in SI section S2.2 

show that when the endogeneity is only from genetic sources, GIV-U estimates the effect of T	to be close 

to zero regardless of the level of pleiotropy or inheritance that is specified in the simulations. 

When the source of endogeneity is nongenetic in origin, we find that neither MR nor proxy controls for 

pleiotropy provide a satisfactory method for determining the effect of T	on y. In this scenario, the 

pleiotropy creates endogeneity bias for genetic IVs that defeats the ability of MR to solve the problem of 

nongenetic endogeneity via an IV strategy. Nongenetic endogeneity can cause even GIV-U to 

overpredict the effect of T	on y,	although in our simulations it is clearly the most accurate of all of the 

estimators that we have surveyed when the effect of T	is zero. Indeed, GIV-U always provides the most 

conservative estimate across the entire range of scenarios that we have surveyed, both for the case where 

an effect of T	on y	exists and when the effect of T	is zero. 

Inference with the GIV can be further strengthened in cases where nongenetic endogeneity can be 

controlled either through observable variables or through strategies such as family fixed effects that 

reduce or eliminate the impact of nongenetic forms of environmental endogeneity. Indeed, 

environmental endogeneity is a concern in most applied-research questions that use nonexperimental 

data. Reassuringly, our simulations show that GIV regression is a good estimation strategy in the 

presence of both direct pleiotropy and environmental endogeneity if control variables are available that 

manage to absorb a substantial share of the nongenetic confounds (SI, Tables S2.13– S2.15). Therefore, 

we recommend using GIV regression always in combination with control variables the capture possible 

environmental confounds, ideally in datasets that allow controlling for family fixed effects (e.g., using 
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siblings or dizygotic twins). In SI, section S2.6, we provide additional practical guidelines for GIV 

regression. 

The simulations described in this paper certainly do not cover all conceivable data-generating processes, 

but they are nonetheless of considerable utility. 

2.5 Empirical Applications 

We illustrate the practical use of GIV regression in two empirical applications using data from the 

Health and Retirement Survey (HRS) for 2,751 unrelated individuals of northwest European descent 

who were born between 1935 and 1945 (SI, section S2.5). 

2.5.1 The Narrow-Sense SNP Heritability of EA 

First, we demonstrate that GIV regression can recover the unbiased genomic– relatedness-matrix 

restricted maximum-likelihood (GREML) estimate of the chip heritability of EA. Specifically, we follow 

the common practice in GREML estimates of heritability and analyse the residual of EA from a 

regression of EA on birth year, birth year squared, gender, and the first 20 principal components from 

the genetic data (de Vlaming et al., 2017). Next, we standardize the residual and regress it on a 

standardized PGS for EA using OLS or GIV. The results are displayed in Table 2.2. The OLS estimate of 

the PGS accounts for 6.8% of the variance in EA (β2	= ∆R2	= 6.8%), which is substantially lower than the 

17.3% (95% CI ±	4%) estimate of chip heritability reported by ref. 64 in the same data using GREML.10 

Instead, the GIV regression results in columns 2 and 3 of Table 2.2 imply a chip heritability of 13.4% (CI 

±	3.9%) and 13.8% (±4.0%), respectively. Thus, the 95% CIs of the GREML mate and the two GIV 

estimates overlap, demonstrating that GIV regression can recover the chip heritability of EA from 

polygenic scores. 

2.5.2 The Relationship Between Body Height and Educational Attainment 

Previous studies using both OLS and sibling or twin fixed-effects methods have found that taller people 

generally have higher levels of EA (Silventoinen, Kaprio, & Lahelma, 2000; Case, Paxson, & Islam, 2009; 

Anne Case & Christina Paxson, 2008). They are also more likely to perform well in various other life 

 

10 GREML yields unbiased estimates of SNP based heritability that are not affected by attenuation (Yang et al., 
2015). 
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domains, including earnings, higher marriage rates for men (although with higher probabilities of 

divorce), and higher fertility (Heineck, 2005, 2009; Schick & Steckel, 2015; Weitzman & Conley, 2014; 

Kanazawa, 2005; Cinnirella, Piopiunik, & Winter, 2011). The question is what drives these results. Can 

they be attributed to genetic effects that jointly influence these outcomes? Are there social mechanisms 

that systematically favor taller or penalize shorter individuals? Or are there nongenetic factors (e.g., the 

uterine and postbirth environments especially related to nutrition or disease) that affect both height and 

these life-course outcomes? The literature on the relationship between height and EA has found 

evidence that the association arises largely through the relationship between height and cognitive ability, 

which may suggest that the height–EA association is driven largely by genetic association between height 

and cognitive ability. We use GIV regression with individual-level data from the HRS to clarify the 

influence of height on EA, and we compare these results with those obtained from OLS and from MR. 

In addition, we conduct a negative control experiment that estimates the causal effect of EA on body 

height (which should be zero). A complete description of the materials and methods is available in SI, 

section 2.5. 

GWAS summary statistics for height were obtained from the Genetic Investigation of Anthropometric 

Traits (GIANT) consortium (Wood et al., 2014) and by running a GWAS on height (conditional on EA 

and unconditional on EA) in the UKB (Marchini et al., 2015). The UKB was not part of the GIANT 

sample. GWAS summary statistics for EA were obtained from the Social Science Genetic Association 

Consortium (SSGAC) for the unconditional PGSs. The most recent study of the SSGAC on EA used a 

meta-analysis of 64 cohorts for genetic discovery (Okbay, Beauchamp, et al., 2016). We obtained meta-

analysis results from this study with the HRS, UKB, and 23andMe cohorts excluded and we refer to the 

PGS constructed from these results as EA SSGAC. Furthermore, we obtained GWAS estimates for EA 

in the full UKB release (N	=442,183) from Lee et al. (2018). We refer to this PGS as PGS EA unc. UKB. 

We also created a PGS for EA conditional on height by running a GWAS on EA in the same UKB 

sample (PGS EA cond. UKB). There is sample overlap between Height GIANT and EA SSGAC. 

Therefore, whenever one of the two was used as regressor, we excluded the other as instrument and used 

a PGS from UK Biobank data instead to ensure independence of measurement errors in the PGS. 

In Table 2.3 we report the estimated standardized effect of height on EA. The OLS results show that 

height appears to have a strong positive effect on EA, with 2.5 additional centimeters in height 
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generating one additional month of schooling. MR appears to confirm the causal interpretation of the 

OLS result; indeed, the point estimate from MR is even slightly larger than from OLS. As discussed 

above, MR suffers from probable violations of the exclusion restriction due to pleiotropy. These 

violations could stem from the possibility that some genes have direct effects on both height and EA.11 

They could also stem from the possibility that the PGS for height by itself is correlated with the genetic 

tendency for parents to have higher EA and income, which enables higher parental investments into 

their children who may therefore be more likely to reach their full cognitive potential and have higher 

EA. Controlling for the PGS is an imperfect strategy for eliminating this source of endogeneity because 

the bias in the estimated effect of the PGS score also biases the estimated effect of height. 

If all of the bias in EA came from positive pleiotropy, then we would expect GIV-C and GIV-U to 

provide upper and lower bounds for the true effect of height on EA, respectively. Thus, if the only 

source of endogeneity is pleiotropy, the results in Table 2.3 would suggest that the true standardized 

effect is between 0.11 (from GIV-U) and 0.17 (from GIV-C). 

However, the negative control regression results in Table 2.4 provide substantial evidence of endogeneity 

bias from environmental sources. Given that the true effect of EA on height should be zero, then GIV-U 

would accurately estimate this effect to be zero in the absence of environmental endogeneity. Instead, 

GIV-U reports a significant positive effect of EA on height. MR also reports a positive and statistically 

significant effect of EA on height. This upward bias in the MR estimate is strong evidence of pleiotropy 

bias that invalidates the IV in MR. The guidance from the simulations points to a true estimate of the 

effect of height on EA that is as small or smaller than the GIV-U estimate, which is 25% smaller than the 

estimate from MR. The extent of upward bias in the GIV-U estimate depends on the strength of 

environmental variables that simultaneously affected the height of HRS respondents and also affected 

their EA. 

These results also point toward a productive strategy for learning more about the true effect of height on 

EA. The demonstration that pleiotropy as well as environmental bias is affecting the estimates in Table 

2.3 implies that there is no effective fix for MR; its genetic instruments are contaminated by pleiotropy 

and therefore cannot be used to adjust for environmental endogeneity. Comparisons between 

 

11 Results from B. Bulik-Sullivan et al. (2015) and Okbay, Beauchamp, et al. (2016) suggest a genetic correlation 
between height and EA of about 0.15. 
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monozygotic twins would effectively control for pleiotropy, but unobserved environmental factors 

affecting height and EA could still bias the results from MZ twin data. The most productive strategy is 

arguably to use GIV-U and GIV-C as proxy strategies to address bias from pleiotropy while also 

correcting for environmental confounds either by controlling for the relevant environmental factors 

directly or by using data on siblings that allow controlling for shared environmental variables via family 

fixed-effects. With such data, the estimates from GIV-C and GIV-U would provide approximate bounds 

as long as the GIV-U estimate of the effect of EA on height was close to zero. If the negative control 

regression suggests bias from environmental sources, the GIV-U estimate will be more conservative than 

all of the other estimators considered in this paper, and it will underpredict the true effect unless positive 

bias from both pleiotropy and genetic-unrelated endogeneity is quite strong. 

These results do not provide as clean and neat a conclusion as might be desired, although uncertainty is 

inevitable in the absence of experimental data or a valid IV. At the same time, the empirical example 

provides considerable insight into the implications of the available estimates. Our results strongly imply 

that OLS provides an upwardly biased estimate of the effect of height on EA. They also strongly imply 

that the MR estimate suffers from pleiotropy bias and that MR is not an effective strategy for 

determining whether and to what extent height affects EA. Other studies suggest that pleiotropy 

between EA and height is not extremely high (B. Bulik-Sullivan et al., 2015). Our simulation results 

therefore suggest that GIV-U either is a plausible estimate for the effect of height on EA if genetic-

unrelated endogeneity is relatively strong or underpredicts this effect if the endogeneity is weaker. If the 

estimate of GIV-U continued to be positive and statistically significant in a sibling fixed-effects analysis, 

we would be rather confident that the effect is real and not an artifact of bias either from pleiotropy or 

from genetic-unrelated endogeneity. In other words, these results represent progress toward the goal of 

understanding how large the social advantage provided by height is in the process of EA given the 

existence of genetic confounds.12 

2.6 Conclusion 

Accurate estimation of causal relationships with observational data is one of the biggest and most 

important challenges in epidemiology and the social sciences—two fields of inquiry where many 

 

12 Obviously, none of the estimation strategies we discussed here address possible bias from nonrandom selection 
into samples. 
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questions of interest cannot be adequately addressed with properly designed experiments due to practical 

or ethical constraints. One important confound in nonexperimental data comes from direct pleiotropic 

effects of genes on the exposure and the outcome of interest. Both OLS and MR yield biased results in 

this case. We proposed GIV regression as an empirical strategy that controls for such pleiotropic effects 

using polygenic scores. GIV regression uses standard IV estimation algorithms such as two-stage least 

squares that are widely available in existing statistical software packages. Our approach provides 

reasonable upper and lower bounds of causal effects in situations when pleiotropic effects of genes are 

the only source of bias. We showed that OLS, MR, and GIV regression yield biased estimates if both 

genetic and environmental sources of endogeneity are present. However, GIV regression still 

outperforms OLS and MR in this scenario. Furthermore, GIV regression can (and should) be combined 

with additional strategies that allow controlling for bias from purely environmental or behavioral factors, 

such as using covariates or family-fixed effects. Together, these approaches can provide reasonable 

estimates of causal effects across a broad range of scenarios. 

GIV regression is called for whenever an experimental design, a valid IV strategy, or a large-enough 

sample of MZ twins is not available and when pleiotropy is a potential problem—a situation that is 

frequently encountered in practice. The main requirements for GIV regression are a prediction sample 

that has been comprehensively genotyped and large-scale GWAS results for the outcome of interest from 

two nonoverlapping samples. Due to rapidly falling genotyping costs that enable a growing availability of 

genetic data and large GWAS samples for many traits, these requirements have become increasingly 

feasible for many applications. Indeed, the combination of new estimation tools and continued rapid 

advancements in genetics should provide a significant improvement in our understanding of the effects 

of behavioral and environmental variables on important socioeconomic and medical outcomes. 
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2.8 Tables 

Shown are mean estimated coefficient for T and SE within parentheses of 20 simulations using different 
estimation methods for several models. For all models the genetic correlation (ρ) was 0.5 and the 
coefficient for T (δ) was 1. h2

y and h2
T are the heritability parameters of y and T. ρνy  is the correlation 

between y and the genetic confound for y. ρνT  is the correlation between T and the genetic confound for 
T. ρe =	0.4 is the correlation between the nongenetic confound and y. s is the share of the confound that 
is controlled for in terms of variance of the confound. These results are a selection from SI, Tables S2.2–
S2.4, S2.7, S2.9, S2.11, and S2.14; see SI, sections S2.2–S2.4 for all results. A, Table S2.2; B, Table S2.3; 
C, Table S2.4; D, Table S2.7; E, Table S2.9; F, Table S2.11; and G, Table S2.14. See row 2 of each table. 
See SI, Table S2.6 for more details on the parameters, variance, and standardized effect size. 
  

 
Table 2.1 Illustrative results from simulations, estimated coefficient for T 
Model Parameter OLS MR GIV-C GIV-U 
A Pleiotropy only 1.1004 1.5040 1.0131 0.9419 
 ℎ!& = ℎ+& = 0.2 (0.0001) (0.0012) (0.0001) (0.0001) 
B Pleiotropy only 1.2011 1.5024 1.0604 0.8575 
 ℎ!& = ℎ+& = 0.4 (0.0001) (0.0004) (0.0001) (0.0001) 
C Pleiotropy only 1.3016 1.5020 1.1573 0.7263 
 ℎ!& = ℎ+& = 0.6 (0.0001) (0.0002) (0.0001) (0.0002) 
D Pleiotropy only 1.5004 3.4922 1.0776 0.8689 
 ℎ!& = 0.8, ℎ+& = 0.2 (0.0005) (0.0093) (0.0002) (0.0002) 
E Genetic Confounds 1.3106 1.4609 1.1922 0.6422 
 ℎ!& = ℎ+& = 0.5,	

𝜌5! = 𝜌5+ = 0.5 
(0.0001) (0.0002) (0.0001) (0.0002) 

F Nongenetic confounds 1.4520 1.5032 1.4259 1.1193 
 ℎ!& = ℎ+& = 0.5,	

𝜌6 = 0.4 
(0.0001) (0.0002) (0.0001) (0.0001) 

G  Non genetic confounds 
with control 
ℎ!& = ℎ+& = 0.5,	
𝜌6 = 0.4, 𝑠 = 0.5 

1.3643 
(0.0001) 

1.5064 
(0.0002) 

1.3346 
(0.0001) 

0.9587 
(0.0001) 

      



 
Chapter 2  
 

 

 
50 

Table 2.2 Effects of the polygenic score for educational attainment (PGS EA) on (residualized) 
educational attainment in the Health and Retirement Study (HRS) 

Variables 
(1) 
OLS 

(2) 
IV1 

(3) 
IV2 

PGS EA Unc. UKB 0.259 *** 
(0.0183 ) 

0.523 *** 
(0.0385)  

PGS EA SSGAC 
  

0.530 *** 
(0.0389 ) 

ℎ&Q n.a. 
n.a. 

0.134 
(0.0197) 

0.138 
(0.0202) 

N 2,751 2,751 2,751 
*P <	0.05, **P <	0.01, ***P <	0.001. We regress the residual of EA on the different PGSs and calculate 
the implied heritability estimates. SEs are in parentheses. All variables have been standardized. EA is 
measured in years of schooling needed to obtain the highest achieved educational degree according to 
International Standard Classification of Education (ISCED) classifications. We use the residual of EA 
after a regression on birth year, birth year squared, gender, and the first 20 principal components in 
the genetic data. PGS EA SSGAC: PGS for EA using meta-analysis from Okbay, Beauchamp, et al. 
(2016), excluding data from 23andMe, UK Biobank (UKB), and HRS; PGS EA UKB, PGS for EA 
using UKB data. IV1 uses PGS EA SSGAC as instrument and IV2 uses PGS EA UKB as instrument. 
NA, not applicable. 
 
 

 
Table 2.3 Estimates of the effect of height on educational attainment (EA)  
Variables OLS MR GIV-C GIV-U 
Height 0.136*** 

(0.0262) 
0.160*** 
(0.0481) 

0.168*** 
(0.0264) 

0.110*** 
(0.0262) 

PGS EA cond. UKB 
  

0.396*** 
(0.0367) 

 

PGS EA uncond. 
UKB    

0.384*** 
(0.0354) 

N 2,751 2,751 2,751 2,751 
*P <	0.05, **P <	0.01, ***P <	0.001. Standardized effect sizes and SEs are in parentheses. Birth year, 
birth year squared, gender, EA mother, EA father, and the first 20 principal components are included 
as control variables. For MR, a PGS for height from UK Biobank (UKB) data was used as instrument 
for height. For GIV-C and GIV-U PGS EA SSGAC was used as an instrument. 
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Table 2.4 Estimates of the effect of height on educational attainment (EA)  
Variables OLS MR GIV-C GIV-U 
EA 0.072*** 

(0.0138) 
0.179** 
(0.0543) 

0.050*** 
(0.0119) 

0.040*** 
(0.0120) 

PGS height cond. UKB 
  

0.448*** 
(0.0174) 

 

PGS height uncond. 
UKB    

0.446*** 
(0.0175) 

N 2,751 2,751 2,751 2,751 
*P <	0.05, **P <	0.01, ***P <	0.001. Standardized effect sizes and SEs are in parentheses. Birth year, 
birth year squared, gender, EA mother, EA father, and the first 20 principal components are included 
as control variables. For MR, a PGS for EA from UK Biobank (UKB) data was used as an instrument 
for EA. For GIV-C and GIV-U PGS height GIANT was used as an instrument. 
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The Supporting Information (SI) for this article consists of six sections. In section 1, we provide 

technical details of the method for estimating narrow-sense SNP heritability from polygenic scores. In 

section 2, we discuss the details of GIV regression and why it provides more accurate estimates than OLS 

or MR for the case where measured SNPs have direct pleiotropic effects on the exposure and the 

outcome. In section 3, we discuss estimating the effects of an exposure in the presence of pleiotropy 

combined with other sources of endogeneity that are related to the observed genotypes (e.g. unobserved 

genetic variants, epistasis, genetic nurturing). Section 4 extends the possible sources of endogeneity 

further to cases that are unrelated to genetics (e.g. purely environmental  unobserved confounds). 

For each of these sections, we provide evidence from detailed simulations under a varying set of 

assumptions that cover a range of empirically-likely situations. Each of these simulations is generated at 

the level of individual SNPs. The SNP level simulations are used to generate data for the exposure and 

outcome variable in both the simulated GWAS samples and the replication sample and the simulated 

data are then used to estimate the parameters of interest using alternative methods. 

Section 5 describes the data and methods used for our empirical examples, and we provide additional 

information about the empirical examples described in the article. The last section of the SI provides 

some practical guidelines for the usage of GIV regression. 

S2.1 Estimating narrow-sense SNP heritability from 

polygenic scores 

S2.1.1 Technical details 

We begin by showing that consistent estimates of the chip heritability of a trait (i.e. the proportion of 

variance in a trait that is due to linear effects of currently measurable SNPs) can be obtained from 

polygenic scores. If y	is the outcome variable, X	is a vector of control variables including a constant, and 

𝑆!|#∗  is a summary measure of genetic tendency for y	in the presence of controls for X, then one can write 

𝑦 = 𝑋𝛽 + 𝛾𝑆!|#∗ + 𝜖 (S2.1) 
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where, for example, 𝑦 is educational attainment. Typical variables in 𝑋 would be age, gender, and the 

first twenty principal components in the genetic data as controls for population structure. If the 

heritability of 𝑦 is caused by a large number of genetic loci, each with a very small effect (Chabris, Lee, 

Cesarini, Benjamin, & Laibson, 2015), we call 𝑦 a “genetically complex trait.” In this situation, the 

genetic liability for y cannot be adequately represented by just one gene. Rather, it is preferable to 

approximate the genetic liability   with a polygenic score (PGS). The weights of each SNP that are 

summed up in the PGS are obtained from a GWAS on y in an independent sample (Dudbridge, 2013; 

McCarthy et al., 2008). In a GWAS, y	is regressed on each SNP separately, typically including a set of 

control variables such age, sex, and the first few principal components of the genetic data to control for 

population structure (Price et al., 2006). Thus, the obtained estimates for each SNP do not account for 

correlation between SNPs (a.k.a. linkage disequilibrium LD), which may bias the PGS. In practice, 

several solutions are available to deal with this challenge, including pruning SNPs for LD prior to 

constructing the score (Abdellaoui & Al., 2013) or using a method that explicitly takes the LD structure 

between SNPs into account (e.g. LDpred, see (Vilhjælmsson et al., 2015)). The scores themselves (𝑆!|#) 

are linear combination of the elements in G	weighted by the estimated coefficients, 𝜁!|#  obtained from 

𝑦 = 𝑋𝛽 + 𝐺𝜁+!|# + 𝜖 (S2.2) 

 

where G	is an n×m	matrix of genetic markers, and ζ+!|#  is the m×1	vector of LD-adjusted estimated 

effect sizes, where the number of SNPs (the size of m	in equation S2.2) is typically in the millions. If the 

true effects of each SNP on the outcome were known, the true genetic tendency (𝑆!|#∗ ) would be 

expressed by the PGS for y, and the marginal 𝑅% of  𝑆!|#∗  in equation S2.1 would be the chip heritability 

of the trait. In practice, GWAS results are obtained from finite sample sizes that only yield noisy 

estimates of the true effects of each SNP. Thus, a PGS constructed from GWAS results typically 

captures far less of the variation in y	than suggested by the chip heritability of the trait (Dudbridge, 2013; 

Daetwyler, Villanueva, & Woolliams, 2008; Witte, Visscher, & Wray, 2014). We refer to the estimate of 

the PGS from available GWAS data as 𝑆!|#, and substitute 𝑆!|#  for 𝑆!|#∗  in equation S2.1. The variance 
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of a trait that is captured by its available PGS increases with the available GWAS sample size to estimate ζ	

and converges to the true narrow-sense heritability of the trait at the limit if all relevant genetic markers 

were included in the GWAS and if the GWAS sample size were sufficiently large (Witte et al., 2014). 

As reported in Dudbridge (2013) and Rietveld et al. (2013), the explained variance in a regression of a 

phenotype on its PGS can be expressed as 

𝑅!,'!
% =

.𝑛𝑚1ℎ
(

.𝑛𝑚1ℎ
% + 1

 
(S2.3) 

 

where 𝑦 is standardized, 𝜎)% is the genetic variance of 𝑦 (i.e., the proportion of the variance in 𝑦 explained 

by G), n is the sample size, and m is the number of genetic markers. For example, a PGS for EA based on 

a GWAS sample of 100,000 individuals would be expected to explain about 4% of the variance of EA in a 

hold-out sample (assuming there are 70,000 effective loci, all of them included in the GWAS, and a chip 

heritability of 20% (Rietveld et al., 2013)), even though the estimated total heritability of EA in family 

studies is roughly 40% (Branigan, McCallum, & Freese, 2013). 

It has long been understood that multiple indicators can, under certain conditions, provide a strategy to 

correct regression estimates for attenuation from measurement error (Bielby, Hauser, & Featherman, 

1977; Bollen, 2002). Instrumental variables (IV) regression using estimation strategies such as two stage 

least squares (2SLS) and limited information maximum likelihood (LIML) will provide a consistent 

estimate for the regression coefficient of a variable that is measured with error if certain assumptions are 

satisfied (Angrist & Pischke, 2009; Burgess, Small, & Thompson, 2015): (1) The IV is correlated with the 

problem regressor, and (2) conditional on the variables included in the regression, the IV does not 

directly cause the outcome variable, and it is not correlated with any of the unobserved variables that 

cause the outcome variable [13]. In general, these assumptions are difficult to satisfy. In the present case, 

however, GWAS summary statistics can be used in a way that comes close enough to meeting these 

conditions to measurably improve results obtainable from standard OLS regression and from standard 

Mendelian Randomization (MR) (Davey Smith & Hemani, 2014). 
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Multiple indicators of the PGS provide a theoretical solution to the problem of attenuation bias, and, we 

argue, a practical solution as well. The most straightforward solution to the problem is to split the 

GWAS discovery sample for y	into two mutually exclusive subsamples. This produces noisier estimates 

of 𝑆!|#∗ ,	with lower predictive accuracy. However, it also produces an IV for 𝑆!|#∗  that has desirable 

properties. Formally, we let 𝜁+!"|#  be the estimated coefficient vector for 𝜁!|#	in equation S2.2 from the 

first training sample, and 𝜁+!#|# 	be the coefficient vector estimated from the second training sample. It 

follows then that 

𝜁+!"$|# = 𝜁!$|# + 𝑢!"$|#   

𝜁+!#$|# = 𝜁!$|# + 𝑢!#$|#   

for the j-th genetic marker, where 𝑢!"|#  and 𝑢!#|#  are asymptotically normally distributed errors with 

𝐸 .𝑢!"$|#1 = 𝐸 .𝑢!#$|#1 and 𝑉 .𝑢!"$|#1 = 𝑉 .𝑢!#$|#1 = 𝜎*%𝑛+,/𝑣𝑎𝑟(𝑥-),	and where 𝑥- 	is the 

observed number of reference alleles for location j. In practice, the SNPs in 𝜁+!"|#  and 𝜁+!#|#  do not need 

to be exactly identical. Our derivations and results hold if the SNPs in both scores capture a sufficiently 

large amount of the SNP heritability of y, even if they are not the same SNPs. This is feasible because 

SNPs that are close to each on the same chromosome are often correlated with each other (a 

phenomenon referred to as linkage disequilibrium or LD), but the coefficient vectors 𝜁+!"|#  and 𝜁+!#|#  

typically come from GWAS analyses that regress the outcome on one SNP at a time, ignoring the 

correlation structure between SNPs. Thus, neighboring SNPs that are correlated typically carry similar 

information about their contribution to y	via 𝜁+!"|#  and 𝜁+!#|#  	and can therefore we substituted with 

each other in the construction of the PGS. 

Because the two discovery samples are non-overlapping, 𝑢!"|#  and 𝑢!#|# 	would be independent of each 

other if the PGS model is correctly specified (we return to this point below). By applying the two vectors 

of estimated coefficients, we obtain two PGS, 

𝑆!"|# = 𝑆!∗ + 𝑣, = 𝐺𝜁!|# + 𝐺𝑢!"|# = 𝑆!∗ + 𝐺𝑢!"|#  (S2.4) 

𝑆!#|# = 𝑆!∗ + 𝑣% = 𝐺𝜁!|# + 𝐺𝑢!#|# = 𝑆!∗ + 𝐺𝑢!#|#   
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where G	is the matrix of genetic markers for the analytical sample. We then rewrite equation S2.1 in 

terms of the observed first PGS as 

𝑦 = 𝑋𝛽 + 𝛾𝑆!|#∗ + 𝜖	

= 𝑋𝛽 + 𝛾@𝑆!"|#	 − 𝐺𝑢!"|#B + 𝜖	

= 𝑋𝛽 + 𝛾𝑆!"|#	 + (𝜖 − 𝐺𝑢!"|#) (S2.5) 

As can be seen from equation S2.5, the PGS 𝑆!"|#	 	is correlated with the error term via its correlation 

with 𝐺𝑢!"|# 	from equation S2.4. However, under the assumptions that equation S2.5 accurately 

describes the relationship between G	and y	and that the genetic architecture of the trait is identical across 

GWAS and prediction samples, then 𝑆!#|# 	would meet the two requirements to be a valid instrument 

for 𝑆!"|#	, if it is correlated with 𝑆!"|#	 (through their mutual dependence on 𝑆!|#∗ ) and if it is 

uncorrelated with the disturbance term. Clearly, the first requirement is met. Also, clearly 𝑆!|#∗ (=

𝐺𝜁!|#) is not correlated with 𝐺𝑢!"|#. The remaining question, then is whether 𝐺𝑢!#|# 	is correlated with 

𝐺𝑢!"|#. The covariance of 𝐺𝑢!"|#  and 𝐺𝑢!#|#  is 

𝐶𝑜𝑣@𝐺𝑢!"|# , 𝐺𝑢!#|#B = 𝐸@F𝐺𝑢!"|#GF𝐺𝑢!#|#GB − @𝐸F𝐺𝑢!"|#GB@𝐸F𝐺𝑢!#|#GB	

= 	𝐸@F𝐺𝑢!"|#GF𝐺𝑢!#|#GB 

This follows because each term of 𝐺𝑢!"|#  has the form 𝑔-𝑢-  and the expectation of each of these terms is 

zero by virtue of the properties of OLS regression, namely that the residual has mean zero and is 

orthogonal to the regressors. Now, 

 

𝐸(F𝐺𝑢!,|#GF𝐺𝑢!%|#B = 𝐸 IJ𝑔-%𝑢!,-|#𝑢!%-|#

/

-0,

+JJ𝑔-𝑔1𝑢!,-|#𝑢!%-|#

/

12-

/

-0,

K	

=J𝐸@𝑔-%B𝐸@𝑢!,-|#𝑢!%-|#B
/

-0,

+JJ𝐸@𝑔-𝑔1B𝐸@𝑢!,-|#𝑢!%-|#B
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12-

/

-0,
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(S2.6) 
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+JJ𝐸@𝑔-𝑔1B𝐸@𝑢!,-|#)𝐸(𝑢!%-|#B
/

12-

/

-0,

	

= 0 

 

where the third row follows because the coefficient errors for any given genetic marker from one sample 

will be independent of their value in a second independent sample. Now IV regression will be valid if the 

IV 𝑆!#|#  is uncorrelated with the error term in equation S2.5, 

i.e., if 

	

𝑝𝑙𝑖𝑚
1
𝑛
J@𝑆!%|#B3(𝜖3 − @𝐺𝑢!,|#B3
3

= 𝑝𝑙𝑖𝑚
1
𝑛
J@𝑆!|#	∗ + 𝐺𝑢!#|#B3(𝜖3 − @𝐺𝑢!,|#B3
3

	

= 𝑝𝑙𝑖𝑚
1
𝑛
JF(𝑆!|#∗ B

3
𝜖3 + @𝑆!|#	∗ B

3
@𝐺𝑢!"|#B3 + @𝐺𝑢!#|#B3𝜖3 + @𝐺𝑢!"|#B3@𝐺𝑢!#|#B3]

3

	

= 𝑝𝑙𝑖𝑚
1
𝑛
J@𝐺𝑢!"|#B3@𝐺𝑢!#|#B3
3

= 0 

 

 

(S2.7) 

A complexity in the present situation is that the condition in equation S2.7 does not automatically 

follow from equation S2.6, because the correlation in the sample is computed on the given coefficient 

errors that were generated via the regressions in the two GWAS samples. This is readily appreciated if the 

number of markers was very small. If this number m	equaled one, for example, then clearly the sample 

average of the square of each person’s genetic marker multiplied by two given coefficient errors would 

not be zero even though the coefficient errors themselves were independent random draws from a 

distribution with mean zero. 

However, as we show through SNP-level simulations below, this condition will generally hold for 

genetically complex traits that have been investigated in large-scale GWAS. In particular, assuming that 

all measured SNPs are causal and independent and their effect sizes are drawn from a normal 
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distribution, we find that even when the GWAS sample is smaller than is the number of SNPs, IV 

estimation with 𝑆!%|#	as the instrument for 𝑆!,|#  does a very good job of recovering the true coefficient 

for 𝑆!∗  across a range of scenarios. In practice, SNPs are not independent because of linkage 

disequilibrium. However, there are more than 1,000,000 approximately independent loci (i.e. groups of 

SNPs that vary together) in 1000 Genomes imputed data that might potentially affect traits (Auton et 

al., 2015).. And even after stringent quality control and filtering of GWAS summary statistics, typically 

at least 200,000 LD-independent loci remain (Bansal et al., 2017). If only independent loci are used in 

the construction of the PGS, it is reasonable to assume that the independence assumption holds so long 

as the polygenic score is not dominated by a relatively small number of loci. If we then assume that 

genetic effects on y	stem from both correlated and uncorrelated markers, the situation becomes only 

slightly more complicated. As mentioned above, the practical challenge is that the coefficient vector ζy|X	

typically comes from GWAS analyses that regress the outcome on one SNP at a time, ignoring the 

correlation structure between SNPs. The statistical dependence among SNPs in the construction of PGS 

is then dealt with in one of various ways. One obviously suboptimal solution is to ignore LD structure 

entirely and to construct the PGS using all available SNPs and their univariate coefficients. In practice, 

this naive solution often performs relatively well, although not as good as more sophisticated approaches. 

A second solution is to use LD-pruning. In this approach, only the most strongly associated SNP in each 

independent locus is used to construct the score, and the score consists of tens or even hundreds of 

thousands of approximately independent SNPs (Wray et al., 2014). Finally, there are algorithm such as 

LDpred (Vilhjælmsson et al., 2015) that infer the LD-corrected, multivariate coefficients of each SNP 

from the original GWAS results taking all SNPs and their actual correlation structure into account. 

LDpred is the current best practice solution to construct PGS because it yields slightly better predictive 

performance than ignoring LD-structure or LD-pruning. 

Our formal derivations until now assumed that the true coefficients of the genetic markers in G	do not 

vary in the population. More generally, we might assume that the population consists of a finite number 

of (possibly latent) groups, k	=	1,...,K	with the kth	group having the polygenic score 𝑆!1|#∗ . Absent 

information about the specific number of groups and the group memberships of individuals in any 

specific population, the polygenic score that would be estimated from a sufficiently large sample from 
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that population would be a weighted average of the scores for each group, with the weights dependent 

on the proportion each group is of the total population (Angrist & Pischke, 2009). Any population P	

therefore can be characterized in terms of its group composition, p1,p2,...,pK. The above results apply 

straightforwardly when the PGS are estimated and analyzed using samples from a single group. When 

they are instead estimated on a population that is a mixture of groups, the situation is more complicated. 

The true PGS for any individual who is in group k	can be expressed as 

𝑆!1|#∗ = 𝑆!̅4|#∗ + Δ!1|#  

where P	=	{p1,p2,...,pK}	is the group composition that defines population P	and ∆yk|X	is the deviation 

between the group k	specific PGS for trait y	and the population average (for population P). Under this 

elaboration, equation S2.5 can be written as 

𝑦31 = 𝑋3β + γS!31|#∗ + 𝜖3 	

= 𝑋3β + γ@𝑆!̅4|#∗ + Δ!1|#B + 𝜖3 	

= 𝑋3β + γ𝑆!̅,34|# + @𝜖3 + 𝛾Δ!1|# − 𝛾𝑣,3B 

Where the S!31|#∗ 	is the true PGS for trait y	for individual 𝑖 in group 𝑘, and where 𝑆!̅,34|#  is the first  

the first polygenic score estimated using coefficients from the GWAS sample drawn from population P. 

Variation in true PGS by group creates the possibility that the exclusion restriction will be violated. If 

𝑆!̅%4|# 	is the IV, then 𝑆!̅%4|# 	is correlated with Δ!1|#	to the extent that the true PGS differs by group 

and to the extent that the weighted average deviation of the true PGS estimated from each individual’s 

group and the true PGS estimated from the other groups correlates with the PGS for the population P. If 

the two PGS scores were estimated on one pure group and the analysis sample was for a second pure 

group, then the deviation between the two PGS would of course correlate with the PGS for one of the 

groups, and the exclusion restriction would be violated unless the SNP coefficients of the PGS for the 

one group were the same as the beta coefficients of the PGS for the other group. If the analysis sample 

and the GWAS samples are drawn from the same population (i.e., the same mixture of groups), we 

would expect the correlation between the deviations for analysis sample members (drawn from each of 
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the groups in the same proportion as the GWAS sample) and the true PGS for the GWAS sample to be 

very small. If the population consists only of a single group or, equivalently, if all groups have the same 

SNP coefficients  in their PGS for trait y, then the issue of group-specific heterogeneity in PGS 

disappears.1 

When PGS for y	are used that were constructed with a different set of control variables than are used in 

the regression, the above results need to be modified. Let us assume that variables χ	were controlled in 

the GWAS and variables X	are controlled in the regression model. Then 

𝑦 = 𝑋𝛽 + 𝛾𝑆!|5∗ + W𝑆!|#∗ − 𝑆!|5∗ + 𝜖X	

= 𝑋𝛽 + 𝛾𝑆!|5∗ + W𝐺𝑑!#5 + 𝜖X 

where 𝑑!#5 	is the vector of differences in the effects of genetic markers on y	when X	is controlled and 

when χ	is controlled. If a finite sample PGS of y	is constructed using χ	as controls, i.e., 𝑆!,|5, and this 

finite sample PGS is used in place of 𝑆!,|# 	as a proxy for 𝑆!|#∗  in model 1, one obtains 

𝑦 = 𝑋𝛽 + 𝛾𝑆!,|5 + @𝐺𝑑!#5 − 𝐺𝑢!,|5 + 𝜖B 

where  

𝑆!,|5 = 𝑆!|5∗ + 𝐺𝑑!#5 + 𝐺𝑢!,|5 

The problem now is that using 𝑆!%|5 	as an IV would violate the exclusion restriction to the extent that 

𝑑!#5 	differs from zero, because 𝐺𝑑!#5 is both in S𝑆!%|5 	and in the error, and because 𝑆!|5∗  would 

generally be correlated with 𝐺𝑑!#5. The extent of bias would depend on the extent to which the effects 

of the genetic markers on y	differ when X	and when χ	are controlled. 

Once a consistent estimate for 𝛾Z has been obtained, it is possible to derive an estimate of the narrow-

sense SNP (or chip) heritability of y. In a univariate linear regression model with standardized variables, 

 

1 This issue is similar to the attenuation of predictive accuracy of a PGS that results from an imperfect 
genetic correlation between the GWAS summary statistics in the hold-out sample and the GWAS 
summary statistics in the discovery sample (de Vlaming et al., 2017). 
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the squared regression coefficient is equal to 𝑅%	. This follows directly from the definition of 𝑅% 	as the 

variance of y	explained by X	as a fraction of total variance of y. Thus, 𝛾% 	in 1 can be thought of as the 

narrow-sense chip heritability of y	if both y	and 𝑆!|#∗  are standardized variables with mean zero and a 

standard deviation of one (assuming the controls included in X	are not correlated with genotype G). In 

practice, however, the estimate 𝛾Z% 	originates from a regression on a PGS that contain measurement error 

(𝑆!,|#  or 𝑆!%|#) rather than on the true PGS 𝑆!|#∗ . In particular, the obtained regression coefficient 𝛾Z	

will be standardized using the variance of 𝑆!,|# 	or 𝑆!%|#  instead of the variance of 𝑆!|#∗ .	2 It turns out 

that this implies that the heritability estimate 𝛾Z% 		is biased by a factor equal to 𝑣𝑎𝑟(𝑆!|#)/𝑣𝑎𝑟(𝑆!|#∗ ), 

which simplifies to 1/𝑣𝑎𝑟(𝑆!|#∗ ) if the observed score was standardized.2 However, it is possible to 

derive a simple error correction because one can estimate the variance of 𝑆!|#∗  by estimating the 

covariance of 𝑆!,|#  and 𝑆!%|#: 

𝑐𝑜𝑣@𝑆!,|# , 𝑆!%|#B = 𝑐𝑜𝑣@𝑆!|#∗ + 𝑒!,, 𝑆!|#∗ + 𝑒!%B = 𝜌@𝑆!,|# , 𝑆!%|#B = 𝑣𝑎𝑟@𝑆!|#∗ B. 

With an estimate of 𝑣𝑎𝑟@𝑆!|#∗ B. at hand, we can back out an unbiased heritability estimate: 

ℎ!% = 𝛾Z%𝑣𝑎𝑟(𝑆!|#∗ )/𝑣𝑎𝑟(𝑦). 

When y	is standardized, var(y)	=	1, the error correction simplifies to 

ℎ!% = 𝛾Z%𝜌@𝑆!,|# , 𝑆!%|#B. 

An estimate of the standard error of h2y	can be obtained using the Delta method (Davidson & 

MacKinnon, 2004).3 

S2.1.2 Simulations 

Our first set of simulations are based on the following model for y: 

𝑦 = 𝛾, + 𝛾%𝑆∗(𝑦) + 𝜖 

 

2 We thank Elliot Tucker-Drob for pointing this out to us. 
3 See Tucker-Drob (2017)  for an alternative correction method. 
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We generate 𝑆∗ 	using varying numbers of independently drawn genetic markers from 1,000 to 300,000 – 

up to the memory limits of our processor nodes (512 GB) – with a minor allele frequency of 0.5 and 

coefficients for these genetic markers.4 The constant γ1	is set to zero and the coefficients for the genetic 

markers are drawn from a normal distribution. We also draw 	from a normal distribution. The variance 

of the distributions for 	and the coefficients of the genetic markers are set such that the heritability is 

correct and the variance of y	is equal to 1 (i.e. y	is standardized). We use this data generating process to 

produce two independent samples, which together constitute the GWAS sample. We specify varying 

sizes of the total GWAS sample from 50,000 to 500,000 observations. We generate these data under 

three different assumptions about the SNP heritability of y, namely that h2	is alternately set to 0.1, 0.3, 

and 0.5. We then use the two independent GWAS samples to estimate the effect of each marker twice, 

using bivariate regressions of y	on each of the individual markers. In a third independent sample (N	=	

10,000) we construct the PGS for y, which we designate as S(y1)	and S(y2),	using the two GWAS 

estimates. 

We then estimate the effect 𝛾Z% 	of the PGS for y	on y. We do this using an IV regression with S(y2)	as the 

IV for S(y1). In other words, we use OLS to estimate the second stage model 

𝑦 = 𝛾, + 𝛾%𝑆+(𝑦,) + 𝜖 

where the predicted value of S(y1)	is obtained via estimates from a first stage regression of 

S(y1) on S(y2), i.e., 

𝑆+(𝑦,) = 𝛽+, + 𝛽+%𝑆(𝑦%) 

The standardized coefficient estimate 𝛾Z% 		from the second stage regression is used to obtain an estimate 

for ℎ% 	via the equation 

ℎ% = 𝛾Z%% .𝑐𝑜𝑟𝑟@𝑆(𝑦,), 𝑆(𝑦%)B1. 

 

4 Assuming a MAF of 0.5 for all markers is unlikely to affect our results beyond statistical power. 
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Table S2.1 shows the results of these simulations where we do 20 simulations for each condition and 

report average results in the table. Panel (a) presents simulations where the SNP heritability is set to 0.1. 

As can be seen in panel (a), the estimated heritability is very close to the true heritability so long as the 

GWAS sample size is as large or larger than the number of SNPs that are included in the computation of 

the PGS. Also, for all simulations where the GWAS sample exceeds the number of SNPs, the standard 

errors are small relative to the estimate. In panel (b), we simulate using a heritability of 0.3 and we obtain 

an accurate estimate with a relatively small standard error when the GWAS sample is as large or larger 

than the number of SNPs. The same result is obtained when the data are generated with a heritability of 

0.5. Generally speaking, we observe that the sample size needed for an accurate estimate of heritability 

has an inverse relationship with the size of the heritability. Thus, 50,000 cases is not sufficient to estimate 

heritability precisely when the true SNP heritability is 0.1 and the number of SNPs is 100,000, and 

100,000 cases produces an accurate estimate but a fairly large standard error. The precision of the 

estimates increases considerably for both of these cases, however, when the true SNP heritability is 0.3, 

and even 50,000 cases is sufficient to produce a precise and accurate estimate of heritability when the 

true SNP heritability is 0.5 and the number of SNPs is 100,000 or fewer. As mentioned above, most 

practical applications will be based on more than 100,000 independent SNPs, although many of them 

may actually have a true effect of zero. Hence, the remaining causal loci for y will tend to have slightly 

larger true effects than we simulated here under the assumption that all SNPs are causal. Slightly larger 

SNP effects imply better statistical power in GWAS analyses and a more favorable ratio of estimated 

effect sizes to their standard errors. Thus, our simulation results are likely to be conservative lower 

bounds for the accuracy that our method can achieve for estimating heritability in real data. 

S2.2 Reducing bias due to direct pleiotropic effects on 

exposure and outcome 

We next address situations where the question of interest is not the SNP heritability of y	per se, but 

rather the influence of some non-randomized exposure T	on y	(e.g. a behavioral or environmental 
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variable, or a non-randomized treatment due to policy or medical interventions). We rewrite equation 

S2.1 such that 

𝑦 = 𝛿𝑇 + 𝑋𝛽! + 𝛾𝑆!|#6∗ + 𝜖!	

= 𝛿𝑇 + 𝑋𝛽! + 𝐺𝜁!|#6 + 𝜖!	

 

(S2.8) 

Where  

𝑇 = 𝛼𝑆6|#∗ + 𝑋𝛽6 + 𝜖6 	

= 𝐺𝜉6|# + 𝑋𝛽6 + 𝜖6 	

 

(S2.9) 

where, for example, y	could be educational attainment and T	could be body height and where we assume 

that the disturbance term is uncorrelated with genetic variables. We drop the subscript on the 

coefficients on the exogenous control variables X	below when it would not lead to confusion. In each 

case, it is presumed that the outcome variable is to some extent caused by genetic factors, and the 

concern is that the genetic propensity for the outcome variable is also correlated with the treatment 

represented by T	in equation S2.8. We now use 𝑆!|#6∗  rather than 𝑆!|#∗  in the equation, where𝑆!|#6∗  is 

the linear combination of the effects of SNPs on y	when T	is controlled. Given that T	is in the model, the 

effect of individual SNPs on y	will generally involve a direct effect net of T	(ζ)	and an indirect effect 

stemming from the combination of their effect on T	(ξ)	and the effect of T	on y. 

Adding the true conditional score (𝑆6|#∗ ) as a control variable to a regression of Y	on T	would eliminate 

bias arising from direct pleiotropy. Pleiotropy leads to omitted variable bias from the failure to control 

for the (possibly tens of thousands of) individual SNPs in the structural model that influence both Y	and 

T	directly. So imagine a model that contained tens of thousands of variables for the SNPs and a sample 

large enough and computers capable enough of estimating the coefficients of this model using OLS. 

Aside from the enormous number of regressors, this is a standard regression problem. Under standard 

conditions and if uncontrolled pleiotropy is the only source of bias, then the the coefficients of the SNPs 

converge in probability to the true coefficients while the coefficient on T	converges in probability to its 

true value. In other words, the sum of the SNPs multiplied by their coefficients converges in probability 
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to the true conditional PGS 𝑆!|#6∗ . Thus, controlling for tens of thousands of SNP variables in the 

structural model becomes closer and closer to controlling for the true conditional PGS in sufficiently 

large samples. Of course, in sample sizes that are currently available or that might be available in the 

foreseeable future, we are very far from being able to use direct controls for the individual SNPs in order 

to address the pleiotropy problem. However, proxies for 𝑆!|#6∗  are already available. 

If the true 𝑆!|#6∗  is not observed and cannot be explicitly controlled in equation S2.8, it is part of the 

disturbance term. If so-called Type 1 pleiotropy is present (Davey Smith & Hemani, 2014), then T	itself 

is a function of the same genetic markers that have other effects on y	that do not operate through T, and 

the coefficients of these markers on T	(ξ), which represent the indirect effects of the markers on y	that 

operate through T, are correlated with the direct effects of the markers on  

y	(ζ)	when T	is controlled in equation S2.8. Because of the correlation between T	and 𝑆!|#6∗  (which 

along with 𝜖! 	is in the disturbance term in equation S2.8), 𝛿+ will be a biased estimate of the effects of T.	

While the true 𝑆!|#6∗   is unknown, we may be able to obtain a proxy 𝑆!|#6  for it from GWAS in finite 

sample sizes. While it is not guaranteed, the general conclusion of the literature is that the use of proxy 

variables such as 𝑆!|#6   is an improvement over omitting the variable being proxied (Wickens, 1972; 

Aigner, 1974). However, if the proxy is measured with error, some bias will remain. More specifically, if 

𝑆!|#6 	is used instead of 𝑆!|#6∗  in equation S2.8, we get 

𝑆!|#6 = 𝑆!|#6∗ + 𝐺𝑢!|#6 = 𝑆!|#6∗ + 𝑣 

 

which yields 

𝑦 = 𝛿𝑇 + 𝑋𝛽 + 𝛾𝑆!|#6 + (𝜖! − 𝛾𝑣)	

 

(10) 

The problem now is that 𝑆!|#6  is constructed from a large number of regressions of one genetic marker 

at a time along with the control variable T.	The presence of T	in the GWAS regressions for y	produces 
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estimated coefficients for the markers, G, that are functions of T. The error in the conditional PGS for y	

is a function of the coefficient estimates for the individual genetic markers and therefore is correlated 

with T. The estimation error plus pleiotropy produces a correlation between T	and v, which still induces 

bias in OLS estimates of δ. Thus, while the use of a proxy control such as 𝑆!|#6  will generally reduce bias 

in the estimated effect of δ, some bias will remain as long as 𝑆!|#6  is measured with error. 

Because of its relevance later on, we also note that the problem cannot be solved by constructing a PGS 

for y	that is unconditional on T, i.e., Sy|X. The use of Sy|X	instead of Sy|XT	produces an over-control, where 

an estimate of the total effect of each genetic marker is controlled instead of just the direct effect. This 

over-control would produce a severe downward bias in the estimate of δ. To see this, imagine that there 

are only two genetic markers, g1	and g2, where 

𝑇 = 𝜉,𝑔, + 𝜉%𝑔% + 𝑒6  

 

and therefore, where 

𝑦 = 𝛿(𝜉,𝑔, + 𝜉%𝑔% + 𝑒6) + 𝜁,𝑔, + 𝜁%𝑔% + 𝑒!  

= (𝛿𝜉, + 𝜁,)𝑔, + (𝛿𝜉% + 𝜁%)𝑔% + 𝛿𝑒6 + 𝑒!	

= (0𝑆6∗ + 𝛿𝑒6) + 𝛾𝑆!∗ + 𝑒!  

 

(S2.11) 

 

Note that the effects 𝛿𝜉1 + 𝜁1 	represent the total effect of gk	on y	and provide the reduced form for the 

structural model in equation S2.8 if T	is omitted from the model. As can be seen in equation S2.11, a 

control for the true unconditional PGS for 𝑦	𝑆!∗) would be expected to produce an estimated effect of T	

that biased towards zero. Substituting the proxy 𝑆!  for  𝑆!∗  would not eliminate the downward bias 

entirely. 

In standard MR, a measure of genetic tendency (𝑆6|#) for a behavior of interest (T	in equation S2.8) is 

used as an IV in an effort to purge 𝛿+ of bias that arises from correlation between T	and unobservable 

variables in the disturbance term under the argument that the genetic tendency variable, e.g., the 



 
Supplementary Information 
 
 

 
 

69 

measured PGS 𝑆6|#, is exogenous (Burgess et al., 2015; Burgess, Butterworth, Malarstig, & Thompson, 

2012). This approach would generally be successful if the endogeneity in the error term is from 

nongenetic sources and, consequently, if the genetic information in the IV for T	is uncorrelated with the 

error term. In the absence of pleiotropy and other forms of genetic endogeneity (e.g., genetic nurturing), 

MR should be an effective strategy if the IV is strong enough to provide reasonable precision in the 

estimator. 

However, MR becomes problematic when genetic variables in the error term are affecting y	net of T	

while at the same time are correlated with the genetic variables in the equation for T, in other words, 

when ξ	is correlated with ζ	in equations S2.8 and S2.9. An example of this situation would be the use of a 

PGS for height as an instrument for height in a regression of the effect of height on educational 

attainment. The second stage regression in MR, then, takes the form 

 

 

𝑦 = 𝛿𝑇c + 𝑋𝛽 + {𝜖! + 𝛾𝑆!|#6∗ + 𝛿@𝑇 − 𝑇cB}	

 

(S2.12) 

The problem with this approach is that the PGS for height will typically fail to satisfy the exclusion 

restriction because of pleiotropy: the genetic variants that predispose individuals to be tall may also 

directly increase the predisposition for higher educational attainment (Bulik-Sullivan et al., 2015; Okbay, 

Beauchamp, et al., 2016) (e.g. via healthy cell growth and metabolism). Because ξ	is correlated with 𝜁, 

𝑆6|#∗  is correlated with 𝑆!|#6∗ . This problem is not solved even if we could use the true PGS 𝑆6∗ 	as the IV, 

because the genetic effects in 𝑆6∗ 	are correlated with the genetic effects in 

𝑆!|#6∗ . Whether the endogeneity bias from pleiotropy is big enough to offset MR’s potential advantages 

for addressing the endogeneity from non-genetic sources is an empirical question that depends on the 

specific situation. The problems that pleiotropy creates for MR could be solved if the true genetic 
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propensity for y, net of T	could be directly controlled in the regression.5 Unfortunately, this is not 

possible because the best we can do is to use 𝑆!|#6  as a proxy for 𝑆!|#6∗ . 

Endogeneity bias that stems purely from non-genetic sources can sometimes be addressed through the 

use of non-genetic IVs that are available from randomized clinical trials (RCTs) or from natural 

experiments. It can also sometimes be addressed through the use of fixed effects strategies when data on 

siblings or dizygotic twins is available. It can also often be reduced by controlling for observable variables 

that affect both the “assignment” to T	and also the outcome variable. However, in the absence of data 

from RCTs, endogeneity bias from genetic sources is a difficult problem, and certainly one that MR 

does not directly address. We therefore first discuss the cases where all the endogeneity bias is from 

genetic sources, whether pleiotropy alone or pleiotropy in combination with other genetic confounds. 

We subsequently address the implications of endogeneity bias that emerge from both genetic and non-

genetic sources. 

 

S2.2.1 Reducing bias from pleiotropy 

First, we assume that the only source of endogeneity in equation S2.8 is pleiotropy, and we examine the 

performance of a set of estimators intended to reduce its impact. The first strategy is to reduce the 

correlation between the instrument ST	in MR and the error by controlling for a proxy of	𝑆!|#6∗ , namely 

𝑆!,|#6. We refer to the combined use of 𝑆!|#6 	as a control and 𝑆6|# 	as an IV as “enhanced Mendelian 

Randomization” (EMR). Controlling for Sy|XT	as a proxy for  is not fully adequate because the 

error in 𝑆!|#6 	(i.e., 𝑆!|#6∗ − 𝑆!|#6) is correlated with 𝑆6|#. As noted previously, the use of a proxy 

control should improve the quality of the estimate for δ. However, as we show below, the pleiotropy bias 

at levels that would be expected to occur for real-world applications creates serious problems for MR as 

an effective strategy for obtaining accurate estimates of δ	even if 𝑆!|#6 	is included as a control variable. 

 

5 Note that this approach would not solve problems caused by other sources of genetic endogeneity such 
as environmental effects in the error term that were correlated with parental genes, which themselves are 
correlated with the genetic information in ST|X. 
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The second set of strategies drop the use of ST	as an instrument because it is not a valid instrument in the 

presence of pleiotropy and is not of practical utility in this situation either, as we show below. Instead, 

we start with the well-known formula for endogeneity bias for a generic OLS with dependent variable y,	

included covariates X, and coefficients of these covariates contained in the vector β, namely 

𝛽+ = (𝑋7𝑋)+,𝑋7𝑦	

= (𝑋7𝑋)+,𝑋7(𝑋𝛽 + 𝜖)	

= 𝛽 + (𝑋7𝑋)+,𝑋7𝜖 

So 

𝐸F𝛽+f𝑋G = 𝛽 + 𝐸[(𝑋7𝑋)+,𝑋′𝑒|𝑋] (S2.13) 

	

In other words, the coefficient bias from OLS is the expected regression coefficient of the error on the 

included variables in the regression. If 	is the sum of an omitted variable that we can label as z, which is 

correlated with the regressors and additional variables that are uncorrelated with the regressors, then the 

bias for each coefficient βk	in the vector β	in equation S2.13 becomes the product of the regression 

coefficient for xk	in the regression of z	on all the omitted variables multiplied by the effect of z	on the 

outcome. 

For simplicity, we assume that the only variables in the regression are T	and a potential proxy for 𝑆!|#6∗ , 

which we call 𝑆!|#6 	. For any given proxy, 𝑆!|#6, the bias in the estimate of δ	(the coefficient for T	in 

equation S2.8) comes from the expected coefficient on T	in the regression of 𝛾𝑆!|#6∗ − 𝛾j𝑆!|#6  and T	on  

𝑆!|#6. We consider three alternatives as proxies for 𝑆!|#6∗ . First, we use 𝑆!|#6, i.e. the conditional PGS 

for y	from the full GWAS sample, in a simple OLS regression.6 Second, we attempt to adjust for 

measurement error in 𝑆!|#6  by constructing the predicted conditional PGS for y, called 𝑆+!,|#6,by using 

𝑆!%|# 	(the unconditional PGS for y) as an IV for 𝑆!,|#6  where GWAS coefficients for 𝑆+!,|#6,	and 𝑆!%|# 	

 

6 We also estimate versions of this model using only the first half of the GWAS sample to be able to 
compare results across methods while holding GWAS sample size constant. We call the resulting score 
Sy1|XT  and we present both sets of estimates in our simulation results. 
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are obtained from non-overlapping GWAS samples of the same population. We call this approach, 

where 𝑆+!,|#6  (the predicted conditional PGS for y) is used as the regressor in the second stage, 

“conditional GIV regression” (GIV-C). 

We generally expect the use of GIV-C to perform better than the use of the proxy 𝑆!|#6 	in simple OLS. 

Recall that where the true effect of T	on y	is positive and in the presence of positive pleiotropy, the 

estimated effect of T	on y	will have positive bias. This follows from the positive correlation between 

𝑆!|#6∗  and T	and from the positive effect of 𝑆!|#6∗  (which is a component of the error) on y. The presence 

of the proxy 𝑆!|#6  with simple OLS adds a partially offsetting negative bias, because the correlation 

between 𝑆!|#6  and T	is positive and the effect 𝛾j89' 	is also positive, but 𝛾Z89'𝑆!,|#6  is being subtracted, 

which causes the offsetting bias to be negative. The net bias is expected to be smaller with the inclusion 

of the proxy than with no proxy at all, but we still expect it to be positive both because the correlation 

between T	and Sy|XT	would be lower than between T	and 𝑆!|#6∗ , and because we expect 𝛾Z89' to be 

attenuated relative to γ. 

When GIV-C is used instead of simple OLS, the term in the error becomes 

𝛾𝑆!|#6∗ − 𝛾Z:;<𝑆+!,|#6  (S2.14) 

The presence of T	as a regressor in the first and second stages of GIV-C, which is correlated with 

𝑆!|#6∗ , prevents the IV strategy from obtaining a consistent estimate of γ. Nonetheless, we would 

generally expect 𝛾Z:;< > 𝛾Z89' and therefore we expect the positive bias for the estimate of δ	to be smaller 

when using GIV-C than when estimating δ	using simple OLS with the proxy 𝑆!|#6. 

We also employ a third estimator that substitutes the unconditional PGS for y	(i.e., substitutes 𝑆!,|# 	for 

the conditional PGS 𝑆!,|#6) as the proxy control in the structural model in equation S2.8. We then use 

𝑆!%|# 		(the same IV as with GIV-C) to predict 𝑆!,|#, obtaining 𝑆+!,|# 	as the regressor in the second stage. 

We call this third approach “unconditional GIV regression” (GIV-U). With GIV-U, the problem term in 

the error is 

𝛾𝑆!|#6∗ − 𝛾Z:;=𝑆+!,|#  (S2.15) 
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As before, the presence of the first term produces a positive bias in the estimate of δ, while the second 

term produces an offsetting negative bias. The offset will be stronger when 𝑆!,|# 	is used as the covariate 

in the structural model than when 𝑆!,|#6  is used because the coefficients of the genetic markers in 𝑆!,|#  

are	𝛿+𝜉+ + 𝜁+, where ξ	is the effect of the genetic marker on T. The presence of 𝛿+𝐺𝜉+	in the second term in 

the error produces a stronger downward bias. This downward bias is made still stronger by the use of 

𝛾Z:;= 	instead of 𝛾Z89' 	as the coefficient, because we expect the first stage regression to reduce the 

downward bias of 𝛾Z89'. 

To summarize, we expect these three proxies to behave differently in the simulations, and, as we will see, 

this expectation is met in practice. It turns out to be the case that GIV-C and GIV-U provide upper and 

lower bounds for the effect of T	across a range of plausible scenarios for pleiotropy and for heritability. 

S2.2.2 Evidence from simulations 

To address the utility of these estimators, we conducted a set of simulations. We first discuss simulations 

under various assumptions about endogeneity and heritability for the case where the data generation 

model includes an effect of T	on y. After discussing each of the relevant scenarios, we will then revisit 

each of these scenarios and examine the performance of the alternative estimators using a data generation 

process in which there is no effect of T	on y. 

We simulated data for two independent GWAS samples and for an independent prediction sample. The 

data generating process for the pleiotropy analysis is as follows: 

𝑇 = 𝛼𝑆6∗ + 𝜖6 , 𝜖6 	 ∼ 𝑁(0, 𝜎>%) 

𝑦 = 𝛾𝑆!|6∗ + 𝛿𝑇 + 𝜖! , 𝜖!	 ∼ 𝑁(0, 𝜎*%) 

 

𝑆!|6∗  and 𝑆6∗  were constructed from the simulation of 10,000 independent genetic markers and 

coefficients for these genetic markers. The coefficients for these markers are drawn from a joint 

multivariate normal distribution, where the correlation between the 𝜁3  for 𝑆!|6∗  and the 𝜉3  for 𝑆6∗  (see 
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equations S2.8 and S2.9) is varied in order to simulate varying degrees of pleiotropy (this genetic 

correlation is labelled as ρ	in Tables S2.2- S2.14). Each simulation is based on a GWAS combined sample 

of 100,000 with 10,000 SNPs, a third independent prediction sample of 10,000 and twenty repetitions. 

We use these values because they are large enough to reveal the essential properties of the estimators 

under the alternative conditions considered in the tables. 

T	is standardized and has a mean of 0 and a variance of 1. The variance of the true polygenic scores (𝑆!|6∗  

and 𝑆6∗ ) are simulated to match the heritability of the two traits. Furthermore, y	is standardized when T	

has no causal effect (δ	=	0) and in absence of pleiotropy. When δ	is 1 and in the absence of pleiotropy, 

the variance of y	is equal to 2. When pleiotropy increases, the scale of the coefficients of the markers is 

kept constant to minimize the parameter changes across simulations and thus the variance of y	increases. 

See table S2.16 for a list of parameters with the matching variance and heritability of y, and the 

standardized effect size of T. We do not include any X	variables in the simulations, because they are not 

needed in order to analyze the essential issues. 

In these simulations, we vary the amount of genetic correlation as well as the heritability for both y	and 

T.7 In the tables below, we report average coefficient estimates and standard errors across 20 repetitions 

for each model. We also limit the simulations below to the case of positive pleiotropy. In practice, this 

corresponds to a state of knowledge where the analyst either knows the sign of the pleiotropy correlation, 

or knows that it is weak but is uncertain whether it is weak positive or weak negative. 

Tables S2.2, S2.3, S2.4, and S2.5 show the results of this set of simulations where we vary both the extent 

of heritability (h2) for T	and for y	and the strength of the genetic correlation (ρ) between the effects of 

SNPs on T	and their effect on y, net of T	(i.e., between ζ	and ξ). Each of these columns has four panels 

across the columns: 

 

7 There is a logical relationship between the level of heritability for T and y , the strength of the 
correlation between the effects of genetic markers on T and on y, the size of the effect of T on y in the 
structural model for y, and the error variance in the equations for T and y. These logical relationships 
make some combinations of heritability and genetic correlation impossible, but we explore a wide range 
of the possible values in the simulations below. 
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• The first panel reports the OLS estimates of y	on T	with no additional controls. 

• The second panel reports estimates that are based on MR, i.e., that use 𝑆6 	as an instrument 

for T. The column labelled MR only includes T	as the regressor and uses 𝑆6 	as the as the IV. 

Column EMR-1 is a version of enhanced MR that uses ST	as an IV along with a control for 

𝑆!, 	in an effort to reduce pleiotropy. Column EMR-2 uses 𝑆!,|6 	as the control and uses 

two IVs, namely 𝑆6 	and 𝑆!%. 

• The third panel, which is labelled “Conditional Proxy PGS”, uses versions of the 

conditional PGS for y	as a proxy control for 𝑆!|6∗ . The column labelled as “OLS S(y|T)” 

uses the conditional PGS for y	from the entire GWAS sample as the proxy control. The 

column labelled as “OLS S(y1|T)” uses the conditional PGS for y	from the first half of the 

split GWAS sample as the proxy control. The column labelled as GIV-C uses the 

conditional PGS for y	from the first GWAS sample as the proxy control but it uses 𝑆!% 	as 

the IV. 𝑆6 	is not used as an IV in any of these models. 

• The fourth panel, which is labelled “Unconditional Proxy PGS,” uses versions of the 

unconditional PGS for y	as a proxy control. The first column (OLS S(y)) uses the 

unconditional PGS from the full GWAS sample (Sy) as the proxy control. The second 

column, which is labelled as “OLS S(y1)” uses the unconditional PGS for y	from the first 

half of the split GWAS sample (Sy1) as the proxy control. The column labelled as GIV-U 

uses the unconditional PGS for y	from the first GWAS sample (𝑆!,) as the proxy control 

but it uses 𝑆!% as its IV. 𝑆6  is not used as an IV in any of these models. 

 

Each of the tables has six sets of rows. The first three panels down the rows present simulations where the 

true effect of T	on y	is 1.0. These rows show the ability of the various estimators to recover an accurate 

estimate of T	when T	actually has an effect on y. The second three panels present simulations where T	is 

specified to have no effect on y. It is worth pointing out that T	can be correlated with y	(e.g., via a 

pleiotropic correlation between ξ	and ζ) without it necessarily being the case that T	has a causal effect on 
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y. It could be the case that T	and y	are correlated (partly) because y	is a cause of T. It could also be the 

case that T	and y	are correlated with neither variable causing the other. These rows show the extent to 

which an estimator will erroneously report that T	affects y	when in reality it has no effect. 

Table S2.2 shows the results under the conditions of modest heritability for both y	and T, where we vary 

the genetic correlation (ρ) between ζ	and ξ	(i.e., between the effect of SNPs on T	and on y, net of T) 

between 0.2 and 0.8. As can be seen in the first three row panels for Table S2.2, the MR estimate for T	is 

upwardly biased, and the bias gets worse as the pleiotropy gets stronger. Indeed, MR seriously 

underperforms simple OLS (i.e., with no proxy control) in obtaining an accurate estimate for the effect 

of T	on y	when T	is specified to have an actual effect. In the presence of positive pleiotropy, OLS of 

course overestimates the effect of T; it attributes the direct effect of SNPs on y	to the indirect effect 

through T.	The amount of over-estimation also, as expected, grows with the size of the genetic 

correlation between the effect of markers on T	and their effect on y, net of T. GIV-C, in contrast, 

provides highly accurate estimates of the effect of T	on y	even in the case of very strong pleiotropy. 

Interestingly, GIV-U also produces rather accurate estimates of the effect of T	on y, though at a 

heritability of 0.2, GIV-U underestimates the size of δ. We note that GIV-C and GIV-U are together 

providing bounds for the true answer at these specifications for the simulation. The use of an 

unconditional or a conditional proxy in OLS also performs well; it is only slightly less accurate than GIV-

C, but sometimes it underestimates and sometimes it overestimates the true answer. 

The bottom panels of Table S2.2 show the performance of the estimators when T	has no true effect. MR 

erroneously finds that T	has a significant effect on y	and the size of this estimated effect grows with the 

strength of the pleiotropy. Simple OLS is more accurate, and both GIV-C and GIV-U are more accurate 

still. They both estimate a very small effect of T	on y. This makes sense, because if the true effect of T	on 

y	is zero, this means that T	should have a very weak relationship in a finite sample with the coefficient 

errors for the genetic markers in the unconditional PGS for y	(i..e, 𝐺@𝜁 − 𝜁+,B = 𝑣,) hence with the PGS 

error that is part of the error term in 10. Similarly, Sy2	will also have a very weak correlation with v1. 

Therefore, T	and Sy2	are valid instruments for the case where δ	=0 and where there is no non-genetic 

endogeneity, and the GIV-U estimates are very close to the true answer in this case. 
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Table S2.3 has the same layout as Table S2.2, but in Table S2.3 the heritability for both T	and for y	is 

increased from 0.2 to 0.4. Higher heritability slightly increases the positive bias of GIV-C, and it also 

increases the negative bias of GIV-U. Even though GIV-C has positive bias, it is always more accurate 

than MR and also more accurate than simple OLS. Greater heritability increases the positive bias of 

GIV-C when there is no true effect of T, and the over-prediction is larger when the pleiotropy is stronger. 

Nevertheless, GIV-C is clearly more accurate than either simple OLS or MR-based estimators. When the 

true effect of T	on y	is zero, GIV-U provides clear evidence of this fact. As before, GIV-C and GIV-U are 

bounding the true answer when it is specified to be 1.0. When the true answer is zero, GIV-U is very 

close to the true answer. 

Table S2.4 has the same layout as Tables S2.2 and S2.3, but in Table S2.4, the heritability for both T	and 

for y	is increased to 0.6. Higher heritability slightly increases the positive bias of GIV-C when T	is 

specified to have an actual effect on y, and it also increases the negative bias of GIV-U. Even though 

GIV-C has positive bias, it is always more accurate than MR and also more accurate than simple OLS. 

GIV-U continues to under-predict the true answer, and GIV-C and GIV-U together continue to provide 

bounds on the correct answer, though these bounds become gradually wider as we increase the amount 

of heritability of T	and y	in the simulations. When the true effect of T	on y	is zero, GIV-U provides clear 

evidence of this fact. 

Table S2.5 shows simulations where the heritability of T	and y	is specified to be 0.8. Higher heritability 

further increases the positive bias of GIV-C though it remains more accurate than simple OLS or MR. 

Very high heritability also increases the negative bias of GIV-U and further widens the gap between GIV-

C and GIV-U, though they continue to bound the true answer. When the true effect of T	on y	is zero, 

GIV-C is positively biased though not as much as simple OLS or MR. GIV-U remains very accurate in 

estimating the true effect of T	on y	when this effect is actually zero. 

Next we consider in Table S2.6 the case where T	has a high heritability of 0.8 while y	has a low 

heritability of 0.2 (this is empirically possible because y	has other causes than T	and these other causes 
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can be largely non-genetic). The pattern of estimates in Table S2.6 resembles those of Table S2.4 where 

heritability is 0.6 for both T	and for y. 

Table S2.7, then shows the case where T	has a low heritability of 0.2 while y	has a high heritability of 0.8. 

In this case, GIV-C and GIV-U are giving more accurate answers, and GIV-C is giving a much better 

answer than simple OLS or MR when the true answer is zero. By comparing Table S2.6 and Table S2.7, 

we see that the size of the upward bias of GIV-C depends on how strong is the relative heritability of T	

and y	as well as on how strong is the pleiotropy. But in all of these cases, GIV-C and GIV-U are 

bracketing the true effect of T	when the true effect is non-zero, and GIV-U gives accurate answers 

relative to all other methods when the true effect is zero. 

2.3 Estimating exposure effects in the presence of 

both pleiotropy and genetic related endogeneity 

Pleiotropy, of course, is not the only potential problem that challenges efforts to estimate the effect of T	

on y	with accuracy, and, indeed, it was not the problem that MR was developed to solve. So now we 

elaborate the structural model to be as follows: 

𝑦 = 𝛿𝑇 + 𝑋𝛽! + 𝛾𝑆!|6∗ + 𝑣! + 𝜖!  (S2.16) 

𝑇 = 𝛼𝑆6∗ + 𝑋𝛽6 + 𝑣6 + 𝜖6  (S2.17) 

Now the disturbance for both equations has two terms, 𝑣 and 𝜖. We assume that 𝜖6 	and 𝜖! 	are 

uncorrelated, but that 𝑣6  and 𝑣! 	are correlated with each other (with correlation ρν), which produces 

endogeneity in the structural model. We also assume that 𝑣6  and 𝑣! 		are correlated with the genetic 

markers in 𝑆6∗ 	and 𝑆!|6∗  (ρνT and ρνy, respectively). There are three principal substantive conditions that 

could alone or in combination produce this correlation. The first condition is epistasis, meaning that 

SNPs have nonlinear or interactive effects that are correlated with the linear effects in the PGS. The 

second condition is when rare alleles have effects on y	and on T	and when these alleles are correlated with 

observed alleles. The third condition is “genetic nurturing.” Genetic nurturing (Kong et al., 2017) is the 

condition where the environment of ego is shaped by genetically related individuals to ego. For example, 

children live in an environment that is partly created and selected by their parents. If environmental 
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characteristics are related to parents’ genes, which of course are correlated with ego’s genes, and if the 

environment affects y	while also being correlated with T, then the environment is endogenous to T	while 

also being correlated with ego’s genes. The model for height on educational attainment provides a useful 

example. Taller children could be taller partly for genetic reasons, but also because they grew up in an 

environment that provided better nutrition. Children who grew up in a better nutritional environment 

would also be expected to go further in school. Parents who provide a better nutritional environment for 

their children may have done so in part based on genetic advantages, or on behavioral consequences of 

genetic advantages (e.g., when a taller parent is rewarded for being tall in school or the workplace and 

therefore has more money to spend on their children). 

While recognizing that the substantive reasons for this form of endogeneity can vary, we will refer to it 

below as genetic nurturing for ease of exposition. 

In order to evaluate alternative estimation strategies in the presence of both pleiotropy and genetic 

nurturing, we elaborated the simulations to include the additional error terms 𝑣6  and 𝑣!, assuming both 

to have a variance of 0.1 and assuming correlations of 0.4 between 𝑣6  and 𝑣! 		

(ρν	=	0.4). We assumed varying genetic correlations between ST∗	and νT	(ρνT	), and between  and νy	

(ρνy). We further assumed that the correlation between νT	and 𝑆!|6∗  is 0.4 as large as is the correlations set 

between 𝑆6∗ 	and νT	, and that the correlation between νy	and 𝑆6∗ 	is 0.4 as large as is the correlation between 

𝑆!|6∗ 	and νy	for that particular set of simulations. 

Table S2.8 shows the results from a set of simulations where the correlation between y	and νy	and also 

between T	and νT	(i.e., ρνy	and ρνT	) is set at 0.2 and where the heritability for both y	and T	is set at 0.5. As 

for the simpler simulations that only included pleiotropy, we find that GIV-C consistently outperforms 

both OLS and MR. In all these cases, GIV-C is positively biased in its estimate of δ, and these biases are 

comparable to those that we found for the case of pleiotropy alone when the heritability of y	and T	was 

of comparable magnitude. As with the simpler case of pleiotropy without genetic nurturing, we find that 

GIV-U consistently underestimates the effect of T	on y, and that GIV-C and GIV-U bracket the correct 
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answer. The pattern of results for the case of a zero effect are also similar to what we saw in the case of 

moderate heritability without the additional genetic confounding; GIV-C over-predicts but not as much 

as for OLS and MR, and GIV-U provides a very accurate answer. This pattern is actually similar to what 

we find when we increase the extent of genetic confounding (i.e., increase ρνy	and ρνT	), as shown in 

Table S2.9, where ρνy	=	ρνT	=	0.5, and in Table S2.10, where ρνy	=	ρνT	=	0.8. If the reasons for the 

additional endogeneity do arise from genetic nurturing, and if these genetic nurturing effects are the 

same for siblings or for dizygotic twins, then the inclusion of family fixed effects are a good strategy that 

can be used in combination with GIV-C and GIV-U, because in these cases the fixed effects estimator 

will control for the unobserved but common family effect. Note that a fixed effects model among 

siblings or dizygotic twins does not solve the problem of endogeneity due to pleiotropy, and GIV-C and 

GIV-U can be used in combination to address that issue. At the same time, we note that family fixed 

effects models usually are only possible with smaller samples and they use up many degrees of freedom. 

Given the simulation results in Tables S2.8- S2.10, it may be that the greater statistical power available in 

using GIV-C and GIV-U alone offsets any additional advantage from the fixed effects estimator. 

S2.4 Estimating exposure effects in the presence of 

both pleiotropy and genetic-unrelated endogeneity 

Next we use simulated data to estimate the effects of T	in the presence of both pleiotropy and genetic-

unrelated endogeneity. Table S2.11 shows simulations where the heritability is 0.5 for both y	and T	and 

where there is also pleiotropy but where the error terms in equations S2.8 and S2.9 have a 0.4 correlation 

(ρe) with each other and are uncorrelated with the genetic variables 𝑆6|#6 	and 𝑆!|#6 	. As Table S2.11 

shows, this is the most challenging of all the simulation results obtained so far. Neither OLS or MR 

provide accurate answers at any level of genetic correlation, and the results for GIV-C are not an 

improvement. Moreover, GIV-U in this case also has a positive bias, and so GIV-C and GIV-U no longer 

provide bounds for the true answer. The table has a simple message: when the endogeneity problem 

stems from non-genetic sources, genetic information will not by itself provide a solution to the 

estimation strategy. Of course, the validity of this message depends on the extent of the endogeneity 

problem, as can readily be seen in Table S2.12. The simulations in Table S2.12 differ from those in Table 
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S2.11 only in that the non-genetic endogeneity is much weaker; instead of a 0.4 correlation between the 

errors in equations S2.8 and S2.9, we assume a -0.1 correlation. The consequence of weakening the non-

genetic endogeneity is that GIV-C produces very accurate estimates of the effect of T, estimates which 

are more accurate than those of either OLS or MR. Finally, and consistent with the earlier simulations, 

the use of 𝑆!,|6  as a proxy control in OLS provides an estimate that is more sensitive to the extent of 

pleiotropy than is GIV-C, being smaller at low levels of genetic correlation and larger at higher levels. 

However, it is not as consistent in the sign of its bias and therefore is less useful for the purpose of 

establishing bounds. 

While we do not wish to minimize the challenges posed by non-genetic endogeneity, we also note that 

this situation provides grounds for optimism. Non-genetic sources of endogeneity can often be 

measured and included in the model as control variables. Once this is done, the endogeneity problem is 

reduced in severity. We show this illustratively in Tables S2.13, S2.14, and S2.15. In the simulations 

reported in these tables, the non-genetic endogeneity correlation (ρe) is again 0.4, but we specify it 

explicitly as the consequence of two unmeasured variables. We then assume that one of these 

environmental confounds can be measured, and so we include it explicitly in the regression and re-

estimate the models. In Table S2.13, we assume that the measurable environmental variable accounts for 

20% of the variance of the original error term, such that the remaining correlation between the error 

terms is 0.27. In Table S2.14, we assume instead that the measurable environmental variable accounts for 

50%, implying a remaining correlation of 0.20. In Table S2.15, we assume that it accounts for 80% of the 

non-genetic endogeneity, implying a remaining correlation of 0.13. Perhaps not surprisingly, the 

performance of both GIV-C and GIV-U improve and the level of improvement depends upon the 

amount of the environmental confounding variables that can be controlled. It’s notable that even if 80% 

of the confounding effects of nongenetic environmental variables were controlled, GIV-C still shows 

considerable upward bias, though generally not as much as MR. GIV-U, on the other hand, performs 

reasonably well when most of the environmental confounds are controlled. 
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We also note that GIV-U does not consistently under-predict the effect of T	on y	when there are 

positive-biasing environmental confounds as well as pleiotropy. On the other hand, it does reliably give 

the most conservative answer of all the estimators we have considered. If the pleiotropy is not extreme 

and if the amount of uncontrolled environmental endogeneity is not too large, then estimates from GIV-

U are in the neighborhood of the true answer. 

Another strategy for addressing the environmental confounds problem is to use fixed effects models 

where the clustered cases (e.g., siblings) have similar values on the environmental variables that are 

producing the non-genetic environmental endogeneity. In general, we conclude that non-genetic 

endogeneity causes potentially large problems for estimating causal effects when pleiotropy is moderate 

to large in size. Fixed effects models with monozygotic twins will solve pleiotropy problems but it is 

difficult to obtain monozygotic twin data at sufficient scale to address most problems of interest in the 

social and behavioral sciences. Well-designed experiments using randomized assignment to treatment 

would address all the problems considered here, though experiments are frequently infeasible to conduct 

for well-known reasons. Valid non-genetic environmental IVs would similarly address both the problems 

of environmental endogeneity and pleiotropy, though these variables are often unavailable. In such cases, 

the strategy of addressing as much non-genetic endogeneity as possible either with explicit control 

variables or with fixed-effects models and then calculating both the GIV-C and the GIV-U estimates 

provides more information about the true effect of T	than any of the other strategies considered here. 

SI 2.5 Empirical application 

We used data from the Health and Retirement Survey (HRS) for our empirical example [28]. The HRS 

is a longitudinal survey on health, retirement and aging which is presentative for the US population aged 

50 years or older. The survey consists of eleven waves from 1992 to 2012. We used phenotypic data that 

has been cleaned and harmonized by the RAND cooperation.8 

 

8 RAND HRS Data, Version O. Produced by the RAND Center for the Study of Aging, with funding from 
the National Institute on Aging and the Social Security Administration. Santa Monica, CA (August 2016). 
See http://www.rand.org/labor/aging/dataprod/hrs-data.html for additional information. 
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Since 2006, data collection has expanded to include biomarkers and a subset of the participants has been 

genotyped.9 Autosomal SNPs were imputed using the worldwide reference panel from phase I of the 

1000 Genomes project (v3, released March 2012) (The 1000 Genomes Project Consortium, 2012). If the 

uncertainty about the genotype of an individual was greater than 10 percent, the SNP was removed. 

Furthermore, SNPs were removed from the entire sample if the imputation quality was below 70 

percent, if the minor allele frequency was smaller than 1 percent, or if the SNP was missing in over 5 

percent of the sample. Our analyses were restricted to unrelated participants of European descent 

according to the standard HRS protocol. Specifically, HRS filtered out parent-offspring pairs, siblings 

and half-siblings. Selection on European descent was done based on self-reported race and principal 

component analysis (Weir, 2012). The PGS for educational attainment is negatively correlated with 

birth year (r	= -0.06; p	< 0.0001) and educational attainment has been shown to affect longevity (van 

Kippersluis, O’Donnell, & van Doorslaer, 2011; Cutler & Lleras-Muney, 2008). Thus, age-related 

sample selection is likely to be correlated with educational attainment and its PGS, which could 

potentially bias our results. Since the HRS is a sample of an older population spanning across many birth 

years, we further restricted our analysis sample to a a relatively younger group of people born between 

1935 and 1945. This subsample is still large enough to for our analyses (N	=	2,839), yet less likely to be 

affected by age-related sample selection.  

We constructed polygenic scores starting with a set of 2,224,079 SNPs that were either directly 

genotyped in HRS or present in the HapMap3 reference panel (The International HapMap 

Consortium, 2010) providing us with a high-resolution coverage of common genetic variants. To 

control for linkage disequilibrium (LD) between SNPs, we constructed all polygenic scores using 

LDpred (Vilhjælmsson et al., 2015) with the default LD window (total number of SNPs divided by 

3000) and assuming that all of the SNPs are causal. 

The first unconditional polygenic score for educational attainment was constructed by using GWAS 

results provided by the Social Science Genetic Association Consortium (SSGAC) (Okbay, Beauchamp, 

 

9 See https://hrs.isr.umich.edu/data-products/genetic-data 
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et al. 2016), excluding HRS, UK Biobank and the 23andMe cohort from the meta-analysis. The 

remaining SSGAC sample consists of several cohorts from around the world (n	=	207,605, see 

Supplementary Table S2.18). We included all SNPs that overlapped with our initial set in LDpred. After 

LDpred filtered out ambiguous SNPs and SNPs with minor allele frequency smaller than 0.01; 

1,849,602 autosomal SNPs remained. 

The second unconditional polygenic score for educational attainment was constructed by using results 

from a GWAS in the UK Biobank, also provided by the SSGAC (Lee et al., 2018) (n	=	442,183;	

1,870,853 SNPs). 

The first unconditional polygenic score for height was constructed using the publicly available GWAS 

summary results from the GIANT consortium (n	=	253,288) (Wood et al., 2014),10 which are based on 

≈	2.5	million autosomal SNPs that were imputed using the HapMap 2 CEU reference panel (The 

International HapMap Consortium, 2007) (See Supplementary Table S2.19). Merging this set with the 

directly genotyped and HapMap 3 SNPs resulted in 1,264,571 SNPs that were included in the score by 

LDpred. 

We conducted three GWASs in the UK Biobank (UKB) to obtain the other required polygenic scores. 

The UKB is a publicly available population-based prospective study of individuals aged 40-69 years 

during recruitment in 2006-2010  (Sudlow et al., 2015). We restricted the analysis to unrelated Brits of 

European descent (Marchini et al., 2015) that were available in the full release of the genetic data (n	=	

441,298). Autosomal SNPs were imputed using the UK10K reference panel. Details on genotyping, 

pre-imputation quality control, and imputation have been documented extensively elsewhere (Marchini 

et al., 2015). 

To obtain a second unconditional polygenic score for height, the GWAS analysis included as control 

variables dummies for genotyping batches and sex. We also included a third order polynomial of age and 

it’s interaction terms with sex. Furthermore, the first 20 principal components of the genetic data were 

 

10 http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files 
#GWAS_Anthropometric_2014_Height 
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also included to control for subtle population structure. The obtained GWAS results underwent quality 

control following an extended version of the EasyQC protocol (Winkler et al., 2014) described in detail 

elsewhere (Okbay, Baselmans, et al., 2016). Two loci had SNPs with p-values that were numerically 

equal to 0, these could not be entered into LDpred. From each of the two loci one SNP was included 

into the score after LDpred was done. This yielded a score consisting of 1,861,847 autosomal SNPs. 

For the conditional polygenic score for educational attainment, we included as control variables height, 

genotyping batches, sex, age, age and height squared and cubed, the interaction terms between the terms 

for age and height, as well as their interaction terms with sex. Furthermore, the first 20 principal 

components of the genetic data were included as controls for population stratification and the GWAS 

results underwent quality control, yielding 1,861,878 autosomal SNPs. 

For the conditional polygenic score for height, an identical GWAS analysis was conducted where we 

controlled for educational attainment instead (including squared, cubic and interaction terms). This 

yielded a score based on 1,861,847 autosomal SNPs (including the same two SNPs that were manually 

added, as described above). 

There is an overlap in the cohorts used by the GIANT consortium in the GWAS on height and by the 

SSGAC GWAS on educational attainment (Okbay, Beauchamp, et al., 2016). To ensure independence 

of measurement errors in the PGS, whenever the GIANT height PGS was used, we excluded the other as 

an instrument and used a PGS constructed from the UK Biobank GWAS results instead. 

Using these data, we demonstrate the value of the GIV regression approach in several important 

empirical applications. First, we estimated the chip heritability of educational attainment (EA) in the 

HRS data from a PGS for EA. We use the residual of EA after regressing it on control variables. The 

results are shown in Table 2.1 of the main text. All reported coefficients are standardized. Since the 

squared standardized coefficient in OLS equals 𝑅%, our OLS result in column 1 of Table 2.1 implies that 

the PGS for EA currently captures 6.8% of the variance in EA. 
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Using the GIV regression results reported in columns 2 and 3 of Table 2.1 and the error correction 

described above 1.1, we obtain chip heritability estimates of 13.4% (95% CI +/3.9%) and 13.8% (+/- 

4.0%), respectively. 

Second, we estimated the (causal) effect of body height on EA. Earlier studies have reported a positive 

relationship between these variables (Silventoinen, Kaprio, & Lahelma, 2000; Case, Paxson, & Islam, 

2009; Anne Case & Christina Paxson, 2008). Third, we present results from a negative control that 

estimates the (causal) effect of EA on body height (which should be zero). We estimated these effects 

using OLS, MR, GIV-C, and GIVU regression. In each regression, we included birth year, birth year 

squared, educational attainment of both parents and (in pooled models) sex as control variables. We 

included PGS of EA or height depending on the method. All variables have been standardized. The 

results are shown and discussed in main text (see Tables 2.3 and 2.4). 

SI 2.6 Practical recommendations 

We discussed two main sources of bias in this paper – direct pleiotropy and unobserved environmental 

confounds that may or may not covary with genetic effects. These sources of bias are relevant in almost 

all research questions in the social sciences and epidemiology when experimental data is not available. 

The existing literature addresses these challenges with various strategies. All of them have their 

advantages and disadvantages. For example, panel data that contain repeated measures for each 

individual over time can be used for individual fixed-effects models that control for all unobserved 

heterogeneity among people, including genetic and environmental factors. Unfortunately, individual 

fixed-effects models do not allow investigating variables that do not vary over time for a particular 

person, such as the relationship between educational attainment and body height. 

The gold standard to address potential bias arising from genetic and family-specific environmental 

confounds is a comparison among MZ twin pairs. These pairs are (almost) genetically identical and share 

the same family environment. However, very large samples of MZ twin pairs are necessary for this 

approach because within MZ twin pair variation tends to be very small or non-existent. Also, this 
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approach does by itself not control for unobserved environmental confounds that are individual-

specific. 

Probably the most popular approach to identify causal effects in non-experimental data are instrumental 

variable techniques. Yet, convincing environmental instruments are rare and they limit the scope of 

research questions to scenarios to which the instruments apply. Furthermore, as discussed earlier, genetic 

instruments are invalid when they have direct pleiotropic effects on the exposure and the outcome or if 

they are correlated with other unobserved confounds. 

This leaves a broad class of important applied research questions for which GIV regression offers a new 

approach to obtain more precise estimates than ordinary multiple regression techniques or approaches 

that use invalid instruments. Table S2.17 provides an overview of different types of applied research 

questions and our recommended estimation strategy in cross-sectional population samples that lack an 

experimental design, or valid non-genetic instruments, or relevant natural experiments. We differentiate 

these research questions based on the expected degree of pleiotropic confounds and whether 

environmental sources of endogeneity may also exist or not. Unfortunately, environmental endogeneity 

is hard to rule out in almost all non-experimental research scenarios. 

Mendelian Randomization is in principle a great idea for addressing environmental endogeneity, but its 

application is limited to scenarios where direct pleiotropy between the exposure and the outcome is of 

no concern. An example may be the influence of number of cigarettes smoked per day on the number of 

biological offspring – smoking intensity seems to be regulated by a relatively limited number of genes 

with strong effects and clear biological functions that are unlikely to have direct pleiotropic effects on 

reproductive success (The Tobacco and Genetics Consortium, 2010). Yet, even in this situation, genes 

related to smoking may still violate the exclusion restriction via LD with other genes or via their 

correlation with unobserved environmental confounds, such as parental socioeconomic status. In short, 

it is difficult to argue convincingly that the assumptions of MR are actually satisfied. The assumptions of 

MR are less likely to hold the more genetically complex the investigated traits are, the higher their genetic 
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correlation is, and the more likely it is that the genes associated with these traits work via unobserved 

environmental channels. 

We argue that GIV regression is a reasonable estimation strategy whenever pleiotropic confounds are a 

possible concern. If genetic and environmental confounds are both likely to exist, we recommend the 

combination of GIV regression with control variables that correct for non-genetic endogeneity as far as 

possible, ideally in samples that also allow controls for family-fixed effects (e.g. siblings or DZ twins). 

Examples of research questions with both sources of endogeneity are plentiful, e.g. the relationships 

between body height and educational attainment (low pleiotropy), diet and body mass (probably with a 

medium degree of direct pleiotropy), and the returns to schooling (probably with a high degree of direct 

pleiotropy on educational attainment and personal income, and quite likely mediated by factors such as 

cognitive ability and personality). GIV regression in combination with environmental controls is a 

reasonable estimation strategy in all of these cases. 

An important practical question is data availability for GIV regression. In addition to a genotyped 

prediction sample, the researcher will need GWAS summary statistics from nonoverlapping samples to 

construct the conditional and unconditional scores. Unconditional scores for many traits can often be 

constructed using publicly available GWAS results from consortia such as GIANT11, SSGAC12, PGC13, 

or CHARGE14. Most of these consortia did not include data from the UKB in their earlier publications. 

Thus, the publicly available UKB data can often be used to obtain a second score from an independent 

sample. Unconditional GWAS results for virtually all traits in the UKB are publicly available from the 

Broad Institute15. The UKB, or any other large, publicly available biobank, can also be considered as a 

source for obtaining conditional GWAS results. If the researcher does not have access to these data or 

lacks the resources for large-scale GWAS analyses, it is always possible to team up with one of the many 

 

11 https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files 
12 https://www.thessgac.org 
13 https://www.med.unc.edu/pgc/results-and-downloads 
14 http://www.chargeconsortium.com/main/results 
15 http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-
samplesin-the-uk-biobank 
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research groups around the world that have the necessary data and resources. Running a conditional 

GWAS in a large sample like the UKB can often be done in a matter of hours by experienced research 

teams. Importantly, GIV regression only requires one conditional score which can be instrumented by 

an unconditional score from a non-overlapping sample. Thus, data access or computational resources 

should not be a serious practical limitation for GIV regression. 

Furthermore, the UKB is large enough to be split into three sub-samples for GIV regression. One 

particularly appealing approach would be to use the subsample of siblings in the UKB as a prediction 

sample that allows the researcher to control for family fixed-effects. The remaining unrelated individuals 

can be split into two, still very large, subsamples to conduct conditional and unconditional GWAS 

analyses. Because all participants in the UKB have been recruited at about the same time and in the same 

country, the genetic correlations for a given trait are likely to be perfect for randomly chosen subsets of 

the data. 

An important practical issue is that the prediction sample should not be included in any of the GWAS 

samples used to construct the scores to avoid overfitting. Reassuringly, this is not a problem either 

because most GWAS consortia provide meta-analysis results excluding specific samples upon request. If 

this is not possible, an alternative strategy is to conduct the GWAS on y	in the prediction sample and to 

subtract the effect of each SNP in this cohort from the publicly available results using the meta-analysis 

formula that the consortium used to aggregate effects. For example, if the meta-analysis used sample size 

weights to obtain the z-scores of each SNP, the corrected z-scores excluding the prediction sample could 

be obtained by simply subtracting the z-score in the prediction sample using the appropriate weight 

(Willer, Li, & Abecasis, 2010). Furthermore, many samples have only recently been genotyped and are 

therefore not included yet in published GWAS studies. These samples could be readily employed for 

GIV regression using the approaches described above. 

Overall, we believe that GIV regression has substantial practical utility for many researchers and across a 

wide range of important applied research questions. The usefulness of GIV regression will increase 
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further in the future as a result of the growing availability of accurate, cheap genetic data and GWAS 

results on many traits from ever growing sample sizes. 
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S2.8 Tables 

Table S2.1: Estimating the SNP heritability of y 
 Number 

of SNPs 
Total GWAS sample size 

   50,000       100,000      300,000 500,000 
h2	= 0.1 1000 0.1002 0.1008 0.0999 0.1016 

  (0.00725) (0.00666) (0.00621) (0.00618) 
 10000 0.1039 0.0969 0.0988 0.0995 
  (0.0165) (0.0112) (0.0080) (0.0073) 
 100000 0.1247 0.0964 0.0972 x 
  (0.1343) (0.0475) (0.0215)  
 300000 0.1822 0.09197∗ x x 
  (8.3243) (0.1512)   

h2	= 0.3 1000 0.2937 0.2968 0.2961 0.2952 
  (0.0100) (0.0095) (0.0093) (0.0092) 
 10000 0.2999 0.3016 0.2976 0.2982 
  (0.0175) (0.0134) (0.0106) (0.0100) 
 100000 0.2873 0.3087 0.2999 x 
  (0.0889) (0.0522) (0.0232)  
 300000 0.2811 0.3558 x x 
  (0.2586) (0.1713)   

h2	= 0.5 1000 0.4969 0.4951 0.5001 0.5103 
  (0.0108) (0.0103) (0.0101) (0.0102) 
 10000 0.5039 0.4991 0.5008 0.4974 
  (0.0181) (0.0140) (0.0114) (0.0107) 
 100000 0.5167 0.5110 0.5024 x 
  (0.0988) (0.0519) (0.0234)  
 300000 0.6080 0.5460 x x 
  (0.4702) (0.1536)   

 
Mean of heritability estimates of twenty simulations for several GWAS sample sizes, varying the number of SNPs and 
the heritability (h2) of y. Standard errors (in parentheses) are calculated via the delta method. The size of the replication 
sample is 10,000. * Mean of nineteen simulations, due to one extreme outlier. x Unable to simulate due to memory 
constraints on the high memory nodes of the high performance computer. 
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Table S2.2: Endogeneity between y	and T	due to Pleiotropic Effects, h2	=	0.2	for both y	and T 

 
 OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-
1 EMR-2 

OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 

δ	=	1,	ρ	=	0.2	 1.0405 1.2018 0.8247 1.0522 1.0190 1.0249 1.0081 0.9525 0.9744 0.9100 
	 (0.0001) (0.0010) (0.0017) (0.0011) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1,	ρ	=	0.5	 1.1004 1.5040 1.1240 1.1155 1.0473 1.0617 1.0131 0.9891 1.0150 0.9419 
	 (0.0001) (0.0012) (0.0023) (0.0015) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1,	ρ	=	0.8	 1.1602 1.8058 1.5649 1.1880 1.0764 1.1011 1.0094 1.0275 1.0567 0.9761 
	 (0.0001) (0.0014) (0.0040) (0.0051) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0,	ρ	=	0.2	 0.0405 0.2018 0.1083 0.0522 0.0190 0.0249 0.0092 0.0139 0.0127 0.0015 
	 (0.0001) (0.0010) (0.0009) (0.0011) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0,	ρ	=	0.5	 0.1004 0.5040 0.2922 0.1155 0.0473 0.0617 0.0180 0.0349 0.0519 0.0016 
	 (0.0001) (0.0012) (0.0012) (0.0015) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0,	ρ	=	0.8	 0.1602 0.8058 0.5956 0.1880 0.0764 0.1011 0.0164 0.0585 0.0857 0.0015 
	 (0.0001) (0.0014) (0.0021) (0.0051) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

Mean of estimated effect for T and its standard error (within parenthesis) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. 
See the supplementary text for details. 

 

Table S2.3: Endogeneity between y	and T	due to Pleiotropic Effects, h2	=	0.4	for both y	and T 

 
 OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.0810 1.2002 0.6374 1.0874 1.0425 1.0497 1.0313 0.8563 0.8983 0.7900 

 (0.0001) (0.0004) (0.0007) (0.0003) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.5 1.2011 1.5024 0.9270 1.2086 1.1044 1.1230 1.0604 0.9337 0.9825 0.8575 
 (0.0001) (0.0004) (0.0009) (0.0004) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.8 1.3210 1.8040 1.4201 1.3322 1.1640 1.2016 1.0533 1.0228 1.0773 0.9376 
 (0.0001) (0.0004) (0.0015) (0.0008) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.2 0.0810 0.2002 0.0738 0.0874 0.0425 0.0497 0.0336 0.0176 0.0288 0.0025 
 (0.0001) (0.0004) (0.0003) (0.0003) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.5 0.2011 0.5024 0.2053 0.2086 0.1044 0.1230 0.0736 0.0447 0.0729 0.0024 
 (0.0001) (0.0004) (0.0004) (0.0004) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.8 0.3210 0.8040 0.4707 0.3322 0.1640 0.2016 0.0800 0.0813 0.1295 0.0018 
 (0.0001) (0.0004) (0.0007) (0.0008) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. See 
the supplementary text for details. 
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Table S2.4: Endogeneity between y	and T	due to Pleiotropic Effects, h2	=	0.6	for both y	and T 

 
 OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.1213 1.1999 0.5264 1.1249 1.0798 1.0860 1.0713 0.7222 0.7877 0.6244 

 (0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.5 1.3016 1.5020 0.8074 1.3056 1.1979 1.2134 1.1573 0.8469 0.9255 0.7263 
 (0.0001) (0.0002) (0.0005) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	1, ρ	=	0.8 1.4816 1.8033 1.3247 1.4868 1.3136 1.3470 1.1774 1.0101 1.0985 0.8685 
 (0.0001) (0.0002) (0.0007) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	0, ρ	=	0.2 0.1213 0.1999 0.0562 0.1249 0.0798 0.0860 0.0737 0.0196 0.0331 0.0031 
 (0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.5 0.3016 0.5020 0.1586 0.3056 0.1979 0.2134 0.1733 0.0511 0.0867 0.0028 
 (0.0001) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.8 0.4816 0.8033 0.3896 0.4868 0.3136 0.3470 0.2267 0.1036 0.1701 0.0019 
 (0.0001) (0.0002) (0.0003) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) 
varies. See the supplementary text for details. 

 

Table S2.5: Endogeneity between y and T due to Pleiotropic Effects, h2 = 0.8 for both y and T 

 OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS 
 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 

δ	=	1, ρ	=	0.2 1.1613 1.1998 0.4528 1.1629 1.1323 1.1359 1.1283 0.5309 0.6309 0.3819 
 (0.0001) (0.0002) (0.0002) (0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.5 1.4020 1.5018 0.7269 1.4036 1.3303 1.3389 1.3098 0.7034 0.8323 0.4962 
 (0.0001) (0.0001) (0.0003) (0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	1, ρ	=	0.8 1.6421 1.8030 1.2567 1.6440 1.5292 1.5461 1.4440 0.9822 1.1310 0.7094 
 (0.0001) (0.0001) (0.0004) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0003) 

δ	=	0, ρ	=	0.2 0.1613 0.1998 0.0454 0.1629 0.1323 0.1359 0.1293 0.0208 0.0357 0.0033 
 (0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) 

δ	=	0, ρ	=	0.5 0.4020 0.5018 0.1292 0.4036 0.3303 0.3389 0.3179 0.0565 0.0978 0.0028 
 (0.0001) (0.0001) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001) 

δ	=	0, ρ	=	0.8 0.6421 0.8030 0.3323 0.6440 0.5292 0.5461 0.4807 0.1325 0.2188 0.0016 
 (0.0001) (0.0001) (0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

Mean of estimated effect for T and its standard error of twenty simulations for several methods (columns) and different parameters 
(rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. See the supplementary 
text for details. 
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Table S2.6: Endogeneity between y	and T	due to Pleiotropic Effects, h2	=	0.2	for y	and h2	=	0.8	
for T 

 
 OLS MR-based  Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.0847 1.1033 0.9286 1.0870 1.0795 1.0821 1.0701 0.8836 0.9535 0.6254 

 (0.0004) (0.0006) (0.0013) (0.0007) (0.0004) (0.0004) (0.0005) (0.0007) (0.0006) (0.0036) 

δ	=	1, ρ	=	0.5 1.2048 1.2541 1.0996 1.2088 1.1940 1.1988 1.1588 0.9961 1.0686 0.7259 
 (0.0004) (0.0006) (0.0015) (0.0008) (0.0004) (0.0004) (0.0005) (0.0008) (0.0007) (0.0043) 

δ	=	1, ρ	=	0.8 1.3244 1.4042 1.3181 1.3321 1.3145 1.3188 1.2156 1.1385 1.2037 0.8799 
 (0.0004) (0.0006) (0.0018) (0.0013) (0.0004) (0.0004) (0.0012) (0.0009) (0.0007) (0.0057) 

δ	=	0, ρ	=	0.2 0.0822 0.1012 0.0539 0.0837 0.0715 0.0749 0.0673 0.0301 0.0438 0.0048 
 (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.5 0.2025 0.2521 0.1457 0.2044 0.1777 0.1852 0.1619 0.0801 0.1140 0.0059 
 (0.0001) (0.0002) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	0, ρ	=	0.8 0.3224 0.4025 0.2968 0.3257 0.2923 0.3032 0.2442 0.1656 0.2175 0.0087 
 (0.0001) (0.0001) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0004) 

Mean of estimated effect for T and its standard error(within parenthesis) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) 
varies. See the supplementary text for details. 
 

Table S2.7: Endogeneity between y	and T	due to Pleiotropic Effects, h2	=	0.8	for y	and h2	=	0.2	for T 

 
 OLS MR-based  Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.2005 1.9798 0.4651 1.2273 1.0562 1.0700 1.0396 0.8675 0.9016 0.8253 

 (0.0005) (0.0061) (0.0022) (0.0017) (0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0002) 

δ	=	1, ρ	=	0.5 1.5004 3.4922 1.0200 1.5280 1.1304 1.1664 1.0776 0.9427 1.0010 0.8689 
 (0.0005) (0.0093) (0.0029) (0.0024) (0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0002) 

δ	=	1, ρ	=	0.8 1.8001 5.0029 2.3902 1.8300 1.1725 1.2414 1.0647 1.0432 1.1262 0.9365 
 (0.0005) (0.0153) (0.0125) (0.0074) (0.0001) (0.0002) (0.0002) (0.0001) (0.0002) (0.0002) 

δ	=	0, ρ	=	0.2 0.0898 0.4412 0.1173 0.1048 0.0274 0.0353 0.0187 0.0125 0.0220 0.0015 
 (0.0001) (0.0016) (0.0008) (0.0008) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.5 0.2240 1.1174 0.3304 0.2400 0.0648 0.0850 0.0377 0.0310 0.0544 0.0010 
 (0.0001) (0.0023) (0.0011) (0.0012) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.8 0.3579 1.7928 0.8247 0.3782 0.0906 0.1290 0.0335 0.0524 0.0917 0.0000 
 (0.0001) (0.0035) (0.0036) (0.0034) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. 
See the supplementary text for details. 
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Table S2.8: Genetic-Related Endogeneity, with a Correlation of 0.2 between the Polygenic 
Score and the Genetically-Related Confounder (ρνy	=	ρνT	=	0.2) 

 
 OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.1664 1.2621 0.5575 1.1649 1.1141 1.1201 1.1005 0.7217 0.7938 0.6117 

 (0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.5 1.3005 1.4781 0.7704 1.3021 1.2043 1.2176 1.1692 0.8158 0.8996 0.6877 
 (0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	1, ρ	=	0.8 1.4390 1.6917 1.0739 1.4361 1.2993 1.3203 1.2130 0.9371 1.0284 0.7906 
 (0.0001) (0.0002) (0.0005) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	0, ρ	=	0.2 0.1664 0.2621 0.0668 0.1649 0.1141 0.1201 0.1042 0.0250 0.0422 0.0011 
 (0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.5 0.3005 0.4781 0.1400 0.3021 0.2043 0.2176 0.1829 0.0457 0.0806 -0.0003 
 (0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.8 0.4390 0.6917 0.2590 0.4361 0.2993 0.3203 0.2467 0.0817 0.1366 -0.0004 
 (0.0001) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. 
The heritability for both y	and T	is 0.5. The variance of both νy	and νT	equals 0.1. Correlation of νy	and νT	is 0.4. See the 
supplementary text for details. 
 

Table S2.9: Genetic-Related Endogeneity, with a Correlation of 0.5 between the Polygenic 
Score and the Genetically-Related Confounder (ρνy	=	ρνT	=	0.5 

 OLS MR-based  Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.1878 1.2789 0.5538 1.1878 1.1357 1.1411 1.1221 0.6942 0.7741 0.5730 

 (0.0001) (0.0002) (0.0003) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	1, ρ	=	0.5 1.3106 1.4609 0.7257 1.3101 1.2235 1.2334 1.1922 0.7825 0.8726 0.6422 
 (0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	1, ρ	=	0.8 1.4359 1.6493 0.9807 1.4336 1.3111 1.3285 1.2449 0.8918 0.9910 0.7334 
 (0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	0, ρ	=	0.2 0.1878 0.2789 0.0675 0.1878 0.1357 0.1411 0.1259 0.0265 0.0449 0.0002 
 (0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) 

δ	=	0, ρ	=	0.5 0.3106 0.4609 0.1252 0.3101 0.2235 0.2334 0.2037 0.0466 0.0797 -0.0002 
 (0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.8 0.4359 0.6493 0.2186 0.4336 0.3111 0.3285 0.2717 0.0747 0.1274 0.0003 
 (0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. 
The heritability for both y	and T	is 0.5. The variance of both νy	and νT	equals 0.1. Correlation of νy	and νT	is 0.4. See the supplementary 
text for details. 
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Table S2.10: Genetic-Related Endogeneity, with a Correlation of 0.8 between the Polygenic 
Score and the Genetically-Related Confounder (ρνy	=	ρνT	=	0.8) 

 
 OLS MR-based  Conditional Proxy PGS Unconditional Proxy PGS 

MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.2084 1.2951 0.5550 1.2087 1.1559 1.1612 1.1427 0.6734 0.7603 0.5423 

 (0.0001) (0.0002) (0.0003) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	1, ρ	=	0.5 1.3193 1.4520 0.7034 1.3192 1.2383 1.2471 1.2109 0.7540 0.8510 0.6031 
 (0.0001) (0.0002) (0.0003) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	1, ρ	=	0.8           

δ	=	0, ρ	=	0.2 0.2084 0.2951 0.0697 0.2087 0.1559 0.1612 0.1465 0.0283 0.0484 0.0005 
 (0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) 

δ	=	1, ρ	=	0.5 0.3193 0.4520 0.1181 0.3192 0.2383 0.2471 0.2209 0.0462 0.0793 0.0000 
 (0.0001) (0.0002) (0.0001) (0.0001)  (<0.0001) (<0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) 

δ	=	0, ρ	=	0.8      

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) 
and different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores 
(ρ) varies. The heritability for both y	and T	is 0.5. The variance of both νy	and νT	equals 0.1. Correlation of νy	and νT	is 0.4. The 
empty lines were unobtainable parameter combinations. See the supplementary text for details. 

Table S2.11: Genetic-Unrelated Endogeneity, with a Correlation of 0.4 between the Error 

Terms (ρe) 

 
 OLS MR-based  Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.3017 1.2004 0.6241 1.3040 1.3436 1.3385 1.3490 1.0720 1.1165 0.9992 

 (0.0001) (0.0003) (0.0006) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.5 1.4520 1.5032 0.9145 1.4545 1.4306 1.4346 1.4259 1.1992 1.2481 1.1193 
 (0.0001) (0.0002) (0.0006) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.8 1.6019 1.8051 1.4138 1.6055 1.5225 1.5391 1.4684 1.3539 1.4032 1.2721 
 (0.0001) (0.0002) (0.0007) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.2 0.3017 0.2004 0.0618 0.3040 0.3436 0.3385 0.3517 0.2222 0.2342 0.2064 
 (0.0001) (0.0003) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.5 0.4520 0.5032 0.1778 0.4545 0.4306 0.4346 0.4267 0.2713 0.3002 0.2302 
 (0.0001) (0.0002) (0.0002) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.8 0.6019 0.8051 0.4271 0.6055 0.5225 0.5391 0.4838 0.3648 0.4093 0.2949 
 (0.0001) (0.0002) (0.0003) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. 
The heritability for both y	and T	is 0.5. See the supplementary text for details. 
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Table S2.12: Genetic-Unrelated Endogeneity, with a Correlation of -0.1 between the Error 
Terms (ρe) 

 
 OLS MR-based  Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.0509 1.1968 0.5579 1.0546 0.9886 0.9980 0.9706 0.7253 0.7791 0.6431 

 (0.0001) (0.0003) (0.0005) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.5 1.2012 1.4988 0.8404 1.2047 1.0741 1.0950 1.0174 0.8188 0.8832 0.7200 
 (0.0001) (0.0003) (0.0006) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.8 1.3512 1.8003 1.3490 1.3537 1.1531 1.1962 1.0074 0.9331 1.0066 0.8179 
 (0.0001) (0.0003) (0.0011) (0.0005) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) 

δ	=	0, ρ	=	0.2 0.0509 0.1968 0.0625 0.0546 -0.0114 -0.0020 -0.0240 -0.0314 -0.0192 -0.0479 
 (0.0001) (0.0003) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.5 0.2012 0.4988 0.1773 0.2047 0.0741 0.0950 0.0386 -0.0068 0.0258 -0.0544 
 (0.0001) (0.0003) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.8 0.3512 0.8003 0.4234 0.3537 0.1531 0.1962 0.0520 0.0249 0.0852 -0.0718 
 (0.0001) (0.0003) (0.0005) (0.0005) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. The 
heritability for both y	and T	is 0.5. See the supplementary text for details. 

Table S2.13: Genetic-Unrelated Endogeneity, Partially Controlling for 20% of the Confounds. 

 
 OLS MR-based Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.2433 1.2051 0.6221 1.2948 1.2878 1.2822 1.2967 0.9814 1.0319 0.8989 

 (0.0001) (0.0002) (0.0005) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.5 1.4008 1.5056 0.9103 1.4456 1.3792 1.3828 1.3720 1.1078 1.1646 1.0154 
 (0.0001) (0.0002) (0.0005) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.8 1.5582 1.8046 1.4053 1.5961 1.4735 1.4908 1.4046 1.2638 1.3226 1.1667 
 (0.0001) (0.0002) (0.0007) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.2 0.2433 0.2051 0.0552 0.2948 0.2878 0.2822 0.2968 0.1590 0.1717 0.1429 
 (0.0001) (0.0002) (0.0002) (0.0002) (<0.0001) (0.0001) (0.0001) (<0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.5 0.4008 0.5056 0.1704 0.4456 0.3792 0.3828 0.3742 0.2053 0.2361 0.1617 
 (0.0001) (0.0002) (0.0002) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.8 0.5582 0.8046 0.4178 0.5961 0.4735 0.4908 0.4267 0.2904 0.3403 0.2121 
 (0.0001) (0.0002) (0.0003) (0.0002) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) varies. The 
heritability for both y	and T	is 0.5. Controlling for 20% of the original endogeneity. Remaining correlation between error terms is 0.27. 
See the supplementary text for details. 
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Table S2.14: Genetic-Unrelated Endogeneity, Partially Controlling for 50% of the Confounds. 

 
 OLS MR-based  Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.2075 1.2057 0.6227 1.2962 1.2521 1.2466 1.2638 0.9349 0.9872 0.8495 

 (0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.5 1.3643 1.5064 0.9110 1.4469 1.3431 1.3467 1.3346 1.0555 1.1151 0.9587 
 (0.0001) (0.0002) (0.0004) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.8 1.5210 1.8054 1.4062 1.5973 1.4355 1.4530 1.3563 1.2042 1.2673 1.1002 
 (0.0001) (0.0002) (0.0005) (0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

δ	=	0, ρ	=	0.2 0.2075 0.2057 0.0562 0.2962 0.2521 0.2466 0.2617 0.1233 0.1360 0.1073 
 (0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) 

δ	=	0, ρ	=	0.5 0.3643 0.5064 0.1712 0.4469 0.3431 0.3467 0.3378 0.1656 0.1969 0.1215 
 (0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001) 

δ	=	0, ρ	=	0.8 0.5210 0.8054 0.4183 0.5973 0.4355 0.4530 0.3839 0.2407 0.2928 0.1591 
 (0.0001) (0.0002) (0.0002) (0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) 

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) 
varies. The heritability for both y	and T	is 0.5. Controlling for 50% of the original endogeneity. Remaining correlation between 
error terms is 0.20. See the supplementary text for details. 
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Table S2.15: Genetic-Unrelated Endogeneity, Partially Controlling for 80% of the Confounds. 

 
 OLS MR-based  Conditional Proxy PGS Unconditional Proxy PGS 

 MR EMR-1 EMR-2 OLS S(y|T) OLS S(y1|T) GIV-C OLS S(y) OLS S(y1) GIV-U 
δ	=	1, ρ	=	0.2 1.1736 1.2067 0.6237 1.2981 1.2187 1.2132 1.2332 0.8876 0.9425 0.7978 

 (0.0001) (0.0002) (0.0003) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001) (0.0001) 

δ	=	1, ρ	=	0.5 1.3312 1.5074 0.9121 1.4487 1.3102 1.3138 1.3003 1.0040 1.0672 0.9012 
 (0.0001) (0.0001) (0.0003) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0001) 

δ	=	1, ρ	=	0.8 1.4887 1.8065 1.4079 1.5989 1.4017 1.4195 1.3121 1.1477 1.2157 1.0353 
 (<0.0001) (0.0001) (0.0003) (0.0001) (<0.0001) (<0.0001) (0.0001) (<0.0001) (<0.0001) (0.0001) 

δ	=	0, ρ	=	0.2 0.1736 0.2067 0.0577 0.2981 0.2187 0.2132 0.2291 0.0888 0.1016 0.0728 
 (0.0001) (0.0002) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) 

δ	=	0, ρ	=	0.5 0.3312 0.5074 0.1725 0.4487 0.3102 0.3138 0.3045 0.1276 0.1596 0.0825 
 (0.0001) (0.0001) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) 

δ	=	0, ρ	=	0.8 0.4887 0.8065 0.4195 0.5989 0.4017 0.4195 0.3450 0.1940 0.2488 0.1082 
 (<0.0001) (0.0001) (0.0001) (0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) 

Mean of estimated effect for T and its standard error (within parentheses) of twenty simulations for several methods (columns) and 
different parameters (rows). The effect for T (δ) is equal to either 1 or 0. The correlation between the true polygenic scores (ρ) 
varies. The heritability for both y	and T	is 0.5. Controlling for 80% of the original endogeneity. Remaining correlation between 
error terms is 0.13. See the supplementary text for details. 
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Table S2.16: List of Parameters, Variances and Heritability 

Name 𝛿 ℎ!%  ℎ!%  𝜌 𝜌M!/6  𝜌O  var(𝑦) 
True 	
ℎ!%  

std. 	
𝛿 

Pleiotropic 1 0.2 0.2 0.2 0 0 2.08 0.23 0.48 
Endogeneity 1 0.2 0.2 0.5 0 0 2.2 0.27 0.45 

 1 0.2 0.2 0.8 0 0 2.32 0.31 0.43 

 0 0.2 0.2 0.2 0 0 1 0.2 0 

 0 0.2 0.2 0.5 0 0 1 0.2 0 
 0 0.2 0.2 0.8 0 0 1 0.2 0 

 1 0.4 0.4 0.2 0 0 2.16 0.44 0.46 
 1 0.4 0.4 0.5 0 0 2.4 0.5 0.42 
 1 0.4 0.4 0.8 0 0 2.64 0.55 0.38 

 0 0.4 0.4 0.2 0 0 1 0.4 0 
 0 0.4 0.4 0.5 0 0 1 0.4 0 

 0 0.4 0.4 0.8 0 0 1 0.4 0 

 1 0.6 0.6 0.2 0 0 2.24 0.64 0.45 

 1 0.6 0.6 0.5 0 0 2.6 0.69 0.38 
 1 0.6 0.6 0.8 0 0 2.96 0.73 0.34 

 0 0.6 0.6 0.2 0 0 1 0.6 0 
 0 0.6 0.6 0.5 0 0 1 0.6 0 
 0 0.6 0.6 0.8 0 0 1 0.6 0 

 1 0.8 0.8 0.2 0 0 2.32 0.83 0.43 
 1 0.8 0.8 0.5 0 0 2.8 0.86 0.36 

 1 0.8 0.8 0.8 0 0 3.28 0.88 0.3 

 0 0.8 0.8 0.2 0 0 1 0.8 0 

 0 0.8 0.8 0.5 0 0 1 0.8 0 
 0 0.8 0.8 0.8 0 0 1 0.8 0 

 1 0.2 0.8 0.2 0 0 5.76 0.2 0.17 
 1 0.2 0.8 0.5 0 0 6 0.23 0.17 
 1 0.2 0.8 0.8 0 0 6.24 0.26 0.16 

 0 0.2 0.8 0.2 0 0 1 0.2 0 
 0 0.2 0.8 0.5 0 0 1 0.2 0 

 0 0.2 0.8 0.8 0 0 1 0.2 0 

 1 0.8 0.2 0.2 0 0 7.9 0.91 0.13 

 1 0.8 0.2 0.5 0 0 10.9 0.94 0.09 
 1 0.8 0.2 0.8 0 0 13.9 0.95 0.07 

 0 0.8 0.2 0.2 0 0 1 0.8 0 
 0 0.8 0.2 0.5 0 0 1 0.8 0 
 0 0.8 0.2 0.8 0 0 1 0.8 0 
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Table S2.16 - continued 

Name 𝛿 ℎ!%  ℎ!%  𝜌 𝜌M!/6  𝜌O  var(𝑦) 
True 	
ℎ!%  

std. 	
𝛿 

Genetic- 1 0.5 0.5 0.2 0.2 0 2.53 0.47 0.4 
Related 1 0.5 0.5 0.5 0.2 0 2.83 0.53 0.35 
Endogeneity 1 0.5 0.5 0.8 0.2 0 3.13 0.57 0.32 

 0 0.5 0.5 0.2 0.2 0 1.09 0.46 0 
 0 0.5 0.5 0.5 0.2 0 1.09 0.46 0 

 0 0.5 0.5 0.8 0.2 0 1.09 0.46 0 

 1 0.5 0.5 0.2 0.5 0 2.91 0.41 0.34 

 1 0.5 0.5 0.5 0.5 0 3.21 0.47 0.31 
 1 0.5 0.5 0.8 0.5 0 3.51 0.51 0.29 

 0 0.5 0.5 0.2 0.5 0 1.22 0.41 0 
 0 0.5 0.5 0.5 0.5 0 1.22 0.41 0 
 0 0.5 0.5 0.8 0.5 0 1.22 0.41 0 

 1 0.5 0.5 0.2 0.8 0 3.28 0.37 0.3 
 1 0.5 0.5 0.5 0.8 0 3.58 0.42 0.28 

 1 0.5 0.5 0.8 0.8 0 3.88 0.46 0.26 

 0 0.5 0.5 0.2 0.8 0 1.36 0.37 0 

 0 0.5 0.5 0.5 0.8 0 1.36 0.37 0 
 0 0.5 0.5 0.8 0.8 0 1.36 0.37 0 

Genetic- 1 0.5 0.5 0.2 0 0.4 2.6 0.46 0.38 
Unrelated 1 0.5 0.5 0.5 0 0.4 2.9 0.52 0.34 
Endogeneity 1 0.5 0.5 0.8 0 0.4 3.2 0.56 0.31 

 0 0.5 0.5 0.2 0 0.4 1 0.5 0 
 0 0.5 0.5 0.5 0 0.4 1 0.5 0 

 0 0.5 0.5 0.8 0 0.4 1 0.5 0 

 1 0.5 0.5 0.2 0 -0.1 2.1 0.57 0.48 

 1 0.5 0.5 0.5 0 -0.1 2.4 0.63 0.42 
 1 0.5 0.5 0.8 0 -0.1 2.7 0.67 0.37 

 0 0.5 0.5 0.2 0 -0.1 1 0.5 0 
 0 0.5 0.5 0.5 0 -0.1 1 0.5 0 
 0 0.5 0.5 0.8 0 -0.1 1 0.5 0 

List of parameters and the corresponding variance of y. The variance of T	is always equal to 1. The effect sizes of the genetic markers are kept 
constant in each table, so there is no compensation for an increase in genetic correlation or for the correlation with the confounds. Hence the 
true heritability of y	changes. δ	is the effect of T, ρ	is the genetic correlation, ρe	is the correlation between the error terms in y and T (to create 
environmental confounds) and ρνy	is the correlation between the genetic confounds for y	and polygenic score for y. In all simulations ρνy	= ρνT. 
The last two columns show the actual heritability for y	and the standardized effect size for T. 
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Table S2.17: Guidance for applications 

 

Direct pleiotropy 
Environment 
endogeneity 

Recommended 
Example 

method 

No / very low 

Yes MR Smoking intensity on number 
of children 

No OLS Randomized controlled 
trials 

Low 

Yes GIV + FFE + 
Controls* 

Body height on educational 
attainment 

No GIV x 

Medium 

Yes GIV + FFE + 
Controls* 

Diet on body mass 

No GIV x 

High 

Yes GIV + FFE + 
Controls* 

Returns to schooling 

No  GIV x 

 
MR – Mendelian Randomization, OLS – Ordinary Least Squares, GIV – Genetic Instrumental Variable regression, FFE – Family fixed-effects, 
ideally estimated in pairs of dizygotic twins. *How well this strategy works depends on the strength of the residual environmental endogeneity 
after adjusting for controls and FFE; more residual environmental endogeneity will lead to more bias in the estimates of treatment T and 
outcome y. x No good example is known to us. 
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Table S2.18: Cohort List for Educational Attainment Score from SSGAC 

Study Full name Sampling Country 
Sample 

size 

ACPRC 
Manchester Studies of Cognitive 
Ageing 

Population-based England 1713 

AGES 
Age, Gene / Environment 
Susceptibility-Reykjavik 
Study 

Population-based Iceland 3212 

ALSPAC 
Avon Longitudinal Study of 
Parents and Children 

Population-based 
birth cohort 

England 2877 

ASPS Austrian Stroke Prevention Study Population-based Austria 777 

BASE-II Berlin Aging Study II Population-based Germany 1619 
CoLaus Cohorte Lausannoise Population-based Switzerland 3269 

COPSAC2000 
Copenhagen Studies on 
Asthma in Childhood 2000 

Case-control birth 
cohort 

Germany 318 

CROATIA- 
Korčula 

Croatia Korčula 
Population-based 
(Isolate) 

Croatia 842 

deCODE deCODE genetics Population-based Iceland 46758 
DHS Dortmund Health Study Population-based Germany 953 

DIL 
Wellcome Trust Diabetes and 
Inflammation Laboratory 

Population-based England 2578 

EGCUT1 
Estonian Genome Center, 
University of Tartu 

Population-based Estonia 5597 

EGCUT2 
Estonian Genome Center, 
University of Tartu 

Population-based Estonia 1328 

EGCUT3 
Estonian Genome Center, 
University of Tartu 

Population-based Estonia 2047 

ERF Erasmus Rucphen Family Study Family-based Netherlands 2433 

FamHS Family Heart Study Family-based USA 3483 

FINRISK The National FINRISK Study 
Case-control 
(Cardiovascular 
health) 

Finland 1685 

FTC Finnish Twin Cohort Family-based Finland 2418 

GOYA 
Genetics of Overweight Young 
Adults 

Case-control 
(Obesity) 

Denmark 1459 
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GRAPHIC 
Genetic Regulation of 
Arterial Pressure in Humans 

Population-based England 727 

GS Generation Scotland Population-based Scotland 8776 

H2000 Cases Health 2000 
Case-control 
(Metabolic 
syndrome) 

Finland 797 

H2000 
Controls 

Same as above 
Case-control 
(Metabolic 
syndrome) 

Finland 819 

HBCS Helsinki Birth Cohort Study 
Population-based 
birth cohort 

Finland 1617 

HCS Hunter Community Study Population-based Australia 1946 
HNRS 
(CorexB) 

Heinz Nixdorf Recall Study Population-based Germany 1401 

HNRS 
(Oexpr) 

Same as above Same as above Germany 1347 

HNRS 
(Omni1) 

Same as above Same as above Germany 778 

Hypergenes Hypergenes Case-control 
Italy/ UK/ 
Belgium 

815 

INGI-CARL 
Italian Network of Genetic Isolates 
- Carlantino 

Population-based 
(Isolate) 

Italy 947 

INGI-FVG 
Italian Network of Genetic 
Isolates - Friuli Venezia 
Giulia 

Population-based 
(Isolate) 

Italy 943 

KORA S3 
Kooperative 
Gesundheitsforschung in der 
Region Augsburg 

Population-based Germany 2655 

KORA S4 Same as above Population-based Germany 2721 

LBC1921 Lothian Birth Cohort 1921 
Population-based 
birth cohort 

Scotland 515 

LBC1936 Lothian Birth Cohort 1936 
Population-based 
birth cohort 

Scotland 1003 

LifeLines The LifeLines Cohort Study Population-based Netherlands 12539 

MCTFR 
Minnesota Center for Twin and 
Family Research 

Family-based, but 
only founders used. USA 3819 

MGS 
Molecular Genetics of 
Schizophrenia 

Population-based USA 2313 

MoBa 
Mother and Child Cohort of 
NIPH 

Population-based 
(Nested case-control) Norway 622 

NBS Nijmegen Biomedical Study Population-based Netherlands 1808 
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NESDA 
Netherlands Study of Depression 
and Anxiety 

Case-control 
(Mental health) 

Netherlands 
1820 

NFBC66 
Northern Finland Birth Cohort 
1966 

Population-based Finland 5297 

NTR Netherlands Twin Register Family-based Netherlands 5246 

OGP Ogliastra Genetic Park Population-based Italy 370 

OGP-Talana 
Ogliastra Genetic Park-Talana Population-based 

(Isolate) 
Italy 544 

ORCADES 
Orkney Complex Disease Study Population-based 

(Isolate) 
Scotland 1828 

PREVEND 
Prevention of Renal and 
Vascular End-stage Disease 

Population-based 
Netherlands 

3578 

QIMR 
Queensland Institute of Medical 
Research 

Family-based Australia 8006 

RS-I Rotterdam Study Baseline Population-based Netherlands 6108 

RS-II 
Rotterdam Study Extension of 
Baseline 

Population-based 
Netherlands 

1667 

RS-III Rotterdam Study Young Population-based Netherlands 3040 

Rush-MAP 
Rush University Medical 
Center - Memory and Aging 
Project 

Community based USA 887 

Rush-ROS 
Rush University Medical 
Center - Religious Orders 
Study 

Community based USA 808 

SardiNIA SardiNIA Study of Aging Family-based Italy 5616 
SHIP Study of Health in Pomerania Population-based Germany 3556 
SHIP-TREND Study of Health in Pomerania Population-based Germany 901 
STR - Salty Swedish Twin Registry Family-based Sweden 4832 
STR - 
Twingene 

Swedish Twin Registry Family-based Sweden 9553 

THISEAS 

The Hellenic Study of 
Interactions between SNPs & 
Eating in Atherosclerosis 
Susceptibility 

Case-control Greece 829 

TwinsUK 
St Thomas UK Adult Twin 
Registry 

Population-based England 4012 

WTCCC58C 1958 British Birth Cohort Population-based England 2804 
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YFS 
The Cardiovascular Risk in Young 
Finns Study 

Population-based Finland 2029 

This table contains the list of cohorts used in the GWAS of Educational Attainment of (Okbay, Beauchamp, et al., 
2016), excluding the Health and Retirement Study and 23andMe cohorts. A more detailed list and description can be 
found in the supplementary materials of (Okbay, Beauchamp, et al., 2016) 
  



 
Chapter 2 
 
 

 
110 

Table S2.19: Cohort List for Height Score from GIANT 

Study Full name Sampling Country 
Sample 

size 

ACTG 
The AIDS Clinical Trials Group 

Population-based 
International 

1055 

ADVANCE 
Atherosclerotic Disease, 
VAscular FunctioN, and 
GenetiC Epidemiology 

Population-based 
case-control 

USA 584 

AE Athero-Express Biobank Study patient-cohort 
The 
Netherlands 686 

AGES 
Age, Gene/Environment 
SusceptibilityReykjavik 
Study 

Population-based Iceland 3219 

Amish HAPI 
Heart Study 

Amish Heredity and 
Phenotype Intervention Heart 
Study 

Founder population USA 907 

ARIC 
Atherosclerosis Risk in 
Communities Study 

Population-based USA 8110 

ASCOT 
AngloScandinavian Cardiac 
Outcome Trial 

"Randomised 
control clinical trial" 

UK, Ireland and 
Nordic Regions 3802 

B58C-T1DGC 
British 1958 birth cohort 
(Type 1 Diabetes Genetic 
Consortium controls) 

Populationbased 
birth cohort 

UK 2591 

B58C- 
WTCCC 

British 1958 birth cohort 
(Wellcome Trust Case 
Control Consortium controls) 

Populationbased 
birth cohort 

UK 1479 

BHS Busselton Health Study Population-based Australia 1328 

BLSA 
Baltimore Longitudinal Study 
on Aging 

Population-based USA 844 

B-PROOF 
Baltimore Longitudinal Study 
on Aging 

"Randomised 
control clinical trial" Netherlands 2669 

BRIGHT 
British Genetic of 
Hypertension (BRIGHT) study Hypertension cases UK 1806 

CAD-WTCCC 
WTCCC Coronary Arteryt 
Disease cases 

Case series UK 1879 
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CAPS1 cases Cancer Prostate in Sweden 1 Case-control Sweden 489 

CAPS1 
controls 

Cancer Prostate in Sweden 1 Case-control Sweden 491 

CAPS2 cases Cancer Prostate in Sweden 2 Case-control Sweden 1483 

CAPS2 
controls 

Cancer Prostate in Sweden 2 Case-control Sweden 519 

CHS Cardiovascular Health Study Population-based USA 3228 

CoLaus Cohorte Lausannoise Population-based Switserland 5409 

Corogene 

Genetic Predisposition of 
Coronary Heart Disease in 
Patients Veri ed with 
Coronary Angiogram 

Population-based Finland 3758 

deCODE deCODE genetics sample set Population-based Iceland 26799 

DESIR 
Data from an 
Epidemiological Study on the 
Insulin Resistance syndrome 

Population-based France 716 

DGI cases Diabetes Genetics Initiative Case-control Scandinavia 1317 

DGI controls Diabetes Genetics Initiative Case-control Scandinavia 1090 

DNBC 
Danish National Birth Cohort - 
Preterm Delivery Study 

Case-control Denmark 1802 

EGCUT 
Estonian Genome Center, 
University of Tartu 

Population-based Estonia 1417 

EGCUT-370 
Estonian Genome Center, 
University of Tartu 

Population-based Estonia 866 

EGCUTOMNI Estonian Genome Center, 
University of Tartu 

Population-based Estonia 1356 

EPIC-Obesity 
Study 

European Prospective 
Investigation into Cancer and 
Nutrition - Obesity Study 

Population-based UK 3552 

ERF 
Erasmus Rucphen Family Study 

Family-based 
Netherlands 

2726 

FamHS Family Heart Study Population-based USA 1463 

Fenland Fenland Study Population-based UK 1402 

FINGESTURE 
cases 

Finnish Genetic Study of 
Arrhythmic Events 

Disease cohort (MI 
cases only) 

Finland 943 
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FRAM Framingham Heart Study 
Population-based, 
multigenerational USA 8089 

FTC Finnish Twin Cohort 
Monozygotic twins 

Finland 125 

FUSION cases 
Finland-United States 
Investigation of NIDDM 
Genetics 

Case-control Finland 1082 

FUSION 
controls 

Finland-United States 
Investigation of NIDDM 
Genetics 

Case-control Finland 1167 

GENMETS 
cases 

Health 2000 / GENMETS 
substudy of Metabolic syndrome Case-control Finland 824 

GENMETS 
controls 

Health 2000 / GENMETS 
substudy of Metabolic syndrome Case-control Finland 823 

GerMiFSI (cases 
only) 

German Myocard Infarct Family 
Study I 

Case-control Germany 600 

GerMiFSII (cases 
only) 

German Myocard Infarct Family 
Study II 

Case-control Germany 1124 

GOOD 
Gothenburg Osteoporosis and 
Obesity Determinants Study 

Population-based Sweden 938 

HBCS Helsinki Birth Cohort Study 
Birth cohort study 

Finland 1726 

Health ABC 
Health, Aging, and Body 
Composition Study 

longitudinal cohort 
study 

USA 1655 

HERITAGE 
Family Study 

Health, Risk Factors, 
Training and Genetics 
(HERITAGE) Family Study 

Family Study, 
baseline data from 
an exercise 
training intervention 

USA 500 

HYPER- 
GENES 
Cases 

HYPERGENES Case-control 
Italy/ UK/ 
Belgium 

1841 

HYPER- 
GENES 
Controls 

HYPERGENES Case-control 
Italy/ UK/ 
Belgium 

1900 

InCHIANTI Invecchiare in Chianti Population-based Italy 1138 
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IPM Mount Sinai 
BioMe 

The Charles Bronfman 
Institute for Personalized 
Medicine BioMe Biobank 
Program 

Hospital-based USA 2867 

KORA S3 

Cooperative Health Research in 
the Region of Augsburg, 
Kooperative Gesundheitsforschu 
ng in der Region Augsburg 

Population-based Germany 1643 

KORA S4 

Cooperative Health Research in 
the Region of Augsburg, 
KOoperative 
Gesundheitsforschu ng in der 
Region Augsburg 

Population-based Germany 1811 

LifeLines LifeLines Cohort study Population-based 
Netherlands 

8118 

LLS Leiden Longevity Study Family based 
Netherlands 

1903 

LOLIPOP 
_EW610 

London Life Sciences 
Prospective Population Study 

Population-based UK 927 

LOLIPOP 
_EWA 

London Life Sciences 
Prospective Population Study 

Population-based 
with some 
enrichment 

UK 513 

LOLIPOP _EWP 
London Life Sciences 
Prospective Population Study 

Population-based 
with some 
enrichment 

UK 651 

MGS 
Molecular Genetics of 
Schizophrenia/NIMH 
Repository Control Sample 

Population-based 
(survey research 
method) 

USA 2597 

MICROS MICROS (EUROSPAN) Population-based Italy 1079 

MIGEN 
Myocardial Infarction Genetics 
Consortium 

Case-control 

USA / 
Finland / 
Italy / 
Spain / 
Sweden 

2652 

NBS-WTCCC 
WTCCC National Blood 
Service donors 

Population-based UK 1441 

NELSON 
Dutch and Belgian Lung Cancer 
Screening Trial 

 Netherlands 
and Belgium 2668 
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NFBC1966 
Northern Finland Birth Cohort 
1966 

Population-based Finland 4499 

NHS The Nurses’ Health Study 
Nested case-control 

USA 3217 

NSPHS 
Northern Sweden Population 
Health Study (EUROSPAN) 

Population-based Sweden 652 

NTRNESDA 
Netherlands Twin Register & the 
Netherlands Study of Depression 
and Anxiety 

Case-control Netherlands 3522 

ORCADES 
Orkney Complex Disease 
Study (part of EUROSPAN) 

Population-based Scotland 695 

PLCO 
The Prostate, Lung 
Colorectal and Ovarian 
Cancer Screening Trial 

Case-control USA 2244 

PLCO2 controls 
Prostate, Lung, Colorectal, and 
Ovarian Cancer Screening Trial 

Population-based 
case-control 

USA 1193 

PREVEND 
Prevention of REnal and 
Vascular ENdstage Disease 
(PREVEND) Study 

Population-based Netherlands 3624 

PROCARDIS 
Precocious Coronary Artery 
Disease 

Population-based UK 7000 

PROSPER/ 
PHASE 

The PROspective study of 
Pravastatin in the Elderly at 
Risk for vascular disease 

Randomized 
controlled trial 

Netherlands, 
Scotland and 
Ireland 

5244 

QFS Quebec Family Study Family-based??? Canada 860 

QIMR 
Twin study at Queensland 
Institute of Medical Research 

Population-based Australia 3627 

RISC 
Relationship between Insulin 
Sensitivity and 
Cardiovascular disease Study 

Population-based Europe 1031 

RS-I Rotterdam Study I Population-based 
Netherlands 

5744 

RS-II Rotterdam Study II Population-based 
Netherlands 

2124 

RS-III Rotterdam Study III Population-based 
Netherlands 

2009 
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RUNMC 

Nijmegen Bladder Cancer 
Study (NBCS) & Nijmegen 
Biomedical Study (NBS), 
Radboud University 
Nijmegen Medical Centre 

Population-based Netherlands 2873 

SardiNIA SARDINIA Population-based Italy 4298 

SASBAC cases 
Swedish And Singapore 
Breast Association 
Consortium 

Case-control Sweden 794 

SASBAC 
controls 

Swedish And Singapore 
Breast Association 
Consortium 

Case-control Sweden 758 

SEARCH / 
UKOPS 

Studies of Epidemiology and 
Risk factors in Cancer 
Heredity / UK Ovarian 
Cancer Population Study 

Population-based UK 1592 

SHIP Study of Health in Pomerania Population-based Germany 4092 

SHIP-TREND 
Study of Health in Pomerania 
- TREND 

Population-based Germany 986 

Sorbs 
Sorbs are selfcontained population 
from Eastern Germany, European 
Descent 

Population-based Germany 907 

T2D-WTCCC 
WTCCC Type 2 Diabetes 
cases 

case series UK 1903 

TRAILS 
Tracking Adolescents’ Individual 
Lives Survey 

Population-based 
(measured at 
18yrs of age) 

Netherlands 1139 

TWINGENE TWINGENE Population-based Sweden 9380 

TwinsUK TwinsUK Twins pairs UK 1479 

VIS 
VIS (EUROSPAN) and 
KORCULA 

Population-based Croatia 784 

WGHS 
Women’s Genome Health Study 

Population-based USA 23099 

YFS 
The Cardiovascular Risk in Young 
Finns Study 

Population-based 
cohort 

Finland 1995 

This table contains the list of cohorts used in the GWAS of height from (Wood et al., 
2014). A more detailed list and description can be found in the supplementary materials of (Wood et al., 2014) and 
(Allen et al., 2010) 



  

 
  



 

 

 

 
117 

 
 

 
 
Chapter 3 
 
A comparison of heritability estimates from GIV 
regression and GREML 
 

 

 

 

 

 

 

 

 

 

 

 

 

Based on unpublished work by C.A.P. Burik, R. de Vlaming and P.D. Koellinger  



 
Chapter 3 
 

 
118 

Abstract 

We compare heritability estimates from genetic instrumental variables (GIV) regression and genome-

based restricted maximum likelihood (GREML) in various simulated scenarios. We simulate phenotypes 

using real genotypes from the UK Biobank (N = 408,741). We simulate phenotypes using three different 

models, a baseline model adhering to the GREML assumptions and two models that deviate from the 

GREML assumptions. GIV regression and GREML perform well in all scenarios. GREML performs 

well even when the simulation model strongly deviates from the assumptions of GREML.  

3.1 Introduction 

Heritability is one of the core concepts of quantitative genetics, as it describes the proportion of 

phenotypic variance that may be attributed to genetic effects. Traditionally, heritability is estimated 

within families, with particular emphasis on twin studies, which have been utilized since the 1970s. Over 

the last two decades, technological advancements have made it possible to estimate heritability using 

different methods from molecular genetic data and in the last decade, three main classes of methods have 

emerged. Here, we provide a short summary of the most used methods from each class.  

The first class of methods uses individual-level genotype and phenotype data directly (Yang et al., 2010). 

This class contains the well-established method genome-based restricted maximum likelihood 

(GREML). GREML is a method that uses a mixed-effects model, where the phenotypic variance is 

explained by a genetic component and an idiosyncratic noise component. The genetic variance 

component is built around a genomic-relatedness matrix (GRM), which reflects genetic similarity 

between individuals. The two variance components are estimated using restricted maximum likelihood 

estimation. The heritability then equals the share of the total variance explained by the genetic 

component. GREML assumes a model where all SNPs are causal and the SNP effects are normally 

distributed with an inverse relation between effect size and minor allele frequency (MAF). GREML is 

usually performed in a sample of unrelated individuals using common single nucleotide polymorphisms 

(SNPs) with a MAF above 1 percent.  

The second class of methods, which includes LD-score (LDSC) regression, uses genome-wide association 

study (GWAS) summary statistics (Bulik-Sullivan et al., 2015). While LDSC was not originally designed 

to estimate heritability, it is often used for this purpose, as one only needs GWAS summary statistics and 
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can thus be done without direct access to the genotypes or phenotypes. Bulik-Sullivan et al. (2015) show 

that the heritability of a trait can be estimated by regressing GWAS 𝜒!-statistics on the linkage-

disequilibrium (LD) score of a SNP, which measures the degree to which a SNP is correlated to 

neighboring SNPs. LDSC and other methods in this category all rely on LD being present in the data. 

For reasons discussed below, we will use genetic data that is heavily pruned on LD and thus methods in 

this category cannot be included in the comparison. A detailed comparison of LDSC and other methods 

has been done by Evans et al. (2018).  

The third and final class uses a polygenic index (PGI) constructed from summary statistics. The only 

method in this class is the recently developed genetic instrumental-variable (GIV) regression (DiPrete, 

Burik, & Koellinger, 2018). The starting point for GIV regression is the following observation: if it 

would be possible to construct a perfect PGI without any estimation error, then heritability of a 

phenotype could be estimated by regressing the phenotype on that PGI and taking the share of explained 

variance from that regression. When using PGIs in practice, the estimates are attenuated by estimation 

error in the PGI. This can be compensated by creating two PGIs using GWAS summary statistics from 

independent GWAS samples and regressing the phenotype on one PGI using two-stage least squares 

estimation, where the second PGI is used as an instrument for the first PGI.  

When the estimation errors in the two PGIs are independent, this methodology corrects the attenuation 

found in a regular regression of the phenotype on the PGI. From this instrumental-variables approach, a 

heritability estimate can then be recovered. The key assumption here is that the estimation errors in the 

two PGI are independent from each other. Any violations (e.g., by not accounting for LD structure or 

sample overlap) from independence may bias the estimator. A big advantage of GIV regression is the 

absence of assumptions on the distribution of SNP effects that are required for most estimators in the 

first two classes.  

In this paper, we compare the newly developed GIV regression to the long-established GREML 

estimation. First, we compare the methods in a baseline scenario where both methods should provide 

unbiased estimates. Next, we consider scenarios where GIV regression may be preferred over GREML, as 

those scenarios violate the assumptions of GREML. Specifically, scenarios where very few SNPs are 

causal and scenarios where the relation between effect size and MAF deviates from the GREML 
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assumptions. The simulations are carried out using real genetic data from the UK Biobank (Fry et al., 

2017; Sudlow et al., 2015) with simulated SNP effects and phenotypes.  

3.2 Materials and Methods 

3.2.1 Genetic Data 

We use genetic data from the UK Biobank participants. The UK Biobank is a large population-based 

longitudinal study, designed to study health in middle aged and older UK citizens (Fry et al., 2017; 

Sudlow et al., 2015).  

To avoid spurious associations in our simulations we perform quality control (QC) on the genetic data. 

We remove individuals that are related, using relatedness estimates provided by the UK Biobank. We 

restrict our analyses to individuals of European descent, to simplify the simulations. We filter SNPs 

based on low MAF (i.e., below 1%), high missingness (i.e., above 1%), and deviations from Hardy-

Weinberg equilibrium (p-values below 10−6). We also remove long-range LD regions.  

As correcting for LD (e.g., using LDpred; Vilhjálmsson et al., 2015) is computationally intensive we 

perform LD pruning on SNPs, using an r2 threshold of 0.03. To further simplify the simulations, we fill 

missing SNP observations by drawing randomly from a binomial distribution with 2 draws and 

probability of ‘success’ equal to the empirical MAF of the given SNP. After these QC steps, we are left 

with 54,280 SNPs for 408,741 individuals. QC is carried out using Plink 1.9 (Chang et al., 2015; Purcell 

et al., 2007). 

The genetic data is divided into three subsamples, two GWAS samples consisting of 90 percent of the 

total sample, creating samples of 183,933 individuals each, and a hold-out sample of the remaining 10 

percent of the sample—40,875 individuals. The GWAS samples are used to perform two separate 

GWASs. The estimated effects from these GWAS are then used to construct two PGIs in the hold-out 

sample. The hold-out sample is used for heritability estimation using both GREML estimation and GIV 

regression, where the former uses individual-level genotypes and phenotypes in the hold-out sample, 

whereas the latter only makes use of the two aforementioned PGIs and the phenotype in the hold-out 

sample. 

We also construct twenty leading principal components (PCs) from the genetic data that we use in our 

simulations to account for further population structure in the data. The PCs are created from all SNPs 
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after the QC steps, as long-range LD regions are removed and SNPs pruned on LD during the QC steps. 

The PCs are created separately for each subsample. The PCs are calculated using FlashPCA2 (Abraham, 

Qiu, & Inouye, 2017). 

For GREML we also calculate a GRM in the hold-out sample. This GRM is used in the simulations. 

The GRM is created using Plink 1.9, also using the full set of SNPs after QC.  

3.2.2 Simulations 

We compare the heritability estimates from GREML and GIV regression using simulations.  We use 

genotypes from the UK Biobank and simulate phenotypes by drawing SNP effects from a normal 

distribution when the SNP is causal. Effect sizes increase or decrease with MAF depending on parameter 

settings. The distribution of SNP effects can be given as follows:  

𝛽"~$
0, with	probability	1 − 𝜋,

	𝒩(0, 𝜎"!), with	probability	𝜋,  (3.1) 

𝜎"! = ;2	𝑓">1 − 𝑓"?@
#
, (3.2) 

where 𝛽"  is the effect of SNP 𝑗, 𝜋 is the probability for each SNP being causal, 𝑓"  is the MAF of SNP 𝑗, 𝛼 

is the parameter that determines the relationship between MAF and effect size. Note that 

𝛼 = −	1 corresponds to standard GREML assumptions, where standardized SNPs have homoscedastic 

effects. 

The phenotype is then created from the drawn effect sizes by post-multiplying the matrix of SNP data by 

the column vector of SNP effects. Next, we set our outcome, y, as a linear combination of the genetic 

term, g, and the error term, 𝛆, such that the proportion of variance of y accounted for by g equals the 

desired heritability, ℎ!. More specifically, we set 

𝐲 = $ !"
#$%(𝐠)𝐠 + 𝛜,	 (3.3) 

𝐠 = 𝐗𝛃,	and	 (3.4) 

𝛜~𝒩(0, (1 − ℎ!)𝐈),	 (3.5) 

where 𝐲 is the vector of phenotypes, ℎ! is the heritability, 𝐗 is the matrix of SNPs, I the identity matrix, 

and 𝛜 is the error term. Furthermore, we orthogonalize the phenotype from the first twenty principal 

components of the genetic data to remove population structure.  
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After the phenotype simulation, we carry out a GWAS in each of the two GWAS samples. Then both 

GIV regression and GREML estimation are performed in the hold-out sample. In the base simulations, 

we vary ℎ! between 10% and 90%. Here, the share of causal SNPs (𝜋) is set to 100% and  the relation 

between MAF and effect size follows the GREML assumptions (𝛼 = −	1). Following the base 

simulations, we set ℎ! = 50%. Next, we vary the polygenicity (i.e., the share of causal SNPs), denoted 

by π. We consider π between 0.002%, which corresponds to only one causal SNP, and 100%, which 

corresponds to full polygenicity. As GREML assumes 𝜋 = 100% (i.e., all SNPs being causal), we expect 

GREML estimation performs worse than GIV regression if 𝜋 is very low, as GIV regression places no 

assumptions on π.  

Next, we carry out simulations where we change the relationship between effect size and MAF. We do 

this by changing the 𝛼 parameter in Equation 3.2. Again, we set ℎ! = 50%. In addition, we 𝜋 = 100%. 

Importantly, GREML assumes  𝛼 = −1. We vary this parameter between −2 and 0.5. GIV regression 

makes no assumptions about the relationship between effect size and MAF. Hence, we expect that GIV 

regression performs better than GREML estimation when we deviate from this assumption.  

For every distinct simulation setting, we perform 50 simulations. 

3.3 Results 

Figure 3.1 shows the results of the baseline simulations. The heritability varies between 10 percent and 

90 percent. GREML is unbiased in all cases. GIV regression shows a slight downward bias that grows 

with the heritability. While the SNPs were pruned on LD, LD was not fully eliminated from the genetic 

data and it was not otherwise accounted for due to computational constraints. Hence, a small downward 

bias is not unexpected. In simulated data, where all SNPs are fully independent GIV regression does not 

show this slight downwards bias (DiPrete et al., 2018). 

Figure 3.2 shows the results where we vary the share of causal SNPs. Surprisingly, GREML is very 

resilient to deviations from the model where all SNPs are causal, even when we go down to a single causal 

SNP at 𝜋 = 0.00002. Similar to the results in Figure 3.1, the GIV results are slightly downwards biased. 

Finally, Figure 3.3 shows the results where we vary the relationship between MAF and effect size. We see 

similar results compared to the first two sets of simulations, again GREML is very resilient to the 
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deviations of its assumptions across all simulations considered. The GIV results are again slightly biased 

downwards.  

3.4 Discussion 

Our results show that GREML is a reliable method which is very resilient to the deviations from the 

assumptions that we considered (i.e., polygenicity, π, and the relationship between MAF and effect size, 

𝛼). GIV regression also works as expected in these simulations. It has a slight bias downwards due to LD 

not being fully accounted for. In practice, it can be combined with methods like LDpred (Vilhjálmsson 

et al., 2015) to create PGIs. Such an approach, however, is computationally infeasible in our simulation 

study.  

The advantage of GREML is that it can be applied without performing any GWAS prior to the analysis. 

It also has smaller standard errors in each of the scenarios we simulated. Therefore, it remains the 

recommended method to estimate heritability here. However, as GIV regression does not require many 

assumptions it remains a very flexible method that might have advantages when applied elsewhere. One 

possibility is extending the method so it can be applied to within-family GWAS to estimate both 

heritability and genetic nurture (Kong et al., 2018). Currently, however, the within-family samples sizes 

are not big enough yet to conduct the type of large-scale within-family GWASs needed to potentially 

extend the GIV regression method further.  
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3.6 Figures 

Figure 3.1. Baseline simulations 

 
This figure shows the results of the baseline simulations, as described by equations (3.1) to (3.5). The results are based on 50 simulations for 
each parameter setting. GIV and GREML are estimated in a hold-out sample from the UK Biobank using simulated phenotypes. The 
GWASs for GIV are run in two independent subsamples of the UK Biobank.  
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Figure 3.2. Simulations with varied share of causal SNPs 

 
This figure shows the results of simulations where the share of causal SNPs is varied between 0.002 percent (i.e., one causal SNP) and 100 
percent. The simulations are described by equations (3.1) to (3.5). In this set of simulations, the  results are based on 50 simulations for each 
parameter setting. GIV and GREML are estimated in a hold-out sample from the UK Biobank using simulated phenotypes. The GWASs for 
GIV are run in two independent subsamples of the UK Biobank. 
 

Figure 3.3. Simulations with varied scaling parameter 

 
This figure shows the results of simulations where the relationship between SNP effect size and minor allele frequency is varied. The 
simulations are described by equations (3.1) to (3.5). The results are based on 50 simulations for each parameter setting. GIV and GREML 
are estimated in a hold-out sample from the UK Biobank using simulated phenotypes. The GWASs for GIV are run in two independent 
subsamples of the UK Biobank. 
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Abstract 

Polygenic indexes (PGIs) are DNA-based predictors. Their value for research in many scientific 

disciplines is rapidly growing. As a resource for researchers, we used a consistent methodology to 

construct PGIs for 47 phenotypes in 11 datasets. To maximize the PGIs’ prediction accuracies, we 

constructed them using genome-wide association studies—some not previously published—from 

multiple data sources, including 23andMe and UK Biobank. We present a theoretical framework to help 

interpret analyses involving PGIs. A key insight is that a PGI can be understood as an unbiased but noisy 

measure of a latent variable we call the “additive SNP factor.” Regressions in which the true regressor is 

the additive SNP factor but the PGI is used as its proxy therefore suffer from errors-in-variables bias. We 

derive an estimator that corrects for the bias, illustrate the correction, and make a Python tool for 

implementing it publicly available. 

4.1 Main 

The ability to predict complex outcomes from genotype data alone is rapidly increasing. The main 

catalyst behind the increases is the success of genome-wide association studies (Visscher et al., 2017) 

(GWAS). GWAS estimate the relationship between a trait, called a “phenotype,” and each of millions of 

genetic variants. The “summary statistics” (coefficients and standard errors) from GWAS can be used to 

construct a DNA-based predictor of the phenotype, calculated essentially as a coefficient-weighted sum 

of allele counts (Purcell et al., 2009; Wray, Goddard, & Visscher, 2007). There are a variety of terms used 

for such DNA-based predictors. In this paper, we will refer to them as “polygenic indexes”1. 

As GWAS sample sizes have grown, coefficients are estimated more precisely, enabling the construction 

of more predictive PGIs. One example is the PGI for educational attainment. The original PGI was 

constructed from a GWAS of ~100,000 individuals and predicted ~2% of the variance in years of 

schooling across individuals (C. A. Rietveld et al., 2013). The third and most recent PGI for educational 

attainment (EA) predicts ~12% of the variance (Lee et al., 2018). Qualitatively similar patterns have been 

 

1 In this paper, we use the term “polygenic index” instead of the commonly used terms “polygenic score” and 
“polygenic risk score.” Most of us prefer the term polygenic index because we are persuaded by the argument that it 
is less likely to give the impression of a value judgment where one is not intended. The term polygenic index was 
first proposed by Martha Minow at a meeting of the Trustees of the Russell Sage Foundation. 
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observed in PGIs for other complex-trait phenotypes (Cesarini & Visscher, 2017; Visscher et al., 2017), 

including height, fertility, personality traits, and risk of many common diseases. 

PGIs became mainstream in human genetics remarkably quickly. While predictive genetic indexes have a 

long history in plant and animal genetics (Wray, Kemper, Hayes, Goddard, & Visscher, 2019), the idea 

of using GWAS summary statistics to generate a PGI for humans was first proposed in 2007 (Wray et al., 

2007). The first study to empirically construct and validate a PGI was a GWAS of bipolar disorder and 

schizophrenia published in 2009 (Purcell et al., 2009). Soon thereafter, command of methods used to 

construct PGIs became a standard part of the skill repertoire of analysts specializing in genome-wide 

data. 

Today, PGIs are profoundly impacting research across the disciplinary spectrum. In medicine, much of 

the discussion revolves around their potential use as tools for identifying individuals who could benefit 

from enhanced screening and preventive therapies (Green & Guyer, 2011). Though much uncertainty 

remains about their ultimate clinical utility (Wray et al., 2013), one recent study of polygenic risk for five 

common diseases concluded that the science is sufficiently far along to contemplate incorporating 

polygenic prediction into clinical care (Khera et al., 2018). Researchers working at the intersection of the 

social and natural sciences have articulated visions of how PGIs could be productively leveraged in a 

number of ways to advance knowledge about important questions (Belsky & Harden, 2019; Benjamin et 

al., 2012; Freese, 2018). Already, the various iterations of the EA PGI have been used, among other 

things, to trace out pathways for genetic influences that develop with age (Belsky et al., 2016) and 

through school (Harden et al., 2020), study assortative mating (Robinson et al., 2017; Yengo, Robinson, 

et al., 2018), trace recent migration patterns (Abdellaoui et al., 2019; Domingue, Rehkopf, Conley, & 

Boardman, 2018), and improve analyses of the relationship between education and earnings (Papageorge 

& Thom, 2020). As PGIs become more predictive and available for more phenotypes, potential 

applications will multiply, and novel areas of research are likely to open up. 

To depict the rapid growth in research using PGIs, Figure 4.1 shows the percentage of PGI-related 

papers presented at the annual meetings of the Behavior Genetics Association. The percentage increased 

from zero in 2009 to 20% in 2019. The figure also shows how the percentages of papers classified as 

candidate-gene studies and twin/family/adoption studies—two other commonly used approaches—

have evolved over time. The declining fraction of candidate-gene studies in the figure is consistent with 
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the hypothesis of a paradigm shift, with candidate-gene-based approaches gradually being displaced by 

PGI-based approaches (Freese, 2018). This shift occurred, at least in part, because PGIs are not subject to 

some well-known methodological limitations of candidate-gene studies (Duncan & Keller, 2011; Hewitt, 

2012; C. A. Rietveld et al., 2014).  

In this paper, we hope to promote productive behaviour-genetic research using PGIs in three ways. First 

and most centrally, we make a broad array of PGIs available via a Polygenic Index Repository, covering a 

number of datasets that may be useful to social scientists. By constructing the PGIs ourselves and making 

them available as variables downloadable from the data providers, our resource eliminates a number of 

roadblocks for researchers who would like to use PGIs in their research, as we detail below. The 

Repository contains PGIs for 47 phenotypes. To maximize prediction accuracy of the PGIs, we meta-

analysed summary statistics from multiple sources, including several large-scale GWASs conducted in 

UK Biobank and the personal genomics company 23andMe. 23andMe shared summary statistics from 

37 separate association analyses, 9 of which have not been reported previously. Therefore, almost all 

PGIs in our initial release perform at least as well as currently available PGIs in terms of prediction 

accuracy. We will update the Repository regularly with additional PGIs and datasets. 

Second, we present a theoretical framework for interpreting associations with a PGI. Using this 

framework, we show that a PGI can be understood as an unbiased but noisy measure of what we call the 

“additive SNP factor,” which is the best linear predictor of the phenotype from the measured genetic 

variants. Because the PGI is a noisy measure, regressions that use the PGI as an explanatory variable 

suffer from errors-in-variables bias. Since different papers use different versions of a PGI, the magnitude 

of this bias varies. We hope that the theoretical framework helps establish a common language for 

discussions about the interpretation of PGIs and their effect sizes. 

Third, we propose an approach that improves the interpretability and comparability of research results 

based on PGIs: to use in place of ordinary least squares (OLS) regression, we derive an estimator that 

corrects for the errors-in-variables bias. (We are aware of four papers to date that have implemented a 

measurement-error correction along the lines we propose here (Beauchamp, 2016; DiPrete, Burik, & 

Koellinger, 2018; Kong et al., 2017; Tucker-Drob, 2017). Our approach is most similar to that of ref. 

(Tucker-Drob, 2017), who develops a nearly identical framework using a psychometrics modeling 

approach but focuses on the univariate case.) The estimator produces coefficients in units of the 

standardized additive SNP factor, which has a more meaningful interpretation than units of some 
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particular PGI. We illustrate by applying the estimator to multivariate and gene-by-environment 

regressions from a recently published paper (Papageorge & Thom, 2020). We make a Python command-

line tool publicly available for implementing the estimator.  

4.2 Results 

4.2.1. The Polygenic Index Repository 

The Polygenic Index Repository is a resource that addresses several practical obstacles that researchers 

interested in using PGIs must often confront. These include: 

1. Constructing PGIs from individual genotype data can be a time-consuming process, even for 

researchers trained to work with large datasets. 

2. Since the prediction accuracy of a PGI is increasing in the sample size of the underlying GWAS, 

it is generally desirable to generate PGI weights from GWAS summary statistics based on the 

largest available samples. However, privacy and IRB restrictions often create administrative 

hurdles that limit access to summary statistics and force researchers to trade off the benefit of 

summary statistics from a larger sample against the costs of overcoming the hurdles. In practice, 

researchers often end up constructing PGIs using only publicly available summary statistics. 

3. Publicly available GWAS summary statistics are sometimes based on a discovery sample that 

includes the target cohort (or close relatives of cohort members) in which the researcher wishes 

to produce the PGI. Such sample overlap causes overfitting, which can lead to highly misleading 

results (Wray et al., 2013). (Sometimes, when GWAS consortia provide summary statistics upon 

request from a GWAS that is restricted so as to exclude the cohort, this barrier is surmounted at 

low cost.) 

4. Because different researchers construct PGIs from GWAS summary statistics using different 

methodologies, it is hard to compare and interpret results from different studies. 

 

We overcome #1 by constructing the PGIs ourselves and releasing them to the data providers, who in 

turn will make them available to researchers. This simultaneously addresses #2 because we use all the data 

available to us that may not be easily available to other researchers or to the data providers, including 

genome-wide summary statistics from 23andMe. Using these genome-wide summary statistics from 
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23andMe is what primarily distinguishes our Repository from existing efforts by data providers to 

construct PGIs and make them available, such as the effort by the Health and Retirement Study 

(https://hrs.isr.umich.edu/data-products/genetic-data/products#pgs). It also distinguishes our 

Repository from efforts to make publicly available PGI weights directly available for download (Lambert 

et al., 2020) (although we also do that, for weights constructed without 23andMe data). To deal with #3, 

for each phenotype and each dataset, we construct a PGI from GWAS summary statistics that excludes 

that dataset. We overcome #4 by using a uniform methodology across the phenotypes. In Methods, we 

detail how the Repository disseminates the PGIs, as well as the principal components of the genetic data 

in each dataset (which often should be used as controls for ancestry; see Supplementary Methods). 

Figure 4.2 depicts the algorithm that determined which PGIs we constructed. In a preliminary step, we 

obtained GWAS summary statistics for a comprehensive list of 53 candidate phenotypes (see 

Supplementary Tables 1 and 2, meta-analysed the summary statistics for each candidate phenotype, and 

calculated the expected 𝑅! for an out-of-sample regression of each candidate phenotype on a PGI 

derived from its GWAS summary statistics. We calculated this expected 𝑅! from the GWAS summary 

statistics (see Methods for details). If it exceeded 𝑅! = 0.01, then we used the meta-analysis output to 

construct a PGI for the phenotype. We call these the “single-trait PGIs.” For each candidate phenotype, 

we also identified a list of supplementary phenotypes: any other phenotype whose pairwise genetic 

correlation with the candidate exceeds 0.6 in absolute value. For each candidate with at least one 

supplementary phenotype, we then calculated the out-of-sample expected 𝑅! of a PGI derived from a 

joint analysis of the candidate and supplementary phenotype summary statistics. If the expected 𝑅! 

exceeded 0.01, then we used the joint-analysis output to construct a “multi-trait PGI” for the phenotype. 

When both single-trait and multi-trait PGIs are available, the multi-trait PGI generally has greater 

predictive power, but the single-trait PGI may be better suited for some applications (see Supplementary 

Methods). 

For each of the 47 phenotypes for which we constructed a single-trait and/or multi-trait PGI, Table 4.1 

lists the total sample size included in the GWAS summary statistics (Total 𝑁), followed by the sample-

size contributions from three separate sources. For comparison, we also report the sample size of the 

largest GWAS whose summary statistics are in the public domain (Public 𝑁). With three exceptions, 

Total 𝑁 exceeds Public 𝑁. Two exceptions are height and BMI, where our UKB sample inclusion filters 

lead to a slightly smaller sample size than the Public 𝑁. The remaining exception is cognitive 
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performance, where the sample size of our GWAS is smaller due to overlap between the discovery sample 

in the largest GWAS with publicly available summary statistics and some of our Repository cohorts. For 

the remaining phenotypes, the gains in sample size relative to the public 𝑁 are often substantial, and 

driven by our inclusion of summary statistics from large-scale GWASs conducted in 23andMe, UKB, or 

both. Table 4.1 also shows the 36 and 35 phenotypes for which we created single-trait and multi-trait 

PGIs, respectively. 

We created PGIs for these phenotypes in 11 Repository cohorts that shared their individual-level genetic 

data with us (regardless of whether the phenotype itself is measured in the cohort). Table 4.2 lists the 

datasets and some of their basic characteristics. Each data provider will make these PGIs available to 

researchers through their own data access procedures (see Supplementary Note). 

The UK Biobank is among the 11 cohorts included in the Polygenic Index Repository. Because of its 

large sample size (see Table 4.2), the UK Biobank contributes substantially to the available sample for the 

GWAS for many phenotypes. We therefore did not want to exclude the entire UK Biobank from the 

GWASs used to create the PGIs. Instead, we split the UK Biobank sample into three equal-sized 

partitions. We ran three 1/3-sample GWASs for each phenotype. To create the PGI for each partition, 

we included results from the other two partitions in the meta-analysis. Consequently, researchers can 

conduct analyses of a PGI in any one of the partitions and obtain unbiased results. However, we caution 

researchers against conducting analyses in two or three of the partitions and meta-analyzing across 

partitions; because the other partitions are used to create the PGI, the results obtained across different 

partitions (although individually unbiased) will be correlated. Meta-analysis standard errors will 

therefore be anticonservative, and this bias can be substantial (see Methods). Therefore, to maximize the 

usefulness of our PGIs for research involving related individuals or brain-scan data, we assigned to the 

same partition all pairs of individuals that are related up to second degree (and some pairs of third 

degree), as well as all individuals with brain-scan data. 

For validating the predictive power of the PGIs, we used five cohorts for which we had access to 

individual-level genetic and phenotypic data: the Health and Retirement Study, a representative sample 

of Americans over the age of 50; the Wisconsin Longitudinal Study, a sample of individuals who 

graduated from high school in Wisconsin in 1957; the Dunedin Multidisciplinary Health and 

Development Study, a sample of residents of Dunedin, New Zealand, born in 1972-1973; the 
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Environmental Risk (E-Risk) Longitudinal Twin Study, a birth cohort of twins born in England and 

Wales in 1994-1995; and the UKB (our third partition). The top panel of Figure 4.3 shows the observed 

𝑅! and 95% confidence intervals for the single-trait PGIs in one or more validation cohorts, depending 

on which had a measure of the phenotype. Height, BMI, and educational attainment are shown 

separately because the y-axis scale is different. The bottom panel of Figure 4.3 shows the difference 

between the 𝑅! of the single-trait Repository PGI and that of a PGI we constructed using the largest 

non-overlapping GWAS whose summary statistics are in the public domain. The Repository PGIs are 

almost always at least as predictive as the PGIs based on publicly available GWAS results. For the 

corresponding results for the multi-trait PGIs, see Supplementary Figure 1. The multi-trait PGIs are 

usually at least as predictive as the single-trait PGIs (Supplementary Figure 1C and Supplementary Table 

3). 

We have written a User Guide (reproduced in the Supplementary Methods) that will be distributed by 

participating cohorts along with the Repository PGIs. It discusses interpretational issues, including those 

relevant for whether researchers should use the single-trait or multi-trait PGIs when both are available. 

4.2.2 Theoretical Framework for Polygenic Indexes 

To help interpret PGIs, we lay out a theoretical framework. Denote individual 𝑖’s phenotype value by 

𝑦"⋆. Denote individual 𝑖’s allele count at genetic variant 𝑗 by 𝑥"$⋆ ∈ {0,1,2}. Without loss of generality, we 

use a mean-centred transformation of the phenotype and allele counts, such that 𝑦" ≡ 𝑦"⋆ − 𝐸(𝑦"⋆)	and 

𝑥"$ ≡ 𝑥"$⋆ − 𝐸6𝑥"$⋆ 7 for each SNP 𝑗. We denote the vector of mean-centered allele counts at 𝐽 genetic 

variants by 𝒙" = 6𝑥"%, 𝑥"!, … , 𝑥"&7
'
. As a benchmark, consider the standardized best linear predictor of 

the phenotype based on the allele counts: 

𝑔" ≡
𝒙"'𝜸

𝑠𝑑6𝒙"'𝜸7
, 

where 

𝜸 = argmin
𝜸)
𝐸[(𝑦" − 𝒙"'𝜸F)!]. 

That is, the optimal weight vector 𝜸 is the vector of coefficients from the population regression of 𝑦"  on 

𝒙". This population regression may also include control variables; we omit them here to avoid cluttering 

notation, but in the Supplementary Methods we extend the framework to include them and explain why 
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they do not affect the results in this paper. In the User Guide (also in the Supplementary Methods), we 

explain how control variables do matter for the interpretation of a PGI.  

When the set of genetic variants in 𝒙"  is all variants in the genome, 𝑔"  is referred to as the “standardized 

additive genetic factor.” The variance in the phenotype explained by 𝑔"  is called the “(narrow-sense) 

heritability,” often the object of interest in twin, family, and adoption studies that draw inferences 

without access to molecular genetic data. 

In studies with molecular genetic data—our focus here—the set of genetic variants in 𝒙"  is restricted to 

those measured or imputed from the single-nucleotide polymorphisms (SNPs) assayed by standard 

genotyping platforms (and which pass quality-control filters). In that case, the variance in the phenotype 

explained by 𝑔"  is called the “SNP heritability” (Yang et al., 2010), which we denote ℎ*+,! . We will refer 

to 𝑔"  as the standardized “additive SNP factor.” 

Since the population regression cannot be run, the vector 𝜸 is unknown, so 𝑔"  cannot be constructed 

empirically. What can be constructed empirically is a “polygenic index (PGI),” 𝑔I", which is a 

standardized, weighted sum of allele counts using some other weight vector 𝜸J calculated from GWAS 

summary statistics: 

𝑔I" ≡
𝒙"'𝜸J

𝑠𝑑6𝒙"'𝜸J7
	. 

In general, 𝜸J will not be equal to 𝜸 because 𝜸J is calculated from GWAS summary statistics that are 

estimated in a finite sample. The key observation for our framework is that when 𝜸J is calculated using 

standard methods (that include all the SNPs in 𝒙"), such as LDpred (Vilhjálmsson et al., 2015) and PRS-

CS (Ge, Chen, Ni, Feng, & Smoller, 2019), the resulting PGI can be expressed as 

𝑔I" =
(𝑔" + 𝑒")

𝜌
, 

where 𝑒"  is mean-zero estimation error that is uncorrelated with 𝑔", and 𝜌 ≡ 𝑠𝑑(𝒙"'𝜸J)/𝑠𝑑(𝒙"'𝜸) is a 

scaling factor that standardizes 𝑔I". In words, the PGI is a standardized, noisy measure of the additive 

SNP factor, where the noise is classical measurement error. 

One way to characterize the amount of measurement error is the value 𝜌. In Methods, we show that 
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𝜌! = 1 + 𝑉𝑎𝑟(𝑒") =
ℎ*+,!

𝑅!
≥ 1, 

where ℎ*+,!  is the SNP heritability (the predictive power of 𝑔") and 𝑅! is the fraction of variance 

explained in a regression of the phenotype 𝑦"  on the PGI 𝑔I"  (the predictive power of 𝑔I"). The ratio 

ℎ*+,! /𝑅! is greater than or equal to one because the weights that define 𝑔"  maximize the variance 

explained in 𝑦", and therefore any other weights—including those used to construct the PGI—explain at 

most ℎ*+,!  of the variation. Furthermore, the amount of measurement error 𝜌 would achieve its 

minimum value of one only if the PGI weights were based on GWAS summary statistics from an infinite 

sample. Across studies, 𝜌! varies. For example, 𝑅! depends on the sample size of the GWAS underlying 

the PGI weights and the method of constructing PGI weights (e.g., LDpred vs. PRS-CS). However, 𝜌! 

can usually be estimated using estimates of ℎ*+,!  and 𝑅! from the sample at hand or other samples that 

are sufficiently similar. 

4.2.3 Measurement-Error-Corrected Estimator for PGI Regressions 

Typical research with a PGI involves running a regression with the PGI as an explanatory variable and 

reporting results in units of standard deviations of the PGI. This approach, however, has two 

shortcomings. First, it is often unclear how to interpret these units, which depend on the amount of 

measurement error. Second and relatedly, the effect sizes are not comparable across PGIs that differ in 

their amount of measurement error. 

We argue that such a regression should be interpreted as aiming to approximate a regression with the 

standardized additive SNP factor as the explanatory factor. The PGI serves as an empirically feasible 

proxy for the standardized additive SNP factor. An analysis of the standardized additive SNP factor has a 

clearer interpretation than an analysis of the PGI and puts results in comparable units, regardless of 

which specific PGI was used in the analysis. Here we extend known results from errors-in-variables 

models to derive a consistent estimator for the coefficients from a regression with the standardized 

additive SNP factor as an explanatory variable. 

The “theoretical regression” is what we call a regression with the (unobserved) standardized additive SNP 

factor as an explanatory variable. Consider an OLS regression of a phenotype 𝜙"  on the standardized 

additive SNP factor 𝑔", a vector of covariates 𝒛", and a vector 𝒘"  of interactions between 𝑔"  and a subset 

of the regressors in 𝒛"  (possibly all of them): 
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𝜙" = 𝑔"𝛽- + 𝒛"𝜻- +𝒘"𝜹- + 𝜖-," , (4.1) 

where the 𝑔 subscripts indicate that these are parameters from the theoretical regression. (Note that the 

phenotype 𝜙"  need not be the same phenotype 𝑦"  for which the standardized additive SNP factor is the 

best linear predictor. For example, some papers have studied the relationship between the PGI for 

educational attainment and test scores at younger ages (Belsky et al., 2016). Note also that the covariates 

in 𝒛"  may be measured with error; equation (4.1) represents whatever regression is run by a researcher 

except that 𝑔"  is measured without error.) The “feasible regression” is what we call the regression using 

the PGI 𝑔I"  in place of 𝑔": 

𝜙" = 𝑔I"𝛽-/ + 𝒛"𝜻-/ +𝒘J "𝜹-/ + 𝜖-/," , (4.2) 

where 𝒘" !  is the vector of interactions with 𝑔I"  in place of 𝑔". We denote the vectors of coefficients from 

the theoretical and feasible regressions by 𝜶- ≡ 6𝜷-, 𝜻-, 𝜹-7
'
 and 𝜶-/ ≡ 6𝜷-/ , 𝜻-/ , 𝜹-/7

'
, respectively. 

In what follows, we sketch the derivation of an estimator for 𝜶- (for details, see the Supplementary 

Methods). The derivation assumes that the error in the PGI, 𝑒", is uncorrelated with 𝒛"  and 𝒘". In the 

Supplementary Methods, we show that this condition holds exactly if the PGI weights 𝜸J are unbiased 

estimates of 𝜸. We also show that if the PGI weights 𝜸J are estimated using LDpred-inf—as is true for the 

Repository PGIs—then the bias in our estimator due to plausible violations of this condition will 

typically be negligible.  

Extending the standard formula for errors-in-variables bias (Spearman, 1904) in a multivariate regression 

to this setting, and under the assumption that 𝑒"  is uncorrelated with 𝒛"  and 𝒘", the feasible-regression 

coefficients can be shown to be biased: 

𝜶-/ = 𝜬6𝑽- +𝜴7
0%𝑽-𝜶- ≠ 𝜶-, (4.3) 

where	𝜬 ≡ `
𝜌𝑰%1|𝒘| 0
0 𝑰|𝒛|

		b, 𝑰|𝒙| is the identity matrix with the dimensionality of 𝒙, 𝑽- is the variance-

covariance matrix of (𝑔" , 𝒘" , 𝒛")', and 𝜴 is the component of the variance-covariance matrix of 

(𝑔I" , 𝒘J " , 𝒛")' that is due to error (see Supplementary Methods). In the special case of a univariate 

regression, in which the only covariate is a constant term, equation (4.3) implies that the regression slope 

coefficient 𝛽-/ 	converges to %
6

 𝛽-. This is a familiar form of attenuation bias, in which the degree of 

attenuation toward zero is greater the larger the amount of measurement error. In the multivariate case, 

however, the amount of attenuation bias for 𝛽-/  will also depend on the covariance matrix of 𝑔"  with 𝒛". 
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Moreover, the other coefficients, 𝜻-/  and 𝜹-/ , will be biased as well, not necessarily toward zero. For 

example, a covariate whose coefficient in equation (4.1) is zero can have a coefficient in equation (4.2) 

that is non-zero, leading to an incorrect rejection of the null hypothesis (Abel (2017), unpublished 

manuscript). 

The idea underlying our “corrected” estimator follows immediately from equation (4.3) by inverting the 

bias term: 

𝜶7899 = 𝑽-0%6𝑽- +𝜴7𝜬0%𝜶-/ = 𝜶-. (4.4) 

This expression is called a regression-disattenuation estimator. It cannot be implemented directly, 

however, because 𝑽- involves the variance and covariances of the unobserved standardized additive SNP 

factor 𝑔". However, the variance and covariances involving 𝑔"  differ from analogous terms involving 𝑔I"  

only due to measurement error, and the amount of measurement error is given by 𝜌. Therefore, the 

variance and covariances involving 𝑔"  can be inferred from estimable quantities. In the Supplementary 

Methods, we derive an expression for 𝜶7899  in terms of 𝜌 and population parameters that can be 

estimated consistently using the observed data. That expression is stated in Methods. We implement that 

version of the estimator. In the Supplementary Methods, we also derive standard errors for the regression 

coefficients, under the assumption that 𝜌 is known. 

If the PGI is uncorrelated with the covariates, then the estimator will inflate the naïve OLS estimate 𝛽c- 

and its standard error by the factor 𝜌. If, in addition, the covariates are uncorrelated with each other, 

then the estimator will also inflate 𝜹d- and its standard error by the factor 𝜌. Because the regression 

coefficients and standard errors are inflated by the same factor, the 𝑡-statistics and 𝑝-values for the 

corrected estimates will be identical to those for the uncorrected estimates. Correlation between the PGI 

and the covariates and correlation among the covariates will lead to deviations from this “rule of thumb” 

adjustment (and can lead to the adjustment being different across regression coefficients and standard 

errors). 

In the univariate case where 𝜌 is estimated within the same dataset as the PGI analysis is conducted, we 

show that while uncertainty in 𝑅g! causes downward bias in the standard error, uncertainty in	ℎg*+,!  

causes upward bias, and the net effect is likely to be standard errors that are slightly conservative. We 

conjecture that the standard errors will also typically be conservative in multivariate settings. If the 𝜌 

estimate is from a different dataset, then ignoring the uncertainty in 𝜌 will unambiguously cause the 
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standard errors to be anticonservative. In such settings and in settings when there is meaningful 

uncertainty in the estimate of 𝜌, we recommend that users calculate bootstrapped standard errors. The 

bootstrapped standard errors correctly account for uncertainty in 𝜌 and will be larger than the 

unbootstrapped standard errors. 

We provide a Python command-line tool that implements the measurement-error correction based on a 

user-specified value of 𝜌. The package can also estimate 𝜌 by calculating estimates of ℎ*+,!  (using the 

GREML method(Yang et al., 2010; Yang, Lee, Goddard, & Visscher, 2011) or, for larger datasets, 

BOLT-REML(P. R. Loh et al., 2015)) and 𝑅!. The package can calculate standard errors either treating 

𝜌 as known or (at some computational cost) by bootstrapping. When possible, we recommend users 

estimate 𝜌 within the dataset they use to analyse the PGI. If the dataset is too small to reliably estimate 𝜌 

or lacks a measure of the phenotype corresponding to the PGI, an estimate of 𝜌 from another dataset can 

be used under the assumption of perfect genetic correlation of the phenotype across datasets. In the 

Polygenic Index Repository, we provide pre-specified estimates of 𝜌 for three participating datasets for 

which we have access to the phenotypic data corresponding to the PGI: HRS, WLS, and the third 

partition of UKB (see Supplementary Table 4). For many of the cohorts, the standard error on the ℎ*+,!  

estimate is large, so we recommend a value of 𝜌 based on existing ℎ*+,!  and 𝑅! estimates from a larger 

sample. 

Although our estimator is derived for an OLS estimation framework, it will be approximately correct for 

logistic regression (Rosner, Spiegelman, & Willet, 1992) and survival models (Hughes, 1993) as long as 

the coefficient on the standardized additive SNP factor, 𝛽-, is not too large. For example, applying a 

measurement-error correction that would be correct for OLS will be a very accurate approximation for 

the coefficient in a survival model when the hazard ratio associated with a one-standard deviation 

difference in the variable measured without error is 1.11 (Hughes, 1993). However, the correction is 

roughly 20% too small when the hazard ratio is 1.65 (Hughes, 1993). 

4.2.4 Illustrative Application 

To illustrate our proposed measurement-error correction, we apply it to several analyses reported in a 

recent paper relating educational attainment (and labour market outcomes) to a PGI for educational 

attainment (Papageorge & Thom, 2020). The paper uses data from the HRS, one of our validation 

cohorts (N = 8,537; 58.3% female; median age = 83). As a preliminary analysis, the paper reports some 
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straightforward tests of the relationship between educational attainment (EA) and the EA PGI. In Panel 

A of Table 4.3, we reproduce their univariate regression of EA on the PGI and their multivariate 

regression that additionally includes controls for mother’s and father’s EA. In the univariate regression, 

shown in column (1), a 1-standard-deviation increase in the PGI is associated with 0.844 (95% 

confidence interval = [0.793, 0.895]) additional years of schooling. This association is reduced to 0.619 

(95% confidence interval = [0.572, 0.666]) years in column (2), once the controls are included. 

The measurement-error-corrected univariate regression is shown in column (3) of Panel A. We estimate 

that a 1-standard-deviation increase in the additive SNP factor is associated with 1.318 (95% confidence 

interval = [1.238, 1.398]) additional years of schooling. Relative to the PGI coefficient in column (1), 

this coefficient is larger by a factor of 1.318 / 0.844 = 1.56. In the regression with controls for parental 

education, shown in column (4), we estimate a corrected coefficient of 1.104 (95% confidence interval = 

[1.022, 1.186]) additional years. Relative to column (2), this is an increase by a factor of 1.104 / 0.619 = 

1.78. Since for EA in the HRS, ℎg*+,! ≈ 0.25 and 𝑅g! ≈ 0.10, according to the rule of thumb mentioned 

above, both coefficients should be expected to have increased by a factor of 1.58 (≈ j0.25/0.10	). The 

increase is larger than that from column (2) to (4) due to the positive correlations between the PGI, the 

controls, and the dependent variable. 

The results in Panel A illustrate a general implication of the measurement-error correction for mediation 

analyses: the correction deflates estimates of how much covariates mediate the effect of the PGI. There 

have been several mediation analyses in which researchers study how much the coefficient on a PGI is 

reduced when control variables—which are usually positively correlated with both the PGI and the 

dependent variable—are added to the regression (Elliott et al., 2018; Okbay, Beauchamp, et al., 2016; 

Stergiakouli et al., 2016). Going from column (1) to (2), the drop in the coefficient on the PGI would 

lead a researcher to conclude that parental education mediates (0.844 – 0.619) / 0.844 = 27% of the 

effect of the PGI. Going from column (3) to (4) shows the corrected estimate of mediation is only (1.318 

– 1.104) / 1.318 = 16%. The drop is larger for the uncorrected regressions because in those regressions, 

the control variables are proxying for part of the additive SNP factor that is not well captured by the 

PGI. Therefore, studies that do not correct for measurement error will tend to overestimate the extent to 

which the control variables mediate the effect of the PGI. 

The results in Panel B illustrate a fairly general implication of the measurement-error correction for PGI-

by-environment interaction analyses: in contrast to how it affects mediation estimates, the correction 
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tends to increase the magnitude of PGI-by-environment interaction estimates. A main result of 

Papageorge and Thom is about two such interactions: a higher PGI is associated with a weaker 

relationship between childhood SES and high school completion but a stronger relationship between 

childhood SES and college completion (Papageorge & Thom, 2020). Columns (1) and (2) reproduce 

two specifications that show this result: a regression of high school completion on the PGI, self-reported 

childhood SES, their interaction, and controls; and the analogous regression for college completion. The 

key finding is that the interaction term is negative in column (1) but positive in column (2). As shown in 

columns (3) and (4), once the additive SNP factor is considered instead of the PGI, the interaction 

coefficients for both the high school and college regressions move farther away from zero, strengthening 

the main result of the paper. In general, PGI-by-environment interaction studies that do not correct for 

measurement error will tend to underestimate the magnitude of the interaction because the interaction 

term will tend to be attenuated by the measurement error. Note, however, that this conclusion may not 

hold if other regressors are correlated with the interaction term. 

4.3 Discussion 

We described the initial release of the Polygenic Index Repository, which contains PGIs for 47 

phenotypes. A major goal of this effort is to disseminate PGIs with greater predictive power than the 

PGIs typically used. To maximize prediction accuracy of the PGIs, we meta-analysed data from multiple 

sources, including 23andMe and the UK Biobank.  

We also derived a measurement-error-corrected estimator that can be used instead of OLS regressions 

where the independent variables include a PGI or a PGI and its interactions. While some lack of 

comparability of results across studies is inevitable (e.g., due to differences across samples in SNP 

heritabilities), one goal of both the Repository and the proposed estimator is to increase comparability. 

For example, when constructing the PGIs, we applied to each cohort uniform sets of inclusion criteria 

for individuals and markers in the genotype data. The estimator contributes to improving comparability 

by putting regression coefficients in units of the additive SNP factor, regardless of the predictive power 

of the particular PGI available to the researchers. 

Because genetic associations are easily misinterpreted, researchers who use PGIs should be especially 

careful to understand and convey the appropriate interpretation of their findings. For example, it is 
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important to keep in mind that PGI associations may be mediated by environmental factors, and these 

factors may be modifiable. To facilitate understanding of these and other interpretational issues, we have 

written a User Guide that cohorts will distribute to users of the Repository PGIs (see Supplementary 

Methods). 

As more GWAS summary statistics become available in the years ahead, and better methods for 

constructing PGIs are developed, we plan to update the Repository regularly with more predictive PGIs 

that leverage these advances. For example, future releases will incorporate PGIs of novel phenotypes for 

which it is not currently feasible to construct PGIs with meaningful predictive power. We emphasize, 

however, that although PGIs have attained levels of predictive power that can be useful to researchers, 

the limited heritability of behavioural phenotypes such as those in the Repository implies that the PGIs 

will never be able to predict any individual’s phenotype with much precision. Additionally, since GWAS 

summary statistics have only been available in large samples of individuals from European ancestries, 

currently available PGIs have limited portability to individuals of non-European ancestries (Martin et al., 

2017). In future releases of the Repository, once sufficient data becomes available to create PGIs that 

have non-negligible predictive power for other ancestry groups, we will update the Repository to contain 

such PGIs. 

4.4 Methods 

The polygenic indexes (PGIs) shared through the Repository are based on summary statistics from three 

types of sources: GWASs conducted in UK Biobank (UKB), GWASs conducted in samples of volunteer 

research participants from 23andMe, and other published genome-wide association studies (GWAS). In 

Section 4.4.1 below, we begin by detailing how the Repository facilitates researchers’ access to the PGIs. 

In Section 4.4.2, we describe how the summary statistics used in our main analyses were generated, 

quality-controlled and meta-analysed to generate a set of files used as inputs into construction of the 

single-trait and multi-trait PGIs. In Section 4.4.3, we define and justify the 𝑅! criterion we used to 

determine which PGIs to include in the first release of the Repository. We then describe quality-control 

filters applied to the individual-level genotype data supplied by each Repository cohort. We conclude by 

describing the methods used to construct the cohort PGIs. In Section 4.4.4 we state our measurement-

error-corrected estimator and its standard error in terms of estimable quantities. Section 4.4.5 describes 

our estimation of 𝜌 in the HRS, WLS and UKB. Section 4.4.6 describes the data underlying Figure 4.1. 
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4.4.1 PGI Dissemination Strategies 

Recall from the main text that the PGI Repository aims to overcome four obstacles: (1) Constructing 

PGIs can be time-consuming and requires specialized knowledge; (2) Researchers face administrative 

hurdles in accessing all the genome-wide summary statistics for constructing PGIs; (3) Publicly available 

summary statistics may include the target dataset (which should be omitted when constructing the PGI); 

and (4) PGIs are often constructed with a variety of methods and idiosyncratic analysis decisions. 

Disseminating PGSIs through participating datasets 

As described in the main text, we overcome all four obstacles by constructing PGIs that include both 

publicly available data and restricted data (including genome-wide summary statistics from 23andMe) 

and releasing them to the data providers, who in turn will make them available to researchers. We omit 

the participating dataset from the summary statistics used to construct that dataset’s PGIs, and we 

construct all the PGIs using a uniform methodology. We similarly construct principal components 

(PCs) of the genome-wide data using a uniform methodology and release them to the data providers to 

make available. Our methodology is described below in Sections 4.4.2 and 4.4.3. Upon publication, we 

will post the code we used for constructing the PGIs and PCs on the SSGAC website 

(https://www.thessgac.org/data). 

To access the PGIs and PCs in a dataset, researchers will need to follow the usual data access procedures 

for that dataset (typically including a Data Use Agreement and approval from an IRB). The current 

procedures for each dataset are in the Supplementary Note, and up-to-date procedures will be 

maintained on the SSGAC website. 

Data providers can join the Repository if: (i) they share their individual-level genetic data with the 

SSGAC so that we can construct the PGIs and PCs on our secure servers; and (ii) they have procedures 

by which external researchers can gain access to the dataset. 

Disseminating PGI weights based on public data 

For datasets not participating in the Repository, we cannot overcome obstacles (1)-(4). However, for 

researchers who wish to construct the PGIs in a non-participating dataset, we will facilitate this effort by 

posting on the SSGAC website (www.thessgac.org/data) the weights underlying the PGIs constructed 

from publicly available data (i.e., that have no 23andMe data). As mentioned above, we will also post the 

code we used for constructing the PGIs and PCs. In addition, we refer researchers to 23andMe’s 
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“Publication Dataset Access Request Form” (https://research.23andme.com/dataset-access/#how-to), 

which allows researchers to gain access to GWAS results used in published papers (after signing a Data 

Use Agreement with 23andMe). In this way, researchers can gain access to the same 23andMe data that 

we used, and use it to construct the PGIs that are wholly or partly based on data from 23andMe. 

4.4.2 Summary Statistics 

UKB GWAS 

Supplementary Table 5 lists all UKB phenotypes for which we ran GWASs. Before running the GWASs, 

we filtered out poor-quality genotypes: (i) samples identified as putatively carrying sex-chromosome 

configurations that are neither XX nor XY, (ii) samples identified as outliers in heterozygosity and 

missingness rates, (iii) samples whose sex inferred from sex chromosomes does not match self-reported 

gender, and (iv) samples with missing sex, birth year, genotyping batch, or PC information. We also 

restricted the sample to individuals we will refer to as of “European ancestries,” defined as the first 

genetic PC provided by UKB being greater than 0 and individual self-reporting to be of “British”, 

“Irish”, or “Any other white background.” 

In order to make PGIs for the UK Biobank (UKB) without having to exclude the entire UKB from the 

discovery GWAS, we split the UK Biobank sample into three equal-sized partitions and, for each 

partition, used the summary statistics from the other two partitions when generating its PGI. The first 

partition (UKB1) is composed of UKB participants with brain-scan data (as indicated by data field 

12188), all pairs of UKB participants related up to second degree, and the pairs of relatives of third-

degree relatedness with greatest relatedness. Pairs of individuals of third-degree relatedness were ordered 

based on the maximum relatedness coefficient they have with another participant and assigned to the 

first partition in decreasing relatedness order until the partition was full. Remaining individuals with 

third-degree relatives were assigned to the second partition. Finally, individuals with no third degree or 

closer relatives were randomly assigned to the second (UKB2) or third (UKB3) partition. 

For all phenotypes in Supplementary Table 5, we ran three separate GWASs, one for each partition. 

Briefly, each GWAS in UKB was conducted using mixed-linear models implemented by the software 

BOLT-LMM (P.-R. Loh et al., 2015). The dependent variable in each analysis is a phenotype that has 

been residualized on sex, a third-degree polynomial in birth year (defined as (𝑏𝑖𝑟𝑡ℎ𝑦𝑒𝑎𝑟	– 1900)/10), 

their interactions, 106 genotyping batch dummies, and the first 40 of the PCs released by the UK 

Biobank. Details on how each phenotype is coded are provided in Supplementary Table 5. For the 
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variance-component estimation in BOLT-LMM (but not the association analyses), we restricted the set 

of markers to the set of 622,788 hard-called SNP genotypes that remained after filtering for 1% minor 

allele frequency and 60% imputation accuracy and pruning with an 𝑟! threshold of 0.3. Our subsequent 

association analyses were performed on imputed SNP dosages provided by UKB. 

Using the UK Biobank split-sample PGI 

Splitting the UKB into thirds as described above increases the predictive power of the PGI within each 

third (relative to omitting the UKB from the GWAS sample). Researchers may desire to conduct 

analyses that simultaneously include individuals from different partitions of the data or to meta-analyse 

results across different partitions. Such analyses will produce estimates that are unbiased, but the 

standard errors will be incorrectly calibrated. To see why, consider a linear model 

𝑌" = 𝑿"𝜷 + 𝜀" , 

where 𝑿"  is a vector of covariates that includes a PGI. Imagine that the data (𝒀, 𝑿) include individuals 

from different partitions of the data. As a result of the sample-splitting procedure above, Cov(𝑿" , 𝜀") =

0, which implies that the OLS estimator for 𝜷 will be unbiased. However, because some of the 

individuals in the data were used to generate the PGI for other individuals in the data, Cov6𝑿" , 𝜀$7 ≠ 0 

whenever individuals 𝑖 and 𝑗 are in different partitions. As a result, 

Var6𝜷d7 = Var[(𝑿'𝑿)0%𝑿'𝒀] 

= Var[(𝑿'𝑿)0%𝑿'𝜺] (5) 

≠ (𝑿'𝑿)0%𝑿'Var(𝜺)𝑿(𝑿'𝑿)0%. (4.6) 

The expression (6) is the standard general formula for the sampling variance of OLS estimates. It is not 

equal to (5) due to the correlation between (𝑿'𝑿)0%𝑿' and 𝜺. If we knew the correlation between these 

two vectors, we could calculate correct standard errors in this setting, but the correlation structure is 

complex, and we are unaware of any current method that produces correct standard errors. For this 

reason, we recommend that researchers only do analyses on sets of individuals within a partition. If 

researchers choose to do analyses with individuals across different partitions, they should include the 

strong caveat that their standard errors may be poorly calibrated. 
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23andMe GWAS 

Our analyses use summary statistics from GWASs conducted by 23andMe in samples of European-

ancestry volunteer research participants for 37 different phenotypes. Supplementary Table 6 provides an 

overview of these summary statistics. 28 out of the 37 are from previously published studies (Day et al., 

2015; Demontis et al., 2019; Ferreira et al., 2017; Hinds et al., 2013; Hu et al., 2016; Hyde et al., 2016; 

Karlsson Linnér et al., 2019; Lee et al., 2018; Liu et al., 2019; Lo et al., 2016; Pasman et al., 2018; Pickrell 

et al., 2016; Sanchez-Roige et al., 2017, 2018; Warrier et al., 2018). For these, we cite the original study in 

the column labelled “Citation”. The remaining 9 are based on previously unreported GWASs. Two of 

these GWASs are for phenotypes (Subjective Well-Being and Risk) for which GWASs had been 

previously published by 23andMe but with a smaller sample. The remaining summary statistics have not 

been previously published by 23andMe. Supplementary Table 6 describes the details of the association 

model used for each phenotype. For details on 23andMe’s genotyping and imputation, see 

Supplementary Tables 17 and 18 in Lee et al.(Lee et al., 2018)  

Quality control of summary statistics 

We applied a uniform set of quality-control filters to each original file with summary statistics (both 

those from previously unpublished and previously published GWASs). We closely followed the quality-

control pipeline detailed in section 1.5.1 of Okbay, Beauchamp, et al. (2016) and implemented in the 

software EasyQC (Winkler et al., 2014). Our QC protocol departed from Okbay, Beauchamp, et al. 

(2016) in the following steps: 

- We used data from the Haplotype Reference Consortium reference panel (r1.1) (McCarthy et 

al., 2016) to check for strand misalignment, allele mismatch, chromosome and base pair position 

concordance, and allele frequency discrepancies (instead of using data from the 1000 Genomes 

Phase 1 (Abecasis et al., 2010)). (Mapping file and allele frequency data were downloaded from 

the EasyQC website, from the following urls, respectively: https://homepages.uni-

regensburg.de/~wit59712/easyqc/HRC/HRC.r1-1.GRCh37.wgs.mac5.sites.tab.rsid_map.gz , 

https://homepages.uni-regensburg.de/~wit59712/easyqc/HRC/HRC.r1-

1.GRCh37.wgs.mac5.sites.tab.cptid.maf001.gz .) 

- For simplicity and uniformity, we applied a more conservative imputation accuracy filter of 0.7 

to all input files irrespective of the software that was used for imputation. 
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- We applied a uniform minor allele frequency filter of 0.01 to all input files. Stricter filters 

varying by sample size were not necessary because the studies that we analysed were much larger 

than some of those in Okbay, Beauchamp, et al. (2016) 

- We filtered out standard-error outliers. To do so, we first estimated the standard deviation (𝜎I:) 

of the phenotype in each input file by regressing the reported standard errors on the following 

approximation to the standard error of a coefficient estimated by OLS when the phenotype is 

standardized: 

𝑆𝐸;9<=,$ =
1
√𝑁

×
1

{2 ×𝑀𝐴𝐹$ × 61 −𝑀𝐴𝐹$7
, 

where 𝑀𝐴𝐹$  is the minor allele frequency of SNP 𝑗 and 𝑁 is the GWAS sample size. We filtered 

out markers with 
*>!"#$,&
*>&

< ?@'
!

  or  
*>!"#$,&
*>&

> 2𝜎I:. This filter allowed us to identify and remove 

markers for which the reported GWAS sample size deviated considerably from the sample size 

implied by the marker’s standard error. This filter was particularly relevant for publicly available 

summary statistics, where marker-specific sample sizes were typically not reported. (Having an 

accurate number for the sample size is important for LDpred (Vilhjálmsson et al., 2015).)  

 

Before each filtered file was cleared for subsequent meta-analyses, we also prepared and visually inspected 

a number of diagnostic plots, as described in Okbay et al. Our final analyses are limited to files whose 

diagnostic plots did not suggest any anomalies. Finally, we examined the genetic correlation between 

input files (estimated using the LDSC software package (Bulik-Sullivan et al., 2015)) for each phenotype 

to make sure phenotype coding was in the same direction across 23andMe, UKB, and published studies. 

Supplementary Table 7 summarizes the number of SNPs dropped in each filtering step in the files that 

passed all diagnostic checks. 

Single-Trait Input GWAS 

In this section, we describe the construction of single-trait input GWASs used in several of our 

downstream analyses, including as inputs for the single-trait and multi-trait PGIs. The single-trait input 

GWAS for a phenotype is obtained by meta-analysing summary statistics from up to three sources of 

information: analyses in UKB, analyses in 23andMe, and summary statistics from a previously published 

study of the phenotype (Barban et al., 2016; Day et al., 2015; de Moor et al., 2012, 2015; Demontis et al., 
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2019; Doherty et al., 2018; Ferreira et al., 2017; Furberg et al., 2010; Kunkle et al., 2019; Lee et al., 2018; 

Liu et al., 2019; Locke et al., 2015; Okbay, Baselmans, et al., 2016; Perry et al., 2014; Stringer et al., 2016; 

Trampush et al., 2017; van den Berg et al., 2016; Wood et al., 2014; Wray et al., 2018). The input GWAS 

for a phenotype is the same across most cohorts. However, when there is overlap between a Repository 

cohort and cohorts that contributed to summary statistics from previously published studies, or in order 

to construct a PGI for a UKB partition that is based on summary statistics including the rest of the UKB 

sample, we restrict the meta-analyses to summary statistics based on non-overlapping data. Details on the 

construction of single-trait input GWAS are in Supplementary Table 8. 

To illustrate the general procedure, consider the single-trait input GWAS for neuroticism in ELSA and 

EGCUT. Supplementary Table 8 shows that the largest meta-analysis of neuroticism (NEURO1) 

yielded a final sample of 𝑁 = 484,560 individuals by combining data from UKB (𝑁 = 361,688), 

23andMe (𝑁 = 59,206) and a previously published study (𝑁 = 63,666). Since the column does not 

indicate any overlap with ELSA, the single-trait input GWAS for neuroticism in ELSA is the set of 

summary statistics from this meta-analysis. EGCUT, however, is listed in Supplementary Table 8 as 

overlapping with the NEURO1 meta-analysis. The reason is that EGCUT contributed to the summary 

statistics of the previously published study (it is one of the cohorts in de Moor et al. (de Moor et al., 

2015)). To eliminate overlap, EGCUT’s single-trait input is therefore generated by meta-analysing the 

summary statistics from UKB (𝑁 = 361,688) and 23andMe (𝑁 = 59,206) only. This restricted meta-

analysis is listed in the table as NEURO2. Similarly, the largest single-trait input GWAS for neuroticism 

includes the UKB, so all three UKB partitions are listed as overlapping with it. To eliminate overlap, the 

single-trait input for each UKB partition (which are labelled NEURO3, NEURO4, and NEURO5) is 

generated by meta-analysing 23andMe, de Moor et al., and the remaining two UKB partitions. 

Each input GWAS is conducted by meta-analysing the relevant input files in MTAG (Turley et al., 

2018). All analyses are conducted allowing for sample overlap and setting all genetic correlations equal to 

unity. However, we allow the SNP-heritability parameter to vary across input files. Even though MTAG 

produces a separate output file for each input file, the assumption of perfect genetic correlation ensures 

that the SNP coefficients in each output file are a constant multiple of each other (hence the PGIs 

generated by the output files are the same). In all analyses that follow, we adopt the convention of 

designating the output file with the highest estimated SNP heritability as the input GWAS (this matters 
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for the expected 𝑅! calculation but nothing else). The details of the heritability estimation are described 

below, in the subsection “Criterion for Inclusion in Repository” in Section III. 

Multi-Trait Input GWAS 

For several phenotypes in the first-wave release of the Repository, we provide multi-trait PGIs. Here, we 

describe the multi-trait input GWAS used to generate each of these. 

In a first step, we used LDSC (Bulik-Sullivan et al., 2015) to estimate genetic correlations between the 

phenotypes in Supplementary Table 8. For phenotypes with multiple single-trait input GWAS files, we 

used the version with the largest Total 𝑁. This restriction leaves 53 single-trait input GWAS files, each of 

which is associated with a distinct phenotype. Because there may be sample overlap between the meta-

analysed summary statistics, we used GWAS-equivalent sample sizes as reported by MTAG when 

estimating genetic correlations. (This was the case for Age First Birth, Number Ever Born (men), 

Number Ever Born (women), and Asthma/Eczema/Rhinitis. For the first three phenotypes, we meta-

analysed the publicly available summary statistics from Barban et al. (Barban et al., 2016), which 

included the first release of UKB, with UKB full release. Similarly, for Asthma/Eczema/Rhinitis, we 

meta-analysed publicly available summary statistics from Ferreira et al., (2017), which included the first 

release of UKB, with UKB full release.) The set of pairwise genetic correlations is reported in 

Supplementary Table 9. 

In a second step, we identified each Repository phenotype’s supplementary phenotypes. A phenotype is 

supplementary to a target phenotype (and vice versa) if the pairwise genetic correlation between the 

phenotypes exceeds 0.6 in absolute value. Under this definition, the estimates in Supplementary Table 9 

identify each target phenotype’s supplementary phenotypes. These are listed in the column “Input files” 

of Supplementary Table 10 (set to “No Supplementary Phenotypes” if the phenotype has genetic 

correlation less than 0.6 with all other phenotypes). For 37 of the 53 Repository phenotypes, we 

identified at least one supplementary phenotype. 

In a final step, for each of these 37 phenotypes, and for each Repository cohort, we ran a multivariate 

MTAG analysis on the target phenotype together with its supplementary phenotypes, using the version 

of the target phenotype and each supplementary phenotype for which the cohort is listed in the column 

“Repository Datasets Sumstats are Used For” in Supplementary Table 8. (In some cases, the same version 
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of the target phenotype and each supplementary phenotype were used for more than one cohort; in 

those cases, we ran the MTAG analysis only once for that group of cohorts.) 

Each MTAG analysis produces multiple output files—one for the target phenotype and one for each of 

the supplementary phenotypes—but we only retain the summary statistics for the target phenotype. In 

what follows, we refer to each such file as a multi-trait input GWAS. 

For multi-trait MTAG analyses, in order to understand which traits drive results from using multi-trait 

PGIs, in Supplementary Table 10, we report the average weight that MTAG assigned to each input file 

in the multi-trait MTAG analyses. These weights may vary by SNP when there is variation in the sample 

size across SNPs, but the average weights summarize the relative contributions to predictive power. 

4.4.3 Constructing Repository PGIs 

Criterion for Inclusion in Repository 

The previous section described how we generated single-trait and multi-trait input GWASs from which 

it is straightforward to generate single-trait and multi-trait PGIs for a large number of phenotypes. We 

now describe how we determined, for each candidate phenotype, whether to include neither the single- 

nor multi-trait PGI, both PGIs, or one of the two in the initial release of the Repository. The structure of 

our algorithm is outlined in Figure 4.2. This section provides the details. 

For both single- and multi-trait PGIs, we limited the initial set of PGIs released to those with an out-of-

sample expected 𝑅! above 1%. While the threshold itself is arbitrary, the decision to have a threshold was 

driven by two considerations: the value of a PGI for research is increasing in its predictive power, and we 

worried that a PGI with low predictive power could cause more harm than good if researchers are 

tempted to conduct underpowered studies. 

We calculated the expected predictive power of each PGI (that might potentially be included in the 

Repository) using the following formula from Daetwyler, Villanueva, & Woolliams (2008): 

𝐸(𝑅!) =
(ℎ*+,! )!

ℎ*+,! +𝑀𝑁
, 

where ℎ*+,!  is the phenotype’s SNP heritability, 𝑀 is the effective number of independent SNPs which 

we assume to be equal to 60,000 (Wray et al., 2013), and 𝑁 is the GWAS sample size for the phenotype.  
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We first used the formula above to project the expected predictive power of each potential single-trait 

PGI. Our projections for the 53 potential PGIs and the underlying parameter values assumed are shown 

in Supplementary Table 1. We set ℎ*+,!  equal to the SNP heritability estimated by LDSC in the 

summary statistics from the single-trait input GWAS file with the largest sample size for a phenotype. 

We set 𝑁 equal to the GWAS-equivalent sample size reported in the MTAG output. For the 37 

phenotypes with at least one supplementary phenotype, we generated similar projections for the multi-

trait PGIs, using the Multi-Trait Input GWAS files instead. The results of the 37 projections, and the 

underlying parameter values assumed, are shown in Supplementary Table 2.  

We find that our criterion results in 47 phenotypes with at least one PGI in the Repository (see Figure 

4.2). For 12 phenotypes, our procedure results in the release of a single-trait PGI but no multi-trait PGI; 

these are the phenotypes with no supplementary phenotypes. For 11 other phenotypes, our procedure 

results in the release of a multi-trait PGI but no single-trait PGI; these are typically phenotypes without 

large GWASs but for which we have multiple supplementary phenotypes with large GWASs. Finally, 

our procedure yields 24 phenotypes with both single- and multi-trait PGIs that satisfy our inclusion 

criterion (Table 4.1) and 6 phenotypes for which neither PGI qualifies. 

Genotype Data QC in Repository Cohorts 

We restricted the set of markers to the SNPs present in the third phase of the international HapMap 

project (HapMap 3) (International HapMap 3 Consortium et al., 2010) in order to reduce 

computational burden (relative to using all reported SNPs) while keeping a set of markers that covers 

most of the common variation in individuals with European ancestries. 

Subject-level QC in Repository Cohorts 

We restricted the samples to individuals with European ancestries. Exclusion criteria were based on the 

first four principal components of the genetic data. In order to obtain the principal components, for 

each cohort, we first converted the imputed genotype dosages for HapMap3 SNPs into hard calls. We 

then merged the data with all samples from the third phase of the 1000 Genomes Project, restricting to 

SNPs that had a call rate greater than 99% and minor allele frequency greater than 1% in the merged 

sample. We calculated the principal components (PCs) in the 1000 Genomes subsample and projected 

these onto the remaining individuals in the merged data. In order to select European-ancestry samples, 
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we plotted the first four PCs against each other and visually identified the individuals that cluster 

together with the 1000 Genomes EUR sample.  

Creation of PCs in Repository Cohorts 

In the Repository cohorts, before constructing PCs, we removed markers with imputation accuracy less 

than 70% or minor allele frequency less than 1%, as well as markers in long-range LD blocks (chr5:44mb-

51.5mb, chr6:25mb-33.5mb, chr8:8mb-12mb, chr11:45mb-57mb). Next, we restricted the sample to 

individuals with European ancestries, as described immediately above. We further pruned the markers to 

obtain a set of approximately independent markers, using a 1Mb rolling window (incremented in steps 

of 5 variants) and an 𝑅! threshold of 0.1. We used this set of markers to estimate a genetic relatedness 

matrix. We identified all pairs of individuals with a relatedness coefficient greater than 0.05 as calculated 

by Plink1.9 (Chang et al., 2015). We excluded one individual from each pair, calculated the first 20 PCs 

for the resulting sample of unrelated individuals using Plink 1.9, and projected the PCs onto the sample 

of unrelated individuals. In HRS, we re-labeled the PCs in sets of five in order to address identifiability 

concerns. 

Constructing PGIs 

All PGIs in the initial release of the Repository were constructed in Plink2 (Chang et al., 2015) using 

imputed genotype probabilities. Prior to constructing the PGIs, we adjusted the SNP weights for linkage 

disequilibrium (LD) using LDpred (Vilhjálmsson et al., 2015). We estimated the LD patterns using 

genotype data from the public release of the HRC Reference Panel (version 1.1) after applying the 

following quality-control filters. First, we limited the set of variants to HapMap3 SNPs and filtered out 

variants with genotyping call rate <0.98 and individuals with genotype missingness rate >0.02. Next, we 

calculated the genomic relatedness matrix and dropped one individual out of each pair with relatedness 

coefficient >0.025. We clustered the remaining individuals based on their identity-by-state distances 

using Plink1.9 and dropped an individual if the Z-score corresponding to their distance to their nearest 

neighbour is less than -5. In the remaining sample that we fed into LDpred for LD estimation, there were 

1,214,408 SNPs and 14,028 individuals. At the coordination step of LDpred, we used the option “--max-

freq-discrep” in order to exclude markers that have a frequency discrepancy greater than 0.1 between the 

summary statistics and genotype data. We also used the “--z-from-se” option so that 𝑍 statistics were 

obtained from the GWAS coefficient estimates and their standard errors rather than from 𝑃 values (the 

default) because the latter led to issues in LDpred for markers with extremely small 𝑃 values. For each 

PGI, we used the LD window recommended by Vilhjálmsson et al. (2015),  i.e., the number of markers 
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common between the LD reference data, cohort genotype data and summary statistics left after the 

remaining LDpred quality control filters (MAF > 0.01, no allele mismatch, no ambiguous alleles), 

divided by 3,000. The fraction of causal markers was set to 1 for each phenotype to ensure consistency 

across phenotypes.  

Prediction Analyses 

We conducted a validation exercise for our PGIs in the HRS (N = 10,978; 57% female; median age = 82), 

WLS (N = 8,937; 52% female; median age = 82), Dunedin (N = 887; 49% female; 1972 birth cohort), E-

Risk (N = 1,968; 51% female; 1994 birth cohort), and UKB (third partition; N = 148,662; 54% female; 

median age = 71) cohorts. The HRS sample used in our validation exercise (2006-2010) is smaller than 

the HRS sample for which we are releasing PGIs (2006-2012) because we only had access to phenotype 

data in the former. Supplementary Table 12 describes the phenotypes used as outcomes in these analyses 

for all cohorts except UKB. The UKB phenotypes are described in Supplementary Table 5. (The UKB 

phenotypes used in the prediction exercise differ slightly from the GWAS phenotypes described in 

Supplementary Table 5 in that they were not residualized on the PCs and genotyping batch dummies. 

Instead, we have controlled for these covariates in the regressions when calculating incremental 𝑅! as 

described below.) As a general rule, if a single measurement in time was available, we residualized the 

phenotype on a second-degree polynomial in age, sex, and their interactions. If multiple measurements 

were available, we either did the same residualization in each wave and took the mean across waves or we 

took the maximum across waves and then residualized on birth year, sex, and their interactions.  

Supplementary Table 3 shows the results from the prediction analyses. The incremental 𝑅! was 

calculated as the difference in explained variance when adding the PGI to a regression of the residualized 

phenotype on the first 10 principal components of the genetic data. In the UKB prediction analyses, we 

included an additional 10 principal components and 106 genotyping batch dummies. We obtained 95% 

confidence intervals around the incremental 𝑅!’s by bootstrapping with 1000 repetitions. 

Supplementary Table 3 also shows the predictive power of “public PGIs”, which are PGIs constructed 

using our Repository pipeline based on the largest publicly available GWAS on the phenotype that does 

not have sample overlap with the prediction cohort (Barban et al., 2016; Day et al., 2015; de Moor et al., 

2012, 2015; Demontis et al., 2019; Doherty et al., 2018; Ferreira et al., 2017; Furberg et al., 2010; 

Howard et al., 2019; Jones et al., 2019; Karlsson Linnér et al., 2019; Lee et al., 2018; Liu et al., 2019; 

Locke et al., 2015; Nagel et al., 2018; Okbay, Baselmans, et al., 2016; Okbay, Beauchamp, et al., 2016; 
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Perry et al., 2014; C. A. C. A. Rietveld et al., 2013; Savage et al., 2018; Stringer et al., 2016; Trampush et 

al., 2017; van den Berg et al., 2016; Wood et al., 2014; Wray et al., 2018; Yengo, Sidorenko, et al., 2018) 

(we also use http://www.nealelab.is/uk-biobank/). The details of the input GWAS used for each 

validation cohort for the construction of the “public PGIs” are in Supplementary Table 13.  

4.4.4 Measurement-Error-Corrected Estimator 

Equation (4.4) in the main text gives an expression for our measurement-error-corrected estimator, but it 

cannot be implemented directly because 𝑽- and 𝛀 are based on unobserved variables. In the 

Supplementary Methods we derive an equivalent expression in terms of variables that can all be 

consistently estimated using sample analogues: 

𝜶ABCC = 𝑷�
1
𝜌! 𝚺D 𝚺DE,F

𝚺F
�

0%

	𝑽-𝜶-/ , 
(4.7) 

where 

𝚺D ≡ �
1 𝜌!Cov(𝒘J, 𝑔I")

𝜌!𝚺G@ − (𝜌! − 1)𝚺HIJ,F
�, 

𝚺DE,F ≡ Cov[(𝑔I" , 𝒘J "), 𝒛"], 𝚺F ≡ Var(𝒛"), 𝚺G@ ≡ Var(𝒘J "), 𝚺HIJ,F ≡ Var6𝒛HIJ,"7, and 𝒛HIJ,"  is the vector 

of the covariates that are interacted with 𝑔"  to form the vector 𝒘". 

To obtain standard errors for 𝜶ABCC, we calculate 

Var(𝜶ABCC) = 𝑪𝑨-/𝑪', (4.8) 

where 𝑨-/ ≡ Var6𝜶-/7 and 

𝑪 ≡ 𝑷�
1
𝜌! 𝚺D 𝚺DE,F

𝚺F
�

0%

	𝑽-. 
(4.9) 

The standard errors are the square root of the diagonal of Var(𝜶ABCC). Note that equations (4.7) – (4.9) 

are written in terms of population variance-covariance matrices, model coefficients, and the parameter 𝜌. 

To implement this correction, we replace each of these terms with its sample counterpart. 

4.4.5 Estimation of 𝝆 in HRS, WLS and UKB 

We estimated the value of 𝜌 for all PGIs satisfying the criterion for inclusion in the Repository in three 

of our validation datasets: HRS, WLS and UKB (partition 3). Recall from the main text that 𝜌 is defined 

as  
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𝜌 = �ℎ*+,
!

𝑅!
, 

where ℎ*+,!  is the SNP heritability and 𝑅! is the fraction of variance explained in a regression of the 

phenotype on the PGI. 

In order to estimate ℎ*+,!  and 𝑅!, we first took the residualized phenotypes described in section 

“Prediction Analyses” and additionally residualized these on 20 PCs in HRS and WLS, and 40 PCs and 

batch effects in UKB3. We did the same for the PGIs. In HRS and WLS, we estimated ℎ*+,!  with 

genomic-relatedness-matrix restricted maximum likelihood (GREML) implemented in GCTA 

v1.93.0beta(Yang et al., 2010, 2011) using HapMap3 SNPs with MAF > 1%. Prior to the ℎ*+,!  

estimation, we dropped one individual from each pair with a relatedness greater than 0.025. We 

estimated 𝑅! as the explained variance in a simple regression of the residualized phenotype on the 

residualized PGI. Standard errors for 𝑅!, ℎ*+,! , and 𝜌 were estimated with a 100-block jackknife 

procedure.  

In UKB3, because of the large sample size, we faced computational constraints. We therefore used the 

REML implementation in BOLT v2.3(P. R. Loh et al., 2015) (with the --remlNoRefine option). 

Moreover, we estimated standard errors only for three phenotypes: friend satisfaction, educational 

attainment, and height. We chose these three phenotypes so as to have one each corresponding to a 

single-trait PGI with low (friend satisfaction), medium (educational attainment) and high predictive 

power (height).  

Supplementary Table 4 lists the estimates of 𝜌 for HRS, WLS and UKB3, along with the underlying  

ℎ*+,!  and 𝑅! estimates and standard errors where available.  

4.4.6 Categorization of BGA Annual Meeting Presentations 

To obtain the data for Figure 4.1, we first created a dataset containing the titles, authors, and abstracts of 

all presentations at the 2009-2019 Behavior Genetics Association Annual Meetings. The information 

about the presentations is printed each year in issue six of the association journal Behavior Genetics. 

There were 2,034 presentations in this initial dataset. Included in the initial dataset were 36 symposia and 

5 papers that were submitted as a part of symposia; all 41 of these are omitted from the final dataset. The 

final dataset contains a total of 1,993 presentations. 
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After some trial-and-error and visual inspection of several dozen abstracts, we arrived at the algorithm 

below for categorizing studies: 

• We categorized a presentation as a “PGI study” if the title or the abstract contains at least one of 

the following keywords: 'PGS', 'PRS', 'PGRS', 'polygenic score', 'polygenic risk score', 'genetic 

risk score', 'GRS'. 

• We categorized a presentation as a “twin, family, or adoption study” if it satisfies at least one of 

the following conditions: 

- The abstract contains 'twin' at least twice.  

- The title contains the word 'twin'.  

- The title or abstract contain at least one of the following keywords: 'twin registry', 'center 

for twin research', 'twin project', 'twin panel', 'twin study at the', ‘twin study (LTS)', 

'(RFAB) twin study', 'twin register', 'twin pairs', 'nonidentical twins', 'identical twins', 'pairs 

of twins', 'twin sample', ' MZ', ' DZ', 'monozygotic', 'dizygotic', 'pairs of twins', 'adopted', 

'adoptee', 'adoptive', 'adoption design', 'biological parent', 'adoptive parent', 'adoption-

sibling', 'genetically-unrelated', 'genetically-related', 'siblings reared together', 'siblings reared 

apart', 'mother and child', 'father and child', 'parent and child', 'intergenerational', 

'transracial', 'biometric', 'path analy', 'Cholesky', 'children-of-twins', 'children of twins', 

'common environment', 'unique environment', 'ACE', 'ACDE'. 

• We categorized a presentation as a “candidate-gene study” if it satisfies at least one of the 

following conditions: 

- The title contains ‘candidate gene’ or at least one of the following candidate gene keywords: 

'HTR2', 'MAOA', '5-HTT', '5HTT', 'DRD', 'SLC6', 'BDNF', 'COMT', 'TPH', 

'MTHFR', 'APOE', 'DTNBP1', 'DBH', 'ABCB1', 'VNTR', 'CRHR', 'AKT', 'NRG', 

'AVP', 'rs0', 'rs1', 'rs2', 'rs3', 'rs4', 'rs5', 'rs6', 'rs7', 'rs8', 'rs9'. 

- The abstract contains at least one of the above candidate-gene keywords.  

- The abstract contains 'candidate' at least twice and 'candidate gene' at least once.  

However, a presentation was removed from the candidate-gene study category if the abstract contains 

GWAS keywords: 'wide association analysis', 'wide association study', 'GWAS'. 

To quantify how accurately the algorithmic classifications predict categorizations based on human 

evaluations, we asked two researchers with expertise in behaviour genetics to categorize 65 randomly 



 
Resource Profile and User Guide of the Polygenic Index Repository 
 

 

 
159 

sampled presentations. The raters worked independently, without any external assistance, and based 

their categorizations solely on information supplied about the title and abstract. Each rater assigned three 

yes/no labels—representing candidate-gene study; twin, family or adoption study; or PGI study—to 

each presentation. Raters sought to make labelling decisions consistent with the labels’ typical usage in 

the literature. We defined “agreement” on a presentation as an identical judgment about each of the 

three labels (i.e., if the raters disagreed about any of the three categories, they were considered as not 

agreeing). Even under this strict definition, we found an interrater agreement of 94%. The agreement 

between the algorithm’s and one rater’s categorizations was 86%, and that between the algorithm’s and 

the other rater’s categorizations was 83%. 

4.5 Data availability 

For how to access the Repository PGIs and other data from each participating dataset, see 

Supplementary Note; upon publication, an up-to-date list of participating datasets and data access 

procedures will be maintained at https://www.thessgac.org/pgi-repository. For each phenotype that we 

analyse, we report GWAS and MTAG summary statistics and PGI (LDpred) weights for all SNPs from 

the largest discovery sample for that analysis, unless the sample includes 23andMe. SNP-level summary 

statistics from analyses based entirely or in part on 23andMe data can only be reported for up to 10,000 

SNPs. Therefore, if the largest GWAS or MTAG analysis for a phenotype includes 23andMe, we report 

summary statistics for only the genome-wide significant SNPs from that analysis. In addition, we report 

summary statistics for all SNPs from a version of the largest GWAS analysis that excludes 23andMe. 

Finally, we also report summary statistics and PGI (LDpred) weights that the “public PGIs” are based 

on. These summary statistics and PGI weights can be downloaded from https://www.thessgac.org/pgi-

repository upon publication. The data underlying Figure 4.1 will also be available at 

https://www.thessgac.org/pgi-repository. Researchers at non-profit institutions can obtain access to the 

genome-wide summary statistics from 23andMe used in this paper by completing the 23andMe 

Publication Dataset Access Request Form, available at https://research.23andme.com/dataset-access/. 

4.6 Code availability 

Upon publication, the software used for the measurement-error correction will be 

available at https://github.com/JonJala/pgi_correct. The code for constructing PGIs and principal 
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components, the code for the illustrative application, and the code for analyzing the data displayed in 

Figure 4.1 will be available at https://www.thessgac.org/pgi-repository. 
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4.8 Figures 

Figure 4.1: Type of study in presentations at Behavior Genetics Association Annual Meetings 

 

Notes: For a description of the data underlying this figure, see Methods. Out of 1,993 presentations in 
total (over the 2009-2019 period), the percentages that are in exactly 0, 1, 2, or 3 categories are 26.76%, 
67.56%, 5.5%, and 0.2%, respectively. 
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Figure 4.2: Algorithm determining which single-trait and multi-trait PGIs were generated for 
the Repository 

 

Notes: See Table 4.1 for the 36 single-trait PGIs and 35 multi-trait PGIs included in the Repository. 
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Figure 4.3: Predictive power of Repository single-trait PGIs 

(a) 
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(b) 

 

Notes: Error bars show 95% confidence intervals from bootstrapping with 1,000 repetitions. Panel (A): 
Incremental R2 from adding Repository’s single-trait PGI to a regression of the phenotype on 10 
principal components of the genetic relatedness matrix for HRS, WLS, Dunedin and ERisk, and on 20 
principal components and 106 genotyping batch dummies for UKB. Prior to the regression, phenotypes 
are residualized on a second-degree polynomial for age or birth year, sex, and their interactions (see 

Supplementary Tables 5 and 12). For the sample sizes of the GWAS that the PGIs are based on, see 
Supplementary Table 478. Panel (B): Difference in incremental R2 between Repository single-trait PGI 
and PGI constructed from publicly available summary statistics using our Repository pipeline. (Note 
that the latter do not include PGI directly available from cohortdatasets, such as the ones accessible from 
the HRS website.) If no publicly available summary statistics are available for a phenotype, then the 
difference in incremental R2 is equal to the incremental R2 of the single-trait PGI and is represented by an 
open circle. “Cigarettes per Day” in Dunedin was omitted from the Figure because the confidence 
interval (-5.99% to 0.94%) around the point estimate (-2.38%) required extending the y-axis substantially, 
making the figure hard to read. For the GWAS sample sizes of the PGIs based on publicly available 
summary statistics, see Supplementary Table 13. 
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Table 4.2. Datasets participating in the Repository 

Dataset  𝑁 Country 
Population- or 
Family-based 

Dunedin Multidisciplinary Health and Development Study 887 New Zealand Population 

English Longitudinal Study of Ageing (ELSA)  7,310 UK Population 

Environmental Risk (E-Risk) Longitudinal Twin Study 2,316 UK Family 

Estonian Genome Center, University of Tartu (EGCUT) 51,719 Estonia Population 

Health and Retirement Study (HRS) 12,090 USA Population 

Minnesota Center for Twin and Family Research (MCTFR) 7,654 USA Family 
National Longitudinal Study of Adolescent to Adult Health 
(Add Health) 

5,689 USA Family 

Swedish Twin Registry (STR) 38,072 Sweden Family 

Texas Twin Project 556 USA Family 

UK Biobank (UKB) 445,985 UK Population 

Wisconsin Longitudinal Study (WLS)  8,949 USA Family 

 
Notes: The “𝑁” column gives the number of participants in each dataset for whom the PGIs in Table 4.1 
are supplied in the initial release of the Repository (i.e., those who passed the subject-level exclusion filters 
described in Methods). “Population- or Family-based” refers to how individuals were recruited to the 
dataset. 
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Table 4.3. Application of measurement-error correction 

Panel A. Association Between EA and the PGI, Without and With Controls for Parental EA 
 Original  Corrected 
 (1)  (2)  (3)  (4) 
EA PGI 0.844 

(0.026) 
 0.619      

(0.024) 
 1.318 

(0.041) 
 1.104      

(0.042) 
Father’s EA -  0.154 

(0.010) 
 -  0.112      

(0.010) 
Mother’s EA -  0.176 

(0.011) 
 -  0.141      

(0.012) 
# Obs. 8,537  8,537        8,537  8,537      
        
Panel B. Interaction Between PGI and Family SES Predicting High School and College Completion  
 (1)  (2)  (3)  (4) 
 High school  College  High school  College 
EA PGI 0.095 

(0.008) 
 0.055 

(0.008) 
 0.166 

(0.014) 
 0.103 

(0.014) 
Family SES 0.069 

(0.009) 
 

0.031 
(0.010) 

 
0.063 
(0.009) 

 
0.034 
(0.010) 

EA PGI X Family SES -0.047 
(0.009) 

 
0.068 
(0.010) 

 
-0.084 
(0.015) 

 
0.101 
(0.016) 

# Obs. 8,387  8,387  8,387  8,387 
 

Notes: Each column reports estimated regression coefficients, with standard errors in parentheses. Panel A: 
Columns (1) and (2) replicate results from Papageorge and Thom’s Table 2 columns 1 and 2. Panel B: 
Columns (1) and (2) replicate results from Papageorge and Thom’s Table B.2 panel B columns 2 and 4. 
Panels A and B: Columns (3) and (4) apply our measurement-error-corrected estimator to the feasible-
regression results in Columns (1) and (2). A value of 𝜌 = 1.52 was used in the correction. All regressions 
include indicators for birth year, sex, interactions of birth year and sex, and 10 principal components of the 
genetic data (coefficients not reported). The regressions in Panel B also control for mother and father’s 
educational attainment and an indicator for whether these values are missing (these data are missing for 
2000 individuals).  Our panel B regressions differ from Papageorge and Thom as we do not include a cubic 
of the PGI as control variables. We omitted the cubic terms because our measurement-error-corrected 
estimator does not account for non-linear transformations of the PGI.  
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Abstract 

We develop a polygenic index for individual income and examine random differences in this index with 

lifetime outcomes in a sample of ~35,000 biological siblings. We find that genetic fortune for higher 

income causes greater socio-economic status and better health, partly via intervenable environmental 

pathways such as education. The positive returns to schooling remain substantial even after controlling 

for now observable genetic confounds. Our findings illustrate that inequalities in education, income, 

and health are partly due the outcomes of a genetic lottery. However, the consequences of different 

genetic endowments are malleable, for example via policies that target education.  

5.1 Introduction 

The origins, extent, and consequences of income inequalities differ across nations, regions, time and 

social systems (Chetty & Hendren, 2018; Corak, 2013; Kuznets, 1955; Piketty & Saez, 2003; Roine & 

Waldenström, 2015). However, a universal fact is that parents influence the starting-points of their 

children by providing them with family-specific environments and by passing down a part of their genes. 

This phenomenon creates individual-specific social and genetic endowments that are due to luck in the 

sense that they are exogenously given rather than the result of one's own actions. Thus, inequalities of 

opportunity (Roemer & Trannoy, 2015) can partly arise from the outcomes of two family-specific 

“lotteries” that take place during conception — a “social lottery” that determines who our parents are, 

and a “genetic lottery” that determines which part of their genomes our parents pass on to us. 

Inequalities in opportunity restrict the extent of intergenerational social mobility (Becker et al., 2018; 

Belsky et al., 2018; Durlauf & Seshadri, 2018; Jäntti & Jenkins, 2015) and limit how much credit people 

can claim for achievements such as their education or income (Rawls, 1999; Roemer, 1998). The relative 

importance of social and genetic luck has policy relevance because the extent to which people are willing 

to tolerate or endorse inequality partially depends on whether they perceive that disparity originates 

from differences in effort and choice (e.g., working hard) or from differences in circumstances that are 

outside of one’s control (e.g., luck in the social or genetic lotteries). The empirical results suggest that 

inequality that can ultimately be traced back to luck may be perceived as unfair and people may favor 

redistributive policies more strongly if inequality is the result of luck rather than agency (Alesina et al., 

2018; Alesina & La Ferrara, 2005; Almås et al., 2010; Cappelen et al., 2013; Clark & D’Ambrosio, 2015; 

Gromet et al., 2015). It has even been suggested that GDP per capita as a measure of economic 
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development should be replaced with a measure of the degree to which opportunities for income 

acquisition in a nation have been equalized (Roemer & Trannoy, 2016).  

If the outcomes of the genetic or social lottery influence economic outcomes, it can challenge common 

intuitions about the relative importance of luck and agency. For example, it is tempting to appraise good 

performance at work due to conscientiousness as rooted in individual agency. However, if genetics partly 

influence personality traits such as conscientiousness (Lo et al., 2016), luck and agency will be 

intertwined, and genetic fortune could be expected to affect outcomes throughout the life course not 

only via direct biological effects, but also through behavioral and environmental channels. It is 

important for science and policy to understand the extent to which genetic and social fortune contribute 

to inequality, the mechanisms that are at work, and whether and how the consequences of exogenously 

given endowments can be altered.  

The current paper makes progress in this regard by using large-scale molecular genetic and family data to 

test the influence of genetic and family-specific endowments on income inequality and its consequences 

for health. Specifically, we develop a new polygenic index for individual income and exploit random 

differences between ~35,000 biological siblings in this index to estimate the consequences of the genetic 

lottery for income on a range of life-time outcomes. We show that the well-known gradient between 

socioeconomic status and health is partly rooted in exogenously given genetic and social endowments. 

Furthermore, we demonstrate that a substantial part of genetic luck for income and its link with health 

appears to operate via educational attainment and its accompaniments, i.e., environmental factors that 

are in principle malleable through policy interventions. Finally, we show that the effects of schooling on 

income remain strong and positive even when potential confounds from linear effects of common 

genetic variants are explicitly controlled for. Our results demonstrate the relevance of exogenously given 

genetic endowments for inequalities in income, education, and health. They also illustrate that the 

implications of the genetic lottery are not immutable because they operate at least partly via behavioral 

and environmental channels. Finally, our results emphasize the importance of education for inequality.  

Our paper builds on recent work in social science genetics (Abdellaoui et al., 2019; Hill et al., 2016, 

2019; Lee et al., 2018; Okbay et al., 2016; Rietveld et al., 2013) and applications of this work in 

economics. For example, (Belsky et al., 2018) used family data to explore the links between a genetic 
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index for educational attainment and various measures of social mobility. Furthermore, (Barth et al., 

2020) and (Papageorge & Thom, 2019) studied the associations between a genetic index for educational 

attainment and a variety of economic decisions and outcomes, without, however, using a within-family 

research design that would allow them to identify causal effects.  

We accompany this article with a frequently asked questions (FAQ) document that explains in plain and 

simple language what we have done, what we found, what our results mean, and — importantly — what 

they do not mean (https://bit.ly/3f5TXoV). This FAQ document aims to address a wider audience of 

nonexperts in an effort to responsibly communicate scientific results, which is especially important given 

the dark history and abuses of social science genetics (Editors, 2013; Nuffield Council on Bioethics, 

2002).  

5.1.1 Background 

One approach researchers have used to quantify the relevance of luck due to genetic and family-specific 

endowments in the past are twin studies, which decompose observed differences in outcomes into 

genetic, family-specific, and residual variance components, leveraging the insight that monozygotic (MZ) 

twins are genetically (almost) completely identical, whereas dizygotic (DZ) twins have a genetic similarity 

of ≈50% (Falconer & Mackay, 2009; Plomin et al., 2012). The identifying assumptions in classic twin 

studies include that MZ and DZ twins are different from each other only because of genetic reasons and 

not, for example, because parents treat MZ twin pairs systematically different from DZ twin pairs. 

Furthermore, classic twin studies assume that all genetic influences are additively linear and that parents 

are randomly matched rather than assorted based on similarity. Violations of these assumptions can lead 

to either upward or downward bias in the estimated variance components and have consequently 

sparked an extensive debate in the literature (Felson, 2014; Lerner, 2006; Purcell, 2002; Visscher et al., 

2008; Zuk et al., 2012). Additionally, the findings from twin studies are typically based on samples from 

specific Western, educated, industrialized, rich, and democratic (WEIRD) populations (Henrich et al., 

2010), thereby missing the importance of factors such as policies, culture, attitudes, institutions or 

economic development that do not vary much within the considered samples, but that can matter a great 

deal for differences between groups and over time.  

Keeping these limitations in mind, the main conclusion from twin studies is that genetic differences 

account for a substantial part of the observed differences in income, educational attainment, or 

occupational choice in the samples analyzed (Nicolaou & Shane, 2010; Polderman et al., 2015; Rietveld 
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et al., 2013; Rowe et al., 1998; Taubman, 1976). For example, according to a meta-analysis of 10 studies 

based on 24,484 partly overlapping twin pairs, 52% (SE = 0.03) of the variance in educational attainment 

can be attributed to genetic influences and 27% (SE = 0.03) to family-specific environments (Polderman 

et al., 2015; Rietveld et al., 2013; Rowe et al., 1998). The first study of this kind in economics 

(Taubman, 1976) found a large influence of genetic and family-specific effects on earnings and years of 

schooling in a sample of white male twins who served in the U.S. Armed Forces during World War II. 

The article described these findings as “disturbing” given the author’s inclination to accept 

socioeconomic inequalities due to “hard work and effort” much more than those arising from the 

contributions of one’s parents.  

Studies that considered genetic factors as potential contributors to socioeconomic inequality tend to 

trigger controversy, worry, and opposition (Comfort, 2018). These concerns have to be taken seriously 

because misinterpretations of genetic influences and heritability estimates as measures of “purely 

biological” and “immutable” factors have been abused to justify ideologies about “natural rank orders” 

among individuals. This type of thinking has contributed to discrimination and some of the most 

horrifying atrocities in human history, including the Holocaust, involuntary sterilization programs, and 

state-sponsored violence targeting minorities and the poor (Kevles, 1995; Ladd-Taylor, 2020; Zimmer, 

2018). Unfortunately, these ideologies and dangers still exist today.  

Viewing genetic influences as immutable factors that are independent from the environment is not only 

dangerous but also factually incorrect: the heritability of a trait puts no upper bound on the potential 

relevance of the environment (Goldberger, 1978, 1979; Jencks, 1980). Indeed, the heritability of a trait 

can even be entirely caused by environmental conditions.1 Furthermore, genetic influences on 

socioeconomic outcomes are most likely indirect, working via social and behavioral pathways that 

strongly depend on institutions, norms, policies, and incentives that are man-made and mutable (Jencks, 

1980). Genetic influences that work via environmental pathways, for example by selection into 

 

1 For example, a hypothetical society that discriminates against people with red hair in college admissions 

would induce a heritability of educational attainment and a correlation between genes that influence hair 

pigmentation and college attendance, even though hair pigmentation may be orthogonal to academic 

aptitude (Jencks, 1972).   
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particular surroundings such as colleges, may lead to substantial disparities in outcomes such as income 

for environmental reasons that are everything but universal, perpetual, or “given by nature”. As a result, 

genetic influences on socioeconomic outcomes can differ across divergent environments, making them 

neither inalterable nor purely biological factors. Thus, heritability estimates or genetic associations by 

themselves are uninformative about whether an environmental change such as a policy reform would 

affect an outcome or not. Rather, they are snapshots of a particular moment in time, a particular 

context, and most often of a particular ancestral population, one that is traditionally afforded higher 

income and education.  

In response to some of these challenges, it has been suggested that “economists might do well to abandon 

the enterprise of determining the heritability of socioeconomic achievement measures” altogether 

(Goldberger, 1978; Manski, 2011). Although interest in the potential contributions of genetic factors to 

economic outcomes and behaviors has never entirely ceased (Bowles & Gintis, 2002; D. Cesarini et al., 

2009; David Cesarini et al., 2010; Sacerdote, 2002; Zax & Rees, 2002), most economists seem to have 

largely followed Goldberger’s advice and turned their attention away from genetics and heritability 

estimates in the past four decades.2  

However, genetic influences do not disappear just because one chooses to ignore them. Instead, genetic 

influences remain both a challenge and an opportunity for attempts to understand economic realities 

such as the origins and consequences of inequalities in income. First, genetic influences are a challenge 

because they may induce omitted variable bias in observational, nonexperimental studies. For example, a 

central issue for understanding the origins of inequality is to grasp the effects of education on income. 

One of the challenges in attempts to accurately estimate the returns to schooling are unobserved 

 

2 This development away from genetics in economics is in stark contrast to what happened in 

psychology, where estimating the heritability of traits and their co-heritability has been an active field of 

research since the 1970s that produced an extensive body of empirical evidence that can be succinctly 

summarized as “all human behavioral traits are heritable” (Turkheimer, 2000), with an average 

heritability estimate of around 50% across all traits (Polderman et al., 2015). 
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differences in “ability” that may have a genetic component (J. J. Heckman et al., 2006).3 As a result, 

unaccounted genetic factors that are related to both educational attainment and income may lead to false 

conclusions about the extent to which differences in income can be attributed to schooling (DiPrete et 

al., 2018). Second, ignoring any source of variability of an outcome and relegating it to the error term of 

a regression necessarily leads to noisier, less precise estimates of the observed variables of interest. This 

phenomenon also holds for genetic sources of variability. Obviously, both uncertainty and bias can be 

serious obstacles in attempts to generate useful empirical insights.  

Of course, these challenges are not new and economists already have potentially powerful tools to 

address them. For example, natural experiments and instrumental variable techniques can be used to 

identify causal effects, but they hinge on the availability of truly exogenous shocks that are relevant and 

measurable. Another popular way to address potential bias from unobserved heterogeneity is individual 

fixed-effects models. However, these models require panel data featuring both regressors and regressands 

that vary among individuals over time, which restricts the type of questions one can ask. When genetic 

differences among people and their correlations with economic outcomes are observed directly, it opens 

up new opportunities to avoid unobserved variable bias and to obtain more accurate estimates of 

nongenetic influences (Benjamin et al., 2012; Harden & Koellinger, 2020).  

Furthermore, genetic data have two properties that make them particularly interesting for applied 

empirical work (Mills et al., 2020). First, the genetic sequence of each person is fixed at conception and 

does not change throughout one’s lifetime. Thus, reverse causality from behavior or environmental 

exposures to the genome can be ruled out. Therefore, genetic data provide researchers with the potential 

to construct noisy but exogenously given proxies for individual characteristics and outcomes that will 

emerge and change over the life course, allowing us to trace development paths. Second, each child is the 

 

3 “Ability” is often mentioned in economic studies on the returns to schooling, but it is also a 

historically-burdened term that has been used to validate and carry out violent campaigns against the 

poor and racially-defined minorities at different points in history (Tabery, 2015). This background 

contributes to the discomfort and caution applied to current genetics research (Roberts, 2015). We use 

quotation marks in our mention of the term “ability” to recognize this historical legacy and the 

potentially misleading nature of this term. 
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result of a natural experiment that randomly mixes the genetic sequences of her biological parents. Thus, 

with the possible exception of monozygotic twins, all children who share the same biological parents 

exhibit random genetic differences. These exogenous shocks of the “genetic lottery” are a natural 

experiment that may be useful to identify causal relationships (Davies et al., 2019). Here, we provide an 

example of how random differences between siblings in a genetic score for income lead to inequalities in 

socioeconomic outcomes and health later in life and we begin to explore the possible mechanisms.  

5.2 Data  

5.2.1 Genetic data 

The genome is encoded in a sequence of DNA (deoxyribonucleic acid) molecules. This sequence 

contains hereditary information that provides building instructions for all living organisms. In humans, 

the genome consists of 23 pairs of chromosomes, with one chromosome in each pair passed down by the 

father and one by the mother. Each chromosome is composed of two connected DNA strands that 

together resemble a twisted “ladder” (i.e., a double-helix). The “rails” of the “ladder” consist of a sugar-

phosphate backbone and a nitrogenous base (adenine [A], cytosine [C], thymine [T], or guanine [G]) is 

attached to each sugar-phosphate group. Together, these components construct a “nucleotide”. The 

nitrogenous bases bind to each other in a strictly complementary way such that A always binds with T 

and G always binds with C, forming the “rungs” of the “ladder”. The bases of the two copies of each 

chromosome may vary if father and mother passed down different variants.  

Human DNA consists of ≈3 billion nucleotide pairs, the overwhelming majority of which are shared 

across individuals. Here, we study variations in nucleotide pairs in which some people carry a different 

base at a particular location (e.g., AT instead of GC). These so-called single nucleotide polymorphisms 

(SNPs) are the most common form of genetic variation that exists. Relatively common SNPs that vary 

among >1% of humans make up less than 2% of all ≈3 billion base pairs of human DNA (Auton et al., 

2015), rendering these SNPs both informative about common genetic differences between people as well 
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as relatively cheap4 and easy to measure (e.g., using saliva samples and high-throughput genotyping 

arrays) (Mills et al., 2020).5  

Because individuals have two copies of each chromosome, they typically have either two ATs, two GCs, 

or one AT and one GC at each position in their DNA. Therefore, SNPs can be numerically represented 

as count variables that indicate the number of copies of a chosen reference molecule (AT or GC), taking 

the values 0, 1, or 2. 

SNP data exhibit two types of correlations that must be taken into account. The first type consists of 

SNP correlations among the rows in the data (i.e., individuals) which increase if two individuals are 

related to each other and decrease with the number of generations that lie between them and their last 

common ancestor. While relatedness among individuals in a dataset can occur simply due to sampling 

multiple individuals from the same family, there can also be more subtle types of population structures 

underlying SNP data that can be traced back to shared ancestors many generations ago. Subgroups of the 

population that have different allele frequencies may also have different outcomes due to nongenetic 

factors such as cultural norms, policies, geographic environments, or economic circumstances, which can 

induce bias known as population stratification (Hamer & Sirota, 2000). Thus, many research questions 

 

4 The collection of a saliva sample, DNA extraction, and genotyping using a machine-readable array can 

currently be achieved for around $50 or less. 

5 In addition to the common SNPs analyzed here, other types of genetic variation exist such as rare and 

multiallelic SNPs or structural genetic variants including inversions, deletions, insertions, copy number 

variants, or translocations (Auton et al. (2015)). To the extent that these unobserved genetic variants are 

not or only weakly correlated with common SNPs, their influence cannot be detected well using SNP 

data. Thus, methods that use these data tend to underestimate the extent of genetic influences (Witte, 

Visscher, and Wray (2014)). To measure structural and rare genetic variants, full genome sequencing 

would be required, which is much more expensive than the array-based scans of common SNPs that we 

and the vast majority of all studies in human genetics rely on, and which would imply substantially 

smaller sample sizes. 
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that rely on genetic data need to control for unobserved variable bias due to population structure (Price 

et al., 2006; Young et al., 2018, 2019).  

Second, there is also a correlation structure among the SNPs themselves, i.e., the data columns. In 

molecular genetics, this is called linkage disequilibrium (LD) and it refers to the fact that genetic variants 

that are in close physical proximity to one another on a chromosome tend to be inherited together, 

creating persistent correlational patterns. LD is driven by several factors including biological mechanisms 

such as chromosomal crossover that happens during the formation of egg and sperm cells (i.e., meiosis), 

but also by mating patterns, selection, or migration events (Mills et al., 2020). We detail below how we 

addressed potential biases from population structure and how we adjusted for LD in the construction of 

the genetic indices that are central for our applications.  

5.2.2 UK Biobank (UKB) 

The UKB is an ongoing population-based longitudinal study that was established to allow investigations 

of genetic and nongenetic factors that influence health outcomes in middle and old age. The UKB 

recruited 502,522 participants who were between 40-69 years old when they entered the study between 

2006-2010 (Fry et al., 2017; Sudlow et al., 2015). All participants gave consent, answered questions, had 

physical measurements taken and provided samples of blood, urine and saliva at a baseline assessment 

center visit.  

We use the molecular genetic data (see Appendix VI) and several available measures of SES of the UKB 

participants (standardized occupation codes, household income, educational attainment, and regional 

measures of socioeconomic status that were derived by the UKB from home locations and national 

statistics). We also use the digital health records of all participants, which are provided by UKB via 

continuously updated data linkage with the National Health Service (NHS). The NHS provides free 

medical treatment to all UK residents and is funded through general taxation. Thus, in contrast to other 

countries, access to medical treatment and the availability of digital health records in the UK is not a 

function of income or SES. Specifically, digital health records for England are available from hospital 

inpatient episodes (1996-2017), cancer registries (1971-2016), and death registries (2006-2018)6, 

providing clinical diagnoses for all instances according to the International Classification of Diseases 

 

6 See http://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=Data_providers_and_dates  
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(ICD; 9th or 10th revision), which defines the universe of diseases, disorders, injuries and other related 

health conditions in a comprehensive, hierarchical fashion (World Health Organization, 2019). We 

examined all available hospital inpatient records, cancer episodes, and deaths for different types of disease 

using all major ICD chapters with a prevalence rate higher than 10% (16 in total). As an overall measure 

of health, we aggregate the available digital health records to examine whether participants had ever been 

hospitalized for any disease or diagnosed with any type of cancer. The available digital health records are 

left-censored, which prevents us from observing disease episodes from earlier periods where the 

participants were younger. It should therefore be kept in mind that our estimates with respect to disease 

occurrence and hospitalization are likely to be underestimated.   

In addition, we use four proxies for health that are not subject to left-censoring and that are 

continuously distributed: body-mass-index (BMI), waist-to-hip ratio (WHR), blood pressure, and a 

measure of lung function (Global Burden of Disease Obesity Collaborators et al., 2017; Huxley et al., 

2010; Srikanthan et al., 2009). Finally, we use a summary index of overall health that is a weighted sum of 

all binary and continuously distributed health indicators mentioned above.7 Table S5.1 provides a list of 

these variables and their definitions. In addition, Tables S5.2 and S5.3 show relevant descriptive statistics.  

5.2.3 Health and Retirement Study (HRS) 

The HRS is an ongoing longitudinal survey on health, retirement, and aging that is representative of the 

US population aged 50 years or older (Sonnega et al., 2014). The survey contains a wide range of 

socioeconomic outcomes, including income, educational attainment, working hours, and standardized 

job codes. Since 2006, data collection has expanded to include biomarkers and a subset of the 

participants has been genotyped (Weir, 2013). We use the second release of the HRS genetic data here 

(see Appendix VI). Our primary outcome of interest in the HRS is hourly wages, which are constructed 

from self-reports of income and hours worked. We use a cleaned and harmonized dataset produced by 

 

7 The summary index of every health measure is constructed by following (Anderson, 2008). This 

method takes a weighted average of standardized outcomes where weights are determined by the inverse 

of the correlation matrix. Outcomes highly correlated with each other are assigned less weight, while 

outcomes receive more weight if they are uncorrelated and therefore represent new information. The 

weights we used in our study are reported in Table A4.  
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the RAND corporation8, which includes twelve waves from 1992 to 2014. We convert nominal wages 

into real wages using the consumer price index (base =1982-1984). 

5.2.4 Polygenic indices 

All heritable human behaviors are associated with very many genetic variants, each of which accounts for 

a very small percentage of the behavioral variability. This stylized fact is known as the “Fourth Law of 

Behavior Genetics” (Chabris et al., 2015). Due to the sheer number of SNPs that are potentially relevant 

for human behavior and economic outcomes, it is difficult to incorporate them directly in an 

econometric model. Instead, an efficient and well-established way of exploiting the SNP data is to 

construct a polygenic index (PGI) that additively summarizes the effects of more than 1 million SNPs. 

Formally, a PGI 𝑠!  is a weighted sum of SNPs: 

𝑠! =#
"

#$%

𝛽%#𝑥!#  (5.1) 

where 𝑥!"  is individual i’s genotype at SNP j. The weights 𝛽%"  are estimated in a genome-wide association 

study (GWAS) (see Appendix III) which scans all measured genetic variations among people for 

associations with the outcome of interest. Since the number of SNPs J is typically orders of magnitude 

greater than the number of individuals in the sample, it is impossible to fit all SNPs simultaneously in a 

multiple regression. Instead, the outcome is regressed on each SNP separately, resulting in J regressions in 

total. Importantly, in order to avoid overfitting, the GWAS estimation sample does not include 

individuals for which a PGI is constructed.  

PGI for several economic outcomes are already available, thanks to large-scale GWAS on traits such as 

educational attainment (Lee et al., 2018; Okbay et al., 2016; Rietveld et al., 2013), risk tolerance 

(Karlsson Linnér et al., 2019), subjective well-being (Turley et al., 2018), and household income (Hill et 

al., 2016, 2019). However, no PGI for individual income exists until now, despite the fact that individual 

income is one of the most central topics in economics and one of the most important proxies for well-

 

8 Health and Retirement Study, (RAND HRS Longitudinal File, version P) public use dataset. 

Produced and distributed by the University of Michigan with funding from the National Institute on 

Aging (grant number NIA U01AG009740). Ann Arbor, MI, 2017.  

See https://www.rand.org/well-being/social-and-behavioral-policy/centers/aging/dataprod/hrs-data.html 
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being (Sacks et al., 2012; Stevenson & Wolfers, 2013) and health throughout the lifecourse (Adler et al., 

1994; Chetty et al., 2016; Wilkinson & Marmot, 2003). The primary reason for this deficiency is that 

most datasets that contain genetic information have been collected for medical research purposes and 

lack measures of individual income. The few existing genetic datasets that do contain high-quality 

measures of income are, unfortunately, too small to allow conducting statistically well-powered GWAS 

on individual income (e.g. the Health and Retirement Study and the Wisconsin Longitudinal Study).  

We remedy this issue by conducting GWAS on a good proxy for individual income, occupational wages, 

which we imputed from standardized occupation codes in the UKB, one of the largest existing 

genotyped datasets in the world. In essence, our imputation algorithm reflects the typical log wage of 

occupations in the UK, adjusted for demographic characteristics such as sex and age. Appendix I 

describes the procedure in detail. The income PGI that we created here adds to the growing array of 

polygenic indices that are useful for economists and other social scientists. Furthermore, a PGI for 

individual income is crucial for several of the analyses we present below, including our estimates of the 

returns to schooling.  

Specifically, we follow a preregistered analysis plan (https://osf.io/rg8sh/) and conduct GWAS on 

occupational wages using 252,958 individuals in the UKB, excluding siblings and their close relatives to 

obtain an independent sample for follow-up analyses using the PGI. In Appendix III, we provide 

detailed descriptions of the GWAS and discuss the results of the GWAS on occupational wages with the 

full sample including the sibling sample (N=282,963). In short, our GWAS on occupational wages 

identified 45 approximately independent genetic loci from 3,920 SNPs that are significant after 

Bonferroni correction for multiple testing (p < 5×10-8).9  The estimated effect size of each individual 

SNP is very small (𝑅# < 0.04%), which is consistent with previous GWAS results for socio-economic 

outcomes (Chabris et al., 2015; Hill et al., 2019; Lee et al., 2018; Rietveld et al., 2013). The effects of 

1,197,148 SNPs are then aggregated into a PGI in the sibling sample. We take the correlations between 

 

9 The summary statistics of the genome-wide association study (GWAS) presented here can be 

downloaded at https://osf.io/rg8sh/. These data are useful for many purposes such as constructing 

genetic indices, computing genetic correlations (Bulik-Sullivan et al., 2015), and for genetically informed 

study designs involving income (Harden & Koellinger, 2020). 
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SNPs into account by using a Bayseian approach that adjusts the estimated GWAS weights 𝛽%"  with 

information about correlations between SNPs (Vilhjálmsson et al., 2015) (see Appendix IV). The 

resulting PGI is then standardized to have zero mean and unit variance. This PGI captures 

approximately 3% of the variation in occupational wages in the UKB sibling sample and 1% of self-

reported wages in holdout samples from the U.S. (Table S5.7).10 For simplicity, we refer to this polygenic 

index as the “income PGI” below. 

Our GWAS results for occupational wages are similar to those for educational attainment, which was 

previously studied in GWAS sample size of N > 1,000,000 (Lee, Wedow, et al. (2018). The genetic 

similarity between occupational wages and educational attainment can be quantified by the so-called 

genetic correlation coefficient between both traits11, which is 0.923 (SE = 0.01). Thus, occupational 

wages and educational attainment are genetically very similar but not identical traits (see Appendix III). 

The genetic similarity between occupational wages and educational attainment can be exploited to 

improve the accuracy of the income PGI by applying a multivariate statistical method called Multi-Trait 

Analysis of Genome-wide association summary statistics (MTAG) (Turley et al., 2018). MTAG 

increases the accuracy of a PGI by “borrowing” information from GWAS estimates of genetically similar 

traits, which could also be obtained from partly or even completely overlapping GWAS samples. The 

MTAG approach substantially boosts the accuracy of the income PGI. For instance, the R2 of the 

income PGI increases in the UKB holdout sample of siblings from 2.77% to 4.47% for occupational 

wages and from 0.66% to 1.40% for BMI when MTAG is used (Table S5.9).  

 

10 The difference in R2 of the PGI across samples is likely due to differences in heritability and the true 

genetic architecture of different measures of income (i.e. occupational wages versus self-reported wages) 

across different environments (i.e. UK versus US), see (de Vlaming et al., 2017).   

11 The genetic correlation between two traits quantifies the extent to which they share the same 

molecular genetic architecture, ranging from -1 to 1 (Bulik-Sullivan et al., 2015; Harden & Koellinger, 

2020; Okbay et al., 2016).  
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5.3 Statistical considerations 

Our main analysis examines the consequence of the genetic lottery for income on socioeconomic and 

health outcomes, taking advantage of the large sibling sample from the UKB. Consider the following 

baseline specification for outcome y for individual i from family j: 

𝑦!# = 𝛿𝑠!# + 𝑧′!#𝜃 + 𝛼# + 𝑒!#  (5.2) 

where 𝑠!"  is the PGI for income, 𝑧!"  a vector of covariates, and 𝛼"  unobserved family-specific effects. In 

what follows, we discuss two important sources of potential bias when estimating the effects of the 

genetic lottery (𝛿) and how we address these issues.   

5.3.1 Confounds due to family environment 

Estimates of 𝛿 can be confounded due to the fact that the PGI only summarizes genetic associations, 

which are not necessarily the same as the causal genetic effects. The causal genetic effect can be defined as 

the average (counterfactual) change in an individual’s outcome that would occur as a result of a ceteris 

paribus change of that individual’s genotype at conception. In practice, however, GWAS are typically 

conducted in population samples and the obtained GWAS results and PGI can, and often do, contain 

environmental confounds, for example due to the environment that parents provide for their children 

(Kong et al. 2018).12 More generally, when 𝑐𝑜𝑣(𝑠!" , 𝛼") 	≠ 	0 and 𝛼"  is not specifically controlled for, 

estimates of 𝛿 will be inflated as a result of family-specific environmental conditions that influence 𝑦!" .  

 

12 Another example is population stratification, i.e. environmental effects that correlate with more 

distant genetic ancestry that subgroups of the population share with each other such as cultural norms, 

policies, geographic environments, or economic circumstances (Hamer & Sirota, 2000). GWAS typically 

try to address bias from population stratification by restricting samples to a relatively homogenous 

population, e.g. by limiting the study sample to individuals of European descent, and second by 

controlling for first 40 principal components from the SNP data. This is also the approach we followed 

here. These strategies help to some extent, but they are typically not sufficient to eliminate bias due to 

population stratification when socio-economic outcomes are studied in large GWAS samples 

(Abdellaoui et al., 2019; Haworth et al., 2019). 
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This bias is particularly relevant for socioeconomic outcomes (Kong et al., 2018; Lee et al., 2018; Young 

et al., 2018).  

To break the link between 𝑠!"and 𝛼" , the natural experiment of meiosis can be exploited in a sample of 

siblings who share the same biological parents. During meiosis, the two copies of each parental 

chromosome are randomly combined and then separated to create a set of two gametes (e.g., two eggs or 

two sperm), each of which contains only one new, resampled copy of each chromosome. The resulting 

genetic differences between full siblings and dizygotic twins are therefore random and independent from 

family-specific ancestry and environmental factors that vary between families.     

In a sample of siblings, the unobserved family-specific effects can simply be accounted for by including 

family fixed effects. Hence, a within-family regression will yield estimates of the coefficient for the PGI 

(δ) that are immune to parental genetic nurture and the uncontrolled population structure in GWAS 

that cannot be traced back to causal genetic effects. For this purpose, our main analysis relies on a hold-

out sample of approximately 35,000 siblings from the UKB. 

5.3.2 Measurement error in the PGI 

Empirically estimated PGI are noisy proxies for “true” PGI that would capture the linear effects of all 

genetic variants in their entirety. The differences between the “true” and the available PGI are primarily 

due to two reasons. First, currently available genotyping technologies focus on common genetic variants, 

but they miss rare or structural genetic variants that are not highly correlated with the observed common 

variants (see footnote 7). For this reason, most empirical work in complex trait genetics is currently 

limited to studying the effects of common genetic variants, including this study. Second, GWAS 

estimates of the effect sizes of individual SNPs are noisy because they are obtained from finite sample 

sizes. The noise in the estimated effects of SNPs translates into noise in the PGI that is akin to classic (i.e. 

random) measurement error (Daetwyler et al., 2008; de Vlaming et al., 2017) which can be adjusted 

using instrumental variable regression (DiPrete et al., 2018). In our concrete example, we estimate that a 

PGI of all common genetic variants could potentially capture up to ≈10% of the variation in 

occupational wages, which is the share of variance in occupational wages that can be attributed to the 

combined linear effects of common genetic variants among UKB participants (See Appendix II). Thus, 

noisy GWAS estimates attenuate the accuracy of the currently available income PGI by more than 50%.  
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To address attenuation bias due to measurement error, we use genetic instrument variable (GIV) 

regression (DiPrete et al., 2018), which constructs an instrument for the noisy PGI by randomly splitting 

the GWAS sample into two independent subsamples that allow for constructing two (even noisier) 

indicators of the PGI. Under the reasonable assumption that the error terms of both indicators are 

independent, one of them can be used as an instrument for the other to obtain coefficient estimates that 

are corrected for measurement error.  

More formally, define a PGI 𝑠! = 𝑠!∗ + 𝑢!	, where 𝑠!∗ is the true PGI and 𝑢!	is additive measurement 

error. Because the PGI is a linear combination of SNP effects, we can write ui = x′i (b – 𝛃), where xi is the 

vector of SNP data for individual i, 𝛃 is the vector of true SNP effects, and b is the vector of estimated 

SNP effects. That is, the PGI can be decomposed into a true part and the contribution from the 

estimation error in the GWAS (i.e., b – 𝛃). 

Suppose that we generate two PGI, by randomly splitting the GWAS sample into two independent 

subsamples to obtain two estimates of 𝛃, where 𝑠!(') is constructed using the estimate from one 

subsample and 𝑠!(#) using the estimate from the other subsample, where the additive measurement error 

in 𝑠!(#) is denoted by 𝑢!(#). 

Now, if we are to use 𝑠!(#) = 𝑠!∗ + 𝑢!(#) as an instrument for 𝑠!('), 𝑠!(#) must capture the true PGI 

term 𝑠!∗ only in the first stage regression. This implies that the noise terms 𝑢!(')and 𝑢!(#) of the two PGI 

must be uncorrelated with each other. Thus, the estimation error of GWAS, b – 𝛃, cannot be correlated 

across the two subsamples, so that Cov(𝑢!('), 𝑢!(#)) = 0. In practice, the two most important steps that 

need to be taken are (1) excluding genetic relatives from all subsamples and (2) adding fairly rigorous 

controls against population structure to the GWAS. To the extent that Cov(𝑢!('), 𝑢!(#)) = 0 holds, 

using one PGI as an instrument for the PGI in a two-stage least squares regression will yield effect size 

estimates for the PGI that are no longer attenuated by finite GWAS sample sizes (DiPrete et al., 2018). 

However, even this correction of measurement error in PGI due to finite GWAS sample sizes does not 

address the fact that the influence of rare and structural genetic variants that are not well tagged by 

current genotyping arrays remain unobserved. Therefore, estimates of the effects of the genetic lottery 

that we report below are lower bounds for the influences of all genetic variants.  
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To obtain GWAS results for GIV analyses, we split the UKB GWAS estimation sample randomly into 

two subsamples, each containing 126,478 individuals. The subsamples have the same male-female ratio 

and the individuals in each sample are genetically related to those in the other sample with no more than 

first degree cousins or great-grandparents. We re-conducted a GWAS of occupational wages on these 

two subsamples and constructed two PGI for the sibling sample to use for GIV analyses. Note that these 

GIV PGI are not augmented with the GWAS results of educational attainment using MTAG.  

5.4 The SES-health gradient in the UK Biobank 

It is well-known that people with high SES also tend to live longer and healthier lives than those with 

lower SES (Chetty et al., 2016; Piotrowska et al., 2015; Stringhini et al., 2017b; Wilkinson & Marmot, 

2003). Natural experiments show that higher education has a positive causal effect on health (Grossman, 

2000, 2006). However, studies looking at income and health have produced mixed results about causal 

effects and come with many methodological challenges (Kawachi et al., 2010; O’Donnell et al., 2015).  

The UK Biobank offers a unique opportunity to gain additional insights into the relationship between 

SES and health thanks to its broad coverage of the UK population; its large sample size, which includes 

one of the largest samples of genotyped siblings in the world; as well as the availability of detailed health 

records from assessment center visits and digital health records that are continuously updated and that 

span the entire universe of medical diagnoses. In addition to descriptive analyses of the SES-health 

gradient for a variety of health outcomes, this particular type of data also allows us to estimate the extent 

to which exogenously given endowments from the social and the genetic lottery drive the relationships 

between SES and health. As a first step, we conduct a family fixed-effects analysis in the sibling sample 

that allows us to control for the outcomes of the social lottery (i.e., the parental environment that both 

siblings share) and a part of the genetic lottery (i.e., the genetic similarity of siblings that is due to their 

descent from the same biological parents). The remaining differences in SES and health outcomes 

between siblings are the result of their random genetic differences as well as unique environmental 

influences that are unrelated to their shared genetic endowments.    

Table 5.1 shows the relationship between SES, approximated by having a college degree and 

occupational wage, and health outcomes in the UKB. The first five rows of the table show estimates for 

the gradient with continuous proxies of health that include the waist-to-hip ratio, BMI, blood pressure, 

lung function, as well as the summary index for health. The results imply strong health advantages for 
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people with higher SES. For example, a ten percent increase in occupational wages is associated with ≈

0.12 decrease in BMI (95% CI: 0.09-0.34). The same picture emerges for the digital health records that 

were grouped into specific disease categories: Individuals with higher occupational wages and a college 

degree exhibit a lower tendency for severe disease outcomes that would require hospitalization (ever 

hospitalized). High SES is also associated with a lower likelihood of being diagnosed with all major 

disease categories, with the exception of neoplasms and cancers. The association between SES and health 

outcomes is particularly strong for endocrine, nutritional, and metabolic diseases; mental, behavioral, 

and nervous system disorders; and diseases of the circulatory and digestive systems. For example, having a 

college degree decreases the risk of ever being hospitalized for diseases of the circulatory system by ≈ 8 

percentage points (95% CI: 6.12-10.10). These estimates are a lower bound of the SES-health gradient 

because the well-known healthy volunteer bias in the UK Biobank attenuates the estimates (Fry et al., 

2017).  

The results in Table 5.1 also clearly demonstrate that exogenously given family-specific endowments are 

responsible for the majority of the gradient between SES and health. In particular, when we control for 

family fixed effects, all estimated coefficients between SES and health are closer to zero and only the 

associations of SES with circulatory system disorders, waist-hip-ratio, lung function, and the summary 

index across all health outcomes remain statistically distinguishable from zero. The substantial 

contributions of family-specific genetic and environmental effects that are outside of one’s control 

emphasize moral concerns about these observed health inequalities (Alesina et al., 2018; Alesina & La 

Ferrara, 2005; Almås et al., 2010; Cappelen et al., 2013; Gromet et al., 2015).   

5.5 Consequences of the genetic lottery for income 

We now turn to the consequences of the genetic lottery based on the random differences between 

siblings in their polygenic index for income. Our approach allows us to examine the causal impact of the 

genetic lottery for income on lifetime outcomes in the present-day UK.  

There are 18,807 genetic sibling groups in the UKB (38,698 individuals). Our analyses are restricted to 

pairs that have the respective outcome variables available for both individuals,13 leading to varying sample 

 

13 Only 1,003 sibling groups have more than 2 members. We dropped sibling groups if more than two siblings were 
available for a given outcome.  
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sizes between 8,780 and 17,633 pairs per outcome. We regressed each of the SES and health outcomes on 

the income PGI and covariates.14 For each outcome, we estimated the regression with and without family 

fixed effects. In the OLS estimation, the MTAG income PGI is used, whereas GIV estimation uses the 

ordinary income PGI estimated from the UKB subsamples.15 All PGIs are standardized to have zero 

mean and unit variance. We adjusted for multiple hypothesis testing using Holm’s method (Holm, 

1979) in each set of analyses.16  

Figure S5.1 shows the distribution of the sibling difference in the MTAG income PGI in absolute value. 

Most of the sibling pairs exhibit a very small difference.17 Half of the sibling pairs have a difference in 

income PGI values smaller than 0.63, measured in standard deviations of PGI in the sibling sample. The 

results of our within-family PGI analyses are presented in Table 5.2 and 5.3. The OLS estimates reported 

in the first column of Table 5.2 and 5.3 demonstrate that the MTAG income PGI is associated with all 

socioeconomic and almost all health-related outcomes we investigated. Furthermore, as reported in the 

third column, GIV regression estimates, which correct for measurement error in the PGI are typically 

twice as large as their corresponding OLS estimates.  

Across the board, we find that a higher income PGI is associated with more favorable lifetime outcomes 

including higher educational attainment, higher occupational wages, living in a better neighborhood, a 

lower BMI and waist-to-hip ratio, lower blood pressure, a lower chance of having ever been hospitalized, 

and a lower probability of being diagnosed with all disease categories in the digital health records that 

that we investigated, again with the exception of cancer and neoplasms (Figure S5.2). When we correct 

for the attenuation bias in our results due to the measurement error in the PGI using GIV regression 

(but before we control for family fixed effects), our estimates show that a one-standard-deviation 

increase in the genetic propensity for higher income is associated with a 15% increase in occupational 

wages, a 7-percentage-point-increase in the likelihood of having a university education, an almost one-

 

14 See the note in Table 2 and 3 for the included covariates.  
15 This is because the GWAS results for educational attainment are from a meta-analysis of many cohorts. 
16 Holm’s method controls the familywise error rate like Bonferroni correction, while it offers a uniformly more 
powerful correction by sequentially adjusting rejection criteria.  
17 22% of the variation in the MTAG income PGI comes from within-family differences, while 78% comes from 
between-family variation. The correlation of a genotype between two siblings is 0.5 in expectation, which implies 
that 25% of the variation in the PGI is due to within-family differences in expectation. However, in the presence of 
assortative mating, the PGI of siblings can be more similar to each other than in expectation, which can lower the 
share of the within-family variation to below 25%.  
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point-decrease in BMI, and a 4-percentage-point decrease in the likelihood of ever being hospitalized for 

the given age. Thus, the phenotypic associations between SES and health are mirrored in the associations 

between the PGI for income and health.  

This pattern of results is consistent with the finding that measures of SES such as educational attainment 

show pervasive and often substantial genetic correlations with health outcomes that range between -0.3 

for Alzheimer’s disease, depressive symptoms, and body fat percentage to 0.6 with Mother’s age at death 

(Bulik-Sullivan et al., 2015; Harden & Koellinger, 2020), illustrating that health and SES are also tightly 

intertwined at a genetic level.  

However, a substantial part of the correlations between PGI for socioeconomic outcomes and disease is 

likely to be due to indirect genetic effects such as genetic nurture (Kong et al., 2018) or subtle forms of 

population stratification such as correlations between gene frequencies and neighborhood characteristics 

that are also correlated with SES and health outcomes (Abdellaoui et al., 2019; Haworth et al., 2019). 

When comparing our OLS estimates of the coefficient for income PGI with and without family fixed-

effects, we observe that the within-family effects are typically halved (Figure S5.2). For instance, the 

estimated effect of a one standard deviation increase in the PGI for log occupational wage per hour 

decreases from 0.074 (95% CI: 0.07-0.08) to 0.046 (95% CI: 0.03-0.06) after controlling for family fixed-

effects. Likewise, the estimate of a one standard deviation increase in the income PGI with family fixed 

effects implies a 0.29 reduction in BMI (95% CI: 0.16-0.41), while it is estimated to be a 0.52 reduction 

without family fixed effects (95% CI: 0.51-0.62). However, even with the smaller point estimates and the 

larger standard errors from within-family analyses, we still find statistically significant associations of the 

income PGI with all socioeconomic outcomes we investigated as well as with BMI, waist-to-hip ratio, 

and diseases of the musculoskeletal system and connective tissues. Thus, approximately one half of the 

observed associations between our income PGI, socioeconomic attainment, and health outcomes in late 

adulthood are due to random genetic differences between siblings.   

Finally, combining the GIV regression with family fixed-effects allows us to estimate the combined linear 

causal effects of common SNPs while adjusting the PGI for measurement error. Despite substantially 

larger standard errors of the point estimates due to the two-stage least squares approach of the GIV 

regression, we find effects of the genetic lottery for a number of outcomes that are statistically 
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distinguishable from zero, including occupational wages, household income, regional income, years of 

schooling, and having a college degree. For example, a one-standard-deviation increase in income PGI is 

estimated to increase the chance of obtaining a college degree by 14.5 percentage points (95% CI: 10.4-

18.6) and an annual household income greater than £52,000 by 9.2 percentage points (95% CI: 4.3-

14.1). Although none of the health and disease measures is statistically significant in GIV fixed-effects 

estimations due to lower estimation precision, the point estimates are very similar to the statistically 

significant OLS estimates in the first column of Table 5.2 and 5.3. 

We repeated these analyses with a PGI for income that was not augmented by using MTAG (Table 

S5.13) and obtained qualitatively similar results, but with smaller point estimates in OLS regression due 

to the larger measurement error in the non-augmented PGI. We also conducted these analysis using a 

PGI for educational attainment (Table S5.13), with very similar results. Interesting, the PGI for 

educational attainment remains associated with health outcomes even after we add controls for actually 

achieved educational attainment, albeit with smaller effect sizes. 

These results are inline with findings from Selzam et al. (2019) who compared PGI predictions within- 

and between-family for standardized test scores, IQ, and health-related outcomes using the Twins Early 

Development Study from the UK. They found that PGI are still predictive within-family while within-

family estimate sizes for the PGI are typically smaller than between-family estimates. The differences are 

particularly large for standardized test scores, for which family background seems to play a more 

important role. These differences tend to disappear once parental socioeconomic variables are controlled 

for, suggesting that it is mainly the family’s socioeconomic status that confounds the PGI. Similar 

findings for within-family estimates were also reported by Belsky et al. (2018). 

5.6 Decomposition of the genetic lottery effects 

The previous section demonstrated that the genetic lottery for income has incontrovertible  

consequences for a broad range of life-time outcomes. However, as mentioned in section 5.1.1, these 

genetic influences do not imply purely biological mechanisms, nor do they imply that policy 

interventions are doomed to be unsuccessful (Goldberger 1979; Jencks 1980; Harden and Koellinger 

2020). To illustrate these important points, consider an intervenable pathway 𝑚!"  for individual i in 

family j through which the genetic lottery for income may affect an outcome such as health (e.g. access to 

favourable environmental conditions such as high-quality health care, healthy nutrition, or clean air and 
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water). This intervenable pathway  𝑚!"  can be added to model (2) and an auxiliary regression can be 

conducted, where 𝑚!"  is the dependent variable: 

𝑦!# = 𝛼/# + 𝛿0%𝑠!# + 𝛿0&𝑚!# + 𝑧′!#𝜃2 + �̃�!#  (5.3) 

𝑚!# = 𝛼'# + 𝛾𝑠!# + 𝑧′!#𝜃' + 𝑒'!#  (5.4) 

Then, the coefficient of the PGI 𝛿 from the model (2) can be written as: 

𝛿 = 𝛿0%+𝛾 ⋅ 𝛿0& (5.5) 

Therefore, the effect of genetic lottery 𝛿 can be decomposed into the effect working via pathway 𝑚!"  

(𝛾 ⋅ 𝛿B#) and the residual effect that does not work via that pathway (𝛿B').  Estimates of each parameter 

(𝛿B', 𝛿B#, 𝛾) can simply be obtained by estimating the equations (5.3) and (5.4) separately and the pathway 

effect (𝛾 ⋅ 𝛿B#) can be estimated as the product of estimates of 𝛾 and 𝛿B#. The standard errors can be 

computed by the delta method. 

As an empirical illustration, we focus on having a college degree as an example of 𝑚!" . Colleges are social 

institutions that have admission policies, procedures, and graduation requirements that are shaped by 

their decision makers and that can be influenced by policy. In this sense, colleges are intervenable 

institutions. They create value by giving their attendees access to potentially valuable assets (e.g. 

knowledge and skills). They can also bestow advantages on their attendees by serving as a signalling 

mechanism for potential employers that have imperfect information about job applicants (Arcidiacono 

et al., 2010; Michael, 1973). Of note, colleges remain intervenable institutions independent from how 

heritable it is to have a college degree and to which extent the genetic architecture of having a college 

degree is shared with other lifetime outcomes such as income or health. In fact, policy interventions 

could change both the heritability of having a college degree as well as it’s molecular genetic architecture 

dramatically. For example, a policy that randomly assigns people to college could lower the heritability of 

educational attainment substantially. Alternatively, a policy that forbids men to go to college would lead 

to a perfect correlation between having a college degree and whether an individual has one or two X 

chromosomes, without any meaningful biological mechanism that would stop men from going to 

college in a different environment. And yet, as long as colleges grant some advantages to their attendees 

that have health benefits, any genetic variant that is associated with college attendance would also have 

an indirect health benefit, but these health effects of genes could in principle be intervened upon.  
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 To increase statistical power, we limit our empirical analyses to five lifetime outcomes that are 

continuously distributed and available for many UKB participants (occupational wages, BMI, waist-to-

hip ratio, blood pressure, and lung function). The participants were at least aged 40, with the mean age 

of 57, when they were assessed for these measures. This limits concerns about potential reverse causality 

of these outcomes on college attendance.  

While we can interpret the total effects of the genetic lottery as causal in the within-family model, this is 

not the case for the decomposed effects. In order for the intervenable pathway  𝑚!"  to be causal, it would 

be required that the PGI is exogenous with respect to both the late-adulthood outcomes and college 

education conditional on the covariates and, second, that having a college degree is exogenous with 

respect to the outcomes later in life conditional both on the PGI and the covariates.18 Whereas the first 

part of these assumptions is plausibly satisfied given the random distribution of the PGI between 

siblings, the second part is likely to be violated in practice. In particular, this condition requires that there 

is no unobserved variable that affects both the late-adulthood outcomes and college education, which is 

clearly unrealistic. Having a college degree can be expected to affect many health-relevant circumstances, 

including income, neighborhood quality, and lifestyle-related choices that could influence health (e.g., 

smoking, alcohol consumption, diet, and physical activity) despite conditioning on family fixed effects. 

Therefore, the decomposed effects we estimate here do not illustrate the causal mechanism of the genetic 

effect. Instead, the results reported in Table 5.4 illustrate that the genetic lottery for income affects 

occupational wages and health partly via college education and its unobserved accompaniments — 

videlicet pathways that can be environmentally intervened upon (Barcellos et al., 2018).  

For occupational wages and all the objective health outcomes that we examined, we observe that the 

effect of the MTAG income PGI that operates via college education and its accompaniments is 

statistically significant after Bonferroni correction for multiple testing. A one-standard-deviation 

increase in the PGI boosts the probability of attaining a college degree by up to 14.5 percentage points 

(Table 5.2), and having a college degree is in turn associated with lower waist-to-hip ratio, BMI, and 

blood pressure as well as better lung function and higher occupational wages. The intervenable pathway 

 

18 This is the same logic as the sequential ignorability assumption in causal mediation analysis (J. Heckman & Pinto, 

2015; Imai et al., 2010)  
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that is approximated by  having a college degree accounts for almost 35% of the total effect of the income 

PGI on occupational wages. For the health outcomes, 9% - 29% is accounted for by the indirect path, 

with the lowest indirect effect for BMI and the highest for lung function. Obviously, these are lower 

bound estimates for how much of the effect of the genetic lottery could be intervened upon because the 

residual effects of the PGI could include other 𝑚!"  that imperfectly correlated with having a college 

degree. While the estimated residual effects of the PGI on the health outcomes in Table 5.4 are often too 

noisy to draw a clear statistical inference, we find statistically significant effects of the 𝑚!"  pathway that 

is approximated by having a college degree in every case.  

Thus, educational attainment and its accompaniments play a crucial role in the relationship between 

genetic fortune for income and health outcomes in later life. Thus, the genetic associations we report 

here clearly do not imply biological determinism.    

5.7 Returns to schooling  

The results above show a clear relationship between genetic predisposition (i.e., the results of genetic 

lottery), educational attainment, and income. This reinvigorates the much-debated question in 

economics of how sensitive estimates of the returns to schooling are to hitherto unobserved genetic 

confounds. Could it be that the strong, positive relationship between schooling and income is biased 

upwards by unobserved differences in family backgrounds and “ability”19 that are at least partially rooted 

in genetic factors (Griliches, 1977; J. J. Heckman et al., 2006; Mincer, 1958)? We address this question 

for the first time with an explicit control for potential confounds from common genetic variants that 

may influence both education and income. Specifically, we use data from the HRS and our 

(nonaugmented) PGI for income and apply GIV regression to correct for measurement error in the PGI 

(DiPrete et al., 2018).  

The coefficient we estimate is not the ex ante expected rate of return, which depends on psychic and 

financial costs of education, expected tax rates, expected number of working years after completing 

school, expected option values of additional years of education, and other information known to the 

economic agent at the time schooling decisions are being made (J. J. Heckman et al., 2006). The 

 

19 See footnote 5. 



 
Chapter 5 
 

 206 

approach we take here is much more humble. It addresses the question of whether the ex post average 

growth rate of income with respect to schooling is potentially biased by hitherto unobserved linear 

effects of common genetic variants. Nevertheless, we use the more well-known phrase “returns to 

schooling” throughout the rest of the paper to improve understandability.  

We pool individual observations in the HRS across the waves spanning from 1992 to 2014, which 

provides us with a weighted average of cross-sectional estimates, and we estimate a standard Mincer 

equation. We also consider a more flexible specification to capture potentially nonlinear returns to 

higher education by including a dummy variable for college education as well as an interaction term for 

having a college degree and years of schooling. As relevant proxies for family backgrounds, we also add 

controls for years of schooling for both parents. 

As a measure of genetic confounds, we would ideally want to have a PGI that captures only directly 

pleiotropic effects on educational attainment and individual income (rather than genetic effects that are 

mediated by educational attainment). Thus, a PGI for educational attainment cannot be used as a 

control variable in this context because it would remove the covariation in years of schooling and income 

that we intend to identify. However, it is possible to obtain reasonable upper and lower bounds of the 

relationship between education and income conditional on genetic effects using GIV regression (DiPrete 

et al., 2018).   

More specifically, the GIV regressions of the returns to schooling estimate the following equations with 

two-stage least squares:  

𝑦! = 𝛽(
) + 𝛽%

)𝑒𝑑𝑢! + 𝛽&
)𝑠*|,-.,!(%) + 𝑧′!𝛾) + 𝑒!)  (5.6) 

𝑠*|,-.,!(%) = 𝛿%
)𝑠*,!(&) +	𝛿&

)𝑒𝑑𝑢! + 𝑧′!𝜃) + 𝑢!)  (5.7) 

𝑦! = 𝛽(
. + 𝛽%

.𝑒𝑑𝑢! + 𝛽&
.𝑠*,!(%) + 𝑧′!𝛾. + 𝑒!. (5.8) 

𝑠*,!(%) = 𝛿%
.𝑠*,!(&) +	𝛿&

.𝑒𝑑𝑢! + 𝑧′!𝜃. + 𝑢!. (5.9) 

where GIV-C and GIV-U are described by equations (5.6) and (5.7) as well as (5.8) and (5.9), 

respectively. 𝑦!  denotes log hourly wages and 𝑒𝑑𝑢!  the years of schooling for individual i. 𝑠),!(') is a PGI 

summarizing the GWAS effects of outcome k estimated with the first subsample, where outcome k is log 

hourly wage (y) for GIV-U while it is the log hourly wage conditional on years of schooling (𝑦|𝑒𝑑𝑢) for 

GIV-C. 𝑠+,!(#) is a PGI constructed from a GWAS on hourly wage estimated with the second 

subsample. 𝒛𝒊 is a vector of control variables and 𝑒!  and 𝑢!  are error terms.  
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Extensive simulations under a wide variety of conditions found the GIV-U estimate to be downwardly 

biased and the GIV-C estimate to be upwardly biased as long as no environmental endogeneity was 

present (DiPrete et al., 2018). Thus, when taken together, the use of GIV-U and GIV-C will generally 

produce bounds on the true effect of T.  Moreover, in the simulations performed by DiPrete, Burik, and 

Koellinger (2018), the upward bias of GIV-C was always smaller than the upward bias in OLS.  

Intuitively, GIV-U provides the lower bound for the relationship between education and income 

conditional on the currently observed linear SNP effects because the PGI that is used as a control in this 

regression also captures genetic effects on income that work via education. On the other hand, GIV-C 

provides an upper bound because although it mimics a regression of income on education conditional 

on all SNPs, it does so only imperfectly (see Table 1 in DiPrete et al. (2018)) and some of the bias due to 

direct pleiotropic effects of SNPs on education and income may remain in the estimates.  

When environmental sources of endogeneity are present, of course, the GIV-U + GIV-C bounding 

strategy may fail, just as all other methods fail. As a practical matter, therefore, accurate estimates of the 

effects of education on wages require strategies for identifying and reducing the impact of environmental 

endogeneity. Therefore, the bounds reported here only reflect the extent of confounds due to the linear 

effects of common genetic variants in the returns to schooling.    

In addition to the two GIV models, we consider a baseline OLS model excluding PGI, as well as a naïve 

model, where the PGI is included as a control variable without accounting for attenuation bias due to 

estimation errors in the GWAS. Note that we do not use the MTAG income PGI here. 

Table 5.5 presents our results. The estimate with the baseline controls for the pooled sample (Panel A, 

column 1) suggests that one additional year of schooling is associated with an average increase in hourly 

wages of 11% (95% CI: 9.7-12.4), which is slightly higher than earlier estimates from cross-sectional OLS 

in other US samples (Card, 1999; Harmon et al., 2003; J. J. Heckman et al., 2006). However, the HRS is 

a sample of elderly individuals who are approaching or who already are at the end of their professional 

careers, which could contribute to the slightly higher returns to schooling we find here. Previous 

attempts to uncover causal estimates of the returns to schooling have shown that the cross-sectional OLS 

estimates tend to be lower than instrumental variable based approaches (Harmon et al., 2003). The 

second column shows the results when the PGI is naïvely controlled for, i.e., by simply adding the 
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income PGI as an additional control variable in an OLS regression. The estimated returns to schooling 

decreases slightly to 10.7% (95% CI: 9.4-12.1) for each additional year of schooling. Notably, a one-

standard-deviation increase in the PGI in this model is associated with 3% higher hourly wages even after 

adjusting for educational attainment (95% CI: 1.3-4.8). Due to the measurement error in the PGI for 

income, this is a downward biased, lower-bound estimate of the relevance of genetic effects on income 

after controlling for education. 

The coefficient estimates for the returns to schooling decrease marginally (~0.5 percentage points) after 

including controls for parental education, which is a proxy for both genetic and environmental 

advantages that parents pass on to their children. Interestingly, the coefficient estimates of income PGI 

are also slightly lower in models that include these controls (~0.2 percentage points), possibly because 

parental education captures some of the indirect genetic effects that work via favorable environmental 

conditions that highly educated parents tend to provide for their children (Kong et al., 2018).  

Columns 3 and 4 in Panel 1 show the estimates that correct the measurement error in the income PGI 

with GIV-C and GIV-U regression, providing upper and lower bounds, respectively, of the coefficients 

for educational attainment conditional on observed genetic confounds. Our results suggest that the 

average return for an additional year of schooling is between 10.3% and 10.4% even after adjusting for 

the now observed linear common genetic confounds (95% CI: 8.7-11.8; 8.8-12.0). Furthermore, GIV 

yields substantially larger estimates of the genetic effects, with a one-standard-deviation increase in the 

PGI being associated with 8.4% to 15.8% higher hourly wages after adjusting for educational attainment 

(95% CI: 2.9-13.9; 5.2-26.4). These results decrease slightly when controls for parental education are 

included (7.9% and 14.8%).  

Our sex-specific estimation results suggest that the returns to schooling are substantially higher for 

women than for men in the HRS, which is in line with previous studies. The gender differential in 

returns to schooling has been well documented and has previously been attributed to differences in 

discrimination, tastes, and circumstances of highly educated women compared to less educated women 

(Dougherty, 2005). In particular, the baseline OLS model estimates an average return of 7.8% (95% CI: 

5.7-10) for an additional year for schooling for men (Panel B, column 1) but almost twice as much for 

women (13.3%; 95% CI: 11.5-15.1) (Panel C, column 1). The estimated returns decrease by almost the 

same small magnitude for both men and women when we adjust for potential genetic confounds (Panels 

B and C, columns 2-4). Furthermore, having a college degree seems to yield an additional 10% (95% CI: 
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1-18) income advantage for women over and above the 12% (95% CI: 9-15) higher hourly wages for an 

additional year of schooling in the GIV models (Panel C, column 3-4).  

As a robustness check, the same analyses in the HRS are repeated with 3-year moving averages of wages, 

which reduces measurement error and transitory variance in the wage distribution. As reported in Table 

S5.10, the overall results are largely similar to the original results, while some statistical precision is lost 

due to a smaller sample size.  

Our results are comparable to the results of studies that used differences between monozygotic twins to 

estimate the returns to schooling. For instance, Ashenfelter and Rouse (1998) report that including 

family fixed effects reduces the returns to schooling from 11% (95% CI: 0.09-0.13) to 7% (95% CI: 0.03-

0.11) in the Princeton Twins survey data. Similarly, Behrman et al. (1994) show that the returns to 

schooling decreases from 7% (95% CI: 0.07-0.07) to 3.5% (95% CI: 0.03-0.04) in the National Academy 

of Science-National Research Council Twins and the Minnesota Twin Registry. Although some of these 

estimates are noisy, controlling for family fixed-effects seems to reduce the returns to schooling more 

sharply in MZ-twin designs than in our approach. This is not surprising given that our approach 

controls only for currently observed linear genetic confounding effects and parental education as a 

measure of family background, whereas the twin approach entirely eliminates the bias arising from all 

family-specific environments and all linear genetic confounds.  

Oster (2019) notes that coefficient stability alone cannot provide evidence against omitted variable 

bias—it does so only if the additional controls are sufficiently important in explaining the outcome 

variation. There is only a marginal increase in 𝑅# when we use the naïve control strategy. However, while 

we cannot obtain 𝑅# from IV regression directly, the substantially larger coefficient estimate of the PGI 

in GIV regressions may imply a nonnegligible change in 𝑅# when the measurement error in the PGI is 

adequately corrected for.  

In summary, controlling for now observable confounds from linear effects of common genetic variants 

slightly decreases the estimated returns to schooling, but not by more than 0.8 percentage points. At the 

same time, the estimated relationship between genetic predisposition and realized income remains 

substantial even after we control for educational attainment. Even in regressions that explicitly control 
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for one’s own and one’s parents’ education, a one-standard-deviation increase in the PGI is associated 

with an 8-15% higher average wage in the pooled GIV-C and GIV-U models.  

5.7 Discussion 

Conceptually, genetic endowments are a form of luck — they are one-time, irreversible, exogenously 

given, individual-specific endowments that result from the natural experiment of meiosis that randomly 

mixes the genotypes of one's biological parents. We have shown here that genetic fortune for high 

income, in the form of random genetic differences between siblings, contributes to inequalities 

throughout the life course, influencing the education people attain, which occupations they pursue, how 

much they earn, the quality of the neighborhoods they live in, and the type of health outcomes they will 

tend to experience in late adulthood. Our results illustrate how tightly health, skills, work, achievements, 

and genetic luck are coupled: the idea that human agency in the form of choices and effort could be 

neatly separated from luck is unsubstantiated in light of the life-long consequences of the genetic lottery 

that influence behavior and achievements. The inequalities due to genetic luck that we showed here 

clearly violate the principle of equal opportunity. They also raise questions about how much credit and 

responsibilities society can or should attribute to individual's socio-economic and health-related 

outcomes in life (Rawls, 1999; Roemer, 1998). If inequalities partly result from a genetic lottery, the case 

in favor of a social contract that provides insurance against unfavorable outcomes is strong (Alesina et al., 

2018; Alesina & La Ferrara, 2005; Cappelen et al., 2013; Gromet et al., 2015).  

Specifically, our results show that the positive relationship between SES and health (Chetty et al., 2016; 

Stringhini et al., 2017a; Wilkinson & Marmot, 2003) is due partly to family-specific genetic and 

environmental endowments that affect both factors. Furthermore, siblings who “won” the genetic 

lottery for income are more likely to have favorable health outcomes later in life (e.g., lower BMI), but 

this genetic advantage is partly mediated by obtaining a college degree. Although our study design does 

not allow us to identify the causal effect of education on health, our results strongly suggest that high 

educational attainment and its accompaniments tend to bring about a lifestyle that has health benefits. 

Furthermore, we have shown that genetic fortune for income also causes differences in educational 

attainment. However, even when we control for the currently observed genetic confounds, the positive 

relationship between income and educational attainment remains strong, with an average of 8-11% 

higher hourly wages for each additional year of schooling. These results illustrate that the causal 
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pathways from genes to behavior, achievements, and health involve environmental and behavioral 

pathways that can be intervened upon, such as education. Thus, genes contribute to inequality, but this 

does not imply biological determinism or an irrelevance of policy.   

Genetic predispositions, such as those we studied here, have relevance for all branches of economics that 

are concerned with differences between individuals (Harden & Koellinger, 2020). The rapidly growing 

availability of genetic data and improvements in computing power and statistical methods now allow us 

to investigate links between genetic and environmental factors, human behaviour, and economic 

outcomes directly. This new type of data now permits economists to use genetically-informed study 

designs that enrich our empirical toolbox and that allow us to ask new questions and to gain new insights 

on core questions of our discipline. Our results here are illustrations of this.  
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5.9 Tables 

Table 5.1 Association between socioeconomic status (SES) measures and health outcomes in the UK 
Biobank 

 
log occupational wage 

per hour 
College education 

 OLS OLS-FE OLS OLS-FE 
  summary index -0.126*** -0.049 -0.112*** -0.046*** 
  (N = 13,862 | 26,550) (0.009) (0.018) (0.005) (0.011) 
  waist-to-hip ratio -0.019*** -0.007 -0.017*** -0.007** 
  (N = 17,658 | 35,028) (0.002) (0.003) (0.001) (0.002) 
  BMI -1.248*** -0.103 -1.298*** -0.415** 
  (N = 17,644 | 34,968) (0.108) (0.202) (0.055) (0.111) 
  blood pressure -2.531*** -0.788 -1.885*** -1.185* 
  (N = 15,818 | 31,372) (0.326) (0.663) (0.171) (0.371) 
  lung function 0.279*** 0.097 0.188*** 0.082** 
  (N = 15,506 | 29,844) (0.019) (0.040) (0.010) (0.022) 
  ever hospitalized -0.061*** -0.019 -0.047*** -0.007 
  (N = 17,692 | 35,132) (0.009) (0.021) (0.005) (0.011) 
  ever diagnosed with cancer 0.006 -0.008 0.002 0.004 
  (N = 17,692 | 35,132) (0.008) (0.018) (0.004) (0.011) 
  infectious and parasitic diseases -0.030*** -0.017 -0.028*** -0.003 
  (N = 17,692 | 35,132) (0.006) (0.014) (0.003) (0.008) 
  neoplasms 0.013 -0.007 0.006 0.005 
  (N = 17,692 | 35,132) (0.008) (0.017) (0.004) (0.010) 
  diseases of blood organs and immune system -0.028** -0.006 -0.031*** -0.009 
  (N = 17,692 | 35,132) (0.009) (0.020) (0.005) (0.012) 
  endocrine, nutritional, and metabolic diseases -0.054*** -0.011 -0.069*** -0.024 
  (N = 17,692 | 35,132) (0.008) (0.018) (0.004) (0.011) 
  mental, behavioral, nervous system disorders -0.071*** -0.047 -0.059*** -0.026 
  (N = 17,692 | 35,132) (0.008) (0.019) (0.004) (0.010) 
  diseases of the eye and adnexa -0.006 -0.009 -0.017*** -0.019 
  (N = 17,692 | 35,132) (0.006) (0.014) (0.004) (0.009) 
  diseases of the circulatory system -0.081*** -0.017 -0.086*** -0.038* 
  (N = 17,692 | 35,132) (0.010) (0.022) (0.005) (0.012) 
  diseases of the respiratory system -0.051*** -0.027 -0.047*** -0.018 
  (N = 17,692 | 35,132) (0.008) (0.017) (0.004) (0.010) 
  diseases of the digestive system -0.090*** -0.026 -0.075*** -0.010 
  (N = 17,692 | 35,132) (0.011) (0.024) (0.006) (0.014) 
  diseases of the skin and subcutaneous tissue -0.014 -0.011 -0.023*** -0.018 
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log occupational wage 

per hour 
College education 

 OLS OLS-FE OLS OLS-FE 
  (N = 17,692 | 35,132) (0.007) (0.015) (0.004) (0.009) 
  diseases of musculoskeletal system and 
connective tissue -0.065*** -0.026 -0.068*** -0.029 

  (N = 17,692 | 35,132) (0.010) (0.022) (0.005) (0.012) 
  diseases of genitourinary system -0.063*** -0.014 -0.053*** -0.017 
  (N = 17,692 | 35,132) (0.010) (0.021) (0.005) (0.012) 
  symptoms and signs not elsewhere classified -0.068*** -0.024 -0.066*** 0.000 
  (N = 17,692 | 35,132) (0.011) (0.024) (0.006) (0.013) 
  injury, poisoning, and other consequences of 
external causes 

-0.035*** -0.030 -0.015** -0.002 

  (N = 17,692 | 35,132) (0.008) (0.018) (0.004) (0.011) 
  external causes of morbidity and mortality -0.045*** -0.043 -0.023*** -0.007 
  (N = 17,692 | 35,132) (0.008) (0.019) (0.004) (0.011) 
  other health conditions -0.052*** -0.025 -0.067*** -0.026 
  (N = 17,692 | 35,132) (0.011) (0.025) (0.006) (0.014) 
Note: The table reports the coefficients from separate regressions of health outcomes on log occupational wages per 
hour and a dummy variable for college education, with or without family fixed effects (FE). Standard errors clustered 
by family are reported in parentheses. Significance at family-wise error rate 5% (*), 1% (**), 0.1% (***), where multiple 
hypothesis testing is corrected by Holm's method (Holm, 1979) for each set of analysis. For each outcome, the sample 
is restricted to sibling pairs for both of whom the outcome is observed. The summary index is a weighted average of all 
the health outcomes constructed according to Anderson (2008) such that lower values imply a better health. All 
regressions controlled for a sex dummy, year of birth, year of assessment, and the interaction terms between the sex 
dummy and all other covariates. Regressions on log hourly wages also included dummies for year and age of 
observation. 
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Table 5.1  Associations between the polygenic index for income and measures of socioeconomic 
achievement and health in UK Biobank siblings 
 
 OLS OLS-FE GIV GIV-FE 
Socioeconomic outcomes 
 
  log hourly wage 0.074*** 0.046*** 0.147*** 0.084** 
  (N=17,692) (0.002) (0.007) (0.008) (0.022) 
 
  top household income 0.056*** 0.034*** 0.122*** 0.092** 
  (N=27,412) (0.003) (0.007) (0.008) (0.025) 
 
  log regional income 0.041*** 0.015*** 0.080*** 0.041* 
  (N=31,692) (0.001) (0.003) (0.005) (0.012) 
 
  neighborhood score 1.523*** 0.643* 2.869*** 1.598 
  (N=29,166) (0.088) (0.203) (0.284) (0.694) 
 
  years of education 1.394*** 0.771*** 2.774*** 1.498*** 
  (N=35,132) (0.026) (0.066) (0.095) (0.237) 
 
  college degree 0.131*** 0.069*** 0.258*** 0.145*** 
  (N=35,132) (0.002) (0.006) (0.009) (0.021) 
 

health proxies 
 

  waist-to-hip ratio -0.007*** -0.004** -0.015*** -0.009 
  (N=35,498) (0.000) (0.001) (0.001) (0.003) 
 

  BMI -0.563*** -0.286*** -0.994*** -0.497 
  (N=35,432) (0.027) (0.063) (0.086) (0.223) 
 

  blood pressure -0.847*** -0.608 -1.678*** -0.795 
  (N=31,770) (0.078) (0.208) (0.250) (0.735) 
 

  lung function 0.055*** 0.017 0.112*** 0.052 
  (N=30,240) (0.005) (0.013) (0.015) (0.047) 
Note: The table reports the coefficient estimates for the standardized polygenic index for income (PGI). Standard 
errors clustered by family are reported in parentheses. Significance at family-wise error rate 5% (*), 1% (**), 0.1% (***), 
where multiple testing is controlled using Holm’s method (Holm, 1979) for each set of analysis. For each outcome, the 
sample is restricted to sibling pairs for both of whom the outcome is observed. FE: family fixed effects included. OLS 
regressions use MTAG PGI for income (i.e. a PGI for income that also takes information from a GWAS on 
educational attainment into account). GIV regressions use two (non-MTAG) income PGI estimated from two 
independent samples, where one PGI instruments the other. All analyses included dummy variables for the year of 
birth, male, and being the younger sibling as well as the first 20 genetic PCs. For economic outcomes, we use age 
dummies instead of the year of birth and add dummies for the year of survey. For health outcomes we also control for 
the age dummies instead but not for the year of survey. In every case, we also include the interaction terms between the 
male dummy and the rest of covariates. 
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Table 5.2  Associations between the polygenic index for income and disease diagnosis outcomes in UK Biobank 
siblings 
 

 

OLS OLS-FE GIV GIV-FE 
 

  ever hospitalized -0.021*** -0.012 -0.036*** -0.028 
  (N=35,602) (0.002) (0.006) (0.006) (0.020) 
 
  ever diagnosed with cancer -0.001 0.001 0.000 0.007 
  (N=35,602) (0.002) (0.006) (0.006) (0.021) 
 
  infectious and parasitic diseases -0.013*** -0.005 -0.026*** 0.004 
  (N=35,602) (0.002) (0.005) (0.005) (0.017) 
 
  neoplasms 0.000 0.001 0.002 0.007 
  (N=35,602) (0.002) (0.006) (0.006) (0.021) 
 
  diseases of blood organs and immune system -0.012*** 0.001 -0.024** 0.002 
  (N=35,602) (0.002) (0.007) (0.007) (0.023) 
 
  endocrine, nutritional, and metabolic diseases -0.026*** -0.011 -0.030*** 0.007 
  (N=35,602) (0.002) (0.006) (0.007) (0.022) 
 
  mental, behavioral, nervous system disorders -0.027*** -0.009 -0.048*** 0.002 
  (N=35,602) (0.002) (0.006) (0.007) (0.021) 
 
  diseases of the eye and adnexa -0.006*** -0.005 -0.016* -0.018 
  (N=35,602) (0.002) (0.005) (0.005) (0.017) 
 
  diseases of the circulatory system -0.035*** -0.013 -0.066*** -0.035 
  (N=35,602) (0.003) (0.007) (0.008) (0.025) 
 
  diseases of the respiratory system -0.022*** -0.010 -0.045*** -0.026 
  (N=35,602) (0.002) (0.006) (0.007) (0.021) 
 
  diseases of the digestive system -0.033*** -0.013 -0.068*** -0.043 
  (N=35,602) (0.003) (0.008) (0.008) (0.027) 
 
  diseases of the skin and subcutaneous tissue -0.008*** -0.005 -0.013* -0.013 
  (N=35,602) (0.002) (0.005) (0.006) (0.018) 
 
  diseases of musculoskeletal system and 
connective tissue 

-0.035*** -0.023* -0.065*** -0.037 
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Table 5.2  Associations between the polygenic index for income and disease diagnosis outcomes in UK Biobank 
siblings 
 

 

OLS OLS-FE GIV GIV-FE 
  (N=35,602) (0.002) (0.007) (0.008) (0.025) 
 
  diseases of genitourinary system -0.022*** -0.011 -0.051*** -0.006 
  (N=35,602) (0.002) (0.007) (0.008) (0.024) 
 
  symptoms and signs not elsewhere classified -0.033*** -0.016 -0.064*** -0.032 
  (N=35,602) (0.003) (0.008) (0.008) (0.027) 
 
  injury, poisoning, and other consequences of 
external causes 

-0.009*** -0.004 -0.018* -0.023 

  (N=35,602) (0.002) (0.006) (0.006) (0.021) 
 
  external causes of morbidity and mortality -0.011*** -0.004 -0.020* -0.027 
  (N=35,602) (0.002) (0.006) (0.007) (0.022) 
 
  other health conditions -0.032*** -0.022 -0.056*** -0.039 
  (N=35,602) (0.003) (0.008) (0.009) (0.027) 
Note: The table reports the coefficient estimates for the standardized polygenic indice for income (PGI). 
Standard errors clustered by family are reported in parentheses. Significance at family-wise error rate 5% 
(*), 1% (**), 0.1% (***), where multiple testing is controlled using Holm’s method (Holm, 1979) for each 
set of analysis. For each outcome, the sample is restricted to sibling pairs for both of whom the outcome 
is observed. FE: family fixed effects included. OLS regressions use MTAG PGI for income (i.e. a PGI for 
income that also takes information from a GWAS on educational attainment into account). GIV 
regressions use two (non-MTAG) income PGI estimated from two independent samples, where one PGI 
instruments the other. All analyses included dummy variables for the year of birth, male, and being the 
younger sibling as well as the first 20 genetic PCs. For economic outcomes, we use age dummies instead 
of the year of birth and add dummies for the year of survey. For health outcomes we also control for the 
age dummies instead but not for the year of survey. In every case, we also include the interaction terms 
between the male dummy and the rest of covariates. 
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Table 5.3  Decomposition of the genetic lottery effects in the UK Biobank siblings 
 

 estimation 
effect via college 

education 
residual effect total effect 

effect via college 
education % 

 

  log occupational wage per hour OLS 0.014*** 0.031*** 0.046*** 31.7 
  (N=17,578)  (0.002) (0.006) (0.007)  

 

   GIV 0.030*** 0.057* 0.087*** 34.7 
    (0.006) (0.021) (0.022)  

 

  waist-to-hip ratio OLS -0.0004** -0.003** -0.004*** 11 
  (N=35,028)  (0.0001) (0.001) (0.001)  

 

   GIV -0.001* -0.008 -0.008 10.1 
    (0.000) (0.003) (0.003)  

 

  BMI OLS -0.025* -0.256*** -0.281*** 8.8 
  (N=34,968)  (0.008) (0.064) (0.064)  

 

   GIV -0.052* -0.415 -0.467 11.2 
    (0.019) (0.228) (0.224)  

 

  blood pressure OLS -0.077* -0.546* -0.622* 12.3 
  (N=31,372)  (0.027) (0.210) (0.209)  

 

   GIV -0.159* -0.596 -0.755 21 
    (0.060) (0.748) (0.735)  

 

  lung function OLS 0.005** 0.013 0.018 29.4 
  (N=29,844)  (0.002) (0.014) (0.013)  

 

 GIV 0.011* 0.041 0.052 21.2 
  (0.004) (0.048) (0.047)  

Note: * p<0.05, ** p<0.01, *** p<0.001 with Bonferroni correction for testing 5 outcomes. Standard errors clustered by family are 
reported in parentheses. The standard errors for the indirect effects are computed using the delta method. All regressions used family 
fixed effects. The table reports decomposition of the genetic lottery effects i for 4 health measures and occupational wages into the 
effect working via college education and the residual effect. "effect via college education %" reports the proportion of the  effect via 
college education in the total effect. OLS regressions use MTAG PGI for income. GIV regressions use two income PGI estimated 
from two independent samples, where one PGI instruments the other. Covariates are the top 20 genetic PCs and dummy variables 
for the year of birth, male, the age at the time of assessment, and being a younger sibling, as well as the interaction terms between the 
male dummy and the rest of covariates. For occupational wages, we use age dummies instead of the year of birth and add dummies 
for the year of survey. For each outcome, the sample is restricted to sibling pairs for both of whom the outcome is observed.  
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S5.1 Imputing occupational wages from standardized 

occupation codes 

The UK Biobank (UKB) does not contain information about individual income. However, it provides 

rich information directly relevant to labor earnings such as 4-digit standardized occupation codes (SOCs) 

and working hours. We take advantage of this information to impute occupational wages in the UKB 

data. We use three datasets to develop our imputation algorithm: the Labour Force Survey (LFS) for the 

UK, the Annual Survey of Hours and Earnings (ASHE), and the British Household Panel Survey 

(BHPS), which was collected independently from the LFS. In short, we fit a regression model on wages 

in the LFS using mean and median wages for standardized job codes obtained from the ASHE. We then 

assess the accuracy of our imputation algorithm in the BHPS. As a final step, we apply the imputation 

algorithm in the UKB to obtain our measure of occupational wages.  

S5.1.1 The Labour Force Survey (LFS) 

The LFS data are collected by the Office for National Statistics (ONS) of the UK. With the intention to 

be representative of the whole UK population, the LFS has selected samples every quarter by randomly 

drawing residential addresses from the postcode database since 1973. The households of those drawn 

addresses are followed for five consecutive quarters, where information on earnings is collected in the 

first and last waves. Covering a long period of years, the LFS provides data with a large sample size along 

with various sets of individual information relevant to labor earnings. We pool samples of wage-earning 

individuals aged between 35 and 64 observed from 2002 to 2016, given that the UKB sample consists of 

those aged 40-64. We include those aged 35-39 to increase the sample size of the LFS because these 

individuals should not be too different from those aged over 40.  

In addition to those with incomplete data, we excluded those who reported working hours less than one 

hour per week as well as those who reported working part-time (full-time) but working for more than or 

equal to (less than) 30 hours per week. We exclude these observations as they only introduce more noise 

in the estimation. As a result, we obtain a sample size of 464,192. 

S5.1.2 The Annual Survey of Hours and Earnings (ASHE) 

The ASHE, also collected by the ONS, provides detailed labor statistics of the UK working population. 

It is based on a 1% sample randomly drawn annually from employees recorded in the labor tax database 
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of the UK. It is therefore the best source available from which high-quality wage information of each 

occupation can be obtained. The occupation groups are defined by the Standard Occupation 

Classification (SOC) constructed by the ONS. The classifications define four levels of occupation 

groups indexed by 4-digit codes. In the case of the 2000 version, the 4-digit SOC defines 353 occupation 

groups. 

S5.1.3 The British Household Panel Survey (BHPS) 

Conducted by the Institute for Social and Economic Research at the University of Essex, the BHPS is an 

annual survey that provides data on a nationally representative sample of more than 5,000 households 

and their adult members, who were followed from 1991 to 2009, with additional subsamples added in 

1997 and 1999. Similar to the LFS, the household samples were drawn randomly from the postcode 

database. Despite its smaller sample size compared to that of the LFS, the BHPS has rich information on 

working individuals, which can suitably be used to test the accuracy of wage imputation based on LFS 

data. We pool working individuals aged 40-64 observed from 2002 to 2009, removing one extreme 

outlier with a peculiarly high wage. As it is done for the LFS, we also exclude those who reported 

working for less than one hour per week. A sample size of 32,947 is obtained as a result. 

S5.1.4 Occupation composition 

While the LFS and the BHPS consist of representative samples of the UK population, the participants of 

the UKB data were not recruited in such a way that they can exactly represent the UK population. This 

fact implies that using the BHPS to assess the imputation accuracy may lead to exceedingly optimistic 

results of the imputation accuracy to the extent that the imputation error occurs due to the sample 

difference between the LFS and the UKB. Therefore, it is important to first identify any distinctive 

differences between the data sets. Since it is practically impossible to discuss every summary statistic for 

all three data sets, we examine only the occupation composition of each data set. 

Table S5.11 presents the mean wages of nine major occupation groups (defined by the 1-digit SOCs) 

obtained from the ASHE and averaged over 2006-2010, the period during which the UKB participants 

were surveyed. It shows that the top three major occupation groups are: “1. Managers and senior 

officials”, “2. Professional occupations” and “3. Associate professional and technical occupations”. On 

the other hand, the bottom three groups are: “7. Sales and customer service occupations”, “9. Elementary 

occupations”, and “6. Personal service occupations” 
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Figure S5.4 depicts the composition of these major occupation groups for each sample. Clearly, 

compared to the LFS and the BHPS, a larger share of the individuals in the UKB had a job classified in 

the top three occupation groups. It is also evident that there are relatively fewer individuals in the UKB 

who had a job that belongs to the bottom three occupation groups. In contrast, there is only a subtle 

difference between the LFS and the BHPS in their job composition, which is not a surprise as they are 

meant to represent the UK population. Hence, it is important to keep in mind that the UKB sample 

includes many individuals who had relatively high-paying jobs and their actual wage levels are likely to be 

higher on average than those in the LFS and the BHPS.    

S5.1.5 Imputation approach 

Our imputation approach is fully parametric and conducted in two steps. We first fit a regression of log 

wages in the LFS data. Based on the estimated coefficients, we then predict log-wages for samples in the 

UKB. We impute both weekly and hourly wages because the latter demands less information while the 

former can be imputed more precisely. This procedure requires that the two data sets contain the same 

predictor variables. Additionally, the available predictor variables must be sufficiently correlated with the 

wage distribution. Given these requirements, it is possible to use the following predictors: 4-digit 

standardized occupation code (SOC), working hours, full/part-time status, age, sex, square, cube, and 

interaction terms, as well as year-specific effects.  

The pivotal information for predicting wages is the occupational information given by the 4-digit SOCs. 

However, simply including dummy variables for the 4-digit SOCs in the prediction model (353 

occupation groups in total for the 2000 SOC) in combination with other categorical characteristics (e.g., 

age, sex) can lead to cells with zero or too few observations, which in turn will result in failed or 

inaccurate imputations for some of the sample. Therefore, instead of dummy variables, we include mean 

and median wages for each individual’s occupation group by sex and full/part-time status obtained from 

the ASHE. 

This is the key feature of our imputation procedure that ensures both the efficiency and the accuracy of 

the imputation. In particular, using wage data from the ASHE is useful in that it allows us to include 

interaction terms between occupational profiles and other variables without substantially increasing the 

number of parameters, which can efficiently capture any heterogeneity across occupational groups. 

Another important reason is a change in the SOC system made in 2010, which updated the SOC from 

its 2000 version to the 2010 version. As the job codes in the two SOC systems cannot straightforwardly 
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be converted into the other system, in essence, it is impossible to pool the LFS data for a long period that 

covers both before and after 2010 if one wishes to make use of detailed occupational information. 

Complementing the LFS with the ASHE data offers a convenient solution to this complication. 

Specifically, the prediction model is specified as: 

𝑙𝑜𝑔(𝑌!) 	= 𝛼 + 𝑋!𝛽 +	𝑍!𝛾 + 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛!𝛿 + 𝜖! (S5.1) 

where 𝑙𝑜𝑔	(𝑌!) are log weekly gross wages from employment, standardized to the 2015 currency value by 

the Consumer Price Index. 𝑋!  is a vector of predictors including working hours per week (and its 

square), and dummies for full/part-time status (full if working hours ≥30), age, sex, year of observation, 

and 2-digit SOCs.1 𝑍!  is a vector that contains log mean and log median weekly wages as well as their 

interaction term for the 4-digit-level occupation group (by sex and full/part-time status) to which 

individual i belongs. “𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛!” includes interaction terms between sex, full/part-time status, the 

remaining variables in 𝑋!, and the 𝑍!  term.  

The prediction model for hourly wages is identical except that the hours worked variable is used only to 

construct hourly wages from the weekly wages and the dummy for full/part-time status as well as hours 

worked are not included as predictors. Furthermore, occupational hourly wages are collected from the 

ASHE only by sex. 

The imputation is then conducted as follows: (i) estimate the prediction model in the LFS data using 

mean and median wages of each SOC obtained from the ASHE; (ii) predict log wages in the UKB 

sample based on the estimated coefficients from (i). To evaluate the imputation accuracy, we utilize the 

BHPS data by comparing the predicted log-wages from step (i) for samples in the BHPS with their actual 

log-wages. By regressing the imputed log-wages on the actual log wages of the BHPS, we obtain an 𝑅" of 

approximately 0.75 for weekly wages and 0.50 for hourly wages. Figure S5.5 presents a scatter plot of the 

actual log wages against the imputed log wages, which demonstrates that the wages are imputed with 

 

1 While the variation over 4-digit level occupation groups is supposed to be captured by mean and median wages 
from the ASHE, including the dummies for occupational groups appears to still improve the model fit by 
correcting some group-level difference between the LHS and the ASHE data. The 2-digit level is chosen to have 
sufficient observations in each group. Additionally, the difference between the 2000 and 2010 SOC systems is not 
too problematic for the 2-digit level classifications.    
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reasonable accuracy. Note that the distribution of reported log wages may contain transitory variance; 

therefore, the reported imputation accuracy can be regarded as a conservative result.  

S5.1.3 Imputing wages of the UKB 

We impute both weekly and hourly wages for individuals in the UKB. For the former, only the current 

job information is used since the information on hours worked is available only for the current job. 

Additionally, only individuals younger than 65 are considered. For the latter, we use primarily 

information on the current job, while we instead use the information on the most recent job held before 

the age of 65 if it is not reported or if an individual is older than 64. Therefore, whereas we impute 

weekly wages with more reliable information, we can obtain a larger sample size for hourly wages. As a 

result, we impute weekly wages for 236,743 individuals and hourly wages for 282,963 individuals.   

Since the two imputed wages are both available for 236,743 individuals, the first check is to compare the 

two imputed wages as follows: we subtract the log of hours worked from the imputed log weekly wages, 

which effectively produces the log hourly wage. 𝑅" between this computed term and the imputed hourly 

wage is 0.92, which implies that both of the wages are imputed with reasonable accuracy.  

We ran GWAS on both weekly and hourly wages imputed for the UKB. For the former, hours worked 

and their polynomial terms are also controlled for. We then confirmed that the genetic correlation 

between the two wage measures is not statistically distinguishable from one (0.993 with SE = 0.004), 

which means that the distributions of the GWAS estimates are almost the same. Because imputing 

hourly wages requires less information and allows us to have a larger sample size, we utilize only log 

hourly wages in this paper.  

S5.2 Estimating heritability from SNP data 

S5.2.1 Heritability framework 

Consider the following general framework for the outcome of interest, y, for some individual, i: 

𝑦! = 𝑔! + 𝑒! (S5.2) 

where 𝑦!  is decomposed into a contribution from genes in the form of SNPs, denoted by 𝑔!, and the 

environment, denoted by 𝑒!. Genetic effects are modeled as 𝑔! = xi′𝛃 where xi is the vector that 

comprises data on J standardized SNPs for the given individual. Here, vector 𝛃 represents the vector of 

causal SNP effects, which includes SNP effects that work indirectly e.g., via behavioral or environmental 
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pathways. Finally, e is a residual that can be interpreted as the nongenetic component of environmental 

influences.  

This linear model is a simplified version of how genetic factors can contribute to an outcome by making 

two important assumptions. First, it abstracts from alleles that have dominant or recessive effects.2 

Second, it does not include possible gene–gene or gene–environment interactions. However, the 

weighted average effects of the alleles can be estimated with this linear model, which is a useful starting 

point.  

The challenge is that the true vector 𝛃 is unknown, and any estimate of 𝛃 is noisy and potentially biased 

in finite population samples, especially if the genetic architecture of y is complex and driven by many 

SNPs that each have very small effect sizes. However, one can still obtain an estimate of ℎ#$%"  by 

considering whether two randomly drawn individuals who are genetically slightly more similar to each 

other than expected by chance, also tend to resemble each other slightly more in terms of the given 

outcome. 

More specifically, if we are able to compute genetic similarities between people, we can model the 

covariance between individuals in terms of outcomes as a function of genetic similarity. This approach 

enables us to decompose the total variance in y into the variance from the genetic and environment 

components, denoted by 𝜎&" and 𝜎'" respectively, assuming that g and e are orthogonal (Visscher, 2010; 

Yang et al., 2010). 

Such a model can be extended to control for confounding factors, such as population structure, and can 

thus be formulated as a so-called linear mixed model (LMM), where SNPs are assumed to have linear 

random effects and the covariates are assumed to have linear, fixed effects. 

Importantly, the term “fixed effects” has different meanings in different fields. In complex trait genetics 

(i.e., the field that considers outcomes to which many genes contribute) fixed effects are simply 

conceptualized as nonstochastic effects—they are parameters that have a fixed value in a population. 

However, in panel econometrics, fixed effects often refer to firm-, country- or individual-specific means 

that do not change over time. In the context of family data, fixed effects can be considered as family-

 

2 This assumption is often justified by pointing to existing data and theory that primarily suggest additive genetic 
effects for most genetically complex traits (W. G. Hill et al., 2008). 
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specific means that do not change from one family member to the next. Here, we use the term fixed 

effect interchangeably. That is to say, when we talk about fixed effects in an LMM, we simply mean non-

stochastic effects, and when we talk about fixed effects in a family study, we mean family-specific effects. 

Under the formal derivations involved in such a SNP LMM, one typically assumes that the elements of 𝛃 

(i.e., the vector of effects of the standardized SNPs) are independent and identically distributed draws 

from a normal distribution with mean zero, and a variance equal to 𝜎(
". This assumption should be 

thought of as a mild prior on the SNP effects which implies that a trait is influenced by many, if not all, 

SNPs, where, in turn, the contribution of each SNP separately is very small. Under this model, the true 

ℎ#$%"  is given by the total genetic variance, 𝜎&" = 𝐽𝜎(
", over the total phenotypic variance, after correcting 

for the covariates that are assumed to have fixed effects. That is, ℎ#$%" = 𝜎&"(𝜎&" + 𝜎'")–*. 

S5.2.2 Genomic-relatedness-based restricted maximum likelihood 

estimation 

Under such an LMM, ℎ#$%"  is typically estimated using restricted maximum likelihood estimation. This 

approach is referred to as genomic-relatedness-based restricted maximum likelihood (GREML) 

estimation (Daniel J. Benjamin et al., 2012). 

A crucial and strong assumption of this framework is that the true linear combination of genetic effects 

towards the outcome, g, is orthogonal to e. As long as this assumption is satisfied, GREML tends to yield 

robust estimates of ℎ#$%" under many different types of genetic architectures, even if the effect sizes of 

SNPs are not strictly drawn from a normal distribution. This result holds true as long as the set of SNPs 

that are analyzed represent the true genetic architecture of the trait in terms of MAF and LD (Evans et 

al., 2018; Lee & Chow, 2014).  

GREML estimates of ℎ#$%" from population samples can be influenced by indirect genetic influences of 

biological relatives (e.g., parents) that are not included in the sample, but that influence the observed 

outcomes through their behavior and the environment they create or provide (Young et al., 2018). 

Strictly speaking, such indirect genetic influences are not part of the standard definition of heritability. 

Nevertheless, the ℎ#$%"  GREML estimate that can be obtained from population samples reflects true 

genetic effects that influence the outcomes of the observed individuals either via biological or 

environmental channels or a combination of both. 
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We estimate the heritability of occupation wages in the UKB sample using GREML. We first estimate 

ℎ#$%"  with a single genetic variance parameter that uses all available unrelated individuals with data on 

occupational wages (196,187 in total, including 93,666 males and 102,521 females). For this estimation, 

we used SNPs that were included in the HapMap3 reference panel (Altshuler et al., 2010) because this 

set of SNPs tends to be measured with high accuracy and provides good coverage of common genetic 

variation among humans of European ancestries. For SNPs that contain mostly redundant information 

(LD R2 > 0.9), we keep only the SNP with the highest MAF.3 Furthermore, we exclude rare SNPs with 

MAF<1% because they cannot be measured with high accuracy, and each of them contributes only a 

marginal share of the overall genetic variation in the sample (Auton et al., 2015). As covariates, we use 

dummies for age and the year of observation; dummies that account for differences in the income 

imputation procedure and genotyping and assessment processes; and the first 40 PCs from the genetic 

data (Marchini et al., 2015). We also include a male dummy and interact it with the whole set of 

covariates in the pooled analysis. To reduce the computational burden due to the large sample size, we 

take advantage of an efficient algorithm developed by (Loh et al., 2015).  

An additional feature of GREML is that it allows us to decompose the total SNP-based heritability for 

different types of SNPs. Specifically, if the SNPs are partitioned into independent groups k = 1, …, K, the 

total genetic variance 𝜎&" equals ∑+,-* 𝜎&," , where 𝜎&," = 𝐽,𝜎(,
"  denotes the variance accounted for by 

the Jk SNPs in group k. Thus, by parsing the total set of SNPs into categories of interest (e.g., by 

chromosome, MAF, or LD), one can learn about the molecular genetic architecture of y without 

needing to estimate the effects of each SNP directly. 

Partitioning SNPs in this manner implicitly allows SNP effect sizes to be drawn from different 

distributions for the various categories considered (e.g., rare SNPs may on average have considerably 

larger effects than common SNPs), thereby reducing the scope for bias in GREML estimates (Evans et 

al., 2018). Furthermore, as we indicated, one can easily correct for covariates in GREML, enabling us to 

control for important sources of bias such as population structure. 

 

3 This procedure is called LD-pruning, which was performed using Plink software (Purcell et al., 2007). In 
principle, LD-pruning is not necessary for GREML to work properly, although it might increase the estimate 
slightly. See (Yang et al., 2017) for an additional discussion. 
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The multiple variance parameter models require the computation of many GRMs. Since this is the 

computationally most intensive step of the procedure, we further reduce computational costs by 

restricting the analyses to a subset of 24,000 randomly selected unrelated individuals. We explore two 

cases: First, we allow the variance to differ across different groups of SNPs with different genetic 

features. More specifically, we define four groups of SNPs depending on i) whether they are common 

(MAF ≥ 0.05) or rare (0.01 < MAF < 0.05)4 and ii) whether they have a relatively high or low LD score, 

using the median LD score as the cutoff.5 Since we are allowing for different variances of different 

genetic features, we use all available SNPs except for low-frequency ones (MAF < 0.01). Second, we let 

the variance differ across autosomes, which therefore gives 22 groups of SNPs. For computational 

reasons, we limited analysis to SNPs included in the HapMap3 reference panel. 

S5.2.3 Result 

Table S5.5 reports the results. The ℎ#$%" estimates are 12.6% (SE = 0.5%) for females and 10.3% (SE = 

0.5%) for males, suggesting a higher heritability of income for females. Thus, the heritability of 

occupational wages is somewhat higher for females than for males in our sample. When both male and 

female samples are analyzed together, the pooled h2
SNP is estimated to be 10.3% (SE = 0.3%). Note that 

the estimate for the pooled sample is not necessarily the weighted average between the two estimates for 

males and females because additional covariates are included to control for male-female heterogeneity. 

Figure S5.6 reports the heritability estimates of occupational wages from four different groups of SNPs, 

clustering them by their minor allele frequencies and LD. These estimates can shed light on the 

molecular genetic architecture of income by suggesting whether the observed heritability is primarily due 

to common genetic variants, which are most likely to have small effects, or due to relatively rare variants 

that may have stronger effects (Gibson, 2012). Furthermore, this “binning” of SNPs into groups avoids 

potential bias in the GREML estimates which could stem from violations of the assumption that the 

effect sizes of all SNPs in R2 are drawn from the same distribution, irrespective of their LD and MAF  

(Evans et al., 2018). Our results imply that relatively common SNPs (MAF ≥ 5%) with above-median 

 

4 Common SNPs mean that their minor alleles are frequently observed, which leads to larger variation at those SNP 
locations. If SNPs are rare, we do not find much variation at those locations across individuals of the given 
population.  
5 The degree of LD between two SNPs can be measured by the Pearson correlation coefficient while the degree of 
LD for a given SNP can be measured by the LD score, which is the sum of the Pearson correlation coefficients with 
other SNPs. 
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LD scores contribute most to the total heritability of occupational wages (h2
SNP = 4.6%, SE = 0.9%), 

followed by relatively rare SNPs (1% < MAF < 5%) with below-median LD scores (h2
SNP = 3.0%, SE = 

1.9%). In contrast, rare SNPs with above-median LD scores seem to play at most a minor role. The sum 

of these four point estimates in Figure S5.6 is 10.2% (SE = 2.2%), which is very close to the pooled h2
SNP 

estimate of 10.3% (SE = 0.3%). Notably, there are many rare genetic variants with low LD that are 

currently not included in genotyping arrays and that are difficult or impossible to impute (Auton et al., 

2015; McCarthy et al., 2016). The effects of such rare, low-LD SNPs are unobserved here, which could 

contribute to the gap between our h2SNP estimates and heritability estimates for income from twin 

studies (Witte et al., 2014). 

Figure S5.7 plots the heritability estimates of each chromosome against the number of effective loci per 

chromosome.6 For a genetically highly complex trait that has a very large number of causal SNPs across 

the genome, one would expect that each chromosome’s contribution to the total heritability is 

approximately proportional to the number of independent loci on the chromosome (i.e., the amount of 

information contained in  the chromosome). Indeed, the results in Figure S5.7  show that chromosomes 

with more effective loci contribute more to the heritability of income than chromosomes with fewer 

effective loci. A naïve regression of the subheritability estimates of each chromosome on the number of 

effective loci yields a standardized coefficient of 0.72 (95% CI: 0.41-1.02) and R2 = 0.5, suggesting a 

robust positive relationship between the number of effective loci and contributions to the heritability of 

occupational wage, which leaves room for some variation of the importance of each chromosome. 

Overall, these results are consistent with the idea that occupational wage is a genetically highly complex 

trait that is influenced by a large number of SNPs with small effects. Finally, the sum of h2
SNP estimates 

across chromosomes is 9.5% (SE = 1.5%), which is slightly lower than the pooled h2
SNP estimate reported 

in Table S5.5 (10.3%, SE = 0.3%), but the 95% confidence intervals of both point estimates overlap, 

assuming asymptotic normality. 

Our SNP-based heritability estimate of ≈10% for occupational wages is considerably lower than most 

previously reported twin-study heritability estimates for income (Hyytinen et al., 2019; Taubman, 

1976a, 1976b). While some of this divergence may be driven by imprecise point estimates, potential 

 

6 Effective loci refer to the set of SNPs that can be considered statistically independent of each other. We obtained 
the number of effective loci for each chromosome from (Lee, Wedow, et al., 2018). 
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upward bias in twin studies, or differences in the samples and measures of income used, our results are 

consistent with many studies on other traits that find lower heritability estimates with SNP-based 

methods compared to classic twin studies (Witte et al., 2014). Most likely, a part of the difference can be 

attributed to a downward bias in h2SNP estimates due to unobserved genetic markers such as very rare 

and structural genetic variants that are in low LD with the observed SNPs on current genotyping arrays. 

Indeed, studies on BMI and height showed that much of this so-called “missing heritability” can be 

recovered when rare and structural genetic variants are observed and taken into account (Auton et al., 

2015; Wainschtein et al., 2019).  

However, since X is the result of both the genetic and the social lottery, h2
SNP estimates based on X in 

population samples such as the one we used here may also capture indirect genetics effects from 

unobserved family members (e.g., parents and siblings) that influence the outcomes of the study 

participants via their behavior and the environment they create (Kong et al., 2018; Young et al., 2018). 

These so-called genetic nurturing effects violate the assumption of our estimation method that genetic 

effects and exogenously given environmental effects are orthogonal to each other. Genetic nurture 

effects are likely to be particularly relevant for socioeconomic outcomes such as income, and they are an 

interesting source of inequality by themselves (Koellinger & Harden, 2018). Indirect genetic effects via 

relatives induce an upward bias in the h2SNP estimate. Our within-family analyses using PGI shed some 

light on whether such indirect effects exist and how important they are. 

S5.3 Genome-wide association study (GWAS) on 

occupational wages 

We follow a preregistered analysis plan (https://osf.io/rg8sh/) and conduct GWAS on occupational 

wages in the UKB. A GWAS systematically scans all measured genetic variations among people for 

associations with outcomes of interest. Thanks to rapid decreases in genotyping costs and a 

correspondingly rapid increase in the availability of genetic data, GWAS on thousands of traits have been 

conducted, enabling a remarkable range of discoveries in population and complex-trait genetics as well as 

epidemiology and the social sciences (Harden & Koellinger, 2020; Visscher et al., 2017).  

Consider Equation S5.2 again. In medical research, interest in 𝛃 stems primarily from the hope of 

gaining insights into the biological causes of diseases that could potentially be targeted by drugs or other 

treatments (King et al., 2019; Visscher et al., 2017). In the context of socioeconomic differences, 



 
Supplementary Information 
 

 
 

241 

however, estimates of 𝛃 are not only a useful starting point for biological investigations, but also may 

help to better understand the influence of individual behavior and the environment (D. J. Benjamin et 

al., 2012; Harden & Koellinger, 2020).  

The statistical challenge is that the true vector 𝛃 is unknown and any estimate of 𝛃 (denoted b) is noisy 

and potentially biased in finite population samples, especially if the genetic architecture of y is complex 

and driven by many SNPs that each have very small effect sizes (Chabris et al., 2015). Moreover, the 

number of SNPs J is typically orders of magnitude greater than the number of individuals in the sample 

(N). Therefore, Equation S5.2 cannot be estimated by fitting all SNPs simultaneously in a multiple 

regression. Instead, the outcome is regressed on each SNP separately, resulting in J regressions in total. As 

a consequence, the LD-structure between SNPs (i.e., correlation between regressors) is ignored, and 

GWAS estimates should be considered as pointers to LD-linked regions in the genome (so-called loci) 

that are associated with the outcome rather than causal estimates.  

More importantly, uncontrolled correlations between allele frequencies, environments, and ancestry 

backgrounds violate the assumption that xi and e are orthogonal, making it challenging to interpret 

GWAS estimates of b from population samples (Hamer & Sirota, 2000; Young et al., 2019). The 

standard approach to tackle this challenge is (1) to restrict the sample to individuals of similar ancestries 

(due to data availability, this typically means European ancestries7) and (2) to control for leading 

principal components (PC) from genetic data in our GWAS. These lead PCs tend to capture differences 

in genotypes across geographic regions and ancestries, provided they are constructed using a large set of 

uncorrelated SNPs (Abdellaoui et al., 2013; Price et al., 2006). We follow this state-of-art approach here 

and conduct a GWAS on the log of occupational wages, including 40 genetic PCs as control variables to 

 

7 Between 2007 and 2017, 86% of GWAS discovery samples were of European ancestries (Mills & Rahal, 2019) 

partly because the interest and investments in genetic research vary dramatically across countries and more than 

50% of all GWAS participants until 2017 were recruited in the UK and Iceland alone — two countries that are 

populated by a majority of people of European ancestries. However, factors such as distrust of the 

medical/scientific community, poor access to primary medical care, the failure of researchers to actively recruit 

non-Europeans, the alienation of minority health professionals, the lack of knowledge about clinical trials, as well as 

language and cultural barriers were also identified as important impediments to more diverse genotyped research 

samples (Shavers‐Hornaday et al., 1997).  
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adjust for population stratification bias and modeling the error structure with random SNP effects to 

account for relatedness. Appendix 1.III describes our GWAS estimation procedure in detail. (See FAQ 

section “What is a GWAS? Are the genetic variants identified in a GWAS “causal”?) 

It is crucial to understand that b is not a clean estimate of biological effects for two reasons. First, b 

includes indirect effects of xi on 𝑦!  that work via behavioral or environmental pathways (e.g., self-

selection of i into specific environments and feedback loops between the behavior of i and the responses 

from those environments). Thus, b partly reflects social facts that depend on environmental conditions 

and may vary across different environments and samples. In our context, technological progress, labor 

market conditions, and social factors such as discrimination or racism may influence the b for income. 

Thus, the effects of xi on 𝑦!  that are captured by b are not universally true or simply “given by nature”. 

Rather, b reflects social and economic realities that may be outside of the control of any given individual 

i but are subject to change over time and could be malleable by collective human action, policy reforms 

etc. Which specific environmental factors influence b is an empirical question of considerable interest 

for the social sciences and policy. 

Second, xi is the outcome of both the genetic and the social lottery in a population sample, which implies 

that b captures both genetic and family-specific effects. To isolate the effects of the genetic and the social 

lottery, it would be necessary to estimate b from random differences in xi between biological relatives 

(e.g., siblings or parents and their children). However, doing so would sharply reduce the GWAS sample 

size N and the variance in xi and 𝑦!, which would lead to a substantial loss of statistical power to estimate 

b. In the absence of extremely large genotyped family samples, the best strategy to estimate b is arguably 

to maximize the statistical power by maximizing N with population samples, followed by within-family 

analyses that make use of polygenic indices that have been constructed from estimates of b in 

independent samples (Chabris et al., 2015; Kong et al., 2018; Lee, Wedow, et al., 2018). We follow this 

strategy in the current study. 

Specifically, we conduct GWAS on occupational wages in the UKB population sample using a linear 

mixed model (LMM). In our LMM, we assign a fixed effect to the SNP under consideration, while 

treating the effects of all other SNPs as random (Yang et al., 2014). In addition, we control for the 40 

leading PCs from the genetic data in our LMM. 
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For each SNP j = 1, ..., J, we consider a leave-one-chromosome-out (LOCO) LMM for our sample of N 

individuals. That is, we examine 

y	=	xjβj	+	Z𝛄	+	X(j)𝛃(j)	+	e	 (S5.3) 

where y denotes the outcome vector and xj the N-by-1 vector of data on SNP j. The main parameter of 

interest is 𝛽. , the effect of SNP j. In this model, Z denotes the N-by-K matrix of covariates, with effects 

𝛄, and X(j) denotes the matrix of SNP data, excluding the SNP at hand as well as all other SNPs on the 

same chromosome, with associated random effects 𝛃(j). 

Effectively, under this LOCO LMM, we have an error structure that captures contributions from the 

environment as well as SNPs located on other chromosomes. This error structure is fully characterized 

by the two parameters 𝜎&" and 𝜎/". We estimate this LOCO LMM in two steps. First, the parameters 𝜎&" 

and 𝜎/" are estimated using GREML (i.e., the same method that is also used for ℎ#$%"  estimation). 

Second, the effects, βj and 𝛄, are then estimated with generalized least squares. To reduce the 

computational burden, we use an efficient approximation algorithm that converges after a small number 

of iterations (Loh et al., 2015). 

To account for the possibility that occupational wages are influenced by different sex-specific factors, we 

estimate GWAS according to Equation S5.3 separately for males (N = 133,689) and females (N = 

149,274) using the same set of covariates as in the heritability estimation described above. Next, we 

combined the sex-specific results using a special case of the MTAG (multi-trait analysis of GWAS) 

method.8 MTAG implements a generalized version of inverse-variance-weighted meta-analysis that takes 

into account the relatedness between the male and female samples as well as potential bias due to an 

uncontrolled population structure (Turley et al., 2018).9 

Several quality control filters were applied to exclude SNPs that are problematic, implemented according 

to the commonly applied procedure developed by (Winkler et al. (2014)). The main steps include 

 

8 The similarity of the genetic architecture of income for males and females can be quantified by the genetic 
correlation coefficient. A robust estimate of this quantity can be obtained with bivariate LD score regression 
(Canela-Xandri et al., 2018; Lee, McGue, et al., 2018). Applying this method to our GWAS results on income in 
the UKB, we estimate a genetic correlation of 0.921 (SE=0.034) between males and females, which is very high but 
statistically indistinguishable from a perfect genetic correlation of 1 (Koellinger et al., 2018). 
9 A measure of bias due to population stratification can be obtained from the intercept, a so-called LD score 
regression, which regresses the LD scores of all SNPs on their observed Chi-squared test statistic in a GWAS (B. K. 
Bulik-Sullivan et al., 2015).  
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removing SNPs that have missing or incorrect numerical values for some variables (a p-value outside of 

[0,1], for instance); have a MAF below 0.1%; have imputation accuracy below 0.7; have the effect-coded 

allele or the other allele with values different from “A,” “C,” “G,” or “T”; are duplicate SNPs; and have 

an allele frequency different from the allele frequency in the HRC reference panel by more than 0.2. 

A systematic scan of all observed SNPs in a GWAS imposes a high multiple-testing burden, which led to 

the adoption of a stringent p-value threshold of 5×10–8 for genome-wide significance, reflecting a 

Bonferroni correction for one million independent tests (Shah et al. (2008)). Although the actual 

number of SNPs in a GWAS is often higher than one million, many SNPs are correlated, and the p-value 

threshold of 5×10–8 is the accepted benchmark for GWAS in European ancestry samples that rely 

primarily on common SNPs.10  

We follow this standard approach here. Of the 9,773,980 autosomal SNPs included in our GWAS on 

occupational wages in the UKB (N = 282,963), we identified 3,920 genome-wide significant SNPs. 

These 3,920 SNPs cluster across 45 approximately independent loci.11 We found one novel locus that has 

never been reported for any other traits.12    

The GWAS results are visually presented in a so-called Manhattan plot in Figure S5.8, where the p-values 

of all SNPs are plotted on a −𝑙𝑜𝑔*0 scale against their chromosomal position. The SNPs with the lowest 

p-value per locus are referred to as lead SNPs and are reported in Table S5.6. The effect sizes of the lead 

SNPs in absolute terms range from 0.018 to 0.005 with a mean of 0.007, which corresponds to a 0.7% 

change in occupational wage per allele.13 In terms of R2, the variance explained by each lead SNP ranges 

from 0.011% to 0.037% with a mean of 0.014%, implying that each of the lead SNPs captures only a very 

 

10 More stringent thresholds may be necessary for non-European ancestries that observe a higher degree of genetic 
variation and datasets that include very rare or structural genetic variants that are not in strong LD with common 
SNPs (Auton et al., 2015). 
11 We define a locus using a clumping algorithm that begins by selecting the SNP with the lowest p-value as the lead 
SNP in the first clump and includes in the first clump all SNPs that have R2 greater than 0.1 with the lead SNP. 
Next, the SNP with the second-lowest p-value outside the first clump becomes the lead SNP of the second clump, 
and the second clump is created analogously but using only the SNPs outside of the first clump. This process 
continues until every genome-wide-significant SNP is either designated a lead SNP or is clumped to another lead 
SNP. The genomic proximity is not considered when forming clumps. The LD between the SNPs is calculated 
from a reference panel of the Haplotype Reference Consortium (HRC; (McCarthy et al., 2016)) 
12 We looked up the previous GWAS results by using the GWAS Catalog data obtained on February 21 2020 
(Buniello et al., 2019). 
13 These effect size estimates are not LD-adjusted. 
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small proportion of the variation in occupational wages. Note that uncontrolled population structure 

(Price et al., 2006), indirect genetic effects (Kong et al., 2018), and the statistical winner’s curse would 

tend to bias these effect size estimates away from zero (Palmer & Pe’er, 2017), which implies that the true 

causal effects may be even smaller. The genomic loci that are represented by our lead SNPs can be 

positionally mapped to 184 protein-coding genes. An analysis of the set of genes that are potentially 

tagged by our GWAS results shows that they are most strongly expressed in brain tissues.14  

We compared our results to GWAS results for other SES measures by using the 45 lead SNPs as well as 

the SNPs that are highly correlated with them (𝑅" > 0.6). Twenty-six of our loci were previously found 

to be significantly associated with household income (W. D. Hill et al., 2019) and 31 loci with 

educational attainment (Lee, Wedow, et al., 2018). The similarity of the distribution of SNP effects for 

two different traits (𝛃1, 𝛃2) is given by the so-called genetic correlation coefficient (B. Bulik-Sullivan et 

al., 2015; Okbay et al., 2016). The genetic correlation of occupational wages with educational attainment 

is 0.923 (SE = 0.01) and 0.919 (SE = 0.02) with household income, which is statistically distinguishable 

from one.15 Thus, the genetic architecture of these different measures of SES is very similar, but not 

exactly identical.  

Most of the genome-wide significant loci identified here were previously found to be associated with 

health outcomes such as BMI, HDL cholesterol levels, diabetes, bipolar disorder, alcohol consumption, 

Parkinson’s disease, and many others (Table S5.6). Thus, genetic factors linked to income also tend to 

have relevance for health and vice versa. Several different mechanisms could lead to this relevance 

(Hemani et al., 2018; Solovieff et al., 2013). First, it is possible that some genes affect both income and 

health directly via the same biological mechanism. Second, health and income may act as mediating 

variables for each other. For example, income could have causal downstream consequences on health or 

health conditions, with early onset conditions (e.g., ADHD) possibly having causal effects on income. 

Finally, the identified genes may also be associated with unobserved outcomes that influence both health 

and income (e.g., neighborhood quality during childhood). GWAS results by themselves do not 

 

14 Functional mapping and annotation of our GWAS results was conducted using the bioinformatic tool FUMA 
(Watanabe et al., 2017).  
15 The genetic correlation is the correlation between two sets of standardized GWAS effect sizes. We estimated this 
by using LD score regression (B. Bulik-Sullivan et al., 2015). Testing whether these estimates are different from one 
yields p-values of 5.03×10-13 and 3.78×10-8 respectively for educational attainment and household income, which 
indicates that the genetic correlation is not perfect. 
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illuminate causal pathways, but the identified genetic loci can serve as useful starting points for follow-

up studies that aim at elucidating mechanisms (Harden & Koellinger, 2020; Visscher et al., 2017). Thus, 

although we do not know why our GWAS identifies these loci for income, it is clear that the genetic 

architectures of income and health are related and no clear boundaries can be drawn between 

socioeconomic and medical outcomes. This is not surprising, given the well-known relationships 

between SES and health (Chetty et al., 2016; Piotrowska et al., 2015; Stringhini et al., 2017; Wilkinson & 

Marmot, 2003).  

Although previous GWAS on household income or neighborhood differences (W. D. Hill et al., 2016, 

2019) uncovered many interesting findings, it is challenging to interpret genetic associations with such 

aggregate measures of prosperity. Our approach that maps individual differences in income to 

individual-specific genetic markers reduces this complexity to some extent and our results allow for the 

formation of new types of genetically informed study designs on income inequality (e.g., to estimate the 

returns to schooling while explicitly controlling for genetic confounds). Furthermore, although the most 

recent GWAS on educational attainment (Lee, Wedow, et al., 2018) of more than 1.1 million individuals 

was the largest GWAS on SES to date, a genetic risk score constructed from our results improves upon 

the variance in individual income that can be captured by a risk score for educational attainment (see 

A.IV. Polygenic indices). 

Since our GWAS results are derived from a sample of elderly inhabitants of the UK who all have 

European ancestries, there will be limits to the transferability of our results to other populations: The 

genetic associations with income we report here are conditional on the social and economic context of 

the White, educated, industrialized, rich, and democratic (Weird) sample we studied. Different contexts 

(e.g. discrimination against some groups in society) may imply different genetic architectures that would 

limit the external validity of our results (de Vlaming et al., 2017; Mostafavi et al., 2020). In addition, 

genetic associations also depend on the frequencies of genetic variants and their correlations with each 

other in the samples studied. This dependence generally limits the transferability of GWAS results and 

polygenic indices across groups that differ in ancestries (Martin et al., 2019; Rosenberg et al., 2019) and 

implies that our results cannot be used for comparison across groups. Our results cannot be used for 

predicting individual outcomes for the same reasons and for the limited statistical accuracy of our 

polygenic indice. (See FAQ sections “Can your polygenic score be used to predict how well someone 
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will do in life?” and “Can your polygenic score be used for research studies in non-European-ancestry 

populations?”) 

5.4 Polygenic indices  

The tiny effect sizes of each individual SNP in our GWAS on occupational wages (R2 < 0.04%) prohibit 

a statistically well-powered SNP-level replication of our results in the two available hold-out samples.16 

As an alternative, holistic form of replication, we constructed PGI from our GWAS estimates on 

occupational wages in the HRS and the WLS samples to test the associations with measures of self-

reported income.  

Our PGI uses LDpred-adjusted GWAS estimates, based on the observed LD structure in the prediction 

sample (Vilhjálmsson et al., 2015). Specifically, we construct PGI using all directly genotyped SNPs and 

those included in the HapMap3 reference panel (Altshuler et al., 2010), yielding 2,547,062 SNPs in the 

HRS, 1,519,416 SNPs in the WLS, and 1,685,746 SNPs in the UKB. This focus on common, high-

quality SNPs improves the signal-to-noise ratio in the PGI relative to methods that use all available SNPs 

or only a small subset of them (e.g., only the SNPs that are genome-wide significant).17  

The EA PGI are constructed from a publicly available version of the GWAS results reported in (Lee, 

Wedow, et al., 2018), which are based on N≈760,000, after regenerating GWAS results excluding each 

prediction sample.18     

All PGIs are standardized to have zero mean and unit variance and tested in linear regressions on log 

hourly wages. The main quantity of interest here is the contribution of the PGI to variation in log hourly 

wages in a regression model with baseline controls. This contribution is measured by an increase in 𝑅" 

(𝛥𝑅") in response to adding the PGI to a baseline model that controls e.g., for age, sex, the first 20 

principal components of the genetic data. We also report partial 𝑅", the variance explained by the PGI 

 

16 The combined number of individuals in HRS and WLS that have genetic data, information on income, and 
standard control variables is N = 13,558 (Table S5.2). This would yield only ≈50% statistical power to replicate a 
SNP with R2 = 0.04% at α = 0.05 and only ≈15% power for a SNP with R2 = 0.01%. 
17 It is difficult to accurately measure and impute rare SNPs. Furthermore, the standard error of the estimated effect 
of rare SNPs is larger because SE(b) ≈ 2∙MAF∙(1-MAF);see (Rietveld et al., 2013). 
18 Note that whenever constructing a PGI the GWAS summary statistics are regenerated to exclude a prediction 
sample, which prevents overfitting. Therefore, the actual sample size of EA GWAS used for PGI is slightly different 
for each prediction sample.   
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when partialling out the control variables from both the log hourly wage and the PGI. For comparison, 

we also constructed a PGI for educational attainment (EA) in HRS and WLS using the results from a 

much larger GWAS sample (N ≈ 0.76 million) that excluded the prediction samples (Lee, Wedow, et al., 

2018). This PGI for EA has previously been shown to be correlated with labor market outcomes and 

measures of financial wealth in the HRS (Barth et al., 2020; Papageorge & Thom, 2019). All PGIs are 

standardized to have zero mean and unit variance.  

The polygenic prediction results for the HRS can be found in Panel A of Table S5.7. The pooled 

baseline model with all control variables but without the PGI captures 8.6% of the variance in log hourly 

wages. When the PGI for income is added to the model, 𝑅" increases by 0.91%, giving a partial 𝑅" of 

0.99% (p=6.2× 10120). This finding is in line with theoretical expectations that take the imprecision of 

the SNP effect-size estimates due to the finite GWAS sample size into account.19 The coefficient estimate 

for the income PGI implies that one-standard deviation-increase in the PGI is associated with an 8.0% 

increase in hourly wages (95% CI: 6.2-9.7%).   

The EA PGI is also associated with income in the HRS (ΔR2≈1.10% in the pooled model; p = 

4.4× 10130). If both PGI are included simultaneously, both remain predictive and statistically highly 

significant, jointly accounting for 1.29% of the variation in the hourly wage in the pooled HRS sample (p 

= 2.8× 101*"; p = 1.6× 101""). Thus, the income PGI contributes information over and above the 

information in the EA PGI, although income and EA are genetically very similar (W. D. Hill et al., 2019; 

Koellinger et al., 2018) and the EA GWAS sample is substantially larger. This result likely occurred 

because the estimation error for the SNP effects is still relatively large, but not identical for both GWAS 

samples. Thus, having GWAS results for multiple indicators is a way to increase the combined predictive 

accuracy that can be obtained from genetic data.20 Since the EA and income PGI are correlated with each 

other (𝜌 ≈ 0.54), the increase in the explanatory power in the combined model is smaller than the sum 

 

19 Using the MetaGAP calculator (de Vlaming et al., 2017) with a GWAS sample size of N = 282,963 
(corresponding to the size of our UKB sample), 250,000 independent SNPs (a realistic number after GWAS quality 
control), and assuming h2

SNP = 0.1 with 20,000 independent causal SNPs as well as a perfect genetic correlation 
between the GWAS and the prediction sample, the expected R2 of a polygenic indice is 1%.  
20 (Turley et al., 2018) developed a multivariate method to combine GWAS results from genetically strongly 
correlated traits that builds on a similar intuition. Indeed, adding several PGI as predictors in a multiple regression 
is a naïve way to mimic the increase in polygenic R2 that their approach yields. 
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of ΔR2’s from the models in which each PGI is added separately. Finally, both polygenic indices capture 

similar shares in income variation for males and females in the HRS sample.   

Panel B of Table S5.7 reports the results for self-reported wage rates observed in the WLS. While the 

results are consistent with the HRS in that we find statistically significant associations between the log 

hourly wage and the PGI in every case, the predictive power of the PGI is overall lower in the WLS.21 

The pooled baseline model explains 19.2% of the variance and adding the income PGI increases the 𝑅" 

by 0.57%. The coefficient estimate implies that an increase in the PGI of one standard deviation is 

associated with an increase of approximately 5.8% (95% CI: 4.3-7.4) in the hourly wage rate. When using 

the EA PGI instead, the increase in 𝑅" is again slightly higher compared to the income PGI (𝛥𝑅"= 0.62% 

and partial 𝑅"= 0.76%). Similar to what we observed in HRS, both PGI remain individually predictive 

and statistically highly significant (p = 1.6× 1014; p = 1.9× 1012) in a multiple regression that includes 

both scores, whose correlation is again 𝜌 ≈ 0.54. 

In contrast to the HRS sample, we observed considerable heterogeneity between males and females in 

the WLS in terms of 𝛥𝑅" of the PGI. While the females’ wages observed in the WLS are as well predicted 

by the PGI as those in the HRS, the predictive accuracy of both PGI is lower for males. This result may 

be due to a lower SNP-based heritability of income for males in the WLS, but it may also be due to 

technical effects such as differences in the genetic architecture of income between males and females 

within and across the samples we studied.  

In a similar vein, the predictive power of the PGI can also be underestimated due to the measurement 

error and transitory variance in the cross-sectional distribution of income. Table S5.8 reports the same 

set of analyses for the HRS but with 3-year moving averages of wages, which can alleviate such issues to 

some extent. In the pooled sample, 14.83% of the variation can be additionally explained by the income 

PGI. The income and educational attainment PGI together explain more than 2% of the variation. As 

such, the predictive power of the PGI is expected to be higher for better measures of income or longer-

term income.  

 

21 The lower delta R2 of the PGI in the WLS could be due to several factors, including a potentially lower h2 of 
income in the WLS sample, a lower genetic correlation for income between the WLS and the UKB than between 
HRS and the UKB (de Vlaming et al., 2017), or because of the sibling pairs included in the WLS (the OLS 
estimates in WLS reflect within-family estimates to some degree, which tend to be smaller than between-family 
estimates, as shown in the following section).   
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Although both our income PGI and the PGI for educational attainment capture a small share of the 

distribution of income in independent hold-out samples, they are not useful for individual-level 

predictions for statistical as well as conceptual reasons. The statistical limitations of individual 

predictions are illustrated in Figure S5.3. Even for PGI values that are relatively extreme outliers (e.g., 

those 2 standard deviations below or above the mean), an extremely wide range of incomes is observed. 

More generally, no single variable with an 𝑅" ≈1% is useful for individual-level prediction. The 𝑅"of 

PGI will increase in the future as GWAS sample sizes increase (Daetwyler et al., 2008), with an upper 

bound given by h2SNP, which, according to our estimates, is in the range of approximately 10% with 

current SNP data. However, even a variable with 𝑅" ≈10% would not be sufficiently accurate to make 

reliable individual-level predictions (Harden & Koellinger, 2020). As we emphasized before, PGI should 

not be considered as “objective” or “purely biological” measures. The GWAS results that are used to 

construct PGI may capture many things that are associated with income, but are not due to directly 

causal effects of genes (Haworth et al., 2019; Kong et al., 2018). To the extent that the income PGI 

capture directly causal genetic effects, these effects will reflect the social realities of the samples used in 

the study. For example, the environmental circumstances that matter in the context of income include 

the relative supply of and demand for certain types of skills (Acemoglu, 2002); the presence or absence of 

discrimination (Bertrand & Mullainathan, 2004; Reimers, 1983); the extent to which problems of 

asymmetric information between employers, workers, and job candidates can or cannot be resolved 

(Autor, 2001); existing regulations (Siebert, 1997); the opportunity costs of labor market participation 

(Becker, 1965), labor market discrimination (Kaas & Manger, 2012) and many other features of 

economic reality that are neither universal nor necessarily optimal from a welfare perspective. Thus, aside 

from statistical considerations, the environmental context of the income distribution puts limits on the 

potential transferability of the income PGI across samples (Mostafavi et al., 2020). If PGI are used for 

individual prediction despite these limitations (e.g., in school entrance exams or job hires (Plomin, 

2019)), it can exacerbate existing stigmas, discrimination, and inefficiencies, and create or amplify 

economic and ethical dilemmas. Thus, while the PGI we constructed here can be a very useful tool for 

research, its practical implications are very limited at best and feature many complications.  
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S5.5 Additional information on data 

S5.5.1 Health and Retirement Study (HRS) 

In 2006, the HRS started collecting biomarkers and DNA samples in a subset of the participants (Weir, 

2013). Here we used the second release of the HRS genetic data,22 which covers genotyping phases 1 to 

3. In phase 1, DNA samples were extracted from buccal swabs and in phase 2 and 3 this was done using 

saliva samples. The DNA samples were genotyped at the Center for Inherited Disease Research (CIDR). 

Phases 1 and 2 were genotyped together on the Illumina HumanOmni2.5-4v1 array and phase 3 was 

genotyped on the  Illumina HumanOmni2.5-8v1 array.  

The two arrays have 2,365,472 overlapping SNPs. Those SNPs were then subjected to CIDR technical 

filters and tests for duplicate sample discordance, Mendelian errors in trios, Hardy Weinberg equiibrium 

testing, and tests on sex differences. In total, 2,075,208 SNPs passed these QC filters (Weir, 2013).  

Autosomal SNPs were imputed using the worldwide reference panel from phase I of the 1000 Genomes 

project (v3, released March 2012) (Consortium & The 1000 Genomes Project Consortium, 2012; HRS, 

2013). 1,945,761 Genotyped SNPs were used as a basis for imputation. Imputation was performed using 

IMPUTE2 software. The imputation output contains 22,378,417 autosomal SNPs. Before our analyses, 

we filtered out SNPs that had an imputation quality below 0.7. SNPs were also removed if the SNP was 

missing in over 5% of the sample or the MAF was smaller than 1%. Due to computational restraints in 

constructing the PGI with LDpred, we further reduced the number of SNPs to those that were directly 

genotyped or present in the HapMap3 imputation panel, providing us with a high-resolution coverage 

of common genetic variants. This leaves 2,547,062 SNPs included in the construction of the PGI. 

Our analyses were restricted to unrelated participants of European descent. Specifically, HRS filtered out 

parent-offspring pairs, siblings and half-siblings. For participants present in version 1 of the HRS genetic 

data, we selected European descent using a list provided by HRS that is based on self-reported race and 

principal component analysis. For participants who were added to version 2 of the HRS genetic data, we 

excluded those who self-identified as having non-European ancestry as well as those who fall outside of 

the European ancestry cluster in our principal component analysis. The principal component analysis 

was performed by plotting the first four principal components of HRS version 1, together with HRS 

 

22 See https://hrs.isr.umich.edu/data-products/genetic-data/products#gdv2, for more information. 
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version 2 and the 1000 Genomes project reference panel. We also excluded individuals who did not 

satisfy HRS internal genotype quality control criteria. 

S5.5.2 Wisconsin Longitudinal Study (WLS) 

The WLS (Herd et al., 2014) is a longitudinal study of individuals who graduated from Wisconsin high 

schools in 1957 as well as one randomly selected sibling. The original respondents and their selected 

siblings were surveyed six times over the years. The WLS collected extensive information on family 

backgrounds, schooling, and labor market experiences. In addition, genetic data was also collected for 

approximately 9,800 individuals including both the original respondents and their siblings. We use 

hourly wage rates surveyed in 1992-1994, which was the first wave during which information on wages 

was collected and the last wave before most respondents reached retirement age. The nominal wages are 

converted into real wages in the same way as in the HRS. 

The WLS has two waves of genetic data, in our analyses we use the second wave of genetic data (Herd, 

2016). Over the course of 2007 and 2008 the WLS began to collect saliva samples by mail. Additional 

samples were added in 2010 during home interviews. A total of 9,027 panel members contributed saliva 

samples for genetic analysis. The DNA was extracted and genotyped at the CIDR using the Illumina 

HumanOmniExpress array (713,014 SNPs).  

Similar to the HRS genetic data the SNPs were subjected to CIDR technical filters and tests for 

duplicate sample discordance, Mendelian errors in trios, Hardy Weinberg Equiibrium testing, and tests 

on sex differences (Herd, 2016).  

In WLS, the autosomal SNPs were imputed using phase 3 from the 1000 Genomes project reference 

panel and imputation was performed using IMPUTE2 software (WLS, 2016). This process resulted in 

32,367,317 autosomal SNPs. In our PGI analyses, SNPs were selected in the same way as in the HRS 

data, resulting in 1,519,416 SNPs.  

Our analyses were restricted to unrelated participants of European descent. Selection on European 

descent was done based on principal component analysis by plotting the first four principal components 

together with those of the 1000 Genomes project reference panel. Self-reported ethnicity was not 

considered here as it was surveyed only in a later wave, which led to too many missing outcomes.  
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S5.5.3 UK Biobank 

The UK Biobank genetic data contain genotypes for 488,377 participants (Bycroft et al., 2018). DNA 

was extracted from blood samples that were collected at a UK Biobank assessment center. A subset of 

49,950 participants were genotyped using the UK BiLEVE Axiom Array by Affymetrix (807,411 

markers). The remaining 438,427 participants were genotyped using the custom UK Biobank Axiom 

Array (825,927 markers). The two arrays have a 95% overlap.  

The markers were assessed on quality for batch, plate, array, or sex effects, tests on Hardy–Weinberg 

equilibrium and discordance across control replicates. Autosomal SNPs were imputed using a custom 

imputation panel based on the Haplotype Reference Consortium data and UK10K Panel using 

IMPUTE4 software. This resulted in an imputation output of 93,095,623 autosomal SNPs.  

For the sibling sample used as a hold-out sample for PGI analyses, SNPs were selected in the same way as 

in the HRS data, resulting in 1,685,746 SNPs.  

Our analyses were restricted to unrelated participants of European descent internally identified by the 

UKB. The UKB identified them based on principal component analysis with the 1000 Genomes project 

reference panel. The individuals were dropped if their reported ethnic background was not white. 
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S5.7 Tables 

 
Table S5.1 List of variables in the UK Biobank 
 
Variables Details 

log hourly wage Imputed from standard occupation codes. See Appendix 

top household income 
= 1 if the annual household income before tax is greater 
than £52,000. 

log regional income 
Computed by matching home locations to Middle-layer 
Super Output Areas. Data from Official National 
Statistics (England and Wales only) 

neighborhood score 

Negative of index of multiple deprivation for Lower-layer 
Super Output Areas derived by the UK's Ministry of 
Housing, Communities & Local Government (England 
only) 

years of education See Okbay et al. (2016) 

college degree = 1 if having a college degree 

waist-to-hip ratio Waist circumference divided by hip circumference 

BMI Body mass index 

blood pressure Average of systolic and diastolic measures  

lung function 
Average of forced expiratory volume in the first second, 
forced vital capacity, and peak expiratory flow weighted 
by their covariance matrix. See Barcellos et al. (2019).  

ever hospitalized = 1 if  any record in in-patient data 

ever diagnosed with cancer = 1 if  any record in cancer registry 

infectious and parasitic diseases 
= 1 if  any record for disorders classified in ICD-10 
chapter 1 and codes Z20-29 

neoplasms 
= 1 if  any record for disorders classified in ICD-10 
chapter 2  

diseases of blood organs and immune 
system 

= 1 if  any record for disorders classified in ICD-10 
chapter 3 

endocrine, nutritional, and metabolic 
diseases 

= 1 if  any record for disorders classified in ICD-10 
chapter 4 

mental, behavioral, nervous system 
disorders 

= 1 if  any record for disorders classified in ICD-10 
chapter 5 and 6 

diseases of the eye and adnexa 
= 1 if  any record for disorders classified in ICD-10 
chapter 7 

diseases of the circulatory system 
= 1 if  any record for disorders classified in ICD-10 
chapter 9 
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diseases of the respiratory system 
= 1 if  any record for disorders classified in ICD-10 
chapter 10 

diseases of the digestive system 
= 1 if  any record for disorders classified in ICD-10 
chapter 11 

diseases of the skin and subcutaneous 
tissue 

= 1 if  any record for disorders classified in ICD-10 
chapter 12 

diseases of musculoskeletal system and 
connective tissue 

= 1 if  any record for disorders classified in ICD-10 
chapter 13 

diseases of genitourinary system 
= 1 if  any record for disorders classified in ICD-10 
chapter 14 

symptoms and signs not elsewhere 
classified 

= 1 if  any record for disorders classified in ICD-10 
chapter 18 

injury, poisoning, and other 
consequences of external causes 

= 1 if  any record for disorders classified in ICD-10 
chapter 19 

external causes of morbidity and 
mortality 

= 1 if  any record for disorders classified in ICD-10 
chapter 20 

other health conditions 
= 1 if  any record for the rest of disorders classified in 
ICD-10  
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Table S5.2 Descriptive statistics 
 

 N Mean S.D Min Max 

UK Biobank 
 
  year of birth 38697 1951.045 7.347 1937 1969 
  male 38697 0.421 0.494 0 1 
  log hourly wage 25292 2.6 0.349 1.833 3.881 
  top household income 33477 0.233 0.423 0 1 
  regional income 35393 739.482 193.387 300 1730 
  neighborhood score 33276 -17.646 13.937 -82 -0.61 
  years of education 38424 14.627 5.135 7 20 
  college degree 38424 0.291 0.454 0 1 
  waist-to-hip ratio 38638 0.866 0.089 0.581 1.342 
  BMI 38596 27.267 4.706 13.789 63.809 
  blood pressure 36099 110.879 13.898 65.5 179 
  lung function 35357 0 0.849 -3.922 20.781 
  ever hospitalized 38697 0.831 0.375 0 1 
  ever diagnosed with cancer 38697 0.183 0.387 0 1 
  infectious and parasitic diseases 38697 0.098 0.297 0 1 
  neoplasms 38697 0.176 0.381 0 1 
  diseases of blood organs and immune system 38697 0.222 0.416 0 1 
  endocrine, nutritional, and metabolic diseases 38697 0.216 0.412 0 1 
  mental, behavioral, nervous system disorders 38697 0.186 0.389 0 1 
  diseases of the eye and adnexa 38697 0.117 0.322 0 1 
  diseases of the circulatory system 38697 0.359 0.48 0 1 
  diseases of the respiratory system 38697 0.172 0.378 0 1 
  diseases of the digestive system 38697 0.426 0.494 0 1 
  diseases of the skin and subcutaneous tissue 38697 0.118 0.323 0 1 
  diseases of musculoskeletal system and connective 
tissue 

38697 0.316 0.465 0 1 

  diseases of genitourinary system 38697 0.283 0.45 0 1 
  symptoms and signs not elsewhere classified 38697 0.389 0.487 0 1 
  injury, poisoning, and other consequences of 
external causes 

38697 0.171 0.376 0 1 

  external causes of morbidity and mortality 38697 0.181 0.385 0 1 
  other health conditions 38697 0.494 0.5 0 1 
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Health and Retirement Study 
 
  number of survey responses 6171 3.605 2.047 1 12 
  year of birth 6171 1944.487 8.431 1928 1968 
  male 6171 0.451 0.498 0 1 
  hourly earnings 22247 11.622 15.908 0.002 1244.848 
  job experience 22180 36.37 5.531 7 57 
  years of education 6152 13.588 2.414 0 17 
  college degree 6152 0.307 0.461 0 1 
  father's years of education 5635 10.667 3.538 0 17 
  mother's yeras of education 5862 11.06 2.918 0 17 
Wisconsin Longitudinal Study 
 
  year of birth 7387 39.742 3.747 29 64 
  male 7387 0.494 0.5 0 1 
  sibling respondent 7387 0.319 0.466 0 1 
  hourly earnings 7387 18.261 33.418 0.04 1282.051 
  years of education 6902 13.905 2.423 7 21 
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Table S5.4 Weights used to construct the summary index of health in the UK 
Biobank sample 

 
Health measure Weight 
waist-to-hip ratio 0.070 
BMI 0.055 
blood pressure 0.113 
lung function 0.079 
ever hospitalized 0.001 
ever diagnosed with cancer 0.049 
infectious and parasitic diseases 0.050 
neoplasms 0.037 
diseases of blood organs and immune system 0.062 
endocrine, nutritional, and metabolic diseases -0.003 
mental, behavioral, nervous system disorders 0.050 
diseases of the eye and adnexa 0.101 
diseases of the circulatory system -0.026 
diseases of the respiratory system 0.041 
diseases of the digestive system 0.044 
diseases of the skin and subcutaneous tissue 0.080 
diseases of musculoskeletal system and connective tissue 0.042 
diseases of genitourinary system 0.077 
symptoms and signs not elsewhere classified 0.019 
injury, poisoning, and other consequences of external causes 0.065 
external causes of morbidity and mortality 0.010 
other health conditions -0.016 
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Table S5.5 Heritability estimation of occupational wages in the UK Biobank using a 
single variance genetic relatedness matrix restricted maximum likelihood (GREML) 
 

  Estimates N 

Male+Female 0.103 (0.003) 196,187 

Male 0.103 (0.005) 93,666 

Female 0.126 (0.005) 102,521 

Note: Standard errors in parentheses. 
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Table S5.6 Lead single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) 
on log occupational wages in the UK Biobank and overlap with other traits.  
 

SNP ID 
Chrom

o 
-some 

Effect
-

coded 
allele 

Effect 
allele 

frequenc
y 

Beta 𝑹𝟐(%) Overlap with other traits 

rs1487441 6 A 0.485 0.0097 0.037 

Alcohol consumption (drinks per 
week), Autism and educational 
attainment, Bipolar disorder, 
Cognitive ability, Educational 
attainment, Extremely high 
intelligence, General risk tolerance, 
Highest math class taken, Household 
income, Intelligence, QT interval 
(drug interaction), Regular attendance 
at a pub or social club, Risk-taking 
tendency (4-domain principal 
component model), Self-reported 
math ability, Tourette syndrome 

rs11130203 3 A 0.308 0.0100 0.033 

Blood protein levels, Chronic 
inflammatory diseases (ankylosing 
spondylitis, Crohn's disease, psoriasis, 
primary sclerosing cholangitis, 
ulcerative colitis) (pleiotropy), 
Cognitive ability, Crohn's disease, 
Depressed affect, Educational 
attainment, Estimated glomerular 
filtration rate, Extremely high 
intelligence, Feeling fed-up, 
Glioblastoma, Glioma, Gut 
microbiota (functional units), Highest 
math class taken, Household income, 
Inflammatory bowel disease, 
Intelligence, Menarche (age at onset), 
Metabolite levels, Parental longevity 
(father's age at death or father's 
attained age), Pediatric autoimmune 
diseases, Primary sclerosing 
cholangitis, Regular attendance at a 
religious group, Self-reported math 
ability, Ulcerative colitis 

rs7627910 3 C 0.462 -0.0078 0.024 
BMI, Cognitive ability, Cognitive 
ability, years of educational attainment 
or schizophrenia (pleiotropy), 
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Depressed affect, Educational 
attainment, Feeling miserable, 
Gastroesophageal reflux disease, HDL 
cholesterol, HDL cholesterol levels, 
HDL cholesterol levels in current 
drinkers, HDL cholesterol levels x 
alcohol consumption (drinkers vs non-
drinkers) interaction (2df), HDL 
cholesterol levels x alcohol 
consumption (regular vs non-regular 
drinkers) interaction (2df), HDL 
cholesterol x physical activity 
interaction (2df test), Household 
income, Intelligence, Menarche (age at 
onset), Morning person, Morningness, 
Parental longevity (mother's age at 
death or mother's attained age), 
Predicted visceral adipose tissue, 
Regular attendance at a gym or sports 
club, White blood cell count 

rs11678979 2 C 0.271 0.0078 0.019 
Balding type 1, BMI, Cognitive ability, 
Household income, Intelligence, Male-
pattern baldness 

rs4977836 9 A 0.417 0.0069 0.018 

Autism and educational attainment, 
Bipolar disorder, Cognitive ability, 
Depressed affect, Educational 
attainment, Extremely high 
intelligence, Feeling lonely, Highest 
math class taken, Household income, 
Insomnia symptoms (never/rarely vs. 
sometimes/usually), Insomnia 
symptoms (never/rarely vs. usually), 
Intelligence, Mental health study 
participation (completed survey), 
Remission after SSRI treatment in 
MDD or neuroticism, Self-reported 
math ability 

rs185291 5 C 0.584 -0.0069 0.018 

Cognitive ability, Depression, 
Educational attainment, Highest math 
class taken, Household income, 
Intelligence, Lung function (FVC), 
Major depressive disorder, Sedentary 
behaviour duration, Self-reported 
math ability 

rs890546 18 T 0.638 0.0070 0.018 Cognitive ability, Cognitive ability, 
years of educational attainment or 
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schizophrenia (pleiotropy), Depressed 
affect, Depression, Depression 
(broad), Educational attainment, 
Experiencing mood swings, Feeling 
fed-up, Feeling hurt, General factor of 
neuroticism, Highest math class taken, 
Household income, Lifetime smoking 
index, Mood instability, Neuroticism, 
Neuroticism, Remission after SSRI 
treatment in MDD or neuroticism, 
Response to amphetamines, Subjective 
well-being, Well-being spectrum 
(multivariate analysis), Worry 

rs199441 17 G 0.783 0.0076 0.016 

Alcohol consumption (drinks per 
week), Alzheimer's disease in APOE 
e4- carriers, Balding type 1, Brain 
region volumes, Breast cancer, Celiac 
disease, Cognitive ability, Depressed 
affect, Epithelial ovarian cancer, 
Experiencing mood swings, Feeling 
fed-up, Feeling guilty, Feeling hurt, 
Feeling miserable, Feeling nervous, 
Feeling worry, General factor of 
neuroticism, Handedness (Left-
handed vs. non-left-handed), 
Handedness (left-handed vs. right-
handed), Handedness (non-right-
handed vs right-handed), Intelligence, 
Intracranial volume, Intraocular 
pressure, Irritable mood, Lung 
function (FEV1), Lung function 
(FVC), Macular thickness, Male-
pattern baldness, Multiple system 
atrophy, Neuroticism, Neuroticism, 
Ovarian cancer in BRCA1 mutation 
carriers, Parkinson's disease, 
Parkinson's disease or first degree 
relation to individual with Parkinson's 
disease, Post bronchodilator FEV1, 
Sense of smell, White matter 
microstructure (axial diusivities), 
White matter microstructure 
(fractional anisotropy), White matter 
microstructure (mean diusivities), 
White matter microstructure (radial 
diusivities), Worry 
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rs3911063 3 C 0.323 0.0067 0.016 

BMI, General risk tolerance, 
Household income, Predicted visceral 
adipose tissue, Risk-taking tendency 
(4-domain principal component 
model), Smoking initiation (ever 
regular vs never regular), Smoking 
status, Smoking status (ever vs never 
smokers), Waist circumference, Waist-
hip ratio 

rs35175818 16 C 0.372 -0.0065 0.016 

Albumin-globulin ratio, Alcohol 
consumption (drinks per week), 
Allergic disease (asthma, hay fever or 
eczema), Bipolar disorder or body mass 
index, Blood protein levels, BMI, BMI 
(joint analysis main effects and 
physical activity interaction), BMI in 
physically active individuals, Body fat 
percentage, Childhood obesity, 
Chronic inflammatory diseases 
(ankylosing spondylitis, Crohn's 
disease, psoriasis, primary sclerosing 
cholangitis, ulcerative colitis) 
(pleiotropy), Chronic obstructive 
pulmonary disease, Cognitive ability, 
Crohn's disease, Eczema, Educational 
attainment, Estimated glomerular 
filtration rate, Extremely high 
intelligence, Hand grip strength, Hip 
circumference, Hip circumference 
adjusted for BMI, Household income, 
Inflammatory bowel disease, 
Inflammatory bowel disease (early 
onset), Intelligence, Offspring birth 
weight, Pediatric autoimmune 
diseases, Red blood cell count, Red cell 
distribution width, Type 1 diabetes, 
Ulcerative colitis, Waist circumference, 
Weight 

rs34305371 1 A 0.102 0.0100 0.014 

Alcohol consumption (drinks per 
week), Cognitive ability, Cognitive 
ability, years of educational attainment 
or schizophrenia (pleiotropy), 
Educational attainment, Household 
income, Insomnia, Intelligence 

rs78871889 5 T 0.299 -0.0066 0.014 
Educational attainment, Height, 
Highest math class taken, Household 
income 
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rs10053567 5 C 0.218 0.0072 0.014 Educational attainment 

rs619466 18 G 0.906 -0.0101 0.014 

Automobile speeding propensity, 
Depressed affect, Depressive 
symptoms, General factor of 
neuroticism, Household income, Life 
satisfaction, Neuroticism, Positive 
affect, Well-being spectrum 
(multivariate analysis) 

rs62183028 2 T 0.312 -0.0063 0.013 

Cognitive ability, Depressed affect, 
Educational attainment, Highest math 
class taken, Household income, 
Intelligence, Self-reported math ability 

rs3847223 9 T 0.523 0.0057 0.013 
Educational attainment, Household 
income 

rs6928545 6 G 0.317 -0.0061 0.013 
Cognitive ability, Household income, 
Intelligence 

rs113011189 3 T 0.091 -0.0097 0.012 Educational attainment 

rs59971723 4 A 0.381 -0.0057 0.012 

Cognitive ability, Cognitive ability, 
years of educational attainment or 
schizophrenia (pleiotropy), 
Educational attainment, Height, 
Highest math class taken, Household 
income, Intelligence 

rs56211325 2 T 0.024 0.0182 0.012 Cognitive ability, Household income, 
Intelligence 

rs13107325 4 T 0.074 -0.0104 0.012 

Adventurousness, Alcohol 
consumption, Alcohol consumption 
(drinks per week), Alcohol use 
disorder, Alcohol use disorder 
(consumption score), Alcohol use 
disorder (dependence and problematic 
use scores), Alcohol use disorder (total 
score), Autism spectrum disorder or 
schizophrenia, Balding type 1, Bitter 
alcoholic beverage consumption, 
Blood pressure, BMI, BMI (adjusted 
for smoking behaviour), BMI (joint 
analysis main effects and physical 
activity interaction), BMI (joint 
analysis main effects and smoking 
interaction), BMI in non-smokers, 
BMI in physically active individuals, 
Body fat percentage, Brain imaging 



 
Chapter 5 
 

 
272 

measurements, Brain region volumes, 
Childhood body mass index, 
Cognitive ability, Cognitive ability, 
years of educational attainment or 
schizophrenia (pleiotropy), Diastolic 
blood pressure, Diastolic blood 
pressure x alcohol consumption 
interaction (2df test), Eczema, 
Educational attainment, Hand grip 
strength, HDL cholesterol, HDL 
cholesterol levels, HDL cholesterol 
levels in current drinkers, HDL 
cholesterol levels x alcohol 
consumption (drinkers vs non-
drinkers) interaction (2df), HDL 
cholesterol levels x alcohol 
consumption (regular vs non-regular 
drinkers) interaction (2df), HDL 
cholesterol x physical activity 
interaction (2df test), Height, High 
density lipoprotein cholesterol levels, 
Hypertension, Insomnia, Intelligence, 
Low density lipoprotein cholesterol 
levels, Lung function (FVC), Male-
pattern baldness, Mean arterial 
pressure, Mean arterial pressure x 
alcohol consumption interaction (2df 
test), Medication use (agents acting on 
the renin-angiotensin system), 
Multisite chronic pain, NT-proBNP 
levels in acute coronary syndrome, 
Obese vs. thin, Osteoarthritis, 
Predicted visceral adipose tissue, Red 
blood cell count, Risk-taking tendency 
(4-domain principal component 
model), Schizophrenia, Self-reported 
math ability, Sleep duration (short 
sleep), Systolic blood pressure, Systolic 
blood pressure x alcohol consumption 
interaction (2df test), Total cholesterol 
levels, Voxel-wise structural brain 
imaging measurements, vWF levels, 
Waist-hip ratio, Waist-to-hip ratio 
adjusted for BMI, White blood cell 
count 
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rs10818605 9 T 0.556 0.0055 0.012 
Cognitive ability, Educational 
attainment, Highest math class taken, 
Household income 

rs7715147 5 A 0.242 0.0063 0.012 Household income, Multiple system 
atrophy 

rs6935954 6 G 0.576 0.0055 0.012 

Age of smoking initiation, Birth 
weight, Chronotype, Educational 
attainment, Height, Lifetime smoking 
index, Mosquito bite size, Offspring 
birth weight, Parental longevity 
(father's age at death or father's 
attained age), Smoking cessation 

rs10515086 5 T 0.171 -0.0072 0.012 
Educational attainment, Household 
income 

rs1455351 2 G 0.418 -0.0055 0.011 

Cognitive ability, Educational 
attainment, Experiencing mood 
swings, Highest math class taken, 
Household income, Inflammatory 
bowel disease, Intelligence, Mood 
instability, Self-reported math ability, 
Smoking initiation (ever regular vs 
never regular), Smoking status, 
Ulcerative colitis 

rs7556782 2 C 0.634 -0.0056 0.011 

Carpal tunnel syndrome, Risk-taking 
tendency (4-domain principal 
component model), Smoking 
cessation, Waist-hip ratio 

rs1254319 14 A 0.294 0.0059 0.011 

Chronotype, Educational attainment, 
Glaucoma, Glaucoma (high 
intraocular pressure), Glaucoma 
(primary open-angle), Heel bone 
mineral density, Height, Highest math 
class taken, Hip circumference 
adjusted for BMI, Medication use 
(antiglaucoma preparations and 
miotics), Menarche (age at onset), 
Optic cup area, Optic disc area, Optic 
disc size, Optic nerve measurement 
(rim area), Refractive error, Self-
reported math ability, Vertical cup-disc 
ratio, Waist-hip ratio 

rs2535911 14 T 0.357 0.0056 0.011 Cognitive ability 
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rs6561943 13 T 0.257 -0.0061 0.011 

BMI, Cognitive ability, Cognitive 
ability, years of educational attainment 
or schizophrenia (pleiotropy), 
Educational attainment, Experiencing 
mood swings, Highest math class 
taken, Household income, 
Intelligence, Predicted visceral adipose 
tissue, Type 2 diabetes 

rs10789336 1 A 0.597 0.0054 0.011 

Allergic rhinitis, Asthma and major 
depressive disorder, BMI, BMI 
(adjusted for smoking behaviour), 
BMI (joint analysis main effects and 
physical activity interaction), BMI 
(joint analysis main effects and 
smoking interaction), BMI in non-
smokers, BMI in physically active 
individuals, BMI in physically inactive 
individuals, BMI in smokers, Body fat 
percentage, Childhood body mass 
index, Cognitive ability, Depression, 
Depression (broad), Depressive 
symptoms, Hip circumference, 
Insomnia, Intelligence, Major 
depressive disorder, Menarche (age at 
onset), Obesity, Obesity (early onset 
extreme), Subcutaneous adipose tissue, 
Waist circumference, Weight 

rs11168416 12 T 0.324 -0.0057 0.011 Educational attainment, Highest math 
class taken, Metabolite levels 

rs7975227 12 G 0.371 -0.0055 0.011 Intelligence 

rs4811076 20 G 0.511 0.0053 0.011 

Cognitive ability, Educational 
attainment, Highest math class taken, 
Self-reported math ability, Vitiligo, 
White blood cell count 

rs2726518 4 C 0.571 -0.0053 0.011 

Adventurousness, Cognitive ability, 
Colorectal cancer or advanced 
adenoma, Educational attainment, 
Highest math class taken, Household 
income, Intelligence, Multiple sclerosis 

rs9824386 3 A 0.865 0.0077 0.011 

Chronotype, Cognitive ability, 
Educational attainment, Highest math 
class taken, Intelligence, Metabolite 
levels, Morningness 

rs7940022 11 T 0.680 0.0056 0.011 
Balding type 1, Cognitive ability, 
Cognitive ability, years of educational 
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attainment or schizophrenia 
(pleiotropy), Educational attainment, 
Highest math class taken, Household 
income, Intelligence, Male-pattern 
baldness 

rs12204714 6 T 0.632 0.0054 0.011 Age at first birth, Educational 
attainment 

rs2494995 1 C 0.217 -0.0063 0.011 

Adventurousness, Attention deficit 
hyperactivity disorder or cannabis use, 
Balding type 1, Coffee consumption, 
Cognitive ability, Educational 
attainment, Household income, 
Intelligence, Number of sexual 
partners, Perceived intensity of sweet 
substances 

rs4953097 2 T 0.663 -0.0055 0.011 

Age at first sexual intercourse, 
Chronotype, Educational attainment, 
General risk tolerance, Height, 
Morning person 

rs9729959 1 T 0.226 0.0062 0.011 

Cognitive ability, Cognitive ability, 
years of educational attainment or 
schizophrenia (pleiotropy), 
Educational attainment, Glioma, 
Highest math class taken, Household 
income, Intelligence, Non-
glioblastoma glioma, Regular 
attendance at a religious group, Self-
reported math ability, Urinary sodium 
excretion 

rs13240401 7 C 0.224 -0.0062 0.011 
Cognitive ability, Educational 
attainment, Highest math class taken, 
Self-reported math ability 

rs2282760 3 G 0.132 -0.0076 0.011 

Age at voice drop, Coffee 
consumption, Depressive symptom 
(appetite changes) (binary trait), 
Depressive symptom (fatigue) (ordinal 
trait), Depressive symptoms (binary 
sum-score), Depressive symptoms 
(sum-score), Diastolic blood pressure, 
Eosinophil counts, Lung function 
(FVC), Morningness, Systolic blood 
pressure, Waist-to-hip ratio adjusted 
for BMI (additive genetic model) 
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rs141349367 8 T 0.059 -0.0109 0.011  

rs4408596 17 G 0.623 0.0053 0.011 Cognitive ability, Intelligence, 
Morning person 

Note: Summary statistics were downloaded from the NHGRI-EBI GWAS Catalog (Buniello et al., 2019) on 
21/02/2020. The association overlaps are checked for the lead SNPs as well as the SNPs in high LD with them 
(𝑅" > 0.6). The Beta estimates measure the effect sizes on log occupational wage per effective allele count, which 
are approximated as: 𝜎#𝑍[2𝑁(𝑀𝐴𝐹)(1 −𝑀𝐴𝐹)]$%.', where 𝑁 = 282,963 is the sample size, 𝑀𝐴𝐹 is a 
effectallele frequency, and 𝜎# = 0.351 is the standard deviation measured from the pooled sample of men and 
women of the UKB.  Similarly, 𝑅", the variance explained by the SNP alone, is approximated as 𝑍"/𝑁. 
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Table S5.9 Comparison of predictive power of polygenic indices in UK Biobank sibling sample. 
 

 Income PGI Δ𝑅" MTAG PGI Δ𝑅" N 
Log occupational wage per hour 2.77% 4.47% 17,690 
Years of education 4.18% 7.26% 35,128 
BMI 0.66% 1.40% 35,428 
Note: The table reports the change in  𝑅" when a polygenic index is added to the model. As covariates, all analyses 
include dummy variables for the year of birth, male, and being the younger sibling as well as the first 20 genetic 
PCs. For occupational wages, we use age dummies instead of the year of birth and add dummies for the year of 
survey. For BMI ratios we also control for the age dummies instead but not for the year of survey. In every case, we 
also include the interaction terms between the male dummy and the rest of covariates. 
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Table S5.11 Average wages of major occupation groups in the UK (listed in order of highest wages) 
 

Major occupation group 
Weekly wage averaged  

over 2006-2010 (£) 
  

1. Managers and Senior Officials 807.74 

2. Professional Occupations 688.72 

3. Associate Professional and Technical Occupations 526.3 

5. Skilled Trades Occupations 451.32 

8. Process, Plant and Machine Operatives 412.68 

4. Administrative and Secretarial Occupations 322.38 

6. Personal Service Occupations 246.9 

9. Elementary Occupations 232.38 

7. Sales and Customer Service Occupations 202.32 

Source: The Annual Survey of Hours and Earnings  
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Table S5.12 Associations of polygenic index for income (without MTAG) in UK Biobank sibling pairs 
 

    Conditional on education 
 OLS OLS-FE   OLS OLS-FE 

Socioeconomic outcomes 
 
  log hourly wage 0.0581*** 0.0325***   0.0158*** 0.0161 
  (N = 17,692 | 17,578) (0.003) (0.006)   (0.002) (0.006) 
 
  top household income 0.0459*** 0.0280**   0.0167*** 0.0181 
  (N = 27,412 | 27,296) (0.003) (0.007)   (0.003) (0.007) 
 
  log regional income 0.0315*** 0.0143***   0.0143*** 0.0112* 
  (N = 31,692 | 31,266) (0.001) (0.003)   (0.001) (0.003) 
 
  neighborhood score 1.1489*** 0.7167**   0.3561*** 0.5556 
  (N = 29,166 | 28,778) (0.088) (0.196)   (0.088) (0.198) 
 
  years of education 1.0508*** 0.5683***     
  (N = 35,132 | NA) (0.027) (0.065)     
 
  college degree 0.0986*** 0.0500***     
  (N = 35,132 | NA) (0.002) (0.006)     
health proxies 
 
  waist-to-hip ratio -0.0051*** -0.0029   -0.0028*** -0.0022 
  (N = 35,498 | 35,028) (0.000) (0.001)   (0.000) (0.001) 
 
  BMI -0.3844*** -0.1559   -0.2051*** -0.1132 
  (N = 35,432 | 34,968) (0.027) (0.062)   (0.027) (0.062) 
 
  blood pressure -0.6487*** -0.2545   -0.4445*** -0.1968 
  (N = 31,770 | 31,372) (0.078) (0.200)   (0.081) (0.203) 
 
  lung function 0.0453*** 0.0044   0.0168** -0.0032 
  (N = 30,240 | 29,844) (0.005) (0.012)   (0.005) (0.012) 
 
 



 
Chapter 5 
 

 
284 

Table S5.12 Associations of polygenic index for income (without MTAG) in UK Biobank sibling pairs 
 

    Conditional on education 
 OLS OLS-FE   OLS OLS-FE 

disease diagnoses 
 
  ever hospitalized -0.0141*** -0.0066   -0.0072** -0.0053 
  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  ever diagnosed with cancer 0.0001 0.0028   -0.0002 0.0017 
  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  infectious and parasitic diseases -0.0088*** 0.0007   -0.0045 0.0012 
  (N = 35,602 | 35,132) (0.002) (0.005)   (0.002) (0.005) 
 
  neoplasms 0.0004 0.0024   -0.0004 0.0014 
  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  diseases of blood organs and immune 
system 

-0.0088*** -0.0007   -0.0039 0.0004 

  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  endocrine, nutritional, and metabolic 
diseases 

-0.0152*** -0.0032   -0.0048 -0.0008 

  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  mental, behavioral, nervous system 
disorders 

-0.0189*** -0.0042   -0.0105*** -0.0023 

  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  diseases of the eye and adnexa -0.0059** -0.0031   -0.0036 -0.0022 
  (N = 35,602 | 35,132) (0.002) (0.005)   (0.002) (0.005) 
 
  diseases of the circulatory system -0.0264*** -0.0128   -0.0149*** -0.0105 
  (N = 35,602 | 35,132) (0.002) (0.007)   (0.003) (0.007) 
 
  diseases of the respiratory system -0.0173*** -0.0075   -0.0109*** -0.0057 
  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
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Table S5.12 Associations of polygenic index for income (without MTAG) in UK Biobank sibling pairs 
 

    Conditional on education 
 OLS OLS-FE   OLS OLS-FE 

  diseases of the digestive system -0.0246*** -0.0076   -0.0133*** -0.0053 
  (N = 35,602 | 35,132) (0.003) (0.007)   (0.003) (0.007) 
 
  diseases of the skin and subcutaneous tissue -0.0047* -0.0014   -0.0011 0.0000 
  (N = 35,602 | 35,132) (0.002) (0.005)   (0.002) (0.005) 
 
  diseases of musculoskeletal system and 
connective tissue 

-0.0237*** -0.0096   -0.0136*** -0.0070 

  (N = 35,602 | 35,132) (0.002) (0.007)   (0.003) (0.007) 
 
  diseases of genitourinary system -0.0162*** -0.0036   -0.0080* -0.0017 
  (N = 35,602 | 35,132) (0.002) (0.007)   (0.002) (0.007) 
 
  symptoms and signs not elsewhere classified -0.0252*** -0.0116   -0.0151*** -0.0107 
  (N = 35,602 | 35,132) (0.003) (0.007)   (0.003) (0.007) 
 
  injury, poisoning, and other consequences 
of external causes 

-0.0073** -0.0027   -0.0042 -0.0028 

  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  external causes of morbidity and mortality -0.0082*** -0.0031   -0.0044 -0.0032 
  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  other health conditions -0.0222*** -0.0145   -0.0126*** -0.0129 
  (N = 35,602 | 35,132) (0.003) (0.008)   (0.003) (0.008) 
Note: Significance at family-wise error rate 5% (*), 1% (**), 0.1% (***), where multiple hypothesis testing is 
corrected using Holm’s method (Holm, 1979) for each set of analysis. Standard errors clustered by family are 
reported in parentheses. The table reports the coefficient estimates for the standardized PGI for income (non-
augmented). For each outcome, the sample is restricted to sibling pairs for both of whom the outcome is observed. 
FE indicates the models with family fixed effects included. The second column set reports the results where 
education is controlled for by including dummies for each qualification. As covariates we include dummy variables 
for the year of birth, male, and being a younger sibling as well as the top 20 genetic PCs. For the economic 
outcomes we control for the age dummies instead of the year of birth and add dummies for the year of survey. For 
BMI and waist-to-hip ratio we also control for the age dummies instead but not for the year of survey. In every case 
we also include the interaction terms between the male dummy and the rest of covariates.  
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Table S5.13 Associations of polygenic index for educational attainment in UK Biobank sibling pairs 
 

    Conditional on education 
 OLS OLS-FE   OLS OLS-FE 

Socioeconomic outcomes 
 
  log hourly wage 0.0717*** 0.0443***   0.0174*** 0.0235** 
  (N = 17,692 | 17,578) (0.002) (0.007)   (0.002) (0.006) 
 
  top household income 0.0547*** 0.0339***   0.0171*** 0.0203* 
  (N = 27,412 | 27,296) (0.003) (0.007)   (0.003) (0.007) 
 
  log regional income 0.0397*** 0.0132**   0.0185*** 0.0093* 
  (N = 31,692 | 31,266) (0.001) (0.003)   (0.002) (0.003) 
 
  neighborhood score 1.5003*** 0.5229   0.5085*** 0.3163 
  (N = 29,166 | 28,778) (0.088) (0.200)   (0.091) (0.203) 
 
  years of education 1.3486*** 0.7235***     
  (N = 35,132 | NA) (0.026) (0.066)     
 
  college degree 0.1281*** 0.0662***     
  (N = 35,132 | NA) (0.002) (0.006)     
health proxies 
 
  waist-to-hip ratio -0.0063*** -0.0038**   -0.0033*** -0.0029* 
  (N = 35,498 | 35,028) (0.000) (0.001)   (0.000) (0.001) 
 
  BMI -0.5545*** -0.2903***   -0.3452*** -0.2425** 
  (N = 35,432 | 34,968) (0.027) (0.063)   (0.028) (0.064) 
 
  blood pressure -0.8190*** -0.6570*   -0.5865*** -0.5989* 
  (N = 31,770 | 31,372) (0.078) (0.208)   (0.083) (0.212) 
 
  lung function 0.0521*** 0.0192   0.0156** 0.0102 
  (N = 30,240 | 29,844) (0.005) (0.013)   (0.005) (0.013) 
disease diagnoses 
 
  ever hospitalized -0.0206*** -0.0112   -0.0129*** -0.0102 
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Table S5.13 Associations of polygenic index for educational attainment in UK Biobank sibling pairs 
 

    Conditional on education 
 OLS OLS-FE   OLS OLS-FE 

  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  ever diagnosed with cancer -0.0007 -0.0004   -0.0009** -0.0011 
  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  infectious and parasitic diseases -0.0125*** -0.0067   -0.0068*** -0.0057 
  (N = 35,602 | 35,132) (0.002) (0.005)   (0.002) (0.005) 
 
  neoplasms 0.0006 -0.0001   -0.0004 -0.0006 
  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  diseases of blood organs and immune system -0.0118*** 0.0001   -0.0062** 0.0008 
  (N = 35,602 | 35,132) (0.002) (0.007)   (0.002) (0.007) 
 
  endocrine, nutritional, and metabolic 
diseases 

-0.0270*** -0.0136   -0.0152*** -0.0114 

  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  mental, behavioral, nervous system disorders -0.0275*** -0.0084   -0.0174*** -0.0055 
  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  diseases of the eye and adnexa -0.0060** -0.0062   -0.0031** -0.0053 
  (N = 35,602 | 35,132) (0.002) (0.005)   (0.002) (0.005) 
 
  diseases of the circulatory system -0.0348*** -0.0119   -0.0211*** -0.0098 
  (N = 35,602 | 35,132) (0.003) (0.007)   (0.003) (0.007) 
 
  diseases of the respiratory system -0.0209*** -0.0079   -0.0131*** -0.0062 
  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  diseases of the digestive system -0.0335*** -0.0143   -0.0202*** -0.0118 
  (N = 35,602 | 35,132) (0.003) (0.008)   (0.003) (0.008) 
 
  diseases of the skin and subcutaneous tissue -0.0082*** -0.0040   -0.0048** -0.0024 
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Table S5.13 Associations of polygenic index for educational attainment in UK Biobank sibling pairs 
 

    Conditional on education 
 OLS OLS-FE   OLS OLS-FE 

  (N = 35,602 | 35,132) (0.002) (0.005)   (0.002) (0.005) 
 
  diseases of musculoskeletal system and 
connective tissue 

-0.0354*** -0.0256**   -0.0241*** -0.0229* 

  (N = 35,602 | 35,132) (0.002) (0.007)   (0.003) (0.007) 
 
  diseases of genitourinary system -0.0220*** -0.0111   -0.0128*** -0.0099 
  (N = 35,602 | 35,132) (0.002) (0.007)   (0.003) (0.007) 
 
  symptoms and signs not elsewhere classified -0.0317*** -0.0136   -0.0200*** -0.0127 
  (N = 35,602 | 35,132) (0.003) (0.008)   (0.003) (0.008) 
 
  injury, poisoning, and other consequences of 
external causes 

-0.0088*** -0.0035   -0.0051** -0.0023 

  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  external causes of morbidity and mortality -0.0106*** -0.0038   -0.0061** -0.0028 
  (N = 35,602 | 35,132) (0.002) (0.006)   (0.002) (0.006) 
 
  other health conditions -0.0325*** -0.0243*   -0.0219*** -0.0224* 
  (N = 35,602 | 35,132) (0.003) (0.008)   (0.003) (0.008) 
Note: Significance at family-wise error rate 5% (*), 1% (**), 0.1% (***), where multiple hypothesis testing is 
corrected using Holm’s method (Holm, 1979) for each set of analysis. Standard errors clustered by family are 
reported in parentheses. The table reports the coefficient estimates for the standardized PGI for educational 
attainment. For each outcome, the sample is restricted to sibling pairs for both of whom the outcome is observed. 
FE indicates the models with family fixed effects included. The second column set reports the results where 
education is controlled for by including dummies for each qualification. As covariates we include dummy variables 
for the year of birth, male, and being a younger sibling as well as the top 20 genetic PCs. For the economic 
outcomes we control for the age dummies instead of the year of birth and add dummies for the year of survey. For 
BMI and waist-to-hip ratio we also control for the age dummies instead but not for the year of survey. In every case 
we also include the interaction terms between the male dummy and the rest of covariates. 
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S5.8 Figures 

Figure S5.1 Distribution of the differences in MTAG polygenic indices (PGI) for income between 
siblings in the UK Biobank 

 
Note: The figure plots the density distribution of the absolute difference in the standardized PGI between 
siblings with Gaussian kernel.   
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Figure S5.1 Associations of MTAG polygenic index (PGI) for income in UK Biobank sibling pairs 
(OLS) 

 
Note: The figure plots the regression coefficients for the standardized MTAG income PGI estimated by OLS with 
or without education controlled for. Error bars are 95% confidence intervals. The upper panel shows the estimates 
measured on percentage scale. The lower panel plots the standardized estimates (i.e., the outcomes and the PGI are 
both standardized). One asterisk indicates significance at the 5% family-wise error rate for the estimate with family 
fixed effects while two asterisks indicate the significance conditional on education. Multiple testing is corrected for 
using Holm’s method (Holm, 1979). See Table 5 and 6 for more details.  
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Figure S5.2 The composition of major occupation groups in the UK 

 

 

Note: see Table  for the major occupation group reference. 
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Figure S5.5 Scatter plots of imputed and observed log-wages in the BHPS (N=32,947) 
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Figure S5.6 Decomposition of the total heritability of occupational wages by different groups of single 
nucleotide polymorphisms (SNPs) 

 

 
Note: GREML estimation in 24,000 unrelated individuals from the UK Biobank. Error bars are standard errors. 
SNPs are sorted into four groups by different genetic features. LD - linkage disequilibrium scores.  
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Figure S5.7 Decomposition of the total heritability of occupational wages by chromosomes 

 
Note: GREML estimation in 24,000 unrelated individuals from the UK Biobank. Error bars are standard errors 
from GREML estimation. The standardized coefficient of a regression of chromosomal h2

SNP on the effective 
number of loci per chromosome is 0.72 (95% CI: 0.41 - 1.02). 
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Figure S5.8 Manhattan plot for a genome-wide association study (GWAS) of occupational wages in the 
UK Biobank 

 
Note: The GWAS is run on 282,963 individuals from the UK Biobank. The p-values are plotted on the -𝑙𝑜𝑔(% 
scale on the vertical axis. Chromosomal positions of each of 9,773,981 single nucleotide polymorphisms 
(SNPs) are plotted on the horizontal axis. 
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Abstract 

Two family-specific lotteries take place during conception— a social lottery that determines who our 

parents are and which environment we grow up in, and a genetic lottery that determines which part of 

their genomes our parents pass on to us. The outcomes of these lotteries create inequalities of 

opportunity that can translate into disparities in health and socioeconomic status. Here, we estimate a 

lower bound for the relevance of these two lotteries for differences in education, income and body mass 

index in a sample of  38,698 siblings in the UK who were born between 1937 and 1970. Our estimates 

are based on models that combine family-specific effects with gene-by-environment interactions. We 

find that the random differences between siblings in their genetic endowments clearly contribute 

towards inequalities in the outcomes we study. Our rough proxy of the environment people grew up in, 

which we derived from their place of birth, are also predictive of the studied outcomes, but not beyond 

the relevance of family environment. Our estimates suggest that at least 13 to 17 percent of the 

inequalities in education, wages and BMI in the UK are due to inequalities in opportunity that arise 

from the outcomes of the social and the genetic lottery.  

6.1 Introduction 

It has long been recognized that parent’s health and socio-economic status (SES) are strong predictors for 

their children’s health, educational attainment and income later in life. Furthermore, health, educational 

attainment, and income are all heritable to some degree (Benjamin et al., 2012; de Vlaming et al., 2017; 

Polderman et al., 2015; Taubman, 1976). Thus, parents do not only influence their children via the 

rearing environment they provide for them, but also by the random combination of the genes they pass 

on to their offspring. This creates two major sources of differences in opportunities at conception in the 

form of exogenously determined environmental and genetic endowments. Disparities in important life 

outcomes that arise from differences in opportunity are often viewed as unfair and less desirable than 

inequality that is created by active choices and agency (e.g. due to hard work). This may have policy 

implications because people tend to favour redistribution policies more when inequalities in 

opportunity and luck are major drivers of inequality (Alesina & La Ferrara, 2005; Alesina, Stantcheva, & 

Teso, 2018; Almås, Cappelen, Sørensen, & Tungodden, 2010; Cappelen, Konow, Sørensen, & 

Tungodden, 2013; Clark & D’Ambrosio, 2015; Gromet, Hartson, & Sherman, 2015). Thus, studying 
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the relative importance of inequalities of opportunity for important life outcomes is of fundamental 

importance to discussions about fairness and policy.  

Genetic factors that are linked to socio-economic status are a reflection of social realities. For example, 

societies that value high cognitive performance in schools and labour markets will tend to exhibit that 

genetic factors that are linked with cognitive health are also related to socio-economic outcomes such as 

educational attainment or income. Thus, genes do not operate in a vacuum – their effects are partially 

contingent on environmental factors. Furthermore, specific environments and genes may also interact 

with each other (Barcellos, Carvalho, & Turley, 2018, 2020; Schmitz & Conley, 2017a, 2017b), 

potentially further exacerbating the importance of the genetic and the social lottery as a source of 

inequality.  

Recent advances in genetics have made it possible to measure genetic differences between people 

comprehensively, providing researchers with new opportunities to study the potential relevance of 

genetic luck and to investigate how exogenously given genetic and environmental endowments can 

interact to cause inequalities (Harden & Koellinger, 2020). Moreover, increases in sample size have led to 

publicly available summary statistics from large-scale genome-wide association studies (GWAS) for many 

outcomes related to SES and health, such as educational attainment (Lee et al., 2018), household income 

(Hill et al., 2019), occupational wages (Kweon et al., 2020), body fat percentage (Lu et al., 2016), and 

body mass index (BMI) (Locke et al., 2015). The estimated effects of these GWAS can be summarized in 

linear indices that are called polygenic indices (PGIa) (Daetwyler, Villanueva, & Woolliams, 2008; 

Dudbridge, 2013). Although PGI capture only a part of the heritability of a trait because they are 

measured with error (Daetwyler et al., 2008; DiPrete, Burik, & Koellinger, 2018; Dudbridge, 2013), they 

nevertheless provide a valuable new tool to analyse genetic contributions to inequality and to study 

potential interactions between genetic endowments and specific environmental conditions (Barcellos et 

al., 2018; Harden & Koellinger, 2020).  

The goal of this study is to estimate a lower bound for the relevance of environmental and genetic luck 

and their interactions for important life outcomes. We employ data from the UK Biobank, which is 

currently the largest publicly available sample of genotyped siblings in the world (38,698 individuals). 

Genetic differences between biological siblings are due to the natural experiment of meiosis. During 

 
a Here we follow the recent change proposed in Becker et al., (2021) from polygenic (risk) score to polygenic index 
to make it less likely to be wrongly interpreted as a value judgement. 
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meiosis, the two copies of each parental chromosome are randomly combined and then separated to 

create a set of two gametes (e.g., two eggs or two sperm), each of which contains only one new, 

resampled copy of each chromosome. The resulting genetic differences between full siblings are 

therefore random and independent from family-specific ancestry and environmental factors that vary 

between families.  

Our choice of outcome variables was specified in a pre-registered analysis planb and driven by 

considerations about data availability and statistical power. In the socioeconomic domain, we focus on 

educational attainment (EA) and hourly wages. Both are key components of socio-economic status, and 

both are linked to happiness (Boyce, Brown, & Moore, 2010; Frijters, Haisken-DeNew, & Shields, 

2004), health, and longevity (Adler & Rehkopf, 2008; Stringhini et al., 2017; Wilkinson & Marmot, 

2003). In the health domain, we focus on BMI as a proxy for morbidity that is also linked to mortality 

(Mokdad et al., 2003) and many other health outcomes. Importantly, for all three outcomes, large-scale 

GWAS results are available that allow constructing PGI that capture a substantial part of the heritability 

of these traits (Kweon et al., 2020; Lee et al., 2018; Locke et al., 2015). 

We extracted measures of potentially relevant environmental factors during early childhood from 

available information about place of birth. Chetty and Hendren (2018a, 2018b) show childhood 

neighbourhood affects later-life outcomes like educational attainment and income. Amongst other 

factors, they find that school quality has a positive effect. Furthermore, neighbourhood SES has been 

shown to be related to infant health and infant mortality rate in the UK (Weightman et al., 2012). In this 

study, we used the local average school leaving age and the district mortality rate at the place of birth as 

measures of childhood environment.  

Importantly, our genetic and environmental variables only capture a part of the ways in which the 

outcomes of the genetic and the social lottery may influence outcomes later in life, and all our variables 

are subject to substantial measurement error, which attenuates the estimated effects of these two lotteries 

towards zero. Thus, our study estimates a conservative lower bound for the potential relevance of these 

two sources of luck on lifetime outcomes.  

In addition to the linear effects of PGI and childhood environments, we also investigate potential 

interaction effects between them. Numerous studies have begun identifying relevant gene-by-

 
b Our pre-registered analysis plan can be accessed here: https://osf.io/wf56h/ 
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environment interactions both on SES and health outcomes. One example of a study on inequality and 

gene-by-environment interaction is Belsky et al. (2018), who study social mobility in several cohorts 

using a PGI based on GWAS results for educational attainment (EA) from Lee et al. (2018). They find 

that both parental SES and the genetic endowment of the child contribute to social mobility. In analyses 

that control for family fixed effects, the sibling with the higher PGI for EA is found to be more likely to 

have higher SES later in life, suggesting that random genetic differences between siblings contribute 

towards social mobility. While Belsky et al. also investigate gene-by-environment interactions and 

conduct analyses within-families, they do not combine the two approaches. This makes their results of 

the gene-by-environment analyses more difficult to interpret because they may be confounded by 

unobserved family-specific environments that correlated with genetic endowments (Harden & 

Koellinger, 2020; Schmitz & Conley, 2017a).  

Similar to the study of Belsky et al. (2018), many gene-by-environment studies are difficult to interpret 

due to sensitivity to confounding from unobserved family-specific environments and population 

structure that are correlated with both the environmental measure and the underlying genetic factors 

(Harden & Koellinger, 2020; Schmitz & Conley, 2017a).  

One of the solutions proposed in the literature is the use of natural experiments (Schmitz & Conley, 

2017a), for instance using policy interventions (Schmitz & Conley, 2017b). Barcellos et al. (2018) take 

this approach and study the effects of genes and education on health outcomes in the UK Biobank. They 

make use of a well-known compulsory schooling age reform in the United Kingdom in in 1972 as a 

quasi-experiment and find that an increase in education can reduce health differences related to genetic 

risk of obesity. Furthermore, Barcellos et al. (2020) use a similar approach to Barcellos et al. (2018) to 

investigate the effects of the same schooling reform on education and wages later in life as well as the 

interaction between birth place effects and PGI. They found that the schooling reform reduced 

differences in educational attainment across birth places, but benefitting those with high PGI for EA the 

most. The effect of education on wage was twice as high in the top tercile of the PGI, compared to the 

bottom and middle terciles. While policy reforms that induce as-good-as-random variation in education 

are a common method to identify causal effects, the results are often specific to the policy and context 

that is being studied (Rosenzweig & Wolpin, 2000). 
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Our study investigates the effects of environmental and genetic luck and their possible interactions for 

important life outcomes using a novel approach. We combine measures of early childhood environment 

with random genetic differences between siblings in a within-family design. The random genetic 

differences between siblings are by definition independent from shared environments that are not 

captured by our early life exposures of interest, thereby circumventing the endogeneity problem that 

most gene-environment studies suffer from. Furthermore, we investigate different gene-environment 

interactions than those investigated in earlier work.  

6.2 Materials 

6.2.1 Sample 

The UK Biobank is a large population-based longitudinal study, designed to study health in middle aged 

and older UK citizens (Fry et al., 2017; Sudlow et al., 2015). The participants were between 40 and 69 

years old when they entered the study between 2006 and 2010. Participants answered a wide array of 

survey questions about their life and health and various physical measurements and biological samples 

(saliva, blood and urine) were taken during an assessment centre visit. Almost all participants were 

genotyped and all participants gave broad consent for research related to health and well-being. We 

restrict our analyses to individuals of European descent to limit possible confounding due to population 

structure. Identification of European ancestry was done by the UK Biobank based on principal 

component analysis with the 1000 Genomes project reference panel (1000 Genomes Project 

Consortium et al., 2015). 

6.2.2 Early Childhood Environment 

The UK Biobank does not contain direct measures of early childhood environment that are pertinent to 

our research question. To obtain proxies of socio-economic environment during childhood, we used 

birth place coordinates. We matched these coordinates to district-level early-childhood exposures that we 

obtained from historical data made available by Vision of Britain (Southall, 2011)c. Specifically, we use 

the local average school leaving age and the infant mortality rate at the district level (see Supplementary 

Information (SI) Section S6.2 for details).  

 
c www.visionofbritain.org.uk 
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6.2.3 Outcomes 

Following prior literature, we measured educational attainment in years of schooling (see SI S6.5). To 

obtain a proxy for individual income, we imputed occupational wages from standardized occupation 

codes using an algorithm developed by Kweon et al. (2020). The imputed values reflect the logarithm of 

the typical wage per hour for each occupation, adjusted for demographic characteristics such as sex and 

age. The imputation algorithm utilizes wage data provided by the UK Office of National Statistics, using 

the British Household Panel Survey to estimate model parameters and the Labour Force Survey for 

external validation. This procedure primarily captures wage differences between occupations and 

captures R2 ≈ 0.50 of the total variance of hourly wages. Finally, body mass index (BMI) -- our proxy for 

health -- is based on physical measures taken in the UK Biobank assessment centre.  

6.2.4 Polygenic Indices 

We constructed PGI using the results of the largest GWAS publicly available for educational attainment, 

occupational wages, and BMI, which are Lee et al. (2018), Kweon et al. (2020), and Locke et al. (2015) 

respectively. Furthermore, we used multi-trait analysis of genome-wide association summary statistics 

(MTAG; Turley et al., 2018) to increase the accuracy of the PGI by including summary statistics of 

genetically correlated traits. To account for linkage-disequilibrium, we constructed PGI using LDpred 

(Vilhjálmsson et al., 2015). SI Section S6.3 provides further detail. 

6.3 Methods 

First, we mapped the relationships of the outcomes in adulthood with early childhood environment and 

genetic endowments. We divided the sample into different terciles of the early childhood environment 

and PGI distributions. We then compared the means of our outcome variables across terciles to visualize 

how SES and BMI differ based on place of birth and genetic endowments.  

We then regressed our outcomes on the PGI, dummy variables for the district terciles, and interaction 

terms between the two as well as other control variables: 

𝑦! = 𝛽" + 𝛽#𝐺! +𝑫𝒊𝜷𝟐 + (𝐺! ×𝑫𝒊)𝜷𝟑 + 𝑷𝑪𝒊𝜸 + 𝒁𝒊𝜹 + 𝜖! 	 

 

(6.1) 

where 𝑦!  is the outcome of individual 𝑖 (educational attainment, imputed log hourly wage or BMI), 𝐺!  is 

the PGI for the respective outcome, 𝑫𝒊 is a vector with two dummy variables for the middle and top 
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terciles of the distribution of our environmental variable (local average school leaving age or local infant 

mortality rate), 𝑷𝑪𝒊 is a vector of principle components of the genetic data to control for population 

stratification, 𝒁𝒊 is a vector of other control variables (including year of birth, year of birth squared, year 

of birth cubed, gender, gender interacted with the year of birth variables and genotyping batch), and 𝜖!  is 

the error term. It should be noted that while our primary interest lies in the estimates for 𝛽#, 𝜷𝟐 and 𝜷𝟑, 

the covariates included in 𝒁𝒊 are also the result of luck in the sense that nobody has an influence of their 

time and place of birth or their biological sex, either. Thus, all of the variance explained by model (6.1) 

can be attributed to luck defined as exogenously given resources that are outside of one’s control.   

Next, we re-estimate Equation (6.1) adding family fixed effects. By using family fixed effects, we utilize 

the random genetic differences between siblings that are by definition independent from shared 

environments that are not captured by our early life exposures of interest, thereby circumventing 

endogeneity problems caused by inadequately controlling for unobserved gene-environment 

correlations. Since our environmental exposures are local-level measures at the birth location, it is 

plausible that these exposures are not dependent on own genetic effects but only on parental genetic 

effects and pre-birth family characteristics, which are captured by the family fixed effects. Therefore, 

these family fixed effects also adjust for potential biases in the estimates of 𝛽# that result from indirect 

genetic effects such as genetic nurture (Kong et al., 2018) or any population stratification that is not 

captured by the principal components of the genetic data. 

While the family fixed effects capture many possible biases, it can fail to deliver a within-family estimator 

for the interaction term, as the interaction term is not guaranteed to be independent of between-family 

variation (Giesselmann & Schmidt-Catran, 2018, 2020).  Therefore, we extend our analyses to control 

for those sources of between-family variation by adding additional control variables for between-family 

variation to a random effects model based on Mundlak’s work (Mundlak, 1978), extended to account 

for interaction terms: 

 

 	𝑦!" = 𝛽#𝐺!" + 𝛽$𝐸!" + 𝛽%(𝐺!" × 𝐸!") + 𝜃#𝐺&, + 𝜃$𝐸&, + 𝜃%-𝐺&, × 𝐸!". + 𝜃'-𝐺!" × 𝐸&,. + 𝒁!"( 𝜹𝟏

+ 𝒁,"(𝜹𝟐 + (𝑢" + 𝜀!")	

(6.2) 
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where 𝑋'4  indicates the family-specific mean of the variable 𝑋!(  and (𝑢( + 𝜀!() is the error component, 

with 𝑢(  as the family-level random effect. All other variables are defined as above. Every variable in this 

regression was mean-centred, so that the estimated coefficients of the model provide the effect size at the 

means of all variables. 

Estimating this model as a random-effects framework gives within-family estimate for 𝛽# , 𝛽), and 𝛽*. 

The key components of this model are 𝐺'4 , 𝐸'4 , 9𝐺'4 × 𝐸!(:, and 9𝐺!( × 𝐸'4: which control for the 

unobserved between-family differences in the PGI, the environment measure, and the gene-environment 

interaction; thereby yielding within-family estimates for 𝛽# , 𝛽), and 𝛽*. The within-family means are 

designed to capture more dimensions of the between family variation than the family fixed effects model. 

Therefore, a within-family estimate for the gene-environment interaction of this model will not 

represent a spurious gene-environment interaction (Giesselmann & Schmidt-Catran, 2018, 2020). While 

the model accounts for many possible sources of bias by including family specific effects and other 

control variables, it cannot control for all possible sources of omitted variable bias, especially those due to 

potential indirect genetic effects from siblings on each other, which may limit the causal interpretation 

of our estimates. However, indirect genetic effects from siblings would lead to a bias towards zero for the 

estimated effect of the PGI and the interaction term due to possible spill-over effects from the sibling 

with the higher PGI to the sibling with the lower PGI, decreasing the within-sibling differences in 

outcomes. Therefore, if sibling effects are present, our estimates are likely to underestimate the direct 

genetic effects.  

6.4 Results 

Figure 6.1 shows the mean educational attainment of the UK Biobank participants, divided into terciles 

of the distribution of mean local school leaving age in their neighborhood of birth (left panel) and the 

terciles of the EA PGI distribution (right panel). Participants born in neighborhoods in the top 

educational attainment terciles have on average 1.7 years more education compared to those in the 

bottom tercile. Inequality reflected by genetic differences are even larger, with those in the top tercile of 

the PGI distribution having on average 3.5 years more education than those in the bottom tercile. 
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Figure 6.2 shows the results for imputed log hourly wages. Participants in the top local schooling terciles 

have 1.07 pounds per hour higher wages than those in the bottom, and those born with a genetic 

endowment in the top tercile have 2.49 pounds per hour higher wages than those in the bottom.  

Finally, Figure 6.3 shows the results for BMI. Participants in the top local schooling tercile have a mean 

BMI that is 0.53 lower than those in the bottom. The difference between the top and bottom BMI PGI 

terciles is 3.58 BMI points. For a person that is 180 cm tall, a difference of 3.58 BMI points would be 

equivalent to 11.6 kilograms.  

SI Figure 6.1 shows the mean educational attainment, hourly wage and BMI by terciles of the infant 

mortality rate distribution. Those results show a similar pattern where persons born in the top tercile 

have more favorable outcomes than those in the bottom.  

We illustrate the regression results from model (6.1) for EA in Figure 6.4. The panels show the 

scatterplots of EA and the EA PGI for the bottom, middle, and top terciles of the local school leaving age 

distribution, after residualizing both axis on control variables. The mean of both EA and the EA PGI 

vary across environments, an ANOVA mean comparison test shows that they significantly differ from 

each other (𝑝 ≤ 0.0001). The difference in means show that being born in a district in the top tercile of 

the local school leaving age distribution is associated with approximately 1.1 years more education 

compared to being born in the bottom tercile. There is also difference in the effect of the EA PGI on EA 

between the three local school leaving age terciles, as indicated by a difference in slopes of the regression 

line. The slope indicates that that a 1 standard deviation (SD) increase in the PGI is associated with an 

increase in education of approximately 1.4 years in the bottom tercile and 1.51 or 1.74 for the middle or 

top tercile. The effect of the PGI is stronger for individuals from districts  with a higher average school 

leaving age. Thus, the interaction between the PGI and the district of birth exacerbates the inequalities 

from each of the two sources of luck. Finally, the mean PGI also varies by the district terciles and its 

mean is 0.26 higher in the in the top tercile compared to the bottom (𝑝 ≤ 0.0001). Thus, the social and 

genetic sources of luck that we investigated are positively correlated with each other, which further 

increases inequalities that arise from them. The results of this regression are also reported in column (1) 

of Table 6.1. Here, the effects of the EA PGI, the tercile dummies, as well as their interactions are all 

statistically significant with 	𝑝-values below 0.05. 
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Column (2) of Table 6.1 reports regression results including family fixed effects. The family fixed effects 

absorb a substantial part of the signal from the other variables. The district terciles are designed to 

capture early childhood environmental effects, but the results show that they are not predictive beyond 

the family environment. It should be noted that the family-fixed effects may capture most of the 

variation in the terciles and the variation in the local average school leaving age between siblings is 

typically small, which decreases power. The coefficient for the PGI remains statistically significant (𝑝 ≤

0.001), but with a lower coefficient. This is in line with previous findings, and may be attributed to 

genetic nurture effects (Kong et al., 2018; Lee et al., 2018), which are indirect effects from parental 

genotypes on the offspring through the environment they provide. Parental genotypes are correlated 

with the genotypes of their offspring, and may also be correlated to environment they provide for their 

offspring. This induces an unobserved variable bias in the estimated effect of the PGI when there are no 

controls for parental genotype or family fixed effects. Another possibility is that the PGI also captures 

some population stratification (Hamer & Sirota, 2000), which is a term that describes the systematic 

differences in allele frequencies between subpopulations. This could cause an inflation of the coefficient 

for the PGI the coefficient before controlling for family-fixed effects, if there are environmental 

differences between the subpopulations that are correlated with the PGI and the outcome, even though 

twenty principal components of the genetic data were added as control variables (Price et al., 2006). 

While these two potential sources of the decrease in PGI are not indicative of luck due to direct genetic 

effects, both still refer to luck due to exogenously given endowments that our outside of one’s control 

(i.e. parental environment and population effects). Nevertheless, our results indicate that direct genetic 

luck still plays an important role in educational attainment, even when family fixed effects are controlled 

for: A one standard deviation increase in the PGI implies an increase of 0.8 years of education.  

Figure 6.5 shows the results for imputed log hourly wage and its respective PGI. The regression 

coefficients are reported in column (3) of Table 6.1. When comparing the bottom to the middle tercile, 

we see that being born into a middle tercile SES district does not affect hourly wages compared to the 

bottom tercile. Being born in the top tercile does have an impact on hourly wages and the coefficient in 

column (3) of Table 6.1 shows that it is associated with 5.0% higher wages. The coefficient for the PGI in 

column (3) is significant (𝑝 ≤ 0.001) and indicates an increase in wages of approximately 7.2% per SD 

of the PGI, which is in line with previous findings (Kweon et al., 2020). The relationship between the 

PGI and mean log hourly wages is identical across terciles, which can be seen from the identical slope of 
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the regression line across terciles in Figure 6.5 and interaction coefficients in column (3).  Again, the 

mean PGI is higher in the highest tercile (𝑝 ≤ 0.0001), indicating a positive correlation between genetic 

and social luck. 

When adding family-fixed effects to the model in column (4), the coefficient of the PGI decreases 

compared to the model without family-fixed effects, but remains an important predictor of hourly 

wages. A one standard deviation increase in the PGI is associated with a 5.1% increase in hourly wages. 

Similar to the effects for EA, the district terciles are not predictive when controlling for family-fixed 

effects.  

The regression results for BMI are visualized in a similar fashion in Figure 6.6. The top tercile of the local 

school leaving age distribution exhibits a substantially lower average BMI of 0.41 points (𝑝 ≤ 0.001). 

Furthermore, the BMI PGI is associated with a 1.5 point increase in BMI per standard deviation of the 

PGI (𝑝 ≤ 0.001). Similar to the results for hourly wages, the relationship between the PGI and BMI 

does not vary by district tercile.  

Comparing the results of column (5) to column (6) in Table 6.1, the coefficient of the BMI PGI barely 

changes when family fixed-effects are controlled for, which indicates that genetic nurture is less 

important for BMI than for socio-economic outcomes. This is consistent with the findings reported by 

Kong et al. (2018) However, controlling for family-fixed effects again absorbs the effects of the local 

school leaving age on BMI.  

We obtained qualitatively similar results when we used the local infant mortality rate terciles as proxies of 

early childhood environment (SI Table S6.3). One notable difference is that we observe an interaction 

effect between the BMI PGI and the local infant mortality rate on BMI in adulthood: The BMI PGI is 

more strongly associated with BMI in districts with low infant mortality rate. This interaction effect 

remains even after family-fixed effects are controlled for, indicating that the infant mortality rate may 

capture health-relevant environmental effects that are not captured by the local average schooling leaving 

age.  

Finally, the results of our random effects models (Equation 6.2) are shown in Table 6.2. The estimates 

for EA, log hourly wage and BMI are shown in columns (1), (2), and (3), respectively. The results are 

very similar to the models with family fixed effects in Table 6.1. We see that genetic luck, measured by 

the respective PGI, remains an important factor even after controlling for non-genetic confounds such as 
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population stratification and environmentally mediated indirect genetic effects from parents on their 

children. Thus, we find that genetic luck in the form of random genetic differences between siblings is an 

important factor that contributes to inequalities in socio-economic outcomes and BMI. Specifically, a 

one standard deviation increase in the PGI for EA is associated with a 0.8 year increase in EA. Similarly, a 

one standard deviation increase in the PGI for hourly wage is associated with a 4.7% wage increase. 

Finally, a one standard deviation increase in the PGI for BMI is associated with a 1.6 point increase in 

BMI. Similar to the family-fixed effects models in Table 6.1, the local school leaving age and the 

interaction terms lose their predictiveness when all the controls for between-family differences are added.  

The overall variance explained in outcomes by our models in Table 6.2 can be interpreted as a lower 

bound of the effects of luck because all covariates measure exogenously given endowments that are out 

of the control of the individual. This includes the outcomes of the social lottery (i.e. the identity of one’s 

parents, the family one is born into, the neighborhood the family lives in) as well the outcomes of the 

genetic lottery (i.e. one’s biological sex and values of the polygenic indices).  

Although one does not have any control over their year of birth, it could be argued that year of birth 

effects should not be counted as luck, as our outcomes may partly be determined by the process of aging. 

For instance, older employees may have more experience, which may increase their wages. Furthermore, 

biological processes in our body change due to aging which may affect our BMI. As everyone will go 

through the process of aging in their life, it could be argued that this should not be attributed to luck. 

However, it should be noted that the UK Biobank participants are past the typical schooling age, as the 

participants were between 40 and 69 when they entered the study. Thus, if birth year has an effect on 

educational attainment, it could very well be due to the luck of the social circumstances one is born in, as 

different schooling regulations were in place depending on the exact age of the participants.  

To re-evaluate the amount of variance explained in our outcomes that can be attributed to sources of 

luck, we re-estimate our models from Table 6.2 by first removing all birthyear effects. Here, we first 

regress our outcomes and all covariates on birth year, birth year squared and birth year cubed and take 

the residuals. In these models approximately 14 percent of educational attainment can be attributed to 

luck, 17 percent of occupational wages and 13 percent of BMI.  When comparing these numbers to the 

overall 𝑅) measures in Table 6.2, we see that the change in the share of variation that can be attributed to 
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luck does not change much. The largest change is for educational attainment, where the share of luck 

drops by approximately 2 percent.  

SI Table 6.4 shows the results of the random effects models using the local infant mortality rate as an 

early life exposure. The results are very similar to those reported in Table 6.2. For each of the outcomes, 

the PGI has a similar effect size to those reported in Table 6.2, and the local infant mortality rate and 

interaction terms are not predictive of the outcomes.  

6.5 Discussion 

We investigated the effects of inequalities in opportunity that are due to social and genetic luck on 

educational attainment, occupational wages and BMI. We tested potential interaction effects between 

genes and environment in a novel within-family study design that uses the random genetic differences 

between siblings to break the link between family-environments and genes. This approach allowed us to 

obtain estimates of gene-environment interactions that do not suffer from endogeneity bias, which is a 

common concern in gene-environment studies (Harden & Koellinger, 2020; Schmitz & Conley, 2017a).  

Our results illustrate that both social and genetic luck contribute towards inequalities in socio-economic 

status and BMI. Our estimates suggest that at least 13 to 17 percent of the inequalities in education, 

wages and BMI in the UK are due to inequalities in opportunity that arise from the outcomes of the 

social and the genetic lottery. This estimate is likely to be strongly attenuated by measure error both in 

the polygenic indices and the proxies of childhood environment that we had available. Thus, the true 

influence of social and genetic luck on inequalities in the UK is likely to be substantially higher in reality. 

Future investigations on this would benefit from more precise polygenic indices as well as better 

measures of relevant environments during childhood.  

Our results also showed that social and genetic luck are correlated, which exacerbates their influence on 

disparities on socioeconomic and health outcomes. This type of Matthew effect had previously been 

identified in large-scale, genetically informed study designs. For example, children who grew up in high-

SES households also tended to have higher polygenic indices for educational attainment in Belsky et al. 

(2018). In Abdellaoui et al. (2019), polygenic index values for educational attainment where on average 

lower in regions of the UK that had overall lower SES (e.g. former coal mining areas). Furthermore, the 

indirect genetic effects for educational attainment reported by Kong et al. (2018) are another example for 

how tightly intertwined genetic and environmental factors are that contribute towards SES.  
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Our results further emphasize the importance of both social and genetic luck as drivers of inequalities in 

socio-economic status and BMI. In particular, we found that genetic luck is a strong predictor for our 

outcomes in all our model specifications, including those that rely on the random genetic differences 

between siblings for identification (e.g. models in which genetic effects have a causal interpretation). In 

contrast, we find that the early childhood environmental exposures lose their predictiveness when we 

control for family-fixed effects. Similarly, we find some evidence for gene-by-environment interactions, 

but not when controlling for family-specific effects.  

However, this does not imply that social luck is less important than genetic luck. Rather, the 

environmental exposures we studied are based on noisy neighbourhood proxies that are unlikely to 

capture all facets of the environment that are relevant. Moreover, siblings are typically born in similar 

socio-economic environments and are on average 50% genetically identical. This implies that the 

differences between siblings tend to be smaller than differences between unrelated individuals, which 

decreases statistical power to detect true effects in study designs such as ours that use the random 

differences between siblings for identification.  Even larger samples of genotyped siblings would be 

desirable to identify relevant environment and gene-by-environment interactions in such study designs. 

Thus, our study illustrates some of the challenges for identifying robust, non-endogenous gene-

environment interactions.  

The relative importance of social and genetic luck that we studied here has policy relevance because the 

extent to which people are willing to tolerate or endorse inequality partially depends on whether they 

perceive that disparity originates from differences in effort and choice (e.g., working hard) or from 

differences in circumstances that are outside of one’s control (e.g., luck in the social or genetic lotteries). 

The existing empirical evidence suggests that inequality that can ultimately be traced back to luck may be 

perceived as unfair and people may favor redistributive policies more strongly if inequality is the result of 

luck rather than agency (Alesina & La Ferrara, 2005; Alesina et al., 2018; Almås et al., 2010; Cappelen et 

al., 2013; Clark & D’Ambrosio, 2015; Gromet et al., 2015). Furthermore, policies that aim at providing 

broad access to education and health care are desirable if policies aim at providing people with equal 

opportunities. However, more equal opportunities do not necessarily translate into equalities in 

outcomes. For example, previous studies have indicated that schooling reforms can reduce disparities in 

education and health that are rooted in genetic effects, but these reforms may not decrease inequalities in 
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wages (Barcellos et al., 2018, 2020). Thus, it is important for science and policy to better understand the 

extent to which genetic and social luck contribute to inequality, the mechanisms that are at work, and 

whether and how the consequences of exogenously given endowments can be altered.  
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6.10 Figures 

Figure 6.1 Mean of educational attainment for different terciles of the local school leaving age and 
PGI distribution 

 
This figure shows the mean of educational attainment (EA), measured in years of schooling, by the different 
terciles of the average local school leaving age distribution (left panel) and the PGI for EA (right panel). 

 

Figure 6.2 Mean hourly wage for different terciles of the local school leaving age and PGI distribution 

 
This figure shows the mean of imputed occupational wages, measured in pounds per hour, by the different 
terciles of the average local school leaving age distribution (left panel) and the PGI for occupational wages (right 
panel). 
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Figure 6.3 Mean BMI for different terciles of the local school leaving age and PGI distribution  

 

 

This figure shows the mean body mass index (BMI), by the different terciles of the average local school 
leaving age distribution (left panel) and the PGI for BMI (right panel). 

 

 

 

Figure 6.4 Educational attainment by terciles of the local school leaving age 

 

This figure shows the effect of the EA PGI on educational attainment for different terciles of the local school leaving age 
distribution. We residualized educational attainment and the EA PGI by regressing them on year of birth, year of birth 
squared, year of birth cubed, gender, gender interacted with the year of birth variables, twenty principal components 
and genotyping batch.  
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Figure 6.5 Log hourly wage by terciles of the local school leaving age 

 

This figure shows the effect of the PGI for log hourly wage on imputed log hourly wage for different terciles of the local 
school leaving age distribution. We residualized log hourly wages and the income PGI by regressing them on year of 
birth, year of birth squared, year of birth cubed, gender, gender interacted with the year of birth variables, twenty 
principal components and genotyping batch.  
 

 

Figure 6.6 BMI by terciles of the local school leaving age 

 

This figure shows the effect of the PGI for BMI on BMI for different terciles of the local school leaving age distribution. 
We residualized BMI and the BMI PGI by regressing them on year of birth, year of birth squared, year of birth cubed, 
gender, gender interacted with the year of birth variables, twenty principal components and genotyping batch.  
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6.11 Tables 

Table 6.1 Regression of the outcomes on PGI, local school leaving age terciles and interactions 

 EA 
Log Hourly 

Wage BMI 

 (1) (2) (3) (4) (5) (6) 
Family Fixed Effects No Yes No Yes No Yes 
PGI 1.384 0.799 0.072 0.051 1.584 1.561 
S.E. 0.043 0.068 0.004 0.008 0.040 0.066 
p-value 0.000 0.000 0.000 0.000 0.000 0.000 
Middle Tercile 0.190 -0.072 0.006 -0.018 -0.045 0.173 
S.E. 0.062 0.139 0.006 0.016 0.060 0.154 
p-value 0.002 0.606 0.375 0.272 0.453 0.261 
Top Tercile 1.123 -0.139 0.050 -0.003 -0.412 0.074 
S.E. 0.065 0.144 0.007 0.016 0.063 0.150 
p-value 0.000 0.334 0.000 0.838 0.000 0.619 
PGI x Middle Tercile 0.124 0.033 0.002 -0.009 0.057 0.126 
S.E. 0.061 0.092 0.006 0.011 0.059 0.095 
p-value 0.043 0.719 0.713 0.409 0.328 0.185 
PGI x Top Tercile 0.360 0.060 0.003 -0.005 0.077 0.033 
S.E. 0.061 0.092 0.006 0.010 0.059 0.091 
p-value 0.000 0.511 0.573 0.654 0.191 0.717 
𝑅) (Overall) 0.161 0.107 0.175 0.144 0.137 0.126 
𝑅) (Between)  0.136  0.145  0.146 
𝑅) (Within)  0.039  0.143  0.092 
N 32474 32474 16175 16175 32942 32942 
Sibling Groups  15787  7894  16013 
This table shows Ordinary Least Squares (OLS) regression results for regressing each of the outcomes 
(Educational Attainment (EA), Imputed log hourly wages and Body Mass Index (BMI)), on their 
respective polygenic indices (PGI), local school leaving age terciles and interactions. Columns 1 and 2 
show results for EA, columns 3 and 4 for log hourly wage, and columns 5 and 6 for BMI. Columns 2, 4 
and 6 include family fixed effects. All regressions included the following control variables: age, age 
squared, age cubed, gender, gender interacted with age variables, twenty principal components of the 
genetic data and dummies for genotyping batches. In the family fixed effects models some control 
variables had to be dropped due to multi-collinearity. 
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Table 6.2 Random Effects Models 

 EA 

Log 
Hourly 
Wage BMI 

 (1) (2) (3) 
PGI 0.823 0.047 1.612 
S.E. 0.043 0.005 0.042 
p-value 0.000 0.000 0.000 
Local School Leaving Age -0.031 0.010 -0.065 
S.E. 0.085 0.009 0.087 
p-value 0.712 0.260 0.454 
PGI x Local School Leaving Age -0.133 0.012 -0.018 
S.E. 0.112 0.029 0.112 
p-value 0.238 0.684 0.872 
𝑅) (Overall) 0.163 0.168 0.132 
𝑅) (Between) 0.216 0.188 0.156 
𝑅) (Within) 0.036 0.140 0.090 
N 32474 16175 32942 
Sibling Groups 15787 7894 16013 
This table shows the results of the random effects models based on a Mundlak 
formulation. Column (1) shows results for educational attainment (EA), column (2) 
for imputed log hourly wages, column (3) for body mass index (BMI). The outcomes 
were regressed on the PGI, Local School Leaving age, their interaction and control 
variables (gender, year of birth and year of birth squared). For each variable within-
family means were added to control for between family variation. See equation 6.2 
for the full model. 
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S6.1 Measures of early-childhood environment 

As early-childhood environmental exposures, we derived the local average school leaving age and the infant 

mortality rate at the district level by exploiting the birth locations provided by the UKB. We obtained the 

historical local-level data from Vision of Britain (www.visionofbritain.org.uk), which covers the period 

from the early 20th century to the 1970s. Using boundary data for local government districts as of 1931, 

1951, 1961, and 1971, we first coded the birth locations in terms of local government district. Based on this 

information, we constructed childhood local environment measures by matching the birth places to the 

local-level data.  

We derived the local average school leaving age as of 1961 by using district-level data provided as fractions of 

pupils in the district who left school at the age of under-15, 15, 16, 17 to 19, and above-20. To these 

fractions, we multiplied the values of 10, 15, 16, 18, and 20, respectively, to compute the average school 

leaving age of the district. This data was only available for 1961.1 We used the boundary data for local 

government districts as of 1961 to match the local average school leaving age to each participant.   

The local infant mortality rates were available at the district level annually. To reduce the noise in the data, 

we smoothed the infant mortality rate time series for each district by using the Hodrick-Prescott filter with 

the smoothing parameter of 100 (Hodrick & Prescott, 1997). We also dropped observations if the number 

of births in the district was fewer than 50 in that year. The boundary data was only available for 1931, 1951, 

1961, and 1971 while the local infant mortality data was available annually. Therefore, we used the 

boundary data from the year nearest to the birth year for each participant.   

S6.2 Polygenic indices 

We constructed polygenic indices (PGI) using the results of the largest GWAS that are currently publicly 

available for educational attainment (Lee et al., 2018), occupational wages (Kweon et al., 2020), and BMI 

(Locke et al., 2015). We further improved the accuracy of these PGI with MTAG (Turley et al., 2018), 

which is a multivariate statistical method that increases the statistical power of GWAS by including GWAS 

summary statistics from genetically correlated phenotypes. 

 

 

 
1 In 1951, this data was only available for men. Therefore, we only used the 1961 data. 
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MTAG analyses included GWAS summary statistics of phenotypes that pass the following criteria: 

1. The phenotype belongs to the same scientific domain as the outcome variable of interest. This 

limits the possibilities of spurious associations when covariates are genetically correlated to the 

outcome.  
2. The phenotype has been included in a previously published GWAS, as GWAS for novel 

phenotypes would go beyond the scope of this paper.  

3. Genetic correlation (r(G)) between the phenotypes is at least 0.6 Here we follow the genetic 

correlation threshold of Becker et al. (2020) Where the authors conduct many MTAG analyses to 
construct a repository of PGI.   

4. The heritability of the trait is significantly different from 0. Adding traits with little genetic signal 

would only add noise to our PGI.  

5. The GWAS had a sample size of at least 20,000. So that the phenotype contributes significantly to 
the predictiveness of the PGI.  

SI Table 1 gives an overview of all included GWAS summary statistics that meet these criteria. These studies 

were found via a systematic literature review and genetic correlations provided by LD Hub (Zheng et al., 

2017) and Becker et al. (2020) If the phenotype was available in the UK Biobank, we conducted GWAS on 

a subsample of the UK Biobank that excluded siblings and their genetic relatives (see section 3). Genetic 

relatives were identified using relatedness coefficients provided by the UK Biobank. We meta-analysed these 

results with the publicly available GWAS summary statistics that excluded the UK Biobank. SI Table 1 

provides an overview of the GWASs run in the UK Biobank.  

SI Table 2 gives an overview of phenotypes that meet the above criteria, but had to be dropped during our 

preliminary analyses. The table also provides the reason for their dismissal.  

To adjust for linkage-disequilibrium, we constructed PGI using LDpred (Vilhjálmsson et al., 2015). The 

Haplotype Reference Consortium (McCarthy et al., 2016) panel was used as LD reference and we 

employed the recommended LD window, (number of SNPs divided by 3000) and set the fraction of causal 

markers to 1. We limited the number of SNPs that we included in the PGI to those that are directly 

genotyped or are present in the HapMap3 reference panel (International HapMap 3 Consortium et al., 

2010). This set of SNPs provides a good coverage of common genetic variants and it tends to yield PGI that 

perform well empirically (Lee et al., 2018). The number of SNPs included in each PGI is further limited by 

the fact that MTAG only considers SNPs that are present in all summary statistics. The remaining number 

of SNPs are 1,209,700; 1,209,700; and 1,188,098 for EA, Occupational wages and BMI respectively. 
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S6.3 GWAS in the UKB 

For the phenotypes indicated with the UKB as the source in Table 1, we conducted GWAS on the UKB 

participants of European ancestry excluding those in the sibling sample and their close relatives (up to the 

third degree).  

We followed the standard phenotype definitions in the literature except for the income outcomes. We 

coded household income as the natural log of the midpoint income of each income bracket, where 3/4 

times the upper bound and 4/3 times the lower bound were used as the midpoint respectively for the lowest 

and highest brackets, which are open-ended. Regional income (local average weekly household income in 

2011) was derived from home locations coded in Middle-layer Super Output Areas. We obtained the 

income data from the UK’s Office for National Statistics, which was available for England and Wales only. 

For the non-income outcomes, the control variables included dummy variables for sex, age, year of 

observation, and assessment centre, and their interaction with sex dummy as well as genotyping arrays and 

batches and 40 top genetic principal components. For the income outcomes, we conducted GWAS on male 

and female samples separately and meta-analysed the male and female results of each measure by relying on 

the meta-analysis version of MTAG to address possible sex heterogeneity in economic outcomes. In the 

GWAS of the income outcomes, dummy variables for employment status were additionally included.  

Each GWAS was run based on a linear mixed model, estimated with BOLT-LMM (Loh et al., 2015). We 

then applied standard quality control filters to exclude SNPs that are problematic, which we implemented 

with EasyQC (Winkler et al., 2014). These filters removed SNPs that had missing or incorrect numerical 

values for output statistics (a p-value outside of [0,1], for example); duplicate SNPs; imputation accuracy 

below 0.7; a minor allele frequency lower than 0.1%;  an allele other than “A,” “C,” “G,” or “T”; or had an 

allele frequency that deviates 0.2 or more from the allele frequency in the reference panel (Haplotype 

Reference Consortium v1.1 (McCarthy et al., 2016)). 

S6.4 Measuring educational attainment 

We measured educational attainment in years of schooling, using a transformation from the highest 

achieved diploma to a set number of years such that it retains the rank order of lowest to highest degree as 

much as possible (see SI Table 3). Because the participants could report more than one qualifications, each 

reported qualification was converted to years of schooling and the maximum value was retained. 
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S6.5 Results for infant mortality rate  

This section shows the results when using infant mortality rate as early childhood environmental exposure. 

SI Figure 1 shows the mean of EA, hourly wages and BMI of the UK Biobank participants when divided 

into terciles of the infant mortality rate distribution. Infant mortality rate was reverse coded such that 

higher numbers are better to ease the comparison to the results using local school leaving age, as discussed in 

the main text. The results for EA and BMI are similar to the results using local school leaving age. For 

hourly wages, we note the differences in sample sizes for the different terciles of the distribution. There are 

many more missing observations for hourly wages in the bottom tercile of the distribution, indicating 

attrition in our sample. Thus, the results for hourly wages cannot be interpreted in any meaningful way.  

SI Table 3 shows the equivalent results of table 1 in the main text using local infant mortality rate terciles 

instead of local school leaving age. The results are in line with those of table 1. One notable difference is the 

interaction effects for BMI. There we do find that the PGI is more strongly associated with BMI in 

neighbourhoods with low infant mortality rate. The interaction effect remains for the middle tercile, even 

when controlling for family fixed effects. Again, due to attrition in the sample the results for hourly wages 

cannot be interpreted in any meaningful way.  

SI table 4 shows the results for the random effects models using the local infant mortality rate as an early life 

exposure. The results are very similar to that of table 2 in the main text. 
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S6.7 Tables 

Table S6.1 Overview of GWAS Summary Statistics 

Phenotype Target r(G) N Source 

Hardest Math Class EA, Occ. Wages 0.81, 0.78 430,439 (Lee et al., 2018) 

Cognitive Performance EA, Occ. Wages 0.63, 0.67 35,298 (Trampush et al., 2017) 

Cognitive Performance EA, Occ. Wages 0.63, 0.67 129,048 UKB Data Field: 20016 

Cognitive Performance EA, Occ. Wages 0.63, 0.67 101,205 UKB Data Field: 20191 

Household Income EA, Occ. Wages 0.74, 0.91 340,935 (Kweon et al., 2020) 

Regional Income EA, Occ. Wages 0.81, 0.83 359,437 (Kweon et al., 2020) 

Body fat percentage BMI 0.84 390,601 UKB Data Field: 23099 

Hip Circumference BMI 0.87 224,459 (Shungin et al., 2015) 

Hip Circumference BMI 0.87 397,156 UKB Data Field: 49 

Waist Circumference BMI 0.90 224,459 (Shungin et al., 2015) 

Waist Circumference BMI 0.90 397,197 UKB Data Field: 48 

This table gives an overview of GWAS summary statistics from previous studies used to improve the accuracy of the PGI. The 
first column states the phenotype of the GWAS. The second column indicates for which outcome the summary statistics were 
used. The third column gives the genetic correlation between the phenotype and target outcome. The genetic correlation was 
calculated using the meta-analysed results if there were multiple sources for that phenotype. The reported correlation was 
calculated during our preliminary MTAG analyses.  The fourth column gives the size of the GWAS. The fifth column gives a 
reference to the study where the GWAS was published or the UKB Data-Field. 
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Table S6.3 Transformation Qualification to Years of Schooling  

Qualification Years of schooling 

College or University degree 20 

A levels/AS levels or equivalent 13 

O levels/GCSEs or equivalent 10 

CSEs or equivalent 10 

NVQ or HND or HNC or equivalent  Age when left full-time education – 5  

Other professional qualifications e.g.: nursing, teaching 15 

None of the above 7 

This table shows the conversion for each type of diploma to a set years of schooling 

 

  

Table S6.2 Overview of Dismissed GWAS Summary Statistics 

Phenotype Target Source Reason for dismissal 

College Completion EA, Occ. Wages (Rietveld et al., 2013) A 

Body fat percentage BMI (Lu et al., 2016) B 

Obesity Class 1 BMI (Berndt et al., 2013) A 

Obesity Class 2 BMI (Berndt et al., 2013) A 

Obesity Class 3 BMI (Berndt et al., 2013) A 

Overweight BMI (Berndt et al., 2013) A 

Leptin BMI (Kilpeläinen et al., 2016)  C 

HOMA-IR BMI (Dupuis et al., 2010) D 

This table gives an overview of GWAS summary statistics but were dropped in preliminary analyses. The first column states the 
phenotype of the GWAS. The second column indicates for which outcome the summary statistics were used. The third column  
gives a reference to the study where the GWAS was published. The fourth column gives the reason code for the dismissal. Where 
the codes are as follows: A: the phenotype is a binary measure of another included phenotype and the sample is completely 
overlapping with it. B: the results are from mixed ancestry. C: The phenotype greatly reduced the number of overlapping SNPs 
used by MTAG. D: the phenotype had no reported number of samples per SNP.  
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Table S6.4 Regression of the outcomes on PGI, infant mortality rate terciles and interactions 

 EA Log Hourly Wage BMI 

 (1) (2) (3) (4) (5) (6) 
Family Fixed Effects No Yes No Yes No Yes 
PGI 1.483 0789 0.082 0.071 1.461 1.512 
S.E. 0.049 0.071 0.008 0.012 0.046 0.068 
p-value 0.000 0.000 0.000 0.000 0.000 0.000 
Middle Tercile 0.644 0.034 0.016 0.014 -0.082 0.122 
S.E. 0.087 0.113 0.011 0.015 0.084 0.115 
p-value 0.002 0.003 0.138 0.346 0.330 0.286 
Top Tercile 0.706 -0.026 0.025 0.007 -0.504 0.029 
S.E. 0.124 0.177 0.014 0.020 0.120 0.181 
p-value 0.000 0.883 0.069 0.714 0.000 0.875 
PGI x Middle Tercile 0.107 0.136 -0.014 -0.025 0.242 0.171 
S.E. 0.067 0.084 0.009 0.013 0.065 0.087 
p-value 0.117 0.105 0.121 0.042 0.000 0.049 
PGI x Top Tercile 0.065 0.007 -0.006 -0.028 0.271 0.151 
S.E. 0.068 0.092 0.009 0.013 0.065 0.095 
p-value 0.340 0.936 0.468 0.028 0.000 0.113 
𝑅! (Overall) 0.147 0.103 0.166 0.136 0.133 0.122 
𝑅! (Between) 

 
0.129 

 
0.126 

 
0.138 

𝑅! (Within) 
 

0.042 
 

0.151 
 

0.093 
N 26612 26612 13102 13102 26898               27034 
Sibling Groups 

 
12933 

 
6395 

 
13136 

This table shows Ordinary Least Squares (OLS) regression results for regressing each of the outcomes (Educational Attainment 
(EA), Imputed log hourly wages and Body Mass Index (BMI)), on their respective polygenic indices (PGI), infant mortality 
terciles and interactions. Infant mortality is reverse coded such that higher numbers are good. Columns 1 and 2 show results for 
EA, columns 3 and 4 for log hourly wage, and columns 5 and 6 for BMI. Columns 2, 4 and 6 include family fixed effects. All 
regressions included the following control variables: age, age squared, age cubed, gender, gender interacted with age variables, 
twenty principal components of the genetic data and dummies for genotyping batches. In the family fixed effects models some 
control variables had to be dropped due to multi-collinearity. 

 

  



 
Chapter 6 
 

 
334 

Table S6.5 Random Effects Models 

 EA 

Log 
Hourly 
Wage BMI 

 (1) (2) (3) 
PGI 0.833 0.048 1.612 
S.E. 0.048 0.005 0.046 
p-value 0.000 0.000 0.000 
Infant mortality rate 6.413 -0.148 -6.207 
S.E. 7.675 1.088 7.972 
p-value 0.403 0.892 0.436 
PGI x Infant mortality rate 1.267 -0.693 -8.231 
S.E. 5.474 0.740 5.218 
p-value 0.817 0.349 0.115 
𝑅! (Overall) 0.147 0.157 0.132 
𝑅! (Between) 0.194 0.165 0.157 
𝑅! (Within) 0.037 0.145 0.090 
N 26612 13102 27034 
Sibling Groups 12933 6395 13136 
This table shows the results of the random effects models based on a Mundlak formulation. 
Column (1) shows results for educational attainment (EA), column (2) for imputed log hourly 
wages, column (3) for body mass index (BMI). The outcomes were regressed on the PGI, infant 
mortality rate, their interaction and control variables (gender, year of birth and year of birth 
squared). Infant mortality rate is reverse coded such that higher numbers are good. For each 
variable within-family means were added to control for between family variation. See equation 
6.2 for the full model. 
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S6.8 Figures 

Figure S6.1 Outcomes by infant mortality rate terciles 

 

This figure shows each of the outcomes plotted by the district infant mortality rate terciles. Infant mortality rate is reverse coded 
such that higher numbers are good.  The left panel shows educational attainment, the middle hourly wages and the right BMI.  
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association studies on income 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on forthcoming work by C.A.P. Burik, H. Kweon, A. Okbay, R. Karlsson Linnér, R. de Vlaming, 
P.D. Koellinger and many more. This work is part of an ongoing research effort with many 
collaborators. The work presented here also includes work done by many researchers affiliated with 
individual cohorts. Due to space constrains they are not mentioned here, but they will be credited in the 
eventual publication
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Abstract 

We present results of a large-scale GWAS meta-analysis of 1,161,574 observations from approximately 

756,000 individuals using four different measures of income: personal income, household income, 

occupational wages and parental income. We identified 160 independent loci associated with income in 

an MTAG meta-analysis of all four of these methods. We find 67 independent loci associated with 

occupational wages, 48 for household income and 1 for parental income. We find no genome-wide 

significant SNPs for individual income. Overall, 4.3 to 7.6 percent of the variance in the income 

measures may be attributed to genetic factors. The four income measures show high genetic correlation 

with each other, a high genetic correlation with educational attainment, a moderate genetic correlation 

with cognitive performance and a moderate to high negative genetic correlation with the Townsend 

index. Furthermore, we find evidence for genetic heterogeneity between men and women.  

7.1 Introduction 

We conducted a large-scale GWAS meta-analysis of 1,161,574 observations from approximately 756,000 

individuals using four different measures of income: personal income, household income, occupational 

wages and parental income. We meta-analyse GWAS results from 31 cohorts (Table 7.1 gives an 

overview of all cohorts and the sample size contribution of each cohort). This study is the first part of an 

ongoing research effort to generate a set of publicly available genome-wide association study (GWAS) 

results on income that will provide researchers from various disciplines with new, better ways to study 

the causes and consequences of inequality and social mobility – two matters that are of fundamental 

importance for science and policy (Piketty, 1995). Differences in wealth and income are not only robust 

predictors of subjective well-being (Sacks, Stevenson, & Wolfers, 2012; Stevenson & Wolfers, 2013), but 

low socio-economic status (SES, i.e. the combination of education, occupation, and income) is also a 

major risk factors for mental and physical diseases (Wilkinson & Marmot, 2003) as well as lower life 

expectancy (Stringhini et al., 2017). Paying attention to these robust health-related consequences of SES 

is particularly important and timely now because the income and wealth gap between the richest and 

poorest people has been steadily rising in the past few decades in the US and many other countries 

(Acemoglu, 2002; Piketty, 2014). Thus, understanding the structural causes of inequality, social 

mobility, and their links with health is of fundamental importance both as a matter of science and for 

interventions aiming to improve health outcomes, well-being, and longevity (Piketty, 1995). 
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In the last few years several large-scale GWAS related to socioeconomic outcomes have produced 

publicly available summary statistics, such as educational attainment (Lee et al., 2018; Okbay, et al., 

2016; Rietveld et al., 2013), household income (Hill et al., 2019, 2016) and occupational wages (Kweon 

et al., 2020). These publicly available summary statistics provide many research opportunities in 

economics and other social sciences (Beauchamp et al., 2011; Benjamin et al., 2012; Freese, 2018; Harden 

& Koellinger, 2020).  

While publicly available summary statistics for income exist, many of the potential follow-up analyses 

will benefit from GWAS results based on larger sample sizes than currently available. For instance, the 

increases in sample sizes of GWAS on educational attainment has led to a tremendous increase in 

predictiveness of polygenic indexes (PGI) for educational attainment. Where a sample size of 101,069 

yielded a PGI that predicts approximately 2 percent of the variation in educational attainment (Rietveld 

et al., 2013), the latest GWAS on educational attainment of 1.1 million individuals lead to the PGI 

predicting up to approximately 13 percent (Lee et al., 2018). 

While it is possible to use a PGI for educational attainment to predict income due to the high genetic 

correlation between the two (Hill et al., 2019; Kweon et al., 2020), Kweon et al. (2020) show that a PGI 

for occupational wages, can predict wages beyond the PGI for educational attainment, even with a much 

lower sample size. Furthermore, some analyses require separate GWAS summary statistics for income 

and educational attainment (e.g. GIV regression (DiPrete, Burik, & Koellinger, 2018)).  

Finally, by employing multivariate methods (e.g. MTAG (Turley et al., 2018) or GenomicSEM 

(Grotzinger et al., 2019)) new GWAS results for income may further boost the statistical power of 

GWAS results across the socioeconomic spectrum. Therefore, it is key to generate a set of publicly 

available large-scale GWAS results for income that will provide researchers the necessary tools to conduct 

genetically informed analyses on income and inequality.   

7.1.1 Phenotype description 

We think of individual income, household income, educational attainment, and occupation as related, 

but not identical measures that capture different aspects an individual’s socioeconomic circumstances. In 

this study, we use several measures of income and occupation to maximize the possible sample size. 

These measures may be combined using various multivariate approaches (e.g. MTAG (Turley et al., 
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2018) or GenomicSEM (Grotzinger et al., 2019)). Furthermore, this allows for exploration of any 

potential genetic heterogeneity between different income measures.  

Preferably, income is measured using official registry data to obtain high-accuracy measures of income. 

When official registry data is not available, self-reported income measures are used. We consider all 

sources of income that are “earned” as income (e.g. salaries, income from self-employment, profits from 

running one’s own business, bonuses, vacation benefits), but exclude non-earned monetary transfers 

such as rental income, capital gains, dividends, and transfers from the government, family, or former 

spouses. 

Individual Income 

Individual income is the most direct measure of the consumption and savings opportunities that a 

person has. Individual income is the result of various factors including achieved qualifications (e.g. 

education, learnt occupation, experience), personal characteristics (e.g. leadership, cognitive skills, 

consciousness), the demand and supply for these qualifications and characteristics in the labour market, 

and personal choices about labour supply (e.g. due to personal preferences, decisions about division of 

labour among household members). 

Household income 

We consider household income as an alternative measure, when personal income is not available. 

Household income shares many of the characteristics of individual income and shares some of the 

underlying factors contributing to it. However, household income aggregates the individual incomes of 

all household members (e.g. spouses and possibly even children or other relatives). Therefore, household 

income captures not only factors that contribute towards individual income, but also other factors such 

as the ability and desire to attract a spouse and the characteristics of that spouse 

Occupational wages 

A number of cohorts do not have any income data. Instead, those cohorts may use the available 

information on the occupations of participants. Occupation encompasses income potential and typically 

also reflects educational attainment, personal interests, social prestige and labour market opportunities. 

Here, we follow the example of Kweon et al. (2020) by measuring the income potential of occupations 

by imputing the expected wages for each occupation. The details on the imputation algorithms for each 

of the cohorts are described in Appendix 1.  
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Parental income 

In one cohort we ran a GWAS on parental income using their offspring’s genotype. In this cohort, 

iPSYCH (Pedersen et al., 2018), the participants are too young and therefore their current income does 

not accurately reflect their life-time earnings potential. Therefore, we opted to use the income of their 

parents instead. We consider this a valid approach as parental income is typically predictive for their 

offspring’s income. More importantly, through biological inheritance the offspring’s genotype is a draw 

of their parental genotypes. Therefore the offspring’s genotype is also highly correlated with each of the 

parental genotypes.  

Pensioners 

While pensioners typically do not have any directly “earned” income, their pension income is usually 

reflective of their lifetime earnings. Cohorts can include pensioners when this is the case, with added 

control variables for pension income. Alternatively, the last earned income before retirement may be 

used, if available.  

Categorical income 

Many cohorts opt to use categorical responses to measure individual or household income. In these cases 

we convert these categories to a semi-continuous measure by taking the natural logarithm of the 

midpoint of the category. As the top and bottom category are often open-ended and do not have a 

midpoint, we convert the top category by taking the logarithm of 4/3 times the lower bound of that 

category. For the bottom category we take the logarithm of 3/4 times the upper bound of that category. 

Table 7.2 gives an overview of the income measures for each cohort, as well as the survey question or a 

short description of the measure. 

7.2 Data and Methods 

Cohorts were asked to carefully follow our preregistered analysis plan1 when conducting any analyses. 

Cohorts were instructed to only include individuals of European ancestry to limit the possibility of 

spurious findings. They were instructed to exclude individuals with missing covariates, individuals with a 

call rate lower than 0.95, ancestry outliers and to follow their usual internal quality control for their 

participants and genotypes. Cohorts were advised to exclude individuals that had not finished education, 

 
1 The analysis plan can be accessed here: https://osf.io/rg8sh/  
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or when education enrolment was not observed, to exclude individuals under the age of 30. Finally, we 

asked cohorts to remove individuals with unusual answers for self-reported income measures (e.g. a 

negative yearly income or a yearly income above 10 million euro’s). Imputation was conducted using a 

reference panel from either the 1000 Genomes Project (Abecasis et al., 2012) or the Haplotype Reference 

Consortium (HRC) (McCarthy et al., 2016). Some cohorts made use of a combined reference panel 

using one of the two aforementioned reference panels in combination with a reference panel 

representative of the local population (e.g. UK10K (Walter et al., 2015), GoNL (Deelen et al., 2014) or 

an Estonian specific reference panel (Mitt et al., 2017)).  

An overview of the genotyping platforms, cohort specific quality control thresholds and imputation 

procedure is provided in Table 7.3. 

7.2.1 GWAS models 

Cohorts were encouraged to run analyses using mixed linear models that account for (cryptic) 

relatedness (e.g. BOLT-LMM (Loh et al., 2015) or GCTA-MLMA (Yang, Zaitlen, Goddard, Visscher, 

& Price, 2014)). This allows cohorts to included related individuals, which yields larger sample sizes and 

greater statistical power. Therefore, it was especially recommended for family-based studies. 

Furthermore, mixed linear models are more effective in dealing with potential confounds due to subtle 

population structure than only using genetic PCs as control variables (Yang et al., 2014). As control 

variables each cohort was asked to include the following covariates: at least 15 principal components 

associated with the 15 (or more) largest eigenvalues of the variance-covariance matrix of the genotypic 

data; dummy variables for year of observation (if this varied in the sample); dummy variables for each age 

group, or age, age squared and age cubed if the sample is too small and there are too few observations in 

each age group; cohort specific dummy variables related to genotyping (e.g. genotyping batch or 

genotyping array); dummy variables for sources of income (e.g. self-employment), where wage 

employment is the reference category; hours worked, hours worked squared and hours worked cubed, 

unless the phenotype is household income; and if the phenotype is household income, the number of 

adults in the household, when possible. 

When multiple observations of the income measure per individual are available (i.e. panel data), cohorts 

were advised to first regress the income measure on all control variables including time-fixed effects. 

Then, the mean of the residuals for each person should be taken as the phenotype.  
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Analyses were run on male and female subsets of each cohort separately. Table 7.4 gives a detailed 

overview of the specific analysis run by each cohort.  

7.2.2 Meta-Analysis 

Meta-analyses were carried out on the sets of cleaned summary statistics of each cohort after stringent 

quality control (see Appendix 2). For each phenotype a sample weighted meta-analysis was carried out 

for each gender using METAL (Willer, Li, & Abecasis, 2010). All meta-analyses were conducted using a 

unique SNP ID format as the identifier of each SNP (e.g. 1:123456:C:T). All meta-analyses were 

restricted to SNPs that were available in 80 percent of the maximum available sample size across all SNPs 

for each phenotype. As parental income was only available in iPSYCH, these meta-analyses includes all 

available SNPs that passed quality control filters.  

After the meta-analysis for each phenotype for each gender, we meta-analysed the results for men and 

women using MTAG (Turley et al., 2018). MTAG accounts for possible (cryptic) relatedness and 

family-overlap between the male and female subsets of each cohort. For this analysis, we used meta-

analysis equivalent settings for MTAG where we assumed perfect genetic correlation and equal 

heritability across gender. 

Finally, we meta-analysed the MTAG output for each phenotype to conduct a meta-analysis across the 

different measures of income. Here we consider a MTAG model where each of the phenotypes are 

measuring the same underlying trait (i.e. perfect genetic correlation), with a different heritability for each 

phenotype.  

MTAG does not provide the output summary statistics with a sample size. For each of the output files, 

we approximate a GWAS sample size equivalent for each SNP, which would be lower than the total 

number of observations per SNP due to family overlap. We use the following formula: 

𝑁! ≈	
1

𝑆𝐸!" ×𝑀𝐴𝐹! 	(1 − 𝑀𝐴𝐹!)	
 

(7.1) 

Where 𝑁!  is the GWAS equivalent sample size for SNP 𝑗, 𝑆𝐸!" is the standard error of the coefficient 

found for that SNP and 𝑀𝐴𝐹!  is the minor allele frequency of that SNP.  



 
Chapter 7 
 

 
344 

7.2.3 LD Score regression 

Using the LDSC software package (Bulik-Sullivan, Finucane, et al., 2015; Bulik-Sullivan, Loh, et al., 

2015), we calculate the heritability of each phenotype after each meta-analysis. Thus, we estimate the 

heritability for male and female subsets as well as for their meta-analysed results. Furthermore, we 

calculated the genetic correlations between our main phenotypes to assess whether the genetic variants 

associated with our phenotypes tend to be the same and tend to have similar effect sizes as each other. We 

also calculated genetic correlations other traits in the socioeconomic spectrum that are possibly related 

and genetic correlations between the male and female subsamples for each phenotype. To calculate the 

genetic correlation we used bi-variate LD-score regression to estimate pairwise correlations. For both the 

heritability estimates and the genetic correlation estimates, we use the LD scores included in the LDSC 

software package, which are valid for European populations.  

7.2.4 Approximately independent lead SNPs 

We apply the clumping algorithm from the PLINK software package (Chang et al., 2015; Purcell et al., 

2007) to identify approximately independent genome-wide significant “lead SNPs” (SNPs with a p-value 

below 5 × 10#$ are considered genome-wide significant). A lead SNP is a genome-wide significant SNP 

with lowest p-value in an approximately independent clump of SNPs. The clumping algorithm uses four 

input parameters:  a primary p-value cut-off (set to 5 × 10#$), a secondary p-value cut-off (set to 

1 × 10#%), an 𝑟" threshold (set to 0.1), and a SNP window (set to 1,000,000 kilobases). The clumping 

algorithm starts by selecting the smallest p-value SNP as the lead SNP. Then all SNPs within the SNP 

window (i.e. all SNPs within 1,000,000 kilobases of the lead SNP, which is effectively the entire 

chromosome) with an 𝑟" with the lead SNP above the threshold and with a p-value below the secondary 

cut-off are then assigned to belong in the same clump as the lead SNP. Afterwards, the next lead SNP is 

selected by taking the SNP with the lowest p-value that does not belong to any clump yet. The algorithm 

continues until all SNPs with a p-value below the primary cut-off are either selected as lead SNP or 

assigned to belong to the same clump as a lead SNP. We use the same parameter settings as previous 

studies in the field (Karlsson Linnér et al., 2019; Lee et al., 2018).  

7.3 Results 

Table 7.8 shows the results of the LDSC heritability estimates. Panel A shows the heritability estimates 

of the pooled male and female results. The heritability estimates of our different income measures vary 
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between 4.3 percent (for individual income) 7.6 percent (for occupational wages). Many factors may 

contribute to the differences in heritability between our phenotypes. First, there is the issue of 

misreporting when self-reported income is used, which is the case with all the individual income and 

household income cohorts. It could be the case that people are less likely to misreport their occupation 

than their income. Second, aggregate income measures like household income are less sensitive to income 

shocks as they are averaged out between household members. As occupational wages is an imputed 

measure, it is not sensitive to temporary income shocks. Third, as occupational wages is imputed per 

occupation code, it does not contain any within occupation variation. It could be that within 

occupation variation of income, is less heritable than the between occupation variation of income. 

Finally, in the case of parental income, an additional level of noise is added due to using parental 

phenotypes and the offspring’s genotypes. Overall our heritability estimates are lower than what has 

been found in some previous studies, where Kweon et al. (2020) found a heritability of 10.3 percent for 

occupational wages in the UK Biobank and Hill et al. (2016) found a heritability of 11 percent for 

household income in the UK Biobank. One possible explanation for this difference is the methods used 

in these analyses. Here we present results from LDSC, while both Kweon et al. (2020) and Hill et al. 

(2016) present results from GREML (Yang et al., 2010). Hill et al. (2019) find a heritability of 7.6 

percent for household income in the UK Biobank using LDSC, which is closer to our estimates. 

Furthermore, while these previous studies present heritability estimates for a single cohort, our estimates 

come from a meta-analysis from several cohorts. These cohorts are samples from several different 

countries where individuals and households face may face different environments. Therefore, our meta-

analysis can be seen as an average effect across these environments, which could result in a lower 

heritability.  

Panels B and C of Table 7.8  show the heritability estimates for men and women separately. We note that 

there is a difference in the heritability for men and women most of the measures. The last column of 

panel A of Table 7.8 shows the p-value for a test of equal heritability using the following	𝑍-test: 

𝑍 = 	
ℎ#$%" −	ℎ&'#$%"

√(𝑆𝐸#$%" + 𝑆𝐸&'#$%" )
 

(7.2) 

Where 𝑍 is the test statistic, considered to follow a normal distribution, ℎ&" is the heritability estimate for 

gender 𝑖, and 𝑆𝐸&  is the standard error of that heritability estimate.  
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The heritability for individual income and household income are significantly higher for men than for 

women. The opposite holds true for occupational wages and for parental income the difference is not 

statistically significant. Furthermore, Table 7.9 shows the genetic correlation between men and women. 

While the genetic correlation is high for all our measures, it is significantly different from 1 for all of our 

measures, except individual income. We note that the standard error of our estimate for individual 

income is a lot higher than for the other measures due to the difference in sample size. The deviation 

from unity for the genetic correlation implies there is some genetic heterogeneity between men and 

women. This genetic heterogeneity may be attributed to the difference in environments men and 

women face. There is an extensive literature on for differences in wages and occupations between men 

and women and the factors that attribute to these difference, such as discrimination and differences in 

preferences and circumstances (See for instance Blau & Kahn (2017) for a discussion). All these factors 

may also play a role in the difference in genetic heterogeneity between and women, as genes do not 

operate in a vacuum, but can act through differences in environments. Similar genetic heterogeneity 

between men and women has been found in traits that may be related to income like risk tolerance 

(Karlsson Linnér et al., 2019).  

In Table 7.10 we present the genetic correlations between our different measures, with the meta-analysed 

combination measure, as well as their genetic correlation with other socioeconomic traits to assess the 

similarity in genetic architecture between them. The different measures are all highly correlated with 

each other and the meta-analysed combination measure, with genetic correlation estimates varying 

between 0.81 and 1.11. Thus, the different measures mostly share their genetic architecture. However, as 

the genetic correlation between some of the measures significantly differ from 1, there is some genetic 

heterogeneity between the different measures. Furthermore, we find that all measures have a high genetic 

correlation with educational attainment; a moderate genetic correlation with cognitive performance; and 

a moderate to high negative genetic correlation with the Townsend index. As educational attainment has 

a direct effect on income (Card, 2001; Harmon, Oosterbeek, & Walker, 2003), this high correlation is 

expected and it is similar to which has been found in previous studies (Hill et al., 2019; Kweon et al., 

2020). A similar argument can be made for the relation between cognitive performance and our different 

measures of income. Hill et al. (2019) explore the potential link between cognitive performance and 

income further. They identify intelligence as a likely causal phenotype that contributes to income. 

Finally, as income has a direct effect on the housing budget of an individual, which contributes to the 

quality of housing and neighbourhood. Which would contribute to a lower score on the Townsend 
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index. Therefore, a moderate to high genetic correlation between income and the Townsend index is 

expected. 

Figures 7.1 to 7.5 show Manhattan plots of the meta-analysis results of the different measures and the 

meta-analysis of all measures combined. Using the clumping algorithm described above we find 160 

approximately independent genome-wide significant lead SNPs for the meta-analysis of all the measures 

combined, 67 for occupational wages, 48 for household income and 1 for parental income. We find no 

genome-wide significant SNPs for individual income, which could be attributed to both low sample size 

and lower heritability.  

7.4 Discussion 

We meta-analysed GWAS result from over a million observations using four different measures of 

income (personal income, household income, occupational wages and parental income). We identified 

160 independent loci associated with income. Overall, 4.3 to 7.6 percent of the variance of income may 

be attributed to genetic factors.  

Although the genetic correlation between the different measures, and between men and women is high, 

we do find evidence of genetic heterogeneity both between the different measures of income, and 

between men and women. Further research has to be done to pinpoint the underlying factors that affect 

this genetic heterogeneity.   

It is important to note, that these results are part of an ongoing research initiative and many follow-up 

analyses are already planned. First and foremost, a replication study of these findings will be done using 

data from the Swedish Twin Registry (STR) (Magnusson et al., 2013). In this cohort, data is available on 

three of the income measures (personal income, household income and occupational wages) for 

approximately 25,000 individuals (of which 3,500 complete monozygotic twin pairs and 5,500 complete 

dizygotic twin pairs). This will allow us to replicate our findings using both a population based approach 

and within families.  

Multivariate analyses using MTAG (Turley et al., 2018) and GenomicSEM (Grotzinger et al., 2019) are 

planned to analyse the full socioeconomic spectrum, where we can utilize GWAS results from related 

traits such as educational attainment. These multivariate analyses may be used to study unobserved 

genetic latent factors of the socioeconomic spectrum and boost statistical power for the GWAS results of 
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income as well as all associated traits. The large sample size as well as the boosted power from these 

multivariate approach might push as closer to create polygenic scores that approach the theoretical upper 

limit of predictiveness. These polygenic scores will be used for well-powered within-family polygenic 

prediction in several cohorts. 

Finally, these results allow us to comprehensively study relationships between socioeconomic status and 

health through genetic correlations, phenome-wide association studies and comprehensive bio-

annotation. A better understanding of the link between socioeconomic status and health and the 

channels through which socioeconomic status may influence health is important to the discussion on 

socioeconomic and health inequality.  

This studies adds to the growing availability of publicly available GWAS results for socioeconomic 

outcomes using increasingly large sample sizes. These GWAS results, made possible due to the rapidly 

growing availability of genetic data, in combination with advances in statistical methods permit 

researchers to study the causes socioeconomic inequality and consequences to inequalities in health and 

well-being in a genetically informed study design. These advances may lead to new insights in various 

disciplines. 
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A7.1 Imputation of occupational wages 

A7.1.1 British cohorts 

In a recent study Kweon et al. (2020) developed an imputation algorithm to derive expected wages for 

participants in the UK Biobank using standardized occupation codes (SOC). In their study, they fitted a 

regression equation (See Equation A7.3) using a sample of 474,367 wage-earning individuals aged 35-64 

from the British Labour Force Survey (LFS) to calibrate their model. The LFS is a nationally 

representative survey that contains detailed information on individual income, occupations and other 

variables related to income and occupation that can be used to impute income from . Instead of using 

dummy variables for each SOC  they included the mean and median wage for each occupation group, as 

reported by the British Office of National Statistics and estimated in the Annual Survey of Hours and 

Earnings. 
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The accuracy of their model was tested using data from the British Household Panel Survey, where they 

found that a regression of actual wages on their imputed values yielded an 𝑅"	 of approximately 0.50. 

The regression equation is as follows: 

 log(𝑌() = 𝛼 + 𝑋(𝛽 +	𝑍(𝛾 + 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝛿 + 𝜖( (A7.3) 

where log	(𝑌&) are logged hourly wages from employment, 𝑋&  is a vector of predictors, which includes 

dummies for age, sex, year of observation, and 2-digit SOCs. 𝑍&  is a vector that contains log mean and log 

median hourly wages as well as their interaction term for the 4-digit-level occupation group (by sex) to 

which individual 𝑖 belongs. “𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛&” includes interaction terms between sex and the remaining 

variables in 𝑋&, and the 𝑍&  term. 

We use the imputed log hourly wages estimated by Kweon et al. (2020) as a phenotype in the UK 

Biobank. Furthermore, we apply the same imputation algorithm to a subset of ALSPAC, a British family 

cohort. While there is a self-reported income measure available for the children in ALSPAC, it is not 

available for the mothers of ALSPAC. Therefore, we use the imputation algorithm to imputed 

occupational wages for the subset containing mothers. 

A7.1.2 Dutch cohorts 

Following the imputation algorithm developed by Kweon et al. (2020) as closely as possible we 

developed a similar algorithm for cohorts in the Netherlands. Here we use data from the Dutch labour 

force survey, ‘Enquête Beroepsbevolking’ (EBB) (Centraal Bureau voor Statistiek, 2021). The EBB is a 

national representative survey of the Dutch labour force, conducted by Statistics Netherlands (CBS). We 

use data a merged dataset containing 479,893 individuals in yearly waves from 2012 to 2017, where we 

exclude multiple observations per individual by taking the latest observation. The EBB uses standardized 

occupation codes, BRC,  developed by CBS based on the ISCO-08 standard to fit the Dutch labour 

market (Centraal Bureau voor Statistiek, 2014). As the EBB is the only national representative survey 

containing standardized occupation codes, we fit the regression model and calculate the mean and 

median hourly wages per occupation group in the same sample. We standardize hourly wages to the year 

2012 using the consumer price index calculated by CBS. We calculate the mean and median wage for 

each 4 digit occupation code separately for each gender. If there are less than 10 people per occupation 

code, we calculate the mean and median using a pooled sample of both genders. If there are less than 10 

people per occupation code in the pooled sample, we use the 3 digit occupation code instead. If the 3 
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digit occupation code still does not yield a sufficient sample size, we use the 2 digit occupation code. The 

model specified in Equation A7.3 is then estimated.  

Using this coefficients from this model, we imputed the log hourly wages in two Dutch cohorts: NTR 

and LifeLines. The accuracy of the model was tested by taking the 2017 EBB subset as a hold-out sample 

(N = 91,821) and re-estimating the regression model using the 2012 – 2016 subset, excluding those 

present in both the 2017 and the 2012 – 2016 subset (N = 388,072). Regressing the log hourly wage on 

the imputed log hourly wage in the 2017 EBB subset yielded an 𝑅" of 0.47. 

A7.1.3 ECGUT 

To impute expected wages in the Estonian cohort, ECGUT, we employed a simpler algorithm. Here, we 

used the mean log wage of each occupation code. The mean log wage was calculated, for men and 

women separately, using a representative sample of 369,247 individuals aged 25 to 64 from the 2011 

labour market census published by Statistics Estonia (Statistics Estonia, 2012). ECGUT uses 3-digit 

occupation codes based on the ISCO-88 standard and Statistics Estonia uses occupation codes based on 

the ISCO-08 standard (International Labour Office, 2012). The mean log wages for each ISCO-08 code 

were matched to the ISCO-88 codes based on the correspondence file published by the International 

Labour Organisation (ILO). When multiple ISCO-08 corresponded to a single ISCO-88 code, the 

average was taken. 

A7.1.4 HUNT 

In the Norwegian cohort HUNT, we used a similar algorithm to that of ECGUT. Here, we use mean 

wage statistics for men and women in Norway from 2015 to 2019 from registry data, published by the 

Statistics Norway (Statistics Norway, 2021). While, HUNT uses 3-digit occupation codes based on the 

ISCO-88 standard, Statistics Norway uses occupation codes based on the ISCO-08. The two are 

matched together in the same way as was done for ECGUT.  

A7.2 Quality Control 

We  applied  a  stringent  quality-control (QC)  protocol to each set of GWAS results of each cohort 

based on the EasyQC software package (version 9.2) developed by the GIANT consortium (Winkler et 

al., 2014), as well as additional steps developed by the SSGAC (Karlsson Linnér et al., 2019; Lee et al., 

2018; Okbay, et al., 2016). All issues raised during the QC protocol described below were resolved 

through iterations with cohort analysts, before the meta-analyses.  
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A7.2.1 Main Reference panel 

For the main reference panel we used HRC v.1.1 as the reference panel for quality control of the GWAS 

summary statistics and to determine the independence of significant SNPs. The quality control of this 

reference panel has been described in the supplementary materials of Karlsson Linnér et al. (2019). 

A7.2.2 Pre-QC inspection 

All cohorts were asked to supply their GWAS summary statistics in a pre-specified format, together with 

a document providing an overview of the descriptive statistics of their sample as pre-specified in the 

analysis plan2. The completeness of this document and the summary statistics, as well as their formatting, 

was assessed prior to QC.  

A7.2.3 EasyQC protocol 

The filters applied in the QC protocol are described below in chronological order. While the order of the 

filters does not affect the set of SNPs in the cleaned summary statistics file, it does affect in which step a 

given SNP is removed. An overview of the removed SNPs according to the QC steps is given in Table 5.  

Step 1: Removal of inadmissible alleles. In the first step we remove all SNPs that have another value than 

“A”, “T”, “C” or “G”. This step removes all structural variants (e.g. inserts and deletions).  

Step 2: Variable Quality. In this step we remove all SNPs with missing values for one of the following 

columns: SNP identifier, effect allele, other allele, p-value, beta coefficient, standard error, effect allele 

frequency,  N, imputed or genotyped, and when SNPs were imputed it also removed missing values 

from the following columns: imputation accuracy, Hardy-Weinberg-Equilibrium p-value, call rate. This 

step also removed non-sensical values: values outside of the interval [0,1] for p-values, negative values for 

the standard error or imputation accuracy, infinite values for the beta coefficient or standard error, and 

invalid values for the imputed or genotyped column.  

Step 3: Removal of the X-chromosome. While cohorts were asked to only supply GWAS summary 

statistics for the autosomes, some cohorts did provide results for the X-chromosome. These we removed 

in this step.  

 
2 The analysis plan can be accessed here: https://osf.io/rg8sh/  
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Step 4: MAF and MAC filter. In this step SNPs were removed with a minor-allele frequency (MAF) 

below 0.001 or a minor-allele count (MAC) below 200. 

Step 5: Imputation Accuracy. In this step imputed SNPs with a low imputation accuracy were removed. 

The thresholds for imputation accuracy were dependent on the imputation software that was used. We 

set the following thresholds: 0.6 for MACH, 0.7 for IMPUTE, 0.8 for PLINK.  

Step 6: HWE p-value. In this step we removed directly SNPs that deviated from Hardy-Weinberg 

Equilibrium according to a direct test p-value. We removed SNPs below the p-value threshold. The 

threshold was dependent on cohort sample size: 10#' if 𝑁 < 1000, 10#% if 1000 ≤ 𝑁 < 2000, 10#( 

if 2000 ≤ 𝑁 < 10000. For cohort sample size above 10,000 we did not apply this filter. 

Step 7: Duplicate chromosome and base-pair position. In this step we removed SNPs with identical 

chromosome and base-pair position. This step was applied after harmonizing the chromosome and base-

pair positions with the main reference panel. 

Step 8: Alignment to the reference panel. In this step we aligned SNPs to the reference panel. Here SNPs 

that are not present in the main reference panel are removed. Also SNPs we removed if they had an allele 

mismatch with the reference panel (e.g. SNPs that have the alleles “A” and “G” while the reference panel 

as the alleles “A” and “T”). 

Step 9: Allele frequency outliers. In this step we removed SNPs that had an allele frequency that deviates 

from the reference panel. Here we used 0.2 in absolute value as a cut-off point.  

After applying these steps, the resulting output was inspected to determine if an unusual number of 

SNPs were removed during one of the steps and when necessary errors were resolved together with the 

cohort analysts. Table 7.5 gives an overview of the SNPs removed in each step for set of summary 

statistics from all cohorts. 

A7.2.4 Quality control plots 

After applying the SNP filters, several diagnostic plots were produced for each cohort to further assess 

the presence of any issues or errors in the summary statistics. Most of these graphs are standard output 

from EasyQC and are thoroughly discussed in Winkler et al. (2014). The other plots were developed by 

the SSGAC (Karlsson Linnér et al., 2019; Lee et al., 2018; Okbay, et al., 2016). and were produced in R.  
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Allele frequency Plots: Here we plot the reported allele frequency in the summary statistics against the 

allele frequency in the main reference panel. This plot was produces before Step 9 of the SNP filtering. If 

the sample closely resembles the main reference panel, then the SNPs should be aligned around the 

diagonal with a positive slope (bottom left to top right). This plot enables the analyst to detect deviations 

in ancestry from the main reference panel as well as any errors in the coding of the effect allele or allele 

frequency (e.g. if the effect allele and other allele are reversed, the SNPs would be plotted across the other 

diagonal: top left to bottom right). Figure 7.6 shows two examples of these plots. In panel A, the allele 

frequency plot of the UK Biobank is shown. As this cohort is imputed with both HRC and UK10k 

reference panels, almost no SNPs fall outside the +-0.2 allele frequency band outside of the diagonal. 

Panel B shows the same plot a cohort is imputed with the 1000 Genomes Project reference panel. Here 

we see more SNPs outside of the band around the diagonal, but most still fall within the band, indicating 

that they belong to the same population. None of these plots showed abnormal results for any of the 

cohorts.  

P-Z plots: This plot shows if the reported p-value is consistent with the reported coefficient estimates 

and their reported standard error. The SNPs are plotted with the reported p-value on one axis and the 

expected p-value calculated from the reported coefficient and standard error on the other axis. Figure 7.7 

shows this plot for one set of results. As can be seen from this plot, all SNPs fall exactly on the diagonal, 

as they should when the results are reported correctly. All cohorts showed exactly this result.  

Q-Q plots: In the quantile-quantile plot the distribution of the observed p-values is plotted against the 

expected p-values under the null hypothesis of no SNPs being associated with the phenotype. This plot 

allows for visualization of any unaccounted-for stratification in the cohorts, which would deflate the p-

values. Figure 7.8 shows this plot for a cohort with a large sample size (panel A), a small sample size 

(panel B) and a small cohort with abnormal results (panel C). In cohorts with a large sample size, one can 

expect larger deviations from the 45 degree line. Panel B shows results that can be expected for small 

cohorts, where SNPs should follow the distribution under the null hypothesis, due to a lack of power of 

analysing results in a single small cohort. Panel C shows an abnormal strong deviation of the null 

hypothesis in a small cohort, which indicates spurious associations. This particular cohort was dropped 

from the meta-analysis. All other cohorts showed normal plots in their final set of results. 
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SE-Expected SE plots: We plot the reported standard error against the expected standard error using the 

following formula:  

𝐸(𝑆𝐸) ≈
𝜎D)

√(2𝑛! 	𝑀𝐴𝐹! 	(1 − 𝑀𝐴𝐹!))
. 

Where SE is the standard error, 𝜎D)  the estimated standard error of the phenotype, 𝑛!  the sample size for a 

given SNP and 𝑀𝐴𝐹!  the minor allele frequency of a given SNP. This plot allows us to detect issues or 

errors regarding the reported standard error, allele frequency and sample size. Panel A of figure 7.9 shows 

this plot one of the cohorts, this plot is exactly as would be expected when the phenotype is standardized. 

The reported standard error and predicted standard error are very close to each other for all SNPs. The 

reported standard error is very slightly smaller, which can be attributed to the increased power due to the 

use of mixed linear models. Panel B shows the same plot for preliminary results from a cohort that had 

initially misreported the sample size per SNP, this issue was resolved for the final results.  

SE Manhattan plot: Finally we plot the standard error ratio (reported standard error divided by the 

expected standard error) of each SNP in order of their chromosome and base-pair position. This allows 

for visualization of outliers and groups of outliers in terms of the reported standard errors. Figure 7.10 

shows this plot for one cohort. As can be seen from this plot, there were no loci with large outliers. All 

finalized sets of results showed similar plots.  

All plots were inspected for each cohort and all issues were resolved together with the cohort analysts 

before the meta-analysis. In one case, a cohort was dropped from the meta-analysis. 

Finally, as part of our QC protocol we calculate the estimated heritability of the phenotype using LD 

score regression (Bulik-Sullivan, Loh, et al., 2015) and calculate the genetic correlation with occupational 

wages in the UK Biobank. As most individual cohorts are small we also estimated the heritability and 

genetic correlation after meta-analysing the male and female results for each cohort. We meta-analysed 

these results using METAL (Willer et al., 2010). The results of this meta-analysis were only used for QC 

purposes, as there may be some family overlap between the male and female results of each cohort, which 

is addressed in the overall meta-analysis by using MTAG (Turley et al., 2018). Table 7.6 gives an 

overview the LDSC heritability estimates of the pooled meta-analysis and Table 7.7 gives an overview of 

the genetic correlation estimates of the pooled meta-analysis, both with additional statistics from LDSC. 

Any unusual results were discussed with the cohort analyst to solve potential issues. 
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Table 7.2 Phenotype Description    

Study Phenotype 
Registry-based 

or Self-
reported 

Single 
Observation, 

Average or Panel 
 Survey Question or Description 

1958 Personal Self-reported Panel Total gross pay 

AddHealth Personal Self-reported Single Observation 

"Now think about your personal earnings. In 
{2006/2007/2008}, how much income did you 
receive from personal earnings before taxes—that is, 
wages or salaries, including tips, bonuses, and 
overtime pay, and income from self-employment? " 

ALSPAC - Mothers Occupational Wages Self-reported Single Observation 
Derived variable - Occupational wage from 
standardized occupation codes 

ALSPAC - Children Personal Self-reported Single Observation 

What is your total take-home pay each month (after 
tax and national insurance are removed as 
appropriate)? If possible, please refer to a recent 
payslip. If this is not possible, please estimate. If 
irregular work, please give an average per month. 

CoLaus Household Self-reported Single Observation 

Quel est le montant total des revenus mensuels bruts 
de votre foyer? C’est-à-dire la somme des revenus des 
personnes de votre foyer ou vos propres revenus si 
vous vivez seul(e), quelle qu’en soit l’origine. 

Croatia - Korcula Household Self-reported Single Observation Monthy Household Income using 6 categories 

EGCUT Occupational Wages Self-reported Single Observation Derived variable - What is your current occupation? 

ELSA Personal Self-reported Panel 
Derived variable - Individual earnings after tax and 
other deductions 

FinnTwin Personal Self-reported Single Observation How much is Your monthly income, pretax? 

GFG Household Self-reported Single Observation 

What is your best estimate of the current total yearly 
income of all individuals living in your household 
(for example, family members) with whom you share 
finances?<br><br>Please include all sources of 
income, before taxes, in U.S. Dollars. 

GS Household Self-reported Single Observation 

Average total income before tax of your entire 
household? 1 - <10,000,2 - 10,000-30,000,3 - 30,000-
50,000,4 - 50,000-70,000,5 - 70,000+,6 - prefer not-
answer 

HRS Personal Self-reported Panel 

Derived variable - Individual earnings, the sum of 
wage/salary income, bonuses/overtime 
pay/commissions/tips, 
2nd job or military reserve earnings, professional 
practice or trade income. 

HUNT Occupational Wages Self-reported Single Observation Derived occupational wage from occupation codes 

iPSYCH Parental Proxy Registry-based Average 
Average income of their mothers or fathers between 
age 30 and 55 

KORA - S3 Household Self-reported Single Observation 
What is the monthly household income, i.e. the net 
income, that all of you have available after taxes and 
social contributions? 

KORA - S4 Household Self-reported Single Observation 

What is the total monthly net income of your 
household, i.e. the income of all household members 
after taxes and social contributions? Please indicate 
the corresponding number from the list. 

LifeLines - Cyto 
Household Self-reported Single Observation 

Hoeveel bedraagt het netto inkomen per maand. Dus 
wat contant en/of op uw bank/giro ontvangt. LET 
OP: als u het huishouden met iemand deelt, dan ook 
de inkomsten van uw partner(s) meetellen. 

Occupational Wages Self-reported Single Observation What is your current or last occupation? (recoded 
into isco, recoded into income)  

LifeLines - UGLI Household Self-reported Single Observation 

Hoeveel bedraagt het netto inkomen per maand. Dus 
wat contant en/of op uw bank/giro ontvangt. LET 
OP: als u het huishouden met iemand deelt, dan ook 
de inkomsten van uw partner(s) meetellen. 
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Occupational Wages Self-reported Single Observation 
What is your current or last occupation? (recoded 
into isco, recoded into income)  

MCTFR - Children Personal Self-reported Single Observation 
"What is your annual income from salary before 
taxes?" 

MCTFR - Family Household Self-reported Single Observation 
"What is the total gross income from all sources 
(before taxes but after business expenses) for your 
household." 

MoBa Personal Self-reported Single Observation 
What was your gross income (before tax) last year? 
(using categories) 

NEO Personal Self-reported Single Observation 
What is your net monthly income? (that is the 
amount paid into your account each month by your 
employer or benefits agency) 

NTR Occupational Wages Self-reported Single Observation 
Derived income - Income derived from ISCO codes 
based on job description 

QIMR Personal Self-reported Single Observation 

 (1) [older studies] "Thinking of the income you 
make from all sources -- salary, investments, 
pensions, and other sources - approximately how 
much did you earn before tax (gross) during the last 
financial year ?" [in 8 bins from 0 to AU$50000; the 
midrange income for the bin was used in analysis, or 
the low end of the bin if the highest bin]; or (2) 
[newer studies] "What is your current combined 
household gross income, that is before tax. Just give 
me the letter." followed by list of list of 12 bins from 
0 to AU$150000; 

RS  Household Self-reported Single Observation 

"Could you indicate on this map what income 
represents the current total monthly income of your 
household?" and "How many people, including you, 
have to live from this income?" 

SHIP Household Self-reported Single Observation 

Wie hoch ist etwa  das monatliche 
Haushaltseinkommen, das heißt das 
Nettoeinkommen, das Ihnen allen zusammen nach 
Abzug der Steuern und Sozialabgaben zur Verfügung 
steht? Es würde uns helfen, wenn Sie die 
Einkommensgruppe nennen könnten, zu der Ihr 
Haushalt gehört. 

UKB 

Household Self-reported Single Observation 
What is the average total income before tax received 
by your HOUSEHOLD? 

Occupational Wages Self-reported Single Observation 
Derived variable - Occupational wage from 
standardized occupation codes 

Regional Income Self-reported Single Observation 
Derived from home location: Local average weekly 
household income in 2011, estiamted at Middle 
Layer Super Output Area 

UKHLS 
Personal Self-reported Panel Derived variable - monthly gross labour income  

Household Self-reported Panel 
Derived variable - gross household income, the 
month before interview 

WLS 
Personal Self-reported Single Observation Base hourly wage rate at current/last job. 

Household Self-reported Single Observation 
Total income for respondent's entire household in 
the last 12 months 

Note: This table gives an overview of the phenotypes for each cohort 
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Table 7.4 Association Analyses 
Cohort Software Variables omitted Additional controls Familial adjustment 

1958 GCTA-fastGWA v1.93.2b   Linear Mixed Model 

AddHealth GCTA-fastGWA v1.93.2b   Linear Mixed Model 

ALSPAC SNPTEST v2.5.4   None 

CoLaus GCTA 1.92.1  Dummy variable for retirement benefits None 

Croatia - Korcula RegScan v0.2    GenABEL 

EGCUT SAIGE 0.29.4.2   Linear Mixed Model 

ELSA GCTA v1.91.7   Linear Mixed Model 

FinnTwin RVTESTS v2.0.9   Linear Mixed Model 

GFG BOLT-LMM  

Dummy variables for unemployment, 
materinity, stay at home parents, disabled and 
retired, and number of adults in the 
household 

Linear Mixed Model 

GS BOLT-LMM v2.3.2   Linear Mixed Model 

HRS GCTA v1.91.7   Linear Mixed Model 

HUNT BOLT-LMM v2.3.4  Dummy variables for genotyping batches Linear Mixed Model 

iPSYCH BOLT-LMM v2.3.2  
Dummy variables for disease status and survey 
wave, number of adults in the household 
(household income only) 

Linear Mixed Model 

KORA SNPTEST v2.5.4   None 

LifeLines BOLT-LMM v2.3.4   Linear Mixed Model 

MCTFR GCTA v1.92.2   Linear Mixed Model  

MoBa BOLT-LMM v2.3.4  Dummy variables for genotyping batches Linear Mixed Model 

NEO SNPTEST v2.5.4   None 

NTR Saige v0.38  Dummy variables for genotyping platforms Linear Mixed Model 

QIMR BOLT-LMM v2.3.2 Birth year variables 
Dummy variables for year of measurement 
and genotyping platforms 

Linear Mixed Model 

RS RVTESTS   None 

SHIP EPACTS 3.2.6  Number of adults in the household None 

UKB BOLT-LMM v2.3.4  

Dummy variables for assessment center (all) 
and 
Employment status (only for household 
income and regional income 

Linear Mixed Model 

UKHLS SNPTEST v2.5.2   None 

WLS GCTA-fastGWA v1.93.2b  Dummy variable for sibling respondents Linear Mixed Model 

Note: This table gives an overview of the analyses run in each cohort 
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Table 7.6 Estimated heritability from LDSC 

Cohort  Phenotype h2 S.E. Z-
score P-value λgc 

mean 
χ2 

LDSC 
interce

pt 

LDSC 
interce
pt S.E. 

Ratio Ratio 
S.E N 

1958 Personal 0.134 0.100 1.34 1.8E-01 1.008 1.012 0.998 0.007 NA* NA* 4,748 

AddHealth Personal 0.086 0.120 0.72 4.7E-01 1.026 1.015 1.007 0.008 0.472 0.549 4,301 
ALSPAC - 
Mothers Occupational 0.089 0.069 1.30 1.9E-01 1.029 1.031 1.019 0.007 0.589 0.231 7,019 
ALSPAC - 
Children Personal 0.054 0.198 0.28 7.8E-01 1.005 1.005 1.002 0.009 0.339 1.845 2,542 

CoLaus Household 0.032 0.212 0.15 8.8E-01 1.035 1.033 1.031 0.009 0.941 0.283 2,716 
Croatia - 
Korcula Household -0.029 0.202 -0.14 8.9E-01 1.008 1.007 1.008 0.009 1.237 1.322 2,716 

EGCUT Occupational 0.038 0.008 4.83 1.3E-06 1.108 1.114 1.054 0.007 0.469 0.064 79,694 

ELSA Personal 0.128 0.162 0.79 4.3E-01 1.005 1.001 0.993 0.008 NA* NA* 2,745 

FinnTwin Personal -0.236 0.055 -4.27 2.0E-05 1.011 1.004 1.041 0.008 11.109 2.029 7,797 

GFG Household 0.081 0.029 2.85 4.4E-03 1.047 1.052 1.018 0.008 0.344 0.157 20,659 

GS Household 0.030 0.037 0.80 4.2E-01 1.077 1.072 1.064 0.006 0.891 0.090 13,367 

HRS Personal 0.098 0.067 1.47 1.4E-01 1.011 1.006 0.993 0.007 NA* NA* 6,812 

HUNT Occupational 0.063 0.014 4.56 5.1E-06 1.156 1.157 1.098 0.008 0.627 0.049 46,342 

iPSYCH Parental 0.046 0.006 8.00 1.2E-15 1.102 1.108 1.000 0.008 0.003 0.074 105,667** 

KORA - S3 Household -0.252 0.154 -1.64 1.0E-01 0.990 0.992 1.007 0.006 NA* NA* 3,460 

KORA - S4 Household -0.083 0.127 -0.65 5.1E-01 1.002 1.002 1.008 0.007 4.409 3.890 2,715 
LifeLines - 
Cyto Household 0.087 0.043 2.05 4.1E-02 1.038 1.038 1.019 0.007 0.501 0.177 10,949 
LifeLines - 
Cyto Occupational 0.088 0.068 1.28 2.0E-01 1.041 1.038 1.026 0.008 0.689 0.200 6,822 
LifeLines - 
UGLI Household 0.042 0.019 2.18 2.9E-02 1.062 1.059 1.040 0.007 0.681 0.116 23,514 
LifeLines - 
UGLI Occupational 0.042 0.036 1.19 2.3E-01 1.044 1.045 1.034 0.007 0.756 0.154 13,528 
MCTFR - 
Children Personal 0.235 0.242 0.97 3.3E-01 1.047 1.041 1.031 0.008 0.740 0.201 2,137 
MCTFR - 
Family Household 0.169 0.122 1.39 1.6E-01 1.146 1.149 1.134 0.008 0.898 0.053 4,417 

MoBa Personal 0.065 0.022 2.96 3.0E-03 1.029 1.027 1.002 0.007 0.053 0.243 20,428 

NEO Personal 0.174 0.182 0.96 3.4E-01 1.008 1.012 0.999 0.010 NA* NA* 3,144 

NTR Occupational -0.022 0.075 -0.30 7.7E-01 1.026 1.030 1.033 0.008 1.105 0.258 6,778 

QIMRB Personal 0.170 0.114 1.49 1.4E-01 1.020 1.024 1.009 0.007 0.373 0.305 4,167 

RS I Household 0.125 0.090 1.39 1.6E-01 1.041 1.039 1.026 0.007 0.669 0.177 4,999 

RS II Household 0.356 0.279 1.27 2.0E-01 1.065 1.060 1.045 0.009 0.755 0.154 1,942 

RS III Household 0.291 0.193 1.51 1.3E-01 1.038 1.042 1.025 0.008 0.598 0.196 2,739 

SHIP Household 0.035 0.141 0.25 8.0E-01 1.011 1.012 1.009 0.007 0.794 0.631 3,228 

UKB  Household 0.066 0.003 20.59 3.1E-94 1.449 1.555 1.045 0.011 0.081 0.020 382,731 

UKB  Occupational 0.094 0.004 22.29 5E-110 1.453 1.581 1.035 0.011 0.060 0.018 282,963 

UKB  Regional 0.056 0.003 19.45 3.0E-84 1.540 1.624 1.161 0.011 0.259 0.017 401,856 

UKHLS  Household 0.090 0.054 1.67 9.5E-02 1.017 1.024 1.008 0.008 0.325 0.318 8,837 

UKHLS  Personal 0.116 0.072 1.62 1.1E-01 1.011 1.012 0.997 0.007 NA* NA* 6,288 
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WLS Household 0.043 0.061 0.70 4.8E-01 1.008 0.994 0.987 0.007 NA* NA* 7,602 

WLS Personal 0.011 0.057 0.19 8.5E-01 0.993 0.994 0.993 0.007 NA* NA* 7,493 
Note: This table gives an overview of LDSC heritability estimates for each cohort 
*LDSC does not calculate the ratio when the mean χ2 or LDSC intercept is below 1 
**Maximum of equivalent N 
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Table 7.7 Estimated genetic correlation with UKB Occupational Wages 
Cohort  Phenotype 

Gen 
Cov 

S.E. 
Z-
score 

P-value rG S.E. 
Z-

score 
P-value N 

1958 Individual 0.1033 0.0153 6.75 1.5E-11 0.97 0.48 2.03 4.2E-02 4,748 

AddHealth Individual Could not be estimated* Could not be estimated* 4,301 
ALSPAC - 
Mothers Occupational 0.123 0.013 

9.63 
0.0E+00 1.05 0.40 2.67 7.7E-03 7,019 

ALSPAC - 
Children Individual Could not be estimated* Could not be estimated* 2,542 

CoLaus Household Could not be estimated* Could not be estimated* 2,716 
Croatia - 
Korcula Household 0.033 0.018 1.82 6.8E-02 Could not be estimated* 2,716 

EGCUT Occupational 0.069 0.004 16.14 1.3E-58 1.12 0.10 11.63 2.8E-31 79,694 

ELSA Individual 0.025 0.020 1.23 2.2E-01 0.18 0.17 1.07 2.9E-01 2,745 

FinnTwin Individual 0.030 0.010 3.00 2.7E-03 Could not be estimated* 7,797 

GFG Household 0.069 0.007 9.45 3.3E-21 0.78 0.13 6.11 9.9E-10 20,659 

GS Household 0.071 0.009 8.16 3.3E-16 1.12 0.48 2.36 1.8E-02 13,367 

HRS Individual 0.070 0.012 5.81 6.3E-09 0.67 0.22 2.98 2.8E-03 6,812 

HUNT Occupational 0.062 0.005 11.83 2.8E-32 0.82 0.10 8.34 7.5E-17 46,342 

iPSYCH Parental 0.057 0.004 14.30 2.2E-46 0.87 0.05 16.83 1.6E-63 105,667** 

KORA - S3 Household 0.041 0.017 2.42 1.6E-02 Could not be estimated* 3,460 

KORA - S4 Household -0.019 0.017 -1.10 2.7E-01 Could not be estimated* 2,715 

LifeLines - Cyto Household 0.060 0.009 6.74 1.6E-11 0.69 0.21 3.27 1.1E-03 10,949 

LifeLines - Cyto Occupational 0.076 0.012 6.34 2.3E-10 1.05 0.73 1.43 1.5E-01 6,822 
LifeLines - 
UGLI Household 0.051 0.006 8.43 3.6E-17 0.89 0.24 3.68 2.3E-04 23,514 
LifeLines - 
UGLI Occupational 0.064 0.008 7.86 3.7E-15 0.91 0.34 2.67 7.6E-03 13,528 
MCTFR - 
Children Individual 0.052 0.021 2.47 1.3E-02 0.36 0.26 1.37 1.7E-01 2,137 
MCTFR - 
Family Household 0.073 0.014 5.13 3.0E-07 0.60 0.26 2.34 1.9E-02 4,417 

MoBa Household 0.056 0.007 8.37 5.6E-17 0.80 0.18 4.44 9.0E-06 20,428 

NEO Individual 0.087 0.018 4.87 1.1E-06 0.68 0.41 1.68 9.3E-02 3,144 

NTR Occupational 0.063 0.012 5.07 3.9E-07 Could not be estimated* 6,778 

QIMRB Individual 0.061 0.014 4.30 1.7E-05 0.49 0.20 2.44 1.5E-02 4,167 

RS I Household 0.037 0.012 3.07 2.2E-03 0.35 0.18 1.92 5.5E-02 4,999 

RS II Household 0.021 0.023 0.92 3.6E-01 0.12 0.14 0.85 3.9E-01 1,942 

RS III Household 0.090 0.020 4.61 4.1E-06 0.49 0.17 2.85 4.4E-03 2,739 

SHIP Household Could not be estimated* Could not be estimated* 3,228 

UKB  Household 0.071 0.003 22.09 4E-108 0.90 0.01 66.93 0.0E+00 382,731 

UKB  Occupational Target phenotype Target phenotype 282,963 

UKB  Regional 0.060 0.003 21.54 7E-103 0.83 0.02 40.87 0.0E+00 401,856 

UKHLS  Household 0.086 0.011 7.93 2.3E-15 0.93 0.28 3.36 7.8E-04 8,837 

UKHLS  Individual Could not be estimated* Could not be estimated* 6,288 

WLS Household Could not be estimated* Could not be estimated* 7,602 

WLS Individual -0.004 0.011 -0.33 7.4E-01 Could not be estimated* 7,493 
Note: This table gives an overview of LDSC correlation estimates for each cohort with occupational wages in the UK Biobank 
* LDSC can fail to deliver estimates when heritability is low and/or the number of observations is low, which is the case for most individual cohorts 
**Maximum of equivalent N 
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Table 7.8 LDSC Heritability   

(A)  

Phenotype h2
pooled S.E. Z-score P-value N pooled* P-value (h2

men = h2
women) 

Personal Income 0.043 0.0076 5.62 1.9E-08 72,175.1 6.0E-12 
Household Income 0.059 0.0028 20.96 0.0E+00 474,266.3 0.0E+00 
Occupational Wages 0.076 0.0031 24.55 0.0E+00 421,053.6 0.0E+00 
Parental Income 0.046 0.0058 8.00 1.3E-15 105,667.0 0.0E+00 

       
(B)  
Phenotype h2

men S.E. Z-score P-value N men  
Personal Income 0.054 0.016 3.39 7.0E-04             33,833   
Household Income 0.066 0.004 17.42 0.0E+00           229,061   
Occupational Wages 0.069 0.004 16.38 0.0E+00           193,466   
Parental Income 0.048 0.010 4.71 2.4E-06             63,886   
   

 
   

(C)  
  h2

women S.E. Z-score P-value N women  
Personal Income 0.034 0.012 2.76 5.8E-03             38,781   
Household Income 0.056 0.003 16.38 0.0E+00           267,347   
Occupational Wages 0.089 0.004 20.63 0.0E+00           249,598   
Parental Income 0.052 0.011 4.54 5.8E-06             64,838   

Note: This table reports the estimated heritability for each income measure. Panel A shows pooled results, 
while panels B and C show the results for men and women respectively 
*Maximum of equivalent N 
  

Table 7.9 Estimated genetic correlation between men and women 

Phenotype rG S.E. 
Z-
score 

P-value (rG 
= 0) 

P-value (rG 
= 1) N men N women 

Personal Income 1.05 0.32 3.34 8.0E-04 1.0E+00            33,833             38,781  
Household Income 0.94 0.028 33.02 4.5E-239 1.4E-02          229,061           267,347  
Occupational Wages 0.91 0.027 33.83 8.2E-251 7.8E-04          193,466           249,598  
Parental Income 0.78 0.111 7.07 1.6E-12 2.5E-02            63,886             64,838  

 
Note: This table reports the genetic correlation between men and women for each of the cohorts 
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Table 7.10 Estimated genetic correlation main phenotypes with related phenotypes 

Phenotype 1 Phenotype 2 rG S.E. Z-score 
P-value (rG 
= 0) 

P-value (rG 
= 1) N1* N2* 

Educational Attainment Personal Income 0.78 0.061 12.69 0.0E+00 1.2E-04   766,345      72,175  
Educational Attainment Household Income 0.79 0.013 60.29 0.0E+00 0.0E+00   766,345    474,266  
Educational Attainment Occupational Wages 0.93 0.010 92.97 0.0E+00 1.0E-12   766,345    421,054  
Educational Attainment Parental Income 0.90 0.011 84.04 0.0E+00 0.0E+00   766,345    105,667  
Educational Attainment Combined Measures 0.90 0.008 111.96 0.0E+00 0.0E+00   766,345    887,680  
Cognitive Performance Personal Income 0.41 0.055 7.51 5.9E-14 0.0E+00   257,828      72,175  
Cognitive Performance Household Income 0.59 0.018 33.08 0.0E+00 0.0E+00   257,828    474,266  
Cognitive Performance Occupational Wages 0.67 0.015 46.17 0.0E+00 0.0E+00   257,828    421,054  
Cognitive Performance Parental Income 0.52 0.044 11.95 0.0E+00 0.0E+00   257,828    105,667  
Cognitive Performance Combined Measures 0.64 0.017 37.80 0.0E+00 0.0E+00   257,828    887,680  
Townsend Index Personal Income -0.45 0.086 -5.26 1.5E-07 0.0E+00   423,218      72,175  
Townsend Index Household Income -0.61 0.024 -25.43 0.0E+00 0.0E+00   423,218    474,266  
Townsend Index Occupational Wages -0.47 0.028 -16.54 0.0E+00 0.0E+00   423,218    421,054  
Townsend Index Parental Income -0.77 0.093 -8.32 0.0E+00 0.0E+00   423,218    105,667  
Townsend Index Combined Measures -0.55 0.031 -17.99 0.0E+00 0.0E+00   423,218    887,680  
Combined Measures Personal Income 0.93 0.078 11.83 0.0E+00 1.7E-01   887,680      72,175  
Combined Measures Household Income 0.98 0.007 147.73 0.0E+00 7.6E-05   887,680    474,266  
Combined Measures Occupational Wages 0.96 0.005 194.98 0.0E+00 0.0E+00   887,680    421,054  
Combined Measures Parental Income 0.94 0.043 22.05 0.0E+00 7.8E-02   887,680    105,667  
Personal Income Household Income 0.87 0.086 10.15 0.0E+00 6.4E-02     72,175    474,266  
Personal Income Occupational Wages 0.81 0.075 10.74 0.0E+00 5.0E-03     72,175    421,054  
Personal Income Parental Income 1.11 0.15 7.22 5.2E-13 2.4E-01     72,175    105,667  
Household Income Occupational Wages 0.89 0.013 68.78 0.0E+00 0.0E+00   474,266    421,054  
Household Income Parental Income 0.91 0.058 15.83 0.0E+00 7.0E-02   474,266    105,667  
Occupational Wages Parental Income 0.86 0.049 17.56 0.0E+00 1.5E-03   421,054    105,667  

Note: This table shows the results of LDSC genetic correlation estimates between income measures and with related phenotypes. 
Educational attainment results are obtained from the publicly available results of Lee et al. (2018). Cognitive performance results 
were obtained by running a GWAS in the UK Biobank using data fields 20016 and 20191 and meta-analyzing the results. 
Townsend Index results were obtained by running a GWAS in the UK Biobank using data field 189. 
*MTAG equivalent N for internally run GWAS. 
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A7.4 Figures 

Figure 7.1 Manhattan plot combined measures 

 
Note: This figure shows a Manhattan plot for the meta-analysis combining all income measures. The log p-
value is reported on the y-axis and the chromosome and base pair on the x-axis. The lead SNPs are calculated 
using a clumping algorithm described in the methods section.  
 
 
Figure 7.2 Manhattan plot household income 

 
Note: This figure shows a Manhattan plot for household income. The log p-value is reported on the y-axis 
and the chromosome and base pair on the x-axis. The lead SNPs are calculated using a clumping algorithm 
described in the methods section. 
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Figure 7.3 Manhattan plot occupational wages 

 
Note: This figure shows a Manhattan plot for occupational wages. The log p-value is reported on the y-axis 
and the chromosome and base pair on the x-axis. The lead SNPs are calculated using a clumping algorithm 
described in the methods section. 
 
 
Figure 7.4 Manhattan plot personal income 

 
Note: This figure shows a Manhattan plot for personal income. The log p-value is reported on the y-axis 
and the chromosome and base pair on the x-axis. The lead SNPs are calculated using a clumping algorithm 
described in the methods section. 
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Figure 7.5 Manhattan plot parental income 

 
Note: This figure shows a Manhattan plot for parental income. The log p-value is reported on the y-axis and 
the chromosome and base pair on the x-axis. The lead SNPs are calculated using a clumping algorithm 
described in the methods section. 
 
Figure 7.6 Allele frequency plots  

(A) 

 

(B) 

 
Note: This figure shows two allele frequency plots, where the allele frequency of the cohort (y-axis) is 
plotted against the allele frequency in the reference sample (x-axis). In panel A, the allele frequency plot of 
the UK Biobank is shown. As this cohort is imputed with both HRC and UK10k reference panels, almost 
no SNPs fall outside the +-0.2 allele frequency band outside of the diagonal. Panel B shows the same plot a 
cohort is imputed with the 1000 Genomes Project reference panel. Here we see more SNPs outside of the 
band around the diagonal, but most still fall within the band, indicating that they belong to the same 
population. For computational reasons the center band has not been plotted. 
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Figure 7.7 P-Z plot 

 
Note: This figure shows an example of P-Z plot, where the p-value calculated from the z-statistic (y-axis) is 
plotted against the reported p-value (x-axis). 
 
 
 
Figure 7.8 Three QQ plots 

(A) 

 

(B) 

 

(C) 

 
 
Note: This figure shows three examples of QQ plots, where the distribution of the observed p-values (y-
axis) is plotted against the expected p-value under the null-distribution (x-axis). Panel (A) shows the results 
for a large cohort. Panel (B) shows the results for a small cohort. Panel (C) shows the results for a small 
cohort with abnormal results. The results in panel (C) are a clear sign of spurious associations.  
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Figure 7.9 SE-N plots 

(A) 

 
(B) 

 
 

Note: This figure shows two examples of SE-N plots with the predicted standard error from the minor allele 
frequency and reported sample size on the y-axis and the reported standard error on the x-axis. Panel (A) 
shows results as one would expect, where the reported standard error is close to the predicted standard error. 
Panel (B) shows an example of a cohort where the reported sample size was misreported.  
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Figure 7.10 SE Manhattan plot 

 

Note: This figure shows an example of a standard error Manhattan plot, where the standard error ratio 
(reported standard error divided by the predicted standard error) is plotted on the y-axis, against the base 
pair position on each chromosome on the x-axis for each chromosome. This figure shows an example for the 
first 11 chromosomes.  
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This dissertation develops statistical methods in genetics and with their 
application answers both old and new questions related to genetics, income 
and inequality. Chapter 2 develops a new method to support identification 
of causal effects in nonexperimental data. Additionally, a new method for 
estimating heritability using two polygenic indices (PGI) from independent 
genome-wide association studies (GWAS) is developed. In Chapter 3 this new 
heritability method is explored further and compared to the established and 
widely used method, genome-based restricted maximum likelihood (GREML). 
Chapter 4 aims to remove several barriers for researchers wanting to use PGI 
in their study. In this chapter a broad array of PGI are constructed, covering a 
wide range of phenotypes for a number of datasets used by social scientists. 
Furthermore, in this chapter a theoretical framework is introduced for interpreting 
associations with PGI. In Chapter 5, the first large scale GWAS on personal income 
is conducted, using data from the UK Biobank. It is shown that a higher PGI is 
linked to higher education and better health. Chapter 6 builds upon the results 
of the previous chapter and further investigates the genetic and environmental 
factors underlying socioeconomic and health inequality. A lower bound is estimated 
for the relevance of genetic factors and early-childhood environment for 
differences in education, income and body mass index. Chapter 7 presents 
the first results of an ongoing research project where the first large-scale 
GWAS meta-analysis on personal income is performed. The meta-analysis 
has a total sample size of 1,161,574 observations from approximately 756,000 
individuals.
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