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Abstract
To avoid the state-space explosion problem, a set of supervisors may be synthesized
using divide and conquer strategies, like modular or multilevel synthesis. Unfortunately,
these supervisors may be conflicting, meaning that even though they are individually
non-blocking, they are together blocking. Abstraction-based compositional nonblocking
verification of extended finite automata provides means to verify whether a set of models
is nonblocking. In case of a blocking system, a coordinator can be synthesized to resolve
the blocking. This paper presents a framework for compositional coordinator synthesis for
discrete-event systems modeled as extended finite automata. The framework allows for
synthesis of a coordinator on the abstracted system in case compositional verification iden-
tifies the system to be blocking. As the abstracted system may use notions not present in
the original model, like renamed events, the synthesized coordinator is refined such that it
will be nonblocking, controllable, and maximally permissive for the original system. For
each abstraction, it is shown how this refinement can be performed. It turns out that for the
presented set of abstractions the coordinator refinement is straightforward.

Keywords Extended finite automata · Nonblocking · Compositional synthesis ·
Supervisory control theory

1 Introduction

The design of supervisory controllers for systems with discrete-event behavior becomes
increasingly complex, while failures can result in human fatalities or financial losses. For-
mal methods, such as Supervisory Control Theory proposed by Ramadge and Wonham
(1987), can be used to make this complexity manageable. A supervisor is synthesized based
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on discrete-event models, like finite automata (FAs), of the uncontrolled system and of the
control requirements. To cope with the notorious state-space explosion problem, one might
deploy a combination of more advanced synthesis techniques and modeling with extended
finite automata (EFAs).

There exist several automata-based synthesis procedures to obtain one or more super-
visors: modular (Wonham and Ramadge 1988), hierarchical (Zhong and Wonham 1990),
decentralized (Rudie and Wonham 1992), distributed (Cai and Wonham 2010), compo-
sitional (Mohajerani et al. 2017), and multilevel supervisory control synthesis (Komenda
et al. 2016). A set of supervisors, for example obtained with modular supervisory control
synthesis, may be conflicting. This gives rise to global blocking of the system, see Won-
ham and Ramadge (1988), de Queiroz and Cury (2000), Åkesson et al. (2002), Hill and
Tilbury (2006), and Cassandras and Lafortune (2008). A nonconflicting verification can be
performed on the set of synthesized supervisors to verify this.

The worst-case computational complexity of the nonconflicting verification is the same
as of the monolithic supervisory control synthesis, see Cassandras and Lafortune (2008)
and Wonham et al. (2017). There exist several nonconflicting verification procedures in the
literature that deploy different abstraction techniques to reduce the computational complex-
ity for most cases, see Flordal and Malik (2006), Pena et al. (2008), Su et al. (2010), and
Mohajerani et al. (2016).

When such nonconflicting verification reports a conflict, a supervisor can be synthesized
to solve it. This supervisor is called a coordinator, as introduced in Wong and Wonham
(1998). In Su et al. (2009), it is suggested to synthesize a coordinator by applying the mono-
lithic synthesis procedure on the collection of synthesized supervisors. In such cases, the
advantages of using a non-monolithic synthesis procedure to synthesize the supervisors may
be lost. For some special cases, abstractions employing natural observers can be used to
synthesize a coordinator, see for example Feng and Wonham (2008). A study by Zita et al.
(2017) suggests to use counterexamples to resolve conflicts by refining the system.

A modeler might also opt to use EFAs to model discrete-event systems. EFAs are finite
automata enhanced with discrete variables, see Cheng and Krishnakumar (1996), Chen and
Lin (2000), and Skoldstam et al. (2007). This allows for a more compact model represen-
tation as shown in Miremadi et al. (2010) and for the usage of state-based requirements
as introduced in Ma and Wonham (2005) and Markovski et al. (2010). Furthermore, EFAs
allow for efficient symbolic computations with binary decision diagrams, see Fei et al.
(2014). Applications of EFAs can be found in several recent case studies of synthesizing
supervisors for systems with discrete-event behavior, see for example Fabian et al. (2014),
Korssen et al. (2017), and Reijnen et al. (2020). However, theoretical developments in syn-
thesis with EFAs are yet few in numbers. The works published in this context concern
monolithic synthesis of Chen and Lin (2001) and Ouedraogo et al. (2011), modular synthe-
sis of Malik and Teixeira (2016) and Malik and Teixeira (2020), where the latter one only
solves controllability but gives no guarantees about nonblockingness, and compositional
nonconflicting verification of Mohajerani et al. (2016). As non-monolithic synthesis meth-
ods for EFAs are sparse, FA-based approaches mixed with monolithic synthesis for EFAs
are used in case studies involving EFAs, see for example Reniers (2018). Adapting exist-
ing methods of synthesizing multiple supervisors, performing a nonconflicting check, and
synthesizing a coordinator for finite automata to the EFA framework allows having theo-
retically sound results in these case studies. The last step of synthesizing a coordinator for
EFAs is currently missing.
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This paper builds upon the framework for compositional nonconflicting verification for
EFAs as proposed in Mohajerani et al. (2016). The main idea of compositional noncon-
flicting verification is to apply multiple small and simple conflict equivalence preserving
abstractions on a collection of automata until one automaton is obtained, see the top row
depicted in Fig. 1. Examples of these abstractions are partial composition, variable unfold-
ing, and event merging. For each of these abstractions, it is proven that the obtained system
is nonblocking if and only if the system before abstraction is nonblocking. Therefore,
the nonblocking property is preserved resulting in a, so-called, conflict equivalent system.
Finally, when a single EFA without variables is obtained (which can be interpreted as an
FA), a standard monolithic nonblocking verification procedure is applied. The result of this
verification is returned as the result of this compositional nonblocking verification proce-
dure. Numerical results in Mohajerani et al. (2016) show that compositional nonblocking
verification can be efficiently performed.

In this paper, we propose a procedure using the result of the nonconflicting verification
of Mohajerani et al. (2016) to synthesize a coordinator in case of conflicting supervisors
within the framework of EFAs. Such a synthesized coordinator needs to ensure that the
final closed-loop system of the plant, supervisors, and coordinator is nonblocking, control-
lable, and maximally permissive. Using the resulting single automaton of the compositional
nonconflicting verification, we propose to synthesize a coordinator, for example by the
monolithic synthesis of Ouedraogo et al. (2011), to resolve blocking, see Fig. 1. In general,
the synthesized coordinator for the single, abstracted automaton may use notions not present
in the original system, such as renamed events, and hence may not directly be suitable as
a coordinator. We show in this paper how the synthesized coordinator can be refined in
order to be a coordinator for the original system ensuring that the final closed-loop system
is nonblocking, controllable, and maximally permissive.

For each abstraction defined in Mohajerani et al. (2016), we investigate if and how the
coordinator for the abstracted system can be refined to maintain nonblockingness, con-
trollability, and maximal permissiveness, as illustrated in Fig. 2. It has been shown in, for
example, Mohajerani et al. (2014) that for FAs, thus without variables and guards, some
conflict equivalence preserving abstraction may not be suitable for synthesis. In this paper,
we define the notion of coordinator equivalence to determine which abstractions defined
in Mohajerani et al. (2016) are also suitable for synthesis refinement. It turns out that these
refinements are simple, but may involve more than just renaming as is the case for FA-based
compositional synthesis, see Mohajerani et al. (2014).

The method depicted in Fig. 1 shares similarities with modular compositional synthe-
sis as proposed in Malik and Flordal (2008), Mohajerani et al. (2014), and Mohajerani
et al. (2017), but there are three important differences. First, these previous works use finite
automata, while this paper uses extended finite automata. Second, the method proposed
in Malik and Flordal (2008) deploys a two-pass procedure. In the first pass, a sequence of

Fig. 1 The top row represents the compositional nonblocking verification of Mohajerani et al. (2016). In this
paper, we propose the addition of the bottom row: synthesize a coordinator based on the single, simplified
automaton and then transform this coordinator back to the original system
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Fig. 2 The structure of the theorems in this paper. The abstraction abstracti from EFA system E to F is one
of those mentioned in Mohajerani et al. (2016). The related refinement refinei from coordinator C to C′ is
novel work

synthesis equivalence preserving abstractions are performed to simplify the set of models. In
the second pass, the abstractions are refined in reversed order by synthesizing a supervisor
based on the abstracted system and the synthesized supervisors from the previous refine-
ments. As concluded in Malik and Flordal (2008), the method presented there may result
in conflicting supervisors. In our framework, we apply coordinator equivalence preserv-
ing abstractions and we synthesize a coordinator only once at the final abstracted system.
Third, the methods proposed by Mohajerani et al. (2014) and Mohajerani et al. (2017) syn-
thesize supervisors while abstracting the system. Therefore, their method can guarantee that
the resulting set of supervisors is nonconflicting. In our framework, we only synthesize
a supervisor after performing abstractions and verifying whether a given set of models is
nonconflicting.

This paper is structured as follows. Section 2 provides the preliminaries. The paper con-
tinues by introducing the novel notion of coordinator tuples and coordinator equivalence
in Section 3, which are the fundament of the framework. Section 4 illustrates the pro-
posed method with an example of a small manufacturing unit. Next, Section 5 shows that
normalization is coordinator equivalence preserving, and Section 6 shows several coordi-
nator equivalence preserving EFA-based abstraction-refinement pairs. Section 7 combines
the abstractions in an algorithm for compositional nonblocking verification and coordina-
tor synthesis and discusses the computational complexity. Finally, Section 8 concludes the
paper.

2 Preliminaries

This section provides a brief introduction to automata and supervisory control theory. This
introduction is based on the work of Cassandras and Lafortune (2008), Mohajerani et al.
(2016), Ouedraogo et al. (2011), Skoldstam et al. (2007), and Wonham and Cai (2019).

2.1 Finite automata

First we briefly introduce finite automata, since some concepts of extended finite automata
relate on their finite automata counterpart. A finite automaton (FA) is a five-tuple G =
(Q, Σ, →, q0, Qm), with Q a finite state set of states, Σ a finite set of events, → ⊆ Q ×
Σ × Q a state transition relation, q0 ∈ Q the initial state, and Qm ⊆ Q a set of marked
states.

We denote by Σ∗ the set of all finite strings of events in Σ . In the context of supervisory
control, the alphabet Σ of a finite automaton (and an extended finite automaton, see below)
is partitioned into two disjoint sets of controllable Σc and uncontrollable Σu events.

320 Discrete Event Dynamic Systems (2021) 31:317–348



The transition relation can also be written in infix notation x
σ−→ y, and can be extended

for traces in Σ∗ as follows: x
ε−→ x for all x ∈ Q, and x

sσ−→ z for all x, z ∈ Q , σ ∈ Σ ,
and s ∈ Σ∗ if x

s−→ y and y
σ−→ z for some y ∈ Q. The language generated by automaton

G is L(G) = {s ∈ Σ∗ | ∃x ∈ Q, q0
s−→ x} and the marked language is Lm(G) = {s ∈

L(G) | ∃x ∈ Qm, q0
s−→ x}.

An automaton is called deterministic if for each state q ∈ Q and event σ ∈ Σ there
exists at most one state y ∈ Q such that x

σ−→ y; otherwise, it is called nondeterministic.

2.2 Extended finite automata

Extended finite automata (EFAs) are FAs extended with bounded discrete variables, see
Cheng and Krishnakumar (1996), Chen and Lin (2000), and Skoldstam et al. (2007). In this
paper, we follow the EFA concepts of Skoldstam et al. (2007). Nonetheless, these concepts
are included in these preliminaries, since several notations and conventions are used in lit-
erature. In an EFA, each transition is augmented with a guard and an update (the latter one
sometimes also called an action) using variables, constants, the Boolean literals true (T)
and false (F), and the usual arithmetical operators and logical connectives (Ouedraogo et al.
2011). Let V be a finite set of discrete variables. Each variable v ∈ V is associated with
a finite domain dom(v) of values. A valuation is a mapping v̂ : V → ⋃

v∈V dom(v) with
v̂(v) ∈ dom(v) for each v ∈ V . The finite set of all valuations on V is denoted by Val(V ).
The initial valuation is denoted by v̂0.

Guards express under which conditions a transition is enabled. A guard is a Boolean
expression, or predicate, using variables from V . The set of all guard expressions is denoted
by GV . An example of a guard expression g is v1 = 1 ∧ v2 = 2. Any valuation v̂ ∈ Val(V )

such that v̂(v1) = 1 and v̂(v2) = 2 ensures that this guard evaluates to true, i.e., v̂ � g, which
we also denote by g[v̂] = T. Guards can be combined with the usual logical connectives.
Guards are always evaluated with current-state valuations.

Updates change current-state valuations into next-state valuations after executing an
enabled transition. We consider an update to be a collection of n individual update expres-
sions, each updating a single variable from V , where n is the number of variables in V .
Formally, let ΠV be the set of all expressions over variables from V . For p ∈ ΠV , p[v1 	→
a1, . . . , vn 	→ an] denotes the substitution where each occurrence of variable vi is replaced
by value ai . For example, v1 + v2[v1 	→ 1] = 1+ v2. The valuation function is extended to
expressions in the following way: for any v̂ ∈ Val(V ), v̂ : ΠV 	→ ⋃

v∈V dom(v) such that
v̂(p) = p[v1 	→ v̂(v1), . . .]. Therefore, we assume an update expression always evaluates
to a single value when all variables are substituted with a value, which is called a precise
update. Now, an update function is u : V → ΠV such that for all variables the updated
value remains within the domain, i.e., for all v ∈ V, v̂ ∈ Val(V ), v̂(u(v)) ∈ dom(v). This is
called a domain bounded update function. Without loss of generality, we also assume that
an update function is total, i.e., it is defined for all variables in V . Therefore, an update
function changes each current-state valuation into a single next-state valuation. The set of
all update functions is UV . Given a valuation v̂ ∈ Val(V ) and an update function u ∈ UV ,
the new valuation ŵ can be calculated by ŵ(v) = v̂(u(v)). For example, update function
u = {v1 	→ v1 + v2, v2 	→ 2} expresses that the new value of v1 is the current values of v1
and v2 summed together and the new value of v2 is 2. An update function may also be writ-
ten as a comma separated list of expressions. For example, the update function u may also
be written as v1 := v1+v2, v2 := 2. Combining updates can be done as follows. Let update
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u1 be defined on V1 and update u2 on V2. The expression u1 ⊕ u2 denotes the combination
of two updates that is defined as follows:

(u1 ⊕ u2)(v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1(v) if v ∈ V1 ∩ V2,∀v̂ ∈ Val(V1 ∪ V2) :
v̂(u1(v)) = v̂(u2(v))

u1(v) if v ∈ V1 \ V2

u2(v) if v ∈ V2 \ V1

undefined otherwise.

If u1 and u2 are not consistent with each other on a variable update, which is the ‘otherwise’
case, the update function will become undefined for that variable. An example of two non-
consistent updates is x := x + 1 and x := x − 1, as both updates give a different new value
of x for the same current value. In the remainder of this paper, we assume that updates are
consistent for shared variables (in V1 ∩ V2).

Sometimes, a modeler would like to use (for example due to its conciseness, see the
figures in this paper) variable update functions that might have an unclear interpretation.
For example, the variable update functions x := x + 1 will update a variable outside the
range if the current-state value of x is already the upper boundary value. In this paper, we
made the assumption that any update function is total and keeps values always within the
domain. This excludes currently the formulation of update functions like x := x + 1. In the
case that future work on EFAs settles down on a specific interpretation of these cases, or
EFA-based tooling chooses for a specific interpretation, the theory described in this paper
is applicable on the model with the explicit interpretation. In other words, the model as
defined by the modeler can be translated under the hood by the tooling into a model with
explicit formulations. Therefore, examples illustrating concepts in this paper will use update
functions such as x := x + 1.

An EFA is a 7-tuple (L,Σ, V, →, l0, v̂0, Lm) where L is a finite set of locations, Σ a
finite set of events, V a finite set of variables, → ⊆ L × Σ × GV × UV × L a transition
relation, l0 ∈ L an initial location, v̂0 the initial valuation, and Lm ⊆ L a set of marked
locations.

A transition (l1, σ, g, u, l2) ∈→ is enabled if g[v̂1] evaluates to true for the current-state
valuation v̂1. After taking the transition the current location of the EFA is l2 and the global
valuation of v̂1 has been updated to v̂2(v) = v̂1(u(v)) for all v ∈ V . For EFAs, the infix

notation is l1
σ,g,u−−−→ l2.

A state of an EFA is the combination of a location and a valuation. The state space of an
EFA captures all these possible states and transitions between these states, see Mohajerani
et al. (2016).

Definition 1 (State space) Let E = (L,Σ, V, →, l0, v̂0, Lm) be an EFA. The state space
of E is the FA U(E) = (LU , Σ, →U , lU,0, LU,m) where

– LU = L × Val(V ),
– ((l1, v̂1), σ, (l2, v̂2)) ∈→U if (l1, σ, g, u, l2) ∈→, g[v̂1] = T, and v̂2(v) = v̂1(u(v))

for all v ∈ V ,
– lU,0 = (l0, v̂0), and
– LU,m = Lm × Val(V ).

An EFA E is called deterministic if and only if its state space FA U(E) is deterministic.
The language of an EFA is defined using the FA-based language definition.
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Definition 2 (Language of EFA) Let E be an EFA. The language of E, denoted with L(E),
is defined as L(E) = L(U(E)). The marked language is defined similarly, i.e., Lm(E) =
Lm(U(E)).

Two EFAs can be combined by using the synchronous composition, see Ouedraogo et al.
(2011). As we assume that updates of shared variables are consistent with each other, we
only define synchronous composition with consistent updates.

Definition 3 (Synchronous composition EFAs) Let Ek = (Lk,Σk, V k,→k,

lk0 , v̂
k
0, L

k
m), k = 1, 2 be EFAs such that for shared variables v ∈ V 1∩V 2 the initial valuation

is the same, i.e., v̂10(v) = v̂20(v). The synchronous composition of E1 and E2 is

E1 ‖ E2 = (L1 × L2,Σ1 ∪ Σ2, V 1 ∪ V 2,→, (l10 , l
2
0), v̂

1
0 ⊕ v̂20, L

1
m × L2

m)

where the transition relation → is defined as

– ((l11 , l
2
1), σ, g, u, (l12 , l

2
2)) ∈→ if σ ∈ Σ1 ∩ Σ2, (l11 , σ, g1, u1, l12) ∈→1 and (l21 , σ, g2,

u2, l22) ∈→2 such that g = g1 ∧ g2 and u = u1 ⊕ u2;
– ((l11 , l

2
1), σ, g1, u1, (l12 , l

2
1)) ∈→ if σ ∈ Σ1 \ Σ2 and (l11 , σ, g1, u1, l12) ∈→1;

– ((l11 , l
2
1), σ, g2, u2, (l11 , l

2
2)) ∈→ if σ ∈ Σ2 \ Σ1 and (l21 , σ, g2, u2, l22) ∈→2

and the new initial valuation

(v̂10 ⊕ v̂20)(v) =

⎧
⎪⎨

⎪⎩

v̂10(v) if v ∈ V 1 ∩ V 2

v̂10(v) if v ∈ V 1 \ V 2

v̂20(v) if v ∈ V 2 \ V 1.

The synchronous composition of more than two EFAs can be calculated by recursively
applying the above definition. For notational simplicity, since the synchronous composition
is associative and commutative up to reordering state labels, we write for the synchronous
composition of more than two EFAs simply E1 ‖ E2 ‖ . . . ‖ En instead of ((E1 ‖ E2) ‖
. . .) ‖ En. Therefore, the location set of E1 ‖ E2 ‖ . . . ‖ En is denoted by L1 × L2 × . . . ×
Ln, where Li is the location set of EFA Ei .

An EFA system is a collection of EFAs E = {E1, . . . , En}. The EFA obtained from the
synchronous composition of an EFA system is denoted by ‖ E , with ‖ E = E1 ‖ . . . ‖ En.
In order to successfully apply this synchronous composition, the EFAs in the EFA system
need to agree on initial valuation of shared variables and have consistent updates. From now
on we assume that this is the case, as otherwise the behavior of an EFA system is undefined.
The EFA system’s alphabet is ΣE = Σ1 ∪ . . . ∪ Σn. Let us denote by →E the union over
all transitions of the EFAs in the system E , that is →E= ⋃

Ei∈E →i . Finally, we use the
notation A ‖ E to express the synchronous composition of EFA A and EFA system E , i.e.,
A ‖ E = A ‖ (‖ E).

A renaming, as introduced in Mohajerani et al. (2016), is a surjective function from one
alphabet to another, and can be used to change the event labels on transitions. Renaming
might also be called masking maps in distinguishers, see for example Teixeira et al. (2011),
and relabeling in observers, see for example Wong and Wonham (2004).

323Discrete Event Dynamic Systems (2021) 31:317–348



Definition 4 (Renaming) Let Σ1 and Σ2 be two sets of events. A renaming ρ : Σ1 → Σ2
is a surjective function that preserves the controllability status of renamed events, i.e., for
σ ∈ Σ1, ρ(σ ) is controllable if and only if σ is controllable.

Renaming and inverse renaming applied on EFAs are defined as follows. Applying
renaming ρ on an EFA results in the EFA where each transition labeled with event σ is
replaced by a transition labeled with the renamed event ρ(σ) leaving guards and updates
unchanged. Similarly, applying inverse renaming ρ−1 on an EFA results in the EFA where
each transition labeled with event μ is replaced by a set of transitions having for each
event σ such that ρ(σ) = μ one transition labeled with σ , again leaving guards and
updates unchanged. Renaming and inverse renaming applied on FAs are defined in the same
way. Figure 3 illustrates renaming and inverse renaming. Below we only show the formal
definitions for EFAs.

Definition 5 (Renamed EFA) Let G = (L, V, Σ, →, l0, v0, Lm) be an EFA and
let ρ : Σ → Σ ′. Then ρ(G) = (L, V,Σ ′, ρ(→), l0, v0, Lm) where ρ(→) =
{(x, ρ(σ ), g, u, y) | (x, σ, g, u, y) ∈→}. For EFA system G = {G1, . . . , Gn}, renaming is
defined as ρ(G) = {ρ(G1), . . . , ρ(Gn)}.

Definition 6 (Inverse renamed EFA) Let G = (L, V,Σ, →, l0, v0, Lm) be an EFA and
let ρ : Σ ′ → Σ . Then ρ−1(G) = (L, V,Σ ′, ρ−1(→), l0, v0, Lm) where ρ−1(→) =
{(x, σ, g, u, y) | (x, ρ(σ ), g, u, y) ∈→}. For EFA system G = {G1, . . . , Gn}, inverse
renaming is defined as ρ−1(G) = {ρ−1(G1), . . . , ρ−1(Gn)}.

Observe that the equality ρ−1(ρ(G)) = G does not hold in general. First, the goal of an
abstraction is to get rid of unnecessary information in the model. Renaming does remove
information, e.g., events e1 and e2 get renamed to event e. Now, inverse renaming does
not know whether event e was originally e1, e2, or both. This problem is solved by putting
a refined coordinator in parallel with the original system, see for example Theorem 5 in
Section 6.3. Second, several abstractions, like local normalization in Section 5 and variable
unfolding in Section 6.2, are similar to inverse renaming, i.e., they replace a single event by
multiple events, for example, event f is replaced by f1 and f2. Now, renaming can be used
to get the original event names back, as events f1 and f2 are both renamed to f . Renaming
after inverse renaming uses the fact that the equality ρ(ρ−1(G)) = G does hold. Finally,
note that renaming might introduce nondeterminism.

Fig. 3 Example to illustrate renaming and inverse renaming. The renaming ρ maps events a1 and a2 to a and
event b to b. Multiple events on a single transition are used as a shorthand notation for multiple transitions
having the same source and destination locations
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2.3 Supervisory control theory

Conceptually, a supervisor is a control function that dynamically disables controllable
events in the plant it controls, such that the closed-loop system of the plant and the
supervisor obeys some specified behavior. Supervisory control theory of Ramadge and
Wonham (1987) and Ramadge and Wonham (1989) gives means to automatically calculate
a supervisor given FA models of the plant.

In the EFA context, we define in this paper a supervisor S as a subautomaton of the plant
P , which is closely related with the definition used in Ouedraogo et al. (2011). Given two
guards g and h, h is said to be a subguard of g, denoted by h � g, if h is stronger than g,
i.e., h ∧ g = h. Now, given two EFAs A and A′, we say that A′ is a subautomaton of A,
denoted with A′ � A, if A′ is obtained from A by replacing guards with subguards.

Definition 7 (Supervisor) Given a plant modeled by a deterministic EFA P =
(L, V,Σ, →P , l0, v̂0, Lm), a supervision map S for P is a function S :→P → GV which
maps each transition e = (l1, σ, g, u, l2) to a guard S(e) such that S(e) � g. The
supervisor S is the subautomaton obtained from G by replacing its guards with those pro-
vided by S , i.e., S = (L, V, Σ, →S, l0, v̂0, Lm) where →S= {(l1, σ,S(e), u, l2) | e =
(l1, σ, g, u, l2) ∈→P }.

In this definition, the supervisor disables events by strengthening the guards on tran-
sitions labeled by these events. Strengthening a guard to F effectively removes that
transition.

A supervisor S should conceptually adhere to the following control objectives for a
given plant model P , as first proposed by Ramadge and Wonham (1987) and Ramadge and
Wonham (1989):

– Controllability: uncontrollable events may never be disabled by the supervisor, i.e., S

is controllable with respect to P .
– Nonblockingness: the controlled system should be able to reach a marked state from

every reachable state, i.e., S ‖ P is nonblocking.
– Maximal permissiveness: the supervisor does not restrict more behavior than strictly

necessary to enforce controllability and nonblockingness, i.e., for all other supervisors
S′ that respect the above two control objectives it holds that L(S′) ⊆ L(S).

These notions are translated to mathematical definitions for EFAs in Ouedraogo et al.
(2011).

Monolithic supervisory control synthesis results in a single supervisor S from a single
plant model (Ouedraogo et al. 2011). When the plant model is given as a component system
Ps , the monolithic plant model P is obtained by performing the synchronous composition of
the component models. Furthermore, S can be obtained by calculating the supremal element
of the set of controllable and nonblocking supervisors, i.e., S = supCN(P ). A nonblocking,
controllable, and maximally permissive supervisor can be calculated, for example, by the
fixed-point algorithm SSEFA as presented in Ouedraogo et al. (2011). While the desired
properties of a supervisor are defined based on the state space of an EFA, the algorithm
SSEFA performs the calculations directly on the EFA and not its state space.

Multiple (E)FAs in a component system Ps may be conflicting with each other, i.e., their
synchronous composition may be blocking. A supervisor with the aim of resolving a conflict
in an (E)FA system is called a coordinator, as introduced in Wong and Wonham (1998).

325Discrete Event Dynamic Systems (2021) 31:317–348



3 Coordinator equivalence framework

In this paper, we propose a procedure to synthesize, in a compositional manner as schemat-
ically illustrated in Fig. 1, a coordinator in case of conflicting supervisors. The main idea
is to apply multiple small and simple coordinator equivalence preserving abstractions on
a collection of automata. Then, using the abstracted system, nonconflicting verification is
performed and in case of a conflict a coordinator is synthesized. Finally, this coordinator is
refined in order to be a coordinator for the original system ensuring that the final closed-loop
system is nonblocking, controllable, and maximally permissive. In this section, we introduce
a new data structure called a coordinator tuple, which keeps track of the abstracted system
and the needed refinements, and the notions of coordinator equivalence and coordinator
equivalence preserving abstraction-refinement pairs.

3.1 Coordinator tuples

In this paper, we generalize abstractions and refinements, seeing them as functions that gen-
erate for a given EFA system a new one. Related abstractions and refinements are called
abstraction-refinement pairs. Some abstraction functions are straightforward, like for exam-
ple, taking the synchronous composition of two EFAs, while others are more complex, like
for example, the merging of events. Section 4.1 shows four possible abstractions as an illus-
trative example. As we focus in this paper on refining coordinators, the refinement function
is formally defined below.

Definition 8 (Refinement function) A refinement function is a function ξ : 2P → 2P ,
with P the universe of EFAs, that transforms a given EFA system into another EFA system.
The composition of two refinement functions ξ1 and ξ2, denoted with ξ1 ◦ ξ2, is defined by
ξ1 ◦ ξ2(E) = ξ1(ξ2(E)) for any given EFA system E .

In this paper we limit ourselves to a specific class Ξ of refinement functions, as coor-
dinator equivalence, see next section, can only be proven for specific refinement functions.
The set Ξ is defined recursively.

– ξ ∈ Ξ if ξ is the identity function, i.e., for any abstracted EFA system F : ξ(F) =
id(F) = F .

– ξ ∈ Ξ if ξ is a renaming function, i.e., for any abstracted EFA system E and abstracted
EFA system F : ∃ρ s.t. ξ(F) = ρ(F) where ρ : ΣF → ΣE .

– ξ ∈ Ξ if ξ is a renaming function in synchronous composition with the EFA system,
i.e., for any EFA system E and any abstracted EFA systemF : ∃ρ s.t. ξ(F) = ρ(F) ‖ E
where ρ : ΣF → ΣE .

– ξ ∈ Ξ if ξ is an inverse renaming in synchronous composition with the EFA system,
i.e., for any EFA system E and any abstracted EFA systemF : ∃ρ s.t. ξ(F) = ρ−1(F) ‖
E where ρ : ΣE → ΣF .

– ξ1 ◦ ξ2 ∈ Ξ if ξ1 ∈ Ξ and ξ2 ∈ Ξ .

Section 4.3 illustrates four possible refinements, all from the set Ξ . We can now define
a coordinator tuple.

Definition 9 (Coordinator tuple) A coordinator tuple is a tuple (E, ξ), where E is a
deterministic EFA system and ξ ∈ Ξ .
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Given a coordinator tuple (E, ξ ), the EFA system E represents the abstracted models and
ξ the refinement function used to refine E or a coordinator synthesized from E . A coor-
dinator tuple represents an intermediate control problem in the compositional coordinator
framework and contains all information to either apply a new abstraction or to synthesize a
coordinator and refine it back.

Example Consider the example illustrated in Fig. 4. The initial coordinator tuple is given
as (E, ξ0), with E = {A,B} and ξ0 = id. From this EFA system, the abstracted EFA
system Ẽ = {Ã, B̃} is obtained. The corresponding refinement function ξ1 is defined as
ξ1(F) = ρ(F) for any EFA system F . Renaming ρ maps events a1 and a2 onto event a,
events b1 and b2 onto event b, and event c onto event c. Therefore, ξ1 ∈ Ξ . The coordinator
tuple after performing the first abstraction is then (Ẽ, ξ0 ◦ ξ1).

3.2 Coordinator equivalence

In this section, we define coordinator equivalence, which is inspired by synthesis equiva-
lence of triples as defined in Mohajerani et al. (2014). Two coordinator tuples are said to
be coordinator equivalent if the coordinator synthesized for the abstracted models results
in the same closed-loop behavior after applying the refinement functions. This ensures a
nonblocking, controllable, and maximally permissive closed-loop system. The notion of
coordinator equivalence is captured formally in the following definition.

Definition 10 (Coordinator equivalence) Let (E1, ξ1) and (E2, ξ2) be two coordinator
tuples. Then these coordinator tuples are said to be coordinator equivalent, denoted with
(E1, ξ1) �co (E2, ξ2), if

L(ξ1(supCN(E1))) = L(ξ2(supCN(E2)))

It follows directly from the definition that �co is indeed an equivalence relation,
as it is reflexive, symmetric, and transitive. Therefore, it follows that we can discuss
each abstraction-refinement step separately and connect abstraction-refinement pairs and
coordinator tuples in a compositional manner.

Fig. 4 Example with EFA system E = {A,B} and abstracted EFA system Ẽ = {Ã, B̃}. In this and subsequent
figures, we will use the convention that transitions are labeled with ‘event;guard;update’. To have concise
drawings of the automata, guards equal to ‘true’ and unspecified updates are sometimes omitted

327Discrete Event Dynamic Systems (2021) 31:317–348



Figure 5 illustrates the usage of coordinator tuples and coordinator equivalence in the
proposed framework of compositional coordinator synthesis. After applying some abstrac-
tions on the initial coordinator tuple (E0, id), the coordinator tuple (E1, ξ1) is obtained.
This coordinator tuple is subsequently abstracted to (E2, ξ2). From the first coordinator
tuple (E1, ξ1), a coordinator C1 can be synthesized, which will become ξ1(C1) after refine-
ment. Similarly, a refined coordinator ξ2(C2) is obtained from the second coordinator tuple
(E2, ξ2). Now the two coordinator tuples are coordinator equivalent if the language of
ξ1(C1) equals the language of ξ2(C2), i.e., they have the same closed-loop behavior. If
all used abstractions to obtain the first coordinator tuple (E1, ξ1) are coordinator equiva-
lence preserving abstractions, we know by the transitive property of coordinator equivalence
that it is coordinator equivalent to the original coordinator tuple (E0, id). Therefore, both
ξ1(C1) and ξ2(C2) result in the same closed-loop behavior as a coordinator C0 synthesized
from the original EFA system directly: all being controllable, nonblocking, and maximally
permissive.

We briefly discuss the similarities and the differences between coordinator tuples
and synthesis triples. For compositional supervisor synthesis of FAs, the synthesis triple
(E,S, ρ) is defined in Mohajerani et al. (2014), where E is a set of abstracted plant models,
S a set of supervisors collected so far, and ρ a renaming function that maps events in E and
S back to events in the original plant model. Therefore, a synthesis triple represents an inter-
mediate step in the compositional synthesis approach. The equivalence of both coordinator
tuples and synthesis triples is based on the closed-loop behavior of the supervised systems.
The first difference is that both sets E and S contain FAs, while coordinator tuples include
EFAs. Second, in our approach, see Fig. 1, no supervisor is collected while performing the
abstractions, resulting in the absence of the set S in a coordinator tuple. Finally, for compo-
sitional supervisor synthesis of FAs, it is sufficient to have only renaming as a refinement
function, while for compositional coordinator synthesis of EFAs, more complicated refine-
ments are necessary. Therefore, a renaming function is included in the synthesis triple and
a refinement function is included in the coordinator tuple.

3.3 Coordinator equivalence preserving abstraction-refinement pairs

Compositional approaches apply several abstractions in sequence. From a collection of
abstractions, at each step one abstraction is chosen and applied on a specific coordina-
tor tuple. For the purpose of compositional coordinator synthesis, all applied abstractions
should create from any coordinator tuple another one that is coordinator equivalent. Once

Fig. 5 The usage of coordinator tuples and coordinator equivalence in the framework of compositional
coordinator synthesis
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an abstraction is proven to always create a coordinator tuple that is coordinator equivalent to
the input coordinator tuple, it is called a coordinator equivalence preserving abstraction and
it can be added to the collection of abstraction-refinement pairs. In this sense, the framework
allows to add new abstraction-refinement pairs easily.

Ten different abstractions, based on the abstractions proposed inMohajerani et al. (2016),
are identified that can be used for compositional coordinator synthesis. These abstrac-
tions are enhanced with coordinator refinements to form abstraction-refinement pairs.
Table 1 provides an overview of these abstraction-refinement pairs. In this paper, sev-
eral abstraction-refinement pairs are explained in detail to illustrate the different kinds of
refinements. Descriptions of the other abstraction-refinement pairs are included in Online
Resource 1.

Several abstractions may introduce nondeterminism: these are the FA-based abstrac-
tion (see Online Resource 1, Section 3) and event merging (see Section 6.3). As it is not
straightforward how to synthesize supervisors for nondeterministic systems, nondetermin-
ism is circumvented. When an FA-based abstraction results in nondeterminism, we can use
the approach of Mohajerani et al. (2011) and Mohajerani et al. (2014) where first renaming
is applied and then the FA-based abstraction. This renaming introduces new events to dis-
ambiguate between nondeterministic branching behavior. Event merging may also result in
nondeterminism. However, then renaming will not help, so the event merging abstraction
cannot be used in that case.

4 Illustrative example

The procedure proposed in this paper is in this section illustrated with an example. We use
the manufacturing system example as presented in Mohajerani et al. (2016). Since composi-
tional coordinator synthesis is applied on this example, a controllability status (controllable
or uncontrollable) is added to each event. For this example we first perform coordinator
equivalence preserving abstractions until a single automaton is obtained. While only con-
flict equivalence preserving abstractions are applied in Mohajerani et al. (2016), applying
coordinator equivalence preserving abstractions results in the same final abstracted model.
On this automaton we then perform a nonblocking verification. As this example contains
a conflict, we synthesize a coordinator with the simplified single automaton. Finally, we
refine this coordinator back to the original system.

Figure 6 shows the manufacturing system consisting of a conveyer belt split into two
sections CB1,CB2 and two machines M1, M2. Products are loaded from the environment
onto the conveyor belt (event l1) that has a capacity of 2. Event l2 represents a product being

Table 1 An overview of all identified abstraction-refinement pairs suitable for inclusion in the proposed
compositional coordinator synthesis framework, including a reference to the sections that describe these
abstraction-refinement pairs

Abstraction-refinement Location Abstraction-refinement Location

Local normalization Section 5 Variable unfolding Section 6.2

Global normalization Section 5 False removal Online Resource 1

FA-based abstractions Online Resource 1 Selfloop removal Online Resource 1

Partial composition Section 6.1 Event merging Section 6.3

Update simplification Online Resource 1 Update merging Online Resource 1
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Fig. 6 The manufacturing system example presented in Mohajerani et al. (2016) extended with controllable
and uncontrollable events. All variables are initially 0

transported from the first section to the second section. At the beginning of CB2 a product
detection sensor determines the type of products (events p1 and p2). Products of type 1 are
processed by machine M1 (event s1), while products of type 2 are processed by machine M2
(event s2). Both machines M1 and M2 process products and output them from the manufac-
turing system (events f1 and f2, respectively). In this manufacturing system, events l1, l2, s1
and s2 are considered to be controllable, while p1, p2, f1 and f2 are uncontrollable.

Each part of the manufacturing system is modeled by an EFA. Variables v1 and v2 rep-
resent the number of products on conveyer belt sections CB1 and CB2, respectively. Both
variables have domain {0, 1, 2} and the initial value is 0. Variable t keeps track of the type
of product that is last observed by the product detection sensor. The domain of t is {0, 1, 2}
and the initial value is 0 (representing the fact that the type of a product is not measured
yet). The EFA system is given by E0 = {CB1,CB2, M1, M2}.

The model in Fig. 6 has an incorrect implementation of the type recognition procedure.
The sequence l1l2p1l1l2 does not reset the variable t back to zero, while now the only
possible transitions p1 or p2 in CB2 require t = 0. This renders the system to be block-
ing. Compositional nonblocking verification will show that this system is blocking without
exploring its complete state space. After creating an abstracted representation, a nonblock-
ing, controllable, and maximally permissive coordinator is synthesized. As only coordinator
equivalence preserving abstractions are deployed, the coordinator can be correctly refined
to control the original EFA system.

4.1 Model abstractions

First, a given model is abstracted by applying a sequence of abstractions. The choice of
when to apply which abstraction is made heuristically by trying to either create or utilize
local events. This is reflected in the algorithm from Mohajerani et al. (2016) as shown in
Section 7. The correctness of the approach does not depend on the order of abstractions.
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The order only affects the observed computational reduction, because the final EFA system
might be different in form. Below, we only describe the first abstraction steps to illustrate
the concept of abstraction (and refinement later on); an example of a complete sequence of
abstraction steps is described in Mohajerani et al. (2016).

Abstraction step 1 The first steps of compositional nonblocking verification are to nor-
malize the EFA system. In a normalized system, each transition labeled with the same event
also has the same guard and update. This facilitates the reasoning about EFAs, as a nor-
malized system shows directly what the effect is on the variables when executing events.
Normalization is performed in two parts: first each EFA is normalized locally (where only
a single EFA is considered without looking at the other EFAs in the EFA system), and then
the EFA system is normalized globally. Each EFA in Fig. 6 is already locally normalized
except CB2, as in this EFA event l2 is associated with two different pairs of guards and
updates. In order to normalize CB2, event l2 is renamed to l21 and l22, where l21 is associ-
ated with guard v2 < 2 and update v2 := v2 + 1, while l22 is associated with guard v2 = 2.
In all other EFAs, we now need to replace every occurrence of l2 by l21 and l22 to maintain
synchronization between the EFAs. In CB1, event l2 is replaced by l21 and l22 both having
guard 0 < v2 and update v1 := v1 − 1. Thus, local normalization of CB2 results in two new
EFAs C1 and C2, shown in Fig. 7, that replace CB1 and CB2, respectively, and the renaming
ρ that maps events l21 and l22 to l2 and keeps all other events the same. The EFA system is
now given by E1 = {C1, C2,M1,M2}.

In case multiple EFAs need to be locally normalized, the procedure illustrated above
needs to be applied multiple times. Each time, local normalization of an EFA continues
with the EFA system resulting from the previous local normalization. For example, if M1
also needs to be locally normalized, we would continue with the EFA system E1 and not the
original EFA system E0.

Abstraction step 2 When all EFAs are locally normalized, the EFA system is globally
normalized by taking the conjunction of guards and updates. For example, event l21 is asso-
ciated in EFA C1 with guard 0 < v1 and update v1 := v1 − 1, while the same event is
associated in C2 with guard v2 < 2 and update v2 := v2 + 1. The globally normalized
guard of l21 then becomes 0 < v1 ∧ v2 < 2 and update v1 := v1 − 1, v2 := v2 + 1.
Figure 8 shows the globally normalized EFA system. As each transition with the same
event has the same guard and update, we can display the guards and updates in a separate
table. In this way, the automata can be presented without the guards and updates on the
transitions. The EFA system is now transformed into the globally normalized EFA system
E2 = {N (C1),N (C2),N (M1),N (M2)}.

Fig. 7 Locally normalized EFAs C1 and C2 obtained from CB1 and CB2, respectively
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Fig. 8 The globally normalized EFA system. For each event the guard and update is displayed in the table

Abstraction step 3 Event f1 belongs only to the alphabet ofN (M1), it has a T guard, and
does not change the valuation of any variable. Therefore, this event is in the EFA setting
a local event. Then, the FA-based abstraction of weak synthesis observation equivalence
(see Mohajerani et al. (2014)) can be applied to merge the two locations of N (M1). This
results in the abstracted EFA M̃1 as shown in Fig. 9. The EFA system is now given by
E3 = {N (C1),N (C2), M̃1,N (M2)}.

Abstraction step 4 Event f1 appears only on a transition in M̃1 and this transition is a
selfloop. Furthermore, the guard is true and the event does not change the valuation of vari-
ables. Therefore, event f1 can be safely removed from the EFA system, resulting in M̃1\f1 as
shown in Fig. 9. The EFA system is now given by E4 = {N (C1),N (C2), M̃1\f1 ,N (M2)}.

After applying a sequence of coordinator equivalence preserving abstractions, the final
abstracted EFA E as shown in Fig. 10 is obtained. Though Mohajerani et al. (2016) did
not use only coordinator equivalence preserving abstractions, the same result is obtained.
This abstracted EFA shows that the system blocks when a second product enters CB2 (event
l21) before the previous product was sent to one of the machines (event s, a combination of
events s1 and s2).

4.2 Coordinator synthesis

On the final abstracted result E, we can apply any monolithic synthesis procedure to resolve
the blocking issue. Figure 10 shows, on the right-hand side, a nonblocking, controllable,
and maximally permissive coordinator S for E. As this coordinator is synthesized for the
abstracted system, it cannot be directly deployed on the original system that composi-
tional nonblocking verification started with. Since only coordinator equivalence preserving
abstractions were used, the coordinator synthesized for the abstracted system can be refined

Fig. 9 Simplified EFAs M̃1 and
M̃1\f1 of N (M1)
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Fig. 10 The final abstracted EFA
E and supervisor S obtained
from it

back to obtain a nonblocking, controllable, and maximally permissive coordinator for the
original EFA system. This refinement is demonstrated in the next section.

4.3 Coordinator refinement

In this section, the coordinator S is refined, which corresponds to C2 in Fig. 5. Since the
system is abstracted step by step, we have obtained a composed refinement function ξ =
ξ0 ◦ ξ1 ◦ ξ2 ◦ . . .. Therefore, the refinement function can be applied on the coordinator S by
starting with reversing the last abstraction steps (not shown in Section 4.1), all the way back
to abstraction step 1. These reversals are called refinement steps.

To track the different coordinators in this example properly, a subscript is added to indi-
cate for which system it is a coordinator. After applying the refinement steps related to the
not shown abstraction steps, the coordinator S4 = S′ ‖ E4 is obtained, where S′ is shown in
Fig. 11. As in this example we are manually refining the coordinator, we do not calculate
each coordinator explicitly in the refinement steps. Instead, we indicate how the coordinator
can be calculated using known models. This way of working closely resembles supervisor
reduction of Su and Wonham (2004).

Refinement step 4 In abstraction step 4, event f1 was removed, as it only appeared on
selfloops with true guards and updates. To ensure that this event is possible in the coor-
dinator, these selfloops need to be placed back. This can be achieved by calculating the
synchronous composition of the coordinator with the previous abstracted EFA system, i.e.,
S3 = ξ4(S4) = S4 ‖ E3. This can also be rewritten as S4 ‖ E3 = S′ ‖ E4 ‖ E3 = S′ ‖ E3,
where we used the observation for this case that E4 ‖ E3 = E3.

Refinement step 3 In abstraction step 3, an FA-based abstraction was applied. In gen-
eral, a quotient automaton may contain more behavior than the original automaton. In this
example, in M̃1 it is possible to execute the transitions labeled with s1 and f1 in arbitrary
order, while in the original model N (M1) the events s1 and f1 alternate. To refine the
coordinator, the synchronous composition is calculated of the coordinator with the previ-
ous abstracted EFA system, i.e., S2 = ξ3(S3) = S3 ‖ E2. This can also be rewritten as

Fig. 11 Intermediate and final
refined coordinators
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S3 ‖ E2 = S′ ‖ E3 ‖ E2 = S′ ‖ E2, where we used the observation for this case that
E3 ‖ E2 = E2.

Refinement step 2 In abstraction step 2, global normalization was applied. To refine global
normalization, nothing has to be changed, i.e., S1 = ξ2(S2) = S2.

Refinement step 1 In abstraction step 1, an EFA was locally normalized. To refine the
coordinator, the newly introduced events l21 and l22 need to be renamed back to l2, i.e.,
S0 = ξ1(S1) = ρ(S1). This can also be rewritten as ρ(S1) = ρ(S2) = ρ(S′ ‖ E2) = ρ(S′) ‖
ρ(E2) = Sf ‖ E0, where Sf is shown in Fig. 11.

We can now verify that the closed-loop behavior of the monolithic coordinator calcu-
lated with the original EFA system is the same as the closed-loop behavior of the refined
compositional coordinator S0 ‖ E0 = Sf ‖ E0.

Following the algorithm of Mohajerani et al. (2016), the system was abstracted until a
single EFA without variables was obtained. Nevertheless, the proposed method allows the
user to stop with abstracting at any given moment, to synthesize a nonblocking, controllable,
and maximally permissive coordinator, and to refine this coordinator back to the original
EFA system. As shown in Gommans (2016), stopping the refinements before a single EFA
without variables is obtained may be beneficial.

5 Normalization

The first step of compositional coordinator synthesis is normalization, see Mohajerani et al.
(2016). In a normalized EFA system E , each transition labeled with the same event σ has the
same guard and update. To normalize an EFA system E = {E1, . . . , En}, first all individual
EFAs of the system are locally normalized, i.e, each EFA is considered separately without
looking at the other EFAs in the EFA system, by renaming events with renaming functions
ρi for i ∈ {1, . . . , n}. When all individual EFAs have been locally normalized, then the EFA
system is globally normalized by merging updates to ensure that the complete EFA system
is a normalized system. Therefore, the guard and update are related to the event, which we
denote by gσ and uσ , respectively. These two procedures are treated separately.

Example Figure 12 illustrates the two steps of local and global normalization. Consider the
EFA system consisting of E1 and E2. EFA E1 is locally normalized, as for both events
a and b it holds that all transitions labeled with the same event have the same guard and
update. EFA E2 is not locally normalized, as not all transitions labeled with event b have
the same guard and update. Therefore, events b1 and b2 are introduced to replace event b in
E2, resulting in EFA F 2, which is locally normalized. Renaming ρ maps events b1 and b2
back to b. Now, EFAs E1 and F 2 do not synchronize any longer. To restore synchronization,
event b in E1 is replaced by events b1 and b2 with the inverse renaming ρ−1. The resulting
EFA ρ−1(E1) is shown in Fig. 12.

Now, each EFA is locally normalized, yet the EFA system of ρ−1(E1) and F 2 is not
globally normalized: transitions labeled by b1 and transitions labeled by b2 have different
guards and updates. To normalize an EFA system globally, the guards and updates for each
event are merged. For example, for event b1 the guard in EFA ρ−1(E1) is x > 0 and the
update is x := 0; for the same event the guard in EFA F 2 is T (not explicitly depicted in the
figure) and the update is y := x. Merging these will result in a guard x > 0 ∧ T = x > 0
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Fig. 12 Example illustrating the process of local and global normalization

and update x := 0, y := x. Figure 12 shows the globally normalized EFAs N (ρ−1(E1))

andN (F 2).
A normalized system is formally defined as follows, adapted from Mohajerani et al.

(2016).

Definition 11 (Normalized system (Mohajerani et al. 2016)) An EFA system E is normal-
ized if for all pairs of transitions (l1, σ, g1, u1, l2) ∈→E and (l3, σ, g2, u2, l4) ∈→E it holds
that g1 = g2 and u1 = u2, i.e., the guards and the updates are the same. An EFA E is
normalized if the EFA system {E} is normalized.

Definition 12 (Normalized form (Mohajerani et al. 2016)) Let E = {E1, . . . , En} be an
EFA system where each Ei = (Li, V i,Σi,→i , li0, v̂

i
0, L

i
m) is (locally) normalized. The

normalized form of E is denoted by N (E) = {N (E1), . . . ,N (En)} where N (Ei) =
(Li, V ,Σi, →i

N , li0, v̂0, L
i
m), V = ∪iV

i , →i
N= {(li1, σ, gσ , uσ , li2) |(li1, σ, gi

σ , ui
σ , li2)

∈→i}, gσ = ∧i:σ∈Σi gi
σ , uσ = ⊕i:σ∈Σi ui

σ , and v̂0 = ⊕i v̂
i
0.

For local and global normalization, we can express the following two theorems, respec-
tively. The proofs of these theorems can be found in Sections 1 and 2 of Online Resource 1.
Each theorem in this paper has the same structure, which is depicted in Fig. 2. Given two
particular EFA systems E and F , an already obtained refinement function ξ1, we show that
there exists an refinement function ξ such that (E, ξ1) �co (F , ξ1 ◦ ξ). The contribution of
this paper is reflected in the addition of the refinement to the abstraction and showing that
the abstraction-refinement pair is coordinator equivalence preserving. In all theorems, the
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order of the individual EFAs in EFA system E = {E1, . . . , En} is arbitrary. For simplicity,
the EFAs that change are placed at the beginning of the set.

Theorem 1 (Local normalization) Let (E, ξ1) be a coordinator tuple with E =
{E1, . . . , En} a deterministic EFA system, and let ρ : Σ ′ → ΣE be a renaming function
such that F = {F 1, ρ−1(E2), . . . , ρ−1(En)}, ρ(F 1) = E1, and F 1 is a normalized EFA.
Then refinement function ξ(G) = ρ(G) for any EFA G ensures that (E, ξ1) �co (F , ξ1 ◦ ξ).

The intuition behind this theorem is as follows. To refine the coordinator for local
normalization, events need to be renamed back to their original names to have the same
closed-loop behavior as the coordinator synthesized before local normalization. In Fig. 13,
coordinator C is synthesized from the locally normalized EFA system {ρ−1(E1), F 2} of
Fig. 12. The refined coordinator C′ to control the original EFA system is obtained by
applying the renaming ρ, i.e., C′ = ρ(C), which is also shown in Fig. 13.

Theorem 2 (Global normalization) Let (E, ξ1) be a coordinator tuple with E =
{E1, . . . , En} a deterministic EFA system, where each individual EFA Ei ∈ E is locally
normalized. Construct the normalized form of E as F = N (E) = {N (E1), . . . ,N (En)}.
Then refinement function ξ = id ensures that (E, ξ1) �co (F , ξ1 ◦ ξ).

Intuitively, the coordinator does not have to be changed to refine global normalization.
Global normalization of an EFA system with locally normalized EFAs does not change
the behavior of the system as shown in Proposition 3 of Mohajerani et al. (2016). There-
fore, a coordinator synthesized for the EFA system just before global normalization would
be the same as the coordinator synthesized for the globally normalized EFA system. For
example, the coordinator C in Fig. 13 synthesized for the globally normalized EFA system
{N (ρ−1(E1)),N (F 2)}, as shown in Fig. 12, is also a coordinator for the locally normalized
EFA system.

6 Coordinator equivalence preserving abstraction-refinement pairs

After normalizing the system, several abstraction-refinement pairs can be applied to sim-
plify the system. The following sections describe several abstraction-refinement pairs
suitable for both the nonblocking verification and coordinator refinement. All EFA-based

Fig. 13 Example illustrating the process of coordinator refinement for local and global normalization. C is
a coordinator synthesized for the locally or globally normalized EFA system and C′ is a refined coordinator
for the original EFA system. Underlined are the strengthened guards with respect tot the plant
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conflict equivalence preserving abstractions presented in Mohajerani et al. (2016) are
also suitable for coordinator refinement, while some conflict equivalence preserving FA-
based abstractions are no longer suitable for synthesis; for counterexamples, see the work
of Mohajerani et al. (2014).

6.1 Partial composition

Partial composition is one of the simplest abstractions, see Mohajerani et al. (2016). Even
though the synchronous composition of two EFAs may enlarge the state space, it often
increases the applicability of one of the other abstraction-refinement pairs.

It follows from the definitions of synchronous composition and EFA systems (and it is
confirmed by Proposition 6 of Mohajerani et al. (2016)) that partial composition does not
alter the behavior of the system. Therefore, a monolithic supervisor synthesized for an EFA
system before partial composition is the same as one synthesized after partial composition.
For example, consider the EFA system consisting of E1 and E2 as depicted in Fig. 14. The
EFA system consisting of their synchronous composition E1 ‖ E2 generates the same lan-
guage. No refinement is needed, as expressed by Theorem 3. The coordinator C in Fig. 14
can be a coordinator for the EFA system consisting of E1 and E2 as well as for the EFA sys-
tem consisting of E1 ‖ E2. The proof of this theorem can be found in Section 4 of Online
Resource 1.

Theorem 3 (Partial composition) Let (E, ξ1) be a coordinator tuple with E = {E1, . . . , En}
a deterministic normalized EFA system. Construct F = {E1 ‖ E2, E3, . . . , En}. Then
refinement function ξ = id ensures that (E, ξ1) �co (F , ξ1 ◦ ξ).

6.2 Variable unfolding

Another useful abstraction is the elimination of a variable from the EFA system by unfolding
it into explicit states. In Mohajerani et al. (2016), a particular method of unfolding a variable
is presented that keeps a normalized system normalized after the abstraction.

Below, the definitions for variable unfolding as presented in Mohajerani et al. (2016) are
briefly discussed and adapted for using guards and updates on the transitions. Details can
be found in Mohajerani et al. (2016).

Definition 13 (Variable alphabet (Mohajerani et al. 2016)) Let z be a variable and Σ an
alphabet. The variable alphabet of z with respect to Σ is Uz(Σ) = Σ × dom(z) × dom(z),
where (σ, a, b) ∈ Uz(Σ) is controllable if and only if σ ∈ Σ is controllable. The variable
renaming function ρz is defined as ρz((σ, a, b)) = σ for all (σ, a, b) ∈ Uz(Σ).

Fig. 14 Example of applying synchronous composition, initially x = 0. For each event the guard and update
is displayed in the table. In the coordinatorC, the addition to the guards and updates of the events are depicted
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When a variable is unfolded, a new alphabet is created based on the original alphabet
and the variable that is unfolded, see the table in Fig. 15. For each event in the original
alphabet, new events are created by combining the event with two values from the domain
of the variable being unfolded. The first value represents the value of the unfolded variable
before, and the second value represents the value of the unfolded variable after taking the
transition labeled by the event. For example, in event (α, 0, 1) the value 0 is the value of
variable x before, and 1 the value after taking the transition labeled originally by α. The
variable alphabet may be larger than strictly necessary: it may contain events that are never
enabled in the model. Subsequent abstraction-refinement pairs, like update simplification
(see Online Resource 1, Section 5), false removal (see Online Resource 1, Section 7), and
event merging (see Section 6.3), can remove such unnecessary events.

Definition 14 (Normalized variable EFA (Mohajerani et al. 2016)) Let E be a normalized
EFA system with variable set V . The normalized variable EFA of z ∈ V is

UE (z) = (dom(z), V \ {z}, Uz(Σz), →z, v̂0(z), v̂0\z, dom(z))

where

Σz = {σ ∈ Σ | z ∈ vars(gσ ) ∪ vars(uσ )},
→z = {(a, (σ, a, b), gσ [z 	→ a] ∧ b = uσ (z)[z 	→ a], uσ\z[z 	→ a], b) |

σ ∈ Σz, (x, σ, gσ , uσ , y) ∈→E , a, b ∈ dom(z)},
with vars(gσ ) all variables in guard gσ , vars(uσ ) all variables in update uσ , uσ\z the update
function without the update expression for z, uσ\z[z 	→ a] the update function where in
each update expression the variable z is substituted by a, and v̂0\z is the initial valuation
without variable z.

Fig. 15 Example of unfolding variable x, taken from Mohajerani et al. (2016). In this example, dom(x) =
dom(y) = {0, 1}. Initially, v̂0(x) = 0 and v̂0(y) = 0. In the table, the top two events constitute the original
alphabet and the bottom ones the alphabet after variable unfolding
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The normalized variable EFA captures all theoretically possible assignments of that vari-
able. As this EFA represents the effect of the unfolded variable on the EFA system, only
events from the original EFA system that use this variable are included in the normalized
variable EFA. Figure 15 shows an example where variable x is unfolded resulting in the
normalized variable EFA UE (x). The guards in a normalized variable EFA after unfolding a
variable consists of the original guard where the variable is substituted by its current value
in conjunction with the update of that variable. This is done to include the fact that a tran-
sition is taken in the normalized variable EFA only for the value that the variable would be
updated to in the original system. Observe that several guards of the normalized variable
EFA can be simplified with the abstraction-refinement pair called update simplification.

When a variable is unfolded, new events are introduced. To keep the complete EFA
system normalized, all other EFAs in the EFA system need to be updated with these new
events in a similar manner as local normalization (see Section 5). Furthermore, the guards
and updates of events used to create the normalized variable EFA need to be changed in all
EFAs in the same manner as in the normalized variable EFA. Both changes are captured
below in the definition of variable expansion.

Definition 15 (Variable expansion (Mohajerani et al. 2016)) Let E = (L, V,Σ, →
, l0, v̂0, Lm) be an EFA and let z ∈ V . The expansion of E after unfolding variable z is
defined by

Uz(E) = (L, V \ {z},ΣU , →U , l0, v̂0\z, Lm)

where

ΣU = Uz(Σ ∩ Σz) ∪ (Σ \ Σz),

→U = {(x, (σ, a, b), gσ [z 	→ a] ∧ b = uσ (z)[z 	→ a], uσ\z[z 	→ a], y) |
σ ∈ Σ ∩ Σz, (x, σ, gσ , uσ , y) ∈→} ∪
{(x, σ, gσ , uσ , y) | σ ∈ Σ \ Σz, (x, σ, gσ , uσ , y) ∈→}

Figure 15 shows an example of variable expansion of E with respect to variable x.
Given these definitions, unfolding variable z in an EFA system is defined as follows.

Definition 16 (Variable unfolding (Mohajerani et al. 2016)) Let E = {E1, . . . , En} be a
normalized EFA system with variable set V and z ∈ V a variable. The result of unfolding z

in E is

E\z = {UE (z), Uz(E
1), . . . , Uz(E

n)}.

Two things need to be accomplished to properly refine a coordinator based on the
abstracted system back to the original system: events need to be renamed back and variables
needs to be reintroduced. The first action is needed as coordinator equivalence is based on
having the same closed-loop language, which in essence requires the same alphabet. The
second action is needed to ensure that all following refinements of the coordinator can use
the unfolded variables. Renaming can be achieved by the renaming function ρz. Reintro-
ducing an unfolded variable can be achieved by calculating the synchronous composition
of the abstracted coordinator after renaming and the original EFA system. Now Theorem 4
confirms that the coordinator can be refined. The proof of this theorem can be found in
Section 6 of Online Resource 1.
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Theorem 4 (Variable unfolding) Let (E, ξ1) be a coordinator tuple with E a deterministic
normalized EFA system with variable set V and z ∈ V . Then refinement function ξ(G) =
ρz(G) ‖ E for any EFA system G ensures that (E, ξ1) �co (E\z, ξ1 ◦ ξ).

Example The coordinators synthesized for the EFA systems before and after variable
unfolding as presented in Fig. 15 are shown in Fig. 16. In the initial location, the transi-
tion labeled with β needs to be disabled to prevent the system from being blocking after
taking this transition. During supervisor synthesis on the abstracted system, the algorithm
evaluates the guards and updates on the transitions and finds out that several of them are
not possible, as their guards evaluate to false. Therefore, the synthesized coordinator only
strengthens the guard on the transition from the initial location labeled with event (β, 0, 1);
other transitions do not need to be strengthened. If we apply the refinement on coordina-
tor SUE (x)‖Ux(E), we observe that the strengthened transition labeled with (β, 0, 1) is now
labeled with β. Therefore, it holds that SE = ρx(SUE (x)‖Ux(E)) ‖ E.

6.3 Event merging

The abstraction of event merging identifies events that can be merged back into a single
event, as proposed in Mohajerani et al. (2016). Events can be merged if they have the same
guard and update, for all EFAs except one they appear on transitions with the same source
and target location, and they have the same controllability status. Event merging can often
be applied directly after variable unfolding, as introduced in Section 6.2. By construction of
the EFA system after variable unfolding, all new events introduced for a single event appear
everywhere on the same transition except the newly created normalized variable EFA, see
the example in Fig. 15.

To refine a coordinator synthesized for the abstracted system, the merged events need
to be converted back to original events. As event merging applies a renaming to go from
multiple events to a single event, refinement applies an inverse renaming to go from a sin-
gle event to multiple events. But, in general, for any renaming and EFA A it holds that
L(ρ−1(ρ(A))) ⊇ L(A), i.e, more behavior may be possible after applying renaming and

Fig. 16 The coordinators SE and SUE (x)‖Ux(E) synthesized for the EFA systems {E} and {UE (x), Ux(E)} as
shown in Fig. 15, respectively. In the table, the top two events constitute the original alphabet and the bottom
ones the alphabet after variable unfolding
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inverse renaming than originally possible. This may also be the case for event merging. To
solve this, the synchronous composition of the coordinator obtained after inverse renaming
and the original system ensures that the languages become equal. Theorem 5 formalizes
this. The proof of this theorem can be found in Section 9 of Online Resource 1.

Theorem 5 (Event merging) Let (E, ξ1) be a coordinator tuple with E = {E1, . . . , En} a
deterministic normalized EFA system. Let Ek ∈ E and let ρ : ΣE → Σ ′ be a renaming
such that the following conditions hold for all σ1, σ2 ∈ ΣE with ρ(σ1) = ρ(σ2):

1. gσ1 = gσ2 and uσ1 = uσ2 ,
2. for all i �= k, it holds that σ1 ∈ Σi if and only if σ2 ∈ Σi , and for all l1, l2 ∈ Li it

holds that l1
σ1,gσ1 ,uσ1−−−−−−→ l2 in Ei if and only if l1

σ2,gσ2 ,uσ2−−−−−−→ l2 in Ei ,
3. σ1 ∈ Σc if and only if σ2 ∈ Σc.

Then refinement function ξ(G) = ρ−1(G) ‖ E for any EFA system G with alphabet Σ ′
ensures that (E, ξ1) �co (ρ(E), ξ1 ◦ ξ).

Keep in mind that we assumed that all abstracted systems remain deterministic. Event
merging can be properly refined only under this assumption.

Example Figure 17 shows an example where event merging is applied. In the original EFA
system, events β1 and β2 have the same guard and update, and they appear on the same
transitions in all EFAs except E1. Therefore, these events can be merged into, for exam-
ple, β, which results in EFAs ρ(E1) and ρ(E2). For the original and the abstracted system
a coordinator is synthesized. The strengthened guards are shown directly in the automa-
ton representation of the coordinators. We can now observe that simply applying inverse
renaming is insufficient, as a refinement as ρ−1(Sρ(E)) allows for β1 and β2 from the initial
location, while the coordinator based on the original system only allows β1. This problem is
solved by taking the synchronous composition of the renamed abstracted coordinator with
the original EFA system, i.e., L(ρ−1(Sρ(E)) ‖ (E1 ‖ E2)) = L(SE).

Fig. 17 Example of event merging and coordinator refinement. In the table, the top three events constitute
the original alphabet, while the bottom two the one after event merging. SE and Sρ(E) are the coordinators
for the EFA systems {E1, E2} and {ρ(E1), ρ(E2)}, respectively
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Algorithm 1 EFA-based compositional nonblocking verification and coordinator
refinement.

Input: deterministic EFA system E = {E1, . . . , En}
Output: nonblocking in case when E is nonblocking, or blocking and refined coordinator
Cr in case when E is blocking

1: V = V 1 ∪ . . . ∪ V n

2: (E, ξ) = normalize(E)

3: while |E | > 1 ∧ |V | > 0 do
4: (Vc, Ec) = selectCandidate(E)

5: if Vc �= ∅ then
6: v = selectVariable(Vc)

7: V = V \ {v}
8: (E, ξ ′) = unfold(v)

9: ξ = ξ ◦ ξ ′
10: else
11: E = E \ Ec

12: E = synchronize(Ec)

13: ξ = ξ ◦ id
14: end if
15: (E ∪ {E}, ξ ′) = removeEvents(E ∪ {E})
16: ξ = ξ ◦ ξ ′
17: Γ = getLocalEvents(E, E)

18: (E, ξ ′) = simplify(E, Γ ) // Not all simplifications of Mohajerani et al. (2016) can
be used.

19: ξ = ξ ◦ ξ ′
20: (E ∪ {E}, ξ ′) = removeEvents(E ∪ {E})
21: ξ = ξ ◦ ξ ′
22: E = E ∪ {E}
23: end while
24: if monolithicVerification(E) is successful then
25: return nonblocking
26: else
27: C = monolithicSynthesis(E)

28: Cr = ξ(C)

29: return blocking and Cr

30: end if

7 Algorithm

This section enhances the EFA-based compositional nonblocking verification algorithm
of Mohajerani et al. (2016) to refine the coordinator synthesized from the abstracted system.
For a detailed discussion on the EFA-based compositional nonblocking verification algo-
rithm, including several heuristics for choosing the order of abstraction-refinement pairs,
the reader is referred to Mohajerani et al. (2016).

Algorithm 1 shows the enhanced algorithm. The enhancement, i.e., a contribution of this
paper, is visualized by underlining the additions. Algorithm 1 requires a deterministic EFA
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system as input, and produces the answer nonblocking if the EFA system is nonblocking, or
the answer blocking together with the refined coordinator Cr if the EFA system is blocking.
The algorithm can be split into three parts: the initialization and normalization in Lines 1
and 2, the abstractions in Lines 3-23, and the verification and refinement in Lines 24-29.

The first two parts, initialization and normalization and abstractions, are basically the
same as in the EFA-based compositional nonblocking verification algorithm of Mohajerani
et al. (2016), where now the refinement function ξ is constructed along the way according
to the theorems in Sections 5 and 6, and Online Resource 1. In other words, Algorithm 1
keeps track of which abstractions are performed. Furthermore, the simplify procedure needs
to be adjusted, as no longer all FA-based abstractions for verification can be used.

The third part of Algorithm 1 is responsible for synthesizing and refining the coordinator
in case a coordinator is needed to solve the blocking issue. Some algorithms available in lit-
erature for verification are Abdelwahed and Wonham (2003) and Flordal and Malik (2006),
and for synthesis are Ouedraogo et al. (2011) and Fei et al. (2014). If verification of the
abstracted EFA Eabstracted system is successful, then the algorithm returns that the original
EFA system provided as input is nonblocking in Line 25. Otherwise, the algorithm continues
to synthesize a coordinator C based on the abstracted EFA system. By using only coordina-
tor equivalence preserving abstractions, see Table 1 for an overview, it follows that the initial
and abstracted coordinator tuples are coordinator equivalent, i.e. (E, id) �co (Eabstracted, ξ).
Thus we conclude that L(id(supCN(E))) = L(ξ(supCN(Eabstracted))). Therefore, in Line
28 the synthesized coordinator C is refined by applying the refinement function ξ . The final
result is returned in Line 29.

The theoretical worst-case complexity of this algorithm is the same as the worst-case
complexity of monolithic nonblocking verification and monolithic synthesis. This can be
seen as follows. Consider an EFA system where each EFA has the same alphabet. As the
compositional nonblocking verification algorithm tries to utilize local events, it needs to
calculate the synchronous product of all EFAs in this EFA system to have at least one local
event. In this case, there is no computational complexity reduction compared to monolithic
nonblocking verification and monolithic synthesis. Nevertheless, experimental results as
presented in Mohajerani et al. (2016) show that for realistic systems the observed compu-
tation time of compositional nonblocking verification is between 1 and 200 seconds. As
monolithic verification and monolithic synthesis have the same computational complexity,
see Cassandras and Lafortune (2008), and all refinements are straightforward, an implemen-
tation of Algorithm 1 is expected to have similar computational results as the ones reported
in Mohajerani et al. (2016) for compositional nonblocking verification.

8 Conclusion

In this paper, the general framework of EFA-based compositional nonblocking verification
of Mohajerani et al. (2016) is enhanced such that in case of a blocking system a coordinator
can be synthesized and refined back to the original system. Such a synthesized coordinator
ensures that the closed-loop system of the original EFA system and coordinator is nonblock-
ing, controllable, and maximally permissive. The notion of a general refinement function is
introduced, which transforms a given EFA system into another EFA system. All presented
abstraction-refinement pairs belong to the particular class of refinement functions Ξ .
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To reason about refinement of coordinators, we introduced the notion of coordinator
equivalence. All abstraction-refinement pairs presented in this paper are shown to preserve
this property. This allows for a compositional approach, where the closed-loop behavior
after refining the coordinator synthesized for the abstracted system is the same as the closed-
loop behavior of the coordinator synthesized for the original system.

Future work includes the implementation of the framework and the abstraction-
refinement pairs in the CIf tooling (van Beek et al. 2014). Such an implementation allows
the framework to be used in the development of modular supervisory controllers for
large-scale infrastructural applications like, for example, bridges (Reijnen et al. 2020),
locks (Reijnen et al. 2017), and tunnels (Moormann et al. 2020).
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Fabian M, Fei Z, Miremadi S, Lennartson B, Åkesson K (2014) Supervisory control of manufacturing
systems using extended finite automata. In: Campos J, Seatzo C, Xie X (eds) Formal methods in
manufacturing, Industrial information technology. Taylor & Francis Inc., pp 295-314
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