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Abstract
Early brain lesions can give rise to cerebral palsy (CP), which may a�ect 
the development of walking.  Given the highly plastic brain and still 
maturing corticospinal tract of young children, early interventions 
targeting underlying mechanisms of walking impairment may be 
important to improve functional mobility in children with CP. The 
overarching aim of this thesis is to identify the underlying mechanisms 
of impaired walking development in children at high risk of CP. The 
�ndings in this thesis suggest that early brain lesions in CP express as 
modi�cations of neuromuscular control, already in the early phase of 
motor development. Muscle synergy analysis, possibly in conjunction 
with muscle network analysis, is a promising objective method for the 
detection of impaired neuromuscular control. This may support the 
design of early interventions to improve walking ability in children 
with CP in the future.
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Many of us walk without conscious effort. Neonates are able to perform a stepping 
pattern just after birth. Yet, in typically developing (TD) children it takes about a 
year before they can walk without support. After that, while the body grows, the 
locomotor patterns develop further and gait is refined and optimized towards a 
mature pattern. In children with cerebral palsy (CP) walking development is often 
delayed and may remain incomplete. In my thesis I sought to extend our knowledge 
of the underlying mechanisms accompanying impaired walking development in 
children with or at high risk of CP.

Cerebral palsy
Malformation or lesions of an immature brain before birth, around birth or during 
early post-natal development may give rise to CP. Possible causes for these lesions 
include loss of oxygen, i.e., hypoxia-ischemia, cortical malformation, infection, and 
hemorrhage (Zhou, Butler, & Rose, 2017). Premature birth is one of the main risk 
factors for the development of CP (Odding, Roebroeck, & Stam, 2006). CP affects 
around 2 in 1000 live births, making it the most common movement disorder in 
children (Himmelmann & Uvebrant, 2018). The presence of motor asymmetry, 
delayed motor milestones and/or gait abnormalities, in combination with atypical 
muscle tone and posture in young children are prime indicators for diagnosis (Wu, 
Day, Strauss, & Shavelle, 2004). 

CP is defined as a group of permanent, albeit not fixed, disorders of the 
development of movement and posture. It comes with a wide clinical spectrum, 
from mild to severe motor impairments, with heterogenous expressions, due to 
variation in the nature and location of brain lesions (Rosenbaum et al., 2007). The 
variability in functional mobility can be classified using the Gross Motor Function 
Classification System (GMFCS), with GMFCS I-III indicating that the child is able 
to walk independently or with support, while in GMFCS IV-V the child uses a 
wheelchair. There are three motor subtypes of CP: spastic, dyskinetic, and ataxic. 
The most common one is spastic CP, affecting around 85% of the children with CP. 
About 12% have dyskinetic CP, and 3% ataxic CP (Himmelmann & Uvebrant, 2018). 
The distribution of spastic CP can be unilateral or bilateral (Bax et al., 2005). Either 
way, the type of CP is classified based on clinical features and seemingly depends 
on the location of the brain lesion.

Neuromuscular deficits in CP include abnormalities such as muscle weakness, 
spasticity, dystonia impaired selective motor control, and coordination and balance 
problems. These original impairments can yield secondary musculoskeletal changes 
including shortened and stiff muscles as well as bony deformations. Together with 
the rapid body growth of young children, these factors can contribute to walking 
impairments in CP (Meyns et al., 2016). There is an arsenal of treatments seeking 
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to maintain or improve functional mobility in CP (Novak et al., 2013), including 
physical therapy, serial casting (Weide et al., 2019), botulinum toxin type A (BoNT-A) 
injection (Schless et al., 2019), single-event multilevel orthopedic surgery (SEMLS, 
Ancillao et al., 2017; Haberfehlner et al., 2018), and  selective dorsal rhizotomy 
(SDR, Bolster et al., 2013; Romei et al., 2018; Summers et al., 2019). Yet, most of 
these treatments are after the age of two years, to optimize motor development. 

The critical period for early interventions may be before the age of two 
years, when the brain is more plastic and the corticospinal tract is still maturing 
(Cappellini et al., 2020b; Hadders-Algra, 2014; Novak et al., 2017; Yang et al., 2013). 
On average, the diagnosis of CP is made around a corrected age of 12 months, with 
a wide variation (Granild‐Jensen, Rackauskaite, Flachs, & Uldall, 2015; Hubermann, 
Boychuck, Shevell, & Majnemer, 2016). To be able to start interventions early, it 
is important to identify children at a young age who are at risk of developing CP. 
A high risk of CP (Hielkema et al., 2010) is determined by the presence of one of 
the following: cystic periventricular leukomalacia, diagnosed on serial ultrasound 
assessments of the brain (de Vries, Eken, & Dubowitz, 1992), unilateral or bilateral 
parenchymal lesion of the brain (de Vries et al., 2001), diagnosed using MRI, term/
near-term asphyxia resulting in Sarnat 2 or 3 (Sarnat & Sarnat 1976) with brain 
lesions on MRI and/or with neurological dysfunction during infancy suggesting 
the development of CP, or other structural brain damage. Detecting high risk of CP 
at an early age is important to start interventions early (Morgan et al., 2021), and 
improve functional mobility at a later stage in these children. 

Walking development
Walking development can be described as the maturation of locomotor patterns 
over time from supported to independent (unsupported) walking. Immediately 
after birth, neonates can perform unloaded steps. While their body weight is 
supported they display neonate stepping, which is an irregular pattern with clear 
alternation between flexors and extensors and a high degree of co-contraction. 
This stepping pattern typically disappears around 4-6 weeks postnatally and 
reappears at around 6-8 months as supported walking. Subsequently, it develops 
towards independent walking (Dominici et al., 2011; Forssberg, 1985; Thelen & 
Cooke, 1987; Yang, Stephens, & Vishram, 1998). During walking development, body 
size and mass change, therewith also biomechanical requirements for walking. 

Locomotor patterns from infants during the supported walking period, from 
neonate stepping up to the onset of independent walking, show hyperflexion in hip 
and knee, resulting in a high foot lift during the swing phase (Dominici, Ivanenko, 
& Lacquaniti, 2007; Forssberg, 1985; Ivanenko, Dominici, Cappellini, & Lacquaniti, 
2005b). TD children start to walk independently between 9 to 18 months of age. 
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Walking without support requires maintaining balance that, in turn, requires 
postural control. Toddlers, just after the onset of independent walking, achieve this 
through short steps with outward pointing toes, a wide base of support, flat foot 
strike, and/or arms held in a fixed high position. The plantigrade characteristics of 
the adult locomotor pattern, such as ankle dorsiflexion at heel strike, knee flexion 
during stance phase, and joint coordination along the gait cycle, are not present 
during neonate stepping, supported walking, and newly acquired independent 
walking (Forssberg, 1985). The foot trajectory (i.e., the time course of the vertical 
foot displacements; Dominici et al., 2007) in toddlers shows a single-peak foot 
lift, and intersegmental coordination (i.e., the plane of covarying leg elevation 
angles) is still immature, showing a deviation from planarity and a wider gait loop 
than in adults (Bianchi, Angelini, Orani, & Lacquaniti, 1998; Borghese, Bianchi, & 
Lacquaniti, 1996; Cheron et al., 2001; Dominici, Ivanenko, Cappellini, Zampagni, & 
Lacquaniti, 2010; Ivanenko, Dominici, & Lacquaniti, 2007). During the development 
of the toddler locomotor pattern towards a mature adult gait pattern, one can 
observe a maturation of the foot trajectory towards a double-peaked trajectory 
with minimum foot clearance during mid-swing (Dominici et al., 2007; Forssberg, 
1985), as well as rapid maturation of intersegmental coordination of the lower limb 
segments in the first few months after the onset of independent walking (Cheron 
et al., 2001; Dominici et al., 2011; Ivanenko et al., 2004a, 2007). 

Muscles activation patterns from infants during the supported walking period 
show wide muscle contraction durations and excessive antagonist muscle co-
contraction during stance, as well as a large peak around 20-30 ms after foot contact 
in most muscles (Leonard, Hirschfeld, & Forssberg, 1991). This peak may be a result 
of hyperactivity of stretch reflexes (Forssberg, 1985), or of nonplantigrade gait 
(Ivanenko et al., 2007). After the onset of independent walking, muscle contraction 
durations decrease, and the timing and amplitude of activation per muscle across 
the gait cycle changes, resulting in more asynchronous and reciprocal muscle 
activations (Cappellini et al., 2016; Dominici et al., 2011; Ivanenko et al., 2013; 
Leonard et al., 1991; Okamoto, Okamoto, & Andrew, 2003). 

Developmental stages of locomotion usually occur at later ages in children with 
CP compared to TD children (Largo, Molinari, Weber, Pinto, & Duc, 1985; Meyns et al., 
2012a). Maturation of the foot trajectory, intersegmental coordination (Cappellini 
et al., 2016), and muscle activation patterns (Berger, 1998; Cappellini et al., 2016) 
is delayed or less pronounced in children with CP who walk independently. The 
locomotor and muscle activation patterns in these children were found to be 
similar to TD children during supported walking (Leonard et al., 1991). After the 
onset of independent walking, children with CP often do not mature towards an 
adult walking pattern, but they retain some characteristics of the immature toddler 
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pattern, for example a flat foot landing, a lack of dorsiflexion during swing, and 
increased coactivation of the antagonist muscles (Berger, Altenmueller, & Dietz, 
1984; Berger, Quintern, & Dietz, 1982; Cappellini et al., 2016; Leonard et al., 1991).

The maturation of locomotor patterns is thought to result from the maturation of 
gait-specific neural circuitries, involving sensory integration of the supraspinal and 
spinal network (Yang & Gorassini, 2006; Yang et al., 1998). Moreover, environmental 
feedback and musculoskeletal constraints may impact the maturation of locomotor 
patterns (Thelen & Cooke, 1987; Thelen, Ulrich, & Wolff, 1991). The maturation 
of locomotor patterns may be a combination of changes in gait kinematics, as 
described above, together with changes in neuromuscular control (Dewolf, Sylos-
Labini, Cappellini, Lacquaniti, & Ivanenko, 2020).

Neuromuscular control
Walking requires refined activation of numerous muscles. In order to coordinate 
the activation, the central nervous system (CNS) is hypothesized to group muscles 
and, hence, to control (a small number of ) muscle groups rather than individual 
muscles, drastically reducing the dimensionality of neuromuscular control. Such 
muscle groups are referred to as muscle synergies, motor primitives or motor 
modules. That is, a synergy contains multiple muscles though a muscle can 
contribute to multiple synergies (Bizzi & Cheung, 2013; Dominici et al., 2011; Hart 
& Giszter, 2010; Ivanenko, Cappellini, Dominici, Poppele, & Lacquaniti, 2005a). 
Muscle synergies can be extracted from electromyography (EMG) data that reflects 
the activation of a single muscle using, e.g., non-negative matrix factorization 
(NMF, Lee & Seung, 1999). NMF decomposes the EMG signal of multiple muscles 
into modes that contain a temporal activation pattern and corresponding spatial 
weighting coefficients for every muscle, i.e., synergy weights (Figure 1.1). 

Muscle synergy analysis served to investigate neuromuscular control during 
walking in both healthy and patient populations. In TD children, the number of 
synergies increases from two during neonate stepping to four in children who 
just started to walk independently (Dominici et al., 2011; Sylos-Labini et al., 2020), 
suggesting that primitive locomotor patterns in TD children during supported 
walking are retained, while new patterns are added during development. Healthy 
adults seem to recruit four or five muscle synergies during walking, also accounting 
for different speeds and stride-to-stride variability (Cappellini, Ivanenko, Poppele, 
& Lacquaniti, 2006; Clark, Ting, Zajac, Neptune, & Kautz, 2010; Ivanenko, Poppele, 
& Lacquaniti, 2004b; Tang et al., 2015). In post-stroke individuals, the number of 
muscle synergies appears reduced compared to unimpaired individuals, likely 
reflecting a ‘simplified’ control strategy of the CNS after stroke (Clark et al., 
2010). Likewise, children with CP have been reported to recruit fewer synergies 
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compared to TD children (Goudriaan et al., 2018; Hashiguchi et al., 2018; Kim, 
Bulea, & Damiano, 2018b; Short, Damiano, Kim, & Bulea, 2020; Shuman et al., 
2016; Shuman, Goudriaan, Desloovere, Schwartz, & Steele, 2018, 2019; Shuman, 
Schwartz, & Steele, 2017; Steele, Munger, Peters, Shuman, & Schwartz, 2019; Steele, 
Rozumalski, & Schwartz, 2015; Tang et al., 2015; Yu et al., 2019). As opposed to 
stroke survivors who can typically walk before suffering the attack, children with 
CP still have to learn to walk after their brain injury, which most likely affects the 
development of neuromuscular control. It remains unknown how neuromuscular 
control develops in children with CP from supported to independent walking. 

Increased knowledge of the maturation of locomotor patterns, as identified 
by gait kinematics and neuromuscular control, is of clinical relevance. The earlier 
CP can be detected in children with early brain lesions, the earlier interventions 
to improve motor function in these children can be started. Previous research on 
the effectiveness of neuromuscular control as a predictor of treatment outcomes 
in children with CP showed mixed results (Oudenhoven et al., 2019b; Shuman et 
al., 2016, 2018), leaving the question whether gait kinematics and neuromuscular 
control are directly related or not. In other words, can we improve gait kinematics 
by adapting neural pathways or vice versa. Evidence for the effectiveness of existing 

m1 m2 m3 m4 m5 gait cycle (%)0 100

gait cycle (%)0 100

m1

m2

m3

m4

m5

= x

Muscle activity Weights Activation patterns

syn1

syn2

syn3

Figure 1.1 Schematic of muscle synergy extraction. The muscle activity along the gait 
cycle of five muscles (m1-m5) is decomposed into three muscle synergy modes (syn1, syn2, 
and syn3) containing spatial weighting coefficients for every muscle (weights) and temporal 
activation patterns. Adapted from data acquired in Bach, Daffertshofer, and Dominici (2021b).
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early interventions seems limited (Damiano & Longo, 2021; Hadders‐Algra, Boxum, 
Hielkema, & Hamer, 2017; Morgan et al., 2016, 2021), due to limited data quantity 
and methodological quality, and large heterogeneity in study samples. This calls 
for gaining more knowledge about the underlying mechanisms of early motor 
development in children at high risk of CP (Cappellini et al., 2020b). 

RESEARCH QUESTIONS

My overarching aim was to identify mechanisms that underlie impaired walking 
development in young children with early brain lesions, who have CP, or who are 
considered at high risk of developing CP. To achieve this aim, I sought to answer 
the following research questions:

• How is the development of neuromuscular control affected by early brain 
lesions in very young children with or at high risk of CP?

• What is the relation between the maturation of gait kinematics and 
neuromuscular control in children with or at high risk of CP?

• How do methodological choices impact the investigation of neuromuscular 
control?

I consider answering these questions essential for early detection of motor 
deficits in CP, and the knowledge gained may open up new vistas on novel early 
interventions to improve walking ability in children with CP.

OUTLINE THESIS

My thesis contains a set of experimental assessments. Commonly, locomotor 
patterns and muscle activity have been investigated in terms of kinematics and 
EMG. The latter served to study neuromuscular mechanisms of early walking 
development, with muscle synergy analysis as core method. 

In Chapter 2 I systematically reviewed the literature to provide the current status 
of the research on muscle synergies during walking in children with CP. Findings 
on quantification, structure and variability of muscle synergies are considered, and 
the potential of muscle synergy analysis as a clinical method to quantify altered 
neuromuscular control and to predict clinical outcomes is discussed. 

In Chapter 3 I assessed altered neuromuscular control already in the early phase 
of motor development, in children with or at high risk of CP. In a cross-sectional 
design, muscle synergy analysis served to compare neuromuscular control 
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in children with CP and TD children before and after the onset of independent 
walking, and to quantify differences between the most and least affected side in 
children with unilateral and asymmetric bilateral CP. 

Chapter 4 builds further on this but I employed a longitudinal design, combining 
gait kinematic and EMG measures to study walking maturation in three children 
at high risk of CP, with divergent developmental trajectories. The focus of this 
research was on development starting before the onset of independent walking, 
covering a period of one to two years, with the aim to record the emergence of the 
first independent steps. 

Chapter 5 is a methodological advance that supplies data towards a broader 
scope on top of the conventional muscle synergy analysis. In addition to the 
calculation of muscle synergies, intermuscular coherence spectra were identified 
in adults during walking using network analysis during changes in interlimb 
coordination. 

My main findings are summarized and discussed in Chapter 6, where I also 
elaborate on clinical implications of these findings and propose suggestions for 
future research.
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ABSTRACT

Background Walking problems in children with cerebral palsy (CP) can in part 
be explained by limited selective motor control. Muscle synergy analysis is 
increasingly used to quantify altered neuromuscular control during walking. 
The early brain injury in children with CP may lead to a different development 
of muscle synergies compared to typically developing (TD) children, which might 
characterize the abnormal walking patterns. The overarching aim of this review is 
to give an overview of the existing studies investigating muscle synergies during 
walking in children with CP compared to TD children. The main focus is on how 
muscle synergies differ between children with CP and TD children, and we examine 
the potential of muscle synergies as a measure to quantify and predict treatment 
outcomes.

Methods Bibliographic databases were searched by two independent reviewers 
up to 22 April 2019. Studies were included if the focus was on muscle synergies of 
the lower limbs during walking, obtained by a matrix factorization algorithm, in 
children with CP.

Results The majority (n = 12) of the 16 included studies found that children with 
CP recruited fewer muscle synergies during walking compared to TD children, and 
several studies (n = 8) showed that either the spatial or temporal structure of the 
muscle synergies differed between children with CP and TD children. Variability 
within and between subjects was larger in children with CP than in TD children, 
especially in more involved children. Muscle synergy characteristics before 
treatments to improve walking function could predict treatment outcomes (n = 3). 
Only minimal changes in synergies were found after treatment.

Conclusions The findings in this systematic review support the idea that children 
with CP use a simpler motor control strategy compared to TD children. The use of 
muscle synergy analysis as a clinical tool to quantify altered neuromuscular control 
and predict clinical outcomes seems promising. Further investigation on this topic 
is necessary, and the use of muscle synergies as a target for development of novel 
therapies in children with CP could be explored.
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INTRODUCTION

Walking is the most common form of locomotion adopted by humans and limbed 
animals, and it requires the activation of numerous muscles. It has been theorized, 
that in order to coordinate this complex behavior, the central nervous system 
controls basic building blocks, referred to as muscle synergies or motor modules, 
rather than individual muscles. Muscle synergies are defined as temporal basic 
activation patterns of different groups of muscles with a corresponding weighting 
coefficient for every muscle. Each synergy contains multiple muscles and every 
muscle can contribute to multiple synergies (Bizzi & Cheung, 2013; Dominici et al., 
2011; Hart & Giszter, 2010; Ivanenko et al., 2005a).

Over the past years, researchers applied muscle synergies as a framework 
to analyze neuromuscular control in both healthy subjects and individuals 
with neurological disorders. Generally, muscle synergies are extracted from 
electromyography (EMG) using matrix factorization algorithms, like the 
nonnegative matrix factorization (NMF), independent component analysis, or 
factor analysis (Lee & Seung, 1999). In the healthy population, four or five synergies 
extracted from a large number of EMGs are required during normal walking and 
these synergies also account for stride-to-stride variability and various speeds 
(Cappellini et al., 2006; Clark et al., 2010; Ivanenko et al., 2004b; Tang et al., 2015). 
The muscle synergies of healthy adults (‘mature synergies’) are often used as a 
template to compare the results of synergy analyses of pathological gait. Muscle 
synergies appear to be altered in the adult population after brain injury. It has 
been shown that the number of muscle synergies in post-stroke individuals during 
walking is reduced compared to unimpaired individuals due to merging of the 
‘mature synergies’ observed in healthy adults (Clark et al., 2010). These findings 
correlate with the degree of motor impairment which might reflect a simplified 
control strategy of the central nervous system in moderate to severely impaired 
post-stroke individuals. However, it is unclear whether and how this change in 
synergy organization can be generalized to other clinical populations and how it 
relates to gait abnormality.

Cerebral palsy (CP) is a neurodevelopmental motor disorder caused by non-
progressive lesions in an immature brain (Himmelmann, Hagberg, Beckung, 
Hagberg, & Uvebrant, 2005). CP has a wide clinical spectrum, with mobility 
varying from walking without aids, to being completely wheelchair dependent. 
The Gross Motor Function Classification System (GMFCS) is used to classify 
functional mobility in CP. Various diagnostic subtypes exist, based on motor 
type and distribution of CP, that is, spastic, dyskinetic, or ataxic, and unilateral or 
bilateral CP, respectively (Bax et al., 2005). Individuals with CP who learn to walk, 
do so after their brain injury, in contrast to adult stroke survivors who have years of 
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walking experience prior to the brain lesion. In typically developing (TD) children, the 
number of basic muscle activation patterns increases from two in stepping neonates 
to four in toddlers, just after their first independent steps (Dominici et al., 2011). The 
early brain injury in children with CP may lead to a different development of muscle 
synergies, which might be an underlying factor of abnormal walking patterns. 
Studies on muscle synergies in children with CP are scarcer than in stroke and have 
used diverse methods to calculate synergies. Methodological choices in factorization 
methods, filtering conditions, the number of muscles recorded, and the recording 
quality appear to influence the outcomes of the synergy calculations (Santuz, Ekizos, 
Janshen, Baltzopoulos, & Arampatzis, 2017; Shuman et al., 2017; Steele, Tresch, & 
Perreault, 2013).

Several types of treatment exist to improve gait quality and functional mobility in 
children with CP. Recent research has identified the possibility that muscle synergies 
can predict effectiveness of therapies in children with CP (Oudenhoven, et al., 
2019b; Shuman et al., 2016, 2018). A better insight into the neuromuscular control 
mechanisms underlying the altered muscle activation patterns in children with CP 
could possibly help to improve therapy choices and functional mobility outcomes. 
In addition, more knowledge about these mechanisms can be important for the 
interpretation of clinical signs of CP at an early age, improve indication for therapy in 
individual patients, and might even be used to develop new diagnostic tools (Cheung 
et al., 2012).

The present systematic review aims to give an overview of the existing studies 
investigating muscle synergies in children with CP during walking to evaluate 
the current knowledge on this topic. The primary aim is to examine how muscle 
synergies in children with CP differ from those exhibited by TD children during 
walking by investigating the quantification and structure of synergies, and the 
variability of synergies between and within children with CP. Second, we aim 
to examine the predictability of treatment outcomes using muscle synergy 
characteristics, and the effect of treatment on muscle synergies in children with CP.

MATERIALS AND METHODS

A systematic review protocol was developed based on the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA)-statement  
(www.prisma-statement.org). It is registered on PROSPERO and can be accessed 
online (number: CRD42019149109).

http://www.prisma-statement.org
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Search strategy
A comprehensive search was done in the bibliographic databases PubMed, Embase.
com, and Web of Science (Core collection), in collaboration with a medical librarian 
(RV). Databases were searched up to 22 April 2019. The following terms were used 
including synonyms and closely related words as index terms or free-text words: 
“Muscle synergy”, “Cerebral palsy”, “Typically developing”, “Children”, “Walking”. The 
search was performed without date, language, or publication status restriction. 

Study selection
Studies were eligible for inclusion if they met the following inclusion criteria: (1) 
children with CP younger than 19 years old, and in case of mixed populations: 
the majority of the investigated population younger than 19, (2) the focus of the 
study was on muscle synergies of the lower limb during walking, (3) use of a matrix 
factorization algorithm to obtain the muscle synergies. Studies were excluded if, 
(a) it was a conference abstract, (b) it was a conference paper, but a full paper was 
published afterwards, (c) the study focused on muscle synergies of the upper limb, 
and (d) the article was a review or protocol.

After exclusion of duplicate articles, two independent reviewers (AB and MB) 
performed a title and abstract screening on the residual articles. Thereafter, the 
reviewers assessed the eligibility of the remaining articles in a full-text screening. 
Any in- and exclusion conflict among the reviewers was discussed until a consensus 
was reached. Study designs were defined as being either a cross-sectional, case-
control, or retrospective cohort study. Methodological quality and risk of bias of 
the included articles was assessed using the Downs and Black checklist by the 
same two independent reviewers (Downs & Black, 1998). In the original scale 
it is possible to score up to 32 points, but we used a modified version that was 
applicable for the types of studies included in this systematic review, as has been 
done in other reviews using the Downs and Black scale (Gorber, Tremblay, Moher, 
& Gorber, 2007; Hebert-Losier, Newsham-West, Schneiders, & Sullivan, 2009). This 
left a maximum total score of 14 points for cross-sectional studies, and 15 points 
for case-control and cohort studies. Each study was assigned a grade of “excellent” 
(13–15 points), “good” (10–12 points), “fair” (7–9 points) or “poor” (<7 points). Any 
disagreements in grading among the reviewers was discussed until consensus was 
reached. Articles were not excluded based on poor quality, but this played a role in 
the overall assessment of the article in the review.
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Data extraction and analysis
Data extraction of the included articles was performed independently by AB 
and MB. Subject characteristics (age, CP type and distribution, GMFCS), study 
methods (number of strides analyzed, number of muscles recorded, EMG pre-
processing steps, analysis criteria), and outcome measures (muscle synergies) 
were summarized in a table. The main outcome measures analyzed in this review 
were: (1) quantification of muscle synergies during walking, such as total number 
of synergies, VAF1 and walk-DMC, and (2) the spatial and temporal structure of 
muscle synergies during walking. These outcome measures were assessed in both 
children with CP and TD children, and pre- and post-treatment in some studies. 
In addition, variability in number and structure of synergies between and within 
subjects in the group of children with CP was evaluated.

RESULTS

Study selection
The electronic search in the cited databases and manual searching of reference 
lists identified 1127 articles, plus 2 references via additional sources (Figure 2.1). 
After duplicate removal, 682 articles were screened on title and abstract, from 
which 617 were excluded, mostly because of differing target populations (e.g. 
animals, other diagnosis, or age) or study design (i.e. no muscle synergy analysis 
during walking involved). Full-text screening of 65 articles left a total of 16 articles 
that were selected for this review, reasons for exclusion of 49 articles are noted in 
Figure 2.1.

Study characteristics
Twelve of the 16 articles compared children with CP with TD children, four included 
only children with CP. The studies varied in sample size, from 3 to 549 children with 
CP and 8 to 84 TD children. All studies included children with age ranged from 1 to 
16 years, in only one study (Steele et al., 2015) older individuals with CP were also 
included. All studies included children with spastic CP, except for one that included 
one dyskinetic child (Tang et al., 2015), and GMFCS levels varied from I to IV. An 
overview of all studies is given in Table 2.1.

Risk of bias
Results of the methodological quality assessment are presented in Table 2.2. Eight 
studies used a cross-sectional design (Cappellini et al., 2016, 2018; Goudriaan 
et al., 2018; Hashiguchi et al., 2018; Kim et al., 2018b; Tang et al., 2015; Torricelli  
et al., 2014; Yu et al., 2019), five used case-control designs (Shuman et al., 2016, 
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2017, 2019; Steele et al., 2015, 2019), and three were retrospective cohort studies 
(Oudenhoven et al., 2019b; Schwartz et al., 2016; Shuman et al., 2018). Quality 
scores ranged from 5 to 13, one study received the grade “poor” (Torricelli et al., 
2014), ten studies “fair” (Cappellini et al., 2016, 2018; Hashiguchi et al., 2018; Kim 
et al., 2018b; Shuman et al., 2016, 2018, 2019; Steele et al., 2019; Tang et al., 2015; 
Yu et al., 2019), three studies “good” (Goudriaan et al., 2018; Shuman et al., 2017; 
Steele et al., 2015), and two studies “excellent” (Oudenhoven et al., 2019b; Schwartz 
et al., 2016).

Calculation of synergies
All studies used NMF to obtain the muscle synergies from the original (processed) 
muscle activity. Muscle activity was recorded during over-ground walking using 
surface EMG in all cases, 4 to 11 muscles were included per leg, as specified in Table 
2.3. The raw EMG data was most commonly processed using the following steps:  
high-pass filtered, demeaned (optional), rectified, low-pass filtered, amplitude 
scaled, and time-normalized. NMF has non-negative constraints, meaning that 
the original EMG data cannot be negative, and the most used algorithm is the 
“multiplicative update rule” algorithm presented by Lee and Seung (1999).

Records identi�ed through database 
searching
(n = 1127)

Additional records identi�ed through 
other sources

(n = 2)

Records after duplicates removed
(n = 682)

Records screened by title and
abstract
(n = 682)

Records excluded
(n = 617)

Full-text articles assessed for
eligibility
(n = 65)

Full-text articles excluded (n = 49)

- Wrong publication type (n = 28)
- Wrong population group (n = 10)
- Wrong study design (n = 11)

Studies included in qualitative
synthesis
(n = 16)

Id
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�c
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n
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g
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ig
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Figure 2.1 Flow chart article selection
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Quantification of synergies
The quantification of synergies was often done post-hoc based on the variance 
of EMG activity accounted for (VAF). VAF is a measure of the quality of the EMG 
reconstruction based on the selected number of muscle synergies. Twelve of the 
sixteen studies included in this review reported the total number of synergies 
during walking using a certain VAF threshold (Cappellini et al., 2016, 2018; 
Hashiguchi et al., 2018; Kim et al., 2018b; Oudenhoven et al., 2019; Shuman et al., 
2017, 2019; Steele et al., 2015, 2019; Tang et al., 2015; Torricelli et al., 2014; Yu et 
al., 2019). Out of these articles, nine compared the number of synergies between 
individuals with CP and unimpaired individuals (Cappellini et al., 2016, 2018; 
Hashiguchi et al., 2018; Kim et al., 2018b; Shuman et al., 2017, 2019; Steele et al., 
2015; Tang et al., 2015; Yu et al., 2019), while the remaining three only included 
children with CP in their study (Oudenhoven et al., 2019b; Steele et al., 2019; 
Torricelli et al., 2014). Despite a difference in VAF threshold, number of subjects, 
and number of recorded muscles (see Table 2.3), the majority of studies found that 
children with CP recruited fewer synergies (range 1-4) compared to TD children 
(range 3-4) or healthy adults (all 4) on average when comparing the number of 
synergies during walking (Hashiguchi et al., 2018; Kim et al., 2018b; Shuman et 
al., 2017; Steele et al., 2015; Tang et al., 2015; Torricelli et al., 2014; Yu et al., 2019). 
In contrast, Cappellini et al. (2016, 2018) found that both children with CP and 
TD children recruited 4 synergies. They used a linear regression procedure that 
plots the VAF against the number of synergies and finds the smallest number for 
which the root mean square error of the corresponding linear fit is smaller than 
10-4 (d’Avella, Portone, Fernandez, & Lacquaniti, 2006). The authors show that this 
corresponds to a VAF > 80% for all subjects.

Six studies reported VAF1, the variation of EMG activity that can be explained by 
just one synergy, which is another parameter computed to study the complexity 
of the locomotor behavior (Goudriaan et al., 2018; Kim et al., 2018b; Shuman et al., 
2016, 2017; Steele et al., 2015, 2019). Five of the six studies found that the average 
VAF1 was significantly larger in children with CP (range 71.0-84.2%) compared to 
TD children (range 61.0-74.7%, see Table 2.1). Steele et al. (2019) did not compare 
with TD children, but showed that VAF1 was 81.4 ± 5.5% for children with CP.

Three studies reported the Dynamic Motor Control index during walking (walk-
DMC; Kim et al., 2018b; Shuman et al., 2017; Steele et al., 2015), which is associated 
to VAF1, for comparisons of muscle synergies between children with CP and TD 
children. Walk-DMC transforms VAF1 to a z-score with respect to TD children. A score 
of 100 signifies the average walk-DMC of TD children and each 10-point interval 
is one standard deviation. Steele et al. (2015) proposed this measure as a clinical 
tool to quantify altered neuromuscular control, in order to plan treatments and 
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predict clinical outcomes. In agreement with the results on VAF1, all three studies 
found significantly lower walk-DMC values in children with CP (range of averages 
65.0-86.2) compared to TD children (average 100; Kim et al., 2018b; Shuman et al., 
2017; Steele et al., 2015). One of these studies showed that an increase in low-pass 
filter cut-off frequency from 4 to 40 Hz caused an increase in the total number 
of synergies, and a decrease in VAF1 in both children with CP and TD children. 
However, it had no effect on walk-DMC, since this measure normalizes VAF1 to a 
z-score (Shuman et al., 2017).

Structure of synergies
Eight studies compared the structure of synergies in terms of the results on 
temporal and spatial patterns between children with CP and controls (Cappellini 
et al., 2016, 2018; Kim et al., 2018b; Shuman et al., 2019; Steele et al., 2015; Tang et 
al., 2015; Torricelli et al., 2014; Yu et al., 2019). Two studies found that the spatial 
structure of synergies of children with CP was different from healthy adults 
(‘mature synergies’; Tang et al., 2015; Torricelli et al., 2014), as was assessed by Tang 
et al. (2015) using a model called synergy comprehensive assessment. In addition, 
Tang et al. (2015) showed that the spatial structure of synergies in children with CP 
was different from TD children, and that a large variation in synergy structure was 
present in the CP group. The majority of children with CP showed a combination of 
‘mature synergies’ and synergies specific to CP, however none of the affected legs 
in children with unilateral CP showed merely ‘mature synergies’.

Six studies found that the spatial structure of synergies in both children with 
CP and TD children was related to that of ‘mature synergies’, but that the temporal 
structure differed between children with CP and TD children (Cappellini et al., 
2016, 2018; Kim et al., 2018b; Shuman et al., 2019; Steele et al., 2015; Yu et al., 
2019). These studies found differences in the duration and shifts of the peaks 
of the temporal patterns within the gait cycle in children with CP compared to 
TD children. In addition, Yu et al. (2019) showed larger co-activation between 
synergies and higher variability of the temporal patterns within groups (GMFCS I 
and II), in children with CP compared to TD children.

Between-subject variability
Five studies discussed the muscle synergy differences within the heterogenous CP 
group (see Table 2.4). The relation between the severity of CP and muscle synergies 
was examined comparing between different distribution of CP, i.e. uni- or bilateral 
(Steele et al., 2015; Tang et al., 2015), and levels of impairment of functional 
mobility, as represented by GMFCS scores and/or Gillette Functional Assessment 
Questionnaire (Novacheck, Stout, & Tervo, 2000) scores (Hashiguchi et al., 2018; 
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Kim et al., 2018b; Schwartz et al., 2016; Steele et al., 2015; Tang et al., 2015; Yu et 
al., 2019).

Children with CP that were bilaterally affected recruited fewer synergies, as 
identified by lower walk-DMC scores (Steele et al., 2015), a lower total number of 
synergies, and synergy structures more specific to the CP group (Tang et al., 2015). 
In addition, higher GMFCS levels in children with CP were related to lower walk-
DMC scores (Schwartz et al., 2016; Steele et al., 2015) and a lower total number of 
synergies (Tang et al., 2015; Yu et al., 2019). In contrast, Hashiguchi et al. (2018) and 
Kim et al. (2018b) did not find a correlation between the total number of synergies 
and GMFCS level, although Hashiguchi et al. (2018) found that a higher level of 
spasticity in children with CP, as assessed by the modified Ashworth Scale, was 
correlated with a lower number of synergies. The temporal structure of synergies 
was shown to differ between the affected and less affected side of children with 
unilateral CP and children with bilateral CP (Cappellini et al., 2016), and higher 
synergy variability was found in children with higher GMFCS levels (Kim et al., 
2018b; Yu et al., 2019).

Within-subject variability
No systematic differences in number, and spatial or temporal structure of synergies 
were found between days (Shuman et al., 2016; Steele et al., 2019). However, muscle 
synergies were found to be variable between strides in both children with CP and 
TD children (Kim et al., 2018b; Shuman et al., 2016). Kim et al. (2018b) used a cluster 
analysis based on a combination of iterative k-means clustering and intraclass 
correlation coefficient analyses to identify stride-to-stride variability of muscle 
synergies (Kim, Bulea, & Damiano, 2016). The authors found that children with CP 
had a higher normalized cluster number, meaning that they showed more distinct 
clusters across strides, although they recruited fewer synergies. Thus, children with 
CP had higher variability in spatial and temporal synergy structure between strides 
compared to TD children, for various VAF thresholds (see Table 2.5). 

Treatment
Three studies investigated whether muscle synergy characteristics in children 
with CP before treatment are predictive of the effect of different treatments, 
including selective dorsal rhizotomy (SDR), single-event multilevel orthopedic 
surgery (SEMLS), single-level orthopedic surgery, botulinum toxin type A (BoNT-A) 
injection or conservative treatment (physical therapy). Higher walk-DMC values 
before treatment were associated with improved gait quality, as defined by the 
Gait Deviation Index and walking speed, after several treatments (Schwartz et al., 
2016; Shuman et al., 2018). A higher total number of synergies before treatment 
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was associated with an improved knee angle at initial contact and midstance after 
SDR, but not with an improvement of overall gait quality, as quantified by the 
Edinburgh visual gait score (Oudenhoven et al., 2019b).

Shuman et al. (2019) investigated whether muscle synergies change after 
treatment, and whether these changes were associated with treatment outcomes. 
They found no changes in the number of synergies, or synergy weights, and only 
minimal changes in VAF1 after BoNT-A and SDR. Temporal structure of synergies 
changed only after SDR, towards being more different from TD children. Children 
with CP whose synergies had a temporal structure more similar to TD children after 
treatment showed improved gait quality.

DISCUSSION

Walking problems in children with cerebral palsy (CP) can in part be explained by 
limited selective motor control, i.e. the impaired ability to use the correct muscle 
group to move a joint independently from other joints in a limb during movement 
(Desloovere et al., 2006). Muscle synergy analysis is increasingly used to quantify 
altered neuromuscular control during walking. This systematic review analyzed 
16 studies investigating muscle synergies in children with CP during walking, and 
aimed to examine how these synergies differ from those exhibited by TD children.

Quantification of synergies
The majority of studies found that children with CP require fewer synergies during 
walking compared to TD children, either based on a certain VAF threshold, VAF1, or 
walk-DMC (Goudriaan et al., 2018; Hashiguchi et al., 2018; Kim et al., 2018b; Schwartz 
et al., 2016; Shuman et al., 2016, 2017, 2018, 2019; Steele et al., 2015, 2019; Tang et 
al., 2015; Torricelli et al., 2014; Yu et al., 2019). The authors of these studies suggest 
that neuromotor control is altered or less complex in children with CP. The number 
of synergies for children with CP and TD children varied between studies. Cappellini 
and colleagues were the only ones that did not find a difference in terms of number 
of synergies between children with CP and TD children (Cappellini et al., 2016, 2018).

The differences in findings between studies may be a consequence of the varying 
functional mobility levels of subjects included by the different studies. Cappellini et 
al. (2016, 2018) included children with CP with a relatively high functional mobility 
level (77-79% GMFCS I) compared to the other studies (range 22-67% GMFCS I), 
with the exception of (Shuman et al., 2016) (100% GMFCS I). It is plausible that the 
functional mobility of children with CP and TD children was too similar in Cappellini 
et al. (2016, 2018) to find a difference in the number of synergies between groups. 

The use of different methods to define the total number of synergies may also 
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impact synergy outcomes between studies (Hug, Turpin, Dorel, & Guevel, 2012; 
Russo, D’Andola, Portone, Lacquaniti, & d’Avella, 2014). Most studies in this review 
used VAF to define the total number of synergies, several of these defined a specific 
VAF threshold, but there is no agreement on the optimal height of this threshold. 
Consequently, the VAF thresholds ranged from 80% to 95% across studies, affecting 
the total number of synergies that are considered. However, this only influences 
comparisons of the number of synergies between studies, but differences between 
groups within one study can still be observed. No systematic differences in number 
of synergies were found between studies in this review, using different VAF 
thresholds. To avoid the impact of this threshold, some studies used VAF1 or the 
related measure walk-DMC, and found results comparable to the VAF threshold. 
Cappellini et al. (2016, 2018) were the only ones using a different method to define 
the number of synergies, namely the ‘best linear fit’ method. However, it is unlikely 
that the use of this method explains the similarity in total number of synergies 
between children with CP and TD children found in Cappellini et al. (2016, 2018), 
since the authors verified that their results agreed with a VAF > 80%. None of the 
studies in this review considered the added variance of the following synergy as 
a measure to define the total number of synergies (Clark et al., 2010). The added 
variance could be an extra tool in the future to define the total number of synergies 
as it negates the risk that a synergy does not contribute sufficiently to the muscle 
activation pattern of interest.

The variation in synergy outcomes between studies could also be explained 
by the different number of muscles recorded. According to previous research, a 
low number of muscles used for analysis could lead to an over-estimation of VAF 
(Damiano, 2015; Steele et al., 2013; Zelik, La Scaleia, Ivanenko, & Lacquaniti, 2014). 
Several studies used NMF to decompose four to eight muscles into two to four 
synergies, but it is debatable whether this reduction aids enough in terms of easing 
the interpretation of the data from a statistical point of view. Yet, since it is not 
feasible to measure all muscles involved in walking, a decomposition will always 
approximate true neural signaling. Cappellini and colleagues (2016, 2018) were the 
only ones recording a large number of bilateral muscles, 11 per leg, which may 
result in a more precise estimation of the muscle synergies involved during walking. 
This could possibly explain in part why they did not find differences between CP 
and TD, while others did.

In addition, processing methods of the EMG data, such as filters and amplitude 
scaling, have been shown to influence muscle synergy outcomes (Shuman et 
al., 2017). The majority of studies included in this review used a low-pass filter 
with a cut-off frequency of 10 Hz, but some studies used low-pass filters of 2 
Hz (Oudenhoven et al., 2019b), 4 Hz (Shuman et al., 2016), and 5 Hz (Kim et al., 
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2018b; Torricelli et al., 2014). The lower the low-pass cut-off frequency, the more 
data is attenuated, which has been shown to result in a lower number of synergies 
(Shuman et al., 2017; van der Krogt et al., 2016), and smaller increases in VAF post-
treatment (van der Krogt et al., 2016). There is no consensus yet on the best cut-off 
frequency for a low-pass filter. Different filter types and filter orders are used across 
studies, but these choices appear to be less significant than the low-pass cut-off 
frequency (Devaprakash, Weir, Dunne, Alderson, & Donnelly, 2016). The influence 
of methodological choices on muscle synergies is especially important to consider 
when comparing results across studies or between centers, using different ways 
to process their data. Overall, despite differences in the number and choice of 
muscles, and EMG preprocessing methods, studies found similar results. Moreover, 
the methods were the same in the CP and TD group within all studies and should 
therefore have an equal effect on the muscle synergies of all groups. Consequently, 
these factors are not likely to explain the lack of difference in number of synergies 
between children with CP and TD children found by Cappellini and colleagues 
(2016, 2018).

Structure of synergies
A subset of the included studies examined differences in the structure of muscle 
synergies between children with CP and TD children (Cappellini et al., 2016, 2018; 
Steele et al., 2015; Tang et al., 2015; Torricelli et al., 2014), but they showed different 
results. Some studies found differences in the spatial structure, i.e. muscle weights, 
between children with CP and TD children (Tang et al., 2015; Torricelli et al., 2014), 
whereas others only found differences in the temporal structure, i.e. timing and 
duration of the peaks of the temporal activation patterns (Cappellini et al., 2016, 
2018; Kim et al., 2018b; Steele et al., 2015; Torricelli et al., 2014; Yu et al., 2019).

Variation in the use of amplitude scaling methods could result in a different 
weighting of the synergies per muscle. Scaling to unit variance appears to reduce 
these differences in muscle weights, with more consistent synergy structures 
across low-pass filters and at a lower number of calculated synergies compared to 
peak amplitude scaling (Shuman et al., 2017). Although the differences were small, 
this finding might be specifically interesting for research investigating muscle 
synergies in clinical populations, which recruit fewer synergies compared to TD 
children. Moreover, normalization to individual maxima could distort the relative 
muscle weights due to variable weakness in CP, which can result in inconsistent 
findings on the spatial structure of synergies across studies (Damiano, 2015).

Deviation from the structure of ‘mature synergies’ in children with CP was 
found (Tang et al., 2015; Torricelli et al., 2014), and could be a result of the lack 
of fractionation of synergies, i.e. splitting of one synergy into more, during 
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development. Previous research in stroke patients suggests that a lower number of 
synergies could result from merging of the synergies of healthy controls (Cheung 
et al., 2012; Clark et al., 2010). Merging and fractionation of synergies influenced 
the longitudinal changes of walking patterns in patients after subacute stroke, 
whereas the number of synergies did not (Cheung et al., 2012; Hashiguchi et al., 
2016). Therefore, it might add value to examine the structure including possible 
fractionation of synergies. 

The studies used different methods to quantify similarity between synergy 
structure. Torricelli et al. (2014) compared the temporal activation patterns using 
adult data (Winter, 1991), not specifying the method they used, while Tang et 
al. (2015) and Yu et al. (2019) used Pearson’s correlation coefficients, and the 
other studies used cluster analyses to compare the structure between subjects 
(Cappellini et al., 2016, 2018; Kim et al., 2018b; Steele et al., 2015). These cluster 
analyses identified comparable patterns across subjects. Three studies isolated the 
synergies that where not consistent across children as ‘Not Classified’ (Cappellini et 
al., 2016, 2018; Steele et al., 2015). This means that the synergies that were specific 
to one child were not considered, and the authors did not quantify how many 
synergies were removed from each subject. Consequently, differences in synergies 
within the group of children with CP, and between children with CP and TD 
children were possibly lost, which could be a reason why these studies did not find 
(large) differences in synergy structure between children with CP and TD children. 
Kim et al. (2018b) did allow synergy structures to be assigned to more clusters, 
and they also found similar synergy structures between children with CP and TD 
children. However, children with CP recruited fewer synergies per stride, and the 
use of these structures was less consistent across strides. This means that relative 
to the number of synergies per stride, children with CP could access more synergy 
structures than TD children, which suggests that children with CP exhibit the same 
complexity of synergy structures, but the control of these structures might be 
decreased. In order to confirm this idea, more studies using the same clustering 
method are necessary.

Cappellini et al. (2016) found similarities in temporal structure of synergies 
between children with CP and TD toddlers (1-1.2 years of age) who just started 
to walk independently. This suggests that muscle synergies in children with CP 
lag behind in development compared to TD children, which agrees with previous 
research showing similarity between the walking pattern in children with CP and 
early gait in TD children (Berger et al., 1982, 1984; Leonard et al., 1991).
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Variability of synergies
The variation in findings between studies on the number and structure of synergies 
might be related to the differences in distribution and levels of functional mobility 
in CP. Children with more severe types of CP, defined by either more distributed 
CP or higher GMFCS levels, were found to use fewer synergies (Steele et al., 2015; 
Tang et al., 2015), with different spatial (Tang et al., 2015) and temporal (Cappellini 
et al., 2016; Shuman et al., 2019; Steele et al., 2015) structures compared to less 
affected children. These results might reflect a simpler motor control strategy 
during walking with increasing severity of CP.

In contrast, Hashiguchi et al. (2018) and Kim et al. (2018b) did not find a 
relationship between number of synergies and GMFCS level, possibly because of 
the small sample size, which limits the variability in a group. Tang et al. (2015) and 
Yu et al. (2019) also included a limited group of children and they did find an effect 
of GMFCS level on the number of synergies. Thus, the relationship between the 
severity of CP and muscle synergies is shown in studies with a sufficient number of 
subjects (Cappellini et al., 2016; Shuman et al., 2019; Steele et al., 2015), but small 
sample sizes can coincidentally not show it.  

One study found a higher stride-to-stride variability in muscle synergies in 
children with CP (Kim et al., 2018b). This may represent a more immature walking 
pattern (Hausdorff, Zemany, Peng, & Goldberger, 1999). High stride-to-stride 
variability can influence VAF values and thus impact the decomposition of the data 
into muscle synergies. Only four studies used the minimum of about 20 strides 
that is necessary according to Oliveira, Gizzi, Farina, and Kersting (2014) to create 
optimal reconstructions of the data and minimize the influence of the variability 
between strides (Cappellini et al., 2016, 2018; Shuman et al., 2016; Tang et al., 
2015). Based on the low amount of studies in this review assessing specifically this 
aspect we cannot infer whether a lower number of analyzed strides could have an 
effect on a lower number of synergies.

Considering the high diversity within the group of children with CP, it is not 
surprising that many studies found larger variability in number and structure of 
muscle synergies in children with CP compared to TD children. In some studies 
children with more severe types of CP walked with an assistive device or trunk or 
hand support (Hashiguchi et al., 2018; Kim et al., 2018b; Oudenhoven et al., 2019b; 
Shuman et al., 2019; Tang et al., 2015; Yu et al., 2019). In addition, children with 
more severe types of CP generally walk slower compared to less affected and TD 
children. Walking speed is an important factor to consider when evaluating muscle 
synergies, as previous research found that both number and structure of synergies 
were affected by walking speed in healthy adults (Kibushi, Hagio, Moritani, & 
Kouzaki, 2018; Yokoyama, Ogawa, Kawashima, Shinya, & Nakazawa, 2016a) and TD 
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children (Steele et al., 2015). These findings suggest that different walking speeds 
require different control from the central nervous system. However, others found 
that muscle synergies were robust across different walking speeds in healthy adults 
(Chvatal & Ting, 2012; Ivanenko et al., 2004b) and children with CP (Hashiguchi 
et al., 2018; Tang et al., 2015). Although findings are inconsistent, walking speed 
as a possible confounding factor in comparisons of muscle synergies between 
children with CP and TD children should be considered during muscle synergy 
analysis. In addition, the quality of EMG data and the absence of task-independent 
normalization may have caused variation in muscle synergy results between 
studies, and should be considered in the future.

Treatment
The finding that muscle synergies before treatment were correlated with the 
effect of treatment in children with CP (Oudenhoven et al., 2019b; Shuman et al., 
2016, 2018), suggests that knowledge about muscle synergies in children with CP 
before treatment could help predict whether children will benefit from a specific 
treatment, and therefore potentially assist in treatment decisions. Walk-DMC has 
been proposed as a possible measure to quantify altered neuromuscular control 
pre-treatment, since it has been shown to be correlated with improvement of gait 
kinematics and walking speed after treatment (Schwartz et al., 2016; Shuman et 
al., 2018). Importantly, EMG processing methods, and number and type of muscles 
have limited impact on walk-DMC values. Therefore, this measure could be useful 
as a comparison of muscle synergy analyses across studies or different clinical 
centers using different EMG protocols. However, walk-DMC values are highly 
variable in a heterogeneous population like CP (Shuman et al., 2018; Steele et al., 
2015). Although the mean results of walk-DMC values using a large sample size 
might be a good predictor of treatment outcome, caution should be taken when 
using individual walk-DMC values in treatment prediction. 

Besides the use of muscle synergies as a predictor of treatment outcomes, 
muscle synergies may also be a target for treatment themselves. Younger children 
with CP might be more sensitive to interventions (Yang et al., 2013), because their 
brain is highly plastic and their corticospinal tract is still maturing. Future research 
should examine the opportunities of specific therapies that target the neural level 
and adapt muscle synergies, to improve the walking pattern of children with CP. 
Previous research in unimpaired individuals showed that both the spatial and 
temporal structure of muscle synergies can change due to intense training in elite 
athletes (Kim, Kim, Kim, & Yoon, 2018a; Sawers, Allen, & Ting, 2015), and with the 
use of ankle exoskeletons (Jacobs, Koller, Steele, & Ferris, 2018; Steele, Jackson, 
Shuman, & Collins, 2017). However, current treatments studied in CP were found 
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to have no effect on the spatial structure and merely an effect on the temporal 
structure of muscle synergies (Shuman et al., 2019). These results suggest that the 
number and spatial structure of synergies may be hard to change in children with 
CP, but that the temporal structure of synergies could be a target for treatment. 
However, normalization of the EMG data is an important factor that may have 
influenced the results on the spatial structure of synergies. It remains to be further 
investigated whether novel treatments, such as feedback training (Booth, van der 
Krogt, Harlaar, Dominici, & Buizer, 2019), or therapeutic electrical stimulation of 
muscles, tendons (í Dali et al., 2002; Sommerfelt, Markestad, Berg, & Saetesdal, 
2001; Stackhouse et al., 2007; Wright, Durham, Ewins, & Swain, 2012), or spinal 
cord (Solopova et al., 2017), could improve muscle synergies, eventually leading to 
walking improvement.

Future directions
The number of studies currently available on this topic is limited, which makes it 
difficult to draw additional conclusions. With this systematic review we hope to 
inform researchers about the current research status and to guide them towards 
better research in the future. 

The large variation in number and structure of muscle synergies derived from 
children with CP appears to reflect the diversity of CP and the ability of walking. 
However, methodological factors also seem to play a role in the determination of 
muscle synergies. On the one hand, it will be helpful when studies investigating 
muscle synergies in children with CP use consistent methods across different 
studies, in order to compare results. On the other hand, this would limit researchers 
to explore and use novel technologies. At least, researchers could consider 
recording a number of muscles that is representative for the muscle activation 
during walking, as well as a sufficient number of strides, in order to make a 
proper decomposition of muscle synergies. To achieve consistency in EMG data 
processing steps across studies, researchers should be informed about the choice 
of filters and factorization methods. The determination of a suitable method to 
process EMG data of children with CP during walking, for example with a standard 
EMG processing pipeline, is an important area for future research. If the group of 
children with CP is heterogeneous, muscle synergy analysis should be performed 
on separate groups based for example on different distribution of CP (i.e. uni- or 
bilateral CP) or different functional mobility levels with sufficient sample sizes, in 
order to examine the diversity in the CP group. In addition, study of the influence 
of walking speed on muscle synergies in children with CP and TD children could 
be useful in the interpretation of the results found in the studies included in this 
review. Irrespective of the differences in data collection and analysis, the majority 
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of the studies included in this review found similar results, which indicates that 
the difference in muscle synergies between CP and TD we observe is robust. These 
corresponding findings from different studies and research groups, provide strong 
evidence that the observations are related to neural control, and do not merely 
reflect methodological choices.   

It is worth to mention that all the studies reported in this review used the 
so-called synchronous synergy model (time-invariant synergy approach) to 
investigate muscle synergies during walking in children with CP. However, various 
other models such as the time-varying synergy model, first introduced by d’Avella 
and Tresch (2002), or the space-by-time model (Delis, Panzeri, Pozzo, & Berret, 
2014) exist, and could be implemented to study muscle activation modularity in 
children with CP.

Investigation of the longitudinal development of muscle synergies within 
subjects would minimize the inter-subject variability and give more insight in the 
developmental changes in children with CP. Moreover, nothing is known about 
the development of muscle synergies in very young children at high risk of CP 
compared to TD children. A longitudinal design with consecutive measurements 
within subjects could give new insights in the development of muscle synergies 
during walking in children with CP, and might open up new paradigms for early 
interventions in CP.

Despite the increasing number of studies investigating muscle synergies, the 
underlying mechanisms of muscle synergies remain unknown. It is still a topic 
of debate whether muscle synergies have a neural or non-neural origin (Bizzi & 
Cheung, 2013; Zandvoort, van Dieën, Dominici, & Daffertshofer, 2019). Muscle 
synergies in neonates were shown to mainly reflect spinal cord and brainstem 
activity, with an increase of the integration of supraspinal and sensory control 
during development (Dominici et al., 2011). Even though children with CP have 
cortical lesions, the differences in muscle synergies compared to TD children 
might also depend on changes in the brainstem and/or spinal cord. In addition, 
it is debatable whether the use of fewer muscle synergies necessarily reflects less 
complex motor control, as is suggested in most studies, or whether it is merely 
caused by higher variability in the EMG data in children with CP. Further research 
on the underlying mechanisms of muscle synergies is required to answer these 
questions.

Conclusions
In conclusion, the majority of studies found that children with CP use fewer 
synergies than TD children, and differences in both spatial and temporal structure 
of synergies were found. In addition, large variability of muscle synergies was found 
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in the group of children with CP, which might be due to the heterogeneity in this 
group with different functional mobility levels of CP. The inter-subject variability 
in number and structure of synergies was higher in children with more severe CP, 
and within subjects the stride-to-stride variability was higher in children with CP 
compared to TD children, which is known to influence VAF values and thus impact 
the decomposition of the EMG data into muscle synergies.

The findings in this systematic review support the idea that children with CP 
use a simpler motor control strategy compared to TD children. The use of muscle 
synergies as a clinical tool to quantify altered neuromuscular control and predict 
clinical outcomes seems promising. Further investigation on this topic is necessary, 
and the use of muscle synergies as a target for development of novel therapies in 
children with CP could be explored.
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ABSTRACT

Background Early brain lesions which produce cerebral palsy (CP) may affect the 
development of walking. It is unclear whether or how neuromuscular control, as 
evaluated by muscle synergy analysis, differs in young children with CP compared 
to typically developing (TD) children with the same walking ability, before and 
after the onset of independent walking. 

Methods Here we grouped twenty children with (high risk of ) CP and twenty 
TD children (age 6.5–52.4 months) based on their walking ability, supported or 
independent walking. Muscle synergies were extracted from electromyography 
data of bilateral leg muscles using non-negative matrix factorization. Number, 
synergies’ structure and variability accounted for when extracting one (VAF1) or 
two (VAF2) synergies were compared between CP and TD. 

Results Children in the CP group recruited fewer synergies with higher VAF1 and 
VAF2 compared to TD children in the supported and independent walking group. 
The most affected side in children with asymmetric CP walking independently 
recruited fewer synergies with higher VAF1 compared to the least affected side. 

Conclusion Our findings suggest that early brain lesions result in early alterations 
of neuromuscular control, specific for the most affected side in asymmetric CP.
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INTRODUCTION

Cerebral palsy (CP) is a neurodevelopmental disorder caused by brain lesions 
before birth or early in life (Bax et al., 2005; Himmelmann & Uvebrant, 2018). It 
covers a wide clinical spectrum, from children who manage to walk independently, 
to children being completely wheelchair dependent. Children can be affected 
symmetrically (bilateral CP) or asymmetrically (unilateral CP or asymmetric bilateral 
CP, Cans, 2000). Topography and severity of CP can be difficult to predict in infancy 
(Novak et al., 2017).

Typically, infants take their first independent steps between the age of 9 to 18 
months, representing an important milestone in motor development (Adolph & 
Robinson, 2013). Reaching this milestone can be challenging for children with CP. 
Early interventions can be critical to improve motor functions, including walking, 
because the neural networks under development are still highly plastic (Yang et 
al., 2013). To improve interventions that promote functional mobility in children 
with CP, it is important to identify neuromuscular mechanisms of abnormal motor 
development as early as possible. One possibility to assess these neuromuscular 
mechanisms is the use of muscle synergy analysis.  

The central nervous system has been theorized to reduce the degrees of freedom 
in the coordination of muscle activation during walking through basic building 
blocks, named muscle synergies or locomotor modules, that resemble identical 
temporal activation patterns of groups of muscles (Bizzi & Cheung, 2013; Dominici et 
al., 2011; Hart & Giszter, 2010; Ivanenko et al., 2005a). The number of basic activation 
patterns in typically developing (TD) children increases from two during neonate 
stepping, to four in toddlers who have just started to walk independently (Dominici 
et al., 2011). Muscle synergy analysis has recently been adopted to quantify 
neuromuscular control during walking in school-age children with CP, and has been 
shown to provide a consistent measure between days (Shuman et al., 2016).

Despite a limited number of recorded muscles previous studies show that older 
children with CP recruit fewer synergies during walking compared to age-matched 
TD children (Bekius et al., 2020; Hashiguchi et al., 2018; Shuman et al., 2018; Steele 
et al., 2015, 2019; Tang et al., 2015). In addition, several studies reported that the 
walking patterns of older children with CP retain some of the characteristics of the 
younger TD children, by showing the excessive muscular co-contraction of only 
a few muscles (Berger, 1998; Leonard et al., 1991; Meyns et al., 2012a). The small 
number of recorded muscles and the age of the children involved in these studies 
limits our current understanding of neuromuscular control in very young children 
with early brain lesions (Cahill‐Rowley & Rose, 2014; Steele et al., 2013; Yang et al., 
2013). A more detailed and comprehensive assessment of multi-muscle coordinate 
patterns is needed (Damiano, 2015).



Chapter 3 - Neuromuscular control before and after independent walking onset 

50

The time before the onset of independent walking can be a critical period 
for early interventions to improve motor functions including walking (Hadders-
Algra, 2004; Yang et al., 2013). Previous studies compared children with CP and 
TD children of similar age, while it may be relevant to match these groups for 
developmental phase (Bekius et al., 2020). One study from Prosser, Lee, VanSant, 
Barbe, & Lauer (2010) compared the trunk and hip muscles in children with CP 
and TD with similar walking experience (an average of 28.5 months of walking 
experience). Nevertheless, the age range of the children with CP included in this 
study was quite large (2 to 9 years old), as was the walking experience (0.5 to 60 
months). In addition, they did not differentiate between children able to walk 
independently and children who needed support, e.g., by using an assistive device, 
to perform the walking task.

The aim of this study was to assess whether neuromuscular control in young 
children with CP differs from that of TD children with the same walking ability 
in the early phase of motor development, i.e., before the onset of independent 
walking (supported walking) and just after the onset of independent walking in 
particular by means of the contributing muscle synergies. In addition, we examined 
whether there was a difference in neuromuscular control between the most 
and least affected side of children who were affected asymmetrically (unilateral 
or asymmetric bilateral CP). We hypothesized that already before or during the 
first years of independent walking, children with (high risk of ) CP recruit fewer 
synergies compared to TD children and that this is specific to the most affected 
side in children with asymmetric CP.

MATERIALS AND METHODS

Participants
Children with early brain lesions, at high risk of CP or with an established diagnosis 
of CP (referred to as CP group) were recruited from the Departments of Pediatric 
Rehabilitation and of Child Neurology at Amsterdam University Medical Centers 
(Amsterdam UMC), and from the Department of Child Neurology at Maastricht 
University Medical Center (Maastricht UMC+); see Table 3.1 for the in- and exclusion 
criteria. TD children (referred to as TD group) were recruited by word of mouth. 
Participants were in either the supported walking (SW) or independent walking 
(IW) group, based on their walking ability. Children in the SW group could not 
walk independently, while children in the IW group could. Individual and average 
characteristics of both groups, as well as the clinical characteristics of the children 
in the CP group, are listed in Table 3.2.
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The study was approved by the Ethics Committee of the Faculty of Behavioral 
and Movement Sciences at the Vrije Universiteit Amsterdam (VCWE-2016-082) 
for the TD group, and of Amsterdam UMC (NL59589.029.16) for the CP group. 
In Maastricht UMC+, local practicability was granted. The parents of all children 
were informed about the procedure of the study and provided written informed 
consent prior to participation in accordance with the Declaration of Helsinki for 
medical research involving human participants.

Table 3.1 In- and exclusion criteria for the CP group

Inclusion Criteria Exclusion Criteria

• Diagnosis of CP based on the predominant type of motor impairment and 
classified according to the criteria proposed by Himmelmann et al. (2005). 
CP diagnosis was confirmed according to medical history, brain magnetic 
resonance results and clinical examination, OR, in children under 24 months:

• At high risk for developing CP, based on the presence of one of the following 
(Hamer et al., 2016; Hielkema et al., 2010):
-  Cystic periventricular leukomalacia, diagnosed on serial ultrasound 

assessments of the brain (de Vries et al., 1992)
-  Unilateral or bilateral parenchymal lesion of the brain, diagnosed using MRI 

(de Vries et al., 2001)
-  Term/near-term asphyxia resulting in Sarnat 2 or 3 (Sarnat & Sarnat, 1976) 

with brain lesions on MRI and/or with neurological dysfunction during 
infancy suggesting the development of CP

- Neurological dysfunction suggestive of development of CP

• Functional surgery on bones and/or muscles 
of the legs

• Selective dorsal rhizotomy in the last 12 
months

• Severe epilepsy
• GMFCS IV and V
• Above the age of five years 
• Brain damage above the age of one year

Abbreviations: CP, cerebral palsy; GMFCS, gross motor function classification system; MRI, magnetic resonance imaging.

Procedure
Experiments were performed in the clinical gait laboratories of the Department 
of Rehabilitation Medicine at Amsterdam UMC (location VUmc) and Maastricht 
UMC+, and the BabyGaitLab laboratory of the Department of Human Movement 
Sciences at the Vrije Universiteit Amsterdam. The responsible investigators and 
one or both parents of the child were present during the experiments, and, for 
the CP group, also a pediatric physiotherapist. At the start of each experiment for 
the CP group, the pediatric physiotherapist performed a physical examination, 
to identify possible motor asymmetry in the CP group (in this case reported as 
asymmetrically affected child).

Children in the SW group walked with support on a treadmill (with the exception 
of one child who walked over-ground). Adequate support was provided by the 
physiotherapist, experimenter or parent that held the trunk of the child with both 
hands or held the hand of the child, while the other parent, or an experimenter, 
encouraged the child to take steps (Dominici et al., 2007; Ivanenko et al., 2005b). 
The treadmill speed was adjusted to induce a walking pattern and tuned to a 
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comfortable speed for the child. Children in the IW group walked independently 
over-ground, and were encouraged to walk in a straight line, at their preferred 
walking speed. Only sequences of steps executed naturally by the child were 
considered.

Muscle activity was recorded with surface electromyography (EMG) from 18 to 
22 bilateral leg and trunk muscles simultaneously using Mini Wave wireless EMG 
systems (Cometa, Italy). The following muscles were recorded from each side: 
tibialis anterior (TA); gastrocnemius medialis (GM); gastrocnemius lateralis (GL); 
soleus (SOL); rectus femoris (RF); vastus medialis (VM); vastus lateralis (VL); biceps 
femoris (BF); tensor fascia latae (TFL); gluteus maximus (GLM) and erector spinae 
(ES) at L2 level. EMG electrode placement was performed according to the Surface 
Electromyography for the Non-Invasive Assessment of Muscles protocol (Hermens, 
Freriks, Disselhorst-Klug, & Rau, 2000), and the standard recommendations for 
minimizing cross-talk between adjacent muscles (Dominici et al., 2011; Ivanenko 
et al., 2005a; Ivanenko et al., 2004b). The skin was cleaned with alcohol and mini 
golden reusable surface EMG disc-electrode pairs (15 mm diameter, acquisition 
area 4 mm2) were placed at the approximate location of the muscle. To minimize 
movement artefacts, pre-amplified EMG sensor units were attached to the skin of 
the child and fixed with elastic gauzes. The signals were amplified and sampled at 
1000 Hz. Body kinematics and high-speed video were recorded at 100 Hz using a 
VICON system (Oxford, UK). 32-channel electro-encephalography (EEG) recordings 
were performed, but not analyzed here. Sampling of EMG, video, and kinematic 
data was synchronized online.

Spatiotemporal gait parameters
The step events were extracted from the video and confirmed with kinematic 
data for both sides. The gait cycle was defined as a cyclic movement of one leg, 
starting when the foot strikes the ground and ending when the foot of the same 
leg strikes again. The end of stance was defined as the moment when the foot 
lifts off the ground. Gait initiation/termination strides and jumps or turning were 
discarded from analysis. Stride velocity was calculated using the corresponding 
stride length and stride duration. The stride length was computed according to 
the 3D displacement of the foot marker. For the trials recorded during walking on 
the treadmill, the treadmill speed was taken into consideration to correct for the 
participants’ displacements. Stance duration, i.e. from foot strike to foot off, for 
both legs was computed.
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Muscle synergy
All analyses were conducted in MATLAB (version 2017b, Mathworks Inc., Natick, MA, 
USA). Raw EMG data were processed offline according to the following sequence: 
Notch filter (50 Hz), high pass filtering (30 Hz), full-wave rectification, and low pass 
filter with a fourth order Butterworth filter (10 Hz).

Muscle synergies were extracted using non-negative matrix factorization (NMF) 
of the pre-processed EMG data (Lee & Seung, 1999). EMG amplitudes of each 
muscle were normalized to the maximum of the mean value across all strides plus 
its standard deviation (SD) for each participant and the timescale was normalized 
to t = 201 data points per gait cycle for each limb. Briefly, the NMF was applied 
to the mean EMG envelopes for each participant, and decomposed the EMG data 
into temporal activation patterns (P) and synergy weights (W), according to the 
following equation:

𝐸𝐸𝐸𝐸𝐸𝐸	 =&𝑃𝑃(𝑊𝑊(

*

(+,

+ 𝜀𝜀 (3.1)

where the pre-processed EMG data (m × t matrix, where m is the number of 
muscles and t is the number of time points) is a linear combination of the temporal 
activation patterns P (n × t matrix, where n ≤ m is a predetermined number of 
synergies) and synergy weights W (m × n matrix), and ε denotes the residual error.

A set of 1–8 synergies was extracted with a restriction of 100 maximum 
iterations, 1000 replicates, and a threshold for convergence and completion  
of 10−4. NMF was applied to the EMG activity of bilateral muscles (including  
both sides), and unilateral muscles (including one side). The results of the  
unilateral EMG analysis were used separately to compare the most and least 
affected side in children with asymmetric CP, and right and left side in children 
with symmetric CP and TD children.

The reconstruction accuracy of the extracted synergies was determined by the 
variability accounted for (VAF), which is the ratio of the sum of squared errors to 
the total sum of squares computed with respect to the mean (Cappellini et al., 
2016; Dominici et al., 2011; Torres-Oviedo, Macpherson, & Ting, 2006). Next to VAF 
we also determined the synergies’ contribution to the matrix (or Frobenius) norm 
(Bach, Daffertshofer, & Dominici, 2021a; Kerkman, Bekius, Boonstra, Daffertshofer, 
& Dominici, 2020; Zandvoort et al., 2019), which revealed comparable results. For 
the sake of legibility, we here present the conventionally used VAF. The minimum 
number of synergies to approximate the pre-processed EMG was defined as 
required for VAF to exceed 85%, or when the added VAF of the following synergy was 
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below 8% (Frère & Hug, 2012; Israely, Leisman, Machluf, & Carmeli, 2018; Maclellan 
et al., 2014). In addition, the selected number of synergies had to account for more 
than 80% VAF for every individual muscle (Clark et al., 2010; Roh, Rymer, Perreault, 
Yoo, & Beer, 2013; Torres-Oviedo et al., 2006). Since setting of a VAF threshold 
arguably comes with arbitrariness, we also investigated VAF by one synergy (VAF1) 
in the unilateral EMG analysis, previously used as a summary measure of synergy 
complexity related to function and treatment outcome (Shuman et al., 2019; Steele 
et al., 2015), and by two synergies (VAF2) in the bilateral EMG analysis (Dominici et 
al., 2011; Sylos-Labini et al., 2020). For the latter, we included an additional synergy 
to account for the mirror muscle activations in the contralateral side, shifted by 
50% of the gait cycle.

In the bilateral EMG analysis, number of synergies and VAF2 were compared 
between CP and TD for the SW and IW group. To compare temporal activation 
patterns and synergy weights between groups without a restriction to a certain 
threshold, the number of synergies was fixed to four, which is the number of 
synergies typically reported in healthy adults during walking (Clark et al., 2010; 
Dominici et al., 2011; Yu et al., 2019). The patterns were grouped and plotted 
according to the timing of the main peak relative to the normalized gait cycle. 
Average temporal activation patterns and synergy weights per group for each 
synergy were compared between CP and TD for the SW and IW group.

In the unilateral EMG analysis, number of synergies and VAF1 for the most 
affected side in the asymmetric CP group, or a random side in the symmetric 
CP and TD group, were compared between CP and TD for the SW and IW group. 
Furthermore, the number of synergies and VAF1 were compared between most 
and least affected side in the asymmetric CP, and right and left side in symmetric 
CP and TD group.

Statistical analysis
All data are reported as mean ± SD. An independent t-test was used when the 
data was normally distributed, and a one-tailed non-parametric Mann-Whitney 
U-test when it was not. An independent t-test in statistical parametric mapping 
was performed to assess the similarity of temporal activation patterns per synergy 
between CP and TD for the SW and IW group. Synergy weights were compared 
between groups using Pearson’s correlation coefficients, where r > 0.7 represented 
high similarity and r > 0.45 marginal similarity (Torres-Oviedo & Ting, 2010). 
Significance threshold was set at p < 0.05 for all tests. For the comparison between 
unilateral results within groups, the Wilcoxon signed rank test was used for number 
of synergies, and a paired samples t-test for VAF1.



55

3

Table 3.2 Participant characteristics

Partici-
pant

Gender Age 
(mo)

CA 
(mo)

WO 
(mo)

Distribution Subtype GMFCS Scores BD 
(side)

BW 
(kg)

N 
Strides

Speed 
(km/h)

CP1 M 11.6 10.6 - Uni R spastic NS b2 (bi) 9.7 17 0.39

CP2 F 14.8 15.1 - Uni L spastic NS 5 (bi) 10.8 24 0.60

CP3 M 21.0 21.4 - Uni L spastic NS 6 (uni R) 9.3 29 0.63

CP4 F 17.8 17.9 - Bi (L > R) spastic NS b2 (bi) 10.7 45 0.82

CP5 F 20.2 17.2 - Bi (R > L) spastic NS 5 (uni L) 7.7 31 0.60

CP6 M 6.5 6.6 - Bi spastic NS b2 (bi) 7.3 22 0.64

CP7 M 9.8 6.5 - Bi spastic NS 4 (bi) - 27 0.80

CP8 F 8.5 8.9 - Bi undef NS b2 (bi) 8.8 43 0.61

CP9 F 42.8 41.2 - Bi spastic III 4 (bi) 14 31 0.80

CP10 F 44.9 43.7 - Bi spastic II 4 (bi) 11.4 40 0.62

CP SW 6 F; 4 M 19.8 (13.6) 18.9 (13.4) # - - - - - 10.0 (2.1) 31 (9) 0.65 (0.13)

CP11 M 23.8 22.2 17.1 Uni R spastic I 5 (uni L) 11.1 35 1.77

CP12 M 35.6 35.8 16.1 Uni R spastic I b1 (uni L) 13.4 27 2.62

CP13 M 41.0 38.0 16.0 Uni R spastic I 5 (uni L) 14.6 40 2.33

CP14 M 47.2 45.5 15.6 Uni R spastic I 5 (uni L) 15.2 45 3.87

CP15 F 22.3 22.3 15.0 Bi (L > R) spastic I 2 (bi) 10.6 42 1.66

CP16 M 27.8 26.9 19.1 Bi (R > L) spastic I 4 (bi) 14.1 66 2.75

CP17 M 38.6 38.9 16.1 Bi (R > L) spastic I b2 (bi) 14.0 41 4.01

CP18 M 18.3 18.6 15.0 Bi spastic I 4 (bi) 10.9 18 4.00

CP19 F 34.4 29.9 24.4 Bi ataxic II b2 10.0 59 2.37

CP20 M 34.4 29.9 26.7 Bi spastic II 4 (bi) 11.8 27 2.86

CP IW 2 F; 8 M 32.3 (9.1) 30.8 (8.6) 18.1 (4.1) * - - - - 12.6 (1.9) 40 (15) 2.82 (0.87)

(Continued)

RESULTS

Twenty children in the CP group (corrected age 6.5–45.5 months) and twenty 
children in the TD group (age 6.3–53.5 months) participated in this study, with 
ten children in the SW and IW groups (Table 3.2). Based on the physical evaluation 
performed in the children of the CP group at the start of each experiment 
by an expert pediatric physiotherapist we identified a total of n = 5 and n = 7 
asymmetrically affected children in the SW and IW group. Time since onset of 
independent walking did not significantly differ between the CP and TD group 
(12.7 ± 9.8 vs. 13.9 ± 12.8 months; p = 0.81).
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Partici-
pant

Gender Age 
(mo)

CA 
(mo)

WO 
(mo)

Distribution Subtype GMFCS Scores BD 
(side)

BW 
(kg)

N 
Strides

Speed 
(km/h)

TD1 F 6.3 6.2 - - - - - 6.8 17 0.41

TD2 F 7.5 7.8 - - - - - 9.1 33 0.44

TD3 M 9.7 10.2 - - - - - 9.7 80 0.55

TD4 M 9.8 9.7 - - - - - 8.5 59 0.60

TD5 F 10.0 10.0 - - - - - 8.9 95 0.54

TD6 M 10.2 10.1 - - - - - 10.2 79 0.69

TD7 F 10.4 10.2 - - - - - 9.3 66 0.61

TD8 F 10.6 9.7 - - - - - 9.0 23 0.90

TD9 F 11.2 11.6 - - - - - 9.6 43 0.66

TD10 M 12.0 12.0 - - - - - 11.0 21 0.46

TD SW 6 F; 4 M 9.8 (1.7) # 9.8 (1.7) - - - - - 9.2 (1.1) 52 (28) 0.59 (0.14)

TD11 M 16.5 16.5 10.7 - - - - 11.3 27 2.40

TD12 F 17.5 17.8 11.6 - - - - 10.7 38 2.76

TD13 F 19.3 19.3 12.9 - - - - - 93 1.68

TD14 F 19.7 19.6 12.9 - - - - 10.4 49 2.99

TD15 F 20.1 20.1 13.9 - - - - 10.3 86 2.48

TD16 M 20.8 20.4 14.9 - - - - 13.0 66 3.35

TD17 F 24.4 24.3 11.7 - - - - 11.3 45 1.94

TD18 M 27.5 27.3 11.3 - - - - 13.0 21 3.16

TD19 F 47.1 47.2 14.3 - - - - 16.0 49 3.27

TD20 M 53.5 52.4 11.3 - - - - 15.5 28 3.47

TD IW 6 F; 4 M 26.6 (12.9) 26.5 (12.7) 12.6 (1.4) * - - - - 12.4 (2.2) 50 (25) 2.76 (0.63)

Spatiotemporal gait parameters
Stride duration did not differ between CP and TD for SW (2.0 ± 0.5 vs.  
2.1 ± 0.6 s) and IW (0.8 ± 0.1 vs. 0.8 ± 0.1 s). Relative stance duration in the IW 
group was significantly longer for TD (62 ± 4%) compared to CP (58 ± 3%; p = 0.02), 
but CP (72 ± 6%) and TD (71 ± 4%) did not differ significantly in the SW group  
(p = 0.29). Stride velocity did not differ significantly between CP and TD for SW 

Table 3.2 Continued

Distribution is based on the physical examination performed by a pediatric physiotherapist during the recording. Asymmetrically affected children in the CP 
group are highlighted in grey. The brain damage (BD) scores are defined according to a semi-quantitative MRI scale (Fiori et al., 2014): 2, full-term border-
zone infarction; 4, periventricular leukomalacia; 5, posthemorrhagic porencephaly/venous infarction; 6, middle cerebral artery infarction; b1, developmental 
brain malformations; b2, non-specific lesions. The mean (SD) is reported for age, corrected age, walking onset (for the IW groups), body weight, number of 
strides and walking speed. # indicates a significant difference in age between CP and TD in the SW group (p = 0.047), and * indicates a significant difference in 
age at independent walking onset between CP and TD in the IW group (p < 0.001). Abbreviations: CP, cerebral palsy; TD, typically developing; SW, supported 
walking; IW, independent walking; F, female; M, male; CA, corrected age; WO, corrected age at independent walking onset; Bi, bilateral; Uni, unilateral; L, 
left; R, right; GMFCS, gross motor function classification system; NS, not yet specified; BW, body weight; kg, kilograms; N, number; SD, standard deviation.
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(0.7 ± 0.1 vs. 0.6 ± 0.1 km/h; p = 0.15) and IW (2.8 ± 0.9 vs. 2.7 ± 0.7 km/h; p = 0.43). 
Stance duration of the most affected leg of children with asymmetric CP in the IW 
group was significantly shorter compared to the least affected leg (57 ± 3 vs. 60 
± 4%; p = 0.03), while this was not the case when comparing legs in children with 
symmetric CP (57 ± 5 vs. 58 ± 4%), and TD children (62 ± 3 vs. 62 ± 4%; p = 0.44).

Muscle synergy
In the SW group, bilateral EMG analysis revealed that children in the CP group 
recruited two, three, or four muscle synergies, and in the TD group three or four 
synergies. In the IW group, children in the CP group recruited either three or four 
synergies, and in the TD group three, four, or five synergies (Figure 3.1A,B and 
Appendix Figure 3.S1). The mean number of synergies that explained the variability 
in the EMG data was lower in CP compared to TD for SW (2.9 ± 0.7 vs. 3.2 ± 0.4; 
p = 0.14) and IW (3.7 ± 0.5 vs. 4.1 ± 0.6; p = 0.06), albeit not reaching statistical 
significance. VAF2 was higher in CP compared to TD for SW (70.5 ± 11.9 vs. 61.4 
± 7.4%; p = 0.03) and IW (60.8 ± 8.2 vs. 53.4 ± 11.0%; p = 0.05, Figure 3.1C). When 
the number of synergies was fixed to four, we did observe a significant difference 
between CP and TD in the temporal activation pattern P2 during early swing in the 
SW group (75.9 to 78.1% of the gait cycle; p = 0.04), and P1 during mid swing in 
the IW group (71.4 to 76.6% of the gait cycle; p = 0.01). Correlations between mean 
synergy weights of CP and TD were high (r > 0.7) for all synergies in the IW group, 
whereas in the SW group only W4 showed a high and W2 a moderate (r > 0.45) 
correlation (Figure 3.2).

The unilateral EMG analysis showed that the mean number of muscle synergies 
that explained the variability in the EMG data was significantly lower in CP 
compared to TD for SW (2.7 ± 0.5 vs. 3.1 ± 0.3; p = 0.02) and IW (3.0 ± 0.5 vs. 3.6 ± 
0.5; p < 0.01). VAF1 was significantly higher in CP compared to TD for SW (42.0 ± 
12.9 vs. 22.0 ± 10.0%; p < 0.001) and IW (39.4 ± 13.3 vs. 29.5 ± 9.5%; p = 0.03; Figure 
3.3A).

When comparing the most and least affected side in asymmetric CP, and right 
vs. left side in symmetric CP and TD children, we did not find any significant 
differences for the number of synergies and VAF1 in the SW group (Figure 3.3B,C). 
However, in the IW group the mean number of synergies in asymmetric CP (n = 7) 
was significantly lower (3.0 ± 0.2 vs. 3.7 ± 0.2%; p = 0.01) and VAF1 was significantly 
higher (36.8 ± 13.7 vs. 28.0 ± 9.2%; p < 0.01) for the most affected compared to the 
least affected side. No significant differences between sides could be identified 
in TD children (n = 10). Due to a limited number of children in the symmetric CP 
group (n = 3) no statistical comparison was performed (Figure 3.3C).
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Figure 3.1 Bilateral EMG analysis results. A) Mean variability accounted for (VAF) ± SD, per 
synergy 1–8 for the cerebral palsy (CP) and typically developing (TD) group, for supported 
walking (left) and independent walking (right). B) Percentage number of synergies per group 
(n = 10) based on a VAF threshold of 85% or added VAF < 8% for the CP and TD group, for 
supported (left) and independent walking (right). C) Mean number (N) of synergies (left) and 
variability accounted for (right) by two synergies (VAF2) for the CP and TD group, for supported 
walking and independent walking. Error bars indicate SDs, * p < 0.05.
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Figure 3.2 Mean activation patterns and synergy weights for a fixed number of four 
synergies. Bilateral EMG analysis results of the cerebral palsy (CP) and typically developing 
(TD) group, for supported walking (left) and independent walking (right). Lines show the mean 
temporal activation patterns (P) ± SD along the gait cycle, with mean stance and swing phase 
indicated by bar graphs at the bottom. Synergy weights (W) for the recorded muscles are 
depicted in a bar graph. Significant differences between activation patterns are indicated by the 
black bars, p < 0.05. Pearson’s correlations coefficients (r) between mean synergy weights of the 
CP and TD group are given. Abbreviations: TA, tibialis anterior; GM, gastrocnemius medialis; GL, 
gastrocnemius lateralis; SOL, soleus; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; 
BF, biceps femoris; TFL, tensor fascia latae; GLM, gluteus maximus; ES, erector spinae at L2 level.
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DISCUSSION

Our study shows that children with CP recruit fewer muscle synergies compared 
to TD children already in the supported walking phase, and in the first years 
after onset of independent walking. To our knowledge, this study is the first to 
investigate neuromuscular control using muscle synergy analysis during supported 
and independent walking in such a young patient population. Our results are 
consistent with the hypothesis that the complexity of neuromuscular control is 
already reduced in very young children with CP. The critical developmental window 
may be before the age of two years old, when the brain is highly plastic and the 
corticospinal tract is still maturing (Friel, Williams, Serradj, Chakrabarty, & Martin, 
2014; Hadders-Algra, 2004; Yang et al., 2013). The novelty of our findings is that 
the difference in neuromuscular control of walking is present in children with CP 
compared to TD children with the same level of walking ability during this early 
phase of motor development.

Unilateral EMG analysis revealed that children in the CP group recruited fewer 
synergies during walking, and VAF1 was higher compared to the TD group before 
(during SW) and after the onset of independent walking (during IW), which is in 
line with previous results on VAF1 obtained in older children (Goudriaan et al., 
2018; Kim et al., 2018b; Steele et al., 2015). In these studies, however, no distinction 
was made between children with CP who used an assistive device to walk, and 
children who walked independently. In addition, the children with CP were 
compared with TD children of the same age, who very often had more experience 
of walking independently. Especially since the first independent steps, in children 
with CP, are typically delayed or will not occur at all. Using the walking experience, 
and not age, to compare motor ability in children with CP and TD children is an 
innovative approach. This allows for a more reasonable comparison, and to control 
for the improvement in walking pattern that occurs after the onset of independent 
walking.

In children with asymmetric CP walking independently, the number of synergies 
was lower, and VAF1 higher, in the most affected compared to the least affected side. 
This suggests that ‘simplified’ neuromuscular control is specific to the most affected 
side in children who just start to walk independently. In bilateral EMG analysis, 
the least affected side in children with asymmetric CP walking independently 
may level out the effect of the most affected side, which can explain the lack of 
statistically significant differences in number of synergies between CP and TD, at 
least to some degree. The difference between the most and least affected side 
was not present in the asymmetric CP group during SW, which may have been 
caused by the support the children received. Alternatively, it might imply that this 
difference between sides occurs later in motor development.
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When we removed the restriction of a threshold by fixing the number of 
synergies to four, we found only minor significant differences in temporal activation 
patterns, and synergy weights were highly correlated during IW between the CP 
and TD group. This confirms previous studies that reported comparable synergy 
structures during walking in children with CP with high functional mobility levels 
and TD children (Cappellini et al., 2016; Yu et al., 2019). The lower number of 
synergies in children with CP walking independently, as defined by a VAF threshold, 
possibly results from the merging of the four synergy structures (Clark et al., 2010; 
Hashiguchi et al., 2016). If true, this means that these children may have access to 
four synergies, but are not able to recruit all synergies independently. During SW, 
a fourth synergy did not contain additional information, since all muscles were 
generally active for both CP and TD, showing that on average these children could 
not access four synergies.

The variability in results from the EMG analysis between individuals was high. 
This may reflect the heterogeneity of the CP group, including children with 
various brain lesions and functional mobility levels, as was emphasized in previous 
studies (Bekius et al., 2020; Shuman et al., 2018; Steele et al., 2015). The population 
investigated is very young, and although we compared between children in the 
same developmental stage variability between children within groups may be 
large. Despite variability between individuals and within relatively small groups, 
we found significant differences between the CP and TD group during SW and IW.

Some limitations of this study have to be recognized. In young children at high 
risk of CP, we did not always know whether they would actually develop CP. Not all 
children with a high risk of CP eventually receive a diagnosis of CP, and motor types 
and topography may emerge and change during the first two years of life (Novak 
et al., 2017). Another limitation of the study was that a relatively small number of 
participants was included in the IW symmetric CP group, and as a consequence, 
we could not perform a statistical comparison between sides. Walking speed is 
an important factor to consider in muscle synergy analysis, since some studies 
found that walking speed affected the number and structure of muscle synergies 
(Kibushi et al., 2018; Steele et al., 2015; Yokoyama et al., 2016). The children in our 
study walked at their preferred and comfortable speed, which may have caused 
variability within the groups. However, average walking speed did not significantly 
differ between the CP and TD group during both SW and IW, and thus walking 
speed did not influence the results of the group comparison.

Our results encourage further investigation of the use of muscle synergy 
analysis as an objective tool for early detection of impaired neuromuscular 
control. This can help to identify candidates for targeted early interventions aimed 
at improving neuromuscular control and walking development. Future research 
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should investigate the longitudinal development of muscle synergies within 
children during development from supported walking to independent walking to 
minimize the inter-subject variability.

Conclusions
In conclusion, our study shows that young children with CP, or at high risk of CP, 
recruit fewer synergies compared to TD children with the same walking ability 
already in the early phase of motor development. The most affected side in 
children with asymmetric CP walking independently employed fewer synergies 
than the least affected side. This suggests that brain lesions in CP result in early 
alterations of neuromuscular control.
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Figure 3.S1 Individual temporal activation patterns. Bilateral EMG analysis: temporal 
activation patterns (P1 to P5) for the number of synergies (S2 to S5) defined for each participant 
(separate lines) based on the variability accounted for (VAF) threshold of 85% for the cerebral 
palsy (CP) and typically developing (TD) group in the supported walking group (left) and 
independent walking group (right).
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ABSTRACT

Background The first years of life might be critical for encouraging independent 
walking in children with cerebral palsy (CP). We sought to identify mechanisms that 
may underlie the impaired development of walking in three young children with 
early brain lesions, at high risk of CP, via comprehensive instrumented longitudinal 
assessments of locomotor patterns and muscle activation during walking.

Methods We followed three children (P1-P3) with early brain lesions, at high risk of 
CP, during five consecutive gait analysis sessions covering a period of one to two 
years, starting before the onset of independent walking, and including the session 
during the first independent steps. In the course of the study, P1 did not develop 
CP, P2 was diagnosed with unilateral and P3 with bilateral CP. We monitored 
the early development of locomotor patterns over time via spatiotemporal gait 
parameters, intersegmental coordination (estimated via principal component 
analysis), electromyography activity, and muscle synergies (determined from 
eleven bilateral muscles via non-negative matrix factorization).

Results P1 and P2 started to walk independently at the corrected age of 14 
and 22 months, respectively. In both of them, spatiotemporal gait parameters, 
intersegmental coordination, muscle activation patterns and muscle synergy 
structure changed from supported to independent walking, although to a lesser 
extent when unilateral CP was diagnosed (P2), especially for the most affected leg. 
The child with bilateral CP (P3) did not develop independent walking and all the 
parameters did not change over time. 

Conclusions Our exploratory longitudinal study revealed differences in  
maturation of locomotor patterns between children with divergent developmental 
trajectories. We succeeded in identifying mechanisms that may underlie impaired 
walking development in very young children at high risk of CP. When verified  
in larger sample sizes, our approach may be considered a means to improve 
prognosis and to pinpoint possible targets for early intervention.
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INTRODUCTION

Cerebral palsy (CP) is a neurodevelopmental disorder caused by non-progressive 
brain lesions before birth or in the first year of life (Himmelmann & Uvebrant, 
2018). The distribution of CP can be unilateral or bilateral, depending on the site of 
the brain lesion. CP covers a wide clinical spectrum of mobility levels, varying from 
walking independently to being completely wheelchair dependent. Functional 
mobility in CP is classified using the Gross Motor Function Classification System 
(Palisano et al., 1997). The levels of the GMFCS range from I to V, with children at 
level I and II ultimately walking without aids, and children at level III needing a 
walking aid. Children at level IV and V (primarily) use a wheelchair for their mobility. 

Walking is the most important mode of locomotion in everyday life. Typically 
developing (TD) children take their first independent steps between the age of 9 and 
18 months old, but this milestone is often delayed or not achieved in children with CP. 
Developmental stages of locomotion usually occur at a later age in children with CP 
compared to TD children (Largo et al., 1985; Meyns et al., 2012a). The maturation of 
walking patterns is reflected in both kinematic and neuromuscular measures (Dewolf 
et al., 2020). Understanding the mechanisms that underlie abnormal development 
of independent walking is important for the design of early interventions that aim at 
improving function mobility in children with CP. 

Older children with CP appear to retain some of the characteristics of the younger 
TD children during the early phases of the development of walking (Berger et al., 
1984; Leonard et al., 1991). In TD children the foot trajectory during swing (the 
time course of the vertical foot displacements) develop starting from a prominent 
centered single-peak foot lift in toddlers to the stereotyped double-peaked 
trajectory with a minimum foot clearance during mid-swing in older children and 
healthy adults (Dominici et al., 2007). Indeed, the mature two-peaked foot trajectory 
reflect the accurate endpoint control strategy that is the result of the intersegmental 
coordination in both limbs (Ivanenko, Grasso, Macellari, & Lacquaniti, 2002; Winter, 
1992). By contrast, in children with CP a single-peak foot lift similar to TD toddlers 
may persist, often specific to the most affected side in unilateral CP (Cappellini et 
al., 2016). While in TD children the intersegmental coordination of the lower limb 
segments quickly develops (Cheron et al., 2001; Dominici et al., 2011; Ivanenko et 
al., 2004a, 2007) – typically, intersegmental coordination develops rapidly in the 
first few months after the onset of independent walking (Cheron et al., 2001) – in 
children with CP this may be less pronounced (Berger, 1998; Leonard et al., 1991). 
Apparently, intersegmental coordination matures less, or, much slower in children 
with CP. In unilateral CP, this has been shown to be specific to the most affected 
body side (Cappellini et al., 2016).
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One way to assess neuromuscular control during walking in healthy individuals 
and patient populations is through muscle synergy analysis. Walking requires refined 
neuromuscular coordination, and the central nervous system arguably simplifies 
neuromuscular control during walking by the recruitment of groups of muscles, 
called muscle synergies or locomotor modules (Bizzi & Cheung, 2013; Dominici et 
al., 2011; Hart & Giszter, 2010; Ivanenko et al., 2005a). During typical development, 
the number of basic activation patterns increases from two during neonate stepping, 
to four, when children walk independently (Dominici et al., 2011; Sylos-Labini et al., 
2020). Muscle activity patterns during walking in older children with CP seem to 
match the patterns of TD toddlers (Cappellini et al., 2016), suggesting that also the 
maturation of the activation of individual muscles lags behind in children with CP. 
School-age children with CP recruit fewer muscle synergies compared to TD children 
and it seems that they employ ‘simpler’ neuromuscular control strategies (Bekius et 
al., 2020; Goudriaan et al., 2018; Hashiguchi et al., 2018; Schwartz et al., 2016; Shuman 
et al., 2016, 2017, 2018, 2019; Steele et al., 2015; Tang et al., 2015). In children with 
CP, the temporal structure of muscle synergies, i.e. their activation patterns, largely 
agrees with that of TD toddlers, i.e. they contain wider activation bursts compared to 
older TD children. 

Combining kinematic and neural measures can provide additional insight into 
motor development and may help to detect early motor deficits (Dewolf et al., 2020). 
Yet, previous studies investigating locomotor patterns in young children with CP had 
a cross-sectional design (Cappellini et al., 2016, 2018), which may limit inferences 
about how changes in neuromuscular control are related to the altered development 
of walking. In addition, a limited number of recorded muscles in previous studies 
(Bekius et al., 2020; Shuman et al., 2016, 2017; Steele et al., 2013; Tang et al., 2015) may 
limit the conclusions on the spatiotemporal structure of muscle activity patterns. A 
more detailed and comprehensive assessment of multi-muscle coordinated patterns 
is needed (Damiano, 2015). The aim of the current exploratory longitudinal study 
was to investigate the development of locomotor patterns and motor control during 
walking in very young children with early brain lesions, at high risk of CP. The focus was 
on development starting before the onset of independent walking, covering a period 
of one to two years, with the aim to record the emergence of the first independent 
steps. We studied locomotor patterns using kinematic analysis and motor control 
using muscle synergy analysis. We hypothesized (1) intersegmental dependency and 
muscle synergy structure to change over time after independent walking onset, and 
(2) the development of gait kinematics and muscle synergies to be delayed in children 
with a diagnosis of CP. We also expected (3) differential changes of gait kinematics on 
the most versus the least affected side when unilateral CP was diagnosed, and (4) the 
number of synergies to be reduced the more a child was affected by CP. 
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MATERIALS AND METHODS

Participants
Three children with early brain lesions, at high risk of CP and not yet walking 
independently, were included in this longitudinal study. The participants were 
recruited from the Department of Pediatric Rehabilitation and the Department 
of Pediatric Neurology at the Amsterdam University Medical Centers (Amsterdam 
UMC, location VUmc). The study was approved by the Medical Ethics Committee 
(METc) of the Amsterdam UMC (location VUmc) (NL59589.029.16). The parents of 
all children were informed about the procedure of the study and provided written 
informed consent prior to participation in accordance with the Declaration of 
Helsinki for medical research involving human participants.

Study design
Experiments were performed in the clinical gait laboratory of the Department of 
Rehabilitation Medicine at the Amsterdam UMC, location VUmc. The laboratory 
setting and experimental procedures were adapted to the children, such that the 
risks were equal or lower to that of walking at home. The responsible investigators, 
one or both parents of the child, and a pediatric physiotherapist were present 
during the experiments.

Every participant underwent five consecutive gait analysis sessions within 
a period of one to two years, to record development from supported walking 
(SW), to first independent steps (FS), to independent walking (IW). SW sessions 
were conducted prior to independent walking onset. There, the pediatric 
physiotherapist, experimenter, or parent supported the child during stepping 
attempts by its trunk or arms. FS sessions were recorded when the children 
performed their first unsupported steps. They were scheduled within two weeks of 
first unaided walking experience, as reported by the parents. All sessions recorded 
after the FS session were labelled IW (Table 4.1).

All children walked barefoot on a treadmill during SW sessions and over-ground 
during FS and IW sessions. If children wore ankle-foot orthoses in daily life, these 
were removed during the experiment. The treadmill speed was adjusted to induce 
a walking pattern and tuned to a comfortable speed for the child. During FS and 
IW sessions, children were encouraged to walk in a straight line at a comfortable 
walking speed.
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Figure 4.1 Experimental setup and gait analysis session overview.  A)  Marker locations 
are denoted by grey circles, and EMG electrode locations by black ovals. 5MT, head of fifth 
metatars-phalangeal joint; LM, lateral malleolus; LE, lateral femur epicondyle; GT, greater 
trochanter; IL, iliac crest; WRI, ulnar styloid; ELB, lateral humeral epicondyle; GH, gleno-
humeral joint; C7, seventh cervical vertebra; EAR, ear; FHEAD, forehead; TA, tibialis anterior; 
GM, gastrocnemius medialis; GL, gastrocnemius lateralis; SOL, soleus; RF, rectus femoris; VM, 
vastus medialis; VL, vastus lateralis; BF, biceps femoris; TFL, tensor fascia latae; GLM, gluteus 
maximus; ES, erector spinae at L2 level. B) Schematic illustration of principal component (PC) 
analysis of elevation angles of lower limb segments (thigh: αt, shank: αs, and foot: αf), and its 
corresponding gait loop plotted in 3D in one representative typically developing child (4 years 
old) during walking. A loop is obtained by plotting the thigh elevation angle vs. shank and foot 
elevation angles (after mean values subtraction). The shape and orientation of the gait loop 
reflect the coordination of limb segments as described by PC1  (reflects the largest variance 
which corresponds to the length of the gait loop), and PC2 (the second largest variance which 
corresponds to the width of the loop), here indicated with black arrows. Percentage of total 
variation explained by the three PCs (PV1-PV3) are indicated. Note in adult and older children 
walking, two principal components typically account for about 99% of the total variance (PV3 = 
0.9% in the example). C) Gait analyses over time (corrected age, in months) for P1-P3 showing 
supported walking (SW: shades of red), first steps (FS: purple), and independent walking (IW: 
shades of blue). Different color shades from light to dark indicate the change in age and/or 
independent walking experience. P3 did not start to walk independently. X means the child 
did not take any steps during that session.

Table 4.1 Participant characteristics

Partici-
pant

Gender Session Walking
ability

Age
(mo)

CA
(mo)

WA
(mo)

Distri-
bution

Subtype GMFCS Brain 
damage

BW
(kg)

BL
(cm)

N
strides

P1 F 1 SW 12.7 12.7 -1.8 Bi Spastic HR Infection 7.8 75 37
2 FS 15.2 15.2 0.8 Bi Spastic HR 8.8 74 47
3 IW 17.5 17.5 3.1 Bi Spastic I 9.4 80 62
4 IW 22.3 22.3 7.9 Bi Spastic I 10.6 85 42
5 IW 27.2 27.2 12.8 Bi Undef n/a 11.0 87 33

P2 M 1 SW 14.5 14.6 -6.6 Uni R Spastic HR Media 
infarction

11.1 84 0
2 SW 19.2 19.3 -1.4 Uni R Spastic HR 12.0 84 52
3 FS 22.1 22.2 0.3 Uni R Spastic I 12.4 91 29
4 IW 24.6 24.7 2.8 Uni R Spastic I 12.0 89 40
5 IW 26.9 27 5.1 Uni R Spastic I 12.4 90 54

P3 F 1 SW 31.7 30.0 - Bi Spastic III PVL 12.7 85 60
2 SW 35.4 33.7 - Bi Spastic III 12.8 90 36
3 SW 42.8 41.1 - Bi Spastic III 14.0 95 59
4 SW 49.1 47.4 - Bi Spastic III 15.0 105 48
5 SW 56.1 53.6 - Bi Spastic III 12.6 105 51

Abbreviations: F, female; M, male; SW, supported walking; FS, first steps; IW, independent walking; mo, months; CA, corrected age; WA: 
walking age (expressed as time since onset of independent walking);  Bi, bilateral; Uni, unilateral; R, right; undef, undefined;  GMFCS, gross 
motor function classification system; n/a, not applicable; HR, high risk; asym, asymmetric; sym, symmetric; PVL, periventricular leukomalacia; 
BW, body weight; BL, body length; N, number.
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Data acquisition
During every session, full-body kinematics were recorded bilaterally and sampled 
at 100 Hz using a VICON system (Oxford, UK) with 12 cameras surrounding the 
10-meter-long walking area. Reflective markers (diameter 14 mm) were attached 
to the skin of the participants representative of anatomical reference points 
overlying the following bony landmarks on both sides of the body (Figure 4.1A): 
gleno-humeral joint (GH), seventh cervical vertebra (C7), ear (EAR), forehead 
(FHEAD), ulnar styloid (WRI), lateral humeral epicondyle (ELB), iliac spinal crest (IL), 
greater trochanter (GT), lateral femur epicondyle (LE), lateral malleolus (LM), head 
of fifth metatars-phalangeal joint (5MT). In addition, videos were recorded at 50 Hz 
using the VICON system using two cameras placed in the sagittal plane.

Muscle activity was assessed by means of surface electromyography (EMG) from 
11 pairs of bilateral leg and trunk muscles, i.e., tibialis anterior (TA), gastrocnemius 
medialis (GM), gastrocnemius lateralis (GL), soleus (SOL), rectus femoris (RF), vastus 
medialis (VM), vastus lateralis (VL), biceps femoris (BF), tensor fascia latae (TFL), 
gluteus maximus (GLM) and erector spinae at L2 level (ES). Mini-golden reusable 
surface EMG disc-electrode pairs (15 mm diameter electrodes, acquisition area of 4 
mm2) were placed at the approximate location of the muscle belly on the cleaned 
skin, with inter-electrode spacing of about 1.5 cm. EMG electrode placement 
was performed according to the Surface Electromyography for the Non-Invasive 
Assessment of Muscles protocol (Hermens et al., 2000) and the recommendations 
for minimizing cross-talk between adjacent muscles that was described in detail 
previously (Dominici et al., 2011; Ivanenko et al., 2004b, 2005a). Pre-amplified EMG 
sensor units were attached to the skin and fixed with elastic gauzes, to minimize 
movement artefacts (Figure 4.1A). Two Cometa Mini Wave wireless 16-channel 
EMG systems (Cometa, s.r.l, Italy) were used and EMG signal were sampled at 1 kHz. 
Electro-encephalography (EEG) recordings were made but not analyzed here.  
Sampling of kinematic, video and EMG signals was synchronized.

Data analysis
The gait patterns were described by: 1) kinematics: a) spatiotemporal gait 
parameters, including walking velocity, stride duration and double support 
duration; b) intersegmental coordination, estimated via principal component 
analysis (PCA) of the elevation angles of thigh, shank, and foot segments (Borghese 
et al., 1996), and 2) neuromuscular control: EMG activity and muscle synergies 
characteristics, described by the full-width at half-maximum (FWHM) of the muscle 
activity, temporal activation patterns of the muscles synergies and variability 
accounted for (VAF). Gait initiation and termination as well as jumps and turns 
were discarded from analysis. The lower body was modelled as an interconnected 
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chain of rigid segments: GT-LE for the thigh, LE-LM for the shank, and LM-5MT for 
the foot. All analyses were conducted in MATLAB (version 2020a, Mathworks Inc., 
Natick, USA).

Spatiotemporal gait parameters 
Step events were manually defined based on the video recordings and later 
confirmed using the kinematic data. We defined a stride from foot strike to foot 
strike of the ipsilateral foot, stance duration as the percentage of the gait cycle 
from foot strike to foot off. Stride velocity was computed using the corresponding 
stride length (3D-displacement of the LM-marker) and duration of both legs. Data 
were time-interpolated over individual gait cycles to fit a normalized 201-point 
time base.

Intersegmental coordination
We constructed elevation angles of the thigh, shank, and foot segments (αt, αs, 
and αf, respectively) to correspond with angles between the segment projected 
on the sagittal plane and the vertical, i.e. to be positive in the forward direction 
when distal markers fell anterior to the proximal one. In healthy adults and older 
children, these elevation angles describe a path (gait loop) that lies close to a plane 
that is defined by their eigenvectors (Figure 4.1B). To examine the development of 
intersegmental coordination (the gait loop and the corresponding plane) across 
sessions within subjects, PCA was applied to lower limb elevation angles of each 
gait cycle, for each session and participant separately (Bianchi et al., 1998; Borghese 
et al., 1996; Dominici et al., 2010; Ivanenko et al., 2007). Briefly, we computed the 
covariance matrix of the thigh-shank-foot elevation angels (after subtraction of the 
mean value of each angular coordinate) across the gait cycle. The three principal 
components (PC1-PC3) including the explained variance (PV1-PV3) and eigenvectors 
(u1-u3), were obtained (Figure 4.1B). In general, the first two eigenvectors lie on 
the best-fitting plane of angular covariation, with u2 orthogonal to u1, while the 
third eigenvector, u3 is the normal to the covariation plane and defines the plane 
orientation. For every eigenvector, the parameters uit, uis, and uif correspond to the 
direction cosines with the positive semi-axis of the thigh, shank and foot angular 
coordinates, respectively. The percentage of variance accounted for by the second 
(PV2) and third (PV3) eigenvectors were assessed and compared between sessions, 
as well as the rotation of the normal to the plane by using the u3t parameter 
(Bianchi et al., 1998; Cappellini et al., 2018; Dominici et al., 2007, 2010). 
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Muscle activity
EMG signals were notch and high-pass filtered (4th-order Butterworth 50 ± 0.01 Hz, and 
> 30 Hz, respectively), full-wave rectified, and subsequently low-pass filtered (4th-order 
Butterworth < 10 Hz) to obtain linear envelopes. For some sessions, EMG data from 
few muscles had to be discarded due to sustained artefacts after filtering. Possible 
contamination of the EMG recordings could be detected by the electrical cross-talk 
due to volume conduction of activity across adjacent muscles. This issue is particularly 
relevant when recording many muscles in young children due to their small body 
size and the resulting close spacing of nearby muscles. Nevertheless, the small size 
of the EMG electrodes used in our settings and the chosen inter-electrode distance 
should have minimized the pickup from adjacent muscles. Anyway, we attempt to 
quantify the potential electrical cross-talk by performing a cross-correlation analysis 
of selected pairs of adjacent flexor/extensor muscles. Cross-correlation was computed 
after notch (50 Hz) and high-pass (30 Hz) filtering the EMG data to remove any possible 
power line noise and movement artefacts. We identified the peak of the normalized 
cross-correlation > 0.3 between flexors and extensors as suspect cross-talk (d’Avella, 
Portone, & Lacquaniti, 2011; Dominici et al., 2011) in 0.1-9.9% of strides, though the 
values of the correlation coefficients were generally not very high (Appendix Table 
4.S1). We verified that the removal of those strides potentially affected by cross-talk 
did not change any conclusion drawn from those analyses. 

The data were time-normalized for each limb to t = 201 data points per gait cycle. 
The FWHM of the muscle activity was determined based on the minimum-subtracted 
envelopes of muscle activity patterns (Alves-Pinto, Blumenstein, Turova, & Lampe, 
2016; Bach et al., 2021b; Cappellini et al., 2016, 2018), separately for every muscle, gait 
cycle, and session. To ease comparison of our experimental finding with literature, we 
also reported the FWHM of the mean muscle activity for each muscle, and session 
(see Appendix Figure 4.S1). In case of muscle activations with more than one peak, 
the peak with the largest maximum was chosen as the main peak. The FWHM 
quantifies the duration of the burst of activity as it equals the sum of the durations 
of the intervals in which the EMG signal exceeded half of their maximum. That is, the 
larger the FWHM the longer the muscle contraction is sustained.

Muscle synergies 
Per session, EMG amplitudes of every muscle were normalized to the maximum of 
their mean value across strides plus its standard deviation (SD). Non-negative matrix 
factorization (NMF) was applied to the unilateral gait cycle averaged EMG envelopes 
to extract muscle synergies. NMF decomposes the EMG into  i = 1, ..., n temporal 
activation patterns Pi and corresponding synergy weights Wi by mean of the  
linear combination
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where the pre-processed EMG data (m × t matrix, where m is the number of  
muscles, here 11, and t is the number of time points, here 201) is a linear 
combination of the temporal activation patterns P (n × t matrix, where n ≤ m is 
a predetermined number of synergies, see below) and synergy weights W (m × n 
matrix), and ε denotes the residual error. 

The reconstruction accuracy of the extracted synergies was determined by 
calculating the percent of variability accounted for (VAF), which is the ratio of 
the sum of squared errors to the total sum of squares computed with respect to 
the mean (Cappellini et al., 2016; Dominici et al., 2011). In order to compare the 
synergy patterns between sessions, we aimed to fix the number of synergies per 
participant across sessions, by varying the number of synergies from 1 to 8, and 
exploring the VAF slopes and synergy patterns across sessions. In addition, we 
investigated VAF by one synergy (VAF1, Shuman et al., 2019; Steele et al., 2015), 
and compared this parameter between sessions.

To quantitatively characterize differences in the duration of synergy activation 
patterns, we also computed the corresponding FWHM (Bach et al., 2021b; 
Cappellini et al., 2016, 2018), in line with the approach of the muscle activation 
patterns (see above).

Statistical analysis 
Statistical analyses were performed using SPSS (IBM SPSS Statistics for Mac,  
Version 26.0, IBM Corp., Armonk, NY, USA). All data are reported as mean (±SD). 
Normality was assessed using Q-Q plots, and homogeneity of variance was 
tested using a Levene’s test. Development of spatiotemporal gait parameters, 
intersegmental coordination values, and FWHM per muscle across sessions  
within each participant was assessed using a linear mixed effects model (LMM, 
Molenberghs & Verbeke, 2000). LMM corrects for interdependency of repeated 
measures within one participant using random effects, and the number of 
observations per sessions can vary. We fitted an LMM with PV2, PV3, u3t, stance 
duration, double support, velocity, and FWHM per muscle as outcome variables. 
Session was included as fixed and trial as random effect. To test whether development 
of the outcome variables differed between sides in P2, the interaction between 
session and side was included for P2. For all analyses, p < 0.05 was considered 
statistically significant.
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RESULTS

Medical history 
Child P1 (female) was born at term after an uneventful pregnancy. Birth was 
complicated by umbilical cord entanglement and perinatal asphyxia with Apgar 
scores of 4 and 5, respectively, after 1 and 5 minutes, respectively. Clinically, 
she recovered quickly and there was no indication for therapeutic hypothermia. 
Because of a possible infection, she was treated with antibiotics for 7 days, but 
blood cultures remained negative. Twenty-two hours after birth, she developed 
severe neonatal convulsions, for which the child was treated with phenobarbitone, 
midazolam, lidocaine and levetiracetam. An MRI scan at the age of four days revealed 
extensive bilateral signal changes in the white matter of the frontal, temporal, 
parietal and occipital lobes, corticospinal tracts, internal capsule, and thalamus. A 
probable diagnosis of hypoxic-ischemic encephalopathy due to perinatal asphyxia 
was made. Neurological examination at the age of eight months showed a mild 
developmental delay and a mild paresis of the left arm. At follow-up, until the age 
of 3.5 years, development appeared normal and no further abnormalities were 
found via neurological examination, excluding a diagnosis of CP.

Child P2 (male) was also born at term after an uneventful pregnancy. The child 
developed normally in the first three months of life, although it was noted that 
the right arm appeared stiffer when parents changed clothes. When three months 
old, asymmetry in upper extremity motor function was established. At the age of 
five months, he developed West syndrome for which he was successfully treated 
with levetiracetam and vigabatrin. Neurological examination at the age of eight 
months showed spastic paresis of the right arm with hyperreflexia of the knee 
tendon reflex at the right side. An MRI scan of the brain at the age of eight months 
showed a congenital infarction of the medial cerebral artery at the left side. A 
diagnosis of unilateral spastic cerebral palsy, GMFCS I, was made.

Child P3 (female) was born preterm after 33 weeks and 1 day of pregnancy. At 
the age of 3 weeks she suffered a group B streptococcal infection. She showed 
a developmental delay, rolled over for the first time at the corrected age of 11 
months and the tone of the lower extremities had been high since the first weeks. 
An MRI scan of the brain at the corrected age of 12 months, showed periventricular 
leukomalacia, related to prematurity. A diagnosis of bilateral spastic cerebral palsy, 
GMFCS III, was made.

Gait analysis session overview 
For P1 and P2, the sessions covered a period of 14.5 and 12.4 months in between 
the first and the last session, and included one and two SW sessions, respectively, a 
FS session, and three and two IW sessions, respectively. For P3 the sessions covered 
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a period of 24 months and included five SW sessions (Figure 4.1C). P1 started to 
walk at a typical age, i.e. 14 months old, while P2 took its first independent steps 
around the corrected age of 22 months old. P3 did not walk independently yet at 
the corrected age of 53 months. During the first session of P2 (corrected age 14.6 
months), the child did not take any steps, so for this participant only four sessions 
are reported in the following.

Spatiotemporal gait parameters 
Video analysis revealed that P1 had a flat foot strike in session 1 and 2 (SW and FS, 
respectively), while both feet showed a heel strike from session 3 (IW) onwards. P2 
had a flat foot strike of both feet from session 2 to 4 (SW, FS, and IW, respectively), 
and during session 5 (IW) only the least affected leg showed a heel strike. P3 had a 
toe landing and was crossing her legs in all sessions.

Walking velocity showed a significant main effect of session in all children (P1, 
p < 0.001; P2, p < 0.001; P3, p < 0.01). For P1, a significant increase was found from 
the SW session 1 to IW sessions 3-5 (Figure 4.2 and Appendix Table 4.S2). For P2, 
a significant increase was found from SW session 2 to IW sessions 4-5. For P3, a 
significant increase was found between SW session 1 and 4, but walking velocity 
decreased again in session 5. 

The percentage of double support phase showed a significant main effect of 
session in all children (P1, p < 0.001; P2, p < 0.01; P3, p < 0.001). For P1, a significant 
decrease was found between SW session 1 and all sessions (Figure 4.2 and Appendix 
Table 4.S2). For P2, a significant decrease was found between SW session 2 and all 
sessions, in both the most and least affected side. For P3, a significant decrease was 
found between SW session 1 and SW sessions 3-4, but the percentage of double 
support phase increased again in session 5. 

The percentage of relative stance duration showed a significant main effect of 
session in all children (P1, p < 0.001; most affected side P2, p < 0.05; least affected 
side P2, p < 0.001; P3, p < 0.001). For P1, a significant decrease was found between 
SW session 1 and all sessions (Figure 4.2 and Appendix Table 4.S2). For P2, a 
significant decrease was found between SW session 2 and all sessions in both the 
most affected and least affected side, although the developmental slope differed 
between sides, as shown by a significant interaction effect between session and 
side (p < 0.01). For P3, a significant decrease was found between SW session 1 and 
SW sessions 3-4, but the percentage of relative stance duration increased again in 
session 5.
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Figure 4.2 Spatiotemporal gait parameters. Velocity, percentage of double support and 
stance duration from S1-S5. Error bars indicate SDs. For the percentage of double support and 
stance duration of P2 the most affected side (dark color) and least affected side (light color) 
are shown, while for P1 and P3 one side is shown. Significant linear differences across sessions 
are denoted by asterisks, and significant interactions between session, and side are denoted 
by lines between the most and least affected side for P2 (p < 0.05).
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Intersegmental coordination 
The intersegmental coordination of the thigh-shank-foot elevation angles was 
compared across sessions for the three participants and was evaluated using 
PCA. The planar covariation of the leg elevation angles is directly related to the 
dimensionality of the original data set, and the method is shown in Figure 4.1B. In 
summary, Figure 4.3 shows the mean gait loops for all sessions of each participant, 
and its corresponding values of planar covariation. 

The percentage of variance accounted for by the second eigenvector (PV2) 

showed a significant main effect of session in P1 (p < 0.001), the least affected 
side of P2 (p < 0.01), and P3 (p < 0.001), but not in the most affected side of P2 
(p = 0.11). For P1 a significant decrease was found between SW session 1 and all 
sessions, indicating a reduction in the width of the gait loop from SW to IW, that 
is also visible in the changes of gait loops for the IW sessions compared to the SW 
session (Figure 4.3 and Appendix Table 4.S2). The least affected side of P2 showed a 
significant decrease between SW session 2 and IW session 5, but an increase during 
FS session 3. In contrast, P3 showed a significant increase between SW session 1 
and all sessions, but the gait loops showed similar shapes in all the sessions. 

The percentage of variance accounted for by the third eigenvector (PV3), that 
quantified the planarity of the gait loop, showed a significant main effect of 
session in P1 (p < 0.001), the most and least affected side of P2 (p < 0.001 and  
p < 0.01, resp.), and P3 (p < 0.01). For P1, a significant decrease was found between 
SW session 1 and all sessions, indicating a reduction in the deviation from planarity 
(Figure 4.3 and Appendix Table 4.S2). For P2, a significant decrease was found 
between SW session 2 and IW sessions 4-5 in both the most and least affected 
side. In contrast, P3 showed a significant increase in PV3 between SW session 1 and 
session 5. 

The orientation of the covariance plane (u3t) showed a significant main effect 
of session in P1 (p < 0.001), the most and least affected side of P2 (p < 0.001 and  
p < 0.01, resp.), and P3 (p < 0.01). For P1, a significant increase was found between 
SW session and FS session 2, while the most affected side of P2 showed a 
significant decrease between SW session 1 and IW sessions 4-5 (Figure 4.3 and 
Appendix Table 4.S2). In both the least affected side of P2 and in P3, there was 
no significant difference between session 1 and the other sessions. The analysis 
showed a significant session interaction effect between session and side for PV2, 
PV3 and u3t (p < 0.001 for all) in P2, indicating that these parameters developed 
differently over time for the most and least affected side.
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Muscle activity
Despite the large variability in EMG activity between strides per muscle, we could 
observe a clear modification between different sessions in P1 and P2. All activation 
patterns became smoother and displayed increasingly distinct peaks (Figure 4.4A). 
A short burst of activity was present around foot strike in the TA and calf muscles 
(GM, GL and SOL) of P3 during all sessions (see zoom-in view of P3 Figure 4.4A), 
in the SW and FS sessions of P2, in particular in the most affected leg. In P1 this 
activity was absent. 

For P1, FWHM showed a significant main effect of session for all muscles except 
GL (p = 0.072).  FWHM of TA, GM, SOL, RF, VL, BF, and ES significantly increased from 
SW session 1 to IW sessions 3-5, and of GLM from FS session 2 to IW sessions 4-5. In 
contrast, FWHM significantly decreased from FS session 2 to IW session 3 for TFL, 
and to session 3-4 for VM (Figure 4.4B and Appendix Table 4.S3). 

For P2, FWHM showed a significant main effect of session for all muscles in the 
most affected side, and for all muscles except TA (p = 0.061) and GL (p = 0.682) in 
the least affected side. In the most affected side, FWHM of TA, GM, GL, RF, BF, and 
TFL was significantly higher during IW session 4-5 compared to SW session 2, while 
FWHM of SOL, VM, VL, and ES already increased during FS session 3. In the least 
affected side of P2, FWHM of GM, VM, BF, and GLM significantly increased during 
IW session 4-5 compared to SW session 2, while FWHM of RF, TFL, and ES already 
increased during FS session 3. FWHM of SOL was only significantly larger during 
IW session 5 compared to SW session 2 (Figure 4.4B and Appendix Table 4.S3). An 
interaction effect between session and side was found for GM, SOL, RF, BF, and 
GLM (p < 0.01), indicating that FWHM of these muscles developed differently in the 
most compared to the least affected side. 

For P3, FWHM showed a significant main effect of session for all muscles  
(p < 0.05), except RF (p = 0.120). FWHM of TA, SOL, VM, BF and TFL was significantly 
smaller in session 1 compared to all other sessions. FWHM of GM and GLM was 
significantly larger during sessions 4-5, and of GL during sessions 2, 3, and 5, compared 
to the first recorded session (Figure 4.4B and Appendix Table 4.S3). In all participants 
variability in FWHM between strides was large.

The results of the FWHM computed on the average muscle activity can be found in 
Appendix Figure 4.S1. Similar to the results showed in Figure 4.4B, this analysis revealed 
clear changes between different sessions in P1 and P2. In contrast, P3 showed similar 
duration of the main bursts of the mean activity of almost all the muscles between 
sessions, and on average wider EMG bursts with respect to P1 and P2. 
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Muscle synergies 
P1 showed an increase in VAF1 after FS. The most affected side of P2 showed an 
increase in VAF1 from SW to IW where it stayed constant, while the least affected 
leg showed a decreasing trend in VAF1 from FS to IW. VAF1 was higher for the most 
compared to the least affected leg during the FS and IW sessions, but vice versa for 
the SW session. For P3, VAF1 slightly differed between sessions, but there was no 
clear trend (Figure 4.5A). Based on the VAF slopes and exploration of the synergy 
patterns, P1 and P2 generally recruited four synergies across sessions, while P3 
recruited two synergies. To compare activations patterns across sessions, we fixed 
the number of synergies of P1 and P2 to four, and of P3 to two.

Synergies were ordered based on the highest correlations between the synergy 
weights per session (Figure 4.5B/C). For P1, FWHM of synergy pattern 1 (Syn1) 
and 2 (Syn2) decreased, i.e. bursts become narrower. By contrast, FWHM of Syn3 
increased towards session 4, but decreased again in session 5. Syn4 did not change 
in FWHM. Despite the changes of synergy patterns of P2, FWHM appeared quite 
variable between sessions, and we failed to identify any (qualitative) trend. P3 
showed an increase in FWHM of Syn4 over time.

Despite the development in synergy activation patterns in P1 and P2, the synergy 
weights appeared similar across sessions (Figure 4.5D). In P1 and P2, mainly RF, VM, 
VL, and BF were active in Syn1, and GM, GL, and SOL in Syn2. ES, and TA to a lesser 
extent, dominated Syn3, and TA and RF in Syn4. P3 showed simultaneous activations 
of GM, GL, SOL, RF, VM, VL, TFL, and GLM in Syn2, while TA and ES were present in Syn4.

DISCUSSION

Our longitudinal study captured the early development of walking in three young 
children at high risk of CP via comprehensive instrumented gait assessments. 
The exploratory findings illustrate how the combination of kinematic and 
electromyographic measures can contribute to our understanding of walking 
maturation in children with early brain lesions. 

We followed three children with divergent development trajectories. Two of 
them made the transition from supported to independent walking, while the third 
child had not reached independent walking at 4.5 years of age. Spatiotemporal 
gait parameters, intersegmental coordination and neuromuscular control changed 
from supported to independent walking in the child that did not develop CP and 
the child with unilateral CP. Maturation of gait patterns was delayed in the child 
with unilateral CP and differed between sides. Walking development appeared 
entirely absent in the more severely affected child with bilateral CP. 
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Spatiotemporal gait parameters and intersegmental coordination changed 
over time from supported to independent walking in the child without CP, and 
the child with unilateral CP, although to a lesser extent, whereas there was 
no development in the child with bilateral CP. This was expected in view of 
previous research reporting developmental trajectories in children with CP that 
differ from those in TD children (Berger, 1998; Berger et al., 1984; Leonard et al., 
1991). The rapid maturation of planar covariation in the first months after the 
first independent steps was present whenever children developed independent 
walking, irrespective of their age at their first steps. The most affected side of the 
child with unilateral CP deviated more from planarity than the least affected side 
during SW and FS, although it was comparable between sides during IW. These 
results suggest that the intersegmental coordination matured side-specific from 
just before independent walking onset during the consecutive six months. This 
period might be devoted to postural gait requirements, while in the following 
years gait coordination is (merely) refined (Breniére & Bril, 1998; Bril & Brenière, 
1992). 

In contrast to the rapid maturation of intersegmental coordination after the onset 
of independent walking, muscle activity and its major burst duration appeared 
quite variable between strides in the first 6-12 months after the first independent 
steps. This agrees with previous findings from, e.g., Chang, Kubo, Buzzi, & Ulrich, 
2006. Probably, toddlers slowly discover how to optimize their muscular activity. 
In our study, the duration of EMG bursts increased from supported to independent 
walking. Cappellini et al. (2016) reported a decrease in FWHM from TD toddlers 
(1-3 years old) to older TD children while this reduction was not visible in the TD 
toddler group. The latter falls in the (corrected) age range in our study. Moreover, 
Cappellini et al. (2016) reported wider EMG bursts in children with CP (2-11 years 
old), arguably similar to muscle activation patterns TD toddlers. Similar results 
were reported by Prosser et al. (2010) in children with CP (2-9 years old) when 
compared with TD children with similar walking experience (average of 28 months 
of walking experience). Despite the presence of young children, the age range 
of the children with CP included in these cross-sectional studies is quite large. In 
our study, we did not have a TD control group, but we did observe wider average 
EMG bursts in the more severely affected child with bilateral CP with respect to 
the children who developed independent walking. Here we would like to note 
that gait patterns and their corresponding muscle activity are highly variable in 
toddlers. It is well possible that a reduction in EMG burst duration occurs later 
on during development, while children refine their motor pattern (see above). We 
did notice short bursts of EMG activity immediately after foot strike in the shank 
and calf muscles of the child with bilateral CP and the calf muscles of mainly the 
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most affected leg of the child with unilateral CP, which might have been caused 
by spasticity, i.e. hyperreflexive reactions upon muscle stretch following foot strike 
(Forssberg, 1985).

The control modules that account for muscle activity during walking seemed 
to develop in the children who developed independent walking, while there 
were no major changes in the more severely affected child with bilateral CP. The 
two children walking independently recruited four synergies, whereas the child 
without the ability to walk independently recruited only two synergies. While gait 
kinematics improved during independent walking in the child with unilateral CP, 
the modulation of groups of muscles to efficiently perform this motor action may 
have lagged behind. This finds support by previous research reporting the absence 
of a direct relation between gait kinematics and muscle activations (Buurke et al., 
2008) or muscle synergies (Booth et al., 2019). In fact, – if true – this implies that 
gait kinematics and neuromuscular control may follow a different developmental 
path. The muscle synergy patterns of the child with bilateral CP resemble that of 
the ‘primitive’ neonate stepping, recruiting two wider synergies with a lot of co-
contraction in antagonist muscles (Dominici et al., 2011). Neonate stepping reflects 
the immature walking pattern that lacks a heel strike and with the tendency to 
walk on the toes (Forssberg, 1985). Put differently, the child with bilateral CP might 
still depend mainly on spinal input, while supraspinal influence is lacking. 

The children were small, especially in the early sessions, yielding limited space 
for EMG electrodes, and as a consequence, a possible contamination of the EMG 
recordings due to electrical cross-talk between adjacent muscles that could have 
affected the data quality. However, the small size of the EMG electrodes used in 
our experiments and the chosen interelectrode distance should have minimized 
the pickup from nearby muscles. While it is not possible to dissociate co-activation 
from cross-talk in adjacent muscles, muscle synergy analysis can identify whether 
a muscle is activated independent from an adjacent muscle even in the presence 
of cross-talk. It has been recognized that, if cross-talk did exist, it would likely have 
affected only the synergy weights and not the number of muscle synergies or 
the temporal activation patterns (Chvatal & Ting, 2013; Ivanenko et al., 2004b). In 
addition, the child with bilateral CP was already 2.5 years old at the time of the first 
session, while it would have certainly been interesting to investigate its walking 
pattern below that age. Presumably it would have been a very similar pattern given 
the little change observed between the age of 2.5 and 4.5 years old for this child. 

We identified changes in gait kinematics and neuromuscular control underlying 
the development of walking in three cases at high risk of CP with divergent 
developmental trajectories. We showed that such analyses are feasible in very 
young children. Future longitudinal research with a larger sample of children 
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at high risk of CP could and should provide more insight into the underlying 
mechanisms of the development of walking. Yet, to establish whether muscle 
synergies are encoded in the cortex (Zandvoort et al., 2019) or whether they 
originate solely from spinal cord (Cappellini, Ivanenko, Dominici, Poppele, & 
Lacquaniti, 2010; Ivanenko, Cappellini, Poppele, & Lacquaniti, 2008) or brainstem 
(Schepens & Drew, 2004) remains a topic of debate (Bizzi & Cheung, 2013). To solve 
this puzzle, supplementing our approach by, e.g., synchronous EEG recordings, 
appears a valid option. Following this idea might be an important step towards 
the design of early interventions targeting the neural pathways. Combined with 
the use of novel technologies, such as wearable sensors (Airaksinen et al., 2020; 
Redd, Barber, Boyd, Varnfield, & Karunanithi, 2019; Xu, Jayaraman, & Rogers, 
2019), and treatments like feedback training (Booth et al., 2019), and electrical 
stimulation of muscles, tendons (Sommerfelt et al., 2001; Stackhouse et al., 2007; 
Wright et al., 2012), or spinal cord (Solopova et al., 2017), during the critical period 
of walking development, we might become able to improve early identification 
of motor deficits in children with early brain lesions and identify targets for early 
intervention to effectively improve walking function in CP.
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Table 4.S2 LMM results gait kinematics: estimates of fixed effects session

Participant Parameter Session Estimate 
(mean±SD)

df t p-value 95% CI
Lower bound Upper bound

P1 Velocity 1 .4±0.3 15.9 1.5 - -.163 1.012
2 .6±0.4 15.6 1.6 .134 -.212 1.445
3 1.9±0.3 16.0 5.9 .000* 1.249 2.641
4 1.2±0.3 16.1 3.6 .002* .5146 1.957
5 2.6±0.3 16.3 7.7 .000* 1.914 3.361

DS 1 47.9±2.8 10.2 17.2 - 41.738 54.135 
2 -9.6±3.8 9.3 -2.5 .032* -18.200 -1.005
3 -24.0±3.4 11.1 -7.1 .000* -31.339 -16.581
4 -22.1±3.5 11.9 -6.3 .000* -29.813 -14.439 
5 -36.5±3.7 13.8 -10.0 .000* -44.338 -28.593

STdur 1 72.9±1.5 8.9 49.1 - 69.564 76.287 
2 -6.4±2.0 8.1 -3.2 .013* -11.038 -1.770
3 -11.4±1.8 10.2 -6.3 .000* -15.365 -7.359 
4 -11.1±1.9 11.3 -5.8 .000* -15.286 -6.931 
5 -19.7±2.0 13.7 -9.8 .000* -23.981 -15.361

PV2 1 20.6±0.7 145 28.9 - 19.174 21.985
2 -3.6±0.9 145 -4.1 .000* -5.392 -1.869
3 -9.0±0.8 145 -10.8 .000* -10.693 -7.376
4 -9.8±0.9 145 -10.6 .000* -11.659 -8.005
5 -10.8±1.2 145 -8.8 .000* -13.219 -8.350

PV3 1 1.6±0.1 18.4 13.8 - 1.320 1.793
2 -.6±0.1 14.3 -3.8 .002* -.852 -.238
3 -.9±0.1 19.4 -6.9 .000* -1.186 -.633
4 -1.0±0.1 23.9 .6.7 .000* -1.261 -.664
5 -.9±0.2 44.3 -4.9 .000* -1.305 -.549

u3t 1 .3±0.03 145 9.3 - .206 .316
2 .1±0.04 145 2.7 .000* .026 .165
3 .002±0.03 145 .05 .958 -.063 .067
4 .06±0.04 145 1.6 .110 -.013 .13
5 -.02±0.05 145 -.4 .711 -.114 .078

P2 MA DS 2 52.2±3.8 9.9 13.6 - 43.672 60.744
3 -15.7±4.9 11.9 -3.2 .008* -26.379 -5.001
4 -24.3±5.2 12.2 -4.7 .001* -35.625 -13.009
5 -21.0±4.5 11.1 -4.7 .001* -30.796 -11.179

STdur 2 74.7±2.6 10.8 28.4 - 68.919 80.526
3 -8.7±3.3 12.6 -2.6 .022* -15.989 -1.482
4 -11.3±3.5 12.9 -3.2 .007* -19.021 -3.678
5 -11.9±3.1 11.9 -3.9 .002* -18.575 -5.251

PV3 2 3.6±2.7 110 13.5 - 3.076 4.130
3 -.6±0.4 110 -1.6 .103 -1.331 .125
4 -2.0±0.4 110 -5.3 .000* -2.706 -1.233
5 -2.5±0.3 110 -7.9 .000* -3.079 -1.840

(Continued)



95

4

Participant Parameter Session Estimate 
(mean±SD)

df t p-value 95% CI
Lower bound Upper bound

u3t 2 4±0.1 111 7.3 - .268 .466
3 -.006±0.07 111 -.1 .927 -.141 .129
4 -.3±0.07 111 -4.4 .000* -.445 -.168
5 -.2±0.06 111 -2.7 .008* -.275 -.043

P2 LA DS 2 52.2±3.7 9.1 14.0 - 43.805 60.688
3 -14.3±4.8 11.2 -3.0 .012* -24.933 -3.755
4 -25.5±5.1 11.5 -5.0 .000* -36.655 -14.259
5 -20.2±4.4 10.5 -4.6 .001* -29.902 -10.456

STdur 2 77.0±1.1 3.0 71.0 - 73.572 80.460
3 -5.0±1.6 6.1 -3.2 .019* -8.825 -1.134
4 -13.4±1.7 6.4 -8.0 .000* -17.509 -9.376
5 -8.8±1.4 4.9 -6.3 .002* -12.425 -5.251

PV2 2 18.3±1.1 5.1 16.6 - 15.525 21.161
3 3.9±1.8 13.9 2.1 .05 -.008 7.863
4 -2.7±1.7 9.2 -1.6 .146 -6.538 1.135
5 -3.4±1.4 7.3 -2.5 .039* -6.655 -.238

PV3 2 2.2±0.2 10.1 9.9 - 1.726 2.725
3 0.2±0.3 17.5 -.7 .519 -.927 .485
4 -.8±0.3 14.1 -2.5 .023* -1.518 -.131
5 -1.0±0.3 12.2 -3.8 .003* -1.585 -.422

u3t 2 .2±0.1 112 3.7 - .102 .341
3 .01±0.1 112 .1 .906 -.202 .227
4 .2±0.1 112 1.8 .076 -.019 .369
5 -.1±0.08 1123 -1.7 .102 -.281 .026

P2 both Velocity 2 .9±0.2 13.8 3.9 - .394 1.368
3 .4±0.3 14.5 1.3 .220 -.241 .9619
4 1.2±0.3 15.0 3.8 .002* .514 1.790
5 1.5±0.3 14.2 5.8 .000* .956 2.065

P3 Velocity 1 .6±0.05 12.161 11.8 - .498 .724
2 .01±0.07 13.598 .2 .834 -.127 .155
3 .1±0.07 12.170 1.5 .158 -.049 .270
4 .2±0.06 13.131 3.8 .002* .100 .370
5 .05±0.08 14.159 .7 .501 -.111 .216

DS 1 53.1±2.1 8.131 24.9 - 48.196 57.990
2 -4.5±3.1 14.938 -1.5 .166 -11.041 2.086
3 -13.4±3.0 8.132 -4.4 .002* -20.327 -6.472
4 -16.5±2.8 13.081 -5.8 .000* -22.611 -10.334
5 -5.1±3.5 14.161 -1.5 .161 -12.548 2.300

STdur 1 78.5±1.3 6.209 62.5 - 75.424 81.522
2 -1.9±1.8 10.882 -1.1 .303 -5.874 2.005
3 -7.2±1.8 6.211 -4.1 .006* -11.521 -2.897
4 -8.1±1.7 9.566 -4.9 .001* -11.822 -4.396
5 -2.4±2.0 10.293 -1.2 .258 -6.887 2.058

Table 4.S2 Continued
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Participant Parameter Session Estimate 
(mean±SD)

df t p-value 95% CI
Lower bound Upper bound

PV2 1 17.6±1.7 112 10.4 - 14.238 20.968
2 4.7±2.0 112 2.3 .022* .685 8.669
3 4.5±2.0 112 2.3 .025* .571 8.373
4 4.1±2.0 112 2.05 .043* .135 8.164
5 10.4±2.0 112 4.7 .000* 6.039 14.782

PV3 1 2.3±0.4 112 6.6 - 1.625 3.025
2 -.5±0.4 112 -1.2 .248 -1.317 .343
3 -.7±0.4 112 -1.6 .113 -1.466 .157
4 .6±0.4 112 1.4 .158 -.236 1.434
5 3.4±0.5 112 7.4 .000* 2.493 4.311

u3t 1 .01±0.05 112 .3 - -.083 .107
2 -.1±0.06 112 -1.8 .081 -.213 .013
3 -.02±0.6 112 -.4 .710 -.131 .090
4 .08±0.06 112 1.3 .187 -.038 .190
5 -.01±0.06 112 -.2 .882 -.133 .114

Abbreviations: PV2 , percentage of total variation explained by the 2nd principal component; PV3 , percentage of total variation explained 
by the 3rd principal component; u3t, orientation of the normal to the plane; Stdur, stance duration; DS, double support; MA, most 
affected side; LA, least affected side; LMM, linear mixed effects model; SD, standard deviation; CI, confidence interval.

Table 4.S3 LMM results FWHM muscle activity: estimates of fixed effects session

Participant Parameter Session Estimate 
(mean±SD)

df t p-value 95% CI
Lower bound Upper bound

P1 TA 1 8.5±1.3 222 6.7 - 6.013 11.033
2 8.6±1.7 222 5.0 .000* 5.260 12.011
3 6.8±1.6 222 4.2 .000* 3.608 9.983
4 4.6±1.7 222 3.6 .009* 1.178 8.031
5 13.0±1.9 222 6.8 .000* 9.221 16.711

GM 1 5.7±1.2 222 4.9 - 3.365 7.947
2 14.4±1.6 222 9.2 .000* 11.312 17.473
3 15.6±1.5 222 10.6 .000* 12.699 18.518
4 15.1±1.6 222 9.5 .000* 11.954 18.209
5 17.9±1.7 222 10.3 .000* 14.518 21.354

SOL 1 10.07±1.5 191 7.6 - 7.118 13.018
2 5.2±2.0 191 2.6 .010* 1.271 9.206
3 11.8±1.9 191 6.2 .000* 8.084 15.577
4 11.7±2.0 191 5.7 .000* 7.648 15.703
5 - - - - - -

RF 1 7.3±1.5 222 5.0 - 4.397 10.161
2 9.9±2.0 222 5.0 .000* 6.035 13.788
3 10.2±1.9 222 5.5 .000* 6.585 13.907
4 5.6±2.0 222 2.8 .005* 1.664 9.534
5 10.3±2.2 222 4.7 .000* 6.042 14.642

Table 4.S2 Continued
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Participant Parameter Session Estimate 
(mean±SD)

df t p-value 95% CI
Lower bound Upper bound

VM 1 - - - - - -
2 24.1±1.3 184 17.9 - 21.430 26.734
3 -7.6±1.8 184 -4.3 .000* -11.100 -4.067
4 -12.2±1.9 184 -6.3 .000* -16.045 -8.418
5 -10.1±2.1 184 -4.7 .000* -14.261 -5.849

VL 1 11.5±1.3 222 9.1 - 8.992 13.998
2 -0.9±1.7 222 -.05 .599 -4.265 2.467
3 7.6±1.6 222 4.7 .000* 4.464 10.822
4 1.2±1.8 222 0.7 .472 -2.169 4.665
5 11.8±1.9 222 6.2 .000* 8.073 15.542

BF 1 7.3±1.3 222 5.3 - 4.663 9.974
2 12.2±1.8 222 6.7 .000* 8.588 15.729
3 12.7±1.7 222 7.4 .000* 9.298 16.042
4 6.4±1.8 222 3.5 .001* 2.795 10.044
5 22.6±2.0 222 11.3 .000* 18.683 26.606

TFL 1 - - - - - -
2 20.6±1.5 153 14.0 - 17.720 23.521
3 -6.1±1.9 153 -3.1 .002* -9.982 -2.291
4 -3.6±2.1 153 -1.7 .087 -7.808 .534
5 - - - - - -

GLM 1 - - - - - -
2 14.4±1.4 184 10.4 - 11.697 17.180
3 2.9±1.8 1884 1.6 .117 -.733 6.537
4 5.7±2.0 184 2.9 .005* 1.757 9.642
5 8.3±2.2 184 3.8 .000* 3.922 12.619

ES 1 11.1±1.8 221 6.2 - 7.567 14.646
2 13.9±2.4 221 5.8 .000* 9.133 18.596
3 12.4±2.3 221 5.4 .000* 7.892 16.837
4 7.8±2.4 221 3.2 .002* 2.986 12.590
5 13.2±2.7 221 5.0 .000* 7.998 18.481

P2 MA TA 2 13.6±1.0 173 13.9 - 11.662 15.522
3 -2.5±1.6 173 -1.6 .119 -5.712 .659
4 5.6±1.5 173 3.8 .000* 2.680 8.470
5 3.4±1.4 173 2.5 .013* .746 6.103

GM 2 11.6±1.7 170 7.0 - 8.344 14.923
3 -2.3±2.7 170 -.8 .402 -7.592 3.059
4 11.0±2.5 170 4.5 .000* 6.139 15.843
5 16.0±2.3 170 7.0 .000* 11.452 20.450

GL 2 - - - - - -
3 11.0±1.9 123 5.8 - 7.240 14.822
4 7.1±2.5 123 2.8 .006* 2.074 12.033
5 7.2±2.4 123 3.0 .003* 2.455 11.856

Table 4.S3 Continued

(Continued)



Chapter 4 - Early walking development in CP: a longitudinal case series

98

Participant Parameter Session Estimate 
(mean±SD)

df t p-value 95% CI
Lower bound Upper bound

SOL 2 14.2±1.0 171 14.0 - 12.180 16.178
3 -6.4±1.7 171 -3.7 .000* -9.742 -2.991
4 -3.1±1.5 171 -2.0 .043* -6.095 -0.099
5 -2.3±1.4 171 -1.6 .107 -5.049 .498

RF 2 10.8±1.4 175 7.9 - 3.134 13.545
3 2.0±2.3 175 .9 .394 -2.563 6.479
4 12.3±2.1 175 5.9 .000* 8.241 16.447
5 7.2±1.9 175 3.8 .000* 3.418 11.000

VM 2 7.2±0.8 173 8.5 - 5.547 8.881
3 4.8±1.4 173 3.4 .001* 2.060 7.564
4 9.0±1.3 173 7.1 .000* 6.492 11.493
5 10.3±1.2 173 8.8 .000* 7.950 12.577

VL 2 8.6±1.1 164 8.2 - 6.525 10.695
3 5.6±1.7 164 3.2 .002* 2.129 9.045
4 10.9±1.6 164 6.9 .000* 7.794 14.015
5 7.4±1.5 164 4.9 .000* 4.404 10.365

BF 2 11.6±1.1 167 10.1 - 9.297 13.819
3 -2.6±2.1 167 -1.2 .220 -6.841 1.589
4 8.4±1.7 167 4.8 .000* 4.926 11.784
5 13.7±1.6 167 8.5 .000* 10.510 16.845

TFL 2 9.8±1.1 171 8.8 - 7.617 12.055
3 1.9±1.8 171 1.1 .289 -1.666 5.565
4 6.9±1.7 171 4.1 .000* 3.601 10.184
5 3.7±1.5 171 2.4 .019* .621 6.720

GLM 2 8.0±1.0 170 9.0 - 6.935 10.806
3 -2.0±1.6 170 -1.2 .219 -5.091 1.177
4 3.4±1.4 170 2.3 .022* .501 6.211
5 6.1±1.3 170 4.5 .000* 3.450 8.794

ES 2 10.2±1.1 175 9.1 - 7.966 12.393
3 6.6±1.9 175 3.5 .001* 2.882 10.280
4 7.8±1.7 175 4.6 .000* 4.411 11.125
5 6.9±1.6 175 4.4 .000* 3.837 10.039

P2 LA GM 2 14.8±1.5 171 10.1 - 11.896 17.896
3 4.6±2.5 171 1.9 .066 -.305 9.602
4 8.2±2.2 171 3.7 .000* 3.777 12.560
5 9.2±2.1 171 4.4 .000* 5.061 13.251

SOL 2 11.8±1.4 173 8.4 - 8.997 14.539
3 4.5±2.3 173 1.9 .059 -.170 9.092
4 3.5±2.1 173 1.7 .099 -.672 7.733
5 9.0±2.0 173 4.5 .000* 5.113 12.950

RF 2 13.1±1.2 173 11.3 - 10.843 15.392
3 4.0±1.9 173 2.1 .041* .169 7.771
4 4.4±1.7 173 2.5 .012* .971 7.870
5 5.3±1.6 173 3.3 .001* 2.112 8.546

Table 4.S3 Continued
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Participant Parameter Session Estimate 
(mean±SD)

df t p-value 95% CI
Lower bound Upper bound

VM 2 11.4±1.3 173 9.0 - 8.897 13.893
3 -.5±2.1 173 -.3 .800 -4.710 3.639
4 9.4±1.9 173 4.9 .000* 5.588 13.165
5 7.3±1.8 173 4.1 .000* 3.739 10.804

VL 2 15.1±1.5 173 9.9 - 12.140 18.151
3 3.5±2.5 173 1.4 .170 -1.520 8.525
4 6.5±2.3 173 2.8 .005* 1.939 11.054
5 .3±2.1 173 .2 .873 -3.906 4.595

BF 2 10.1±1.2 168 8.4 - 7.746 12.518
3 1.8±2.1 168 .9 .390 -2.359 6.015
4 10.2±1.8 168 5.5 .000* 6.545 13.834
5 8.7±1.7 168 5.1 .000* 5.352 12.100

TFL 2 9.5±1.2 173 8.1 - 7.189 11.831
3 5.0±2.0 173 2.5 .012* 1.107 8.865
4 7.9±1.8 173 4.4 .000* 4.420 11.460
5 6.6±1.7 173 3.9 .000* 3.271 9.836

GLM 2 9.4±1.1 172 8.9 - 7.278 11.436
3 2.7±1.8 172 1.5 .128 -.789 6.240
4 9.3±1.6 172 5.8 .000* 6.171 12.478
5 3.5±1.5 172 2.3 .022* .513 6.394

ES 2 12.0±1.2 173 9.7 - 9.556 14.439
3 4.1±2.1 173 2.0 .048* .031 8.191
4 9.0±1.9 173 4.8 .000* 5.320 12.725
5 7.8±1.7 173 4.4 .000* 4.326 11.231

P3 TA 1 7.8±.8 254 9.9 - 6.220 9.302
2 2.6±1.3 254 2.0 .046* .048 5.216
3 3.5±1.1 254 3.2 .002* 1.345 5.703
4 4.1±1.2 254 3.5 .000* 1.840 6.437
5 4.2±1.2 254 3.6 .000* 1.873 6.445

GM 1 6.2±1.4 218 4.3 - 3.345 9.000
2 - - - - - -
3 1.1±2.0 218 .5 .587 -2.883 5.082
4 15.4±2.1 218 7.2 .000* 11.215 19.612
5 9.6±2.1 218 4.5 .000* 5.423 13.774

GL 1 15.8±1.9 254 8.3 - 12.042 19.534
2 6.5±3.1 254 2.1 .038* .372 12.715
3 4.6±2.7 254 1.7 .086 -.654 9.941
4 3.0±2.8 254 1.0 .287 -2.561 8.614
5 8.8±2.8 254 3.1 .002* 3.223 14.336

SOL 1 14.6±1.6 254 9.0 - 11.396 17.825
2 6.3±2.7 254 2.3 .020* 1.004 11.595
3 -7.3±2.3 254 -3.2 .002* -11.851 -2.759
4 6.0±2.4 254 2.5 .015* 1.187 10.775
5 6.4±2.4 254 2.7 .008* 1.667 11.202
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Participant Parameter Session Estimate 
(mean±SD)

df t p-value 95% CI
Lower bound Upper bound

VM 1 10.3±1.3 95 8.1 - 7.800 12.847
2 7.0±2.1 95 3.4 .001* 2.889 11.204
3 - - - - - -
4 - - - - - -
5 - - - - - -

VL 1 17.6±1.5 254 12.0 - 14.725 20.532
2 5.7±2.4 254 2.4 .019* .957 10.524
3 4.9±2.1 254 2.3 .020* .778 8.990
4 1.5±2.2 254 .7 .496 -2.830 5.831
5 -.2±2.1 254 -.09 .925 -4.512 4.101

BF 1 10.3±1.3 252 7.9 - 7.738 12.908
2 9.3±2.2 252 4.3 .000* 5.077 13.594
3 8.1±1.9 252 4.4 .000* 4.420 11.732
4 6.3±2.0 252 3.2 .002* 2.412 10.123
5 6.0±2.0 252 3.0 .003* 2.124 9.879

TFL 1 6.2±1.2 254 5.2 - 3.819 8.502
2 11.2±2.0 254 5.7 .000* 7.337 15.053
3 11.9±1.7 254 7.1 .000* 8.620 15.244
4 9.7±1.8 254 5.5 .000* 6.206 13.191
5 9.2±2.8 254 5.2 .000* 5.749 12.695

GLM 1 - - - - - -
2 10.8±1.1 194 9.7 - 8.601 12.949
3 -2.7±1.4 194 -1.9 .055 -5.409 .062
4 4.7±1.4 194 3.2 .001* 1.842 7.535
5 4.3±1.4 194 3.0 .003* 1.505 7.174

ES 1 - - - - - -
2 10.1±1.2 194 8.7 - 7.854 12.444
3 -1.5±1.5 194 -1.0 .323 -4.339 1.437
4 .9±1.5 194 .6 .534 -2.056 3.953
5 2.7±1.5 194 1.8 .076 -.286 5.699

Abbreviations: TA, tibialis anterior; GM, gastrocnemius medialis; GL, gastrocnemius lateralis; SOL, soleus; RF, rectus femoris; VM, vastus 
medialis; VL, vastus lateralis; BF, biceps femoris; TFL, tensor fascia latae; GLM, gluteus maximus; ES, erector spinae at L2 level; MA, most 
affected side; LA, least affected side; SD, standard deviation; CI, confidence interval.
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ABSTRACT

Background When walking speed is increased, the frequency ratio between the 
arm and leg swing switches spontaneously from 2:1 to 1:1. We examined whether 
these switches are accompanied by changes in functional connectivity between 
multiple muscles. 

Methods Subjects walked on a treadmill with their arms swinging along their 
body while kinematics and surface electromyography (EMG) of 26 bilateral 
muscles across the body were recorded. Walking speed was varied from very slow 
to normal. We decomposed EMG envelopes and intermuscular coherence spectra 
using non-negative matrix factorization (NMF), and the resulting modes were 
combined into multiplex networks and analyzed for their community structure. 

Results We found five relevant muscle synergies that significantly differed in 
activation patterns between 1:1 and 2:1 arm-leg coordination and the transition 
period between them. The corresponding multiplex network contained a single 
module indicating pronounced muscle co-activation patterns across the whole 
body during a gait cycle. NMF of the coherence spectra distinguished three 
EMG frequency bands: 4-8  Hz, 8-22  Hz, and 22-60  Hz. The community structure 
of the multiplex network revealed four modules, which clustered functional and 
anatomical linked muscles across modes of coordination. Intermuscular coherence 
at 4-22  Hz between upper and lower body and within the legs was particularly 
pronounced for 1:1 arm-leg coordination and was diminished when switching 
between modes of coordination. 

Conclusion These findings suggest that the stability of arm-leg coordination is 
associated with modulations in long-distant neuromuscular connectivity.
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INTRODUCTION

Human locomotion requires a well-organized activation of multiple muscles 
to coordinate movements of upper and lower limbs. The degree of interlimb 
coordination can be characterized by the strength of frequency and phase locking 
between limbs. To understand the emergence of coordination patterns and, by 
this, the way muscle activity is orchestrated, one typically challenges the stability 
of phase locking by altering a control parameter. For example, if speed is increased 
from loaf (very slow) to normal walking, one can observe a switch in frequency 
locking from a 2:1 to a 1:1 ratio between the arm and leg swing (Craik, Herman, 
& Finley, 1976; Schöner, Jiang, & Kelso, 1990; Van Emmerik, 1992; van Emmerik & 
Wagenaar, 1996): At very low speeds, the arm swing is phase locked to the step 
cycle, while at fast speeds it locks to the stride cycle. This switch is accompanied by 
a change in the phase relationship between the arms from in-phase to antiphase 
phase locking (Wagenaar & Van Emmerik, 2000), and in the immediate vicinity of 
the transition the variability of frequency (phase) locking drastically increases1. 
The methodological benefit of investigating such changes in coordination is that 
they arguably share characteristics of classic phase transitions, in the sense of non-
equilibrium thermostatistics (Beek, Peper, & Daffertshofer, 2002; Kelso, 1995). In 
the vicinity of a phase transition, one may expect the dynamics’ dimensionality 
to be drastically reduced and muscle activity patterns to stay on low-dimensional 
manifolds. 

Interestingly, the switch in coordination during walking depends on whether 
the walking speed is increased or decreased (Schöner et al., 1990; van Emmerik 
& Wagenaar, 1996). This suggests that the underlying mechanisms are not purely 
mechanical or energetic, as has been conjectured in other cases of altered interlimb 
coordination (Hoyt & Taylor, 1981; Owaki & Ishiguro, 2017). Our working hypothesis 
is that the central nervous system substantially contributes to the stability of 
coordination patterns. As such, we sought to identify (low-dimensional) neural 
contributions to transitions in upper and lower limb coordination. Well-designed 
mechanical manipulations may already hint at the relevance and location of such 
neural contributions. For instance, Bondi, Zeilig, Bloch, Fasano, and Plotnik (2017) 
reported how changes of swing of one arm can affect both the swing of the other 
arm as well as lower limb coordination during walking. The same effects have also 
been shown in neonates (La Scaleia et al., 2018), children with hemiplegic cerebral 

1 In particular the increase in phase variability in the immediate vicinity of the behavioural 
switch in interlimb coordination resembles so-called critical fluctuations which implies 
the presence of a likewise critical slowing down, i.e. drastic increase of response time after 
(mechanical) perturbation.
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palsy (Meyns et al., 2012b), and are known for long for stroke survivors where 
they can be strongly elevated (Stephenson, Lamontagne, & De Serres, 2009). By 
the same token, the arm swing can have little to no influence on leg movement 
after spinal cord injury (Tester, Barbeau, Howland, Cantrell, & Behrman, 2012). 
These findings suggest that a partial interruption of the spinal cord may suffice to 
limit the interaction between spinal motor neurons such that switches in interlimb 
coordination no longer emerge.

Targeting neural dynamics more directly during motor coordination is not new 
(Matsuyama et al., 2004). Several groups studied modulations of muscle activity of 
upper and lower extremities during locomotor tasks via electromyography (EMG) 
– a proxy of neural activity in the spinal cord (Boonstra, Farmer, & Breakspear, 2016; 
Ferris, Huang, & Kao, 2006; Zehr et al., 2016). Muscle activity of different muscles is 
found to couple at several time or frequency scales. Coherence at low frequencies 
(0-5 Hz) seems associated with common modulation of motor unit mean firing 
rate and muscle force generation and, hence, likely reflects co-modulation of 
muscle activities (Boonstra et al., 2008; De Luca & Erim, 1994; Mochizuki, Semmler, 
Ivanova, & Garland, 2006) and the modulation of EMG envelopes (Hansen, Hansen, 
Christensen, Petersen, & Nielsen, 2001). Common modulations of EMG envelopes 
of groups of muscles are considered as muscle synergies (Tresch, Cheung, & 
d’Avella, 2006) that reveal how movements are manifested through synchronized 
muscle co-activation (Cappellini et al., 2006; Cheung, d’Avella, Tresch, & Bizzi, 2005; 
Dominici et al., 2011; Ivanenko et al., 2004b, 2005a). In a recent review, Bruton 
and O’Dwyer (2018) outlined numerous studies suggesting that muscle synergies 
are vital motor control modules. Obviously, muscle synergies change with altered 
coordination, but what are the origins of these changes? An answer to this may 
lie in the higher frequencies of the EMG signal, as they may provide the spectral 
‘fingerprints’ of distinct neural pathways involved in the control of muscles 
(Boonstra et al., 2009a; Boonstra et al., 2016; Danna-Dos-Santos et al., 2014; Farmer, 
1998). For example, intermuscular coherence at higher frequency components 
may reflect supra-spinal drives (Grosse, Cassidy, & Brown, 2002) that modulate the 
activation of multiple muscles by means of a common input (Danna-Dos-Santos 
et al., 2014).

Here, we studied the dynamics of muscle activation during changes in interlimb 
coordination using the experimental design of Wagenaar and Van Emmerik (2000). 
Rather than focusing on isolated muscles, we employed synergy analysis and 
constructed functional muscle networks (Boonstra et al., 2015). We determined 
the minimal (i.e. low-dimensional) set of muscle synergies and combined them 
into a network with multiple synergy-specific layers. In a similar spirit, we used 
intermuscular coherences to construct networks with multiple frequency-specific 
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layers (Kerkman, Daffertshofer, Gollo, Breakspear, & Boonstra, 2018). Both types 
of networks were constructed under the proviso that they could be based on a 
low-dimensional representation2, i.e. a small number of relevant muscle synergies 
vis-à-vis a small number of frequency components with pronounced coherence 
determined through conventional mode decomposition of multivariate time 
series. Network analysis offers new possibilities to assess synchronization between 
motor units across a large number of muscles. It hence allows for an encompassing 
study of functional changes in muscle activity during a transition in physiological 
coupling (Bartsch & Ivanov, 2014; Bashan, Bartsch, Kantelhardt, Havlin, & Ivanov, 
2012). In particular, modulations of the network can highlight modifications in the 
neuromuscular system related to changes in functional behavior during walking.

For the individual synergies, we expected the switch in interlimb coordination 
to be accompanied by rapid changes in temporal activation patterns, in line with 
Yokoyama et al. (2016). For the corresponding low-frequency muscle networks, 
we expected a strong resemblance of anatomical and biomechanical constraints 
(Bruton & O’Dwyer, 2018; Kutch & Valero-Cuevas, 2012) and switches in coordination 
to result in concomitant changes in network topology. Given that the higher EMG 
frequency components are thought to represent supra-spinal input to multiple 
muscles (Kerkman et al., 2018), we expected these frequency components to 
discern neural pathways involved in the stability of arm-leg coordination patterns 
and the switches between them.

MATERIALS AND METHODS

Subjects
Sixteen healthy subjects (five males and eleven females, mean age of 25.3 ± 2.4 
years) without any neurological or motor disorder were included in this study. The 
study was approved by the Ethics Committee Human Movement Sciences of the 
Vrije Universiteit Amsterdam (VCWE-2017-132). All subjects were informed about 
the procedure of the study and provided, in accordance with the Declaration of 
Helsinki, written informed consent prior to participation.

Procedure
Subjects were instructed to walk on a treadmill (Motek Medical BV, Amsterdam, the 
Netherlands) with their arms swinging along their body while full-body kinematics, 
ground reaction forces and muscle activities were recorded. Subjects walked at 
controlled speeds between 1.0 and 4.0 km/h with increments of 0.5 km/h. The 

2 As said, we investigated the dynamics in the vicinity of a phase transition.
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ordering of speeds was randomized between subjects and trials. Subjects walked 
for at least fifteen strides at each speed.

Data acquisition
Ground reactions forces (Motek Medical BV, Amsterdam, the Netherlands) and full-
body 3D-kinematics (Optotrak, Northern Digital, Waterloo ON, Canada), using five 
cluster markers (heel, lower and upper leg, and upper and lower arm) and three 
cameras (left and right backside and one at the front), were measured to define 
the fifth metatarsophalangeal joint, heel, ankle, knee, hip trochanter, shoulder, 
elbow and wrist. Kinetic and kinematic data were sampled at 70 Hz. Surface EMG 
of 26 bilateral muscles (Table 5.1) distributed across the body was recorded (two 
Mini Wave Wireless 16-channel EMG system, Cometa s.r.l, Italy) and sampled at 
2 kHz after online band-pass filtering between 10-1000 Hz. Electrodes were placed 
according to the SENIAM recommendations (Hermens et al., 1999). Kinematic, 
ground reaction force and EMG data were synchronized online. 

Data analysis
Kinematics
Gait cycles were defined based on the right heel strikes obtained from the force 
plate data. The heel strike was defined as the moment when the vertical ground 
reaction force exceeded 8% of the average ground reaction force during the trial. 
This kinetic criterion was verified by comparison with foot strike measured from 
the kinematic data (Borghese et al., 1996; Roerdink, Lamoth, & Beek, 2008). We 
determined the mode of interlimb coordination via the maximum spectral overlap 
after rescaling the frequency axis (Daffertshofer, Peper, Frank, & Beek, 2000) and 
the circular variance of the generalized relative phase of the kinematics of the 
arms and legs for every walking speed and subject (cf. Table 5.2). We focused on 
the frequency locking between arms and legs at 2:1 (~ very low speed) and 1:1  
(~ normal), and the transition (T) between these modes of coordination. The 2:1 
and the 1:1 condition were dominated by spectral overlap at a 2:1 or 1:1 frequency 
ratio, respectively, and almost constant corresponding generalized relative phases. 
The transition was characterized by spectral overlap at both frequency ratios of  
2:1 and 1:1, and a changing generalized relative phase (Figure 5.1).
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Table 5.1 Muscles included in the recordings

Muscle Abbreviation

tibialis anterior TA

gastrocnemius medialis GM

tensor fascia latae TFL

rectus femoris RF

vastus medialis VM

adductor longus AL

biceps femoris BF

gluteus maximus GMA

erector spinae ES

latissimus dorsi LD

trapezius TZ

deltoid D

triceps brachii TRB

EMG pre-processing
Independent component analysis was used to reduce heart beat contamination 
in the EMG signals (Willigenburg, Daffertshofer, Kingma, & Van Dieën, 2012). 
Subsequently, EMG signals were high-pass filtered (2nd order, bi-directional 
Butterworth, cut-off at 30  Hz) and rectified using the modulus of the analytic 
signal. Here we would like to note that rectification can re-introduce low-frequency 
amplitude modulations (Boonstra & Breakspear, 2012; Myers et al., 2003).

Muscle synergies
EMG envelopes were determined by low-pass filtering the rectified EMGs (2nd order, 
bi-directional Butterworth filter, cut-off at 10 Hz). Subsequently, these envelopes 
were time normalized such that every stride had an equal number of samples  
(N = 200 samples). For every subject we further normalized the amplitudes to the 
average activity during the fastest walking speed (4.0 km/h)3. Next, EMG data for 
every subject were averaged over all strides per mode of coordination yielding  
EMGs × subjects × conditions time series containing one average stride each. Finally, 
time series were concatenated along subjects and conditions yielding 26 (number 
of muscles) discrete time series containing subjects × conditions (SC) strides each4. 

3 Here we would like to note that we verified that the amplitude normalization had little to 
no effect on the temporal and spatial representation of the muscle synergies.

4 Estimating muscle synergies per condition had only minor effects on both weightings 
and wave forms; details can be found in the Appendix.
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We denote the data by Xij where i indexes the time point and j the muscle, that 
is,  i = 1, ... , SC . N spans the SC time-normalized strides with N samples each 
and j = 1, ... , 26 are all muscles. These data entered our synergy analysis, namely 
non-negative matrix factorization (NMF). NMF is a linear mode decomposition X 
⟼ W(m) A(m) that includes the constraint that both extracted wave forms A(m) and 
weights W(m) are positive semi-definite, and that W(m)  and A(m) have rank m; we 
used a multiplicative update algorithm to solve the corresponding minimization 
of the Frobenius norm ||X - W(m) A(m)||2 (Lee & Seung, 1999). 
 To fix the number of relevant synergies, i.e. the rank m of W(m), we determined 
the quality of data reconstruction as

𝜆𝜆(#) = &1 −
)𝑋𝑋 − 𝑊𝑊(𝑚𝑚)𝐴𝐴(𝑚𝑚))

𝐹𝐹

2
		

‖𝑋𝑋‖𝐹𝐹2		
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‖𝑋𝑋 − 𝑤𝑤𝑠𝑠𝑎𝑎𝑠𝑠‖𝐹𝐹2		

‖𝑋𝑋‖𝐹𝐹2		
; × 100% 

 
 
 
 

(5.1)

and required λ(m) ≥ λcutoff = 80% (Zandvoort et al., 2019) and, additionally,  
λ(m) - λ(m-1) ≥ ∆λcutoff = 1.5%. This notion let us also define the contribution of every 
synergy to the representation of W(m) A(m) by realizing that W(m) = [w1, ... , wm] and  
A(m) = [a1, ... , am]. That is, the contribution of an individual synergy s could be given 
as 

𝜆𝜆(#) = &1 −
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(5.2)

Note that by combining the signals as described above, we obtained different 
wave forms between and common muscle weights across conditions and subjects, 
i.e. fixed muscle groups over conditions with varying activation patterns. For the 
sake of legibility, in the following we denote these outcomes as X ⟼ W(syn) A(syn).

Intermuscular coherence 
The rectified EMGs were down-sampled to 256 Hz to reduce computational load. 
Data of the same condition were mean-centered and concatenated. Intermuscular 
coherence was determined between all 26 × 25/2 = 325 muscle pairs per subject 
and condition. The power spectral densities Px and Py of signal pairs (x, y) and the 
complex-valued cross-power spectral density Pxy were estimated using Welch’s 
periodogram method (Hamming taper of 200 ms length and about 50% overlap). 
With this we computed the squared coherence Cxy= (PxyPxy )/(PxxPyy ); here (.)* 
denotes the conjugate complex. 

F

2 *
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We corrected the coherence estimates for the bias due to differences in data 
length. We employed a bootstrapping approach (100 surrogates) of the complex-
valued cross-spectral density through phase randomization (Hurtado, Rubchinsky, 
& Sigvardt, 2004; Kantz & Schreiber, 2004). In brief, phase randomization destroys 
coherence implying that the resulting bootstrap distribution is zero-centered. 
However, due to finite-size estimation the distribution may have a finite, 
frequency-dependent variance even for infinitely many surrogates. This variance 
yields a null distribution indicating the absence of coherence, which served as 
normalization factor for the coherence estimates. Since the latter is the modulus 
of the normalized cross-spectral density, the resulting distribution of squared 
coherences is a Chi-squared distribution with two degrees of freedom for which we 
considered squared coherences below α = 0.05 not distinguishable from chance. 
Accordingly, these values were set to zero.

In line with the synergy analysis, we concatenated the data, i.e. now the corrected 
coherence spectra across the frequencies (f, 4-60 Hz), over subjects and conditions 
(SC) and 325 muscle pairs. This yielded a f × (SC × 325) matrix, and we applied 
NMF to obtain C ⟼ W(coh) A(coh). This NMF yielded m modes, W(coh) = [w1, ... , wm] with  
wj = 1, ... , m , containing SC × 325 coherence weights each, and A(coh) = [a1, ... , am] with 
aj = 1, ... , m , with defining the  modes for all subjects, conditions and muscle pairs. 
To anticipate, these modes separated distinct frequency ranges. From hereon we 
therefore refer to these modes as frequency components. The number of these 
components was fixed using Eq. (5.1) with adjusted cut-off values: λcutoff = 55% and 
∆λcutoff = 4%.

Muscle networks
We constructed muscle synergy and coherence networks with muscles as nodes 
and their functional connectivity as edges between them. The synergy-NMF yielded 
wj = 1, ... , m that contained 26 muscle activity weights each for every synergy. We  
used the outer product  wj  . wj to define the connectivity matrix Cj

(syn) of synergies 
 j = 1, ... , m to create a one mode projection of a bipartite network (Murphy et al., 
2018) with m layers (Horvát & Zweig, 2012). In this synergy network, every element 
of the connectivity matrices represented the weighted appearance of two muscles 
in the same synergy. To include the contribution of the synergies by means of the 
amplitude of the wave forms, the connectivity matrices were weighted for the sum 
of the integrals of the wave forms of the three modes of coordination. 
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The intermuscular coherence weights of the m frequency modes (NMF modes) 
served to define the edges of the coherence network. We thus obtained m × SC 
different 26 × 26 connectivity matrices Cj

(coh) that we averaged over subjects and 
combined into an m × 3-conditions multiplex network. The community structures 
across layers of both the synergy and coherence networks were determined by the 
Louvain algorithm (Jeub, Bazzi, Jutla, & Mucha, 2019). 

To compare topological characteristics of the coherence networks between 
modes of coordination, we determined the global connectivity, clustering of 
muscles and strength of connections in the network by means of global efficiency, 
transitivity, and average strength across nodes (Bullmore & Sporns, 2009; Rubinov 
& Sporns, 2010) for all layers. Before doing so, the corrected coherence networks 
were thresholded to construct a minimally-connected network across the layers of 
the network, i.e., every node (muscle) was connected to at least one other node in 
one of the layers and the number of edges within the layers was constant across 
the layers. 

Additionally, we time normalized the EMG data and estimated coherence again, 
but now with a Hamming taper of 5 s over the 0.6-4 Hz frequency range to directly 
compare synergy and (very) low-frequency coherence networks. Details of this 
analysis can be found as Appendix.

Statistical analysis
Statistical differences between conditions were assessed over subjects who 
exhibited both conditions (either 2:1 and transition, 2:1 and 1:1, or transition  
and 1:1).

Changes in the synergy wave forms were compared in two ways. First, we 
compared the amplitude during the gait cycle between modes of coordination. 
Subsequently, the amplitudes were normalized to the maximum of the wave 
form and we compared the amplitude-normalized wave forms between modes of 
coordination. We determined the samples of the time series which were significantly 
different in either amplitude or wave form between the conditions using statistical 
parametric mapping including paired t-tests (Pataky, Vanrenterghem, & Robinson, 
2015; see also www.spm1d.org). Significance was identified based on an alpha 
threshold value corrected for multiple comparisons in three conditions and five 
synergies, i.e. α = 0.05/(3 × 5) =1/300.

Differences between the network metrics of the layers of the coherence 
networks, i.e. modes of coordination and frequency components, were compared 
with a univariate ANOVA with subject as random factor (α = 0.05). Post-hoc tests 
were performed to examine differences between conditions per frequency 
component (α = 0.005).
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RESULTS

Behavior
The kinematic assessment of the modes of coordination revealed that only seven 
subjects showed both modes of coordination and the transition between the two. 
The 2:1, transition, and the 1:1 mode of coordination appeared in nine, fourteen, 
and sixteen subjects, respectively (Table 5.2). 

Figure 5.1 represents a typical example (subject 1) of the movement of the right 
arm and ipsilateral leg in the sagittal plane, the corresponding spectral power and 
overlap, and the relative phase for the 2:1, transition and 1:1 condition.

Table 5.2 Overview of modes of coordination per subject per walking speed

Subject
Speed 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1.0 km/h 2:1 T T 2:1 2:1 2:1 T 2:1 2:1 T T N/A 2:1 T 2:1 T

1.5 km/h 2:1 T 1:1 T T 1:1 1:1 T 1:1 1:1 2:1 T T 1:1 2:1 T

2.0 km/h 2:1 1:1 1:1 T 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 T 1:1 T 1:1

2.5 km/h T 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

3.0 km/h 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

3.5 km/h 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

4.0 km/h 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

2:1 represents a double arm swing of both arms during one gait cycle, 1:1 represents a 1:1 coordination pattern with one arm swing of 
both arms during one gait cycle, and T represents the transition between the 2:1 and 1:1 mode of coordination in which both patterns 
were observed.

Muscle activity
Differences between modes of coordination were clearly visible in both the 
amplitudes and wave forms of the EMG envelopes (Appendix Figure 5.S1). EMG 
amplitudes particularly differed around the heel strike event in the ipsilateral leg 
and contralateral back and arm muscles in the 1:1 mode of coordination. The peak 
activity in the arm muscles around the contralateral heel strike shifted to earlier 
in the gait cycle when the coordination pattern switched towards a 1:1 mode of 
coordination between arms and legs.

Muscle synergies
Five muscle synergies accumulated 80% to the Frobenius norm of the original 
concatenated EMG envelopes and a sixth synergy added very little, which let us fix 
m(syn) = rank [W(syn)] = 5 (Figure 5.2). We found λ1,...,5 = [17,13,16,19,15]% on average 
across conditions.

(syn)
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Figure 5.2 Reconstruction quality of the muscle synergies. A) Additional value of an 
extra synergy (∆λ) to the total contribution of the synergies to the Frobenius norm, B) the 
contribution of every synergy (S1 to S5) to the Frobenius norm (λ). The order of synergies S1 to 
S5 is shown in Figure 5.3. Green, cyan and blue bar plots represent the 2:1, transition (T) and 
1:1 mode of coordination, respectively.

Figure 5.1 Example of the determination of the modes of coordination based on 
kinematics of subject 1. A) The average arm (blue) and ipsilateral leg (red) movement in the 
anterior-posterior (AP) direction as a function of the gait cycle in the 2:1 (1.0 km/h), transition 
(T, 2.5 km/h) and 1:1 (4.0 km/h) mode of coordination. B) The spectral power. C) The spectral 
overlap between the power spectra of the arm and leg is maximal for a 2:1 or 1:1 coupling 
between the arm and leg movement in the 2:1 and 1:1 mode of coordination, respectively. The 
transition contained peaks at both 2:1 and 1:1 coupling. D) The relative phase between arm 
and leg. A generalized relative phase of zero slope implies that arm and leg move at a fixed 
frequency ratio (2:1, black and 1:1, grey).

A

B

C

D

A B
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Synergies were ordered based on the relative timing of the main peak in the 
activation patterns (Figure 5.3A). S1 and S4 were active during the heel strike 
and weight acceptance response of the right and left leg, while S3 and S5 were 
active mainly in the calf muscle during the stance phase of the right and left 
leg, respectively. The muscle weights of S1 and S4 showed activity in both the 
leg and the contralateral trunk and arm muscles; bilateral calf and contralateral 
shank muscles were dominant in S3 and S5. S2 was active during the stance and 
swing phases with primarily activity of muscles around the pelvis (Figure 5.3B). The 
contribution λ2

(syn) of S2 increased from 2:1 to 1:1, while λ3
(syn) and  λ5

(syn) decreased.

Figure 5.3 Muscle synergies across modes of coordination. A) The synergies’ temporal 
activation patterns as a function of the gait cycle derived from average muscle activity patterns 
for the different modes of coordination. Green, cyan and blue represent the 2:1, transition (T) 
and 1:1 mode of coordination. Error patches represent the standard error of the mean across 
subjects. B) Synergies’ weightings across conditions and subjects in color scale. C) Muscle 
synergy network plotted separately for each synergy on the body mesh (Makarov, Noetscher, 
& Nazarian, 2015). A minimally-connected network was created for visualization. Node size 
represent the degree of the muscle and edge thickness represent weighted appearance of 
both muscles in the synergy.

A

B

C
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Significant differences were found between the synergies’ wave forms between 
the 2:1 and the 1:1 and between the transition and the 1:1 mode of coordination 
(Figure 5.4). The amplitude of S1 increased in 1:1 compared to 2:1 and the 
transition around the right heel strike and the activity decreased quicker with an 
increase in walking speed. Similar results were found for S4 at the corresponding 
left heel strike. Changes in the amplitude were also visible in S2 between 2:1 and 
1:1 and between the transition and 1:1 during the stance and swing phases of both 
legs. The activation pattern of S3 revealed some minor differences between the 
transition and 1:1 in the amplitude halfway the stance phase of the right leg and 
after the left heel strike, while no significant changes were found for S5.

Figure 5.4 Significant differences between synergies’ wave forms between modes of 
coordination. Green, cyan and blue represent 2:1, transition (T) and 1:1, respectively. Patches 
represent significant differences in time between the amplitude (grey) and the temporal 
patterns (red) of the synergies’ wave forms. α = 1/300.

Intermuscular coherence
The coherence spectra were decomposed in three modes, i.e., m(coh) = rank [W(coh)] 
= 3. These modes reflected distinct frequency bands, 4-8 Hz, 8-22 Hz and 22-60 Hz, 
in line with our previous findings (Boonstra et al., 2015; Kerkman et al., 2018). 
The frequency components contained in total 57% of the Frobenius norm of the 
coherence spectra; λ1,...,3    = [19,19,19]%.
 We extracted two frequency components (λcutoff = 19%) from the low-frequency 
coherence (0.6-4 Hz) showing peaks at 1.5 or 2.5 and 3.5 Hz; λ1,2    = [9,10]%.

(coh)

(coh)
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Muscle networks
Both the muscle synergies and coherence spectra were represented as multiplex 
networks to facilitate quantitative comparison. For the muscle synergies, each 
synergy was represented as a layer of the multiplex network (Figure 5.3C). We 
subsequently estimated the community structure across all five layers (Figure 
5.5A). As the connectivity in the layers of the synergy network did not overlap 
substantially, the community structure across layers yielded a single module and 
the synergy network contained several contralateral connections between arms 
and legs. These long-distance edges were distinctive for the layers of the synergies 
active around heel strike (S1 and S4). S3 and S5 also showed symmetries between 
left and right, but represented a more comprehensive network in which the whole 
human body was involved. S2 mainly showed connectivity around the pelvis and 
between the pelvis and the shoulder muscles (trapezius, Figure 5.3C).

Figure 5.5 The community structure of the multiplex A) muscle synergy B) and coherence 
networks based on the synergy and coherence spectra muscle weightings. Community 
structure is visualized by color-coded nodes and the average degree across layers of every 
muscle is displayed as node size on the body mesh (Makarov et al., 2015). The edge width is 
based on the average connectivity across layers between the muscles in either the minimally-
connected synergy or coherence network.

A B
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In contrast, the community structure of the multiplex coherence network 
divided the body in modules of both legs separate, the trunk with the left arm and 
the right arm (Figure 5.5B). The average modularity per frequency component was 
0.14, 0.30, and 0.32, respectively. By constructing minimally-connected multiplex 
networks, we removed on average 293 significant edges (threshold was 0.0970) 
with weights of 0.0015 ± 0.0011 (mean ± standard deviation), 0.0018 ± 0.0011 and 
0.0055 ± 0.0039 for 2:1, transition and 1:1, respectively. The preserved edges had 
weights of 0.0114 ± 0.0077, 0.0114 ± 0.0067 and 0.0184 ± 0.0069. In contrast to 
the synergy network, the community structure of the coherence network was not 
affected by this thresholding (see Appendix).

The community structure of the coherence network over 0.6-4 Hz was very 
similar to the community structure of the coherence network over the frequency 
range of 4-60 Hz: the Rand and adjusted Rand indices were 0.85 and 0.63, p < 0.001, 
respectively. Yet, individual layers of the coherence network revealed similarities 
with the layers of the synergy network; cf. Appendix for more details.

Changes in coherence networks
The topology of the coherence network was reorganized when the coordination 
pattern changed to the 1:1 mode of coordination (Figure 5.6). The network metrics, 
i.e. global efficiency, transitivity and average strength, were significantly different 
between conditions (F(2,21) = 56.0, F(2,21) = 12.1, and F(2,21) = 38.7 , respectively, 
p < 0.001). The 1:1 mode in the 4-8  Hz frequency component contained several 
long-distance connections between the leg and the contralateral arm with high 
connection strengths corresponding to a high global efficiency (Figure 5.6C). 
In contrast, both the 2:1 and the transition showed mainly connections within 
and between upper body and arms. At 8-22 Hz, 1:1 coordination again deviated 
from 2:1 and the transition, and was associated with a relatively high global 
efficiency, transitivity and strength. Some long-distance connections were found 
in 1:1 between the legs and the lower back, and high within-module connectivity 
appeared within the legs. For the 22-60 Hz frequency component, the connectivity 
was high within the trunk in 2:1 and the transition, while this connectivity was 
lower in 1:1. In the latter condition, the connectivity was higher between arm 
muscles. The highest frequency component was without connections between the 
upper and lower body in all conditions.
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Figure 5.6 Changes in connectivity between conditions and frequency components in 
the minimally-connected multiplex coherence network. A) Frequency components 4-8, 
8-22 and 22-60 Hz, obtained with non-negative matrix factorization. B) Coherence networks in 
the 2:1, transition (T) and 1:1 mode of coordination (columns) and the frequency components 
(rows). Colors in the networks depict different modules and node size and edge width represent 
degree and connectivity strength between muscles, respectively. C) Global efficiency, 
transitivity and average strength of the coherence networks per frequency component and 
condition. Error bars indicate standard errors of the mean and asterisks significant differences 
between conditions (α < 0.005).
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DISCUSSION

The aim of this study was to identify neural correlates of spontaneous switches 
in interlimb coordination during walking, i.e. transitions in frequency locking 
ratios between the arms and legs when walking speed changes. We applied more 
conventional synergy analysis and extended this to multiplex networks in line with the 
more recently introduced coherence-based muscle networks (Kerkman et al., 2018). 
As expected, we found changes between task conditions in the activation patterns of 
specific muscle synergies and in the network metrics of specific frequency layers of 
the coherence networks. In particular, we found increased activation of the synergies 
active around right and left heel strike (S1 & S4, respectively) during 1:1 phase locking 
compared to the other two coordination modes. Likewise, synergy S2 involved the 
muscles around the pelvis and also showed increased activation during 1:1 locking; 
note that this synergy appeared left/right symmetric. In contrast, synergies S3 & S5, 
involved in the initiation of the swing of the left and right leg, respectively, remained 
largely unchanged across modes of coordination. Similar to the muscle synergies, 1:1 
coordination revealed increased connectivity between upper and lower limbs in two 
(lower) frequency components (4-8 and 8-22 Hz) compared to the other two modes 
of coordination. The increase in long-distance connectivity was associated with a 
corresponding increase in global efficiency, transitivity and average strength. We 
found four modules grouping either left and right leg muscles or left and right arm 
muscles, though, the module containing the left arm also included all the recorded 
trunk muscles. These findings indicate that the transition to a 1:1 coordination pattern 
is associated with a reorganization in the muscle activation patterns.

Arm-leg coordination switched from 2:1 to 1:1 frequency locking mode when 
walking speed was increased. During the transition period both coordination 
patterns could be observed supporting the notion of multi-stability (van Emmerik & 
Wagenaar, 1996). However, this was not observed in all subjects, in line with earlier 
studies reporting that the incidence of the 2:1 coordination pattern is reduced 
in treadmill compared to over-ground walking (Carpinella, Crenna, Rabuffetti, & 
Ferrarin, 2010). Future studies may focus on even lower treadmill speeds to pinpoint 
neurophysiological changes possibly underlying the transition in coordination. Yet, 
we identified statistically significant differences between the coordination modes in 
individual muscle activation patterns. We are confident that these findings underwrite 
earlier documented importance of arm muscle activity during walking (Craik et al., 
1976; Goudriaan, Jonkers, van Dieen, & Bruijn, 2014; Meyns, Bruijn, & Duysens, 2013). 
They also revealed phase-specific modulations of arm muscle activity associated with 
the kinematic switches in interlimb coordination (see Figure 5.S1 Appendix). Last but 
not least, the modulations of EMG activity were reflected in the reorganization of the 
muscle synergies. 
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Speed-induced adaptations in muscle synergy strength and timing have been 
reported earlier (Ivanenko et al., 2004b; Yokoyama et al., 2016), which led Den 
Otter, Geurts, Mulder, and Duysens (2004) to speculate that modulations of muscle 
synergies are a mere by-product of a change in stance and swing time. We found 
that the synergy active during the stance and swing phases (S2) became stronger 
accounting for an increase in upper leg activity which may serve to control the 
relative movement between the trunk and the legs when walking faster. We found 
left/right-mirrored synergies for both S1 and S4 and S3 and S5; the muscles in 
S3 and S5 appeared important in preserving the upright body position, while 
synergies S1 and S4 induced the forward propulsion of the body. Synergies that 
were active during heel strike were also affected in both the strength and the wave 
form when switching to another mode of coordination, which was in accordance 
with the changes in relative timing of the arm swing. The synergy analysis revealed 
a fairly strong contribution of arm and shoulder muscles in the heel strike synergies 
(S1 and S4) and the switches between the modes of coordination were marked by 
a decrease in the involvement of arm muscles when the arm swing was in-phase 
with the leg swing. These phase-specific modulations could hence be directly 
related to the changes in kinematic behavior. Moreover, not all synergies were 
affected. Taken together, we rather support the notion of modular motor control, 
in which synergies can be modulated depending on the task while other synergies 
are robust across conditions (Nazarpour, Barnard, & Jackson, 2012).

We used one-mode projections, commonly employed in bipartite networks 
(Murphy et al., 2018), of the muscle synergy weights to construct multiplex 
networks (Horvát & Zweig, 2012), with each layer reflecting a synergy. These 
synergy networks can reveal functional connections between multiple muscles 
in line with functional modules related to the biomechanical constraints of 
walking (Neptune, Clark, & Kautz, 2009). For example, next to the coordination-
related coupling between contralateral arms and legs, we also found ipsilateral 
connections between arms and legs specific for the 2:1 locking mode. The networks 
of synergies S3 and S5 were dominated by activities important for push-off (GM) 
and foot raise (contralateral TA), but this modulation did not depend on the mode 
of coordination. When collapsing the multiplex network across layers, the synergy 
network only reflected the biomechanical characteristics of walking that kept the 
mechanisms underlying synergy formation opaque (Tresch & Jarc, 2009). Yet, the 
muscle synergy network approach supports the idea of functionally organized 
synergies that are modulated by changes in interlimb coordination.
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The topology of the muscle synergy network showed clear similarities with 
the network derived from intermuscular coherence at lower frequencies (0.6-
4 Hz, see Appendix). Coherence at very low frequencies likely captures the co-
variation of EMG envelopes which underpins the synergy analysis. Hence, both 
synergy and coherence networks may yield equivalent results, though, very low-
frequency coherence might be difficult to estimate reliably due to the brevity 
of the gait cycles. At higher frequencies, the agreement between both types of 
networks was largely absent, as we did not observe a modular structure in the 
multiplex synergy network. This suggests that synergy and coherence analyses 
are complementary and potentially capture different aspects of motor control. As 
expected, the community structure of the coherence networks was closely related 
to the anatomical relationships of the muscles (Kerkman et al., 2018).

Higher frequency components of intermuscular coherence may indicate 
different functional pathways in the neuromuscular system, which were affected 
by the coordination between limbs. We found major changes in the 1:1 mode 
of coordination compared to the 2:1 mode and the transition, indicating a 
reorganization in the structure of common input during 1:1 coordination. The 
connectivity between 4 and 8  Hz was strongly increased between the arm and 
contralateral leg muscles in the 1:1 mode, indicative for altered afferent input 
(Bourguignon, Jousmäki, Dalal, Jerbi, & De Tiège, 2019) and seemingly relevant for 
maintaining forward propulsion (cf. above). Connectivity in the frequency range 
of 8-22 Hz covers both alpha and low beta frequency ranges and have frequently 
been observed in intermuscular (Boonstra et al., 2015; Kerkman et al., 2018) and 
cortico-muscular coherence (Boonstra, van Wijk, Praamstra, & Daffertshofer, 
2009b; Conway et al., 1995; de Vries, Daffertshofer, Stegeman, & Boonstra, 2016; 
Petersen, Willerslev‐Olsen, Conway, & Nielsen, 2012; Roeder, Boonstra, Smith, 
& Kerr, 2018). Although cortico-muscular connectivity was not assessed in our 
study, we are tempted to interpret these frequency ranges as different neural 
pathways, possibly reflecting afferent and efferent inputs to spinal motor neurons, 
respectively (Bourguignon et al., 2019; McAuley & Marsden, 2000; Rathelot & 
Strick, 2009). The connectivity at 8-22 Hz was only affected when the legs and arms 
were in antiphase, i.e. in the 1:1 mode of coordination, with stronger long-distance 
connections between both lower back and leg muscles. First and foremost, the 
overall connectivity changed instead of a reorganization in connectivity patterns. 
That is, the conjunction between the upper and lower body muscles gained 
importance arguably because of an increasing demand of upper relative to lower 
body movements when walking faster. Finally, the connectivity in the frequency 
component of 22-60 Hz was less affected by changes in interlimb coordination.
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The absence of neural connectivity during the 2:1 mode of coordination is in 
contrast to the kinematic coupling between the limbs. The increase in long-distance 
connectivity between the upper and lower limbs when switching to 1:1 coordination 
may indicate additional demands when switching to antiphase coordination. The 
absence of interlimb coupling in the EMG envelopes might indicate a largely 
passive contribution of the arm swing at slow walking speeds, while at higher 
speeds muscle activity is needed to actively establish interlimb coordination and 
possibly reduce the cost of walking (Collins, Adamczyk, & Kuo, 2009). The active 
contribution of arm muscle activity in the 1:1 mode of coordination seemingly 
underlies the reorganization of muscle synergies. In our study, this reorganization 
was associated with increased functional connectivity between the arms and legs 
specifically at 4-22 Hz, which again implies increased common input to both arm 
and leg muscles (Boonstra et al., 2016). Muscle networks showed an abrupt change 
in network topology with increased long-distance connections when switching 
to a 1:1 mode of coordination. The increase in connectivity between arm and 
leg muscles is also reflected in the layers of synergy network corresponding to 
synergies S1 and S4, while muscle networks during quiet standing were mainly 
dominated by local connectivity (Boonstra et al., 2015; Kerkman et al., 2018). The 
switches in interlimb coordination were hence associated with distinct changes in 
the functional connectivity in the neuromuscular system reflecting common input 
to multiple muscles. 

Admittedly, our results do not provide undeviating evidence for possible 
neural causes of synergy formation or stability of interlimb coordination. A 
promising future step could be to infer the dynamic coupling functions between 
muscle activation profiles that, in principle, do contain all information about the 
functional mechanisms underlying the interactions and prescribe the physical 
rule specifying how an interaction occurs (cf. Stankovski, Pereira, McClintock, 
& Stefanovska, 2017). We also have to admit that we did not directly assess the 
contribution of the supra-spinal inputs and it might be a ‘natural’ step to evaluate 
these inputs using measures like partial directed coherence (e.g., Boonstra 
et al., 2015) or other directed information theoretic measures (e.g., Boonstra, 
Faes, Kerkman, & Marinazzo, 2019). While evidence about the functional role of 
intermuscular coherence is rapidly accumulating (Boonstra et al., 2015, 2019; De 
Marchis, Severini, Castronovo, Schmid, & Conforto, 2015; Farmer, Bremner, Halliday, 
Rosenberg, & Stephens, 1993), research on possible cortical contributions during 
whole-body movements comes with challenges (Gwin, Gramann, Makeig, & Ferris, 
2010). Several studies already revealed the phasic modulation of cortico-muscular 
coherence (Gwin & Ferris, 2012; Gwin, Gramann, Makeig, & Ferris, 2011; Roeder et 
al., 2018) and their importance of stabilizing modes of coordination (Bruijn, Van 
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Dieën, & Daffertshofer, 2015). Interestingly, a recent experiment by Zandvoort et 
al. (2019) successfully identified cortical contributions to synergy formation by 
combining electro-encephalography with EMG-based synergy analysis. Future 
work may adopt this approach to substantiate our suggestions about high-
frequency, long-distant neural activation in the context of interlimb coordination 
and their sources in the central nervous system.

Conclusion
The reorganization in muscle synergies and the concomitant alterations in 
coherence modulations of common neural input to multiple muscles highlight that 
switches in interlimb coordination are associated with changes in neuromuscular 
control. Network analysis of connectivity between all muscle pairs showed that 
the modularity of the neuromuscular system couples anatomical and functional 
linked muscles. The speed-induced transition to a 1:1 arm-leg frequency locking 
is accompanied by strong intermuscular coherence between upper and lower 
body muscles. This functional connectivity is particularly pronounced at higher 
frequencies indicating a significant long-distance neural interaction that 
accompanies the formation of muscle synergies.
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APPENDIX

Muscle activity

Figure 5.S1 Grand average muscle activity patterns for all muscles in the different modes 
of coordination during the gait cycle. 0 and 100% indicate the right heel strike. Green, cyan 
and blue temporal patterns represent the 2:1, transition (T) and 1:1 mode of coordination, 
respectively. Error patches represent the standard error of the mean across subjects.
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Muscle synergies per condition
We obtained both varying wave forms and weightings when muscle synergies were 
estimated per condition, i.e. the EMG data was not concatenated. Nevertheless, 
the wave forms and weightings were similar to the synergies estimated over the 
concatenated data.

Figure 5.S2 Muscle synergies estimated per mode of coordination. A) Muscle synergy wave 
forms. Green, cyan and blue represent the 2:1, transition (T) and 1:1 mode of coordination, 
respectively. B) Muscle synergy weightings of the 2:1, C) transition, D) 1:1 mode of coordination. 
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Comparison low frequency coherence and synergy networks
Muscle synergies reveal slow-temporal dynamics of muscle activity while 
intermuscular coherence is mainly focused on high-frequency connectivity 
between muscles. Both provide information about the function of the same 
neuromuscular system in different modes of coordination. Low-frequency 
intermuscular coherence is expected to display similarities with muscle synergies. 
To show this, we here discarded condition specific frequency information (e.g. 
stride time) by time normalization of the stride. Subsequently, we estimated 
intermuscular coherence between all muscle pairs in the frequency range of 0.6-4 
Hz in which 1 Hz represents the stride duration. We used the same procedure as 
described in the method section Intermuscular coherence but used a window of  
5 s instead of 200 ms, which allowed to focus on coherence at low frequencies with 
a frequency resolution of 0.2  Hz. We applied non-negative matrix factorization 
over the coherence spectra and again used Eq. (5.1) to select the number of 
frequency components and estimated the community structure across frequency 
components and conditions. We examined the similarity of the community 
structure of the low and high frequency coherence networks by permutation 
testing (number of iterations = 10.000) of the Rand index and the adjusted Rand 
index. The Rand index is the sum of the edges present within the same and in 
different modules of both networks divided by the total number of edges in the 
networks. A Rand index of 1 implies that all edges are placed in the same module 
in both networks. The adjusted Rand index additionally accounts for grouping of 
the edges by chance (Fortunato, 2010; Qannari, Courcoux, & Faye, 2014).

Two modes were used to decompose the coherence spectra; λc = 19%.
and λ1,2    = [9,10]%.(coh)  One frequency component showed a peak at 1.5 Hz, while 
intermuscular coherence was high in the other frequency component at 2.5 and 
3.5 Hz (Figure 5.S3A). The community structure of the low-frequency coherence 
was very similar to the community structure of the coherence networks over the 
frequency range of 4-60 Hz: The Rand and adjusted Rand index were 0.85 and 
0.63, p < 0.001, respectively. The legs were again mainly divided into two modules, 
though, the muscles at the medial and posterior side (AD and BF) of the right upper 
leg were part of the left leg module, and the trunk and arms formed one module. 
The coherence networks of 1:1 revealed the clearest similarities with the synergy 
networks (Figure 5.S3B). The frequency component of 1.5 Hz showed high within 
leg connectivity and was very similar to the heel strike synergies (S1 and S4), while 
the connectivity in this network was also high within the trunk and arms. The latter 
was also shown in all synergies except of S2. Connectivity at 2.5 and 3.5 Hz was 
even stronger within and between the trunk and arms. This network also showed 
the high interlimb connectivity around the pelvis which was typical for S2. Other 
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notable connectivity in the low-frequency coherence networks was found in the 
2:1 condition with long-distance connectivity between the leg and the ipsilateral 
arm which was also shown S3 and S5 and related to the in-phase movement of the 
arm and leg.

Figure 5.S3 Minimally-connected multiplex coherence network for frequency range of 
0-4 Hz. A) Frequency components and B) the corresponding coherence networks for the 2:1, 
transition (T) and 1:1 mode of coordination. The community structure is color-coded and 
the node size and edge width represent degree and connectivity strength between muscles, 
respectively.
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Community structure minimally-connected muscle networks
Thresholding of the edges is a common procedure in the analysis of networks. 
The removal of meaningful edges can induce ambiguities in the interpretation of 
differences between networks. Here we used a community structure algorithm 
to detect modules based on all the significant weighted edges in the networks. 
Another option to determine the community structure is to construct a minimally-
connected binary network in which only the highest edges are considered for the 
determination of the clustering in the network (Didier, Brun, & Baudot, 2015). 

We found that thresholding the synergy and coherence networks to construct a 
minimally-connected multiplex network barely affected the community structures 
of the networks (Figure 5.S4). The synergy network consisted of two modules, one 
mainly at the lower legs, while the other one covered the pelvis and the upper 
body, but the division of the two modules does not seem to represent any clear 
anatomical or functional constraint and hence seemed not to be meaningful. The 
community structure of the coherence network, in contrast, was the same as the 
one of the unthresholded and weighted network and did resemble the anatomical 
and task constraints. Thresholding of the edges in this data set seemed not to affect 
the clustering of the network. The clustering in the network is probably driven by 
the edges with high connectivity.

Figure 5.S4 The community structure of the minimally-connected multiplex A) muscle 
synergy B) and coherence networks based on the synergy and coherence spectra muscle 
weightings. Community structure is visualized by color-coded nodes and the average degree 
across layers of every muscle is displayed as node size on the body mesh (Makarov et al., 2015). 
The edge width is based on the average connectivity across layers between the muscles in 
either the synergy or coherence network.
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SUMMARY OF FINDINGS

My overarching aim was to identify mechanisms that accompany impaired walking 
development in children who are at high risk of developing cerebral palsy (CP). 
The literature review in Chapter 2 confirmed the general hypothesis that older 
children with CP recruit fewer synergies than typically developing (TD) children. 
Both the spatial and the temporal synergy structure seem to differ between these 
groups rendering muscle synergy analysis a promising method to quantify altered 
neuromuscular control and to predict outcomes of clinical interventions. 

While the vast majority of studies in this review focused on walking in school-
age children with CP, one can expect the window before the onset of independent 
walking to be critical for improving the walking function in CP. In Chapter 3 I 
therefore investigated neuromuscular control in young children before and just 
after the onset of independent walking. I compared the corresponding differences 
between children at high risk of CP and TD children. As expected, children at high 
risk of CP recruited fewer synergies than TD children already during this early 
phase of motor development, suggesting that early brain lesions in CP express as 
early modifications of neuromuscular control.

In view of the high within-subject variability in children with CP, I adopted a 
longitudinal design in Chapter 4. I explored different gait kinematic and EMG 
measures in three children at high risk of CP with divergent developmental 
trajectories. Two of them started to walk independently, whereas the third child did 
not reach independent walking at 4.5 years of age. The first two displayed gradual 
changes in spatiotemporal gait parameters, intersegmental coordination, muscle 
activation patterns and muscle synergy structure, from supported to independent 
walking. In contrast, the child who did not develop independent walking, did not 
show any significant changes across gait parameters over the course of two years. 
To generalize conclusions, however, a much larger sample (n » 3) will be required.

To obtain a broader view on mechanisms that hamper the development of 
walking in children with CP in terms of altered synergies, their origin should be 
clarified in a more principle sense. Do synergies emerge at a spinal level or is 
there a ‘higher’ level of control in the central nervous system (CNS)? The higher 
frequency components of the EMG signals may help to provide an answer to 
this profound question. In Chapter 5 I investigated both muscle synergies and 
intermuscular coherence during tempo-induced changes of interlimb coordination 
during walking in adults. These changes seemingly caused a reorganization of 
muscle synergies together with alterations in coherence modulations at higher 
frequencies between muscles of the upper and the lower body and between 
bilateral leg muscles. Put differently, long-distant neuromuscular connections 
accompany the formation of muscle synergies, rendering contribution of higher-
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level centers in the CNS to the formation of muscle synergies likely. Whether or not 
this also applies to children with CP remains to be seen, but if so, these findings 
appear promising tackling the searched-for mechanisms that accompany impaired 
walking development.

DEVELOPMENT OF NEUROMUSCULAR CONTROL

The studies in this thesis addressed the development of neuromuscular control, 
as evaluated by muscle synergy analysis, following the hypothesis that muscle 
synergies reflect neuromuscular control from the CNS. Different approaches where 
applied, using a cross-sectional (Chapter 2 and Chapter 3) and a longitudinal 
(Chapter 4) design, in order to answer the following question:

• How is the development of neuromuscular control affected by early brain lesions in 
very young children with or at high risk of CP?

Quantification of muscle synergies
In TD children, the number of synergies increases from two during neonate stepping, 
to four in toddlers who start to walk independently (Dominici et al., 2011). Previous 
studies revealed that school-age children with CP, who walk independently, recruit 
fewer synergies compared to TD children (Chapter 2). Yet, it was unknown how 
the number of synergies developed from supported to independent walking in 
children with CP. In the study described in Chapter 3, I found that children with 
early brain lesions at high risk of CP recruit fewer synergies than TD children already 
before the onset of independent walking in the supported walking phase and also 
in the first years of independent walking. It seems that even before the emergence 
of independent walking, the dimensionality of neuromuscular control is reduced. 
Children with asymmetric CP, who walked independently, recruited fewer synergies 
that accounted for more muscle activity in the most compared to the least affected 
side. This agrees with previous research in post-stroke individuals with unilateral 
lesions (Coscia et al., 2015), and children with unilateral CP (Cappellini et al., 2016). 
This difference between sides in the asymmetric CP group appeared to be absent 
in the supported walking phase. Likewise, the child with unilateral CP described in 
Chapter 4 showed a more pronounced, principal synergy in the most compared 
to the least affected side during the first steps and independent walking sessions, 
while this was not visible during supported walking before the first independent 
steps. Admittedly, this might have been influenced by the support the children 
received as this could have minimized differences between the legs. However, it 
may also mean that this disparity between sides occurs later in motor development, 
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after the onset of independent walking. The latter seems more compelling, but it 
remains to be seen whether this interpretation holds true.

Varying levels of functional mobility in children with CP may impact the 
quantification of synergies. Previous studies found a relationship between the 
number of synergies and severity of CP, where children with higher GMFCS levels 
recruited fewer synergies (Steele et al., 2015; Tang et al., 2015). The child with 
bilateral CP GMFCS III described in Chapter 4 recruited only two synergies during 
supported walking at the corrected age of 30 months, and this stayed constant 
longitudinally in the four sessions recorded afterwards until the corrected age 
of 54 months. During this period, this child did not start to walk independently. 
The lower number of synergies in children with CP may result from a lack of 
fractionation of muscle synergies, i.e. splitting of synergies into more, during 
development (Clark et al., 2010; Hashiguchi et al., 2016). If true, this may imply that 
children with CP do have access to four synergies, but fail to manage to recruit all 
of them independently. 

Structure of muscle synergies
Spatial structure (muscle weights) and temporal structure (timing and duration 
of peaks of the temporal activation patterns) of muscle synergies are typically 
compared given a fixed number of synergies. Although previous studies found 
differences in both spatial and temporal structure of synergies between children 
with CP and TD children (Chapter 2; Cappellini et al., 2016, 2018; Kim et al., 2018b; 
Steele et al., 2015; Torricelli et al., 2014; Yu et al., 2019), no major differences in 
synergy structure were found in Chapter 3. This was the case for both supported 
and independent walking between children with or at high risk of CP and TD 
children. One may explain this by the relatively high functional mobility levels 
of the children in the CP group, who were previously found to have synergy 
structures comparable to TD children (Cappellini et al., 2016; Yu et al., 2019). In 
children walking with support, spatial structure was similar for synergy 2 and 
synergy 4, but not for synergies 1 and 3. It might be that – in general –  synergies 
2 and 4 are similar in this young group as they are already present during neonate 
stepping (Dominici et al., 2011), whereas synergies 1 and 3 are still maturing. In my 
experiment, this may have caused a larger variability between children in both the 
CP and TD group. 

Interestingly, the spatial synergy structure appears to be more robust than 
the temporal synergy structure. The two children at high risk of CP described in 
Chapter 4, who developed independent walking, did not show a change in spatial 
synergy structure during the transition from supported to independent walking. 
However, the temporal synergy structure did change in shape and burst width 
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over time. Shuman et al. (2019) reported that the spatial structure of synergies 
remained unaltered after treatment, while the temporal structure did change. This 
change was related to improved gait. Apparently, the spatial structure of synergies 
is less adaptable than its temporal counterpart, much in line with a reduction in 
neural plasticity in children with CP. These children may be able to activate the 
same groups of muscles together as TD children, but the timing and duration of 
the activation of these muscles may differ. Previously found similarities in the 
synergy activation patterns between older children with CP and TD toddlers at 
their first steps (1-1.2 years old) suggest that the development of the temporal 
structure of synergies lags behind in children with CP compared to TD children 
(Cappellini et al., 2016). This agrees with previous research showing similarities in 
the walking pattern in older children with CP and young TD children (Berger et al., 
1982, 1984; Leonard et al., 1991).

DEVELOPMENT OF GAIT KINEMATICS

The relation between the development of gait kinematics and neuromuscular 
control is important to understand the underlying mechanisms of walking 
development. An important question about the development of treatments for 
children with CP remains: Can we improve gait kinematics by adapting muscle 
synergies or vice versa?

• What is the relation between the maturation of gait kinematics and neuromuscular 
control in children with or at high risk of CP?

Irrespective of the age of the children, planar covariation of limb elevation angles 
matured rapidly in the first months after the first independent steps (Chapter 4), 
which agrees with previous research (Cheron et al., 2001; Ivanenko et al., 2004a, 
2007). During supported walking and first steps the most affected side of the 
child with unilateral CP deviated more from planarity than the least affected 
side, while we could not establish differences between sides during independent 
walking. This contrasts the findings on the first synergy’s contribution (VAF1) in 
the same child and in children with asymmetric CP in Chapter 3, which differed 

between sides during independent walking only. It seems that gait kinematics 
and neuromuscular control do not develop simultaneously. Previous research 
supports this idea, reporting no association between gait kinematics and muscle 
activations (Buurke et al., 2008) or muscle synergies (Booth et al., 2019). More 
recently, a simulation-based study indicated muscle-tendon properties to be more 
predictive for the impaired crouch gait pattern than for impaired neuromuscular 



Chapter 6 - General discussion

136

control (Falisse et al., 2020). 
Although we showed that gait kinematics improved during the transition 

from supported to independent walking, the modulation of muscle groups to 
effectively conduct this motor behavior did not coincide. Presumably both neural 
and kinematic factors underlie the development of walking (Dewolf et al., 2020), 
but apparently their developmental paths towards mature walking differ. Gaining 
more insight into the time frame in which gait kinematic and neuromuscular 
development occur, and unravelling the sensitive period for maturation of these 
features will be important for the design of novel diagnostics and therapies.  

METHODOLOGICAL CONSIDERATIONS

As indicated in Chapter 2, several methodological choices are needed when 
determining muscle synergies. As such I sought to address the following question:

• How do methodological choices impact the investigation of neuromuscular control?

Muscle synergy analysis
EMG signal processing techniques, i.e., filtering and amplitude scaling, are known 
to affect muscle synergy outcomes. The chosen frequency range of interest 
influences the number of synergies considered relevant (Santuz et al., 2017; 
Shuman et al., 2017; van der Krogt et al., 2016), while filter type and order seem 
to have minor effects (Devaprakash et al., 2016; Santuz et al., 2017). The majority 
of studies investigating muscle synergies in children with CP use a low-pass filter 
with a cut-off frequency of 10 Hz when distilling EMG envelopes (Chapter 2), a 
choice that has been adopted here (Chapters 3, 4 and 5). The (type of ) amplitude 
scaling can also impact the weighting of synergies per muscle. Unfortunately, a 
commonly accepted way of scaling the amplitude is few and far between. Yet, 
in this thesis this important pre-processing step has been applied consistently, 
namely EMG amplitudes of every muscle were normalized to the maximum of its 
mean value plus its standard deviation. 

Decomposing EMG signals in muscle synergies require recording of a 
sufficiently large number of muscles over a sufficiently long period (i.e. number 
of strides). Many previous studies that employed retrospective data from clinical 
measurements suffered from a limited number of muscles as few as four or five 
muscles, which may readily lead to an over-estimation of synergy contributions 
and, hence, misinterpretation (Damiano, 2015; Steele et al., 2013; Zelik et al., 2014). 
In the studies of Chapters 3, 4, and 5, I sought to record a number of 11 muscles 
per side, which resulted in sufficiently accurate estimates of muscle synergies. A 
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minimum of 20 strides was recorded to minimize the effect of variability between 
strides (Oliveira et al., 2014). 

Defining the number of relevant synergies by their contribution to the total data 
variance remains a topic of debate. In the literature values easily span a range from 
80-95% rendering comparison between studies difficult, if at all possible. Not only is 
there no consensus on the optimum amount of variance that ought to be covered, 
the very fact of judging the relevance of a mode decomposition by a measure 
(variance) that is not optimized by the method used for the decomposition renders 
this approach questionable. Non-negative matrix factorization (NMF) defines 
modes by minimizing the Frobenius (or matrix) norm. Hence, in Chapter 3 and 
Chapter 5 the synergies’ contribution to this norm was determined. For the sake of 
comparability with other studies, however, the ‘traditional’ variance-accounted-for 
(VAF) was also presented in Chapter 3 and 4. 

Conventional approaches to reduce dimensionality are principal component 
analysis (PCA), independent component analysis (ICA), and NMF. The latter is 
mainly used for the decomposition of EMG data, as muscle activity are considered 
to superimpose constructively; in fact it has been suggested to be the method 
for identifying muscle synergies in dynamic tasks (Rabbi et al., 2020). The NMF 
approach comes in various algorithmic implementations. Like most studies 
on muscle activation modularity in children with CP, we used the so-called 
synchronous synergy model (time-invariant approach) and it might be interesting 
to see to what extent alternatives like the time-varying synergy model (d’Avella & 
Tresch, 2002) or the space-by-time model (Delis et al., 2014) yield different results.

Muscle network analysis
Muscle network analysis provides new opportunities for the evaluation of the 
synchronization between motor units across a large number of muscles, in addition 
to the conventional synergy analysis. As shown in Chapter 5, muscle network 
modulations can illustrate modifications in the neuromuscular system related to 
changes in functional behavior during walking. At lower frequencies, synergy and 
network analysis yielded equivalent results, while at higher frequencies there was 
no obvious match between the two. Strong intermuscular coherence between 
upper and lower body muscles was especially prominent at higher frequencies, 
suggesting long-distant neural communication to coincide with the formation 
of muscle synergies. Network analysis should be considered complementary to 
synergy analysis, as both appear to capture distinct aspects of neuromuscular 
control. Our findings in adults are promising for future research investigating 
neuromuscular control in children with CP. 
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LIMITATIONS

Experimental constraints like number of muscles and strides, methodological 
factors such as EMG (pre-)processing, and the choice of synergy model, may 
impact muscle synergy outcomes. This may cause variability in results between 
different studies investigating muscle synergies during walking, limiting the 
ability to compare the outcomes in this thesis with other studies in this research 
field. The participants under study provided further limitations. The body size of 
the children recorded in the studies in this thesis was small, particularly in the 
early sessions before the onset of independent walking during supported walking, 
leaving limited space for mounting EMG electrodes. This might have led to cross-
talk in the EMGs of adjacent muscles, affecting data quality and causing spurious 
covariates. To minimize this potential problem, we used particularly small-size 
electrodes. Moreover, the possibility of improper electrode positioning and also 
improper marker placement or skin movement artefacts in the 3D motion capture 
is unavoidable in movement analysis, but might even be higher in small children. 
And, it is a challenge to record ‘normal’ walking in young children who are eager 
to play rather to walk on a boring treadmill, leading to variability in the walking 
pattern between trials of one child and between children. Also in young TD children 
some strides can be classified as abnormal, when compared to a group averaged 
curve, due to stride-to-stride variability (Oudenhoven, Booth, Buizer, Harlaar, & van 
der Krogt, 2019a).

The heterogeneity of the group of children with CP, including a wide diversity 
of walking ability, caused large variations in the number and structure of muscle 
synergies. This is particularly true as in my thesis I aimed to cover a wide variety 
of children with CP who would develop independent walking, including children 
with functional mobility levels ranging from GMFCS I-III. Due to a limited number of 
subjects, it was impossible to distinguish separate groups to examine the diversity 
in the group of children with CP. Chapter 4 revealed that development of gait 
kinematics and neuromuscular control in a child with severe CP (GMFCS III) who 
did not develop independent walking differed from the child with less severe CP 
(GMFCS I). Thus, we cannot take the whole group of children with CP as one, and in 
follow-up studies it is advised to examine the diversity of this group by including 
separate functional mobility level groups with sufficient sample sizes.

Recording a large amount of muscles in very young children was considered 
impossible up until recently. Using portable EMG system and small, wireless 
electrodes, the work in this thesis shows that it is feasible to measure high-quality 
muscle activation data in very small children, even before the onset of independent 
walking. True, data acquisition is laborious, making it difficult to include in the 
clinic and in large cohorts. Without a doubt, further development of these new 
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techniques will facilitate the use of muscle synergy analysis in young children with 
early brain lesions, at high risk of CP, in larger sample sizes for clinical purposes.

Investigating young children at high risk of CP is important. The crucial time for 
early detection and interventions may be well before the age of two years, when 
the brain is most plastic and the corticospinal tract is still maturing (Friel et al., 2014; 
Hadders-Algra, 2014; Morgan et al., 2021; Novak et al., 2017; Yang et al., 2013). The 
practical problem of including children at high risk of CP without diagnosis of CP, 
yet, is that they may not develop CP. We are not yet able to deviate children who do 
develop CP from children who do not, making it even more important to devote 
more studies on the investigation of this early period of development in children 
with early brain lesions. 

FUTURE DIRECTIONS

The work in this thesis was an exploratory investigation of the underlying 
mechanisms of walking development in children with CP or at high risk of CP. 
The longitudinal case series (Chapter 4) investigating walking development in 
three children at high risk of CP with divergent development trajectories, thereby 
minimizing inter-subject variability, shows that it is possible and promising 
to use a longitudinal design in larger samples. This could offer new insights 
into developmental changes in young children with CP, which may reveal new 
paradigms for early interventions in CP.

Crawling is an important developmental milestone, which is used in clinic to 
identify delayed motor development on a regular basis.  Recent research showed 
that children with developmental delay and high risk of developing CP used 
fewer muscle synergies (decomposed from four leg and four arm muscles) and 
increased co-activation of muscles during hand-and-knees crawling compared 
to age-matched TD children (Gao et al., 2018; Xiong et al., 2018). Up to now, 
movement abnormalities in very young children before the onset of independent 
walking are often assessed through visual inspection of the quality of movement. 
The assessment of general movements has been shown a sensitive tool for early 
identification of children at high risk of CP (Hadders-Algra, 2004, 2014; Herskind, 
Greisen, & Nielsen, 2015; Kanemaru et al., 2014). In addition, the investigation of 
neuromuscular control during crawling, in combination with supported walking 
as proposed in this thesis, might serve as a promising method to reveal impaired 
motor control prior to the onset of independent walking. 

Whether or not muscle synergies have a neural origin is still a controversial 
topic (Bizzi & Cheung, 2013). Some argue muscle synergies are encoded in the 
cortex (Zandvoort et al., 2019), whereas others claim they arise in the spinal cord 
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(Cappellini et al., 2010; Ivanenko et al., 2008), or in the brain stem (Schepens & 
Drew, 2004). The origin of muscle synergies may even depend on the phase of 
development, as the spinal cord and brainstem were shown to reflect muscle 
synergies in neonates, while the integration of supraspinal and sensory motor 
control increased during development (Dominici et al., 2011). To solve this issue, 
future research should add direct assessments of cortical activity, i.e. synchronous 
EEG recordings (Short et al., 2020). Likewise promising appears to be the study of 
spinal maps (Ivanenko et al., 2013) when combined to the approaches outlined 
in this thesis. Moreover, muscle network analyses, as shown in Chapter 5, are 
ready to be implemented and – by now – are known for their additive value when 
searching for the origin of muscle synergies.

CLINICAL IMPLICATIONS

Following the idea of a combination of muscle synergy-, muscle network-, 
spinal activity-, and EEG-analysis may be a significant step in the design of early 
interventions that can target neural pathways. Together with the development 
of wearable sensors (Airaksinen et al., 2020; Redd et al., 2019; Xu et al., 2019), 
biofeedback (Booth et al., 2019; He et al., 2019), movement analysis without 
markers using machine learning models (Kidziński et al., 2020), and electrical 
stimulation of muscle, tendons (Sommerfelt et al., 2001; Stackhouse et al., 2007; 
Wright et al., 2012), or spinal cord (Solopova et al., 2017), we might become able 
to enhance early detection of impaired motor development in children with early 
brain lesions. We may identify targets for early interventions to promote walking 
improvement in children with CP.

Muscle synergy analysis may also be used as a method to predict treatment 
outcomes. Several studies discussed in Chapter 2 reported a relation between 
the effect of treatment and muscle synergies before treatment, and a recent 
simulation-based study confirmed these findings (Pitto et al., 2020). It seems that 
knowledge about neuromuscular control could potentially assist in treatment 
planning. However, we need to be careful when linking neuromuscular control to 
gait kinematics directly: gait kinematics may follow a different developmental path 
than muscle synergies (Chapter 4). The overall findings of my thesis do provide 
further insight in the underlying mechanisms of walking development in CP and 
the results are promising. 

The clinical use of EMG and muscle synergies to assess impaired neuromuscular 
control in CP remains limited. Although the findings in this thesis do not directly 
imply that the calculation of muscle synergies would help clinicians to make 
clinical decisions, they may lay a foundation for further research. To bridge the 



6

141

gap between researchers and clinicians, a constant dialogue and interdisciplinary 
collaboration is necessary (Cappellini et al., 2020a). This may indeed increase the 
impact of muscle synergy analysis for rehabilitation of children with CP. Together 
with other researchers in the field we must join forces to improve motor function 
in children with CP.

CLOSING REMARKS

The work in my thesis should be considered a small step towards a better 
understanding of the underlying mechanisms of impaired walking development 
in children with CP. Children with early brain lesions, at high risk of CP, recruit 
fewer synergies compared to TD children with the same walking ability already 
in the early phase of motor development. Apparently, brain lesions in CP express 
as early modifications of neuromuscular control. The proper way of assessing this 
are longitudinal studies over the course of walking development as they help 
to minimize inter-subject variability in the heterogenous CP group. My studies 
provide evidence that muscle synergy analysis is a promising objective method 
for the detection of impaired neuromuscular control in young children, and 
that muscle network analysis may add valuable information in future research. 
Confidently, these findings encourage researchers to continue investigating the 
underlying mechanisms of walking development to support the design of early 
interventions to improve walking ability in children with CP.
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Summary

Malformation or lesions of an immature brain may cause cerebral palsy (CP). 
Children with CP typically start to walk independently later than typically 
developing (TD) children, and their walking patterns were previously found to 
retain some characteristics of immature toddler walking patterns. These walking 
problems can be explained by limited selective motor control, at least to some part. 
At young age, the brain is highly plastic and the corticospinal tract still maturing. 
Hence, early interventions that target in particular neuromuscular mechanisms 
appear excellent candidates for improving functional mobility in children with CP. 
A possibility to unravel neuromuscular mechanisms is muscle synergy analysis. 
Walking requires refined coordination, and the central nervous system arguably 
simplifies neuromuscular control during walking by the recruitment of groups 
of muscles, i.e. muscle synergies. Capitalizing on a wealth of earlier findings 
on muscle synergies, I used this concept to identify mechanisms that underlie 
impaired walking development in young children with or at high risk of CP.

While my introductory Chapter 1 provides a more detailed sketch of this 
conceptual framework and a brief explanation of the definition and classification 
of CP, for Chapter 2 I systematically reviewed the literature for the current status 
of research on muscle synergies during walking in children with CP compared to 
TD children. This resultant overview includes an assessment of muscle synergy 
analysis as a means to quantify and predict treatment outcomes in children with 
CP. Twelve out of 16 included studies revealed that children with CP recruited fewer 
muscle synergies and eight studies showed that either the spatial or the temporal 
structure differed between children with CP and TD. Overall, the variability was 
larger in children with CP, yet, it appears that children with CP use a ‘simpler’ motor 
control strategy compared to TD children. Importantly, three studies indicated that 
muscle synergy characteristics before treatment may serve to predict treatment 
outcomes. 

The time before the onset of independent walking may be a critical period for 
early interventions to improve motor functions including walking. In Chapter 3 I 
hence assessed whether neuromuscular control in young children with CP differs 
from that of TD children with the same walking ability in the early phase of walking 
development. Twenty children with (high risk of ) CP and twenty TD children (age 
6.5-52.4 months) were grouped based on their walking ability, supported or 
independent walking. Muscle synergies were extracted from electromyographic 
signals of bilateral leg muscles. Conform earlier findings in, e.g., Chapter 2, the 
children with (high risk of ) CP were found to recruit fewer synergies than TD 
children in both the supported and independent walking groups. And, the most 
affected side in children with asymmetric CP walking independently showed fewer 
synergies than the least affected side. This suggests that early brain lesions result 
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in early alterations of neuromuscular control specific for the most affected side in 
children with asymmetric CP.

The study summarized in Chapter 3 had a cross-sectional design, rendering 
inferences about causes of (altered) development limited. In Chapter 4 I therefore 
adopted a longitudinal design, employing a combination of kinematic and 
electrophysiological measures. Three children at high risk of CP with different 
developmental trajectories were followed during five consecutive sessions 
covering a period of one to two years. The assessments had started prior to the 
onset of independent walking and included a session during the first independent 
steps, when present. One child did not develop CP, one was diagnosed with 
unilateral and one with bilateral CP. The child without CP and the one with 
unilateral CP started to walk independently with spatiotemporal gait parameters, 
intersegmental coordination, muscle activation patterns and muscle synergy 
structure that altered when switching from supported to independent walking. In 
the child with unilateral CP, especially for the most affected leg, changes were less 
pronounced. The child with bilateral CP did not develop independent walking and 
did not show any changes over time in the aforementioned parameters. While these 
findings did indicate differences in maturation of locomotor patterns between 
children with divergent developmental trajectories, a clearly larger sample should 
be assessed to verify the current results. Only then one may further speculate 
about the mechanisms that may underlie impaired walking development in very 
young children at high risk of CP, let alone use this approach to improve prognosis 
and to pinpoint possible targets for early intervention.

Muscle synergy analysis is a by now classic approach to assess neuromuscular 
control in children with CP. Yet, there are alternatives. Muscle network analysis builds 
on intermuscular coherence and hence evaluates the synchronization between 
motor units across a large number of muscles. Chapter 5 is a further contribution 
to this methodological advance. Both muscle synergy and muscle network analysis 
were used to examine whether switches in interlimb coordination in healthy adults 
are accompanied by changes in functional activity between multiple muscles. Speed 
changes during treadmill walking served to induce switches in the frequency and 
phase relationships between arm- and leg-swing. This rapid transition coincided 
with changes in both muscle synergies and intermuscular coherence. While the 
coherence network changes at low frequencies largely resembled the dynamic 
pattern of the synergies (with the latter being clearer), at higher frequencies other 
coherence patterns came to the fore. In a nutshell, the change in stability of arm/leg 
coordination could be associated with modulations in long-distant neuromuscular 
connectivity between arms and legs. Muscle synergy and muscle network analysis 
should hence be considered complementary as they potentially capture different 
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aspects of neuromuscular control. These findings in adults are promising for future 
research investigating neuromuscular control in children with CP.

Chapter 6 reflects on the findings in this thesis. Particular focus is put on 
their implications in the quest on the mechanisms that underlie impaired 
walking development in CP. Brain lesions in CP express as early modifications of 
neuromuscular control. Muscle synergy analysis, possibly in conjunction with 
muscle network analysis, is a promising objective method for the detection of 
impaired neuromuscular control. In the future, this may help in designing early 
interventions to improve walking ability in children with CP. 
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Hersenbeschadiging in een onvolgroeid brein kan de diagnose cerebrale 
parese (CP) als gevolg hebben. Kinderen met CP beginnen doorgaans later 
zelfstandig te lopen dan zich normaal ontwikkelende (TD) kinderen en uit eerder 
onderzoek bleek dat hun looppatronen enkele eigenschappen van onvolwassen 
looppatronen behouden. Deze loopproblemen kunnen tot op zekere hoogte 
verklaard worden door een beperkte selectieve motorische aansturing. Bij 
jonge kinderen is het brein nog zeer plastisch en zijn de corticospinale banen 
nog in ontwikkeling. Daarom zouden vroege interventies, die zich richten op de 
neuromusculaire aansturing tijdens het lopen, belangrijk kunnen zijn voor het 
verbeteren van functionele mobiliteit van kinderen met CP. Een mogelijkheid 
om de neuromusculaire mechanismen van loopontwikkeling te ontrafelen is 
spiersynergie-analyse. Verfijnde aansturing van een groot aantal spieren is vereist 
tijdens het lopen en naar alle waarschijnlijkheid vereenvoudigt het centrale 
zenuwstelsel dit proces door het aansturen van groepen spieren, zogenaamde 
spiersynergieën. Voortbouwend op eerdere bevindingen van spiersynergieën heb 
ik dit concept gebruikt om de mechanismen te identificeren die ten grondslag 
liggen aan de verstoorde loopontwikkeling van jonge kinderen met, of met een 
hoog risico op, CP.

Terwijl mijn inleidende Hoofdstuk 1 een meer gedetailleerde schets geeft van 
dit conceptueel kader, inclusief een korte uitleg van de definitie en classificatie van 
CP, heb ik in Hoofdstuk 2 de literatuur systematisch geïnspecteerd om de huidige 
staat van onderzoek naar spiersynergieën tijdens lopen in kinderen met CP ten 
opzichte van TD-kinderen weer te geven. Dit resulterende literatuuroverzicht bevat 
een beoordeling van spiersynergie-analyse als middel om behandelresultaten bij 
kinderen met CP te kwantificeren en te voorspellen. Twaalf van de 16 geïncludeerde 
studies lieten zien dat kinderen met CP minder spiersynergieën gebruikten 
in vergelijking met TD-kinderen en acht studies toonden dat de spatiële en 
temporele structuur van spiersynergieën verschilden tussen kinderen met CP en 
TD. In het algemeen was de variabiliteit bij kinderen met CP groter, echter lijken 
kinderen met CP een ‘simpelere’ motorische aansturingsstrategie te gebruiken dan 
TD-kinderen. Daarnaast gaven drie studies aan dat spiersynergie-eigenschappen 
gemeten voorafgaand aan de behandeling mogelijk behandelingsuitkomsten 
kunnen voorspellen. 

De periode voor aanvang van zelfstandig lopen is mogelijk cruciaal voor  
vroege interventies om motorische functies, inclusief lopen, te verbeteren. In 
Hoofdstuk 3 heb ik daarom onderzocht of neuromusculaire aansturing bij jonge 
kinderen met CP verschilt van die van TD-kinderen met dezelfde loopvaardigheid, 
met behulp van spiersynergie-analyse. Twintig kinderen met (een hoog risico 
op) CP en twintig TD-kinderen (6.5-52.4 maanden oud) werden gegroepeerd op 
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basis van hun loopvaardigheid, ondersteund of zelfstandig lopen. Spiersynergieën 
werden onttrokken uit de spieractiviteit-data van bilaterale beenspieren. In lijn 
met eerdere bevindingen, bijvoorbeeld Hoofdstuk 2, gebruikten kinderen met (een 
hoog risico op) CP minder synergieën dan TD-kinderen in zowel de ondersteund 
als zelfstandig lopen groep. Daarnaast liet de meest aangedane kant van kinderen 
met asymmetrische CP die zelfstandig lopen minder synergieën zien dan de minder 
aangedane kant. Deze bevindingen suggereren dat vroege hersenbeschadiging 
resulteert in vroege afwijkingen in de neuromusculaire aansturing, specifiek voor 
de meest aangedane kant bij kinderen met asymmetrische CP. 

De studie samengevat in Hoofdstuk 3 had een cross-sectioneel design, 
waardoor conclusies over de oorzaken van een (veranderde) ontwikkeling 
beperkt worden. Om die reden heb ik in Hoofdstuk 4 een longitudinaal design 
aangenomen, waarbij ik gebruik maakte van een combinatie van kinematische 
en elektrofysiologische metingen. Drie kinderen met een hoog risico op CP, 
met uiteenlopende ontwikkelingstrajecten, werden gevolgd gedurende vijf 
opeenvolgende sessies over een periode van één tot twee jaar. Het onderzoek 
begon voor de aanvang van zelfstandig lopen en omvatte een sessie met de eerste 
zelfstandige stapjes. Eén kind ontwikkelde geen CP, één was gediagnostiseerd 
met unilaterale CP, en één met bilaterale CP. Het kind zonder CP en het kind met 
unilaterale CP gingen zelfstandig lopen en tijdens de switch van ondersteund naar 
zelfstandig lopen lieten zij veranderingen zien in spatiotemporele loopparameters, 
intersegmentele coördinatie, spieractivatiepatronen en spiersynergie-structuur. 
Bij het kind met unilaterale CP waren deze veranderingen minder prominent 
in de meest aangedane kant. Het kind met bilaterale CP ging niet zelfstandig 
lopen en liet geen veranderingen zien in de eerdergenoemde parameters over 
de tijd. Hoewel deze bevindingen verschillen laten zien in de ontwikkeling van 
bewegingspatronen tussen kinderen met uiteenlopende ontwikkelingstrajecten 
zijn er grotere steekproefsamples nodig om de huidige resultaten te verifiëren. 
Alleen dan kunnen we verder speculeren over mechanismen die mogelijk ten 
grondslag liggen aan de verstoorde loopontwikkeling bij zeer jonge kinderen met 
een hoog risico op CP, laat staan over het gebruik van deze aanpak als middel om 
prognoses te verbeteren en om mogelijke doelen voor vroege interventie vast te 
stellen.

Spiersynergie-analyse is een inmiddels conventionele manier om neuromus-
culaire aansturing bij kinderen met CP te onderzoeken. Er zijn echter alternatieven. 
Spiernetwerkanalyse bouwt voort op intermusculaire coherentie en evalueert 
de synchronisatie tussen motorische eenheden van een groot aantal spieren. 
Hoofdstuk 5 is een verdere bijdrage aan deze methodologische voorspiegeling.  
Zowel spiersynergie- als spiernetwerkanalyse zijn gebruikt om te onderzoeken 
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of de overgangen in de coördinatie tussen ledematen bij gezonde volwassenen 
samengaan met veranderingen in de functionele activiteit tussen meerdere 
spieren. Verschillende loopsnelheden werden opgelegd tijdens het lopen op 
een loopband om veranderingen in de frequentie- en fase-verhoudingen tussen 
de arm- en beenzwaai te induceren. Deze snelle overgang ging samen met 
veranderingen in zowel spiersynergieën als intermusculaire coherentie. Terwijl 
het coherentienetwerk bij lage frequenties grotendeels leek op het dynamische 
patroon van spiersynergieën (waarbij de laatste duidelijker was), kwamen bij 
hogere frequenties andere coherentiepatronen naar voren. In een notendop, de 
verandering in stabiliteit van arm/been coördinatie kan geassocieerd worden 
met modulatie in neuromusculaire connectiviteit over een lange afstand tussen 
de armen en benen. Spiersynergie- en spiernetwerkanalyse zouden daarom als 
complementair beschouwd moeten worden, omdat ze mogelijk verschillende 
aspecten van neuromusculaire aansturing omhelzen.  

Hoofdstuk 6 reflecteert op de bevindingen in dit proefschrift. Bijzondere 
nadruk is gelegd op de implicaties in de zoektocht naar de mechanismen die ten 
grondslag liggen aan de verstoorde loopontwikkeling bij CP. Hersenbeschadiging 
bij CP uit zich in vroege wijzigingen van neuromusculaire aansturing. Spiersynergie-
analyse, eventueel in combinatie met spiernetwerkanalyse, is een veelbelovende 
objectieve methode voor de detectie van verstoorde neuromusculaire aansturing. 
In de toekomst zal dit mogelijk helpen bij de ontwikkeling van vroege interventies 
om de loopkwaliteit van kinderen met de CP te verbeteren.
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Abstract
Early brain lesions can give rise to cerebral palsy (CP), which may a�ect 
the development of walking.  Given the highly plastic brain and still 
maturing corticospinal tract of young children, early interventions 
targeting underlying mechanisms of walking impairment may be 
important to improve functional mobility in children with CP. The 
overarching aim of this thesis is to identify the underlying mechanisms 
of impaired walking development in children at high risk of CP. The 
�ndings in this thesis suggest that early brain lesions in CP express as 
modi�cations of neuromuscular control, already in the early phase of 
motor development. Muscle synergy analysis, possibly in conjunction 
with muscle network analysis, is a promising objective method for the 
detection of impaired neuromuscular control. This may support the 
design of early interventions to improve walking ability in children 
with CP in the future.
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