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Vast CO2 release from Australian fires in 
2019–2020 constrained by satellite

Ivar R. van der Velde1,2 ✉, Guido R. van der Werf2, Sander Houweling1,2, 
Joannes D. Maasakkers1, Tobias Borsdorff1, Jochen Landgraf1, Paul Tol1, Tim A. van Kempen1, 
Richard van Hees1, Ruud Hoogeveen1, J. Pepijn Veefkind3,4 & Ilse Aben1,5

Southeast Australia experienced intensive and geographically extensive wildfires 
during the 2019–2020 summer season1,2. The fires released substantial amounts of 
carbon dioxide into the atmosphere3. However, existing emission estimates based on 
fire inventories are uncertain4, and vary by up to a factor of four for this event. Here we 
constrain emission estimates with the help of satellite observations of carbon 
monoxide5, an analytical Bayesian inversion6 and observed ratios between emitted 
carbon dioxide and carbon monoxide7. We estimate emissions of carbon dioxide to be 
715 teragrams (range 517–867) from November 2019 to January 2020. This is more 
than twice the estimate derived by five different fire inventories8–12, and broadly 
consistent with estimates based on a bottom-up bootstrap analysis of this fire 
episode13. Although fires occur regularly in the savannas in northern Australia, the 
recent episodes were extremely large in scale and intensity, burning unusually large 
areas of eucalyptus forest in the southeast13. The fires were driven partly by climate 
change14,15, making better-constrained emission estimates particularly important. 
This is because the build-up of atmospheric carbon dioxide may become increasingly 
dependent on fire-driven climate–carbon feedbacks, as highlighted by this event16.

On a global scale, emissions of carbon dioxide (CO2) from wildfires are 
roughly equivalent to 22% of global fossil-fuel emissions8. Most of these 
fire-derived emissions are expected to be compensated for when veg-
etation regrows. This is not the case for fires burning in deforestation 
zones or peatlands, however, where carbon stocks are permanently 
reduced, adding to the build-up of atmospheric CO2 over longer time 
scales. During the Southern Hemisphere summer of 2019–2020, about 
74,000 km2—an area roughly 2.5 times the area of Belgium—burned in 
the eucalyptus forests in the coastal region of Victoria and New South 
Wales in Australia13. The link with climate change and the expectation 
of a future with more frequent fires15,16 suggests that part of the CO2 
emitted by these fires will not be sequestered by vegetation regrowth. 
Therefore, these fires will add to the build-up of atmospheric CO2 over 
longer time scales and thus to climate change, which in turn promotes 
fire activity16. This class of fires is thus to some degree analogous to the 
aforementioned burning in deforestation zones or peatlands. Gaining 
a better understanding of the atmospheric burden of CO2 these fires 
have caused (and will cause in the future) is therefore essential if we 
are to construct future scenarios of the global carbon balance. Here we 
use new high-quality carbon monoxide (CO) satellite measurements, in 
combination with other data, to derive CO2 emissions for this extraor-
dinary Southeast Australian wildfire episode.

Over the past few decades, advances in satellite technology, biogeo-
chemical modelling and techniques to measure trace gases in the close 
vicinity of fires have resulted in a number of inventories of emissions 

from biomass burning8–12. These fire inventories combine satellite infor-
mation on fire activity and area affected with information on land use or 
vegetation productivity to estimate spatially explicit fire emissions for 
a large number of trace gases and aerosols17. Although improvements 
have been made to increase the accuracy of such emission estimates, 
the uncertainties remain substantial, especially at regional scales4,8. For 
example, small fires or fires underneath the canopy or clouds go unno-
ticed, and several inventories rely on look-up tables of biome-averaged 
values, which inherently have a low spatial resolution18.

For the Australian fire episode of 2019–2020, estimates of trace-gas 
emissions from five different fire inventory products diverge widely: 
for CO, for example, they range from 8.7 Tg to 36.1 Tg (Fig. 1). How-
ever, all inventories show that the CO emissions from wildfires of the 
2019–2020 season in Southeast Australia were large, surpassing the 
biggest emissions of the previous 16 years by quite a margin. Indeed, 
approximately 70% of all CO released from Australian fires in November 
to January 2019–2020 came from the southeast, in contrast with an 
average contribution of 11% in previous years.

The underlying reasons for this large range of emission estimates 
include: differences in approach, especially the means of fire detec-
tion; variations in the parameterizations of fuel consumption used; 
and differences in the emission factors used to translate the rate of 
combustion of dry matter into actual emissions of trace gases18. We 
can split the inventories from which these estimates are derived into 
two categories: first, inventories based on burned area, namely the 
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Global Fire Emission Database version 4s (GFED4s; ref. 8) and the Fire 
Inventory from NCAR version 1.5 (FINN9); and second, inventories 
based on fire radiative power (FRP), namely the Global Fire Assimila-
tion System version 1.2 (GFAS10), Quick Fire Emissions Data set version 
2.4 (QFED11), and Fire Energetics and Emission Research version 1.0 
(FEER12). The burned-area-based inventories infer estimates of area 
burned from remotely sensed data in combination with a spatial and 
temporal representation of combustible biomass in the terrestrial bio-
sphere19. The FRP-based inventories use the time integral of remotely 
sensed measurements of FRP, allowing for a more direct estimation of 
the rate of biomass combustion, and bypassing some of the uncertain-
ties associated with the biogeochemical modelling that is needed in 
the burned-area approach20. However, FRP measurements introduce 
new challenges and uncertainties, including the translation of FRP 
into rates of biomass combustion10. Since 2016, the GFED4s inven-
tory has been derived from a combination of the above strategies—it 
is no longer based on burned area and fuel consumption directly, but 
on FRP, scaled for each grid cell to emissions derived from burned 
area and fuel consumption for the overlapping 2003–2016 period21 
(see Supplementary Information).

Satellite measurements of trace gases throughout the entire atmos-
pheric column have been shown to help curb the uncertainties in fire 
modelling and to provide more accurate estimates of CO2 emission 
from fire22,23. Measurements of CO provide better top-down constraints 
than measurements of CO2 itself, mostly because CO levels show a much 
larger (by up to several orders of magnitude) relative departure from 
background levels. These CO measurements, when combined with 
measurements of the CO2:CO ratios in fire plumes, allow us to estimate 
CO2 emissions from fire. For instance, different satellite data—including 
column measurements of CO—were used to constrain the 2015 Indo-
nesia peat-fires, leading to emission estimates that are very different 
(either higher or lower, depending on the location) to those predicted 
by the fire inventories22–26.

The launch of the TROPOspheric Monitoring Instrument (TRO-
POMI5) in October 2017 has provided new capabilities for CO obser-
vation. The instrument extends the capabilities of older legacy 
instruments by measuring the total column of CO at a much higher 
spatial resolution of 7 × 5.6 km2, with daily global coverage. Under 
clear-sky conditions it also maintains high sensitivity up to the plan-
etary boundary layer, where fire emissions have the largest impact. 
The instrument has been used previously to improve understand-
ing of fires, their combustion characteristics and the atmospheric 
transport of emitted pollutants27,28. Here we use it in a regional 
inverse analysis to improve estimates of CO and CO2 emission on a 

day-to-day basis for the Southeast Australian fires (see Supplementary  
Information).

Using this inverse analysis methodology, in combination with TRO-
POMI CO observations, we obtained improved (posterior) estimates 
of CO emission and simulated concentrations of regional CO that are 
more consistent with daily measurements than were the simulated 
CO amounts based on the (prior) inventory emissions alone. Figure 2a 
shows the prior November to January average CO mixing ratios  from 
transport model simulations, with the GFAS fire emission inventory as 
input. Although the locations of wildfires and the resulting enhance-
ment in CO are quite well captured by GFAS, the underestimation of CO 
relative to TROPOMI CO in Fig. 2b is evident. After optimization, the 
posterior CO mixing ratios in Fig. 2c become larger, yielding an 80% 
reduction in model–observation bias compared with the prior mix-
ing ratios based on GFAS emissions. This is also the case for the other 
four inventories. The assessment of all five posterior estimates in the 
Taylor diagram29 in Fig. 2d indicates a better match with observed CO 
in comparison with the priors. We obtained better correlation coeffi-
cients (11% higher on average), and larger spatial variability expressed 
as a standard deviation (84% increase on average). The small improve-
ment in the correlation coefficient indicates that the general spatial 
pattern of enhancements in CO concentration is already captured 
well by the inventories before optimization. However, the reduction 
in root-mean-square-error (RMSE) and increase in variability indicate 
large adjustments in the absolute magnitude of emissions after optimi-
zation. Additional information and the results of inversions obtained 
using other fire inventories as priors can be found in the Supplementary 
Information.

Estimated CO emissions for the 2019–2020 fire episode are shown 
in Fig. 3 and Extended Data Table 1, for the five emission inventories 
(the priors) and our TROPOMI-constrained estimates (the posterior). 
In comparison with the prior estimates, we see in the posterior solu-
tions a substantial enhancement of the monthly CO emissions that 
easily exceeds the variability among the ensemble of prior emission 
estimates (depicted by white circles, with ± 1σ variability). Our analysis 
also shows smaller differences between the posterior solutions than 
between the corresponding priors; the uncertainty among the ensem-
ble of optimized emissions is reduced by more than 50% (black circles, 
with ± 1σ variability) in comparison with the prior ensemble uncertainty. 
This indicates that the posterior estimates are more robust than the 
priors and are more in agreement with the constraints imposed by 
atmospheric CO. The generally small differences between the posterior 
emission estimates stem from a persistent dependence on inventory 
emissions; this dependence, in addition to other factors such as trans-
port and measurement uncertainty, prevents our inverse estimates 
from converging into an even more consistent solution.

As a next step, we calculated the amount of CO2 emitted by these 
recent fires from the TROPOMI-inferred CO emissions in Fig. 3. This 
calculation was done using emission factors for CO2 and CO deter-
mined from wildfires and prescribed burns in the southern Australian 
eucalyptus forests7, summarized in Extended Data Table 3. The forested 
landscapes that burned in Southeast Australia were predominantly 
eucalyptus30. Biome-averaged data sets of emission factors that are 
often used in the fire emission inventories17,31 are not detailed enough 
to describe fire emissions in Australia, where eucalyptus forests are 
part of the more general class of temperate forests7. Acquiring emis-
sion factors involves accurately measuring mixing ratios of trace gases 
or aerosols in the smoke plume using the carbon balance method32. 
These emission factors specify the mass of an aerosol or trace gas emit-
ted per unit of dry matter burned, and, combined with the amount 
of biomass burned during a time interval, yield emission estimates 
for different chemical compounds17. We derived the average of the 
reported CO2 and CO emission factors (EFCO2 and EFCO) and their vari-
ability across the abovementioned  literature (1,601 ± 40 g CO2 kg−1 and 
111 ± 14 g CO kg−1 dry matter, respectively) using different measurement 
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Fig. 1 | Comparison of fire emission estimates for Southeast Australia. CO 
emissions (in Tg CO month−1) for the November to January 2019–2020 fire 
season in Southeast Australia (red highlighted region in inset), compared with 
the emission average of 16 previous years for the same period. Five different 
emission inventories are compared for each month: GFED4s, GFAS, QFED, FEER 
and FINN. Error bars represent the 16-year minimum and maximum values for 
each fire inventory.



368  |  Nature  |  Vol 597  |  16 September 2021

Article

platforms (airborne and ground-based), for different types of burns 
(wildfires versus prescribed burns) and in different regions within our 
study domain. We then multiplied the CO emissions in Fig. 3 by the 
EFCO2/EFCO ratio (EFR = 14.4 ± 1.9 g CO2/g CO) to obtain the estimates 
of CO2 emission in Fig. 4.

Using the five posterior CO emission estimates and an EFR of 
14.4 ± 1.9, we found emissions during the 2019–2020 fire episode to 
be 715 Tg CO2. This is equivalent to 0.20 petagrams carbon (Pg C; 1015 g), 
or about 18% of the decadal averaged flux in global land-use change and 
land-cover change of 1.11 Pg C yr−1 (ref. 33). A sensitivity analysis of our 
inversion framework showed that the real emission flux probably lies 
between 517 Tg and 867 Tg (based on a range of experiments; Extended 
Data Table 4). Our estimate is comparable to the 670 Tg CO2 derived in 
a bottom-up bootstrap analysis of this fire episode13. As shown in Fig. 4 
and Extended Data Table 2, these fires were large, even if you consider 
the lower limit of our estimate. Our new estimate is more than twice 
as large as the average of 275 Tg derived from the five fire inventories, 
and surpasses Australia’s normal annual fire and fossil-fuel emissions 
by 80%.

A consequence of the infrequent nature of fires in eucalyptus forests 
in Southeast Australia is that the release of CO2 is not in balance with 
the sequestration of carbon following previous fires on annual scales. 
Therefore, fires in these forests could potentially affect CO2 growth 
rates more than savanna fires in northern and central Australia, where 
emissions and sequestration are more in balance3. Given the vastness of 
this event, the 2019–2020 fires may also increase CO2 concentrations 

over the next few decades. Whether or not CO2 concentrations are 
also affected on even longer time scales will depend on the degree to 
which increasing temperatures and more frequent drought episodes 
will influence future fire regimes in this region and thus the rate of 
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arc)29. The five prior estimates are shown with filled squares and the five 
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indicating a larger standard deviation for the posterior estimates: that is, 
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regrowth. All evidence points towards increases in the frequency of 
severe fire seasons in Southeast Australia34–36, indicating that at least 
part of the emissions will not be offset in the future. From a climate 
perspective, these wildfires may therefore present a new category of 
fires that are neither CO2 neutral nor fully net CO2 emissions8 but fall 
in between. Given the large magnitude of these events, as exemplified 
by our work, fire-driven climate-carbon feedbacks may become an 
increasingly relevant factor in determining future CO2 levels.
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Fig. 4 | CO2 emissions from inventories and satellite constraints. Shown are 
total estimates of CO2 emission (in Tg CO2 and Pg C) from fires for the Southeast 
Australian summer season of November to January 2019–2020. Darker bars 
show the five fire inventory estimates (the priors); lighter bars show posterior 
estimates derived from the inversions (with colour coding as in Figs. 1, 2). 
Extended Data Table 2 reports the values and uncertainties from all of the 
inversion estimates. Circles indicate three-month total estimates across the 
different fire inventories (white) and posterior results (black). The black error 

lines indicate the ± 1σ variability across the five inventories/inversion 
estimates. The grey error line indicates the minimum and maximum range in 
the posterior solutions, obtained using the different inversion options 
outlined in the Supplementary Information and Extended Data Table 4. To 
obtain a sense of scale, the three reference lines indicate Australia’s normal 
wildfire and fossil-fuel emissions (upper dotted line, ref. 8; centre dotted line, 
ref. 37; lower dotted line, our data).

https://doi.org/10.1038/s41586-021-03712-y
http://www.bom.gov.au/climate/current/annual/aus/2019/
http://www.bom.gov.au/climate/current/annual/aus/2019/
https://www.industry.gov.au/data-and-publications/estimating-greenhouse-gas-emissions-from-bushfires-in-australias-temperate-forests-focus-on-2019-20
https://www.industry.gov.au/data-and-publications/estimating-greenhouse-gas-emissions-from-bushfires-in-australias-temperate-forests-focus-on-2019-20
https://www.industry.gov.au/data-and-publications/estimating-greenhouse-gas-emissions-from-bushfires-in-australias-temperate-forests-focus-on-2019-20
https://gmao.gsfc.nasa.gov/pubs/docs/Darmenov796.pdf
https://gmao.gsfc.nasa.gov/pubs/docs/Darmenov796.pdf
https://www.geo.vu.nl/~gwerf/GFED/GFED4/Readme.pdf


Article

Data availability
TROPOMI measurements of CO can be downloaded from https://
s5phub.copernicus.eu. GFED4s-based fire emissions can be down-
loaded from https://www.geo.vu.nl/~gwerf/GFED/GFED4/. GFAS-based 
fire emissions can be downloaded from https://apps.ecmwf.int/data-
sets/data/cams-gfas/. QFED-based fire emissions can be downloaded 
from https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/
QFED/v2.5r1/0.1/QFED/. FEER-based fire emissions can be downloaded 
from https://feer.gsfc.nasa.gov/data/emissions/. FINN-based fire emis-
sions can be downloaded from https://www.acom.ucar.edu/Data/fire/. 
Prior and posterior emissions and CO concentrations can be down-
loaded from https://doi.org/10.5281/zenodo.4692417.

Code availability
The Weather Research and Forecasting with Chemistry (WRF-CHEM) 
atmospheric transport model version 4.0 can be downloaded from 
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html. 
Inversion and emission preparation codes are available at https:// 
doi.org/10.5281/zenodo.4692678. Python notebooks used to create 
the figures and tables are at https://doi.org/10.5281/zenodo.5060184.
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Extended Data Table 1 | Comparison of prior and posterior emissions of CO from fire for Southeast Australia

Comparison of the November to January 2019–2020 average prior and posterior CO fire emissions (in Tg CO month−1) calculated for the five emission estimates over Southeast Australia. The 
monthly ± 1σ standard deviations are derived from the assumed error variances. The prior estimates in parentheses represent the inventory flux without the adjustment of zero emissions. The 
final row displays the model/inversion ensemble average and the ± 1σ standard deviation that depicts the variability across the five model estimates.
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Extended Data Table 2 | Comparison of prior and posterior emissions of CO2 from fire for Southeast Australia

Comparison of the November to January 2019–2020 average prior and posterior CO2 fire emissions (in Tg CO2) calculated from the five CO emissions estimates over Southeast Australia. The 
November to January ± 1σ standard deviations are derived from the assumed error variances and from the scaling uncertainty (in going from CO to CO2 with an EFR of 14.4 ± 1.9; see equations 
(8) to (14) in the Supplementary Information). The prior estimates in parentheses represent the inventory flux with the EFR scaling but without the adjustment of zero emissions. The final row 
displays the model/inversion ensemble average and ± 1σ standard deviations that depict the variability across the five model estimates.



Extended Data Table 3 | Comparison of published CO2 and CO emission factors and their ratios

Comparison of the emission factors (EFs) for CO2 and CO (in g kg−1 dry matter) reported in the literature7,38–42. The EF ratio (EFR) between CO2 and CO is calculated for different locations in 
Southeast Australia (NSW, New South Wales; TAS, Tasmania; VIC, Victoria). The final row displays the average and the ± 1σ standard deviation of EFs and EFRs across all studies. The ± 1σ standard 
deviation of EFR is calculated using equation (9) in the Supplementary Information. 
*Data sets from table 4 in ref. 7. 
†Data based on an average across all flaming and smouldering samples.
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Extended Data Table 4 | Overview of CO and CO2 emission estimates for different experiments

Comparison of the November to January 2019–2020 posterior CO and CO2 emission estimates (in Tg) for different experiments in which different flux and background scaling parameters were 
tested, in combination with different structures of the error covariance matrix P. The fraction of negative flux parameters (compared with the total parameters) is shown in the final column. The 
experiment in bold represents one of the five original estimates reported herein. The minimum and maximum CO2 emission estimates (517.0 and 866.9 Tg CO2) are incorporated into Fig. 4. 
*Alternative background derived from CO concentration upwind of the fires. 
†Prior flux adjustment everywhere fire inventory fluxes are zero.
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