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The COVID-19 pandemic has led to numerous mathematical
models for the spread of infection, the majority of which
are large compartmental models that implicitly constrain the
generation-time distribution. On the other hand, the continuous-
time Kermack–McKendrick epidemic model of 1927 (KM27) allows
an arbitrary generation-time distribution, but it suffers from the
drawback that its numerical implementation is rather cumber-
some. Here, we introduce a discrete-time version of KM27 that
is as general and flexible, and yet is very easy to implement
computationally. Thus, it promises to become a very powerful
tool for exploring control scenarios for specific infectious diseases
such as COVID-19. To demonstrate this potential, we investigate
numerically how the incidence-peak size depends on model ingre-
dients. We find that, with the same reproduction number and the
same initial growth rate, compartmental models systematically
predict lower peak sizes than models in which the latent and the
infectious period have fixed duration.

epidemic outbreak | Kermack–McKendrick | discrete-time model |
incidence peak | basic reproduction number

The arrival and spread of COVID-19 has caused tremendous
trouble. In the wake of that, an avalanche of mathematical

models arose. The present paper, too, was triggered by COVID-
19, albeit indirectly. Its primary aim is methodological: we want
to establish the strength of a general discrete-time modeling
framework in which model specification is reduced to the bare
essentials. But let us first explore the motivation for discrete-time
models.

The day–night cycle has a strong impact on the behavior of
humans, animals, and plants. As a rule, the resulting time het-
erogeneity is ignored in epidemiological and ecological models.
One simply pretends that the representation of time by a con-
tinuous quantity t , “flowing” at a constant rate, is suitable for
bookkeeping of the time course of the relevant events.

Census data, on the other hand, are often collected at regu-
lar intervals, so on a discrete-time basis. Indeed, as evidenced by
the COVID-19 pandemic, incidence is usually reported in the
form of the number of new cases on a particular day or in a
specified week.

So even when the processes that we want to capture take
place in continuous time, one may want to consider discrete-
time bookkeeping schemes, in order to relate directly to the
data, as advocated in the pioneering paper ref. 1. Moreover, a
significant bonus of discrete-time models is that numerical imple-
mentation is straightforward and that, accordingly, simulations
are easy to perform. In sharp contrast, the numerical solution
of continuous-time renewal equations, as discussed in ref. 2,
presents a substantial challenge to the uninitiated.

Counter to the practical advantages runs a modeling diffi-
culty: The formulation of discrete-time models is subtle and,
hence, error-prone. In infinitesimal time intervals, the effects of
different mechanisms are independent. Consequently, one can

add terms that describe contributions to the rate of change of
a quantity. When trying to capture (in one go, rather than by
solving a differential equation) change in a finite time interval,
we do have to think about the order of events and how one
event may trigger or prevent another event. In the epidemic con-
text, a key point is that, when a susceptible host is infected by
an infectious host, it cannot any longer be infected by another
infectious host.

The first aim of this short note is to formulate the discrete-
time version of the general Kermack–McKendrick epidemic
model from 1927 (KM27). As far as we know, this has not
been done before. And, yet, the model is, most likely, an ideal
tool for data-driven analysis of infectious disease outbreaks.
Indeed, as we shall demonstrate, the model is general, flex-
ible, and user-friendly, both when it comes to incorporating
the effects of heterogeneity (e.g., asymptomatic infection) and
of (time-dependent) public health interventions and when it
comes to computing outbreak dynamics. Moreover, the model
parameters can be related rather directly to surveillance data
(without the need to make assumptions about the duration
of, e.g., the infectious period; in some sense, the model is
nonparametric).

A second (and admittedly somewhat pedantic) aim of this note
is to point out explicitly a frequent mistake in the formulation of
discrete-time epidemiological and ecological models. We hope
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that by clearly exposing the underlying fallacy, the mistake will
have had its day.

To put some flesh on the bones, we show that the qualita-
tive behavior of the discrete-time model is the spitting image
of the qualitative behavior of the continuous-time KM27 model.
In order not to ignore the popularity of compartmental variants
(which is unwarranted, in our opinion, as there is neither evi-
dence that the length of, for instance, the infectious period is
exponentially/geometrically distributed nor that infectiousness is
constant during this period), we put them in the spotlight. The
key point of the paper is to highlight a striking and important dif-
ference with the continuous-time formulation: the discrete-time
version is very easy to implement computationally! We demon-
strate this in Section 6 and then exploit it in Section 7, where we
illustrate the relevance (in particular, for public health policy)
of the lesser-known members of the KM27 family, by investi-
gating numerically how the peak of the incidence curve varies
among members that are identical with respect to both the ini-
tial growth rate ρ and the basic reproduction number R0, but
differ in assumptions about the duration of the exposed and the
infectious period.

To avoid misunderstanding, we now clarify what is, and what is
not, stochastic in the models formulated and analyzed below. All
models are deterministic at the population level. [One can think
of them as the large initial population-size limit of a stochastic
model for finitely many individuals, in the sense used by Kurtz
(3), originally for chemical reactions.]

When one assumes that the infectious period of all individuals,
once infected, has exactly the same length, and their infectious-
ness during this period is one and the same constant, there is no
randomness at the individual level either.

But most models incorporate heterogeneity/stochasticity at the
individual level. For instance, in the familiar continuous-time
SIR compartmental model, the length of the infectious period of
a newly infected individual is exponentially distributed, say, with
parameter γ. If during the infectious period, all infected individ-
uals have the same constant infectiousness β, then the expected
infectiousness A(τ) at time τ after becoming infected equals
βe−γτ . This reflects the fact that after time τ has elapsed, the
probability to still be infectious equals e−γτ . At the population
level, we translate this into: A fraction e−γτ of those infected at
time t is still infectious at time t + τ . In the discrete-time setting,
we should replace the exponential distribution by the geometric
distribution. As a final elucidation, we mention that the param-
eter β and the function A(τ) implicitly incorporate information
about the contact (between individuals) process that underlies
transmission. A key feature is that contacts are assumed to be
uniformly at random (so neither spatial nor age nor social struc-
ture are incorporated; but see [2.10] below for a generalization
that does incorporate forms of heterogeneity affecting contact
probabilities).

1. The Cumulative (over One Time Step) Force of Infection
First of all, we want to motivate and promote the equation

S(t + 1) = e−Λ̂(t)S(t), [1.1]

as a building block for discrete-time models of the spread of an
infectious disease in a host population when

• The disease generates permanent immunity;
• The host population is demographically closed (meaning that

demographic turnover happens at a much slower time scale
than transmission of the disease and is therefore ignored).

As usual, S(t) denotes the size of the subpopulation of suscep-
tibles at census time t . Underlying [1.1] is a choice of the unit of
time: It equals the length of the interval between one census and

the next. So the magnitude of Λ̂(t) is proportional to this length,
and when this magnitude figures in our discussion below, one
may interpret the statements in terms of the length of the dis-
cretization step. We call Λ̂(t) the cumulative force of infection
over the time window (t , t + 1] for reasons that we now explain.
The continuous-time version of [1.1] reads

dS

dt
(t) =−Λ(t)S(t), [1.2]

where Λ(t) is the force of infection at time t , i.e., the probability
per unit of time for a susceptible to become infected at time t .
By integration, we deduce from [1.2] the relation

S(t + 1) = e−
∫ t+1
t Λ(τ)dτS(t). [1.3]

The first factor at the right-hand side of [1.1] and [1.3] is, in both
cases, the probability for a susceptible to escape from infection
in the time window (t , t + 1]. The integral∫ t+1

t

Λ(τ)dτ ,

in [1.3] is replaced by Λ̂(t) in [1.1], and this, we hope, clarifies
why we call Λ̂(t) the cumulative force of infection over (t , t + 1].

We insist that one should adjust the multiplicative factor (as
was indeed done in ref. 1) and not replace the differential Eq. 1.2
by the “additive” difference equation

S(t + 1)−S(t) =−Λ̂(t)S(t),

i.e., by

S(t + 1) = (1− Λ̂(t))S(t). [1.4]

Of course, [1.4] provides a good approximation of the “true” Eq.
1.1 for small values of Λ̂(t). But [1.4] is not exact, and it may fail
dramatically for not so small values of Λ̂(t), in particular, since it
may lead to negative values of S . The reason is that [1.4] does not
take into account that a host can become infected only once. To
stress this point, we now present a somewhat mechanistic deriva-
tion of the multiplicative factor in [1.1], showing that [1.1] does
take this into account.

Assume that when a single infectious individual is present in
a certain host population (during a time interval of, say, length
one), every susceptible host becomes infected with probability p.
Then, any susceptible escapes from becoming infected with the
complementary probability 1− p. Next, assume that there are I
infectious individuals and that these make contacts with suscep-
tibles independently of each other. Then, any susceptible escapes
from becoming infected with probability

(1− p)I = eI ln(1−p).

So, a susceptible is infected with probability 1− (1− p)I rather
than with “probability” pI .∗

From a numerical point of view, the exponential has the dis-
advantage of being expensive in terms of calculation costs. It
may therefore be tempting to reduce the step size in order to
work safely with the linear approximation. We actually wonder

*Note that a lot of heterogeneity is subsumed: Individuals may have varying 1) degrees
of infectiousness and 2) propensity to make contact; 3) their activities may be unevenly
distributed over the time unit. As long as I is large and the properties of the two indi-
viduals involved in a transmission have independent influence, one can simply interpret
p as an average; see ref. 4, chapter 2, and Section 5.
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whether solving the relevant ordinary differential equations,
with, for instance, a Runge Kutta solver is not a more attractive
alternative, especially in terms of accuracy. Moreover, we main-
tain that choosing a time interval that matches the data points
has definite advantages.

2. The General Discrete-Time Kermack–McKendrick Model
As already expressed in [1.2], the incidence at time t equals
Λ(t)S(t) with Λ the force of infection. Common sense tells us
that the current force of infection is generated by individuals
who were themselves infected some time ago. Following earlier
work by Ross and Hudson (refs. 5 and 6 and references therein),
Kermack and McKendrick translate this observation into the
constitutive equation

Λ(t) =

∫ ∞
0

A(τ)Λ(t − τ)S(t − τ)dτ , [2.1]

with A(τ) the expected contribution to the force of infection
at time τ after infection. So, in this top-down approach, the
infinite dimensional parameter A is introduced as a key model
ingredient. For any specific disease, one may, in principle, use a
within-host model of the struggle between pathogen and immune
system to provide bottom-up a quantitative specification. Alter-
natively, one may use population-level data to infer certain
characteristics of A (cf. ref. 7). Often, this is done after first
restricting to a parameterized family of functions A (but see ref.
8 for an alternative methodology). Note that, with N denoting
the population size, we have

R0 =N

∫ ∞
0

A(τ)dτ ,

and that, in the initial phase of the epidemic, the distribution
of the generation-interval (refs. 9 and 10 and the references
therein) has as density the renormalized (to have integral 1)
function A.

The incidence at time t is given by Λ(t)S(t). Under the “per-
manent immunity and no demographic turnover” assumption,
the incidence equals −S ′(t) (cf. [1.2]). Substituting this into
[2.1], we deduce by integration (and upon changing the order
of integration) the identity∫ t+1

t

Λ(σ)dσ=

∫ ∞
0

A(τ)[S(t − τ)−S(t + 1− τ)]dτ.

The discrete-time counterpart reads

Λ̂(t) =

∞∑
j=1

Aj [S(t − j )−S(t + 1− j )], [2.2]

where now Aj is the expected contribution to the cumulative
force of infection over (t , t + 1] of an individual, who itself
became infected in the time window (t − j , t − j + 1] j time steps
earlier, and S(t − j )−S(t + 1− j ) is the incidence in (t − j , t −
j + 1]. So, the key model ingredient is now the collection

{Aj}∞j=1,

of nonnegative numbers, which we assume to be such that

∞∑
j=1

Aj <∞.

(Incidentally, note that control measures or seasonality may
cause the Ak to depend on calendar time. See the end of Section

5 for a somewhat concrete example. In Section 6, we shall briefly
indicate how one can easily implement this generalization.)

Eq. 1.1, with Λ̂(t) specified by [2.2], provides an updating
scheme, but to get started, one needs to specify an “initial” con-
dition in the form of the history of S up to a certain point
in time. The interpretation requires that this prescribed history
is a monotone nondecreasing (when looking back into time)
sequence, bounded from above by the total host population
size N .

As we show next, one can reformulate [1.1], [2.2] as the scalar
higher-order recursion relation

s(t + 1) = e−
∑∞

k=1(1−s(t−k+1))Ãk , [2.3]

where

s(t) : =
S(t)

N
, [2.4]

and
Ãk : =AkN . [2.5]

Eq. 2.3 is the discrete-time analog of the nonlinear renewal
equation

s(t) = e−
∫∞
0 (1−s(t−τ))NA(τ)dτ , [2.6]

that follows by combining [1.2] with [2.2] and incidence equal to
−S ′ (2, 4). Both [2.3] and [2.6] involve the additional assumption

S(−∞) =N , [2.7]

expressing that in the infinite past, all host individuals were
susceptible.

To derive [2.3], first note that iteration of [1.1] yields, if [2.7]
holds, the identity

S(t + 1) = e−
∑∞

i=0 Λ̂(t−i)N . [2.8]

From [2.2], we deduce

∞∑
i=0

Λ̂(t − i) =

∞∑
i=0

∞∑
k=1

Ak [S(t − i − k)−S(t − i − k + 1)]

=

∞∑
k=1

Ak

∞∑
i=0

[S(t − i − k)−S(t − i − k + 1)]

=

∞∑
k=1

Ak [N −S(t − k + 1)].

If we use this last identity in [2.8], divide both sides of [2.8] by N
and adopt the notation [2.4] and [2.5], we obtain [2.3].

If one copies [2.3], with t + 1 replaced by t , and combines the
two formulas, one can derive the variant

s(t + 1) = s(t)e−
∑∞

k=1(s(t−k)−s(t−k+1))Ãk . [2.9]

This variant has the advantage that one can provide an initial
condition, say, at time 0, by prescribing s(0) and the (nonneg-
ative) incidences . . . , s(−3)− s(−2), s(−2)− s(−1), s(−1)−
s(0). We refer to Section 6 for a more pragmatic formulation
of the initial value problem.

We conclude that [2.3]/[2.9] is the mathematical form of the
discrete-time KM27 model with, in principle, a countably infinite
parameter {Ak}∞k=1, but, in practice, a finite, say, m , dimensional
parameter with an infinite tail of zeros.

While the homogeneous version is simplest, various forms
of heterogeneity are easily incorporated in the discrete-time
bookkeeping scheme. We may generalize [2.2] to

Diekmann et al.
The discrete-time Kermack–McKendrick model: A versatile and computationally attractive framework
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si(t) = e−
∑n

j=1 cij
∑m

k=1(1−sj (t−k))NjAjk , [2.10]

so as to capture the situation where individuals are distinguished
according to type i , with i running from 1 to n . Additional model
parameters are the subpopulation sizes Ni and the contact matrix
C with entries cij specifying the contact intensities between the
various types. Note that [2.10] allows the parameters Ak to be
type-specific. When “type” influences contact, but is irrelevant
for intrinsic infectiousness, this dependence should be dropped.
We refer to ref. 4 (chapter 12) for a discussion of some of the
subtle modeling intricacies associated with the specification of C ,
notably, its dependence on the n-vector of subpopulation sizes.

For the continuous-time setting, it is shown in ref. 2 how
to incorporate demographic turnover by adding age structure
(with no constraint at all on the survival probability as a func-
tion of age!). This still leads to a scalar renewal equation, albeit
one involving a double integral. In SI Appendix, we present the
discrete-time analog.

3. The Initial Phase and the Final Size
To capture the demographic stochasticity during the very early
phase of the introduction of an infectious disease in a host pop-
ulation, we need branching processes (e.g., ref. 4). But once
there is a large number of infected individuals, we can switch to
a deterministic description. The large number may, of course,
still constitute only a rather small fraction of a very large host
population. In this situation, we may put

s(t) = 1− x (t), [3.1]

into [2.3] and assume that x is so small that it makes sense to
replace the exponential by the zeroth and first-order terms of its
Taylor expansion. This yields the linearized equation

x (t + 1) =

∞∑
k=1

Ãkx (t − k + 1). [3.2]

We define

R0 =

∞∑
k=1

Ãk =

∞∑
k=1

AkN , [3.3]

and interpret, based on the last identity, R0 as the expected num-
ber of secondary cases caused by a primary case in a totally
susceptible host population.

In order to show that positive solutions of [3.2] grow when
R0 > 1, but decline when R0 < 1, we make the Ansatz

x (t) =λt . [3.4]

By substitution of [3.4] into [3.2], we find that x defined by [3.4] is
indeed a solution if and only if λ is a real root of the discrete-time
characteristic equation

1 =

∞∑
k=1

λ−k Ãk , [3.5]

known as the Euler–Lotka equation. The nonnegativity of Ãk ,
k = 1, 2, . . ., guarantees that [3.5] has at most one real root ρ
and that it does indeed have a real root when the right-hand side
assumes a value bigger than one for some real λ, so, in particular,
when R0 > 1 (when R0 < 1 and Ãk has power-like behavior for
k→∞, the value of the right-hand side may jump from a value
less than one to infinity when λ is decreased; when Ãk = 0 for
large k , this cannot happen, and ρ exists). Readers who wonder
(or even worry) about the potential importance of complex roots
can consult ref. 4 (section 8.2 and the references given there) to
be eased.

So, we see that a key point is that the right-hand side of [3.5] is
a monotone decreasing function of real λ, and, as a consequence,
we have

sign(ρ− 1) = sign(R0− 1). [3.6]

(Incidentally, note that ρ corresponds to er , with r the Malthu-
sian parameter featuring in the continuous-time theory.) Gen-
eral linear theory (cf. ref. 11) guarantees that positive solutions
of [3.2] grow geometrically with rate ρ for t→∞ when ρ> 1
(and decline with rate ρ, when ρ exists and is less than one).
General nonlinear theory (cf. ref. 12) guarantees that the steady-
state solution s(t)≡ 1 of [2.3] is asymptotically stable for ρ< 1
(hence, for R0 < 1), but unstable for ρ> 1, i.e., for R0 > 1 {here,
we refer to the Principle of Linearized Stability; for the version
with only finitely many Ak different from zero (cf. Section 6),
the standard (i.e., finite dimensional) Hartman–Grobman The-
orem implies that the intersection of the unstable manifold and
the positive cone is one-dimensional; this means that, modulo
translation, there is exactly one positive solution of [2.3] that
has limit 1 for t→−∞ (see ref. 13 for the continuous-time
version)}.

So, when R0 > 1, the introduction of the pathogen will, pro-
vided the pathogen does not go extinct by bad (or good, depend-
ing on the point of view) luck when still very rare, break through
and cause s to decrease to below 1. The interpretation makes
it obvious that s is a monotone decreasing function of time and
that it has a limit for t→∞. We denote this limit by s(∞). The
equation

s(∞) = e−R0(1−s(∞)), [3.7]

is obtained by passing to the limit in [2.3], while using the fact that
the {Ãk} are summable. For R0 > 1, this equation has a unique
solution in (0, 1) (Fig. 1 and ref. 4, exercise 1.19).

A comparison of the results in refs. 14, 4 (chapter 1), and 2 with
those above establishes that when we compare the continuous-
time and discrete-time formulations,

• There is only a formal difference in the expressions for R0;
• If we put ρ= er , there is only a formal difference in the

equations characterizing, respectively (resp.), ρ and r ;
• The equations specifying s(∞) on the basis of R0 are identical

(as already noted in ref. 1).

We conclude that at the level of theory, there is an exact
parallel.

Fig. 1. Graph of the final size 1− s(∞), i.e., the fraction of the population
that gets infected in the course of the outbreak, as a function of the basic
reproduction number R0.
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4. Compartmental Formulation for Some Very Special Cases
We shall use the standard notational convention (or should
one say “ambiguity”?) that a compartment and its contents are
denoted by the same symbol. We start with SIR and after that
generalize to SEIR, hoping that these two examples elucidate
the general pattern of how to construct discrete-time models in
compartmental settings. See ref. 15 for a more general set-up.

Assume that, upon infection, an individual is transferred from
the compartment S to the compartment I of infectious individ-
uals. Assume that every following time step, this infected indi-
vidual stays in I with probability 1−α while being “removed”
(i.e., losing infectiousness, either by way of the immune system
conquering the pathogen or by death) with probability α. We put
removed individuals in a compartment R and assume that immu-
nity is permanent (and resurrection impossible). Finally, we
assume that the cumulative force of infection equals βI , i.e., the
per capita contribution to the force of infection equals β. Note
that β is proportional to the length of the discretization interval,
i.e., the time between census points, and that α= 1− e−α̃ with α̃
proportional to this length.

These assumptions lead to the system of recurrence relations

S(t + 1) = e−βI (t)S(t),

I (t + 1) = (1− e−βI (t))S(t) + (1−α)I (t), [1]
R(t + 1) =αI (t) +R(t). [4.1]

We show that the system [4.1] may be reduced to the scalar
recurrence [2.3] by choosing the Ãk appropriately:

Ãk =β(1−α)k−1N . [4.2]

The first step corresponds to the derivation of [2.8]: By iteration
of the first equation of [4.1], we obtain

S(t + 1) = e−β
∑∞

j=0 I (t−j)N .

Rewriting the second equation of [4.1] as

I (t + 1) =S(t)−S(t + 1) + (1−α)I (t),

we obtain by summation the identity

∞∑
j=0

I (t − j ) =N −S(t) + (1−α)

∞∑
j=0

I (t − j − 1),

and by substitution of this identity repeatedly at the right-
hand side,

∞∑
j=0

I (t − j ) =N −S(t) + (1−α)(N −S(t − 1))

+(1−α)2N (S(t − 2)) + · · · .

Finally, substitution of this last identity in the formula
for S(t + 1) above yields [2.8].

Conversely, starting from [2.3] with Ãk given by [4.2], we easily
recover [4.1] by defining

I (t) : =

∞∑
k=1

[S(t − k)−S(t − k + 1)](1−α)k−1, [4.3]

(note that the equation for R(t) is just an appendix; it has no
impact on the dynamics of S(t) and I (t); it simply keeps track of
individuals that are no longer infectious).

We emphasize that if one replaces e−βI (t) by 1−βI (t), the
reduction to a higher-order scalar recursion relation fails (we
invite readers to convince themselves of this fact)!

In order to capture a latent period, we next change the assump-
tions. Upon infection, an individual now enters the compartment
E of exposed (i.e., infected, but not yet infectious) individuals.
When the length of the latent period is geometrically distributed
with parameter γ, we have to replace [4.1] by

S(t + 1) = e−βI (t)S(t),

E(t + 1) = (1− e−βI (t))S(t) + (1− γ)E(t),

I (t + 1) = γE(t) + (1−α)I (t),

R(t + 1) =αI (t) +R(t).

[4.4]

Do parameters Ãk exist such that [4.4] can be condensed to [2.3]?
It is helpful to think in terms of a stochastic process in which an
individual can be in the states S , E , I , and R. In fact, E and I suf-
fice, since we start “looking” at the individual when it is infected
and stop “looking” when it loses infectiousness. If we label E
with index 1 and I with index 2, then the probability distribution
of the state-at-infection is represented by the vector(

1
0

)
.

The state transitions are described by the matrix

M =

(
1− γ 0
γ 1−α

)
,

and infectiousness by the vector

b =
(
0 β

)
.

So, the expected infectiousness k units of time after becoming
infected is given by

Ak = bM k−1

(
1
0

)
,

and hence by

Ak = b(M k−1)2,1 =β

k−1∑
l=1

γ(1− γ)l−1(1−α)k−1−l , [4.5]

(with the convention that the sum equals zero when the upper
index does not exceed or equal the lower index). The parameters
Ãk are again defined by [2.5]. And when Ãk has the form defined
by [2.5] and [4.5], then [4.4] follows from [2.3] if we define

E(t) =

∞∑
j=1

[S(t − j )−S(t − j + 1)](1− γ)j−1,

I (t) =

∞∑
j=1

(
[S(t − j )−S(t − j + 1)]

·
∞∑
l=1

γ(1− γ)l−1(1−α)j−1−l

)
.

[4.6]

We trust that our presentation above, in terms of two vectors and
one matrix, all having a well-defined interpretation, makes clear
how one can, in general, relate compartmental epidemic models
to a scalar higher-order recursion. See section 9.3 of ref. 16 for a
detailed elaboration of the continuous-time case.
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We conclude that there is a multitude of compartmental mod-
els that correspond to a special choice of the parameters Ak . To
prove the results of Section 3 directly for a model with 27 com-
partments is very difficult, especially if one does not recognize
the underlying structure (and 27 components make recognition
difficult). More importantly, it is an unnecessary job: One only
needs to observe that one deals with a special case of [2.3].

5. On the Choice of Parameters Ak

The ingredients {Ak} subsume mechanistic properties of the
process of contact between hosts, as well as physiologi-
cal/immunological properties of within-host dynamics. As a rule,
information about such properties is scarce. One has to make
educated guesses. See ref. 17 for a concrete example.

The SIR and SEIR formulations of the last section have the
advantage of involving just a few parameters. But, in our opinion,
they have the disadvantage of being wrongly educated guesses:
They result from the tendency to do what others do, despite the
fact that data, as a rule, do not support geometric distributions
for the length of the latent and/or the infectious period.

A facilitating aspect is that Ak are averages (recall the remarks
about p in Section 1, and see ref. 4, section 2.1 for a detailed
exposition, including examples). If we “know” that at day six after
infection, only 10% of the infected individuals are infectious,
while at day seven this rises to 20%, we can use this informa-
tion directly in our choice of Ak . If we know that at days six and
seven, the degree of infectiousness differs among individuals, we
can still use the guesstimated average.

A more theoretical example is the following. Assume that a
fraction p of the infected individuals is asymptomatic. Assume
that a symptomatic individual has at day j after infection a prob-
ability θj to be detected and put into quarantine. Assume that
the intrinsic infectiousness and contact intensity of symptomatic
and asymptomatic cases is identical and given by {Bk}. Then, we
choose

Ak =

(
p + (1− p)

k∏
j=1

(1− θj )

)
Bk . [5.1]

Note that [5.1] is based on the debatable assumption that at the
day of its detection, an individual does not contribute to the force
of infection. This weakness is easily remedied, but at the cost of
introducing yet another parameter.

The parameters θj can capture the effect of testing. Dur-
ing a serious outbreak, such as the COVID-19 pandemic, the
testing policy and possibility depend on calendar day. This
introduces time dependence in the parameters θj . Similarly, con-
trol measures that reduce contact opportunities affect the Bk

in a time-dependent multiplicative manner. In the next sec-
tion, we introduce a computational scheme in which such time
dependence is easily incorporated.

6. Reformulation as a First-Order System
As shown in Section 3, the scalar higher-order recursion rela-
tion [2.3] is very convenient for theoretical purposes. But, for
doing computations, a first-order system of equations is more
convenient.

For feasibility, we want a finite dimensional system. To achieve
this, we make the very reasonable assumption that the indices
j for which Aj is strictly positive have a finite upper bound. In
other words, we assume that an integer m exists such that Aj = 0
for all j ≥m + 1. The relevant consequence is that the history of
S , which matters for determining the future, has finite length.

Define

Xj (t) : = s(t + 1− j ), j = 1, . . . ,m. [6.1]

Much of the dynamics of the vector X amounts to shifting:

Xj (t + 1) =Xj−1(t), j = 2, . . . ,m. [6.2]

Combination of [1.1], [2.4], [2.5], and [2.9] yields the rule for
extension

X1(t + 1) =X1(t)e−
∑m

j=1 Ãj (Xj+1(t)−Xj (t)). [6.3]

In [6.3], it is harmless to allow Ãj to depend on time t!
Alternatively, we might start from [2.9] and choose as before

X1(t) = s(t), [6.4]

but for j > 1

Xj (t) = s(t + 1− j )− s(t + 2− j ), [6.5]

which corresponds to the incidence in time window (t + 1−
j , t − j + 2]. With this choice of Xj (t), the cumulative force of
infection becomes

Λ̂(t) =

m∑
j=1

AjXj+1(t). [6.6]

This leads to the update rules

X1(t + 1) =X1(t)e−
∑m

k=1 ÃkXk+1(t), [6.7]
X2(t + 1) =X1(t)−X1(t + 1), [6.8]
Xj (t + 1) =Xj−1(t) forj > 2. [6.9]

In this formulation, too, we can allow Ãk to depend on time t .
This seems a good moment to point out that the use of labels

like “exposed” or “infectious” is perfectly possible within the
general framework. For any such label, say, L, specify, on the
basis of the choice of the parameters Ak , as described in Sec-
tion 5, the probability πj that an individual carries this label at
time j after becoming infected. Then, the number of individuals
carrying label L at time t is given by

NL(t) =

m∑
j=1

πjXj+1(t). [6.10]

So all one needs to do to plot the time course of NL is to add to
[6.7]–[6.9] the Eq. 6.10 (with t replaced by t + 1, for consistency).

Note that [4.3] and [4.6] are examples of [6.10]. In the very
special situation considered in Section 4, the labels actually
correspond to states at the individual level, and, as a conse-
quence, one can express NL(t + 1), for L=S , E , I , R in terms
of these same quantities at time t , without reference to X (t).
In general, this is impossible. (Incidentally, note that probabilists
often speak about non-Markovian models when the labels refer
to compartments and sojourn time distributions are not expo-
nential, while calling the labels “states,” even though, strictly
speaking, they do not qualify as such.)

7. About the Peak of the Incidence Curve
An epidemic curve has many features, such as

• The initial growth rate ρ;
• The height and timing of the peak;
• The final size.

For the first and last of these, it is well understood how
they relate to the parameters of simple models that ignore
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heterogeneity. For instance, the final size is completely deter-
mined by R0, while ρ is a solution of the Euler–Lotka equation
(cf. [3.5]).

At the start of an outbreak, one may observe the initial growth
rate and next use information about the generation interval
to make inferences about R0 (refs. 9 and 10 and the refer-
ences given there). Next, one may choose the model parameters
such that ρ and R0 of the model correspond to the estimated
values.

The ongoing outbreak of COVID-19 generates much interest
in peaks, largely because of concern that hospitals may be over-

whelmed with patients, leading to healthcare breakdown. As far
as we know, there is no analytical method to determine the height
and timing of the peak from model parameters (except, perhaps,
in the oversimplified SIR system of differential equations). So,
one has to rely on numerical calculations.

The key question addressed in this section is: How much is
peak height influenced by model details? Here, we systemati-
cally compare the discrete-time SEIR model, described by [4.4]
and corresponding to geometric distributions of the length of
the latent and infectious period, to a model with deterministic,
i.e., fixed, duration of these periods and constant infectiousness

Fig. 2. Comparing incidences between two types of models for different combinations of the expected time individuals are exposed (TE) and the expected
time individuals are infectious (TI). In the block model, the lengths of the latent and infectious periods are deterministic (fixed for all individuals); in the
SEIR model, the lengths of these periods are stochastic (independently exponentially distributed with identical parameters, resp., 1/TE and 1/TI). See SI
Appendix for details. (Top) Maximum incidence of the block model (with deterministic periods; Left), SEIR model (with stochastic periods; Center), and the
relative ratio between the two (i.e., block−SEIR

SEIR ; Right), as a function of TE , the (actual, resp., expected) time individuals are exposed, and TI, the (actual,
resp., expected) time individuals are infectious. Models were compared after ensuring that they have the same R0 and initial growth rate ρ. Note that the
incidence of the deterministic model always reaches a higher peak within the ranges of TE and TI considered, by about 8 to 15%, than the corresponding
SEIR model. (Middle and Bottom) Example simulations with the deterministic model (blue) and corresponding SEIR model (red) with the same R0 and ρ.
Middle corresponds to the parameters at which the ratio of peak heights is minimal, (TE , TI) = (3, 4); Bottom corresponds to when this ratio is maximal,
(TE , TI) = (6, 4). One can clearly see that the incidence grows initially at one and the same rate.
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Fig. 3. Comparing a model, denoted by SC for SARS-CoV-2, with parameters corresponding to the Weibull distribution derived from SC generation-interval
data in ref. 18 to the SEIR model with the same reproduction number R0 and the same initial growth rate ρ. (Top Left) Relative ratio between the maximal
incidences (−1, as in Fig. 2) as a function of TE , the expected length of the exposed period (note that the maximal incidence of the SC model is the same
for all TE , as TE sets only the parameters of the SEIR model; SI Appendix). (Top Right) Expected contribution to force of infection for the SC model. (Middle
Left) Incidence of the SC model (blue) and the SEIR model (red) with TE = 1. At this TE , the relative difference in the peak incidences are maximal. (Middle
Right) The expected contribution of the SEIR model for TE = 1. (Bottom) Same, but now for TE = 3, at which the difference in peak incidence is minimal. For
TE > 4.12, the SEIR model cannot be parameterized to have the same R0 and ρ as the SC model. For further details, see SI Appendix.

during the infectious period. Thus, both types of model have
three parameters. By restricting to R0 = 2.5, we fixed the infec-
tiousness parameter in terms of the other two. We calibrated
the models by making sure that ρ and the mean length of the
latent period are the same, thus creating a one-to-one relation-
ship between the two parameters of one type of model and the
two parameters of the other type of model.

As initial condition, we took a short history of decreasing frac-
tions of susceptibles, reflecting an exponential increase in new

cases at the rate ρ. We computed the peak value of the incidence
for both types as a function of the two parameters and next their
ratio. The results are depicted in Fig. 2.

The main conclusions are:

• Deterministic periods lead to higher peaks than geometrically
distributed periods;
• This is most prominent when the latent period is large and the

infectious period is small;

Fig. 4. The fraction of the population that is either latently infected or infectious in the block model (blue) and the corresponding SEIR model (red). (Left)
(TE , TI) = (3, 4). (Right) (TE , TI) = (6, 4). The corresponding incidences can be found in Fig. 2. Note that although the peak incidences are not so very different
(Fig. 2), there is a large difference in the fraction of infected-and-not-yet-removed individuals, due to the comparatively fatter tail in the expected future
contribution to the force of infection in the SEIR model.
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• The difference is, for reasonable parameter values, in the
order of 10%.

[Note that, since compartmental models have fatter tails, they
need, for given R0, to have an earlier peak of infectiousness in
order to have the same ρ. This is clearly visible in Figs. 2 and
3. See section 4.1 of the recent book ref. 19 for a different, yet
somewhat related, observation concerning the influence of (the
shape of) a sojourn time distribution.]

After the first conclusion emerged, we aspired to find a some-
what mechanistic explanation. This led to the following observa-
tion. Roughly speaking, an outbreak reaches its peak when S is
reduced to the level corresponding to R0 = 1. How many more
cases there will be after the peak depends largely on the number
of individuals that are, or are on the way to becoming, infec-
tious at the time the peak is reached. (In ref. 4, section 1.3.2, it
is explained how the overshoot phenomenon corresponding to a
large stock of recently infected individuals at the time of reaching
the peak causes the final size, as a fraction of the population, to
increase when R0 increases.) For compartmental models, there is
a relatively fat tail in the distribution of the time until becoming
“removed,” i.e., having no future infectiousness. So when com-
paring models with the same R0, and hence the same final size,
we should expect that for compartmental models, the reservoir
of latent and infectious individuals is smaller, at peak time, than
for models in which expected future infectiousness reduces to
zero after finite time. This is illustrated in Fig. 4, and as reser-
voir size correlates with peak size, we should expect lower peaks
for compartmental models, exactly as found in our numerical
results.

Just to elucidate that the higher-peak-phenomenon matters in
the COVID-19 context, we chose, on the one hand, the param-
eters Ak as integrals over 1-d time intervals of the Weibull
generation-interval distribution, as derived from data in ref. 18,
and, on the other hand, determined the one-parameter family of
SEIR models that has both R0 and ρ equal to these quantities for
the Weibull. The results of a comparison are presented in Fig. 3.
The peak heights differ 5 to 10%.

8. Conclusions
The success of the SIR and SEIR variants dwarfs the attention
for the general KM27 model, even though, in principle, the lat-
ter has much on offer for a would-be modeler. We surmise that
the reason is that the general model is formulated as a renewal
(or Volterra integral) equation and that for these unfamiliar
equations, there are no user-friendly numerical tools available.

Here, we introduced a discrete-time version that has many
advantages:

• The generality and flexibility are retained;
• Computing the epidemic time course is super easy;
• The time step can be adjusted to the time interval between

data points (e.g., 1 d or 1 wk);
• The model parameters bear a direct relation to observational

data and control measures;
• Time-varying infectiousness due to interventions can be

incorporated without difficulty.

In Section 7, we showed that precise assumptions about the
latent and infectious period matter for predicting the peak of
the incidence curve, a quantity of interest from a public health
perspective. So, we claim, the generality matters for practical
issues and is not just an academic fancy. Of course, in a practical
context, all kinds of heterogeneity (e.g., reflecting age) mat-
ter as well. These have been neglected here, but by combining
[2.10] with material in ref. 4 and other textbooks, progress can
definitely be made.

Our hope is that our pragmatic reformulation leads to well-
deserved and long-overdue (20) popularity of the true KM27
model.

Data Availability. All study data are included in the article and/or
supporting information.
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