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Tropical cyclones (TCs), locally known as hurricanes or typhoons, are one of the 

deadliest and costliest natural hazards, causing widespread havoc in coastal areas 

when they make landfall. Their primary hazards include high wind speeds, storm 

surge, and precipitation, but these can, in turn, trigger other hazards, such as landslides 

or the spread of water-borne diseases. The 2017 Atlantic Hurricane Season has been 

the costliest to date, with Hurricanes Harvey, Irma, and Maria’s combined overall 

losses estimated around US$ 220 billion. To protect coastal communities from these 

powerful storms and to reduce the future loss of life and property, it is crucial to 

support risk mitigation efforts with reliable TC risk assessments. Achieving this goal, 

however, requires adequate understanding of the characteristics of TCs (e.g., intensity, 

frequency, etc.) and of how these characteristics change under (near-) future climate 

change. The goal of this thesis is therefore to develop a novel method to derive and 

assess global-scale TC activity and wind speed probabilities, now and under climate 

change.  

The first step in improving the understanding of TC hazards is ensuring that the 

meteorological data used to study TCs sufficiently capture the high wind speeds and 

low atmospheric pressure characteristic of TCs. This knowledge is crucial for risk 

assessments because a poor representation of these features may lead to an over- or 

underestimation of hazards, impacts, and risk further down the model chain. To 

answer this question, this thesis first assesses the effect of horizontal model resolution 

of meteorological data on simulating TC storm surges for eight case studies. Results 

show that, in general, a spatial resolution of around 25 x 25 km is sufficient to 

adequately capture the large-scale spatial patterns of the maximum storm surge 

heights. In addition, the use of coarser-resolution models generally results in lower 

storm surge estimates, predominantly in regions prone to high surges.  

Next, understanding TC risk requires understanding the full range of the possible TC 

events in a location, particularly the most extreme events – that is, events that have a 

low probability of occurrence/high return period (RP). It can, however, be challenging 

to properly estimate this range using solely historical data. Historical data on TC 

events is sparse because TCs are relatively rare events, with around 90 (± 10) 

formations per year globally. From these formations, on average only 16 TCs make 

landfall as a Category-1 TC or stronger. Furthermore, landfalling TCs generally affect 

a relatively small (< 500 km) stretch of coastline. Moreover, reliable global-scale TC 

datasets are only available from the start of the satellite era, in 1980 onwards; as a 

result, some coastal regions do not even have a single landfalling TC event in the 

available datasets. 

Many regions thus lack information on the full range of possible TCs, particularly for 

the most extreme events. To overcome this obstacle, this thesis presents the Synthetic 

Tropical cyclOne geneRation Model (STORM). STORM takes historical TC data as 

input and statistically resamples this data to a TC event set equivalent to 10,000 years 

under the same climate conditions. The resulting synthetic STORM dataset contains 
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the full range of possible TC events (including events exceeding the 1-in-1,000yr RP, 

equivalent to a 0.1% probability of occurring in any given year) in TC-prone regions 

under present climate conditions. Therefore, this dataset can be used to study extreme 

events likely not captured by historical data. To demonstrate the use of the STORM 

dataset, its synthetic tracks are coupled with a parametric wind field model to generate 

the present-climate wind speed RPs at 10-km resolution for every TC-prone location. 

Validation against other studies shows that these RPs are in strong agreement, with 

the majority of wind speeds being within 5 m/s of each other for a given RP. These 

datasets are particularly beneficial to use as hazard layers in, for instance, catastrophe 

models, which are often used in the (re)insurance industry. 

To understand how these RPs are changing under climate change, information from 

four global climate models (GCMs) is used as input for STORM. This thesis presents 

a novel methodology (based on the concept of “the delta approach”) for such future-

climate simulations. First, the delta, defined as the difference between present and 

future climate data, is extracted for the various TC input variables from each of the 

four GCMs. Second, this delta is added to the variables derived from the historical 

data used previously for the construction of the present-climate STORM dataset. 

Applying this delta approach results in a future-climate version of the historical data 

that omits the first-order model bias, such as the GCMs containing TC intensities that 

are too low. STORM is then used to generate 10,000 years of synthetic TC tracks and 

high-resolution wind speed maps for fixed RPs for each of the four GCMs. The use 

of these four GCMs enables the assessment of the intra-model spread in projected 

changes in TC wind speed hazard. The data show that most TC-prone regions will 

face an increase in TC wind speed hazard under future climate change, with the largest 

changes being in the South Pacific and the Hong Kong region. Furthermore, results 

indicate that predominantly developing countries, such as Cambodia, are facing the 

largest changes in exposed population with regard to the difference between the 

present and near-future climate.  

Lastly, a crucial aspect in short-term TC risk mitigation strategies is adequate risk 

communication, which serves to warn and prepare coastal communities for an 

imminent storm. A common practice in this context is classifying a TC on the Saffir-

Simpson Hurricane Wind Scale (SSHWS), which categorizes a TC’s wind speed on a 

scale from 1 to 5. Past events, however, have demonstrated that the largest TC impacts 

often come from flooding, caused by a TC’s storm surge and extreme precipitation 

totals, rather than wind alone. As such, the SSHWS category does not fully reflect the 

potential severity of a TC. To overcome this limitation, this thesis presents the 

Tropical Cyclone Severity Scale (TCSS), which also includes storm surges and 

precipitation totals (in addition to wind speeds). Similar to the SSHWS, the TCSS 

uses a Category 0–5 system to maintain familiarity amongst the general public. In 

addition, the TCSS is extended with a Category 6 in order to support communication 

about the most extreme TCs that threaten in multiple ways. Applied to past extreme 

events, the TCSS would have classified Hurricane Katrina (Category 3 on the 
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SSHWS, but the costliest US TC on record) as a Category-5, for example. The scale 

can easily be coupled to meteorological and hydrodynamical forecasts to generate 

local-scale categorization maps, which can then be communicated to the public, 

thereby allowing for enhanced storm preparation and ultimately saving more lives. 

The research presented in this thesis contributes to ongoing efforts to better understand 

and mitigate TC risk on a global scale. The STORM present- and future-climate 

datasets can help identify hotspot regions most prone to TCs both now and under 

future warming scenarios. Such scenarios can then be subject to additional local-scale 

and in-depth research. Furthermore, STORM provides valuable insights into the 

magnitude of the risk for those regions infrequently hit by TCs. STORM can also form 

the basis for studying the other main TC hazards. TC storm surges can be studied by 

coupling the STORM synthetic tracks to a hydrodynamical model. Studying 

precipitation risk first requires the development of a parametric rain field model, 

which can then be coupled with the STORM synthetic tracks. Such a full set of TC 

hazards provides an important missing piece in the puzzle to assess the full scope of 

TC risk. Additionally, this full set also opens up a wealth of new research 

opportunities, such as inland and compound flooding risk assessments. 
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Tropische cyclonen, ook wel orkanen of tyfoons genoemd, veroorzaken vaak 

grootschalige verwoesting wanneer ze aan land komen, en behoren hiermee tot de 

gevaarlijkste natuurrampen op aarde. De grootste bedreigingen van een tropische 

cycloon zijn de hoge windsnelheden, stormvloed en neerslag, maar deze kunnen 

tevens weer andere gevaarlijke situaties veroorzaken, zoals watervervuiling of 

aardverschuivingen. In 2017 zorgden de orkanen Harvey, Irma en Maria gezamenlijk 

voor US$ 220 miljard aan schade, waarmee dat seizoen het duurste orkaanseizoen ooit 

werd. Betrouwbare risicoanalyses zijn cruciaal voor het verbeteren van 

risicobeperkende maatregelen, als we kustgebieden in de toekomst beter willen 

beschermen tegen deze krachtige stormen. Om dit te bereiken hebben we echter goed 

inzicht nodig in de karakteristieken van een tropische cycloon (waaronder de 

intensiteit en frequentie) en hoe deze veranderen onder toekomstige 

klimaatverandering. Het doel van dit proefschrift is om een nieuwe methode te 

ontwikkelen om wereldwijde tropische cyclonen-activiteit en bijbehorende kansen te 

berekenen, voor zowel het huidige als toekomstige klimaat. 

De eerste stap in het verkrijgen van meer inzicht in de karakteristieken van tropische 

cyclonen betreft de meteorologische data: we moeten er zeker van zijn dat de data die 

we gebruiken om tropische cyclonen te analyseren, de karakteristieke hoge 

windsnelheden en lage luchtdrukvelden goed kan weergeven. Dit is cruciaal voor 

risicoanalyses, omdat een slechte weerspiegeling van deze kenmerken voor een over- 

of onderschatting van het gevaar, de impact, en het risico in de modelketen kan 

zorgen. Om dit te onderzoeken wordt als eerste het effect van de horizontale 

modelresolutie van de meteorologische data op de stormvloed van tropische cyclonen 

bestudeerd. De modelresultaten laten zien dat een resolutie van 25 x 25 km over het 

algemeen voldoende is om de grootschalige ruimtelijke patronen van maximale 

stormvloedhoogtes goed te simuleren. Daarnaast leidt het gebruik van een grovere 

resolutie doorgaans tot lagere stormvloeden, wat voornamelijk tot uiting komt in 

regio’s waar hoge stormvloeden voorkomen.  

Vervolgens behoeft het begrijpen van de risico’s van tropische cyclonen een duidelijk 

beeld van alle mogelijke tropische cyclonen op een bepaalde locatie, in het bijzonder 

van de meest extreme stormen (dat wil zeggen: een lage kans van voorkomen, ofwel 

een hoge terugkeertijd). Het is echter soms lastig om een goede schatting te maken 

van al deze mogelijkheden wanneer men alleen naar historische gebeurtenissen kijkt. 

Historische data is hierin namelijk beperkt omdat tropische cyclonen relatief zeldzaam 

zijn: er ontstaan wereldwijd ongeveer 90 (±10) stormen per jaar, waarvan er 

gemiddeld 16 aan land komen met orkaankracht. Daarbij komt nog dat de tropische 

cyclonen die aan land komen, meestal in een relatief klein (<500 km) kustgebied 

daadwerkelijk impact hebben. Bovendien zijn goede wereldwijde tropische cyclonen 

datasets pas vanaf de start van het satelliettijdperk, in 1980, beschikbaar. Dit betekent 

dat er in deze datasets kustgebieden zullen zijn waar geen tropische cyclonen aan land 

gekomen zijn, en waar dus ook geen informatie beschikbaar is over mogelijke 

kansverdelingen of impacts.  
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Voor veel regio’s bestaat dus geen informatie over alle mogelijke tropische cyclonen 

die dat gebied zouden kunnen raken, in het bijzonder voor de meest extreme stormen. 

Om dit inzicht toch te verkrijgen presenteert dit proefschrift de Synthetic Tropical 

cyclOne geneRation Model (STORM). STORM gebruikt historische informatie van 

tropische cyclonen als input, en past vervolgens statistische methodes toe om zo een 

dataset van tropische cyclonen te maken die equivalent is aan 10.000 jaar onder 

dezelfde klimaatcondities. De resulterende STORM dataset bevat een volledig 

overzicht van alle (theoretisch) mogelijke tropische cyclonen in het huidige klimaat, 

inclusief extreme tropische cyclonen met een terugkeertijd van meer dan 1.000 jaar, 

ofwel een jaarlijkse kans van voorkomen van 0,1%. De STORM dataset kan dan ook 

gebruikt worden om extreme gebeurtenissen te analyseren die doorgaans niet in de 

historische data voorkomen. Om het gebruik van de STORM dataset te demonstreren 

zijn de synthetische tracks gekoppeld aan een parametrisch windveld model om zo de 

terugkeertijden van windsnelheden op 10 km resolutie in het huidig klimaat te 

berekenen. Vergelijking met andere onderzoeken laat zien dat deze terugkeertijden 

goed met elkaar overeenkomen, met in de meeste gevallen een verschil in 

windsnelheid van minder dan 5 m/s voor een gegeven terugkeertijd. Deze datasets zijn 

bijzonder handig om als invoer (zogenaamde hazard layers) te gebruiken in het 

modelleren van catastroferisico’s, wat vaak gedaan wordt door (her)verzekeraars.  

Om inzicht te krijgen in de manier waarop deze terugkeertijden veranderen onder 

klimaatverandering, zijn vier mondiale klimaatmodellen (global climate models; 

GCMs) gebruikt als input voor STORM. In dit proefschrift wordt een nieuwe methode 

gepresenteerd (gebaseerd op de “delta approach”) voor zulke toekomstig-klimaat-

simulaties. Als eerste wordt het klimaatsignaal, gedefinieerd als het verschil tussen de 

huidig en toekomstig-klimaat data, voor de verschillende tropische cyclonen input 

variabelen en voor elk model herleid. Hierna wordt dit klimaatsignaal opgeteld bij de 

variabelen uit de historische data, die eerder gebruikt werd om de huidig-klimaat 

STORM dataset te genereren. Op deze manier wordt een toekomstig-klimaat versie 

van de historische data gecreëerd, en hiermee wordt de eerste-orde modelafwijking 

voorkomen, zoals te zwakke tropische cyclonen in de GCMs. STORM wordt 

vervolgens gebruikt om 10.000 jaar aan synthetische tropische cyclonen tracks en 

hoge-resolutie windkaarten voor vaste terugkeertijden te berekenen. Het gebruik van 

deze vier GCMs zorgt ervoor dat de spreiding in verwachte veranderingen in tropische 

cyclonen windsnelheden bepaald kan worden. De data laten zien dat in de meeste 

regio’s waar tropische cyclonen voorkomen, de kansen op hogere windsnelheden 

zullen toenemen, met de grootste toenames in de Zuidelijke Stille Oceaan en de regio 

van Hong Kong. Bovendien laten de resultaten zien dat mensen in 

ontwikkelingslanden, zoals Cambodja, de grootste toename in het gevaar van 

tropische cyclonen zullen doormaken.  

Als laatste vormt goede risicocommunicatie een cruciaal onderdeel van de 

risicobeperkende maatregelen die op de kortere termijn genomen kunnen worden, 

want hiermee kunnen kustgemeentes gewaarschuwd en voorbereid worden op een 
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naderende storm. Hiervoor wordt doorgaans een tropische cycloon geclassificeerd op 

de schaal van Saffir-Simpson, die de maximale windsnelheid van een tropische 

cycloon categoriseert op een schaal van 1 tot 5. Historische tropische cyclonen hebben 

echter laten zien dat de voornaamste impacts van een cycloon niet door de wind, maar 

door overstromingen komen, veroorzaakt door de stormvloed en extreme 

neerslaghoeveelheden. Dit betekent dus dat de schaal van Saffir-Simpson het totale 

gevaar van een tropische cycloon onvoldoende weergeeft. Om deze reden wordt in dit 

proefschrift de Tropical Cyclone Severity Scale (TCSS) ontworpen, waarin ook 

stormvloed en neerslag meegenomen worden in de categorisering. Net zoals de schaal 

van Saffir-Simpson gebruikt de TCSS een categorisering van 0-5, omdat het algemene 

publiek hier al bekend mee is. Hiernaast is de TCSS uitgebreid met een categorie 6, 

om zo communicatie over de meest extreme tropische cyclonen te ondersteunen. 

Toepassing van de schaal laat zien dat historische extreme gebeurtenissen zoals 

orkaan Katrina (categorie 3, maar de duurste Amerikaanse orkaan ooit) 

geclassificeerd zou zijn als een categorie 5 op de TCSS. De nieuwe schaal kan 

gemakkelijk gekoppeld worden aan meteorologische en hydrodynamische 

verwachtingen om zo categorisering op lokale schaal te bewerkstellingen. Deze 

informatie kan vervolgens gecommuniceerd worden met het algemene publiek, 

waarmee betere voorbereidingen getroffen kunnen worden, en zo uiteindelijk meer 

levens gered kunnen worden. 

Het onderzoek uit dit proefschrift draagt bij aan de doorlopende inspanningen om de 

wereldwijde risico’s van tropische cyclonen beter te begrijpen en te beperken. De 

STORM huidig en toekomstig-klimaat datasets helpen om hotspot gebieden te 

definiëren; regio’s kwetsbaar voor tropische cyclonen nu en in de toekomst, waar dan 

aanvullend grondig, en op lokale schaal, onderzoek gedaan kan worden. Hiernaast 

verschaft STORM waardevol inzicht in de omvang van het risico voor gebieden waar 

deze stormen weinig voorkomen. STORM kan ook de basis vormen voor onderzoek 

naar de andere gevaren van tropische cyclonen. De stormvloed kan bestudeerd worden 

door de synthetische tracks van STORM te koppelen met een hydrodynamisch model. 

Om onderzoek te doen naar neerslagrisico’s moet eerst een parametrisch regenveld 

model ontwikkeld worden, die vervolgens gekoppeld kan worden met de STORM 

datasets. Zo’n volledige verzameling van gevaren van tropische cyclonen zal een 

belangrijk puzzelstuk vormen om de volledige omvang van risico’s te bepalen. 

Daarnaast zal dit ook voor veel nieuwe onderzoeksmogelijkheden zorgen, zoals 

risicoanalyses naar binnenlandse en samengestelde overstromingen. 
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1.1 Tropical cyclones 

Tropical cyclones (TCs) are one of the deadliest and most devastating natural hazards 

and are characterized by their strong winds, heavy precipitation, and high storm 

surges and waves. These storms form in tropical and subtropical regions (Figure 1.1), 

and depending on the genesis location, they are locally known as hurricanes (Eastern 

Pacific and North Atlantic) or typhoons (Western Pacific). Mature TCs have a closed 

surface wind circulation with a well-defined center, called the eye. This center is also 

where the lowest atmospheric pressure is found. The band of clouds surrounding the 

eye is called the eyewall, and typically forms the region of the TC with the highest 

wind speeds. In a mature system, these wind speeds can exceed 120 km/h. In fact, the 

most intense TC that ever occurred was Hurricane Patricia (2015), with sustained 

wind speeds of 345 km/h and a minimum pressure of 872 hPa. TCs can reach sizes 

of 100–2000 km in diameter and can last for days to weeks. 

 

Figure 1.1 Historical tropical cyclone tracks from International Best Track Archive for Climate 

Stewardship (IBTrACS, Knapp et al., 2010) 

The best-known scale for the classification of TC intensity is the Saffir-Simpson 

Hurricane Wind Scale (SSHWS), which categorizes a TC on a scale from 1 to 5 based 

on its maximum sustained wind speed. A Category-1 TC has a maximum wind speed 

exceeding 33 m/s (approximately 120 km/h), whereas the threshold for a Category-5 

TC lies at 70 m/s (approximately 250 km/h). The classifications “Tropical Storm” or 

“Tropical Depression” are used for TCs with maximum wind speeds below 33 m/s. 

Wind is one of the major hazards associated with TCs, and it can do substantial 

damage to housing, infrastructure, and ecosystems both in coastal regions and far 

inland (Kruk et al., 2010). Moreover, the magnitude of other TC-induced hazards, 

such as storm surges, waves, and precipitation depends on the strength of the wind 

(Cerveny and Newman, 2000; Phadke et al., 2003). Historical TC events exemplify 

the havoc these storms can cause. The deadliest TC to date is the Great Bhola Cyclone 

(1970), which hit the low-lying shores of the Bay of Bengal and caused approximately 
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500,000 fatalities (Cerveny et al., 2017). In 2005, Hurricane Katrina’s storm surges 

were 8.6 m high and caused widespread levee failure in New Orleans (USA), making 

this hurricane the costliest ever, with damages totaling US$ 160 billion (NOAA, 

2020a). TC impacts can be further enhanced when two storms affect the same area 

within a short time span (a so-called consecutive event). Such an event happened, for 

example, in Southeast Africa in 2019, where TCs Idai and Kenneth both made 

landfall in Mozambique. TC Idai caused around 1,000 fatalities and displaced around 

3 million people, and humanitarian aid was still ongoing when TC Kenneth struck 

the same region only six weeks later (OCHA, 2019). Climate change is expected to 

further amplify the disruptive impacts of TCs; TCs are projected to become more 

intense because of increasing sea-surface temperatures, and warm ocean waters 

function as fuel for a TC (Knutson et al., 2020). At the same time, it is uncertain how 

TC frequency will change and how this change will be distributed over the different 

ocean basins. In addition, some models project a poleward shift in TC tracks, meaning 

that regions currently not under direct threat of TCs might be facing TC impacts in 

the future (Altman et al., 2018; Haarsma et al., 2013; Kossin et al., 2014a). Socio-

economic trends, such as population growth and the increase in wealth in coastal 

areas, will further increase exposure to and risk from TCs (Jongman et al., 2015; 

Peduzzi et al., 2012). 

To combat this increasing trend, it is crucial to protect coastal communities, 

economies, and ecosystems from these powerful storms by implementing adequate 

disaster risk reduction (DRR) strategies. These strategies operate on different 

timescales (long term versus short term) and on different organizational levels 

(policy-makers versus homeowners). Examples of long-term strategies by policy 

makers include the construction of dykes or mangrove forests to reduce storm surge 

impacts or imposing building regulations for coastal zones (Aerts, 2018). In addition, 

homeowners in the United States, for instance, can increase their resilience through 

insurance, which is used to compensate households after they have experienced losses 

but which can also be used to incentivize the adoption of risk-reduction measures 

through reductions in insurance costs. Examples of short-term mitigation strategies 

include (mandatory) evacuations and the installation of sand bags in flood-prone 

regions.  

Designing such (long-term) DRR strategies requires detailed and accurate 

information on TC events in the location of interest, particularly for the most extreme 

events – that is, events that have a low probability of occurrence/high return period 

(RP) - and how these events change under climate change. Such information has been 

derived for e.g. New York City (Aerts et al., 2014; Aerts et al., 2013; Lin et al., 2010; 

Lin et al., 2016) and Miami-Dade County (Klima et al., 2012). However, insights into 

how the probabilities of such extreme events are going to change under climate 

change for any location on earth are still missing. Improving short-term DRR 

strategies can be achieved through improving people’s risk perception. As a result, 
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communities living in the path of an imminent storm can respond in a timely and 

appropriate way, thereby reducing the TC’s impact.  

1.2 Research challenges 
Under a warming climate, TCs are likely to become more intense (Knutson et al., 

2020), thus increasing wind speeds and the associated risks. As such, it is vital to 

understand and accurately map TC occurrences and impacts—particularly regarding 

extreme events (high RPs) and how their impacts might change under climate change. 

Such knowledge will ensure that coastal communities are protected from future loss 

of life and from damage to property and insurance.  

Several models and datasets are needed to assess current and future TC risk. The 

meteorological data, extracted either from global climate models (GCMs), 

observational data, or forecasting systems, form the basis of the model chain and 

serve as input for various models that simulate TC hazards and impacts. 

Observational datasets, such as IBTrACS, are beneficial for present-climate studies, 

which generally contain accurate information on historical TC tracks and intensities 

(Knapp et al., 2010). Future-climate TCs, in turn, are often simulated using GCMs 

(Walsh et al., 2016), or by coupling environmental conditions from such GCMs to a 

TC simulation model (Emanuel, 2021; Emanuel et al., 2008). Using such 

meteorological data, however, poses some challenges. First of all, TCs are 

characterized by small-scale wind and pressure gradients, which are underrepresented 

in coarse(r) resolution datasets, leading to an underestimation in TC intensity 

(Camargo, 2013; Murakami and Sugi, 2010). This poor representation of TC intensity 

can lead to an over- or underestimation of hazards, impacts, and risk further down the 

model chain. Second, the temporal scale of meteorological data is too short to capture 

the full range of possible TC events for all coastal areas in TC-prone regions (Lin and 

Emanuel, 2016). This limitation is due to TCs’ relative rarity, with around 90 (± 10) 

formations per year (Emanuel, 2008), of which approximately 16 make landfall as a 

Category 1 or stronger (Weinkle et al., 2012). Moreover, when making landfall, TCs 

generally affect a relatively small stretch of coastline (<500 km; Pugh and 

Woodworth, 2014). As a result, the number of TCs in GCM simulations, which 

typically have a duration of 30 years, is too small to reliably estimate probabilities. 

The same limitations apply to reliable global-scale observations, which are only 

available from 1980 onwards, meaning that for many coastal regions, there may not 

even be a single landfalling TC event in the available datasets. So, for many coastal 

regions, it is impossible to give a reliable estimation of the intensity of low-

probability (high RP) events based on solely meteorological data. Therefore, to 

perform adequate TC risk assessments, we need to overcome these complicating 

factors. 

Besides improving the quantification of TC risk, another important component in 

building more resilient societies is improving people’s risk perception. With such 

knowledge, communities living in the path of an imminent storm can respond in a 
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timely and appropriate way, thereby reducing the TC’s impact. As explained above, 

the Saffir-Simpson Hurricane Wind Scale (SSHWS) is commonly used for 

categorizing TCs— more specifically, those that form in the Eastern Pacific and 

North Atlantic. This scale, however, only considers wind speed, whereas a TC can 

also cause flooding through high storm surges and extreme rainfall. For example, 

Hurricane Harvey (2017), despite being classified a Tropical Storm, caused 

widespread flooding in the Houston (USA) area, with precipitation totals exceeding 

1.5 m. Because the SSHWS does not include storm surge and rainfall information, 

adequate risk communication can be challenging, as the public can (mistakenly) 

perceive a low-category TC as a low-risk TC.  

1.2.1 Spatial model resolution 
GCMs are often run at the global scale to assess present-day climate conditions and 

to evaluate changes for future climate scenarios. There are, however, several 

challenges associated with the use of GCMs. One major limitation in using GCMs is 

the spatial resolution, which is often too coarse for solving TC dynamics. Previous 

generations of GCMs had horizontal resolutions of 0.45° to 1.8° (ca. 50–200 km at 

the equator) (Saha et al., 2006; Yukimoto et al., 2006), which is insufficient to fully 

resolve TC intensity, size, and track (Murakami and Sugi, 2010; Schenkel and Hart, 

2012; Walsh et al., 2007), and which are especially problematic for weak TCs 

(Hodges et al., 2017; Murakami, 2014).  

Nowadays, there are higher-resolution GCMs available, offering improved TC 

representations. One such high-resolution GCM is EC-Earth, which consists of model 

components from the European Centre for Medium-Range Weather Forecasting 

(ECMWF) Integrated Forecasting System (IFS) (Doblas-Reyes et al., 2018). In 

addition to being an operational weather forecasting model, IFS has been used for 

producing reanalysis products, such as ERA5 and ERA-Interim (Dee et al., 2011; 

ECMWF, 2017c). In ERA-Interim, the average number of TCs per year is simulated 

well (Strachan et al., 2013), but modeled tracks differ from observed ones, and the 

intensity and size are underestimated (Murakami and Sugi, 2010; Schenkel and Hart, 

2012). The underestimation of intensity is usually driven by resolution effects and 

poor physical schemes (Flato et al., 2013; Walsh et al., 2007). Previous updates in 

tropical atmospheric conditions in ECMWF IFS have improved tropospheric wind 

and convection representation compared to observations (Fiorino, 2008) and the 

model’s spatial resolution was increased from ± 0.225° at the equator in 2006 to its 

current resolution of ± 0.08° (ECMWF, 2017a). These updates have significantly 

contributed to the improvement of the IFS TC track ensemble forecasts. An example 

of this improved performance is the IFS ensemble forecast for Hurricane Sandy’s 

track, which predicted Sandy’s landfall up to seven days in advance (Bassill, 2014; 

Magnusson et al., 2014). Apart from track ensemble forecasts, TC intensity forecasts 

have also improved in the recent IFS model updates (ECMWF, 2017a).  
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Hydrodynamic models are one type of hazard model using meteorological data (wind, 

pressure) as input. These models can be used to simulate storm surges, both for 

operational applications and risk assessments. Storm surge is often the main driver of 

TC-related impacts: research has shown that most TC-related fatalities in the United 

States are caused by storm surges (49%), as opposed to wind (8%) and rainfall (27%) 

(Rappaport, 2014). Hence, a correct representation of TC intensity in the 

meteorological input dataset (also referred to as forcing) is crucial to better 

understand impacts and risks. Despite research focusing on methods to test how 

sensitive simulated storm surges are to TC wind fields (Cardone and Cox, 2009), few 

studies have analyzed the effects of the resolution of meteorological forcing on 

simulated storm surges. Wakelin and Proctor (2002) used three meteorological 

operational analysis datasets to analyze two storm surge events in the Adriatic Sea. 

They concluded that their model works best with meteorological forcing with the 

highest spatial and temporal resolution, which were observational data at 43 

meteorological stations. Muis et al. (2016) demonstrated the implications of using 

coarse-resolution meteorological forcing for global storm surge modeling. They 

generated time series of storm surges on a global scale using the six-hourly 0.75° 

ERA-Interim dataset (Dee et al., 2011; ECMWF, 2016) and found that extreme sea 

levels induced by TCs are underestimated because of the coarse resolution of 

meteorological datasets. However, the field still lacks a global-scale study addressing 

what resolution of meteorological forcing is needed to adequately simulate TC-

induced storm surges. 

1.2.2 Analyzing low-probability tropical cyclones: 

Extending the temporal extent of the meteorological 

data 
To enhance our understanding of TC risk at the global scale, it is essential to analyze 

TC characteristics, such as wind speed probabilities, in TC-prone regions. Risk is 

commonly calculated as the integrated value of expected damages over all 

exceedance probabilities—the inverse of these probabilities being RPs (Ward et al., 

2011). As such, to compute the full envelope of risk for a location requires the 

calculation of RPs for a wide range of events, which, in turn, are derived from a set 

of TC tracks. 

An early attempt to calculate TC wind speed RPs was done by Simpson and Lawrence 

(1971), who used historical TCs to empirically estimate TC RPs along 80-km-long 

coastal segments of the US coastline. However, some coastal segments had not been 

hit by a TC in the 85 years of observations, and therefore no RP could be calculated. 

Moreover, because of the short duration of the observational record, there was a large 

uncertainty in the estimation of the RPs, especially for those RPs outside of the 

observational record. This example exposes the shortcomings of observational 

records and other climatological datasets as input datasets for such RP and risk 



Introduction 

 

29 

analyses: Their spatial and temporal extent is too short for RP calculation, especially 

at higher spatial scales. 

One way to overcome the data scarcity for low-probability TCs is to extend the 

historical record. For example, paleoclimate records from coastal sediments can be 

used to reveal periods of past coastal floods driven by TCs, an approach known as 

paleotempestology (Lin et al., 2014; Nott and Hayne, 2001). Such records can extend 

back thousands of years and can present a wealth of information on TCs that have 

affected a given region. These records, however, are only available for small coastal 

stretches, and this method of collecting coastal sediment records cannot realistically 

be used at a global scale. 

Another method that has been widely explored is the generation of synthetic TC 

tracks (Emanuel et al., 2006; Powell et al., 2005; Vickery et al., 2000). In such an 

approach, TC tracks and intensities are statistically resampled and modeled from an 

underlying dataset—either historical TC tracks (Casson and Coles, 2000; Emanuel et 

al., 2006; Haigh et al., 2014) or meteorological datasets from GCMs (Lin et al., 2012). 

This approach makes it possible to generate thousands of years of TC activity, 

including TCs with high RPs, that have statistical properties similar to the underlying 

dataset. This sampling method can be repeated for many years, thereby creating a 

large TC dataset that includes TCs with high RPs. There are two main methods for 

doing so: (i) a coupled statistical-dynamical model and (ii) a fully statistical model. 

Coupled statistical-dynamical models use autoregressive functions to, for example, 

generate the TC track, whilst intensity is simulated using a dynamical model. 

Examples of such models include the models developed by Emanuel et al. (2006) and 

Lee et al. (2018). Both models are run on a global scale; however, they are 

computationally intensive and require a substantial number of input variables. Fully 

statistical models use Markov Chains (Kolmogorov, 1937) for both the track 

generation and intensity simulation. These models generally require a limited number 

of input variables and are less computationally intensive, making them easily 

applicable. This method has previously been used by for instance Haigh et al. (2014), 

Vickery et al. (2000), Hardy et al. (2003) and James and Mason (2005), but only on 

local and country scales. A, fully statistical, global-scale model has thus far not been 

developed. 

1.2.3 Low-probability tropical cyclone events under 

climate change 
Enhancing our understanding of low-probability TC events in the present climate is 

already a challenge in itself, so studying the change in these events under climate 

change inserts a whole new level of complexity. GCMs are commonly used to analyze 

changes in global-scale climate patterns under different forcing scenarios. There is, 

however, still no general consensus amongst these models regarding how much TC 

intensity, frequency, and tracks will change in the future as a result of climate change 
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and how these changes will manifest on the local and continental scales. Knutson et 

al. (2020) summarizes that there exists low confidence for how much the total TC 

frequency, as well as the frequency of very intense (Category 4-5) TCs will change 

under climate change. This lack of consensus has partly arisen because historically, 

the lower spatial and temporal resolution of GCMs has not been able to adequately 

resolve TC intensity, size, and track (Murakami and Sugi 2010). Substantial progress 

has been made in recent years by for example by e.g. the PRIMAVERA-HighResMIP 

consortium, where higher-resolution models have been developed and analyzed for a 

wide variety of subjects (Haarsma et al., 2016). However, even within these models, 

higher-intensity TCs are still poorly captured (Roberts et al., 2020b). Furthermore, 

efforts to compare historical and future changes in TC activity are hindered by the 

fact that TCs are rare and that there is only a small sample of events in multi-decadal 

to centennial time-scales, further limiting accurate estimation of the probability of 

future extreme events. 

Synthetic models are particularly beneficial to overcome the limitations imposed by 

GCMs because they can be run for a large number of years, and can thereby better 

capture the low-probability events likely underrepresented in the GCMs. 

Furthermore, because of the large sample, information from such synthetic tracks 

does not need to be aggregated over larger spatial scales to obtain information about 

RPs (e.g., for coastal sections). Lee et al. (2020) used CMIP5 models as input for the 

CHAZ statistical-dynamical model to calculate wind speed return periods of 

Category 4–5 TCs at 3.6º x 1.8º grid boxes. This resolution, however, is still too 

coarse to capture local-scale changes in wind speed RPs. As such, additional research 

is needed to compute wind speed RPs at high resolution, so that the full spatial 

heterogeneity of such distributions can be captured.  

1.2.4 Tropical cyclone risk communication to the general 

public 
Besides overcoming the limitations imposed by the use of GCMs (and thereby 

improving our understanding the physical aspects of TC risk), another important 

aspect in mitigating the effects of TCs is risk communication. In order to 

communicate the potential threat of a TC, TCs are commonly classified based on their 

maximum wind speeds following the Saffir-Simpson Hurricane Wind Scale 

(SSHWS; Simpson and Saffir, 1974). However, wind is not always the main driver 

of TC impacts (Rappaport, 2014). For instance, Hurricane Katrina (2005) was 

classified as a Category 3 at landfall, with wind speeds of around 55 m/s, but its 8.6 

m storm surge caused widespread levee failure around New Orleans (USA). This 

caused over 1,800 casualties and US$ 125 billion in damage, making it the costliest 

US TC to date (NOAA, 2020a). Another example is Hurricane Harvey (2017), which 

weakened to a tropical storm after landfall in Texas; nevertheless, it stalled over land, 

leading to the highest precipitation event in recorded history, with precipitation totals 

exceeding 1.5 m in the greater Houston area (Blake and Zelinsky, 2018). These 
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examples demonstrate that a classification method solely based on wind speed, such 

as the SSHWS, often fails to capture the full severity of a TC. Various alternative 

methods of TC classification and indexation have been proposed (Hebert et al., 2010; 

Irish and Resio, 2010; Kantha, 2006, 2008; Powell and Reinhold, 2007; Senkbeil and 

Sheridan, 2006; Song et al., 2020). Almost all these methods are applied on a pre-

event basis, in that they use forecast information to classify a TC hazard. Basing the 

classification on forecasts is, of course, important given the function of such 

classifications being to warn and prepare. However, most classification methods 

assess either the wind or storm surge hazard but rarely combine them. Moreover, 

most of the methods leave out precipitation altogether. The Hurricane Classification 

System by Senkbeil and Sheridan (2006) is the only method that includes all three 

TC hazards. However, their Hurricane Classification System is computed post-

landfall, so its usefulness is limited relative to warning and preparation. An easy-to-

use TC classification method incorporating all three hazards and allowing for pre-

landfall usage has not been developed yet. 

1.3 Main goal and research questions 
The previous section summarizes how we can improve society’s resilience against 

TCs by addressing a series of research challenges. First, we need to better understand 

how the resolution of meteorological forcing affects hazard modeling. Second, 

synthetic modeling approaches need to be further developed to overcome the spatial 

and temporal limitations of GCMs and historical data. Third, there is a need to 

understand the distribution of RPs at the global scale, especially for low-probability 

TCs. Fourth, with the aforementioned synthetic approach, the influence of climate 

change has to be incorporated, to understand how these probabilities are going to 

change in the future. Finally, we need to diverge from the SSHWS and design a new 

scale, to improve societies’ resilience through improved risk communication. 

Following these challenges, we set the following goal and research questions:  

Goal: to improve our understanding of tropical cyclone risk by developing a global 

statistical synthetic model to assess return periods of TCs in the current and future 

climate, including low-probability events, and by improving TC risk communication 

strategies.  

This goal is addressed through the following research questions: 

1. Which climate model resolution is sufficient to adequately represent TCs for 

storm surge modeling?  

2. Can we build a global-scale, fully statistical synthetic TC model to simulate 

TC activity over longer temporal time scales? 

3. What is the global distribution of TC wind speeds for extreme (low-

probability) events, and how do these compare to observed TC activity?  

4. What is the influence of climate change on the spatial distribution of TC 

wind speed probabilities, especially for low-probability events? 
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5. Can the Saffir-Simpson Hurricane Wind Scale be improved by accounting 

for the combination of wind, storm surge, and precipitation?  

 

 

Figure 1.2 Overview of research challenges covered per chapter in this thesis. 

These research questions are addressed in the chapters of this thesis. The individual 

chapters cover the following topics (see also Figure 1.2). 

- In Chapter 2 we assess the influence of spatial model resolution on storm 

surge heights for eight case studies.  

- In Chapter 3, we overcome the spatial and temporal limitations imposed by 

meteorological datasets by building the global-scale, fully statistical 

synthetic TC model STORM (Synthetic Tropical cyclOne geneRation 

Model). The resulting STORM dataset spans 10,000 years of TC activity 

under present-climate conditions, preserving the TC statistics from the input 

dataset.  

- In Chapter 4, we apply the STORM dataset to derive TC return periods up 

to 10,000 years, both for a selection of coastal cities and islands, as well as 

at 10 km resolution.  

- In Chapter 5, we develop a novel method to use the climate change signal 

from GCMs as input for STORM, to simulate 10.000 years of TC activity 

under climate change and identify regions most at risk from a change in TC 

activity. 

- In Chapter 6, we improve the SSHWS by including separate categories for 

storm surge and precipitation. The new Tropical Cyclone Severity Scale 
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reflects on the total severity of the TC, hereby allowing for enhanced storm 

preparations and ultimately saving more lives. 

 

 



 

 

  



 

 

 

 

 

 

 

 

 

 

2 The influence of spatial model 

resolution on tropical cyclone 

storm surges 
 

 

 

 

 

 

 

 

 

 

 

This chapter is published as 

Bloemendaal, N., Muis, S., Haarsma, R.J., Verlaan, M., Irazoqui Apecechea, M., de 

Moel, H., Ward, P.J. & Aerts, J.C.J.H. Global modeling of tropical cyclone storm 

surges using high-resolution forecasts. Climate Dynamics 52, 5031-5044 (2019). 

https://doi.org/10.1007/s00382-018-4430-x



Chapter 2 

 

36 

Abstract 
We assess the suitability of ECMWF Integrated Forecasting System (IFS) data for the 

global modeling of tropical cyclone (TC) storm surges. We extract meteorological 

forcing from the IFS at a 0.225° horizontal resolution for eight historical TCs and 

simulate the corresponding surges using the Global Tide and Surge Model. Maximum 

surge heights for Hurricanes Irma and Sandy are compared with tide gauge 

observations, with R2-values of 0.86 and 0.74 respectively. Maximum surge heights 

for the other TCs are in line with literature. Our case studies demonstrate that a 

horizontal resolution of 0.225° is sufficient for the large-scale modeling of TC surges.  

By upscaling the meteorological forcing to coarser resolutions as low as 1.0°, we 

assess the effects of horizontal resolution on the performance of surge modeling. We 

demonstrate that coarser resolutions result in lower-modeled surges for all case 

studies, with modeled surges up to 1 m lower for Irma and Nargis. The largest 

differences in surges between the different resolutions are found for the TCs with the 

highest surges. We discuss possible drivers of maximum surge heights (TC size, 

intensity, and coastal slope and complexity), and find that coastal complexity and 

slope play a more profound role than TC size and intensity alone. The highest surges 

are found in areas with complex coastlines (fractal dimension > 1.10) and, in general, 

shallow coastlines. Our findings show that using high-resolution meteorological 

forcing is particularly beneficial for areas prone to high TC surges, since these surges 

are reduced the most in coarse-resolution datasets. 

2.1 Introduction 
The strong winds and low pressures of tropical cyclones (TCs) often induce highly 

damaging storm surges, affecting people and economies over large coastal areas. In 

2017, U.S. hurricane damage totals exceeded US$ 265 billion, with Hurricanes 

Harvey, Irma, and Maria entering the top five of costliest hurricanes in recorded 

history (NOAA National Centers for Environmental Information, 2021). Storm surges 

are influenced by TC intensity, size, and track and can be amplified by shallow coastal 

bathymetry or local geometry (Mori et al., 2014). Hence, even relatively weak TCs 

can induce high storm surges under certain conditions.  

Hydrodynamic models are used to simulate storm surges, both for operational 

applications and risk assessments. These hydrodynamic models use wind speed and 

mean sea-level pressure (MSLP) as forcing, which is usually derived from general 

circulation models (GCMs). Until recently, these GCMs had horizontal resolutions of 

0.45° to 1.8° (ca. 50-200 km at the equator) (Saha et al., 2006; Yukimoto et al., 2006). 

Currently, all available climate reanalysis products have horizontal resolutions of up 

to 0.75°, including ERA-Interim (Dee et al., 2011) and NCEP/NCAR Reanalysis 1 

(Kalnay et al., 1996). Such resolutions are insufficient to fully resolve TC intensity, 

size, and track (Murakami and Sugi, 2010; Schenkel and Hart, 2012; Walsh et al., 

2007), and are especially problematic for weak TCs (Hodges et al., 2017; Murakami, 
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2014). At the local scale, many studies have employed parametric models (Haigh et 

al., 2014; Harper and Holland, 1999; Holland, 1980; Lin and Chavas, 2012; Lin et al., 

2010) to obtain high-resolution wind and pressure fields. Such models fit MSLP and 

10 m wind speeds (U10) to radial profiles with an exponential decay away from the 

eye. Limitations of such parametric models include the fact that they do not fully 

capture asymmetric cyclones (Harper and Holland, 1999) and do not include 

dissipation effects over land (Jakobsen and Madsen, 2004). Other studies have used 

high-resolution (down to 50 m) hindcasts to simulate TC characteristics and surge 

heights (Bunya et al., 2010; Dietrich et al., 2010). These hindcasts are based on 

regional downscaling and/or regional climate models, and consequently, hindcasts are 

not applicable in regions with sparse observational data (Nikulin et al., 2012). 

A limited set of GCMs is run at horizontal resolutions of 10 to 30 km (0.09°-0.27°), a 

scale at which TCs can be resolved (Bacmeister et al., 2016; Mizuta et al., 2012). With 

the launch of ERA5 (0.25°) in 2017, reanalysis products are now also available at 

these horizontal resolutions. One high-resolution GCM is the European Centre for 

Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS). 

In addition to being an operational weather forecasting model, IFS has been used for 

producing reanalysis products such as ERA5 and ERA-Interim (Dee et al., 2011; 

ECMWF, 2017c). In ERA-Interim, the average number of TCs per year is simulated 

well (Strachan et al., 2013), but modeled tracks differ from observed ones, and the 

intensity and size are underestimated (Murakami and Sugi, 2010; Schenkel and Hart, 

2012). The underestimation of intensity is usually driven by resolution effects and 

poor physical schemes (Flato et al., 2013; Walsh et al., 2007). Previous updates in the 

ECMWF IFS tropical atmospheric conditions have improved tropospheric wind and 

convection compared to observations, (Fiorino, 2008) and the model’s spatial 

resolution was increased from ±0.225° at the equator in 2006 to its current resolution 

of ±0.08° (ECMWF, 2017a). These updates have significantly contributed to the 

improvement of the IFS TC track ensemble forecasts. A recent example of the 

improved performance is the IFS ensemble forecast for Hurricane Sandy’s track, 

which predicted Sandy’s landfall up to seven days in advance (Bassill, 2014; 

Magnusson et al., 2014).  

Apart from track ensemble forecasts, TC intensity forecasts have also improved in the 

latest model updates (ECMWF, 2017a). Together with the emergence of global 

hydrodynamic models (Carrère and Lyard, 2003; Jagers et al., 2014; Verlaan et al., 

2015; Vitousek et al., 2017), it is possible to simulate TC surges at local to global 

scales using direct output from GCMs. These simulations are already carried out 

operationally, such as for the Atlantic Ocean using the NHC TC advisories, a 

parametric wind model and SLOSH model (Byrne et al., 2017; Jelesnianski et al., 

1984). However, no research has been conducted on the use of ECMFS IFS 

meteorological forcing for high-resolution storm surge modeling. In addition, despite 

research focusing on methods to test the sensitivity of simulated storm surges to TC 

wind fields (Cardone and Cox, 2009), few studies have analyzed the effects of the 
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resolution of meteorological forcing on simulated storm surges. Wakelin and Proctor 

(2002) used three meteorological operational analysis datasets to analyze two storm 

surge events in the Adriatic Sea and concluded that their model works best using 

meteorological forcing with the highest spatial and temporal resolution. Recent 

research by Muis et al. (2016) has demonstrated the implications of using coarse-

resolution meteorological forcing for global storm surge modeling. They generated 

time series of storm surges on a global scale using the six-hourly 0.75° ERA-Interim 

dataset (Dee et al., 2011; ECMWF, 2016) and found that extreme sea levels induced 

by TCs are underestimated due to the coarse resolution of meteorological datasets. 

This raises the question: what resolution of meteorological forcing is needed to 

adequately simulate TC-induced storm surges? 

In this chapter, we test the suitability of ECMWF IFS as meteorological forcing for 

high-resolution global storm surge modeling. In addition, we analyze the effect of the 

horizontal resolution of meteorological forcing on maximum storm surge heights. We 

explore and discuss possible drivers of maximum surge heights. 

2.2 Methods 
The overall methodology is illustrated in Figure 2.1. The U10 and MSLP are derived 

from the ECMWF IFS and aggregated from their original resolution to T799 

resolution (±0.225° at the equator) and to various coarser resolutions between 0.25° 

and 1.0° (Section 2.2.1). Relevant meteorological parameters for the analysis 

(maximum U10, minimum MSLP, TC size) are derived by tracking each TC (Section 

2.2.2). The U10 and MSLP fields are then used to model the associated surge heights 

using the Global Tide and Surge Model (GTSM) (Section 2.2.3). Storm surges 

modeled at T799-resolution forcing are compared with observations (Section 2.2.4). 

Lastly, the effects of different horizontal resolutions of meteorological forcing on 

maximum surge heights are explained through TC size and intensity, and coastline 

complexity and slope (Section 2.2.5). 

We focus on eight case studies of historical TCs (Figure 2.2), one in each TC basin. 

We only consider landfalling TC events occurring after 5 June 2007 0 UTC, to allow 

for use of the new 4D-VAR data assimilation scheme, which considerably improved 

clouds and convection in IFS and thereby tropical troposphere forecasts (ECMWF, 

2017a). In the November 2007 update, lower tropospheric winds in the tropics are 

also improved. 
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Figure 2.1 Schematic overview of the approach followed in this study. Meteorological forcing is extracted 
from the ECMWF Integrated Forecasting (IFS) at the native grid resolution (T799, ±0.225°). Comparison 

to observations is performed for the 10 m wind speed (U10), mean sea-level pressure (MSLP) and 

maximum surge height (Hs). Land maps to derive coastal complexity are taken from the Global 

Administrative Areas (GADM). 

 

Figure 2.2 Overview of the eight selected case studies. Colors indicate the TC intensity on the Saffir-

Simpson scale.  
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2.2.1 ECMWF IFS forcing 
For each case study, U10 and MSLP data are extracted from the ECMWF IFS 

(ECMWF, 2017a). The ECMWF general circulation model is used for numerical 

weather predictions and consists of a dynamical, physical, and coupled ocean wave 

component (Persson and Grazzini, 2005). The temporal resolution is three hours. 

Because of continuous updates in IFS resolution (ECMWF, 2017a), original model 

resolution varies between the different TCs. Therefore, we homogenize the horizontal 

resolution of all cases to T799 resolution. We use the 0 and 12 UTC runs and their 

+3h, +6h and +9h forecast runs. Upscaling is achieved by averaging over neighboring 

grid cells (first-order conservative remapping on all spatial variables in the dataset;  

Jones, 1999). This process is likely to produce lower differences in wind and pressure 

intensities between the different resolutions than re-running the global atmospheric 

model on a coarser resolution would, because small coherent features are typically 

poorly resolved in numerical models at coarser resolution, but they can still be 

included when upscaling from a high-resolution to a lower-resolution grid (Boer and 

Denis, 1997). 

2.2.2 TC Tracking algorithm 
To capture the TC characteristics at every time step and to enable comparison with 

the IBTrACS dataset (v03r10), we track the eight TCs and their characteristics 

throughout their lifetimes. We use IBTrACS because it is considered the most 

complete best-track dataset of global historical TC activity (Knapp et al., 2010). The 

cyclone’s position as given in IBTrACS is taken as the initial position of the eye in 

the tracking algorithm. The spatial resolution in IBTrACS is generally listed at 0.1°, 

whereas the spatial resolution in ECMWF IFS is approximately 0.225° at the equator. 

Because of this difference, we apply the tracking algorithm from Baatsen et al. (2015) 

to ensure we are looking at the ‘true’ position of the eye in ECMWF IFS. Following 

this tracking algorithm, we determine the location with the maximum relative vorticity 

(a measure of the rotation of the horizontal velocity field) is in a surrounding 5°×5° 

box from the initial position of the eye. If this location corresponds to a lower MSLP 

than the initial position, the position of the eye is updated. We then set the location 

with the minimum MSLP in a surrounding 2.5°×2.5° box as the final position of the 

eye. Using the tracking algorithm from Schenkel and Hart (2012), we extract the 

maximum U10 and minimum MSLP at every time step within a 7° radius of the final 

position of the eye. Using this 7° radius, we ensure that these two TC characteristics 

are captured inside the domain. Following Chavas et al. (2016), we determine TC size 

by using the radius of vanishing winds r₀, defined as the average distance outside of 

the eye where U10 < 12 m/s. 

2.2.3 Storm surge modelling 
For each TC, storm surges are simulated by forcing GTSM with meteorological data 

(U10 and MSLP) from the ECMWF IFS. GTSM is a global hydrodynamic model 

implemented with unstructured grids, based on the Delft3D FM software developed 
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by Deltares (Kernkamp et al., 2011). GTSM has a spherical grid with thinning at high 

latitudes, with cell size dependent on the bathymetry (also known as courant grid 

refinement) (Irazoqui Apecechea et al., 2017). Additional refinement is applied in 

areas with steep slopes, such as mid-oceanic ridges, to improve the representation of 

the internal tides. This allows for high computational efficiency with high resolution 

(lower than 7.5 km, and on average 5 km) near coasts and coarser resolutions (up to 

50 km) in the deep ocean. The General Bathymetric Chart of Oceans (GEBCO) 2014 

dataset (https://www.gebco.net/data_and_products/gridded_bathymetry_data/), 

defined in a 30” grid, is used for bathymetry. The computational time step is 150 s. 

GTSM and the output dataset GTSR (Muis et al., 2016) are used in many recent 

research, including Hiroaki et al. (2017), Irazoqui Apecechea et al. (2017), Muis et al. 

(2017), Vousdoukas et al. (2018) and Williams et al. (2018). 

Muis et al. (2016) used 6-hourly ERA-Interim data (at 0.75°) as meteorological 

forcing in GTSM to obtain a global reanalysis of storm surges (1979-2014). They 

validate modeled sea levels against observed sea levels using a global set of 472 tide 

gauges stations from the University of Hawaii Sea Level Center (available at 

https://uhslc.soest.hawaii.edu/). A validation of the surge levels shows that 95% of all 

stations have a root-mean- square error (RMSE) lower than 0.2 m, with the average 

RMSE being 0.11 m (standard deviation 0.05 m). Extratropical storm surges are 

modeled relatively well, whereas TC storm surges are substantially underestimated. 

This is shown by the average correlation coefficient in tropical regions of 0.77 being 

significantly lower than the average correlation coefficient of 0.87 in extratropical 

regions. This underestimation is driven by the relatively coarse resolution of the 

meteorological forcing, which is unable to fully capture the strong wind and pressure 

gradients in the TCs in both space and time. 

A storm surge is a rise of the sea level as a result of changes in atmospheric pressure 

and wind drag on the sea surface. The influence of atmospheric pressure is given by 

the inverse barometer effect (Ross, 1854): every 1 hPa drop in atmospheric pressure 

is accompanied by a roughly 0.01 m increase in sea-level height. In addition, in 

shallow water there is an additional wind set up that can be approximated roughly as:  

g
∂h

∂x
= Cd

U²

H
 (2.1) 

where g is the gravitational constant (m/s²), h the surface level above the reference 

height (m), x the horizontal distance (m), Cd the drag coefficient (-), U the average 

wind speed at 10 m perpendicular to the coast (m/s) and H the total water depth (m) 

(Weenink, 1958). From Equation 2.1 it follows that the largest surges occur in shallow 

water with a wide coastal shelf. 

Hourly output data are extracted from the GTSM coastal grid points. For each TC, we 

consider an area of 15°×15° around the landfall location and a time period of three 

days on either side of the moment of landfall. In this time period, we then select all 

coastal points in the T799-resolution forcing at which the maximum surge height is at 

https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://uhslc.soest.hawaii.edu/).
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least 50% of the overall maximum surge height, with a minimum height of 15 cm. 

This way, only coastal points with high storm surges are included in the statistical 

analysis. For the other resolutions, the same set of coastal grid points in GTSM is 

used, to ensure a direct comparison in storm surge heights at coarser resolutions. 

2.2.4 Comparison of results 
We compare the minimum MSLP and maximum U10 in the T799-resolution forcing 

against IBTrACS. The MSLP is given as an instantaneous value in both datasets. The 

U10 is given as a 7.5-minute average in the T799-resolution forcing, and the observed 

U10 is the 10-minute average wind speed in 3- or 6-hourly intervals. Since the 

conversion factor between these two averages is approximately 1 (Harper et al., 2008), 

we directly compare the two variables throughout this chapter. 

Before analyzing surge heights at coarser resolutions, we first need to demonstrate 

that our IFS-GTSM model setup is sufficient in simulating maximum surge heights. 

To do so, we analyze the performance of the model setup at the T799-resolution 

forcing by comparing the maximum surge heights modeled with the T799-resolution 

forcing to observed maximum heights. Because of the dense tide gauge network on 

the U.S. mainland, it is possible to compare modeled and observed storm surge heights 

for Irma and Sandy at multiple locations along the coastline. For this, we take tide 

gauge stations within 250 km of the TC track and subtract the daily maxima of tides 

from the daily maxima of the observed sea levels to calculate skew surge (NOAA, 

2017). Since these sea levels are referenced above the mean sea level, we correct for 

mean sea-level trends by removing the monthly mean sea level. We compare the tide 

gauge measurements to neighboring GTSM coastal grid points. For the other TCs, the 

observed maxima and any applied corrections are taken from the available literature. 

2.2.5 Coastal slope and complexity 
Apart from being driven by meteorological factors such as U10 and MSLP, storm 

surge heights can be further amplified when the surge is interacting with shallow 

coastal bathymetry and coastal complexity (Mori et al., 2014). For this reason, we will 

also look at coastal slope and coastal complexity as drivers for changes in storm surge 

heights between different resolutions.  

The coastal slope is derived from GEBCO, and calculated as the average slope 

between the coastline and the bed level 100 km off the coast, perpendicular to the 

coastline. Coastal complexity is assessed by calculating the fractal dimension D of the 

coastline around the landfall location (Mandelbrot, 1967). A fractal dimension is the 

ratio of change between pattern details and measuring scales, calculated using 

different length scales to measure the length of the outline of an object, such as a 

coastline. The values of D lie between 1 and 2 for coastlines, where a high D implies 

a more complex coastline. To calculate D, we use high-resolution country maps (30 

m) from the database of Global Administrative Areas (GADM, 2017) and length 
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scales between 1 and 100 km. The algorithm for calculating the coastline complexity 

is based on Hijmans (2016). 

2.3 Results and discussion 

2.3.1 IFS-GTSM model performance at T799-resolution 

forcing 

Comparison of U10 and MSLP 
The modeled and observed U10 and MSLP for all TCs are listed in Table 2.1. Spatial 

plots of U10 and MSLP at landfall can be found in Figures A.1 – A.4. We see that the 

modeled MSLP and U10 intensities are generally underestimated in the T799-

resolution forcing as compared to the observed values. The modeled MSLP values are 

up to 60 to 70 hPa higher than the observed values (Hurricane Patricia and Typhoon 

Haiyan). Conversely, Cyclone Gonu has a lower modeled MSLP as opposed to the 

observed value (15 hPa). Although in most cases, the underestimation of U10 is 

between 10 and 30 m/s, Patricia’s U10 is underestimated by almost 50 m/s. These 

intensity underestimations for Patricia and Haiyan are likely related to the failure of 

the data resolution to fully capture their small eyes. The T799-resolution forcing is 

known to cause considerable intensity underestimations for relatively small TCs with 

a small eye (ECMWF, 2017b), as was the case for Patricia and Haiyan, which had 

eyes of 13 and 15 km in diameter, respectively. 

Comparison of maximum surge heights 
For Irma and Sandy, tide gauge records can be used to analyze the modeled maximum 

surge heights. The results are shown in Figure 2.3. The R2-values are 0.86 for Irma 

and 0.74 for Sandy, demonstrating a good fit between the modeled and observed surge 

heights. These results show that GTSM is capable of capturing the spatial variability 

in surge heights in both cases, as is also shown in panels c and d of Figure 2.3. 

However, when zooming in to the local level, we notice some deviations from 

observed values. Underestimations in modeled storm surges can be caused by various 

factors. One of these factors is that bays and estuaries are in general not captured by 

GTSM’s grid resolution (approximately 5 km near the coastline). In addition, 

uncertainties imposed by the meteorological forcing can also cause lower modeled 

storm surges. Overestimations in the modeled storm surges may be caused by 

differences in the locations of the coastal points and the tide gauges, such as a GTSM 

grid point at the coast versus a tide gauge located in a harbor or a semi-open inlet. 

Because we compare the tide gauge locations to nearby GTSM coastal grid points, 

Irma’s maximum modeled surge height of 2.6 m near Everglades City (Table 2.1) is 

not included in the scatter plot (Figure 2.3a). The nearest tide gauge station was 

located at Fort Myers, approximately 100 km north of Everglades City, so that a 

GTSM coastal point closer by was selected. 
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Table 2.1 Overview of modeled (Mod) and observed (Obs) variable values at landfall for the T799-resolution forcing. Observed values are extracted from IBTrACS 

(Knapp et al., 2010) 

 
Landfall 

location 

Time and 

date of 

landfall 

Min MSLP (hPa) Max U10 (m/s) 
Max surge 

height (m) 

Source for 

observed 

maximum 

surge 

height 

Remarks on observed 

surge height 

Mod Obs R2 Mod Obs R2 Mod Obs 

Irma 

(2017) 

Marco Island, 
Florida, United 

States. 

10 Sep 
2017 19:30 

UTC 

942 928 0.80 39.9 59.1 0.62 2.59 
1.5- 

3.0 

Cangialosi 
et al. 

(2018) 

Based on high water marks 

and storm surge 

estimations in Everglades 
City, FL. 

Patricia 

(2015) 

Cuixmala 
Mexico 

23 Oct 

2015 23:00 

UTC 

993 932 0.93 18.5 66.9 0.62 0.18 - 

Kimberlian 

et al. 

(2016) 

Official tropical cyclone 

report does not mention 

occurrence of storm surge 

Haiyan 

(2013) 

Tacloban City, 

Philippines 

7 Nov 2013 

20:40 UTC 
966 895 0.64 34.1 64.3 0.77 0.81 2-3a 

Mori et al. 

(2014) 

Surge height estimates in 

San Pablo Bay 

Sandy 

(2012) 

New Jersey, 
United States 

29 Oct 

2012 23:30 

UTC 

993 945 0.80 15.6 36 0.61 2.22 2.6b 
Blake et al. 

(2013) 
Tide gauge at Sandy Hook 

(±25 km east) 

Giovanna 

(2012) 

Andovoranto, 

Madagascar 

14 Feb 
2012 0:00 

UTC 

952 945 0.64 35.5 43.7 0.66 0.54 0.5c 
Probst et al. 

(2012) 

Eyewitnesses report a sea 
level increase no more than 

0.5 m 

Yasi (2011) 
Mission Beach, 

Australia 

2 Feb 2011 

14:30 UTC 
972 929 0.67 25.7 56.5 0.93 1.74 2.3b 

Bureau of 
Meteorolog

y (2017) 

Tide gauge at Cardwell 

(±60 km north) 

Nargis 

(2008) 

Irrawaddy 

Delta, Myanmar 

2 May 2008 

10:00 UTC 
965 962 0.63 33.1 46.3 0.73 2.10 1-2a 

Tasnim et 

al. (2015) 
Derived from spatial plot 

Gonu 

(2007) 

Ras al-Hadd, 
Oman 

5 June 2007 
21:00 UTC 

955 970 0.13 30.6 39.6 0.20 0.51 
0.5-
1.0a 

Fritz et al. 
(2010) 

Numerically modeled 

based on high water marks 

in coastal regions in Oman 
a Simulated based on surveys & high water marks 
b Nearest tide gauge measurement 
c Eyewitness reports/evidence of a storm surge
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Figure 2.3 Upper panels show scatter plots of the modeled and observed maximum storm surge heights for 

Irma (a) and Sandy (b). Lower panels show the modeled and observed (dots) maximum storm surge heights 

for Irma (c) and Sandy (d). Observations are taken from NOAA tide gauge stations (14 stations for Irma, 

22 stations for Sandy) 

From Table 2.1, we see that Sandy’s modeled maximum U10 is more than 50% lower 

than observed. From the quadratic relation between wind and surge (see Equation 2.1, 

we would expect a 75% lower surge, but this is not seen in the simulations (Figure 

2.3). This is likely due to the fact that resolution effects of the climate model do not 

only lead to an underestimation of wind intensity and the pressure drop, but can also 

lead to an overestimation of the storm size (known as numerical diffusion). The 

relatively large wind field increases the storm surge, which compensates for the TC 

intensity underestimation. For the other case studies, we refer to the maximum surge 

heights around the landfall location listed in the literature (see Table 2.1). The 

differences between the modeled and observed maximum surge heights are lower than 

0.5 m for five TCs: Hurricanes Irma and Sandy and Cyclones Giovanna, Nargis, and 

Gonu. For Patricia, the modeled maximum surge height is approximately 0.2 m. 

However, there is no mention of a storm surge in the official tropical cyclone report 
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(Kimberlian et al., 2016), from which we conclude that any possible storm surge 

would have been low. This conclusion is in line with our model results. 

Larger differences between the modeled and observed maximum surge heights are 

seen for Haiyan and Yasi. In both cases, the maximum surge height was recorded in 

an inlet. Because of GTSM’s resolution of approximately 5 km near coastlines, these 

inlets are not (fully) captured by the model. For Haiyan, it is likely that the strong 

intensity underestimation adds to the underestimation of the storm surge. 

Based on the performance, we conclude that the IFS-GTSM model setup at the T799-

resolution framework is capable of capturing large-scale spatial patterns of maximum 

surge height sufficiently well for the analysis on the effect of using lower-resolution 

meteorological forcing. 

2.3.2 Horizontal resolution effects 
Our results confirm that storm surge simulations using coarse-resolution 

meteorological forcing generally result in lower storm surge heights (Wakelin and 

Proctor, 2002). These reductions are shown in Figure 2.4, where the gradual decrease 

in slope for the different scatter plots shows that the maximum surge heights at GTSM 

coastal points decrease with decreasing horizontal resolution. Scatterplots for the 

other TCs are shown in Figure A.5. 

 

Figure 2.4 Scatterplot of maximum surge height at the T799-resolution forcing vs. other resolutions for (a) 

Hurricane Irma (Florida), (b) Cyclone Giovanna (Madagascar), (c) Cyclone Yasi (Australia) and (d) 

Cyclone Nargis (Myanmar) 
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The differences in surge heights are illustrated in Figure 2.5, which displays surge 

heights during the storm’s lifetime for Irma, Giovanna, Yasi, and Nargis at T799 (left) 

and 1.0° (center) resolutions, and their difference (right). Differences in surge heights 

for the other TCs can be found in Figures A.6-A.9. We calculate the relative difference 

in maximum surge heights at all selected GTSM coastal points (black dots in Figure 

2.5) to illustrate the resolution effects for the different TCs (see also Table A.3). For 

both Giovanna and Irma, relative differences in the average maximum surge height 

between T799- and 1.0°-resolution forcing amount to 39%. Patricia, Sandy, Yasi, and 

Gonu each have relative differences smaller than 20%, and the largest relative 

difference is found for Nargis with 47%.  

 

Figure 2.5 Maximum surge heights at T799-and 1.0°-resolution forcing and difference in maximum surge 
heights during the storm’s lifetime between T799- and 1.0°-resolution forcing for (a-c) Hurricane Irma 

(Florida), (d-f) Cyclone Giovanna (Madagascar), (g-i) Cyclone Yasi (Australia) and (j-k) Cyclone Nargis 

(Myanmar). Black dots represent GTSM coastal points used in the statistical analysis. 

For the remainder, we focus on the absolute differences in the average maximum surge 

heights. These absolute differences can directly affect inundation depths and flood 
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risk estimates (De Moel et al., 2012). Comparing the average maximum surge heights 

for simulations using different resolutions, Table 2.2 shows that there are four TCs for 

which the absolute difference is approximately or less than 0.2 m for all resolutions: 

Patricia, Haiyan, Giovanna and Gonu. For Sandy and Yasi, the maximum differences 

are approximately 0.35 m. The largest differences are found for Irma and Nargis, with 

maximum surge heights around 1 m lower in the 1.0°-resolution forcing. These results 

show that six out of the eight TCs can still be modeled relatively well at low 

resolutions, with maximum storm surge underestimations lower than 0.5 m, whereas 

for Irma and Nargis, meteorological forcing resolutions lower than 0.75° result in 

storm surge underestimations of around 0.8 m. Underestimations of this magnitude 

have a considerable effect on impact calculations (De Moel et al., 2012). 

From Table 2.2 it follows that the difference in simulated maximum surge heights 

between different model resolutions is larger for higher storm surges. The height of a 

storm surge is driven by a combination of factors, which can broadly be classified into 

TC characteristics and geographical characteristics. The TC characteristics include 

intensity (measured via maximum U10 and minimum MSLP) and TC size (Irish et al., 

2008). In addition, storm surges can be amplified by certain geographical 

characteristics, most importantly coastal slope and coastal complexity (Mori et al., 

2014). We represent coastal complexity here as a fractal dimension D, where higher 

values of D imply a more complex coastline.  

Table 2.3 shows the TC and geographical characteristics for our eight case studies at 

landfall. We see that intensity (U10 and MSLP) alone cannot explain the maximum 

storm surge heights. This insight corresponds with the results of Irish et al. (2008), 

who have shown that TC size also has a large effect on the storm surge, though we 

use the radius of vanishing winds (Chavas et al., 2016), where they use the radius to 

maximum winds as a proxy for TC size. In our cases, the effect of TC size is apparent 

with the storms Sandy and Yasi, which resulted in large storm surges, despite their 

relatively low maximum wind speed and high pressure. However, TC size alone is not 

enough to explain storm surge magnitudes, as some small storms (such as Nargis) still 

result in high storm surges. 

Geographical characteristics also influence storm surges. Storms that make landfall 

on coasts with a low complexity and steep slopes generally result in low surges (e.g., 

Giovanna, Gonu, Patricia), while storms that make landfall on complex and shallow 

coastlines are associated with larger storm surges. Overall, both TC and geographical 

characteristics influence the size of the storm surge and, correspondingly, the 

underestimation that occurs when a coarse-resolution meteorological forcing is used.  
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Table 2.2 Average maximum surge heights at the GTSM coastal points for the different TCs. Values between brackets indicate the maximum surge height. TCs are 

ordered from highest to lowest storm surge 

 Irma Sandy Nargis Yasi Haiyan Giovanna Gonu Patricia 

T799 1.72 (2.59) 1.62 (2.22) 1.54 (2.10) 1.17 (1.74) 0.52 (0.81) 0.38 (0.54) 0.31 (0.51) 0.17 (0.18) 

0.25° 1.70 (2.57) 1.61 (2.20) 1.46 (1.99) 1.16 (1.72) 0.52 (0.83) 0.38 (0.54) 0.31 (0.50) 0.17 (0.18) 

0.30° 1.66 (2.54) 1.59 (2.15) 1.42 (1.90) 1.16 (1.70) 0.51 (0.74) 0.38 (0.54) 0.31 (0.49) 0.17 (0.18) 

0.40° 1.59 (2.37) 1.55 (2.09) 1.33 (1.77) 1.12 (1.66) 0.48 (0.73) 0.36 (0.50) 0.30 (0.47) 0.17 (0.18) 

0.50° 1.49 (2.22) 1.53 (2.09) 1.24 (1.69) 1.10 (1.60) 0.46 (0.61) 0.34 (0.46) 0.29 (0.44) 0.17 (0.18) 

0.75° 1.33 (1.86) 1.46 (2.01) 0.96 (1.30) 1.03 (1.51) 0.42 (0.60) 0.30 (0.35) 0.28 (0.39) 0.17 (0.19) 

1.0° 1.15 (1.57) 1.37 (1.90) 0.81 (1.14) 0.95 (1.39) 0.38 (0.61) 0.27 (0.33) 0.26 (0.41) 0.16 (0.17) 

Difference 

T799-1.0° 
0.57 (1.03) 0.25 (0.33) 0.73 (0.96) 0.22 (0.35) 0.15 (0.19) 0.11 (0.21) 0.05 (0.10) 0.02 (0.02) 

 

Table 2.3 TC (upper three rows) and geographical (bottom two rows) characteristics at landfall. All values are modeled values. TCs are ordered from highest to owest 

storm surge (left to right) 

 Correlation Irma Sandy Nargis Yasi Haiyan Giovanna Gonu Patricia 

Max surge 

(T799) (m) 
 2.59 2.22 2.10 1.74 0.81 0.54 0.51 0.18 

Max U10 (m/s) 0.12 39.9 15.6 33.1 25.7 34.1 35.5 30.6 18.5 

Min MSLP 

(hPa) 
-0.13 942 993 965 972 966 952 955 993 

r0 (km) 0.41 314 612 254 419 411 332 289 213 

D 0.90 1.22 1.20 1.27 1.19 1.13 1.03 1.03 1.07 

Coastal slope 

(°) 
-0.58 0.000002 0.003 0.04 0.003 0.01 0.02 0.06 0.28 
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2.4 Concluding remarks 
In this research, we have assessed the suitability of the ECMWF IFS as meteorological 

forcing for high-resolution storm surge modeling with GTSM. For this, we compared 

the modeled maximum surge heights of Hurricanes Irma (2017) and Sandy (2012) 

with observations from tide gauge stations. We found R2-values of 0.86 and 0.74 for 

Irma and Sandy, respectively, demonstrating that maximum surge heights and their 

spatial distributions are captured sufficiently well in our IFS-GTSM model setup to 

simulate historical TC storm surge events. For the other case studies, we compared 

the modeled maximum surge heights to observations and/or estimates from the 

literature. We found that modeled surge heights are generally lower than observed 

heights. For most case studies, the difference between the observed and modeled surge 

heights is less than 0.5 m, from which we conclude that the IFS-GTSM model setup 

at T799-resolution framework is capable of capturing the large-scale spatial patterns 

of the maximum surge heights sufficiently well.  

In addition, we analyzed the effects of different horizontal resolutions of 

meteorological forcing data on the simulated maximum surge heights by upscaling 

the meteorological forcing of the eight selected TC case studies to various coarser 

resolutions between 0.25° to 1.0°. We found that simulated TC storm surges are lower 

using coarser resolution datasets, with differences between the highest-resolution and 

1.0°-resolution forcing ranging between 0.01 m for Patricia and 1.02 m for Irma. 

Similar conclusions were reached by Appendini et al. (2013), who forced a wave 

model with three different atmospheric reanalyses datasets to model significant wave 

heights. Despite differences in the atmospheric models, they show that wave modeling 

is improved in finer spatial resolution datasets compared to coarser resolution 

forcings.  

We also observed that the storms with the highest storm surges also generate the 

largest differences in storm surge heights between the different resolutions. Hence, 

TCs with high storm surges require high-resolution meteorological forcing for 

accurate storm surge and impact modeling. Apart from the atmospheric forcing, mesh 

resolution and bathymetry representation in the hydrodynamic model are also critical 

in storm surge modeling (Kerr et al., 2013), but the effects of these two elements were 

not explored here. Therefore, our results should be taken with some caution, as they 

only serve as a way of assessing the atmospheric resolution effects, rather than a way 

of validating the hydrodynamic model and providing accurate storm surge height 

estimates in a particular area.  

Furthermore, we examined the relationship between storm surge heights and 

geographical characteristics known to influence them (Irish et al., 2008; Mori et al., 

2014): intensity, TC size, coastal complexity, and coastal slope. It appears that storm 

surge height is a combination of all these factors. However, in the eight case studies 

examined in this study, it seems that the geographical characteristics have a larger 

effect than the TC characteristics: the highest storm surges are found in regions with 
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high coastal complexity and, in general, a small slope. At a local scale, the orientation 

of the coastline can play a more dominant role in storm surge enhancements: this can 

be seen for small islands where on one side the surge is positive and negative on the 

other, both with the same complex coastline. 

Despite the limited dataset, there are indications that coastal complexity is an 

important driver for maximum surge heights and, in turn, the decrease in maximum 

surge heights in coarser-resolution meteorological forcing datasets. To further test the 

relationship between coastal complexity and horizontal resolution effects, we propose 

the use of a hydrodynamic model in which coastal slope and complexity can be 

(independently) adjusted for the same TC case study. Since coastal topography (e.g., 

mountainous regions) can also affect wind fields (Raderschall et al., 2008), the coastal 

complexity should be adjusted simultaneously in the global atmospheric circulation 

model. 

Our findings show that the use of high-resolution meteorological forcing is 

particularly beneficial for areas prone to high (several meters) TC storm surges, since 

these high storm surges are reduced most when using coarser-resolution datasets. For 

TC case studies with surges below 0.5 m, our results suggest that coarser-resolution 

datasets can be used with limited effects on maximum surge heights. 
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Abstract 
Over the past few decades, the world has seen substantial tropical cyclone (TC) 

damages, with the 2017 Hurricanes Harvey, Irma and Maria entering the top-5 

costliest Atlantic hurricanes ever. Calculating TC risk at a global scale, however, has 

proven difficult given the limited temporal and spatial information on TCs across 

much of the global coastline. Here, we present a novel database on TC characteristics 

on a global scale using a newly developed synthetic resampling algorithm we call 

STORM (Synthetic Tropical cyclOne geneRation Model). STORM can be applied to 

any meteorological dataset to statistically resample and model TC tracks and 

intensities. We apply STORM to extracted TCs from 38 years of historical data from 

IBTrACS to statistically extend this dataset to 10,000 years of TC activity. We show 

that STORM preserves the TC statistics as found in the original dataset. The STORM 

dataset can be used for TC hazard assessments and risk modeling in TC-prone regions. 

3.1 Introduction 
Tropical cyclones (TCs), also referred to as hurricanes or typhoons, are one of the 

deadliest natural disasters, significantly impacting people, economies and the 

environment in coastal areas when they make landfall. The 2017 Atlantic Hurricane 

season became the costliest season ever with Hurricanes Harvey, Irma and Maria’s 

combined overall losses estimated around US$ 220 billion (Munich Re, 2017). It is 

therefore crucial to support risk mitigation efforts with reliable TC risk assessments. 

Performing such risk assessments can, however, be challenging. This is because TCs 

are relatively rare, with around 90 (±10) formations per year globally (Emanuel, 

2008), of which on average 16 TCs make landfall with wind speeds greater than 33 

m/s (Weinkle et al., 2012). Moreover, when making landfall, TCs generally affect a 

relatively small stretch of coastline (<500 km; Pugh and Woodworth, 2014), and 

impacts are higher in urbanized areas compared to rural or uninhabited regions of the 

world. In addition, reliable TC datasets are only available from 1980 onwards, 

meaning that for many coastal regions there may not even be a single landfalling TC 

event in available datasets. Correspondingly, many regions lack information about 

potential magnitudes and probabilities of TCs, particularly for extreme TCs (i.e. high 

return periods, low probabilities). This complicates reliable TC risk assessments and 

corresponding TC risk management.  

One way to overcome both temporal and spatial data scarcity for low probability TCs 

is to extend the historical record. One such approach is by using paleo climate records 

from coastal sediments which can reveal periods of past coastal floods driven by TCs 

(Lin et al., 2014; Nott and Hayne, 2001). These records, however, are only available 

for small coastal stretches, and this method of collecting coastal sediment records is 

not feasible for upscaling at the global scale. Another method that has been widely 

explored in the past decades is the generation of synthetic TC tracks (Emanuel et al., 

2006; Powell et al., 2005; Vickery et al., 2000). In such an approach, TC tracks and 

intensities are statistically resampled and modeled from an underlying dataset, which 
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can be either historical TC tracks (Casson and Coles, 2000; Emanuel et al., 2006; 

Haigh et al., 2014) or meteorological datasets from climate models (Lin et al., 2012). 

This creates a new TC, having similar characteristics as the ones in the underlying 

dataset. This sampling method can be repeated for a large number of years, hereby 

creating a larger TC dataset including TCs with high return periods. 

There are two main synthetic model approaches, namely: (i) a coupled statistical-

dynamical model; (ii) and a fully statistical model. Coupled statistical-dynamical 

models use autoregressive functions for certain parts of the simulation (e.g. only the 

track (Emanuel et al., 2006)), whilst the rest is simulated using a dynamical model. 

Examples of such models include the models developed by Emanuel et al. (2006) and 

Lee et al. (2018). Both models are run on the global scale, however they require a 

substantial number of input variables and are computationally intensive. Fully 

statistical models use Markov Chains (Kolmogorov, 1937) for both the track 

generation and intensity simulation. These models generally require a limited number 

of input variables, and are less computationally intensive, making them easily 

applicable. This method has been used by for instance Haigh et al. (2014), Vickery et 

al. (2000), Hardy et al. (2003) and James and Mason (2005), but only on local to 

regional scales.  

In this chapter, we present the synthetic algorithm Synthetic Tropical cyclOne 

geneRation Model (STORM), and apply it to develop a global dataset representative 

of 10,000 years of TC activity under present climate conditions. STORM applies a 

fully statistical approach based on a modified version of the methodology set out in 

James and Mason (2005) and Haigh et al. (2014). STORM includes information on 

TC track, intensity, and size, which can be used to assess TC hazards such as wind, 

waves, and storm surge. Moreover, STORM requires a minimum number of input 

variables and is designed in a way that it can be applied to any meteorological dataset 

to statistically resample and model TC tracks and intensities. Here, we demonstrate 

STORM using best-track historical data from the International Best Track Archive for 

Climate Stewardship (IBTrACS) (Knapp et al., 2010). The length of the resulting 

dataset (i.e. 10,000 years under the same climate conditions) enables proper statistical 

analysis of return periods of various landfalling TCs. The dataset is particularly useful 

for TC risk assessments as it can serve as input for storm surge and wave impact 

modeling, and has characteristics important for wind damage assessments (maximum 

10-meter wind speed). 

3.2  Methods 
To create 10,000 years of synthetic TC data, there are three main stages, as follows: 

1. Data preparation and input: Extract TCs from the source dataset IBTrACS 

(see Figure 3.1 and Figure 3.2, blue column) and this forms the input for the 

STORM model.  
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2. Fitting distributions and relationships: The characteristics of the extracted 

storms are identified and pre-processed to create various distributions and 

relationships (see Figure 3.2, red column); and  

3. Creating the synthetic TCs: The distributions and relationships are used to 

create 10,000 years of TCs, with their corresponding characteristics (see 

Figure 3.2, green column, and Figure 3.3).  

These three stages are explained in more detail below. 

3.2.1 Input datasets 
The first stage is data preparation and input, which involves two steps. In step 1.1, as 

input data for STORM, we extract TCs from the global historical dataset IBTrACS 

(Knapp et al., 2010) for the time period 1980-2017 (38 years of data). We use data 

from 1980 onwards to comply with the modern era of satellite observations. IBTrACS 

is the unified dataset of the postseason best-track data produced by the tropical 

warning centers, for all the TC basins. Here, we use all basins except the South 

Atlantic . The basin domains are adapted from the basin domains used in the IBTrACS 

dataset (Table 3.1). The South Atlantic has been left out as there are too few TC 

formations in this basin for adequate distribution and relationships fitting. 

Table 3.1 Definition of the basin domains (Knapp, et al., 2010) and tropical cyclone (TC) seasons (World 

Meteorological Organization, 2018) used in this study. The basin domains are based on the basin domains 

used in the IBTrACS dataset  

Basin name Abbreviation Basin domain TC season 

Eastern Pacific EP 

5°-60°N 180°-coastline of 

North America on the 

North Atlantic 

1 June – 30 November 

North Atlantic NA 
5°-60°N coastline of North 

America on the Eastern 

Pacific - 360° 

1 June – 30 November 

North Indian NI 5°-60°N 30°-100°E 
1 April – 30 June 

1 September – 

30 November 

South Indian SI 5-60°S 10°-135°E 
1 November – 30 

April 

South Pacific SP 5-60°S 135°-240°E 
1 November – 30 

April 

Western Pacific WP 5-60°N 100°-180°E 1 May – 30 November 
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Figure 3.1 Overview of the different basins (red boxes; see also Table 3.1) and the tracks and intensities of 

the tropical cyclones in the IBTrACS dataset 

Prior to extracting the storms, we first unify the reported wind speeds to 10-minute 

average sustained wind speeds (U10; in m/s). This is done because the definition of 

these reported wind speeds differ per tropical warning center: 4 centers use either 1-

minute or 3-minute averaging periods (Knapp et al., 2010). These wind speeds are 

multiplied by a factor of 0.88 to convert them to U10 (Harper et al., 2008). Next, for 

each basin, we extract the storms at all consecutive time steps where the U10 is greater 

than 18 m/s, or where the TC has not reached an extratropical cyclone-classification 

in the IBTrACS dataset. We selected the 18 m/s-threshold to comply with the tropical 

storm-classification on the Saffir-Simpson hurricane scale (Simpson and Saffir, 

1974). For convenience, we refer to this subset of storms as tropical cyclones (TCs) 

hereafter. We linearly interpolate all extracted data to 3-hourly values. The extracted 

tracks are shown in Figure 3.1; an overview of all the extracted elements of the 

IBTrACS dataset is listed in Figure 3.2 (blue column). 

The modeling of synthetic tracks also requires information on environmental 

conditions such as monthly mean MSLP and sea-surface temperatures (SST). 

Therefore, in stage 1, we extract MSLP and SST fields from the European Centre for 

Medium-Range Weather Forecasting (ECMWF)’s fifth generation climate reanalysis 

dataset ERA-5 (Hersbach et al., 2019). The spatial and temporal resolution of this 

dataset is 0.25° x 0.25° and 1-hourly. For both variables, we calculate the monthly 

mean values during the TC seasons, as defined in Table 3.1. 
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Figure 3.2 Flowchart with the extracted IBTrACS tropical cyclone (TC) characteristics (stage 1; in blue), 

the STORM components (stage 2; in red), and the creation of the synthetic tropical cyclones (stage 3; in 

green). Round boxes represent input data, square boxes represent the methodological steps taken to process 

this input data, and hexagonal boxes represent the output data. 
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3.2.2 STORM components 
In the second stage, the extracted TC tracks and characteristics from IBTrACS along 

with the environmental conditions from ERA-5 are used as input to our synthetic 

resampling algorithm called Synthetic Tropical cyclone geneRation Model (STORM). 

The STORM model follows three main steps that are visualized in Figure 3.2 in the 

red column. In step 2.1, STORM samples the number of genesis events, and their 

corresponding genesis month, for every simulated year. In step 2.2, for each of these 

genesis events, a genesis location is determined, and, by adding consecutive changes 

in longitude and latitude, a synthetic track is formed. In step 2.3, TC characteristics 

such as minimum pressure, maximum wind speed, and radius to maximum winds are 

assigned along each of these tracks. These three steps are described in detail below 

Tropical cyclone genesis 
In step 2.1, we simulate the number of genesis events per year using a Poisson 

distribution, where the Poisson parameter λ is defined as the average number of TC 

formations a year in the input dataset. For the IBTrACS dataset, values of λ amount 

to 14.5 for the EP, 10.8 for the NA, 2.0 for the NI, 12.3 for the SI, 9.3 for the SP, and 

22.5 for the WP. For each genesis event, we randomly assign it a genesis month, 

weighted by the genesis months per basin observed in the IBTrACS dataset.  

Tropical cyclone movement 
In step 2.2, after determining the number of TC events in a year and assigning each a 

genesis month, we derive corresponding genesis locations for each TC event. This is 

based on weighted genesis locations per month from IBTrACS. For this, genesis 

locations are counted in 5° × 5° boxes and assigned to the box center point. 

Analogously, these points are interpolated (using cubic interpolation) to a 1° × 1° grid. 

The value these grid boxes is then used as weighting when sampling genesis locations. 

Lastly, the genesis location of the TC is sampled by selecting a random location (at 

0.1° resolution) inside the 1° × 1° grid cell. 

We then extract the changes (Δ) in the longitudinal (𝜉) and latitudinal (𝜑) position of 

the TC eye at every time step t for every basin from IBTrACS. These 𝛥𝜉𝑡 and 𝛥𝜑𝑡are 

then grouped in 5° latitude sections per basin. For every bin, and using non-linear least 

squares, we fit a set of regression formulas following James and Mason (2005): 

Δ𝜉𝑡 = 𝑎0 + 𝑎1Δ𝜉𝑡−1 (3.1a) 

 

𝜉𝑡 = 𝜉𝑡−1 + ∆𝜉𝑡 + 𝜀𝜉 , 𝜀𝜉~𝑁(𝜇𝜀𝜉
, 𝜎𝜀𝜉

) (3.2b) 
 

Δ𝜑𝑡 = 𝑏0 + 𝑏1Δ𝜑𝑡−1 +
𝑏2

𝜑𝑡

 
(3.2a) 

 

𝜑𝑡 = 𝜑𝑡−1 + ∆𝜑𝑡 + 𝜀𝜑 , 𝜀𝜑~𝑁(𝜇𝜀𝜑
, 𝜎𝜀𝜑

) (3.2b) 

 

The residual term ε is drawn from a normal distribution of ε-values in IBTrACS. 

These ε-values are calculated as the difference between the fitted values of 𝛥𝜉𝑡 and 

𝛥𝜑𝑡 (Equations 3.1 and 3.2) and the actual values of 𝛥𝜉𝑡 and 𝛥𝜑𝑡 in IBTrACS.  
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Tropical cyclone characteristics 
In step 2.3, TC characteristics such as minimum pressure, maximum wind speed, and 

radius to maximum winds are assigned along each of the TC tracks. First, the 

conversion between the maximum U10 and minimum MSLP in a TC is modeled using 

the empirical wind-pressure relationship (WPR) (Atkinson and Holliday, 1977; 

Harper, 2002): 

𝑉𝑡 = 𝑎(𝑃𝑒𝑛𝑣 − 𝑃𝑡)𝑏 
(3.3) 

 

Where 𝑉𝑡 and 𝑃𝑡 are the maximum U10 and minimum MSLP at time step t, 

respectively. To estimate the variables 𝑎 and 𝑏 for every month in every basin, we 

extract maximum U10 and minimum MSLP from IBTrACS at every time step. The 

corresponding environmental pressure 𝑃𝑒𝑛𝑣  is taken from the monthly mean MSLP 

fields from ERA-5. Equation 3.3 is then fitted to this data using non-linear least 

squares.  

Second, we model the TC intensity along each synthetic track. A crucial feature in 

modeling this TC intensity is inhibiting TCs from growing too intense. In the STORM 

model, the TC intensity is constrained based on the maximum potential intensity 

(MPI) (Emanuel, 1987; Holland, 1997), which is a measure of the theoretical 

maximum TC intensity possible at a location, dependent on environmental factors and 

atmospheric conditions. This implementation also captures the tendency of TCs to 

start weakening when they approach the MPI, as well as the tendency of TCs to 

weaken faster at higher latitudes (James and Mason, 2005). The MPI is computed per 

month and per basin. First, we calculate the difference between the environmental 

pressure 𝑃𝑒𝑛𝑣 and the TC’s central pressure P from the IBTrACS data. This value is 

also known as the TC pressure drop (𝑃𝑒𝑛𝑣 − 𝑃, in hPa). Together with the pressure 

drop, we store the monthly mean SST (in °C) corresponding to the location of the TC 

eye. Subsequently, we group these monthly mean SSTs in 0.1°C bins together with 

their corresponding pressure drop values. We then fit the mean SST and maximum 

pressure drop per bin to Equation 3.4 (DeMaria and Kaplan, 1994) :  

𝑃𝑒𝑛𝑣 − 𝑃 = 𝐴 + 𝐵𝑒𝐶(𝑆𝑆𝑇−𝑇0),   𝑇0 = 30.0℃ 
 

(3.4) 
 

The coefficients A, B and C are estimated using non-linear least-squares. Using this 

formula, we can calculate the maximum pressure drop at every 0.25° x 0.25° SST grid 

point. In the final step, we subtract this maximum pressure drop from the 𝑃𝑒𝑛𝑣 fields 

to derive the MPI. To inhibit unrealistically low MPI values, the MPI values are 

bounded by the lowest MPI value per basin and per month derived by Bister and 

Emanuel (2002).  

After calculating the MPI at every 0.25° x 0.25° grid point for every month, we model 

changes in P using an autoregressive formula similar to James and Mason (2005) 

(Equation 3.5a). For this, we first extract changes in central pressure at every time 
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step (Δ𝑃𝑡) from IBTrACS and fit this to Equation 3.5a. The values of the coefficients 

c0, c1 and c2 are deduced per month for every 5°×5° box within a basin. The residual 

term 𝜀𝑝 is calculated as the difference between the fitted value of 𝛥𝑃𝑡  (Equation 3.5a) 

and the actual value of 𝛥𝑃𝑡  in IBTrACS. ∆𝑃.01 and ∆𝑃.99 represent the 1th- and 99th- 

percentile values of Δ𝑃𝑡, respectively. 

∆𝑃𝑡 = 𝑐0 + 𝑐1∆𝑃𝑡−1 + 𝑐2𝑒−𝑐3𝑋 ,   𝑐2 > 0, 𝑋 = max{0, 𝑃𝑡 − 𝑀𝑃𝐼}  
(3.5a) 

 

∆𝑃.01 ≤ ∆𝑃𝑡 + 𝜀𝑝 ≤ ∆𝑃.99, 𝜀𝑝~𝑁(𝜇𝜀𝑝
, 𝜎𝜀𝑝

) 
(3.5b) 

 

𝑃𝑡 = 𝑃𝑡−1 + ∆𝑃𝑡 + 𝜀𝑝 
(3.5c) 

 

At genesis, we set U10 = 18 m/s, and calculate the corresponding genesis pressure 𝑃0 

using the WPR (Equation 3.3). The first-step change in 𝑃, Δ𝑃0, is drawn from a normal 

distribution fitted around the Δ𝑃0 in IBTrACS. To inhibit the synthetic TC to dissipate 

directly after TC genesis, we force the synthetic TC to intensify (Δ𝑃0 <0) for the first 

2 to 5 time steps. This amount of time steps is used to calibrate the average lifetime 

of a TC per basin.  

A TC generally starts decaying after making landfall. In order to derive landfall (and 

distance to coast) for each time step of the TC in the STORM model, a land mask is 

created for each basin at 0.1° resolution using the Python 2.7 Basemap module. This 

module uses the GSHHS dataset (Wessel and Smith, 1996) for the coastline data 

(Whitaker, 2011). When the TC eye is over land for at least three time steps (totaling 

9 hours), the decay in TC wind speed in the STORM model is modelled following 

Kaplan and DeMaria (1995), who assume that the TC intensity decreases as a function 

of the time and distance the TC has covered whilst being over land: 

𝑉(𝑡𝐿) = 𝑉𝑏 + (𝑅𝑉0 − 𝑉𝑏)𝑒−𝛼𝑡 − 𝐶, 𝑅 = 0.9, 𝑉𝑏 = 26.7 𝑘𝑡, 𝛼 = 0.095ℎ−1 
(3.6a) 

 

𝐶 = 𝑚 [ln (
𝐷

𝐷0

)] + 𝑏,   𝐷 ≫ 1, 𝐷0 = 1 
(3.6b) 

 

𝑚 = 𝑐1̃𝑡𝐿(𝑡0,𝐿 − 𝑡𝐿), 𝑐1̃ = 0.0109 𝑘𝑡ℎ−2, 𝑡0,𝐿 = 150 ℎ 
(3.6c) 

 

𝑏 = 𝑑1𝑡𝐿(𝑡0,𝐿 − 𝑡𝐿), 𝑑1 = −0.0503 𝑘𝑡ℎ−2 
(3.6d) 

 

Here, V is the maximum sustained wind speed (in kt) of the TC at any time step tL 

after landfall. V0 is the wind speed at landfall. D represents the distance from the 

landfall location (in km). When the TC moves back over ocean or if the TC is over 

land for less than three time steps (9 hours), changes in intensity are modeled 

according to the set of Equations 3.5.  
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Figure 3.3 Scatterplot of the tropical cyclone’s minimum pressure (in hPa) against the radius to maximum 
winds (in km). The data are taken from the IBTrACS dataset. The red lines indicate the selected sub-

sections. 

Finally we derive values for Rmax. From IBTrACS we extract the Rmax (in km) and 

𝑃 for every time step whenever available, and group this together in one global 

dataset. This is done because for some basins, such dataset would be too small to 

adequately draw a new set of values from. In Figure 3.3, we see that the relatively 

intense TCs tend to have a smaller Rmax, which is consistent with Shen (2006). For 

relatively weak TCs, we observe a much wider range of Rmax in IBTrACS. There is, 

however, no specific relationship between Rmax and P.  

To calculate Rmax in STORM, we therefore split the dataset in three subsets:  

i) Rmax for P<920 hPa (relatively small radii);  

ii) Rmax for 920 hPa<P<960 hPa (transition), and  

iii) Rmax for P>960 hPa (wide range of Rmax).  

Sampling of Rmax at every time step can result in large sudden changes in Rmax. To 

avoid this, we sample values for Rmax at three distinct moments: at genesis (Rmaxgen), 

at the moment of peak intensity (minimum P) (Rmaxpeak), and at dissipation (Rmaxdis). 

Rmax values for the intermediate time steps is interpolated from these values (see the 

set of Equations 3.7). If Rmaxpeak < Rmaxgen, this meets the observations that Rmax 

tends to decrease as intensity increases, and we let Rmax linearly decrease between 

Rmaxgen and Rmaxpeak (Equation 3.7a). If Rmaxpeak ≥ Rmaxgen, we set 

Rmaxpeak=Rmaxgen, as otherwise the Rmax and TC intensity would both increase at 

the same time which is generally not the case (Shen, 2006). In a similar manner, we 
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let Rmax linearly increase if Rmaxdis > Rmaxpeak, and we set Rmaxdis = Rmaxpeak. if 

Rmaxdis ≤ Rmaxpeak. This way, the Rmax does not decrease while the TC is weakening, 

a property usually attributed to intensifying TCs (Shen, 2006). This results in the 

following set of equations: 

𝑅𝑚𝑎𝑥(𝑡) =
(𝑅𝑚𝑎𝑥𝑝𝑒𝑎𝑘 − 𝑅𝑚𝑎𝑥𝑔𝑒𝑛) ∗ 𝑡

𝑡𝑝𝑒𝑎𝑘

+ 𝑅𝑚𝑎𝑥𝑔𝑒𝑛 

 

𝑡 ≤ 𝑡𝑖𝑛𝑡 (3.7a) 

𝑅𝑚𝑎𝑥(𝑡) =
(𝑅𝑚𝑎𝑥𝑑𝑖𝑠 − 𝑅𝑚𝑎𝑥𝑝𝑒𝑎𝑘) ∗ (𝑡 − 𝑡𝑑𝑖𝑠)

𝑡𝑑𝑖𝑠 − 𝑡𝑝𝑒𝑎𝑘

+ 𝑅𝑚𝑎𝑥𝑑𝑖𝑠 

 

𝑡 > 𝑡𝑖𝑛𝑡 (3.7b) 

3.2.3 Creation of the synthetic tropical cyclones 
In the third stage (Figure 3.2, green column), we create 10,000 years of synthetic TCs 

based on the present climate-conditions from the IBTrACS dataset. This is done by 

running the STORM model, consisting of a series of Python programs for each of the 

components described above, on the Lisa Computer Cluster (www.surf.nl). We split 

the 10,000 years in 10 separate runs of 1,000 years each, for each basin. Model runs 

of 1,000 years take on average a few hours to run, but specific run times depend on 

the selected basin. For time periods in the order of decades, it is also possible to run 

the STORM model on a regular desktop computer or laptop. Figure 3.4 shows the 38 

years of TC activity in the input dataset IBTrACS (Figure 3.4a) versus the synthetic 

TC tracks from such a random 1,000 year STORM model run (Figure 3.4b). The 

STORM dataset provides a high global coverage of TCs compared to the original 

IBTrACS dataset, hereby ensuring that all coastal segments in TC-prone regions see 

multiple landfalling events in the STORM dataset. The STORM model outcomes are 

further discussed in Section 3.3. 

 

http://www.surf.nl/
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Figure 3.4 Overview of tropical cyclone tracks in IBTrACS and the STORM dataset. The top panel 
represents 38 years (1980-2017) of tracks in the IBTrACS dataset (a), the bottom panel represents a random 

period of 1,000 years of tropical cyclone tracks in the STORM dataset (b). Colors indicate the maximum 

wind speed of the tropical cyclone.  
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3.3 Technical validation 

3.3.1 Tropical cyclone characteristics 
To assess the performance of the STORM algorithm, we compare the TC 

characteristics from the IBTrACS dataset (which serve as input for STORM) to those 

in STORM. The resulting statistics are listed in Table 3.2 and plotted in Figure 3.5. 

Because the IBTrACS dataset serves as input for the generation of the STORM 

dataset, there exists a certain dependency between the two datasets. For this reason, 

we do not test for significant differences. Instead, we evaluate the performance of the 

STORM model by demonstrating that the mean values of various TC characteristics 

are within one standard deviation from those found in the IBTrACS dataset.  

In general, there is good agreement between the two datasets. In most basins, the 

genesis pressure is lower in the STORM dataset compared to IBTrACS (Figure 3.5b). 

This is likely due to the combination of setting the genesis wind speed at 18 m/s and 

the use of the wind-pressure relationship (see Section 3.2) to convert this wind speed 

to a pressure-equivalent. Despite these differences, we see that for all basins, the 

average pressure along the track in the STORM dataset closely corresponds to the 

average pressure in the IBTrACS dataset (Figure 3.5c). More importantly, for the 

calculation of return periods of the peak intensity of a TC, we evaluate the minimum 

pressure and maximum wind speed along a track in both the STORM and IBTrACS 

datasets (Figure 3.5d and e). We observe that, for all basins, these values correspond 

closely to those found in IBTrACS. The largest deviations in wind speed between the 

two datasets are found for the South Indian and the Western Pacific, with an 

underestimation of 2.1 m/s and an overestimation of 1.9 m/s in maximum wind speed, 

respectively. This demonstrates that the STORM model, embedded with the MPI 

constraint and the wind-pressure relationship (see Section 3.23.2), succeeds in 

reproducing the intensities found in IBTrACS. For the calculation of TC risk along 

the global coastline, it is important that STORM reflects the landfall counts per basin 

as well as the landfall pressure (Figure 3.5f and g). In both datasets, we observe a 

relatively large standard deviation, indicating that there is a substantial year-to-year 

difference in landfall counts. This is also mirrored by STORM. However, on average, 

the average landfall counts of the two datasets fall within one standard deviation of 

each other. 

Considering Rmax, there is a small deviation between observed and modelled values 

(Figure 3.5h). The largest deviations are seen for the North Atlantic basin, with an 

observed average Rmax of 69.7 km versus 50.3 km in the STORM model. This large 

deviation is likely caused by the sampling process used in the STORM model to 

calculate Rmax (see Section 3.2). All observed Rmax values were grouped in one 

global dataset, and from that dataset Rmax values were drawn corresponding to the 

TCs intensity. This grouping was done to overcome data scarcity in the smaller basins. 

Although procedure seems to work well for the other basins (i.e. small deviations from 
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IBTrACS data), the larger Rmax values in the North Atlantic basin are diminished 

when grouping them together with the lower Rmax values in other basins. One way 

to overcome this would be to group and consecutively sample Rmax values per basin, 

however the Rmax dataset needs to be sufficiently large per basin.  

Based on this comparison, we conclude that the STORM dataset performs sufficiently 

to be used for TC risk assessments and TC hazard analyses. Values of peak intensities 

and landfall pressures in the STORM dataset closely correspond to those found in the 

original IBTrACS data. The landfall counts also closely correspond to the ones in the 

IBTrACS dataset. However, there is a large year-to-year difference in annual landfall 

counts in both datasets, driving the large standard deviations found in both datasets. 

 

Figure 3.5 Bar charts showing the mean value of each of the different tropical cyclone characteristics, as 
listed in Table 3.2. Black lines represent the error bar, given as one standard deviation from the mean. Each 

of the colors represents a different basin. Solid bars represent IBTrACS data, dashed bars represent STORM 

data 

Table 3.2 (next page) Distributions of tropical cyclone characteristics in the IBTrACS and STORM datasets 

per basin. The time period 1980-2017 is used for the IBTrACS dataset (38 years of data). For the STORM 

dataset, we calculated the mean and standard deviation (between brackets) for a random selection of 1,000 

times 38 years of data. The n-value is given as the second number between brackets
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Eastern 

Pacific 

North 

Atlantic 
North Indian South Indian South Pacific 

Western 

Pacific 
Global 

Genesis events 

(Avg/yr) 

IBTrACS 14.5 (4.1; 38) 10.8 (3.9; 38) 2.0 (1.6; 38) 12.3 (3.9; 38) 9.3 (3.8; 38) 22.5 (3.9; 38) 71.3 (8.4; 38) 

STORM 
14.5 (3.8; 

38000) 

10.9 (3.3; 

38000) 

2.1 (1.4; 

38000) 

12.3 (3.5; 

38000) 
9.4 (3.1; 38000) 

23.0 (4.9; 

38000) 

72.3 (8.6; 

38000) 

Genesis pressure 

(hPa) 

IBTrACS 
1001.6 (2.0; 

418) 
1003.0 (3.5; 

410) 
994.5 (4.1; 

75) 
992.7 (6.3; 

449) 
993.3 (4.9; 351) 

997.2 (3.4; 
853) 

997.4 (5.6; 
2556) 

STORM 
998.0 (1.8; 

551839) 

997.0 (2.9; 

413801) 

994.5 (3.1; 

76107) 

989.8 (5.4; 

468103) 

991.3 (5.1; 

355663) 

994.2 (3.1; 

874377) 

994.3 (4.7; 

2739890) 

Average pressure 

along track (hPa) 

IBTrACS 
988.9 (11.6; 

424) 
991.5 (12.8; 

410) 
985.8 (10.6; 

75) 
980.4 (12.1; 

465) 
982.3 (11.0; 

352) 
978.9 (14.9; 

854) 
983.5 (13.9; 

2580) 

STORM 
985.6 (10.1; 

551839) 

985.6 (12.6; 

413801) 

984.2 (14.5; 

76107) 

979.5 (9.6; 

468103) 

982.0 (9.5; 

355663) 

974.6 (16.0; 

874377) 

980.5 (13.5; 

2739890) 

Minimum pressure 

along track (hPa) 

IBTrACS 
974.3 (24.6; 

424) 

977.0 (25.3; 

410) 

975.1 (22.0; 

75) 

962.1 (25.6; 

465) 

966.6 (24.0; 

352) 

961.6 (28.4; 

854) 

967.3 (26.8; 

2580) 

STORM 
971.5 (20.2; 

551839) 
972.7 (24.0; 

413801) 
971.5 (27.8; 

76107) 
966.0 (18.7; 

468103) 
969.4 (18.6; 

355663) 
956.4 (28.4; 

874377) 
965.6 (24.4; 

2739890) 

Maximum wind 

speed along track 

(m/s) 

IBTrACS 
36.0 (13.8; 

424) 

34.8 (13.4; 

410) 

31.6 (12.4; 

75) 

36.0 (12.9; 

465) 
34.9 (12.5; 352) 

35.7 (12.0; 

854) 

35.4 (12.8; 

2580) 

STORM 
37.0 (11.9; 

551839) 
34.7 (14.3, 

413801) 
33.4 (14.3; 

76107) 
33.9 (10.2; 

468103) 
33.4 (9.9; 
355663) 

37.6 (12.1; 
874377) 

35.7 (12.1; 
2739890) 

Total landfall counts 

(Avg/yr) 

IBTrACS 1.7 (1.8; 38) 8.2 (5.6; 38) 0.8 (1.0; 38) 4.0 (2.5; 38) 3.5 (2.2; 38) 20.3 (4.8; 38) 38.6 (8.1; 38) 

STORM 
1.4 (1.4; 

38000) 

6.0 (3.3; 

38000) 

1.2 (1.2; 

38000) 

2.6 (1.8; 

38000) 
2.7 (1.9; 38000) 

18.3 (6.2; 

38000) 

32.2 (7.7; 

38000) 

Landfall pressure 

(hPa) 

IBTrACS 
984.1 (14.3; 

64) 

984.0 (19.7; 

312) 

979.7 (18.2; 

32) 

975.7 (19.4; 

153) 

978.6 (17.5; 

134) 

979.0 (16.2; 

772) 

979.9 (17.6; 

1467) 

STORM 
976.0 (19.7; 

54247) 

978.1 (19.5; 

227302) 

968.2 (26.3; 

44041) 

972.2 (16.2; 

99244) 

977.0 (15.9; 

101171) 

972.8 (19.3; 

874377) 

974.1 (19.3; 

1221083) 

Radius to maximum 

winds (km) 

IBTrACS 
51.1 (27.0; 

218) 

69.7 (41.4; 

133) 

43.9 (14.2; 

36) 

50.4 (13.7; 

105) 
54.6 (16.1; 49) 

56.7 (22.9; 

184) 

55.7 (27.9; 

725) 

STORM 
50.2 (18.9; 

551839) 

50.3 (19.0; 

413801) 

50.6 (19.2; 

76107) 

50.2 (18.7; 

468103) 

50.4 (19.0; 

355663) 

48.5 (18.4; 

874377) 

49.7 (18.8; 

2739890) 
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Figure 3.6 Overview of 38 years of tropical cyclone trakcs in the IBTrACS and STORM dataset per basin. 
The left column represent 38 years (1980-2017) of tropical cyclone tracks in the IBTrACS dataset, the right 

column represents a random 38-year period in the STORM dataset. Colors indicate the maximum wind 

speed of the tropical cyclone. 
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3.3.2 Spatial distribution of tropical cyclone tracks 
Figure 3.6 shows the spatial distribution of the 38 years of TC tracks in the IBTrACS 

dataset (Figure 3.6a) against a random selection of 38 years from the STORM dataset 

(Figure 3.6b), per basin. In general, the location of peak intensity is captured well in 

the STORM dataset. These locations are more distinguishable when considering the 

1,000 years of synthetic TC tracks in Figure 3.4b. In Figure 3.4b, we notice that these 

locations of peak intensity closely correspond with regions of highest SST per basin, 

such as the Caribbean Sea and the Gulf of Mexico in the North Atlantic or the Bay of 

Bengal in the North Indian. In the latter case, however, the intense maximum wind 

speeds are around 80 m/s in the 1,000-year dataset. These high wind speeds are the 

result of low MPIs in this basin, driven by high SSTs (see Section 3.2). These low 

MPIs, in turn, drive TC intensifications. The high wind speeds, however, do not point 

towards a significant overestimation of maximum wind speeds in this basin, as the 

average maximum wind speed along the track (see Table 3.2 and Figure 3.5) closely 

corresponds to the ones found in the IBTrACS dataset.  

In addition, Figure 3.6 shows that the general patterns of TC tracks in the STORM 

dataset closely corresponds to those in the IBTrACS dataset. However, as the STORM 

model does not distinguish between tropical and extratropical systems, those longer-

lived TCs in e.g. the South Indian (Figure 3.6h) or the Western Pacific (Figure 3.6l) 

are likely of extratropical nature once they reach higher latitudes, and should therefore 

be omitted from any TC-related analysis at such latitudes.  

From Figure 3.4 and Figure 3.6, we can also observe the influence of basin boundary 

selection. We selected the basin boundaries such that they comply with the basin 

boundaries used in the IBTrACS dataset (see Section 3.2). The effect of the boundary 

selection is most prominent in the northern pacific basins (Western Pacific and Eastern 

Pacific): we observe that on the west side of the Eastern Pacific (between 180°W and 

160°W; see Figure 3.6b), TCs tend to grow more intense while moving westward. 

However they are cut off once they surpass 180°W. As there is little landmass in these 

regions, such TCs do not affect TC risk assessments, and as such we decided to leave 

the basin boundaries as is.  

3.4 Usage notes 
We have written the STORM algorithm in a modular and flexible way, so that it could 

be used to generate a large number of years of TC activity using any meteorological 

dataset as the input dataset. The resulting dataset with 10,000 years of TC activity can 

be used by anyone interested in researching TCs and TC risk over the open ocean and 

in coastal areas. Different aspects of TC hazards can be studied with this dataset, 

including wind and storm surge hazards. To this end, this dataset is applicable in 

various fields of study, including coastal modeling, flood risk assessments, and wind 

damage assessments. Because of its global coverage and the large number of TCs, 

there are also enough TCs to perform a risk assessment in regions rarely hit by TCs, 
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such as small islands. The STORM dataset is also particularly beneficial for the 

calculation of TC wind speed return periods, as is demonstrated in Chapter 4.  

Here we have used IBTrACS and ERA-5 as input datasets for the STORM model, but 

one could also use, for example, high resolution global climate models. Such 

meteorological dataset should be a realistic representation of TC characteristics such 

as forward speed and direction, U10 and MSLP fields, and the radius to maximum 

winds. In addition, realistic monthly mean MSLP and SST fields are necessary for the 

modeling of environmental effects.  

It is, however, important to note that the presented STORM dataset is based on the 

average climate conditions of the last 38 years and does not capture (multi)-decadal 

variability on longer time scales. In addition, the STORM model statistically 

resamples the same climate conditions as the input dataset. To this end, the STORM 

dataset as presented here cannot be used to assess climate change impacts over longer 

time scales. We recommend end-users interested in modeling synthetic TCs under 

future climate scenarios to either (i) re-run the STORM model with a future climate-

dataset; or (ii) to use such dataset to estimate changes in TC characteristics under 

climate change compared to present climate, and to add this difference to a present 

climate-dataset such as IBTrACS (the delta method). We plan to do this in future work 

(see Chapter 5). 
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Abstract 
Tropical cyclones (TC) are one of the deadliest and costliest natural disasters. To 

mitigate the impact of such disasters, it is essential to know extreme exceedance 

probabilities, also known as return periods, of TC hazards. In this chapter, we 

demonstrate the use of the STORM dataset, containing synthetic TCs equivalent of 

10,000 years under present-day climate conditions, for the calculation of TC wind 

speed return periods. The temporal length of the STORM dataset allows us to 

empirically calculate return periods up to 10,000 years without fitting an extreme 

value distribution. We show that fitting a distribution typically results in higher wind 

speeds compared to their empirically derived counterparts, especially for return 

periods exceeding 100-yr. By applying a parametric wind model to the TC tracks, we 

derive return periods at 10 km resolution in TC-prone regions. The return periods are 

validated against observations and previous studies, and show a good agreement. The 

accompanying global-scale wind speed return period dataset is publicly available and 

can be used for high-resolution TC risk assessments. 

4.1 Introduction 
Tropical cyclones (TCs) are amongst the deadliest and costliest natural disasters, 

affecting people, economies and the environment in coastal areas around the globe. In 

2019, Cyclone Idai caused over 1,000 fatalities and displacing 3 million people upon 

landfall in Mozambique (The Guardian, 2019). In 2017, Hurricanes Harvey, Irma and 

Maria entered the top-5 costliest Atlantic hurricanes ever, with combined losses 

estimated at US$ 220 billion (NOAA, 2020a). To minimize future loss of life and 

property, it is crucial to perform accurate TC risk assessments and identify high-risk 

locations so that appropriate protection measures can be designed.  

Wind is one of the major hazards associated with TCs and can do substantial damage 

to housing, infrastructure and ecosystems both in coastal regions and far inland (Kruk 

et al., 2010). Moreover, wind correlates with the intensity of other TC-induced 

hazards, such as storm surges, waves and precipitation (Bloemendaal et al., 2019; 

Cerveny and Newman, 2000; Phadke et al., 2003). To enhance our understanding of 

TC risk at the global scale, it is therefore essential to analyze wind speed probabilities 

in coastal zones. Risk is commonly calculated as the integrated value of expected 

damages over all exceedance probabilities –the inverse of which being return periods 

(RPs) (Ward et al., 2011). As such, accurately calculating risk requires information 

on a wide range of RPs. Simpson and Lawrence (1971) empirically estimated TC RPs 

along 80 km-long coastal segments of the US coastline based on historical TCs. 

However, RPs could not be calculated for those coastal segments that were not hit by 

a TC in the 85 years of observations. This shows that, due to the short length of the 

observational record, data often needs to be aggregated over larger spatial regions to 

perform a RP analysis, hereby omitting the spatial heterogeneity. Moreover, 

estimating RPs comes with large uncertainties, especially for RPs exceeding the 

length of the observational record. To overcome these limitations, the methodology 
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of synthetic TC track generation has been developed over the past few decades 

(Bloemendaal et al., 2020c; Emanuel et al., 2006; James and Mason, 2005; Vickery 

et al., 2000). In this approach, TCs, extracted from either historical data (Emanuel et 

al., 2006; Haigh et al., 2014) or climate model simulations (Lin et al., 2012), are 

statistically resampled and modeled to generate synthetic, but realistic, TCs. Using a 

Monte Carlo approach, this procedure is repeated recurrently to construct a TC dataset 

having the same statistical characteristics as the input dataset, but spanning hundreds 

to thousands of years.  

Using synthetic data enables the analysis of higher RPs and at higher spatial resolution 

than previously possible. In an accompanying paper we have presented the global 

synthetic model STORM (Synthetic Tropical cyclOne geneRation Model) 

(Bloemendaal et al., 2020c). The STORM dataset spans 10,000 years of global TC 

activity under present-day climate conditions, based on observed TC tracks. Here, we 

demonstrate usage of the STORM dataset by creating wind speed RPs at three 

different spatial scales: i) basin level; ii) within 100 km for 18 selected coastal cities 

and 63 islands; iii) at 10 km resolution in TC-prone regions. This dataset is unique in 

presenting (high) RPs at a global scale for all TC-prone regions. More importantly, it 

represents an important step forward to calculating global TC damages and risk. 

4.2 Methods 
Our approach is based on estimating the empirical RPs on basis of the synthetic TCs 

derived from the STORM dataset (Bloemendaal et al., 2020c). This dataset is created 

using historical data from the International Best Track Archive for Climate 

Stewardship (IBTRACS; Knapp et al., 2010) as input dataset for the Synthetic 

Tropical cyclOne geneRation Model (STORM). The development of this dataset has 

been described in detail in Bloemendaal et al. (2020c). Here, we provide a brief 

description of the STORM dataset, but for more details on the methodology and 

validation we direct readers to Bloemendaal et al. (2020c). 

4.2.1 Data 
The STORM dataset, a global synthetic dataset comprised of 10,000 years of synthetic 

TCs under present-climate conditions, is used for the calculation of the return periods 

(RPs). The STORM dataset was generated using STORM. This model takes the 

following IBTrACS data as input: the latitudinal and longitudinal position of the TC, 

maximum 10-meter 10-minute average sustained wind speeds (max U10), mean sea-

level pressure (MSLP), and the size of the TC eye (Radius to maximum winds; Rmax). 

Averaged environmental conditions are modeled using monthly-mean sea-surface 

temperatures (SST) and MSLP fields from ERA5 (Hersbach and Dee, 2016). From 

this, autoregressive formulas model consecutive changes in the 

longitudinal/latitudinal position of the TC (in °), the minimum pressure (in hPa) and 

the maximum wind speed (in m/s) at every time step during a TC’s lifetime. In 

addition, STORM also simulates the size of the TC eye, represented via the radius to 
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maximum winds (in km). STORM is validated in Bloemendaal et al. (2020c). Results 

show that STORM preserves the TC statistics as found in the IBTrACS input dataset, 

which indicates a good model performance. The average number of both genesis and 

landfalling events in the STORM dataset, as well as landfall intensity was found to 

closely correspond (within one standard deviation) to those in the IBTrACS dataset. 

The largest deviations in max U10 along a TC track were found to be approximately 

2 m/s in the STORM dataset compared to the IBTrACS dataset.  

4.2.2 Estimation of return periods and 2D wind field 

parameterization 
Using the 10,000 years of TC activity in the STORM dataset, we empirically calculate 

the max U10 for different RPs using Weibull’s plotting formula (Weibull, 1939), see 

Equation 4.1. The Weibull plotting formula has been demonstrated to be the best 

performing empirical formula for the estimation of return periods (Makkonen, 2006). 

Here, 𝑃𝑒𝑥𝑐(�⃗�) represents the exceedance probability 𝑃𝑒𝑥𝑐 for a given maximum wind 

speed �⃗� at rank 𝑖. 𝑛 is the total number of events in the set, and m the total length of 

the dataset (in years; here, 𝑚 = 10,000). The return period 𝑇(�⃗�) is then given as the 

inverse of 𝑃𝑒𝑥𝑐 . Because the STORM dataset represents 10,000 years of TC activity, 

we empirically calculate RPs up to 10,000 years.  

To demonstrate the performance of the empirical distribution compared to extreme 

value distributions (see Section 0), we fit five continuous extreme value distributions 

to the STORM dataset. These distributions include the Generalized Extreme Value, 

Exponential, Gumbel, Weibull, and Pareto distribution. Estimation of the optimal 

parameters for each of the distributions was done using Python’s lmoments package 

(Python Software Foundation, 2020) at 0.1-year intervals, up to 1,000 years. For the 

estimations of RPs at basin scale and within a 100 km radius, we apply Equation 4.1 

directly to max U10 values in the STORM dataset. However, for assessing RPs of 

wind speeds at 10 km resolution, we need to convert the TC tracks, that includes the 

longitudinal/latitudinal position of the TC eye, maximum wind speed, and radius to 

maximum winds, to 2D-wind fields. For this, we follow the parametric approach of 

Holland (1980). We follow the same approach as was suggested by Lin and Chavas 

(2012) and Muis et al. (2019). The Holland B parameter is calculated following Lin 

and Chavas (2012). The surface wind is converted to a gradient wind using a wind 

speed reduction factor of 1/0.85 (Powell et al., 2005). The asymmetry in the surface 

wind is accounted for by adding the surface background winds to the wind field (Lin 

𝑃𝑒𝑥𝑐(�⃗�) =
𝑖

𝑛 + 1
∙

𝑛

𝑚
 (4.1a) 

𝑇(𝑣) = 1/𝑃𝑒𝑥𝑐(𝑣) (4.1b) 
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and Chavas, 2012), which is approximated by the translational speed of the TC. We 

compute the 2D-wind field using a mesh with 10 km resolution. To optimize 

computational costs, this calculation is done in parallel using a separate mesh per 

basin. For each synthetic TC, we store the max U10 at each grid cell whenever max 

U10 ≥ 20 m/s. Lastly, we apply Equation 4.1 to the max U10 values at every grid cell 

to estimate the RPs.  

4.2.3 Basin definitions 
The basin definitions used in this chapter are adapted from Bloemendaal et al. (2020c), 

see Table 4.1. 

Table 4.1  Basin definitions, as adapted from Bloemendaal et al. (2020c) 

Basin name Basin domain 

Eastern Pacific 5°-60°N 180°-coastline of North America on the North Atlantic 

North Atlantic 5°-60°N coastline of North America on the Eastern Pacific - 360° 

North Indian 5°-60°N 30°-100°E 

South Indian 5-60°S 10°-135°E 

South Pacific 5-60°S 135°-240°E 

Western Pacific 5-60°N 100°-180°E 

 

4.2.4 The Saffir-Simpson Scale 
We use the Saffir-Simpson Scale (Simpson and Saffir, 1974) as an additional metric 

to communicate about wind speeds. The categorization on this scale, however, is done 

using 1-minute average sustained wind speeds, whereas the STORM wind data is 

given as a 10-minute average value. For this reason, we convert the 1-minute threshold 

values on the Saffir-Simpson scale to a 10-minute equivalent using a conversion factor 

of 0.88 (Harper et al., 2008), see Table 4.2. 

Table 4.2 Tropical cyclone wind speed categorization on the Saffir-Simpson Scale. Conversion between 1-

minute average sustained wind speeds in knots and in m/s is done using a factor of 0.5144, conversion 
between 1-minute and 10-minute average sustained wind speeds (in m/s) is done using a conversion factor 

of 0.88 (Harper et al., 2008) 

Category 
Wind speed threshold 

1-minute average sustained 10-minute average sustained 

Category 1 
64-82 kt 

32.9-42.2 m/s 
29.0-37.1 m/s 

Category 2 
83-95 kt 

42.7-48.9 m/s 
37.6-43.0 m/s 

Category 3 
96-112 kt 

49.3-57.6 m/s 
43.4-50.7 m/s 

Category 4 
113-136 kt 

58.1-70 m/s 
51.1-61.6 m/s 

Category 5 
≥137 kt,  

≥70 m/s 
≥61.6 m/s 
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4.3 Results and discussion 

4.3.1 Deriving return periods from the STORM dataset 
Calculating RPs of (extreme) wind speeds in the STORM dataset can be done either 

empirically or statistically. When using an empirical approach, RPs are directly 

calculated from wind speeds ranked in order of magnitude using formulas like 

Hazen’s or Weibull’s plotting formula (Hazen, 1930; Weibull, 1939). A benefit of this 

approach is that no specific shape of the RP-curve is assumed; RPs are calculated per 

given wind speed without interpolation or smoothening of the data. However, the 

highest RP is limited by the temporal length of the data as this method does not allow 

for extrapolation beyond this timespan. TC risk assessments typically require 

information on extreme events that have not been observed yet. Therefore RPs are 

often determined by fitting extreme value (EV) distributions (Kotz and Nadarajah, 

2000) to historical data. This way any RP can be estimated, even those beyond the 

range of observations. To ensure there is enough data for a good fit, this approach is 

generally carried out in ocean basins or relatively large coastal sections. Such fitted 

RPs are strongly influenced by the selected EV distribution, especially for higher RPs 

(Esteves, 2013). Furthermore, short records have large uncertainties, and typically 

multi-decadal records are needed for reliable estimates of the tail (high RPs) (Wahl et 

al., 2017).  

Here we compare these two approaches to estimate basin-scale RPs using the synthetic 

TCs from STORM. We apply Weibull’s plotting formula to the maximum 10-meter 

10-minute average sustained wind speeds (max U10) in the full STORM dataset 

(10,000 years). We use max U10 because this is globally the most commonly reported 

value of wind speeds (Knapp et al., 2010), but other averaging periods can easily be 

obtained using conversion factors (Harper et al., 2008). Next, we fit five EV 

distributions (the generalized extreme value, exponential, Gumbel, Weibull and 

Pareto distribution) to 1,000 random realizations of 38 years of data sampled from the 

STORM dataset. This 38-year length was chosen as the STORM dataset was created 

using 38 years of historical data (1980-2017) from the International Best Track dataset 

for Climate Stewardship (IBTrACS; Knapp et al., 2010).  

At basin-level, the empirically derived STORM-RPs agree with the observed RPs 

(Figure 4.1). In the North Atlantic, North Indian, and Western Pacific, STORM-RPs 

compare well with observations. In the Eastern Pacific and the Southern Hemisphere 

basins, max U10 in STORM are lower than the highest observed counterparts. 

Additionally, for four out of five EV distributions the max U10 values are 

substantially higher than the empirically derived values, particularly at RPs exceeding 

100-yr. Compared to the empirical curve, the worst-performing EV distributions are 

the exponential, generalized extreme value (GEV) and Gumbel distributions, which 

deviate from the empirical curve above the 10-yr RP. The EV distributions cannot 

capture the asymptotic behavior of the TC intensity, caused by environmental 

constraints such as the Maximum Potential Intensity (Emanuel, 1987; Holland, 1997). 
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Consequently, at high RPs, max U10 from EV distributions are higher than their 

empirically derived counterparts, with a maximum difference of 117 m/s for the GEV 

in the North Atlantic at the 1,000-yr RP. For the North Indian, we observe a kink in 

the empirical curve around the 20-yr RP: this is likely caused by an absence of certain 

max U10 in the dataset, which are then excluded from the RP calculation. This 

absence is driven by a limited spatial distribution of sea-surface temperatures (SSTs), 

causing a more frequent occurrence of higher max U10. Figure 4.1 shows that the 

Pareto distribution is the best-performing EV distribution compared to the empirical 

approach. However, for the North Indian, also the Pareto distribution shows 

substantially higher RPs compared to the empirical curve. Overall, the empirical 

probabilities of the observations are well in line with the estimates from the STORM 

dataset, and are considerably lower than using EV fits at RPs exceeding 100-yr. 

 

Figure 4.1 Comparison of the wind speed return periods based on fitting five different extreme value 

distributions to 1,000 random realizations of 38 years and applying an empirical distribution (the Weibull 
plotting formula) to the full 10,000 years of data. Data is aggregated at basin level for each of the 6 ocean 

basins (a-f). The extreme value distributions are the generalized extreme value distribution (purple), the 

exponential distribution (blue), the Gumbel distribution (also known as the Generalized Extreme Value 
Distribution Type-I; yellow), the Weibull distribution (also known as the Generalized Extreme Value 

Distribution Type-II; green), and the Pareto distribution (red). Shaded areas indicate the 95%-confidence 

interval based on the bootstrap with 1,000 realizations. Empirically derived return periods from 
observations (IBTrACS) are given as red scatter points. See Section 4.2 for a full description of the basin 

domains 



Chapter 4 

 

80 

4.3.2 Tropical cyclone return periods for coastal cities 
Besides basin-scale RPs, we derive RPs for specific coastal locations using a 100 km 

radius to capture those TCs that have a substantial impact. We demonstrate this here 

for 18 coastal cities, but a similar dataset is available for 63 islands (Bloemendaal et 

al., 2020b). The RP-curves (subplots in Figure 4.2; see Table 4.3) show that 

probabilities of a TC event occurring within 100 km differ strongly per city. Cities 

that are not regularly hit by a TC include San Diego (USA), Mumbai (India), and 

Muscat (Oman) with RPs for a Category-1 exceeding 100-yr. These relatively high 

RPs are driven by multiple TC characteristics. Firstly, TCs are generally deflected 

from San Diego and Mumbai (Sobel et al., 2019) and instead move out over the open 

ocean. This is caused by TCs being embedded within the prevailing easterly 

(westward) flow at these latitudes. Secondly, TCs dissipate when they make landfall. 

As Muscat is located in the relatively narrow Gulf of Oman, most TCs in this region 

will likely have passed land upon approaching Muscat. Lastly, both Mumbai and 

Muscat lie in the North Indian, where approximately 2 TCs form per year 

(Bloemendaal et al., 2020c), hereby further decreasing the chances of being hit by a 

TC in any given year. Of the cities considered here, Taipei (Taiwan) and Tokyo 

(Japan) experience TCs most often, with RPs for a Category-1 lower than 4-yr. Both 

cities are located in the Western Pacific, the most active basin with 22.5 TC formations 

Table 4.3 Return periods (yr) of Category 1-5 wind speeds occurring within 100 km for 18 coastal cities. 

Return periods are derived from the STORM dataset. Wind speeds are given as 10-meter 10-minute 

sustained average values, see Table 4.2 for more information. 

City Country Cat 1 

(29 m/s) 

Cat 2 

(37.6 

m/s) 

Cat 3 

(43.4 

m/s) 

Cat 4 

(51.1 m/s) 

Cat 5 

(61.6 m/s) 

Honolulu Hawaii (USA) 11 17 25 54 442 

San Diego USA 247 1870 5034 >10,000 >10,000 

Acapulco Mexico 22 35 62 156 1684 

San Juan Puerto Rico 5 8 12 22 131 

Houston USA 23 52 92 205 1230 

Miami USA 12 20 28 48 155 

Mumbai India 101 140 199 285 2403 

Chittagong Bangladesh 30 44 59 83 131 

Muscat Oman 151 235 315 768 >10,000 

Beira Mozambique 64 238 1179 6817 >10,000 

Saint-Denis Réunion 6 13 28 87 347 

Toamasina Madagascar 10 19 31 101 616 

Brisbane Australia 28 111 466 9013 >10,000 

Nadi Fiji 7 14 27 87 1093 

Noumea New-Caledonia 8 20 51 263 4755 

Ho Chi Minh Vietnam 33 225 970 9673 >10,000 

Taipei Taiwan 2 4 8 36 2200 

Tokyo Japan 4 7 23 556 >10,000 
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Figure 4.2 Return periods of maximum 10-minute average wind speeds within a radius of 100 km for a selection of coastal cities. Color tones correspond to the different 
basins: North Atlantic (blue), Eastern Pacific (red), Western Pacific (pink), North Indian (green), South Indian (purple), and South Pacific (yellow). Graphs show the 

return period on the x-axis versus the corresponding maximum wind speed (in m/s) on the y-axis. Tropical Storm (TS) and Category-classifications are based on the 

Saffir-Simpson scale.
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per year (Bloemendaal et al., 2020c). Of the cities considered, San Juan (Puerto Rico) 

and Chittagong (Bangladesh) are most often affected by strong TCs, with Category-5 

TCs having a 131-yr RP for both cities. San Juan’s central position in the tropical 

Atlantic Ocean combined with frequent Category-5 TC formations (approximately 1-

in-6-years; see Figure 4.1) likely drives these relatively low RPs. Chittagong’s 

relatively low RP is likely due to the high SSTs in the Bay of Bengal, enhancing TC 

intensification and thus generating strong TCs. 

4.3.3 Spatial distribution of extreme wind speeds 
Using STORM, we can also derive RPs at high (10 km) spatial resolution. While a 

single extreme event might be captured well in historical datasets (e.g. Hurricane Irma 

in IBTrACS), there are not enough events in such datasets to robustly calculate high 

RPs. To calculate max U10 at 10 km resolution, we fit a 2D-parametric wind model 

 

Figure 4.3 Spatial distribution of 10-meter 10-minute sustained maximum wind speeds (m/s) at 10 km 

resolution, derived from applying a 2D-wind parametrization to the synthetic tropical cyclone tracks in 
STORM. The wind speeds are the average value of 1,000 random realizations of 10,000 years of data 

(sampled with replacement) and determining RPs using Weibull’s plotting formula to each realization, 

performed at each coordinate at the 1-in-100-year (a) and 1-in-1,000 year (b) return period, respectively. 
The return period-analysis is carried out at the basin scale: as such, there is often no smooth transition of 

wind speed values at the basin boundaries. Inset figures show the distribution of wind speeds around the 

Philippines (a) and the United States East Coast (b) at the given return period. 
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to each synthetic TC (see Section 4.2.2). Note that RPs inherently depend on the 

spatial scale they are computed at. At basin-scale, multiple TCs form every year, each 

one potentially reaching a given max U10. At a high-resolution grid cell, a TC passage 

can be rare. Hence, for equal max U10, RPs are lower when computed at higher 

resolution.  

Figure 4.3 shows that max U10 increases between the 100-yr and 1,000-yr RP level, 

with largest increases in the Bay of Bengal, the North Atlantic, and west of Hawaii in 

the Eastern Pacific, and less profound in the mid-latitudes and over land. There is 

distinct spatial variation within basins driven by the strong relationship between SSTs 

and TC activity. This is for instant evident in the Bay of Bengal, where SSTs 

(Hersbach et al., 2019) of approximately 29°C drive TC intensification, resulting 

locally in max U10 exceeding 65 m/s for a 1,000-yr RP. Aside from basin-scale 

variability in max U10, the two insets in Figure 4.3 display the variability in max U10 

at smaller scales. Distinct differences in max U10 are visible around the Philippines 

(inset Figure 4.3a), with lower max U10 on the east side caused by the (westward) 

passage of TCs over the archipelago. Along the US coastline (inset Figure 4.3b), 

stronger TCs make landfall more frequently on the Florida-North Carolina coastline 

than around New York City (NYC). This is driven by two factors: (i) TCs generally 

move north-westward near the Florida-North Carolina regions (onshore direction), 

whereas TCs are defected eastward near NYC (offshore direction); and (ii) SSTs are 

higher along the southern coastline, supporting intense TCs, whilst the lower SSTs 

around NYC drive a weakening of TCs. The apparent re-intensification of TCs near 

40°S is partly caused by relatively high SSTs of 17-22°C. Another cause is that these 

mid-latitude regions are mostly dominated by extratropical cyclones, which follow a 

different intensification process than TCs. STORM, however, does not model the 

extratropical transition of TCs and as such may underestimate RPs in these regions. 

Another feature visible in predominantly the mid-latitudes is the dotted patterns (e.g. 

North of Hawaii, Figure 4.3). These patterns are caused by the passage of few TCs, 

combined with a higher translational speed at these latitudes. As we use 3-hourly 

intervals, the max U10 values appear as dots.  

4.3.4 Spatial distribution of return periods of tropical 

cyclones 
Besides calculating max U10 for specific RPs, we can also reverse the procedure and 

compute the RP for given TC-categories. Figure 4.4 illustrates the RPs of a Category-

1 (max U10 ≥ 29 m/s) and a Category-3 TC (max U10 ≥ 43.4 m/s) on the converted 

Saffir-Simpson Scale (Simpson and Saffir, 1974), see Section 4.2.4. There are large 

spatial variations, but for all basins RPs are lowest for a Category-1 or Category-3 

event in the tropical regions. For large parts of the Western Pacific and the eastern 

part of the Eastern Pacific, Category-1 TCs have an approximate 2-yr RP. In the other 

basins, these RPs lie between 5 and 20-yr. Category-3 TCs, however, occur less 
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frequent, ranging between 10-yr RP for the Western Pacific to 90-yr RP for the North 

Indian. 

 

Figure 4.4 Spatial distribution of return periods (yr) at 10 km resolution, derived from applying a 2D-wind 

parameterization to the synthetic tropical cyclone tracks in STORM. The return periods are the average 

value of 1,000 random realizations of 10,000 years of data (sampled with replacement) and determining 
RPs using Weibull’s plotting formula to each realization at each coordinate at Category 1 (wind speeds ≥ 

29 m/s) (a), and Category 3 tropical cyclone strength (wind speeds ≥ 43.4 m/s) (b), respectively. 

4.3.5 Discussion 

Comparison to other synthetic datasets 
At basin-level, we have shown that the STORM-RPs compare well with observations 

(Figure 4.1). At local scale, however, data can be scarce. Additionally, the 

observational dataset used here only spans 38 years, making it unfit for RP analysis 

past this timespan. Hence, here we compare our results to other studies that derived 

RPs based on thousands of years of synthetic TC tracks. We first compare model 

outcomes at the local scale, after which we discuss global-scale patterns in RPs.  

For 18 cases we compare max U10 for given RPs with STORM, and for Mumbai we 

compare the RPs for given categories (see Table 4.4). Sobel et al. (2019) reported a 

49 to 97-yr RP for a Category-1 TC within 150 km from Mumbai, agreeing well with 

the STORM-RP of 66-yr. Similarly, they estimate Category-3 RPs around 500-yr, 
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while STORM-RPs are around 138-yr. For a Category-1 TC occurring in Mumbai, 

Sobel et al. (2019) list a 224 to 236-yr RP; compared to a STORM-RP of 95-yr. For 

the city itself, RPs vary between 3,000 to 10,000-yr, compared to 550-yr in STORM. 

STORM-RPs are predominantly lower than those in Sobel et al. (2019). Sobel et al. 

(2019), however, speculate that they underestimates the TC hazard. Further 

differences are likely driven by the use of different track modeling methods, wind 

field parameterization schemes (including different resolutions) and RP estimation 

techniques.   

STORM performs well for given RPs: for 13 out of 18 cases, absolute differences 

between max U10 in STORM and other models lie within 5 m/s. The largest 

difference is 18 m/s for Darwin, Australia (Cook and Nicholls, 2009). This relatively 

large difference (-38.3%) is likely caused by the fact that Darwin is located near the 

South Indian-South Pacific basin border, and is hit by TCs originating in both basins. 

STORM, however, models TCs per basin, cutting off South Pacific TCs at the basin 

boundary. Townsville and Port Hedland are located further away from the basin 

boundary and max U10 are in better agreement. Additionally, we observe relative 

differences of -35.9% and -25.1% for the Federated States of Micronesia (FSM) and 

Palau, respectively. In STORM, the lower basin boundary in the Western Pacific is 

set at 5°N. As these island countries lie at around 7°N, and modelled TCs generally 

deflect away from the Equator, this means most TCs in STORM pass north of the 

island countries. Conversely, the AIR Tropical Cyclone Model (Commonwealth of 

Australia, 2013) models the Pacific region as a whole, and thus TCs have a higher 

probability of affecting FSM and Palau.  

At the global scale, Lee et al. (2018) calculated RPs for Category-1 and 3 TCs using 

the CHAZ model. The general spatial patterns in the CHAZ model (Figure 12-13 in 

Lee et al., 2018) and STORM (Figure 4.4) agree well, particularly in the Western and 

Eastern Pacific, including low RPs (around 1 to 10-yr for Category-1 and in the order 

of 10-yr for Category 3) in the Western and Eastern Pacific. For the North Atlantic 

and North Indian, STORM-RPs are lower than CHAZ-RPs. However, Lee et al. 

(2018) illustrate that their RPs are higher in the North Atlantic than observations. In 

parts of the Southern basins, STORM-RPs are around 90-yr while CHAZ-RPs are 

approximately 10 to 50-yr for a Category-3. 

In conclusion, the STORM-RPs show good agreement with other studies, with 

differences in max U10 for a given RP often being less than 5 m/s. At the global scale, 

we observe similar spatial patterns of RPs for a Category-1 TC, but deviations at 

smaller scales occur when assessing Category-3 RPs. 
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Table 4.4 Comparison of maximum 10-meter 10-minute average sustained wind speeds (max U10) at different locations and for different return periods (RPs) between 

STORM and the models used in other literature. 

Location 
Spatial 

scale 

Max U10 

reference 

(m/s) 

Max U10 

STORM 

(m/s) 

RP reference 

(yr) 

RP 

STORM 

(yr) 

Abs. diff. 

in max 

U10 (m/s) 

Rel. diff. 

in max 

U10 (%) 

Evalua-

tion of RP 

Research setup, 

Reference 

Mumbai, India 

150 km 

radius1 

Category 1 49-97 66 - Within 

range CHAZ model (Lee et 

al., 2018) and MIT 
model (Emanuel et 

al., 2006), Sobel et al. 

(2019) 

Category 3 ~500 138 - 

Lower than 
literature 

10 km 

grid 
cell 

Category 1 224-236 95 - 

Category 3 ~3000 - 

>10.000 

550 - 

Honaira, 

Solomon Isl. 

10 km 
grid 

cell 

27.22 31.4 

100 

4.2 15.4 

- 

AIR South Pacific 

Risk Model, 

Commonwealth of 
Australia (2013) 

Suva, Fiji 41.22 40.8  0.4 -1.0 

Palikir, Federal 

States of 

Micronesia 

36.52 23.4  13.1 -35.9 

Port Vila, 

Vanuatu 

46.82 40.5 6.3 -12.8 

Port Moresby, 

P.N.G. 

26.72 23.7  3.0 -11.2 

Dili, Timor-

Leste 

16.62 18.4  1.8 10.8 

Koror, Palau 37.92 28.4 9.5 -25.1 

Tongatapu, 

Tonga 

42.22 38.7 3.5 -8.3 

Alofi, Niue 40.32 39.8 0.5 -1.2 

Atiu, Cook 
Islands 

43.12 35.5 7.8 -17.6 

Apia, Samoa 40.52 43.2 2.7 6.7 

Vaiaku, Tuvalu 27.32 28.4 1.1 4.0 
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1 In this specific case, the STORM return period analysis has been re-run at 150 km radius instead of the regular 100 km used in the other cases. 
2 Converted from 1-min sustained wind speeds to 10-min average maximum wind speeds using a conversion factor of 0.88 (Harper et al., 2008) 
3 Converted from 3-sec wind gusts to 10-min average maximum wind speeds using a conversion factor of 0.66 (Harper et al., 2008) 

Charleston 

(NC), USA 

100 km 

radius 

51.8 53.8 100 2 3.9 - Hurricane Risk 

Calculator 

(Malmstadt et al., 
2010), Ellis et al. 

(2016) 

The Battery 

(NY), USA 

10 km 
grid 

cell 

27.32 30 100 2.7 9.9 - MIT model (Emanuel 
et al., 2006), Garner 

et al. (2017) 
36.12 40 1,000 3.9 10.8 - 

Darwin, 

Australia 

100 km 
radius 

653 47 

500 

18 -38.3 

- 

MIT model (Emanuel 

et al., 2006), Cook 

and Nicholls (2009) 

Townsville, 
Australia 

523 49 3 -5.8 

Port Hedland, 

Australia 

543 54 0 0 
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Limitations and directions for future research 
In previous sections, we have demonstrated that the STORM-RPs for max U10 

perform well. There are, however, some limitations regarding the usage of this 

dataset, which we will briefly reflect upon here, as well as giving directions for future 

research. 

First, the STORM dataset is based on average present-day climate conditions (1980-

2017), and as such does not capture climate variability. The climatology represented 

by STORM may be biased by the phases of multi-decadal variability contained in the 

38-year period of record that was used to generate the dataset, which may not be 

representative for longer timescales. Moreover, the STORM dataset cannot be used 

to assess climate trends on decadal timescales or the effects of climate oscillations on 

TCs (e.g., the El Niño Southern Oscillation or the Madden-Julian Oscillation; 

Camargo et al., 2008). Future research could study these aspects by for instance using 

ensemble runs, or by generating synthetic TCs per oscillation phase.  

Second, we used an easily applicable empirical inland decay function (Kaplan and 

DeMaria, 1995) to model the decay of TC wind speeds after landfall, and combine 

this with a 2D-parametric wind field model (Holland, 1980; Lin and Chavas, 2012). 

This decay function was derived using USA landfalling events, and as such may 

perform less well elsewhere. Moreover, the function assumes that a TC starts to decay 

after the TC eye crosses land. In reality, the inland surface winds will decay prior to 

landfall in response to enhanced surface friction caused by the land mass (Done et 

al., 2020). The 2D-parametric model does not include the influence of land, and 

therefore inland wind speeds may be overestimated. The use of numerical boundary 

layer model which includes the effects of terrain on the wind field would results in a 

better representation of the temporal evolution of the TC wind field over land (Done 

et al., 2020).  

Last, the 2D-parametric wind field model used here assumes the asymmetry in the 

TC wind field arises from background flow. In extratropical regions, however, 

enhanced wind shear, caused by large-scale background flows or nearby troughs 

(Ritchie and Elsberry, 2001), may also induce asymmetry. Furthermore, STORM 

does not model the extratropical transition of TCs, so systems in these regions may 

be represented incorrectly and end-users should therefore pay attention when using 

this regional data. 

4.4 Concluding remarks 
We have demonstrated the application of the STORM dataset to generate a novel, 

open-access dataset of wind speed RPs for all TC basins. We empirically derived RPs 

at three spatial levels: at basin-level, within 100 km of selected coastal locations, and 

at 10 km resolution. First, we demonstrated the benefit of using such large synthetic 

dataset, composed of 10,000 years of TC activity for present-day climate conditions, 

over using a climatological dataset of 38 years for the calculation of RPs. Compared 
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to the empirically derived RPs, fitting a continuous EV distribution to 38 years of 

data typically leads to higher max U10, especially for RPs exceeding 100-yr. Second, 

we calculated RPs for TCs within 100 km of 18 coastal cities, and found that RP-

curves differ substantially between locations. Finally, we estimated RPs at 10 km 

resolution by applying a 2D-wind field model to the synthetic TCs. This dataset is 

applicable for high-resolution TC wind risk assessments, particularly at the local 

scale such as Pacific island countries or the Caribbean.  

To assess our model performance, we compared the STORM-RPs against those 

derived from other synthetic models across different spatial scales, and found that 

results generally agree well. Near basin boundaries, however, RPs can be lower 

compared to other literature. This is because STORM is run at the basin-scale, and 

TCs are cut off at the basin boundaries. For regional-scale studies, this issue can be 

solved by applying STORM using adjusted basin boundaries. On the global scale, we 

observe similar spatial RP patterns for a Category-1 event compared to literature, but 

larger spatial differences arise when looking at the distribution of Category-3 RPs in 

the Southern basins (Camargo et al., 2008).  

In conclusion, this study is unique in that it is the first to estimate (high) RPs at 10 

km resolution on a global scale. It represents an important step forward in global TC 

wind risk assessments, particularly for island countries and TC-scarce regions. 

Furthermore, this research can contribute to an improved quantification of other TC-

induced hazards such as storm surge and precipitation (Bloemendaal et al., 2019; 

Cerveny and Newman, 2000; Phadke et al., 2003). To estimate the RPs of TC-induced 

storm surges, the 2D-wind fields can be used to force a hydrodynamic model (Muis 

et al., 2016). TC precipitation fields are closely related to max U10 fields (Cerveny 

and Newman, 2000) and the distance from the eye (Yu and Wang, 2018). These 

properties can be used to construct a parametric 2D-precipitation field model similar 

to the parametric wind field model, to assess TC precipitation risk. 
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Abstract 
Tropical cyclones (TCs) are among the deadliest and costliest natural hazards, and are 

projected to become more intense with climate change, increasing their threat to 

coastal communities. However, there is considerable uncertainty surrounding future 

changes in TC frequency and intensity, particularly at regional scales. Here we use 

the Synthetic Tropical cyclOne geneRation Model (STORM) to simulate changes in 

the frequency and intensity of future TCs, using input from four global climate models 

(GCMs). Our novel approach generates 10,000 years of synthetic tracks under past 

(1980-2017) and future climate (2015–2050) conditions. We derive high-resolution 

(10 km) wind speed return period maps up to 1,000-yr. While the GCM simulations 

do not show an increase in TC intensity, our results indicate that the probability for 

the most intense TCs increases in all regions, up to a factor 21, except the Bay of 

Bengal and the Gulf of Mexico.  

5.1 Introduction 
TCs are responsible for the highest insured losses of any natural hazard, exceeding 

US$ 480 billion in the U.S. alone over the last decade (NOAA National Centers for 

Environmental Information, 2021). TCs are projected to become more intense in a 

warming climate (Knutson et al., 2020), enhancing the risks associated with their wind 

speeds, precipitation, storm surges and waves (Lin et al., 2012; Patricola and Wehner, 

2018). TC losses have shown to rise steeply and nonlinearly with increasing intensity 

(Emanuel, 2021; Gettelman et al., 2018; Martinez, 2020; Pielke Jr. et al., 2008; 

Weinkle et al., 2018). Hence, understanding and accurately mapping TC hazards, their 

associated risk, and their future changes, is vital in protecting coastal communities.  

Future-climate TC impact assessments often rely on projections from GCMs. 

However, GCMs provide limited information on how climate extremes such as TCs 

may change (Fiedler et al., 2021; Roberts et al., 2020b), primarily because the spatial 

resolution of past-generation GCMs (±1.0º) is insufficient to adequately resolve TC 

intensity, size, and track (Murakami and Sugi, 2010). Consequently, there is no 

consensus on the projected change in TC frequency and characteristics under various 

climate change scenarios (Knutson et al., 2020). Recently, substantial progress has 

been made with the development of high-resolution GCMs (±0.25º) (Haarsma et al., 

2016). However, these GCMs still struggle to capture the most intense TCs (Roberts 

et al., 2020b), both through continued limitations in resolution and numerical 

precision (Davis, 2018) and from parameterizations of convective processes that do 

not hold for intense TCs, such as the assumption of hydrostatic balance. Additionally, 

such simulations typically only cover 30–100 year periods of historical and future 

climate (Haarsma et al., 2016), resulting in a small sample of TCs. This is an important 

constraint that further limits the accurate estimation of (changes in) the probability of 

extreme events. 
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Recently, several studies have sought to overcome the issues of poor TC 

representation and short simulations. One approach is to downscale TCs from GCMs 

(Emanuel, 2021; Lee et al., 2020). Here, atmospheric variables from GCMs are used 

to create a large-scale environment in a coupled TC model in which TCs are randomly 

seeded. This downscaling approach, however, requires a substantial number of inputs, 

and the simulated effects of climate change on TCs are only caused by processes in 

the large-scale environment (e.g., changes in wind shear or enhanced atmospheric 

stability), rather than changes in genesis frequency. Another approach is synthetic 

modelling (Bloemendaal et al., 2020c; Emanuel et al., 2006; Lee et al., 2018). Here, 

TC characteristics are extracted from either historical data (Emanuel et al., 2006; 

Haigh et al., 2014) or GCM simulations (Lin et al., 2012), and are statistically 

resampled and modeled to generate a new synthetic TC dataset, spanning thousands 

of years. This supports return period (RP) estimations exceeding the temporal length 

of the input data.  

Here, we use the Synthetic Tropical cyclOne geneRation Model (STORM) 

(Bloemendaal et al., 2020c) to simulate future-climate TC wind hazard. We design a 

novel framework to generate future-climate synthetic TCs, combining the benefits of 

high-resolution GCMs and synthetic modeling (see Section 5.2). We extract 

information on changes in TC variables (1979-2014 vs 2015-2050) from four high-

resolution GCM simulations, based on RCP8.5. Next, we project these changes onto 

the same TC variables from historical data (Knapp et al., 2010), which served as input 

for the STORM baseline climate dataset (Bloemendaal et al., 2020c) (STORM-B). 

We thereby create new input variables related to the future climate for each GCM. 

Next, we use this as input for STORM to simulate 10,000 years of future TC activity 

under climate change (STORM-C). Finally, we convert the synthetic tracks to a 2D-

wind field using a parametric model (Holland, 1980), and calculate the wind speed 

RPs at 10 km resolution. 

5.2 Methods 
In this study, we present a novel method to construct a synthetic TC dataset 

representative of future-climate conditions. In general, such a dataset can be created 

in two ways: 1) extract future-climate TC statistics for each GCM of the multi-model 

ensemble and run each set through STORM; or 2) calculate the difference (i.e., delta) 

between these present- and future-climate TC statistics and add this delta to a baseline 

dataset (e.g., observed TC statistics). While the first approach is directly applicable to 

GCM simulation output and therefore does not require the design of additional 

methodological steps, this approach does not resolve first-order biases of GCMs (such 

as an underestimation in TC intensity or genesis frequency); rather, it propagates these 

biases into the synthetic data. Thus, any misrepresentation of TC characteristics in the 

GCM will be statistically resampled in STORM, and can potentially have a substantial 

effect on the outcomes. On the other hand, the second approach eliminates the effects 

of the first-order model bias, making it computationally more efficient because the 
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same baseline dataset is used for all GCMs. In this section, we first demonstrate why 

using GCMs in STORM directly results in a poor TC representation; next, we present 

and validate the so-called delta approach.  

5.2.1 STORM and global climate models 
The STORM model takes information on TC track, characteristics, and environmental 

variables as input variables and statistically resamples these to an equivalent of 10,000 

years of TC activity under the same climate conditions. In Bloemendaal et al. (2020c), 

the 1980–2017 (38 years) period of IBTrACS (Knapp et al., 2010) was used as input 

to construct a baseline climate synthetic TC dataset (STORM-B) based on observed 

TC statistics. TC wind speeds were first converted to 10-minute 10-meter average 

maximum sustained wind speeds (m/s), and all data was linearly interpolated to three-

hourly values. The STORM model only considers TCs that form within a TC basin 

domain and in a TC season (see Table 1 in Bloemendaal et al. (2020c)). In the current 

study, we used these observed TC statistics derived from the IBTrACS dataset (Knapp 

et al., 2010) as the baseline dataset, on which we applied the delta approach. 

We use four high-resolution GCM simulations as inputs for STORM. These four 

GCMs are: CMCC-CM2-VHR4 (Scoccimarro et al., 2017), CNRM-CM6-1-HR 

(Voldoire, 2019), EC-Earth3P-HR (EC-Earth Consortium, 2018), and HadGEM3-

GC31-HM (Roberts, 2017). . CMCC-CM2-VHR4 has a spatial resolution of 25 km x 

25 km in the atmosphere, while the other GCMs have a spatial resolution of 50 km x 

50 km. We direct readers to  Roberts et al. (2020b) for further information on these 

GCMs. The four GCMs are part of the PRIMAVERA-HighResMIP multi-model 

ensemble (Roberts et al., 2020a), which in turn is part of the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016). From each of the four 

GCMs, we use the publicly available (Roberts, 2019) TC tracks and characteristics 

extracted by Roberts et al. (2020b) using the TRACK algorithm (Hodges et al., 2017). 

We use the high-resolution coupled ocean-atmosphere runs for the periods 1979–2014 

(henceforth “present climate”) and 2015–2050 (henceforth “future climate”), based 

on the high-emission SSP585 scenario (O'Neill et al., 2016; van Vuuren et al., 2011). 

These time periods were chosen to: 1) ensure maximum overlap with the IBTrACS 

dataset; and 2) have an equal temporal length of both the present and future period.  

The GCMs have a six-hour temporal resolution, which we linearly interpolate to three-

hourly values. Following Bloemendaal et al. (2020c), we only use TCs that form 

within the TC basins and within the TC season. However, we do not apply a wind 

speed threshold of 18 m/s, instead we use all TCs. This selection is due to GCMs 

generally underestimating TC intensity; applying a threshold can therefore exclude 

too many TCs. From each of the four GCMs, we extract information on TC genesis 

frequency (average per year), TC track (longitudinal and latitudinal position of the 

eye), TC intensity (minimum pressure in hPa), and environmental information on 

SSTs and mean sea-level pressure (MSLP). 
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To motivate our use of the delta approach, we first demonstrate the direct use of the 

GCMs in STORM. For four GCM-basin combinations, we compare present-climate 

statistics against historical data from the IBTrACS dataset (Table B.2 and Figure B.2). 

In all cases, TCs are substantially weaker in the GCMs than in IBTrACS. We then 

generate 1,000 years of synthetic data using STORM for both the present- and future-

climate GCM datasets and observe that the poor representation of TC intensity is 

carried through the STORM model. For all GCM-basin combinations and for both the 

present- and future-climate GCM input, the average maximum wind speed along the 

track is below 30 m/s, whereas this value is around 35 m/s for historical TCs. In 

addition, the synthetic datasets do not show a (profound) increase in TC intensity 

under climate change. This shows that the poor representation of TC intensity is 

propagated through STORM and that it is unadvisable to use TC data from GCM 

simulations directly as inputs for understanding the impacts of climate change. 

5.2.2 Designing and applying the delta approach 
We first give an overview of the different (generalized) mathematical equations that 

form the body of the delta approach. These equations are applied to the following 

GCM TC statistics (see Figure 5.1 for more information): annual frequency, the 

corresponding genesis months and genesis locations, and changes in track and 

intensity.  

Variables from the present- and future-climate GCM datasets are denoted as (∙)𝑃𝑟𝑒𝑠𝑒𝑛𝑡  

and (∙)𝐹𝑢𝑡𝑢𝑟𝑒, respectively. The variable from the observational TC dataset 

(IBTrACS; this dataset served as input for STORM-B) is denoted as (∙)𝐼𝐵𝑇𝑟𝐴𝐶𝑆, and 

the variables resulting from adding the delta to the IBTrACS data is denoted as 

(∙)𝐼𝐵𝑇𝑟𝐴𝐶𝑆,𝛥.  

Relative changes Relative changes are calculated and applied to the historical TC 

statistics from IBTrACS as follows: 

(∙)𝐼𝐵𝑇𝑟𝐴𝐶𝑆,𝛥 = (∙)𝐼𝐵𝑇𝑟𝐴𝐶𝑆 ∙
(∙)𝐹𝑢𝑡𝑢𝑟𝑒 − (∙)𝑃𝑟𝑒𝑠𝑒𝑛𝑡

(∙)𝑃𝑟𝑒𝑠𝑒𝑛𝑡

+ (∙)𝐼𝐵𝑇𝑟𝐴𝐶𝑆 (5.1) 

Absolute changes Absolute changes are calculated and applied to the historical TC 

statistics from IBTrACS as follows: 

(∙)𝐼𝐵𝑇𝑟𝐴𝐶𝑆,𝛥 = (∙)𝐼𝐵𝑇𝑟𝐴𝐶𝑆 + ((∙)𝐹𝑢𝑡𝑢𝑟𝑒 − (∙)𝑃𝑟𝑒𝑠𝑒𝑛𝑡) (5.2) 

Shifting the normal distribution The normal distributions from which variables are 

drawn, are shifted as follows: 

𝑁(𝜇𝐼𝐵𝑇𝑟𝐴𝐶𝑆,𝛥, 𝜎𝐼𝐵𝑇𝑟𝐴𝐶𝑆,𝛥
2)

= 𝑁 (𝜇𝐼𝐵𝑇𝑟𝐴𝐶𝑆 + (𝜇𝐹𝑢𝑡𝑢𝑟𝑒 − 𝜇𝑃𝑟𝑒𝑠𝑒𝑛𝑡), 𝜎𝐼𝐵𝑇𝑟𝐴𝐶𝑆
2 ∙

𝜎𝐹𝑢𝑡𝑢𝑟𝑒
2

𝜎𝑃𝑟𝑒𝑠𝑒𝑛𝑡
2

) 
(5.3) 

Where 𝜇 denotes the mean and 𝜎2 denotes the variance. 



Chapter 5 

 

96 

Next, we describe how the delta approach is applied to the different components of 

STORM (Figure 5.1). We highlight the most relevant aspects of the approach. The 

STORM components and equations discussed below are described in detail in 

Bloemendaal et al. (2020c). Rather than repeating the equations and explanations here, 

we refer the readers to this companion paper. 

 

Figure 5.1 Overview of the propagation of the delta into the STORM model 

Tropical cyclone genesis We model the change in genesis frequency λ (avg/yr) as a 

relative change, following Equation 5.1. To ensure that the number of genesis 

occurrences aggregated over all months equals the genesis frequency, the shift in 

genesis frequency per genesis month ψ (avg/month) is modeled relative to the total 

genesis occurrences. As such, for every month, we calculate the change in genesis 

frequency relative to IBTrACS (𝜓𝐼𝐵𝑇𝑟𝐴𝐶𝑆,𝛥) as follows: 

𝜓𝐼𝐵𝑇𝑟𝐴𝐶𝑆,𝛥 = 𝜓𝐼𝐵𝑇𝑟𝐴𝐶𝑆 ∙
#𝑇𝐶𝑠𝐹𝑢𝑡𝑢𝑟𝑒(𝑚𝑜𝑛𝑡ℎ) − #𝑇𝐶𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑚𝑜𝑛𝑡ℎ)

#𝑇𝐶𝑠𝑃𝑟𝑒𝑠𝑒𝑛𝑡(𝑡𝑜𝑡𝑎𝑙)

+ 𝜓𝐼𝐵𝑇𝑟𝐴𝐶𝑆 (5.4) 

 

Tropical cyclone movement We model the change in genesis locations by first 

aggregating the number of genesis occurrences in 5º x 5º boxes and then calculating 

the changes in genesis counts per box. Next, we apply the relative change following 
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Equation 1. If there are no genesis counts in the present-climate GCM dataset, we 

calculated and add the absolute change following Equation 5.2 instead. 

Consecutively, the TC track is simulated following the set of regression formulas from 

James and Mason (2005), see Bloemendaal et al. (2020c). The coefficients in the set 

of equations are derived directly from the observed TC statistics in IBTrACS. We 

extract the change in the first-step changes (i.e., the first change after genesis) in 

longitude and latitude, ∆𝜉0 and ∆𝜑0, and the longitudinal and latitudinal residual 

terms, 𝜀𝜉 and 𝜀𝜑, from the GCMs. The change in these variables is then applied to the 

ones derived from IBTrACS using Equation 5.3. 

Tropical cyclone characteristics TC intensification and weakening are modeled 

following the set of equations 5 in Bloemendaal et al. (2020c). The coefficients in 

these equations are derived directly from the observed TC statistics. The first-step 

change in pressure, ∆𝑃0, and the pressure residual term, 𝜀𝑃, are extracted from the 

GCMs. The change in these variables is then applied to the ones derived from 

IBTrACS following Equation 5.3.  

The Maximum Potential Intensity (MPI; in hPa) serves as an environmental constraint 

to the maximum TC intensity at a location, and is dependent on the SST at that 

location. To calculate changes in MPI, we derive the MPI for the GCMs using the 

SST fields from these GCMs in combination with the coefficients derived from the 

IBTrACS dataset. Next, we derive the relative changes in MPI per 5ºx5º box and apply 

this relative change to those in the IBTrACS dataset.  

We do not extract information on maximum TC wind speeds from the GCMs due to 

their biases. Instead, we apply the wind-pressure relationship from Harper (2002), 

using the corresponding coefficients that were derived from the observational TC 

statistics. We do not consider any changes in the radius to maximum winds (Rmax) 

because it is not possible to derive an accurate Rmax value from the GCMs due to the 

Rmax values being constrained by the 25-km grid resolution of the GCM. 

Lastly, we perform a perfect model run to validate the delta approach. In a perfect 

model run, we assume the model itself is “perfect”, i.e., we do not focus on intrinsic 

model errors but rather assess the influence of the input dataset on the outcomes. As 

such, by setting up this perfect model run, we can test whether the delta approach does 

not lead to anomalies in the output dataset. For the same four GCM-basin 

combinations used previously, we generate 1,000 years of synthetic tracks in two 

setups: 1) using the present-climate GCM dataset as baseline and adding the delta, and 

2) directly using the future-climate GCM dataset. When comparing the two 

approaches, Table B.3 and Figure B.3 show that the mean and standard deviations 

across all TC variables considered here are almost identical to one another. The TC 

intensity, measured through the average maximum wind speed along the track, has a 

maximum deviation of 0.1 m/s for the four GCM-basin combinations. This result 

implies that the delta approach does not create any anomalies and can be used to 
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generate synthetic TCs for future climate conditions. Note that the delta approach does 

not overcome intrinsic model biases in the input dataset: it follows from the intensity 

statistics in Table B.3 and Figure B.4 that the low TC intensity present in the GCMs 

is still propagated through STORM. 

To we quantify the individual influence of the input variables (that are part of the delta 

approach) on TC intensity, we conduct a sensitivity analysis for one GCM 

(HadGEM3-GC31-HM) in the Western Pacific. Table B.4 and Figure B.4 show that 

the largest influence is seen for the MPI. As this variable serves as an upper bound of 

TC intensity, it strongly influences the maximum intensity a TC can reach in its 

lifetime. Figure B.4 shows that keeping the MPI constant in a future-climate STORM 

run strongly decreases the frequency of the most intense (Category-5) TCs, reducing 

them to approximately 1% of all TCs compared to approximately 10% in the STORM-

C dataset. 

5.2.3 Calculating return periods 
To calculate the wind speed RPs for each of the STORM-C datasets, we follow the 

same approach as in Bloemendaal et al. (2020a). To calculate RPs at 10 km resolution, 

we apply the 2D-parametric wind field model of Holland (1980), which has been 

further refined by Lin and Chavas (2012), to the future-climate synthetic TC tracks. 

At each cell of the 10-km grid, we store the maximum wind speed of each TC 

whenever this wind speed exceeds 18 m/s. Next, the RPs up to 1,000-yr are calculated 

empirically using the Weibull plotting formula (Bloemendaal et al., 2020a; 

Makkonen, 2006): 

 It also follows from the set of Equations 5.5 that if the length of the set of events n is 

large (n > 100), 
𝑛

𝑛+1
≈ 1 and the value of 𝑃𝑒𝑥𝑐(�⃗�) is dominated by the rank i. This 

implies that, for large n, changes in 𝑃𝑒𝑥𝑐(�⃗�) for a given event are not due to changes 

in the total frequency of events n but are rather driven by changes in the frequency of 

exceedance of the respective event, which is represented by its rank i. 

5.2.4 Exposure analysis 
We assess the impacts of climate change on exposed population by combining the RP 

maps with global population data (Jones and O'Neill, 2020). The population dataset 

has a 0.125º x 0.125º resolution and is issued for the year 2000 (called the Base Year) 

and for five SSP-scenarios, given at decadal intervals between 2010 and 2100. To 

distinguish between different countries, we overlay the population data with country 

borders from Natural Earth (www.naturalearthdata.com). We include countries that 

𝑃𝑒𝑥𝑐(𝑣) =
𝑖

𝑛 + 1
∙

𝑛

𝑚
 (5.5a) 

𝑇(𝑣) = 1/𝑃𝑒𝑥𝑐(�⃗�) (5.5b) 

file:///C:/Users/nbl370/surfdrive/Documents/Paper%205%20-%20STORM%20Climate%20Change/www.naturalearthdata.com
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are considered to be prone to TCs; these countries are generally found between 30ºN 

and 30ºS (Walsh et al., 2007). To study the sole effect of the future change in TC 

characteristics on exposure, we aggregate the number of people exposed to Category-

1 RPs below 100-yr, and Category-3 RPs below 500-yr per country. We keep the 

population data constant at the Base Year to solely assess the effects of a change in 

TC wind speed hazard.  

Finally, we study the maximum wind speed weighted by population per basin. This 

variable represents the average maximum wind speed at a given RP experienced by 

an individual living in that basin. To ensure that we are only considering individuals 

who can potentially face such wind speeds, we include all individuals who are exposed 

to such wind speeds at a RP level below 1,000 yr. This way, societies living far inland 

and not prone to TCs are not included, thereby not skewing the results. We again keep 

the population data constant at the Base Year so that emerging differences can solely 

be attributed to changes in TC wind speeds. 

5.3 Results and discussion 

5.3.1 Generation of synthetic tropical cyclones under 

climate change 
Our results show a global-scale increase in the frequency of occurrence of intense TCs 

(i.e., exceeding Category 3 on the Saffir-Simpson Hurricane Wind Scale, Simpson 

and Saffir, 1974), and a decrease in the frequency of weaker systems such as tropical 

storms (Figure 5.2). We find similar results for the different basins except the Bay of 

Bengal (North Indian), where the frequency of intense TCs decreases under climate 

change. This is in line with results from other studies using high-resolution (finer than 

28 km x 28 km) GCMs (Knutson et al., 2020).  

The results also indicate an increase in the magnitude of TC intensity, here assessed 

through the average maximum wind speed (m/s) across all four STORM-C datasets 

(Table B.1). On a global scale, maximum wind speeds increase from 35.0 ± 1.9 m/s 

in the baseline to an average of 39.9 ± 3.0 m/s across the future-climate STORM-C 

datasets, with all GCMs agreeing on the direction of change. In line with results 

obtained in other studies (Bhatia et al., 2018; Knutson et al., 2020; Walsh et al., 2019), 

our results also show a robust change on a basin scale. The largest differences in 

average maximum wind speeds are found in the Eastern Pacific with an increase of 

6.7 m/s compared to the baseline. Relative increases in maximum wind speeds 

between the baseline and future climate datasets for the different basins lie between 

7.5% - 23%. While the sign of change is the same, our range is higher than Knutson 

et al. (2020), who report a range of 1% - 10% derived from synthesizing the results 

from many GCM-based studies. Possible reasons for these differences in range 

include: (1) the strong dependency of TC intensity on sea-surface temperatures (SSTs) 

in STORM. We calculate the Maximum Potential Intensity (MPI; in hPa) from these 

SSTs, which serves as an environmental constraint on the maximum TC intensity. 
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Regions with lower SSTs are therefore more susceptible to TC weakening. In reality, 

TC weakening is also governed by (amongst other factors) enhanced (vertical) wind 

shear, the entrainment of dry air, and the influence of nearby land masses (Done et al., 

2020; Emanuel, 2007). STORM does not simulate these processes, and therefore TC 

weakening may be better represented in GCMs; (2) Another potential cause for the 

difference in estimated intensity changes is the fact that STORM uses a lower bound 

for the maximum wind speed, set at 18 m/s. It is plausible that previous studies 

(Knutson et al., 2020) did not contain such threshold, and that the intensity increases 

under climate change are therefore somewhat tempered by these weaker storms. 

 

Figure 5.2 Relative frequency of different tropical cyclone categories (Tropical Storm, Category 1-5) for 

1,000 years of baseline climate STORM-B data and 1,000 years of future-climate STORM-C data for each 
of the four global climate models. We plot the global statistics, the six basins originally modelled by 

STORM (Eastern Pacific, North Atlantic, North Indian, South Indian, South Pacific, Western Pacific), as 

well as two sub-regions, the Gulf of Mexico and the Bay of Bengal. 

In agreement with literature (Knutson et al., 2020), all four STORM-C datasets 

indicate a global decrease in annual TC genesis frequency compared to the baseline 

STORM-B dataset (Table B.1), amounting to 72.4 ± 1.4 in the baseline climate to an 

average of 69.6 ± 3.1 across the four future-climate datasets. For two out of four 

GCMs (CMCC and HadGEM3), the decrease is within one standard deviation of the 

baseline (72.0 ± 1.5 and 72.2 ± 1.5, respectively), and we therefore do not consider it 

to be statistically significant. At the basin level, however, the four STORM-C datasets 
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only agree on the sign of change in the South Indian basin, whilst in the others they 

do not. 

The STORM-C datasets show a future poleward expansion of the location of 

maximum intensity in the Northern Hemisphere, particularly in the Western Pacific 

and the North Atlantic (Figure B.1). This poleward shift is driven by an increase in 

SSTs at higher latitudes, supporting TC tracks further northward, and is consistent 

with previous studies (Kossin et al., 2016; Kossin et al., 2014b).  

5.3.2 Changes in low-probability events 

 

Figure 5.3 Change in 10-minute 10-meter average maximum wind speed between STORM-B 

(corresponding to the average climate conditions of 1980-2017) and the ensemble median of the STORM-
C datasets (corresponding to the average climate conditions of 2015-2050) for the 100-yr (a) and 1,000-yr 

(b) return period. Red tones indicate a positive change (i.e. an increase in wind speed), blue tones indicate 

a negative change. 

The main advantage of our approach is that the large sample of synthetic TC tracks 

allows for a more robust assessment of changes in low-probability events. For this, 

we assess wind speed RPs at high spatial resolution (10km) by coupling the STORM-

B and C datasets to a 2D-wind parametric wind field (see Section 5.2). For the 

ensemble median of the STORM-C datasets, we observe an increase in maximum 

wind speeds compared to STORM-B at most locations for the 100- and 1,000-yr RP 

(Figure 5.3). The largest increases are found in regions in the Eastern Pacific, North 
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Atlantic, and South Pacific, amounting to approximately 35 m/s for the 1,000-yr RP. 

There are also regions for which our results show a decrease in maximum wind speeds 

such as the Bay of Bengal, where maximum wind speeds decrease up to 15 m/s for 

the 1,000-yr RP. This decrease is primarily driven by a shift in simulated TC genesis 

locations closer to the Indian/Sri Lankan land masses, associated with a northward 

shift in the Intertropical Convergence Zone (Mamalakis et al., 2021). This shift 

increases the chances of a TC making landfall prior to intensifying further, 

predominantly reducing the formation chances of Category-5 TCs (see also Figure 

5.2).  

There is only a minor change in maximum wind speeds for both RPs in the Gulf of 

Mexico and the Caribbean, although our results do show an increase in the relative 

frequency of intense TCs in this region (Figure 5.2). In this region, the absolute 

frequency of high-intensity TCs does not change much towards the future (2,767 TCs 

in the baseline versus an ensemble median of 2,624 across the future-climate datasets). 

However, as the total frequency of TCs decreases (seen in three out of four GCMs; 

see Table B.1), the relative frequency of intense TCs also decreases slightly, resulting 

in similar RP for these events. These findings are consistent with other literature 

(Bruyère et al., 2017). Note that STORM does not model extratropical transition of 

TCs; as such, maximum wind speeds and corresponding RP analyses in extratropical 

regions (poleward of 40ºN/S) should be disregarded as they may be represented 

incorrectly. Furthermore, this RP analysis is carried out at the basin scale; as such, 

there is often no smooth transition of maximum wind speeds near the basin boundaries 

– this is for instance visible at the Eastern/Western Pacific basin boundary. 

Next, we assess how RPs of maximum wind speeds change for 18 coastal megacities 

located in TC-prone regions (Figure 5.4). For 14 cities, the simulations show an 

increase in maximum wind speeds across the range of RPs, indicating an increase in 

TC hazard. For Noumea (New Caledonia), the maximum wind speed at the 100-yr RP 

increases from 46.8 m/s in the baseline climate to 53.0 – 59.0 m/s under climate 

change, which is the largest increase across the 18 cities. At the 1,000-yr RP, the 

largest increase in maximum wind speed is found for San Diego (USA), increasing 

from 34.3 m/s to 42.9 – 48.2 m/s.  The cities in the North Atlantic basin all lie within 

the Gulf of Mexico and Caribbean region, where the STORM-C dataset show a very 

minor change in wind speed RPs. Hence, the STORM-C RP curves for these cities 

(Houston, Miami, and San Juan) deviate little from the STORM-B RP curve. To 

illustrate: the largest absolute change in the 100-yr wind speed across these three cities 

is only 2.5 m/s for San Juan. For Chittagong (Bangladesh), located in the Bay of 

Bengal, the STORM-C RP curve is substantially lower than the baseline, especially 

for RPs ranging from 100 to 10,000-yr.  
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Figure 5.4 Empirically derived return periods of maximum 10-minute 10-meter average wind speed within 
a radius of 100 km for a selection of 18 coastal cities, evenly distributed over the six ocean basins. The 

solid line represents the STORM present climate return periods (corresponding to the average climate 

conditions of 1980-2017). The shaded areas indicate the range of return periods of the four STORM future 

climate datasets (corresponding to the average climate conditions of 2015-2050). 
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Figure 5.5 Ensemble median of the factor change in return period between the STORM-B (corresponding 
to the average climate conditions of 1980-2017) and STORM-C (corresponding to the average climate 

conditions of 2015-2050) datasets for 10-minute 10-meter wind speeds equivalent to a Category 1 (a; 29 

m/s) and Category 3 (b; 43.4 m/s) tropical cyclone. Grey colors indicate regions with no change.  

We also calculate the change in RPs for given wind speed thresholds. The probability 

of Category-1 and Category-3 TC wind speeds increases everywhere, except the Bay 

of Bengal and the Gulf of Mexico (Figure 5.5). In the Pacific and North Atlantic 

basins, the highest positive factor changes for Category-3 TCs are generally found 

toward the boundaries of the regions prone to these wind speeds (between 20º-40º 

N/S), amounting to a factor 21 in the Western Pacific. These changes are likely driven 

by the increase in SSTs in the future-climate GCMs, supporting the poleward 

extension of intense TCs. However, we also note that TCs in these regions, 

particularly near 40ºN/S, may be prone to extratropical transition and since this 

process is not included in STORM, the intensities of TCs in these areas may be poorly 

represented. Furthermore, we point out that in these regions, the probabilities of a 

Category-3 TC are generally lower, and consequently a very minor increase in 

probabilities will result in a large factor change, in contrast to areas that experience 

such Category-3 TCs more frequently. Other TC-prone regions showing a more than 

five-to-tenfold increase in the probability of a Category-3 strike include Japan, Hong 



Low-probability tropical cyclone events under climate change 

 

105 

Kong, the Comoros (near Mozambique), and the South Pacific region between 20–

30ºS. In these areas, the increase in probability is similar across the GCMs (Figure 

B.7). On the other hand, there is a decrease in probability in the Bay of Bengal (Figure 

5.5); this follows from the shift in genesis locations as discussed above. Similarly, 

results show little change for the Gulf of Mexico and Caribbean, which is also 

discussed above. 

5.3.3 Changes in exposed population 
Next, we assess changes in exposed population. We find the largest relative increase 

in population exposed to Category-1 RPs below 100-yr in Cambodia, with a relative 

increase of 12,550% compared to the baseline (Table 5.1).  This change is driven by 

a shift in exposed areas; in the baseline climate, mostly smaller villages along the 

Cambodian coastline are affected with RPs of Category-1 wind speeds below 100-yr 

(total population of around 40,000), whereas under climate change, a much larger 

area, including the capital city of Phnom Penh (total population exceeding 1 million), 

is exposed.  Note that we deliberately keep the population constant over time, allowing 

us to solely assess the impact of climate change on exposed populations (see Section 

5.2). Australia faces the largest relative increase in exposed population to Category-3 

RPs below 500-yr, amounting to 9,375% (Table 5.2). Moreover, five of the top 10 

countries are located in the South Pacific, the other four countries being Papua New 

Guinea, New Caledonia, the Solomon Islands, and Tonga. Note that these four 

countries are all small island developing states, which are typically characterized by 

high vulnerability to climate impacts, scarce financial resources, and small economies 

to scale to overcome such impacts (United Nations, 2021). In fact, 18 out of the 21 

countries listed in Tables 5.1 and 5.2 that are facing an increase (relative and/or 

absolute) in exposed population are considered developing countries (United Nations, 

2020). 

Table 5.1 Top-10 countries experiencing the largest relative and absolute change in people exposed to 

Category-1 wind speed return periods below 100-yr.  

 Country Relative change (%) Country Absolute change (M) 

1 Cambodia 12,550 China 153.0 

2 Laos 1,514 Vietnam 36.7 

3 Mozambique 466 Bangladesh -23.5 

4 Iran 373 United States 18.8 

5 Papua New Guinea 237 India -16.3 

6 Palau 116 Somalia -16.3 

7 Vietnam 42 Mexico 7.5 

8 Yemen 39 Mozambique 6.5 

9 Honduras -26 Philippines 6.4 

10 Myanmar -26 Cambodia 5.6 
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Table 5.2 Top-10 countries experiencing the largest relative and absolute change in people exposed to 

Category-3 wind speed return periods below 500-yr.  

 Country Relative change (%) Country Absolute change (M) 

1 Australia 9,375 China 250.0 

2 Yemen 2,916 Japan 133.0 

3 Papua New Guinea 1,442 South Korea 59.4 

4 South Korea 935 Bangladesh -62.4 

5 New Caledonia 292 India -59.3 

6 Japan 279 United States 9.9 

7 China 161 Mexico 7.1 

8 Solomon Islands 135 Madagascar 6.9 

9 Venezuela 94 Pakistan 5.0 

10 Tonga 92 Myanmar -5.0 

 

5.3.4 Coastal regions at risk 
To get a basin-wide view of changes in population, we weighted the RP curves by 

population (combining the information from Figures 5.4 and 5.5), hereby deriving the 

average maximum wind speed experienced by a person living near the coast in that 

basin per RP (Figure 5.6). In the Western and Eastern Pacific basins, the future-

climate RP curve is visibly higher than the baseline climate curve, indicating that 

chances of an individual experiencing a stronger TC increase under climate change in 

all STORM-C datasets. In the other basins, the baseline climate RP curve overlaps 

with the future-climate range, indicating that climate change will not lead to 

substantial changes.  

 

Figure 5.6 Empirically derived return periods (x-axis) of 10-minute 10-meter average wind speeds (y-axis), 

weighted by population. The graph represents the average wind speed at a given return period experienced 

by an individual living in that basin and exposed to such wind speed probabilities. 
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5.4 Concluding remarks 
We have presented a novel method to analyze low-probability TC events under 

climate change, combining the benefits of high-resolution GCMs with synthetic TC 

modelling. By statistically extending baseline and future TC datasets from 36 to 

10,000 years, this method overcomes sampling and resolution issues that have 

affected previous studies, allowing future changes to be more clearly discerned, 

quantified and assessed. This has allowed us to identify hotspot regions facing the 

largest changes in the probability of being hit by a TC. Our results indicate that the 

Hong Kong region and the South Pacific are prone to the largest increase in probability 

for a Category-3 TC event. At the same time, there is little change in probabilities in 

the Gulf of Mexico and a decrease in probabilities for the Bay of Bengal. By 

combining the RP data with population data, we showed that primarily developing 

countries, such as Cambodia and Yemen, are prone to large increases in populations 

exposed to Category-1 and Category-3 TCs, respectively. To isolate the climate 

signal, our results were derived by keeping the population data constant. However, 

population growth and migration toward TC-prone areas are expected to further 

increase future population exposure (Neumann et al., 2015a; Tellman et al., 2021). 

This research represents an important step forward in global TC wind risk assessments 

by determining the changes in frequency and intensity of TC events under climate 

change at the basin and local scale. Furthermore, this research can contribute to an 

improved quantification of other TC-induced hazards, such as storm surge and 

precipitation. The future-climate STORM datasets can also be used as a hazard input 

dataset in catastrophe and risk models, such as those used by, for example, the 

(re)insurance industry. The procedure presented here is easily applicable to other 

GCMs and for other RCP scenarios, thereby allowing for analyses of TC risk under 

different climate scenarios and time periods. 
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Abstract 
For decades, meteorologists and governments have been warning communities in 

coastal areas for an imminent tropical cyclone (TC) using the Saffir-Simpson 

Hurricane Wind Scale (SSHWS). The SSHWS categorizes a TC based on its 

maximum wind speed, and is used in defining evacuation strategies and humanitarian 

response. However, the SSHWS considers only the wind hazard of a TC, whereas a 

TC can also cause severe conditions through its high storm surges and extreme 

rainfall, triggering coastal and inland flooding. Consequently, the SSHWS fails to 

mirror the TC’s total severity. This becomes evident when looking at past events such 

as Hurricane Harvey (2017), which was classified as a Tropical Storm while it caused 

widespread flooding in the Houston (TX) area, with precipitation totals exceeding 1.5 

m. Without including storm surge and rainfall information, adequate risk 

communication with the SSHWS can be challenging, as the public can (mistakenly) 

perceive a low-category TC as a low-risk TC. To overcome this, we propose the new 

Tropical Cyclone Severity Scale (TCSS) that includes all three major TC hazards in 

its classification. The new scale preserves the categorization as used in the SSHWS, 

to maintain familiarity amongst the general public. In addition, we extend the scale 

with a Category 6, to support communication about the most extreme TCs with 

multiple hazards. The TCSS is designed to be applied on a local-scale, hereby 

supporting local-scale risk communication efforts and evacuation strategies prior to 

a TC landfall. The scale can be used for risk communication on both the total TC risk 

and on the categories of the separate hazards, which can be valuable especially in 

cases when one hazard is the predominant risk factor, such as excess rainfall 

triggering flooding. 

6.1 Introduction 
Over the past decades, tropical cyclones (TCs) have greatly impacted the North 

Atlantic region, causing large economic damage and loss of life through their high 

wind speeds, storm surges, and precipitation. Some examples are Hurricane Sandy 

(2012), with over US$ 70 billion in damage, and the 2017 Hurricanes Harvey, Irma 

and Maria, with total damages exceeding $260 billion (NOAA, 2020b). To 

communicate about the potential threat of the TC, meteorologists commonly classify 

its maximum wind speeds following the Saffir-Simpson Hurricane Wind Scale 

(SSHWS; Simpson and Saffir (1974)). The SSHWS categorizes a TC’s wind speed 

on a scale of 1 to 5 for wind speeds exceeding 33 m/s, i.e. of at least hurricane 

strength, and uses the classifications “tropical storm” and “tropical depression” for 

weaker storm systems. However, recent research has shown that most TC-related 

fatalities in the U.S. are not caused by wind (8%), but by storm surge (49%) and 

rainfall (27%) (Rappaport, 2014). For instance, Hurricane Katrina (2005) was 

classified as a Category 3 at landfall with wind speeds of around 55 m/s, but its 8.6 

m storm surge caused widespread levee failure around New Orleans (LA), resulting 

in over 1,800 casualties and US$ 125 billion in damage, making it the costliest U.S. 
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TC to date (NOAA, 2020b). Another example is Hurricane Harvey (2017), which 

weakened to a tropical storm after landfall in Texas, but became the highest 

precipitation event in recorded history with precipitation totals exceeding 1.5 m in 

the greater Houston area (Blake and Zelinsky, 2018). These examples demonstrate 

that a classification method solely based on wind speed, such as the SSHWS, fails to 

capture the full severity of a TC. In recent years, various alternative methods of TC 

classification and indexation have been proposed to overcome this weakness (see 

Table 6.1). Almost all methods are applied on a pre-event basis, in that they use 

forecast information to classify a TC hazard, which is important given its function to 

warn and prepare. However, most classification methods assess either the wind or 

storm surge hazard, but rarely combine them. Moreover, most of the methods leave 

out precipitation altogether. The Hurricane Classification System by Senkbeil and 

Sheridan (2006) is the only method that includes all three TC hazards. However, their 

Hurricane Classification System is computed post-landfall, meaning that it is limited 

in use related to warning and preparation.  

TC classification methods are an important component of TC risk communication. 

Past research from psychology and economics shows that people generally have 

difficulty understanding low probabilities, and that responses to risk communication 

can be mediated by emotions such as worry (Petrova et al., 2014), and presentation 

mode (Goldstein and Rothschild, 2014; Okan et al., 2018). Besides communicating 

risk, TC hazard warnings should explain uncertainty of predictions, adding another 

layer of complexity to the interpretation (see e.g. van der Bles et al. (2019) for an 

interdisciplinary review on communicating uncertainty to the general public). Several 

attempts to improve TC risk communication have been documented, including 

proposals for and implementations of alternative forecast graphics (Broad et al., 2007; 

NHC, 2017, n.d.; Radford et al., 2013) and interactive visualization tools (Lindner et 

al., 2018). 

Naturally, TC classification categories are used by residents for disaster-related 

decision-making, such as evacuation behavior and preparedness measures. 

Individuals have to consider many factors when making protective action decisions 

(such as evacuating or sheltering in place). These factors can include prior TC 

experiences, social connections and networks, environmental cues, warning 

messages, and the sources and channels of information they are exposed to (Collins 

et al., 2017; Collins et al., 2018; Kasperson and Kasperson, 1996; Lindell and Perry, 

2012; Mase et al., 2015). When confronted with incomplete or inaccurate 

information, individuals are likely to spend more time gathering additional 

information before making a decision; this can cost valuable time during the window 

before a TC impacts (Bean et al., 2016; Perry and Lindell, 2006). Lazo et al. (2010) 

show that the intention to evacuate seems to be linearly related to SSHWS Category. 

Recent studies on evacuation behavior in light of hurricanes impacting Puerto Rico, 

the U.S. Virgin Islands, and Texas show that residents rely heavily on SSHWS 

Category in evacuation decisions (FEMA, 2014a, 2014b; Morss and Hayden, 2010). 
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Improving the classification method to better reflect the TC severity could therefore 

improve residents’ preparedness and evacuation decisions aiding a rapid response.  

A novel field of disaster research stems from the desire to understand how the public’s 

perceptions of natural hazards are influenced by different risk communication 

methods (Bourque et al., 2012). Studies show that concepts of return periods are 

difficult to grasp and there is a clear preference for concrete descriptions (Bell and 

Tobin, 2007) and that mobile warning messages are often deemed confusing (Bean 

et al., 2016). Another difficulty in lay understanding of hazard scales is the type of 

scale. People often apply linear logic to all scales encountered, including logarithmic 

scales. This may anchor or bias perceptions and leads to problems in risk 

communication, for example with regards to the logarithmic Richter scale of 

earthquake magnitude (Celsi et al., 2005; Jones and Richardson, 2007). Risk 

communication efforts in various domains have shown that categorization, for 

example with color coding or traffic light schemes, may be helpful to bring the most 

important information to attention (Jones and Richardson, 2007). Table 6.2 gives an 

overview of hazard classification methods for several types of hazards. Note that most 

classifications are discrete and based on a continuous index. Interestingly, the 

Pandemic Severity Index (PSI) was specifically modelled to mimic the discrete 

hurricane categorization of the SSHWS (Caduff, 2010).  

To overcome the aforementioned weaknesses of the SSHWS and building on past TC 

classification methods, we argue that an improved classification method should 

follow the following criteria:  

1. The scale should include all major hazards, being wind, storm surge, and 

precipitation; 

2. The scale should be applicable for pre-event hazard communication; 

3. The scale should be discrete. 

Here, we propose the new Tropical Cyclone Severity Scale (TCSS) following these 

criteria. Although a discrete scale might impose saturation at high intensities (Kantha, 

2006), a continuous scale can be more difficult to apply in risk communication to the 

lay public, as they have been familiar with discrete TC classification for decades. As 

such, we preserve the 1 to 5 categorization in the TCSS. Moreover, we extend the 

scale by an additional Category 6 to communicate the additional risk from multiple 

extreme hazards that may become more frequently encountered due to the effects of 

climate change. Even though a Category 6 is not necessary in the current SSHWS as 

Category 5 already represents total devastation, we believe that an additional category 

would be useful to communicate the ultimate severity of combined extreme hazards 

of wind, precipitation and storm surge. Finally, the scale should be applicable for pre-

event communication, which can only be achieved if the scale solely consists of 

variables also used in forecasting. While the SSHWS is commonly applied to 

communicate on an event-scale basis, a major benefit of the TCSS is that it can be
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Table 6.1 Overview of past tropical cyclone classification methods. Scale characteristics that meet our set of criteria are presented in bold. These criteria are: 1) inclusion 

of wind, storm surge, and precipitation, 2) applicability for pre-landfall hazard assessment, and 3) discrete nature. 

Tropical Cyclone Classification 

Method 

Tropical cyclone hazard(s) reflected by scale 

Applicability 
Continuous/ 

Discrete 
Reference 

Wind Storm surge Precipitation 

Saffir-Simpson Hurricane Wind 

Scale* 
Yes No No Pre-landfall Discrete Simpson and Saffir (1974) 

Hurricane Severity Index Yes No No Pre-landfall Discrete Hebert et al. (2010) 

Hurricane Hazard Index Yes No No Pre-landfall Continuous Kantha (2006) 

Hurricane Intensity Index Yes No No Pre-landfall Continuous Kantha (2006) 

Integrated Kinetic Energy Yes No No Pre-landfall Continuous 
Powell and Reinhold 

(2007) 

Hurricane Classification System Yes Yes Yes Post-landfall Discrete 
Senkbeil and Sheridan 

(2006) 

Surge scale No Yes No Pre-landfall Continuous Irish and Resio (2010) 

Hurricane Surge Index No Yes No Pre-landfall Continuous Kantha (2008) 

Multihazard Hurricane Index Yes No Yes Pre-landfall Continuous Song et al. (2020) 

*From 1971 till 2009, the NHC used the Saffir-Simpson Hurricane Scale (SSHS), which utilized pressure, storm surge, and wind measurements (Kantha, 2013; NHC, 

2019b). After Hurricanes Katrina (2005) and Ike (2008) demonstrated that storm surge potential based solely on wind categorization was misleading, the NHC dropped 

all requirements except wind. In 2012, the SSHS was modified to include only the wind component, and has been named the Saffir-Simpson Hurricane Wind Scale 

since.
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Table 6.2 Overview of hazard classification methods 

Hazard Scale name Nature Categories Categories in words 

Tropical 

cyclone 
wind speed 

Saffir-
Simpson 

Hurricane 

Wind Scale 

Discrete 5 

Very dangerous winds will produce 
some damage, Extremely 

dangerous winds will cause 

extensive damage, Devastating 
damage will occur, Catastrophic 

damage will occur, Catastrophic 

damage will occur 

Earthquake 

(magnitude) 
Richter Logarithmic - - 

Earthquake 
(intensity) 

Modified 

Mercalli 

Intensity 

Discrete 10 

Not felt, Weak, Weak, Light, 

Moderate, Strong, Very strong, 
Severe, Violent, Extreme, Extreme, 

Extreme 

Forest fire 

McArthur 

Forest Fire 

Index 

Discrete, based 

on continuous 

index 

6 
Low-moderate, High, Very high, 
Severe, Extreme, Catastrophic 

Snowfall 

Northeast 

Snowfall 

Impact Scale 

Discrete, based 

on continuous 

index 

5 
Notable, Significant, Major, 

Crippling, Extreme 

Tornado 
Enhanced 

Fujita 

Discrete, based 
on continuous 

index  

6 
Light, Moderate, Considerable, 

Severe, Devastating, Incredible 

Pollution 
Air Quality 

Index 

Discrete, based 

on continuous 
index 

6 

Good, Moderate, Unhealthy for 

sensitive groups, Unhealthy, Very 
Unhealthy, Hazardous 

Epidemic 

Pandemic 

Severity 
Index 

Discrete, based 
on continuous 

index (case-

fatality ratio) 

5 
Category 1 to category 5, designed 

to mimic hurricane classifications 

Heatwave Heat Index 

Discrete, based 

on two 
continuous 

variables 

(temperature 
and relative 

humidity) 

4 
Caution, Extreme Caution, Danger, 

Extreme Danger 

Volcano 

Alert-

Notification 

System for 
Volcanic 

Activity 

Discrete 4 Normal, Advisory, Watch, Warning 
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applied on a local scale to warn communities about their imminent danger. This way, 

people can receive tailored information on the TC’s severity for their location, and 

prepare accordingly. 

6.2 Methods 

6.2.1 Tropical cyclone event dataset 
To design and construct the new TCSS, we first extract all North Atlantic landfalling 

historical TCs between 1996 and 2018 from the National Hurricane Center (NHC) 

TC reports (NHC, 2020b). Subsequently, we exclude those landfall events without 

casualty or damage statistics. A landfall event (as stated in the “best track” table in 

the report) is included when there is either observational or estimated data on the 

maximum wind speed, storm surge and accumulated precipitation within 100 km 

from the landfall location. This yields a dataset of 90 TC events, including multiple 

landfall events from individual TCs. The maximum accumulated precipitation is 

taken as the highest total amount of rainfall that has been measured at a station within 

this 100 km of the landfall location. We assume that each of these observations within 

100 km from the landfall location provide a good indication of the conditions at the 

precise landfall location. Local topographical effects, however, might influence each 

of these variables, but it is difficult to account for these effects when using data from 

a limited number of measurement stations. Reported wind data in the TC reports are 

gathered from, amongst others, satellite data, U.S. Airforce Reserve aircraft 

reconnaissance flights (the so-called “Hurricane Hunters”), ship reports, radars, 

automated weather stations, and ocean buoys (NHC, 2020b). Storm surge estimates 

are commonly collected from National Oceanographic Service tide gauge stations 

and high water-mark surveys conducted by the U.S. Army Corps of Engineers and 

U.S. Geological Survey. Rainfall data is retrieved from rainfall measurements 

stations.  

Whilst the data from the TC reports used in this study have been acquired post-

landfall to test the scale for past storms, the TCSS is designed for pre-landfall usage. 

In this case, hazard data will be retrieved from TC forecasts. For wind and 

precipitation, forecast information is collected from numerical weather models 

(NHC, 2019a; NOAA, 2009). Such models are generally run at 6-hourly intervals, 

with a forecast range of 120-240 hours. For every model run, its initial conditions are 

derived from combining model information with observational data from satellites, a 

procedure also known as data assimilation (see e.g. ECMWF (2020) or NOAA 

(2020c) for more information on data assimilation in the ECMWF IFS and GFS 

models, respectively). Storm surges are modeled using the Sea, Lake and Overland 

Surges from Hurricanes (SLOSH) model (Jelesnianski et al., 1984; NHC, 2020a). 

This hydro-dynamical model simulates storm surge heights by using forecast data on 

atmospheric pressure, TC size, and TC forward speed as input data, and combining 

this with bathymetry and coastline data. 
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As with any scale, the performance of the TCSS is inherently dependent on the quality 

of the input data. Because of possible differences between pre- and post-landfall data, 

it is important to address forecast errors here. At the end of every TC season, the NHC 

releases its Forecast Verification Report, the latest one available being the 2018 report 

at the time of writing (Cangialosi, 2019). For the 2018 season, the NHC reported 

mean forecast errors of 2.6 m/s at 12h forecast time, and 6.7 m/s at 72h and 96h, both 

being lower than the 5-year averages. Besides accurate TC intensity forecasts, TC 

track forecasts also play an important role in storm surge modeling, as storm surge 

heights are strongly influenced by the location and timing of landfall (NHC, 2020a). 

The NHC Forecast Verification Report lists mean track errors ranging from 44 km at 

12 h forecast time, to 344 km at 120 h, which is lower than the 5-year average. Aside 

from TC track errors, the NHC Forecast Verification Report does not list storm surge 

and rainfall forecast errors. Luitel et al. (2018) found that TC rainfall forecasts 

provide good skill, especially for lead-times up to 48h. Various studies have also 

found good agreement between modeled (using SLOSH) and observed storm surges 

for different historical TCs (Forbes et al., 2014; Glahn et al., 2009). As such, we 

consider the forecast errors to be small enough for any difference between pre- and 

post-landfall data to not be of substantial impact. Hence, we use the post-landfall data 

here to design and demonstrate the TCSS. 

6.2.2 Design of the Tropical Cyclone Severity Scale 
Next, we define a categorization for wind speed, storm surge, and accumulated 

rainfall respectively (see Table 6.3). This categorization is based on the severity 

(potential to damage), similar to the philosophy of the SSHWS. To facilitate 

interpretation and familiarity amongst risk communicators, the wind speed 

categorization is directly taken from the SSHWS. For storm surge and accumulated 

precipitation, there is currently no categorization in place. Choosing thresholds for 

categories is inherently subjective and, from a mathematical point of view, non-

unique. In order to incorporate the SSHWS as the wind-categorization in our TCSS, 

we therefore follow the design of the SSHWS also for the other hazards. This means 

that a Category 1 represents moderate damage and a Category 5 catastrophic damage 

(Simpson and Saffir, 1974). However, for the SSHWS, extensive research was done 

to determine the threshold values for each of the intermediate category thresholds 

(Thomas, 2001). As there is no equivalent study for rainfall and storm surge, we 

evenly distribute the other thresholds amongst the other categories. The highest 

threshold for storm surge (4 m) is determined based on observations from TCs with 

known high-impact storm surges in the historical dataset, including Hurricane 

Michael (4.26 m) and Hurricane Rita (4.57 m). The TC reports show that historical 

TCs with storm surges lower than 0.75 m generally had very little impact from this 

hazard. Therefore, 0.75 m is set as the lowest threshold.  

The highest threshold for accumulated rainfall is chosen based on the notice of 

“catastrophic” rainfall impacts in the NHC TC reports. As such, past events like 2017 
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Hurricane Harvey (1538 mm), 2018 Hurricane Florence (912 mm) and 2001 Tropical 

Storm Allison (908 mm near the Texas landfall location, 758 mm near the Louisiana 

landfall location) would have been classified as a Category 5 when considering 

precipitation. Following these examples, we set the Category 5-threshold for 

precipitation totals above 750 mm. The lowest threshold should represent 

accumulated rainfall totals that can have an impact in urbanized regions, albeit 

temporarily. Such a value, however, cannot be uniformly set for the U.S., as this 

depends on a city’s infrastructure and sewage system. Instead, we use the American 

Meteorological Society’s definitions of rainfall events, and choose the lowest 

threshold such that moderate rainfall events (between 26-76 mm h-1) lasting for 2-4 

hours, or heavy rainfall events (more than 76 mm h-1) lasting for more than one hour 

will be categorized on the TCSS (AMS, 2020). Please note that the classification 

thresholds set here are based on the criteria outlined above, and these could be further 

improved by including more well-documented historical events and studies on 

damage of TCs by each of the three hazards (wind, storm surge, and rainfall). 

Table 6.3 Category thresholds for each hazard 

Category Wind speed (m/s) Storm surge (m) Accumulated rainfall (mm) 

5 ≥70 ≥4.00 ≥750 

4 59-69 3.15-3.99 589-749 

3 50-58 2.35-3.14 426-588 

2 43-49 1.55-2.34 263-425 

1 33-42 0.75-1.54 100-262 

0 <33 <0.75 <100 

 

The separate categories in Table 6.3 can already be used in risk communication, 

especially for TCs where one hazard is the main driver of the TC risk, such as extreme 

rainfall driving inland flooding. As flooding risk requires different storm preparation 

strategies than for instance wind risk, risk communicators may wish to convey this 

distinct TC risk by communicating the separate categories (e.g. a Category-5 rain 

event) rather than the final category, as is presented next. 

After defining the categorization for each separate hazard, these categories are 

combined into one final category that will be used for risk communication to the 

general public. This final category needs to adequately reflect the severity of the TC 

in one location. Therefore, we define a set of constraints that the final categorization 

should meet:  

1. The final category can never be lower than the highest hazard-based 

category; 
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2. The TCSS should adequately reflect the case of high potential risk of two or 

more hazards. We consider a hazard of high risk when its respective 

category is classified as 3 or higher (equal to the definition for a Major 

Hurricane on the SSHWS). Whenever (at least) two high risk hazards have 

the same category value and the third hazard has a lower category value, the 

final category should increment the highest hazard-based category. This 

implies that a TC scoring a Category 3 on both wind and storm surge, and a 

Category 1 on rainfall, will be classified as a Category 4.  

3. To warn the general public for an event with multiple extreme hazards, a 

high-risk TC can be classified as a Category 6 when either (i) at least two of 

the hazard-based categories are of Category 5; or (ii) two categories are of 

Category 4, and one of Category 5.  

To end up at the final category, we first rescale each of the hazard categories using 

rescaling values (see Table 6.4). These rescaling values have been chosen such that 

the set of constraints for the final category are maintained. The reason we implement 

these rescaling values is twofold. First, it is not possible to sum the hazard-based 

categories as is; a TC scoring a Category 5 and two Category-0s as hazard-based 

categories would end up as a final Category 5, while a TC scoring a Category 2 on 

all three hazards would end up as a final Category 6. This would thus violate the 

above set of constraints. Second, these rescaling values enhance implementation in 

data post-processing algorithms, as this is a mathematical procedure that can easily 

be carried out by any programming language. The alternative, i.e. a decision tree 

based on the set of constraints outlined above, is a more complicated procedure to 

both implement and execute. The final category is now determined from the sum of 

these rescaling values, see Table 6.5.  

Table 6.4 Rescaling values for each of the hazard categories 

Category of hazard Rescaling value 

5 40 

4 20 

3 9 

2 2.5 

1 0.5 

0 0 
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Table 6.5 Determination of the final category of the tropical cyclone, with the rescaling values resulting 

from Table 6.4. 

Final Category Sum of rescaling values 

6 ≥80 

5 40-80 

4 18-39 

3 9-17 

2 2.5-8 

1 0.5-2.4 

0 <0.5 

 

 

Figure 6.1 Flowchart demonstrating the application of the Tropical Cyclone Severity Scale to Hurricane 

Florence (2018) 

To demonstrate the use of the TCSS, Figure 6.1 shows the application to Hurricane 

Florence (2018). Upon landfall in North Carolina, Hurricane Florence had a 

maximum wind speed of 41 m/s, a maximum storm surge height of 3.35 m, and 

maximum precipitation total of approximately 913 mm. Based on Table 6.3, we 

categorize the wind as a Category 1, the storm surge as a Category 4, and the 

precipitation totals as a Category 5. Using Table 6.4, these categories would receive 

a rescaling value of 0.5, 20, and 40, respectively, summing up to a total of 65.5 points. 

Hence, based on Table 6.5, Hurricane Florence is categorized as a Category 5 on the 

TCSS.  

Hurricane Florence is a typical case where risk communicators could benefit from 

the individual as well as the combined nature of the TCSS. Florence’s Category-5 

ranking is mainly driven by its extreme storm surge and rainfall, which would require 
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different preparation strategies as opposed to a wind event. Here, risk communicators 

can clearly convey the imminent flooding threat by expressing that Hurricane 

Florence is a Category-4 for storm surge and a Category-5 for rainfall. Opting for 

such communication strategies, however, should be evaluated on a case-to-case basis. 

As such, the results presented in the next section are based on the final categories, but 

we will clarify the separate hazards wherever appropriate. 

6.3 Results and discussion 

6.3.1 Classification of past tropical cyclones on the 

Tropical Cyclone Severity Scale 

 

Figure 6.2 Change in tropical cyclone categorization between the Saffir-Simpson Hurricane Wind Scale 
and the Tropical Cyclone Severity Scale. Numbers between brackets indicate the total number of 

landfalling events shifting in categorization 

Figure 6.2 shows a comparison of the categories of all landfalling TCs between the 

SSHWS and the TCSS. Note that every individual landfall event is included, hence 

individual storms can be included multiple times. Overall, we see that many TCs 

increase in category with the TCSS compared to the SSHWS, which is expected given 

that we use the same thresholds for the wind hazard and give a rating equal to at least 

the highest hazard category. Of the total 90 landfalling TCs considered, 27 events 

have the same category using our proposed scale compared to the current SSHWS. 

The majority, however, is classified as a higher category: 55 TCs are classified one 

or two categories higher upon landfall, five TCs are three categories higher and one 

TC is four categories higher. There are also two TC landfall events that are classified 
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five categories higher (i.e. from tropical storm to Category 5: Tropical Storm Allison 

upon landfall in Texas and Louisiana). We find that the new Category 6 is only given 

to two TCs that were classified as Category 4 or 5 on the SSHWS, namely Hurricanes 

Wilma (2005; landfall in Mexico) and Michael (2018; landfall in Florida) 

respectively. 

Next, Table 6.6 lists the 14 unique TCs that are now classified as a Category 5 or 6 

on the TCSS. On the TCSS, the aforementioned Hurricanes Michael and Wilma are 

classified as a Category 6 due to the combination of high winds and storm surge 

(Michael) and precipitation (Wilma). Michael made landfall near Panama City, FL, 

and its wind and storm surge caused “devastating to catastrophic damage in Bay 

County, Florida” (Beven II et al., 2019), resulting in five direct deaths and an 

estimated 18.4 billion US$ in damage in Florida alone. Wilma hit Yucatan, Mexico, 

and despite official information on damage not being available, some reports state 

that conditions were very severe in portions of the peninsula (Pasch et al., 2006). 

Aside from these two Category-6 TCs, 12 TCs are classified as a Category-5 on the 

TCSS, of which one was also classified as a Category-5 on the SSHWS, namely 2017 

Hurricane Irma. This implies that the remainder of the TCs are upgraded in 

classification using the TCSS, with seven out of twelve classifying as a Category-5 

on storm surge, and three as a Category-5 on precipitation. 2016 Hurricane Matthew 

is the only TC in this list with lower hazard-based categories, but which combination 

ends up at a final Category-5.  

Table 6.6 Overview of Category 5 and 6 tropical cyclones on the Tropical Cyclone Severity Scale (TCSS), 
and how this categorization compares to the Saffir-Simpson Hurricane Wind Scale (SSHWS) at the 

location of maximum severity   

Name Year 
Landfall location of 

maximum severity 
SSHWS TCSS 

Composition of 

TCSS (wind-surge-

rain) 

Michael 2018 Tyndall Air Force Base, 

Florida 

5 6 5-5-2 

Wilma 2005 Cozumel, Mexico 4 6 4-5-5 

Florence 2018 Wrightsville Beach, North 
Carolina 1 5 

1-4-5 

Irma 2017 Cayo Romano, Cuba 5 5 5-4-1 

Maria 2017 Yabucoa, Puerto Rico 4 5 4-3-5 

Matthew 2017 Jauco, Cuba 4 5 4-4-4 

Joaquin* 2015 Rum Cay, Bahamas 3 5 3-5-1 

Ike 2008 Galveston Island, Texas 2 5 2-5-3 

Emily 2005 Tulum, Mexico 4 5 4-5-1 

Katrina 2005 Louisiana/Mississippi 

border 3 5 

3-5-2 

Rita 2005 Johnson’s Bayou, Louisiana 3 5 3-5-1 

Charley 2004 Playa del Cajio, Cuba 3 5 3-5-1 

Ivan 2004 Pine Beach, Alabama 3 5 3-5-1 

Allison1 2001 Freeport, Texas 0 5 0-1-5 

                                                           
1 Hurricane Joaquin and Tropical Storm Allison made a second landfall, also as a Category 5 on the TCSS, 

close to the landfall location given in this table. To avoid repetition, these events have been excluded. 
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6.3.2 Local-scale application of the Tropical Cyclone 

Severity Scale 
To demonstrate the applicability of the TCSS in local-scale warnings, Figure 6.3 

shows the categorization on the SSHWS (left) and the TCSS (right) for Hurricane 

Harvey based on observational data (Blake and Zelinsky, 2018). Whilst conditions in 

the majority of the affected region would have been classified as a Tropical Storm on 

the SSHWS, the TCSS shows a clear spatial distribution of categories, ranging from 

Category 0 in the outer regions to Category 5 around the Houston-Port Arthur area. 

These higher categories are driven by Harvey’s high accumulated precipitation totals, 

up to 1.5 m near Port Arthur. By using the TCSS, official warning channels can warn 

citizens at the local scale for imminent severe conditions from either wind, storm 

surge, or rainfall, or a combination of these hazards. 

 

Figure 6.3 Spatial distribution of Hurricane Harvey's (2017) category based on (a) the Saffir-Simpson 

Hurricane Wind Scale (SSHWS) and (b) the Tropical Cyclone Severity Scale (TCSS). Categorization is 

based on available observational data 

6.3.3 Categorizing the costliest U.S. tropical cyclones 
To further illustrate the use of the TCSS, Figure 6.4 shows the costliest TCs between 

1996-2018 (NOAA, 2020a). As actual impact also depends on exposure, we do not 

expect a perfect match, but given that the TCSS reflects the severity of a storm, and 

arguing that a severe storm can cause more damage, we do anticipate that TCs that 

caused extensive damage will also score high on the TCSS. Note that the SSHWS 

categories for the top-20 of the costliest TCs since 1996 vary considerably, including 

a Tropical Storm (Allison) and four Category-1 TCs at landfall. On the TCSS, 16 out 

of 20 TCs are classified as a major hurricane (Category 3 or higher), nine of these 

being in the top-10. The only exception in this top-10 is Hurricane Sandy (ranked the 

4th costliest hurricane), which is categorized as a Category-1 on the SSHWS and a 

Category-2 on the TCSS. Although not being a very intense storm, Sandy was an 

exceptionally large storm, affecting a large portion of the U.S. East Coast through its 

storm surge and rainfall. Most of the damage occurred approximately 150 km north 
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of the landfall location, around New York City. Here, the shape of the New York 

Bight region caused exceptionally high storm surges (>4 m) (Brandon et al., 2014), 

which would have been classified as a Category 5 for that location. This combined 

with the high population and asset density of that area resulted in the high aggregated 

damages associated with Sandy. Overall, the effects of high storm surges and rainfall 

totals are clearly visible in Figure 6.4 by the transition in category: TCs with a higher 

category on the TCSS obtained this category through a higher categorization on storm 

surge/precipitation than on wind speed. These results therefore underline earlier 

findings that storm surge and precipitation considerably add to TC damages 

(Bakkensen et al., 2018; Neumann et al., 2015b). 

 

Figure 6.4 Overview of the top-20 costliest U.S. tropical cyclones between 1996-2018 and their 

categorization based on (a) the Saffir-Simpson Hurricane Wind Scale (SSHWS) and (b) the Tropical 

Cyclone Severity Scale (TCSS). These damages are totals over the U.S. per event and are adjusted for 
inflation to 2020 US$ using the Consumer Price Index adjusted cost. Note that Hurricane Jeanne (2004; 

17th costliest between 1996-2018) is excluded as no observed storm surge height within 100 km from the 

landfall location was given in the official tropical cyclone report. 

6.3.4 Limitations and directions for future research 
In the previous sections, we demonstrated that the TCSS performs well in reflecting 

the TC’s major hazards in terms of potential impacts. As with any system of 

categorization, there are, however, some limitations to the usage of this scale; these 

are briefly reflected upon in this section. 



Chapter 6 

 

126 

First, the classification thresholds of the scale could be further improved by including 

more (well-documented) historical events and studies on damage of TCs. Moreover, 

studies on risk perception and behavior could provide valuable input on how the 

public perceives the scale with the method of combining categories, as well as the 

practicality of use of the TCSS. Future research on the comprehension of the use of 

a single category (i.e. our proposed final category) versus using individual hazard 

categories (which underlie our proposed final category), and the use of Category 6 

events, in communication to the public should be considered as they are novel and 

have not been investigated before. 

Second, the current scale is developed for the North Atlantic basin but can 

theoretically also be used for TCs in other basins. The thresholds of the underlying 

hazard categories likely have to be revised per basin, as the potential to cause damage 

and fatalities may be different in other basins. For instance, the rainfall categorization 

thresholds used in the current version of the TCSS (for the North Atlantic) may not 

necessarily cause as much problems in areas that have e.g. seasonal monsoons, thus 

being more used to such rainfall amounts.  

Third, the TCSS does not explicitly account for the compound effects of multiple 

hazards, as the hazards are not interlinked. An example of such compound effect is 

rainfall water accumulating inland because the rivers cannot discharge into the sea 

due to high storm surges, even though these hazards by themselves would have had 

limited impact (e.g. van den Hurk et al. (2015)). While the current generation of 

numerical weather models are capable of providing accumulated rainfall forecasts 

days prior to a landfall event, and the hydro-dynamical model SLOSH is currently 

used to estimate storm surge heights along the coasts, the combined effect of these 

hazards is yet to be represented in models. Such compound effects can be analyzed 

by coupling hydraulic models (fluvial/pluvial flooding) with hydro-dynamical 

models (storm surges). Once such a model setup is in place and used in the forecasting 

of storm surges, the TCSS would then reflect such compound effects as well.  

Finally, the design of the TCSS allows for categorization of those TCs that affect land 

through wind, storm surge, and rainfall. This also implies that risk communication 

for TCs that either remain over sea, or at time steps where the TC is over open waters, 

is not possible using the full TCSS, since storm surge and precipitation data are 

generally absent at these locations. As this can play a role in e.g. risk communication 

for marine traffic, we suggest using solely the wind categorization of the TCSS (the 

SSHWS) for these specific situations.  

6.4 Concluding remarks 
We have presented a new method of categorizing TCs based on wind speed, storm 

surge, and precipitation totals. Our Tropical Cyclone Severity Scale (TCSS) first 

categorizes each of these three hazards separately, and subsequently derives a final 

category based on the combination of hazard categories. This final category is a 
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number between 0 and 5, following the discrete nature of the current Saffir-Simpson 

Hurricane Wind Scale (SSHWS), and is extended by a Category 6 for storms that are 

extremely severe on several fronts. By first assessing each of the hazards separately 

and then combining them into one holistic scoring, the TCSS adequately reflects the 

true TC severity, which will result in better risk communication, evacuation 

strategies, and humanitarian response. Examples of TCs that score substantially 

higher on the TCSS compared to the SSHWS are Tropical Storm Allison (2001; 

Tropical Storm on SSHWS versus Category 5 on TCSS), and Hurricane Ike (2008; 

Category 2 on SSHWS versus Category 5 on the TCSS). Overall, two TCs that 

occurred between 1996 and 2018 would have been classified as a Category 6 upon 

landfall, namely Hurricanes Michael (2018) and Wilma (2005). We showed that the 

top-20 costliest U.S. hurricanes score higher categories on the TCSS as opposed to 

the current SSHWS, hereby better reflecting the relationship between TC severity and 

potential impact on society.  

The TCSS is set up to be used pre-landfall, using data available from meteorological 

and hydrological forecasts. As such, it can be used to create a spatially varying scale, 

to define different categories for different locations (see Figure 6.3 for a 

demonstration). This way, the TCSS can assist in more localized risk communication 

and evacuation strategies. Moreover, the specific hazards of an approaching storm 

can be communicated easier to the public by referring to the individual hazard 

categories (e.g. Category 5 for rainfall, but Category 1 for wind and surge). This 

opens up more possibilities of understanding and communicating the TC’s severity, 

hereby improving information communication to the general public and allowing for 

enhanced storm preparations and, ultimately, saving more lives. 
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7.1 Introduction 
With tropical cyclones (TCs) posing a significant risk to coastal communities under 

present-climate conditions, it is crucial to enhance our understanding of changes in 

TC risk under climate change so that adequate risk mitigation strategies can be 

designed and implemented. Therefore, the research goal of this thesis was set as 

follows:  

To improve our understanding of TC risk by developing a global-statistical 

synthetic model to assess return periods of TCs in the current and future climate, 

including low-probability events, and by improving risk communication strategies. 

This goal was addressed through the five research questions defined in Chapter 1. 

This final chapter revisits these research questions and summarizes the main findings 

(Section 7.2). It then discusses the remaining challenges in improving our 

understanding of global-scale TC risk under climate change (Section 7.3) and ways 

forward for research and management (Section 7.4). 

7.2 Overview of the main findings 

7.2.1 Which model resolution is sufficient to adequately 

represent tropical cyclones in climate datasets? 
In Chapter 2, we used the ECMWF Integrated Forecasting System (IFS) at 0.225º 

(T799) horizontal resolution as meteorological forcing for the storm surge modeling 

of eight historical TCs, using the Global Tide and Surge Model (GTSM). Comparing 

the modeled maximum surge heights of Hurricanes Irma (2017) and Sandy (2012) 

with tide gauge stations resulted in R2-values of 0.86 and 0.74, respectively. For the 

other six TCs, we found that modeled maximum surge heights are generally lower 

than reported heights. For most TCs, the difference between the observed and 

modeled maximum surge heights is less than 0.5 m. On the basis of that difference, 

we concluded that the IFS-GTSM model setup at T799-resolution framework is 

capable of capturing the large-scale spatial patterns of the maximum surge heights. 

Next, we analyzed the effects of different horizontal resolutions of meteorological 

forcing data on the simulated maximum surge heights by upscaling the 

meteorological forcing of the eight historical TCs to various coarser resolutions, 

between 0.25° to 1.0°. Simulated TC storm surges are lower using coarser resolution 

datasets compared to using the T799-resolution forcing, with differences varying 

between 0.01 m for Hurricane Patricia (2015) and 1.02 m for Irma. We observed that 

the effect of coarser resolution was largest for TCs with the highest surge heights. 

Hence, TCs with high storm surges require high-resolution meteorological forcing 

for accurate storm surge and impact modeling.  

Furthermore, we examined the relationship between storm surge heights and several 

geographical characteristics known to influence them: intensity, TC size, coastal 
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complexity, and coastal slope. In the eight TCs examined in this study, the 

geographical characteristics have a larger effect than the TC characteristics, with the 

highest storm surges found in regions with high coastal complexity and, in general, a 

small slope. 

Our findings show that the use of high-resolution meteorological forcing is 

particularly beneficial for areas prone to high (several meters) TC storm surges, such 

as areas with low slopes and high coastal complexity. We also concluded that coarser-

resolution datasets can be used in areas generally experiencing limited surge heights 

(i.e., smaller than 0.5 m) as the reduction of these surges was limited compared to 

observations. 

7.2.2 Can we build a global-scale, fully statistical synthetic 

tropical cyclone model, to simulate tropical cyclone 

activity over longer temporal time scales? 
Synthetic models are useful tools to overcome the short temporal time scale of 

historical observations and meteorological data from global climate models (GCMs). 

Previously developed global-scale synthetic models were, however, set up as coupled 

statistical-dynamical models using information on a wide range of (environmental) 

variables as input (Emanuel et al., 2006; Lee et al., 2018). Fully statistical models 

requiring fewer variables have thus far only been developed for the local scale (e.g. 

Haigh et al., 2014; James and Mason, 2005; Vickery et al., 2000).  

To apply the benefits of statistical modelling on the global scale, we presented the 

Synthetic Tropical cyclOne geneRation Model (STORM) in Chapter 3. STORM is a 

fully statistical model that can be applied to any meteorological dataset to statistically 

resample and model TC tracks and intensities. We applied STORM to 38 years 

(1980–2017) of historical TC data from IBTrACS (Knapp et al., 2010) to statistically 

extend this dataset to 10,000 years of TC activity. For each historical TC, we 

extracted its genesis month, longitudinal and latitudinal position of the eye, the 

maximum wind speed, minimum pressure, and radius to maximum winds. 

Furthermore, we extracted information on environmental conditions, such as the 

mean of monthly mean sea-level pressure and sea-surface temperatures from the 

ECMWF’s fifth-generation climate reanalysis dataset ERA5 (Hersbach et al., 2019). 

As output, the resulting STORM dataset contains the following information for every 

synthetic TC track at three-hourly resolution: longitudinal and latitudinal position of 

the eye, minimum pressure, maximum wind, radius to maximum winds, category on 

Saffir-Simpson Hurricane Wind Scale, landfall flag (0 = no landfall, 1 = landfall), 

and distance to land.  

STORM is validated by comparing TC statistics, such as frequency and intensity 

against IBTrACS. The mean values of all TC variables were all found to be within 

one standard deviation of the values in IBTrACS. The largest deviations between 

STORM and IBTrACS in average maximum wind speed along the TC track on a 
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basin scale were approximately 2 m/s, with an equal number of basins having higher 

and lower wind speeds compared to IBTrACS. As such, we concluded that STORM 

mimics the TC statistics from the input dataset well and that the STORM model is 

capable of simulating long(er) periods of TC activity while preserving the 

characteristics found in the shorter input dataset. It is, however, important to note that 

the presented STORM dataset is based on the average climate conditions from 1980 

to 2017 and does not capture climate variability. In addition, the STORM model 

statistically resamples the TC statistics in the input dataset; therefore, the 

performance of STORM inherently depends on how well the TC characteristics are 

captured in the input dataset. 

7.2.3 What is the global distribution of tropical cyclone 

wind speeds for extreme (low-probability) events, 

and how do these compare to observed tropical 

cyclone activity? 
In Chapter 4, we demonstrated the application of the STORM dataset to generate a 

novel, open-access dataset of wind speed RPs for all TC basins. Using this dataset, 

we empirically derived RPs at three spatial levels: 1) at a basin-level, 2) within 100 

km of selected coastal locations, and 3) at a 10 km resolution grid. First, we 

demonstrated the benefit of using such a large synthetic dataset, composed of 10,000 

years of TC activity for present-day climate conditions, over using only 38 years of 

observed TCs for the calculation of RPs. Compared to the empirically derived RPs, 

fitting a continuous extreme value (EV) distribution to 38 years of data typically leads 

to considerably higher wind speeds (max U10), especially for RPs exceeding 100-yr. 

Second, we calculated RPs for TCs within 100 km of 18 coastal cities spread out 

across all basins, illustrating the geographic differentiation of TC hazard within and 

between basins. Finally, we estimated RPs at 10 km resolution by applying a 2D-

wind-field model to the synthetic TCs. This dataset is applicable for high-resolution 

TC wind risk assessments, including local-scale assessments—for example, for 

Pacific or Caribbean island countries.  

To assess our model performance, we compared the RPs from STORM against those 

derived from other synthetic models and found that wind speeds for specific RPs 

generally agree well. In 13 out of 18 cases, wind speeds were within 5 m/s of each 

other. Near basin boundaries, RPs are often lower compared to other models; this is 

because STORM is run at the basin scale and because TCs are cut off at the basin 

boundaries. For regional-scale studies, this issue can be solved by applying STORM 

with adjusted basin boundaries. On the global scale, we observed spatial RP patterns 

for a Category-1 event that were similar to the literature. However, larger deviations 

arose when looking at the distribution of Category-3 RPs, particularly in the Southern 

basins (Lee et al., 2018). 
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7.2.4 What is the influence of climate change on the 

spatial distribution of tropical cyclone wind speed 

possibilities, especially for low-probability events? 
In Chapter 5, we applied the STORM model to generate 10,000 years of synthetic 

tracks under climate change for 2015–2050. To do so, we used information from four 

GCMs. TC characteristics such as intensity, however, are often poorly captured in 

these GCMs (Roberts et al., 2020a). Combined with the fact that STORM amplifies 

the input data to longer time scales, this poor representation would have propagated 

through the STORM model and could have significantly affected the outcomes.  

To address these issues, we present a novel methodology that maintains the benefits 

of using STORM and GCMs but that circumvents the potential propagation of the 

poor TC representation. This methodology is based on the delta approach and follows 

three steps, applied to each of the GCMs separately: First, we extract the change in 

TC variables that are part of STORM, calculated as the difference between present 

and future climate GCM data – referred to as the delta. Second, we apply the delta to 

the IBTrACS data that was used for the derivation of the present-climate STORM 

dataset. This step creates a future-climate version of the historical TC statistics but 

omits the first-order model biases (e.g., too low TC intensity) present in the GCMs. 

Third, we use these TC statistics as input for STORM and generate 10,000 years of 

synthetic tracks and high-resolution wind speed maps for different RPs. Results show 

that most TC-prone regions will face an increase in TC wind speed hazard under near-

future climate change, with the largest increases found in the South Pacific and Hong 

Kong region. Furthermore, by overlaying the hazard maps with population maps, we 

found that predominantly developing countries, such as Cambodia and Yemen, will 

face the largest changes in exposed population under near-future climate change. 

7.2.5 Can the Saffir-Simpson Hurricane Wind Scale be 

improved by accounting for the combination of 

wind, storm surge, and precipitation? 
The widely used Saffir-Simpson Hurricane Wind Scale (SSHWS) classifies a TC 

based on its maximum 1-minute sustained wind speeds (increasing in severity from 

Category 1 to 5). Historical storms, such as Hurricane Katrina (Category 3) and 

Tropical Storm Harvey, however, caused widespread havoc not because of strong 

winds but predominantly through their storm surge and rainfall. This reality 

demonstrates the fallibility of the SSHWS in reflecting the severity of a TC. To 

overcome this limitation of the SSHWS and to enhance risk communication for such 

TCs, we presented a new method of categorizing TCs based on wind speed, storm 

surge, and precipitation totals. Our Tropical Cyclone Severity Scale (TCSS) first 

categorizes each of these three hazards separately and subsequently derives a final 

severity rating based on the combination of hazard categories. This final category is 

a number between 0 and 5, following the discrete nature of the current SSHWS. It 
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also includes a Category 6 rating for storms that have multiple very severe hazards. 

We found that the top-20 costliest US hurricanes scored higher categories on the 

TCSS (mostly Category 4 and 5) as opposed to the current SSHWS. Thus, the TCSS 

better reflects the relationship between TC severity and potential impact on society.  

The TCSS is designed to be used pre-landfall and uses data available from 

meteorological and hydrological forecasts. As such, it can be used to create location-

specific forecasts of TC severity using information already available in these current 

forecasts. As a result, the TCSS can assist in increased risk communication at the 

local level. Moreover, by first assessing each of the hazards separately and then 

combining them into one aggregate score, the TCSS better reflects the TC severity, 

contributing to improved risk communication, evacuation strategies, and 

humanitarian response. The specific hazards of an approaching storm can be 

communicated more easily to the public by referring to the individual hazard 

categories (e.g., Category 5 for rainfall, but Category 1 for wind and surge). This 

precision opens up more possibilities to understand and communicate a TC’s severity, 

thereby improving information communication to the general public, allowing for 

enhanced storm preparations and, ultimately, saving more lives. 

7.3 Directions for future research 
Global-scale synthetic TC models, such as the STORM, CHAZ (Lee et al., 2018), 

and the MIT model (Emanuel et al., 2006) greatly advance our understanding of the 

distribution of TC events, and particularly of the low-probability, high-impact events. 

It is not surprising to see such models are at the heart of TC risk assessments, both in 

academia and the industry (e.g., Commonwealth of Australia, 2013; Lin and 

Emanuel, 2016; Sobel et al., 2019). There are opportunities for research to further 

improve and exploit such models, as discussed below. 

7.3.1 Studying tropical cyclone hazards 
The current generation of global-scale synthetic TC models primarily model a TC’s 

wind speeds. These synthetic tracks are then translated to a 2D wind field either by 

using nested models (e.g. Emanuel et al., 2006), or by applying a 2D-parametric wind 

field model. In this research, we applied the Holland parametric wind field model 

(Holland, 1980). This model is widely used and requires few parameters (i.e., forward 

speed, minimum pressure, and maximum wind speed) compared to more complex 

models. The Holland model, however, is relatively simple in the representation of the 

wind field in that it assumes the asymmetry in the TC wind field to arise from 

background flow. Enhanced wind shear (e.g., in extratropical regions), however, may 

also induce asymmetry. In addition, the Holland model does not take into account 

surface friction, which can have a substantial effect on the representation of inland 

winds. Other more complex wind field models, such as the Done et al. (2020) model, 

do take surface friction into account, hereby better representing the TC wind field. 

These models, however, also require information on variables currently not part of 
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most synthetic model output. In addition, they are computationally more intensive, 

complicating the application of these models to large synthetic databases such as 

STORM. Nonetheless, when future generations of synthetic models include all 

variables necessary for wind field models like the Done et al. (2020) model, they will 

likely become very valuable for studying extreme events in regions of interest.  

The total hazard emerging from a TC, however, is not solely composed of wind speed 

but also consists of storm surge and precipitation (see Chapter 6). TC storm surges 

can be simulated by using the synthetic model output as input for a hydrodynamic 

model. The MIT model, for instance, has been used to simulate TC storm surges at 

both local and continental scales (e.g. Garner et al., 2017; Lin and Emanuel, 2016; 

Marsooli and Lin, 2020; Meza-Padilla et al., 2015). Global-scale modeling of storm 

surges based on synthetic tracks is computationally intensive, but it is feasible given 

the recent advances in high-performance computing and numerical modeling. 

Dullaart et al. (2021) are the first to conduct such a study on the global-scale, coupling 

the present-climate synthetic tracks from STORM with the hydrodynamic model 

GTSM. However, when assessing changes in probabilities of TC-induced storm 

surges for a wide range of climate models, the computational costs of the 

hydrodynamic model rapidly escalate. One potential way to overcome this hurdle is 

to use statistical and machine-learning techniques, which can be used to build data-

driven models that can predict water levels with good performance and at low 

computational costs (Tadesse et al., 2020; Tadesse and Wahl, 2021). In previous 

research, data-driven models were trained with wind speed, mean sea-level pressure, 

and water level data from tide gauges to predict water levels for other atmospheric 

conditions. A way forward would be to train such data-driven models with 

atmospheric and hydrodynamical data from synthetic models such as STORM 

(Dullaart et al., 2021). Next, the data-driven model can be run with for instance 

future-climate synthetic tracks to derive the corresponding future-climate storm surge 

heights. In so doing, we can identify hotspot regions prone to large changes in TC 

storm surge risk under climate change. 

Precipitation also plays an important role in determining the severity of a TC. Global-

scale synthetic models are currently not capable of generating rainfall probabilities. 

On a case study basis, Emanuel (2017) expanded the MIT model with a numerical 

rainfall model to simulate Hurricane Harvey’s rainfall probabilities. However, the 

integration of a numerical rainfall model with synthetic models is computationally 

intensive and therefore infeasible for application to global-scale synthetic models 

spanning thousands of years. An alternative direction would be to develop a 

parametric 2D-precipitation field model similar to the parametric 2D-wind field 

model. Such a parametric model could build on existing knowledge on the 

relationship between TC characteristics and precipitation patterns: for example, the 

precipitation totals being closely related to maximum wind speeds (Cerveny and 

Newman, 2000) and the spatial precipitation pattern depending on the distance from 

the eye (Yu and Wang, 2018). Developing such a parametric model therefore requires 
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adequate understanding of the (inter)dependencies of various TC characteristics and 

deriving governing equations for the parametric model from these dependencies. 

Synthetic tracks can then be coupled to this model to derive rainfall RPs, similar to 

how wind speed RPs were derived in this thesis. This approach will yield a novel 

dataset composed of all major TC hazards, which can be used to assess the full scope 

of TC impacts in coastal regions, including inland and compound flooding hazards. 

7.3.2 From hazard to risk 
STORM paves the way to a better understanding of global-scale TC risk. Enhancing 

our understanding of TC risk, however, also requires enhancing our understanding of 

how the synthetic model’s output influences TC risk calculations. First of all, besides 

STORM, there exist various global- and local-scale synthetic models, developed 

within academia or as part of a catastrophe model used in the insurance industry. To 

evaluate a model’s performance, one can design a model intercomparison study, as, 

for instance, done by Sobel et al. (2019), who used two models to investigate one 

location. Such intercomparison studies are a powerful approach for enhancing our 

collective understanding of TC risk distributions (creating insights into the 

(dis)agreements between models) and for learning from other approaches and 

improving weaknesses in own models therefrom. Including more models and more 

locations in such intercomparison studies can improve our collective understanding 

of model strengths, weaknesses, and further development opportunities.  

A similar model intercomparison study can be executed on TC risk. TC damages 

emerging from these synthetic TCs can be calculated, for instance, by coupling the 

synthetic tracks to a statistical model (e.g.,  Martinez, 2020) or to regional impact 

functions (Eberenz et al., 2021). By using a plethora of synthetic datasets as input for 

such models, we can improve our understanding of potential (expected annual) 

damages in TC-prone regions. 

7.3.3 Limitations imposed by global climate models 
The overarching limitation in analyzing TCs using meteorological data is often the 

model resolution or the temporal extent of the dataset. TCs are characterized by strong 

wind and pressure gradients, which are typically poorly captured by (coarse 

resolution) GCMs. This limitation was discussed at length in Chapter 2 and was the 

main reason to design the climate change methodology outlined in Chapter 5. While 

model resolution and TC representation are continuously improving (Bauer et al., 

2015; Dullaart et al., 2020; Roberts et al., 2020a), the most intense TCs are still poorly 

captured by GCMs. This poor representation significantly affects TC risk assessments 

in coastal areas, where the most intense TCs often result in the most damaging events, 

thereby substantially contributing to TC risk (Emanuel, 2021). To circumvent this 

limitation, risk assessments are now often confined to the application of alternative 

methods, such as the delta approach (Chapter 5) or a downscaling method (Emanuel, 

2021; Knutson et al., 2013; Lee et al., 2020). In the downscaling approach, variables 
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from GCMs are used as environmental conditions in a coupled TC model. TCs are 

then randomly seeded within the large-scale environment, governing the TC motion 

and evolution from genesis to dissipation. This method allows for the simulation of 

large sets of TCs within the same climate conditions, overcoming the limitations 

imposed by the GCMs themselves. In this approach, however, the impact of climate 

change on (the frequency of) TCs only follows from processes in the large-scale 

environment rather than from changes in the seed disturbances. Thus, this approach 

provides little information on changes in TC frequency under climate change. 

STORM and other synthetic models overcome the short temporal extent of GCMs by 

statistically resampling the TC characteristics. There do currently exist GCM-derived 

datasets that are run for longer time scales than a few decades, such as the Community 

Earth System Model (Kay et al., 2015) or the Database for Policy Decision Making 

for Future Climate Change (Mizuta et al., 2017), both spanning thousands of years. 

These models, however, come with a coarse model resolution (0.5º–1º globally), and 

as such, they likely will not adequately capture a TC’s characteristics (Strachan et al., 

2013). This clearly illustrates the trade-off between temporal length and model 

resolution: to overcome computational limitations, GCMs at longer time scales are 

generally run on spatial resolutions too coarse for adequate TC representation, while 

GCM experiments tailored toward good TC representation are run on time scales too 

short for adequate TC risk assessments. A straightforward solution would therefore 

be to increase computational power; this solution, though, unfortunately depends on 

technological advances that lie outside the scope of this research field. A workaround 

could therefore be to apply deep learning methods (Reichstein et al., 2019). These 

methods use information on linkages between large-scale atmospheric patterns and 

high-resolution processes, such as tropical convection from high-resolution GCMs, 

to train the data-driven model. Thereafter, these derived relationships could be 

applied to atmospheric patterns in coarse-resolution GCMs, run over longer time 

scales, so that these higher-resolution processes could still be identified and analyzed. 

This approach would allow us to look at relevant TC information over longer 

timescales and to assess changes in these TC characteristics for different variations 

in the climate and under various forcing scenarios. 

7.3.4 Tropical Cyclone Severity Scale 
TC classification categories are used by residents for disaster-related decision-

making, such as evacuation behavior and preparedness measures. In the process of 

making such decisions, individuals often consider factors such as prior TC 

experiences or warning messages (Collins et al., 2017). When confronted with 

incomplete or inaccurate information, individuals are likely to spend more time 

gathering additional information before making a decision; this can cost valuable time 

during the window before a TC impacts (Bean et al., 2016; Perry and Lindell, 2006). 

Furthermore, residents have shown to rely heavily on the SSHWS category in their 
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decision-making processes (FEMA, 2014a, 2014b; Lazo et al., 2010; Morss and 

Hayden, 2010).  

However, the SSHWS fails to capture the full severity of a TC. To overcome this 

limitation, we designed the TCSS and demonstrated that the severity of historical 

hurricanes is often better captured by using this new classification method. However, 

one important question that remains unanswered is whether the TCSS improves the 

public’s decision-making processes and risk perception during an imminent storm 

compared to their response based on the SSHWS. In the context of this question, 

controlled experiments (e.g. Mol et al., 2021) could provide insight into whether 

people alter their decision-making process based on the additional hazard information 

provided by the TCSS. In addition, the TCSS currently does not take the influence of  

adaptation measures into account. Including such measures might change the TCSS 

category in a specific region, as (for instance) predicted storm surge heights might be 

lower due to effective measures.  

7.4 Implications for tropical cyclone risk research 

and mitigation strategies 
The results presented in this thesis contribute to the ongoing efforts of academia, the 

risk management community, and the insurance industry to better understand and 

mitigate TC risk. In this section, we outline potential applications of the results in this 

thesis to advance our collective efforts to better protect people and assets from these 

violent storms. 

First, the STORM datasets and model follow the FAIR Guiding Principles 

(Wilkinson et al., 2016), allowing researchers to directly apply the data in their own 

work. STORM is currently being used in various TC risk assessment projects and 

catastrophe models, both within academia and at large (re)insurance and consultancy 

companies. Additionally, model comparison studies such as Meiler et al. (2021) 

provide a valuable tool to better understand the strengths and weaknesses of the 

different synthetic TC datasets.  

Second, STORM has been designed to reproduce basin-scale TC characteristics and 

statistics, and has been shown to perform well on mimicking these basin-scale 

properties. The TC statistics in the future climate STORM datasets contain valuable 

information on the sign and magnitude of change in TC risk for TC-prone regions. 

This way, it becomes possible to identify which regions in the world are most 

vulnerable to changes in TC risk under the climate change scenarios assessed in this 

thesis. These regions can then be assessed in more detail by for example running 

local-scale high-resolution models. This assessment, in turn, can help improve or 

design risk mitigation strategies in these regions, such as improving forecasting 

capabilities and availability of insurance or designing building regulations for houses 

or storm shelters.  
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Lastly, the Tropical Cyclone Severity Scale (TCSS) strengthens the argument for a 

new and improved hurricane classification system. Over the past few decades, 

numerous studies have revived the discussion regarding the fallibility of the SSHWS 

(e.g. Holland et al., 2019; Irish and Resio, 2010; Kantha, 2006). Insights gained from 

categorizing either one, two, or all three TC hazards show that the currently used 

SSHWS has disadvantages when wind is not the main threat emerging from an 

imminent TC. As such, risk mitigation strategies in the form of preparing and 

evacuating societies in the path of a TC can benefit greatly from the use of a new 

hurricane classification system.
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Appendix A  

Supplementary Figures A 

 

Figure A.1 Spatial map of U10 for (a-d) Irma, (e-h) Patricia, (i-l) Haiyan and (m-p) Sandy. From left to 

right: T799, 0.50°, 0.75° and 1.0° resolution 
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Figure A.2 Spatial map of U10 for (a-d) Giovanna, (e-h) Yasi, (i-l) Nargis and (m-p) Gonu. From left to 

right: T799, 0.50°, 0.75° and 1.0° resolution 
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Figure A.3 Spatial map of MSLP for (a-d) Irma, (e-h) Patricia, (i-l) Haiyan and (m-p) Sandy. From left to 

right: T799, 0.50°, 0.75° and 1.0° resolution 
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Figure A.4 Spatial map of MSLP for (a-d) Giovanna, (e-h) Yasi, (i-l) Nargis and (m-p) Gonu. From left 

to right: T799, 0.50°, 0.75° and 1.0° resolution 
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Figure A.5 Scatterplot of maximum surge height at T799-resolution forcing vs. other resolutions for (a) 
Hurricane Irma (Florida), (b) Cyclone Giovanna (Madagascar), (c) Cyclone Yasi (Australia) and (d) 

Cyclone Nargis (Myanmar) 
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Figure A.6 Spatial map of maximum storm surge heights for (a-d) Irma, (e-h) Patricia, (i-l) Haiyan and 

(m-p) Sandy. From left to right: T799, 0.50°, 0.75° and 1.0° resolution. Black dots represent GTSM coastal 

grid points used in the statistical analysis 
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Figure A.7 Spatial map of maximum storm surge heights for (a-d) Irma, (e-h) Patricia, (i-l) Haiyan and 

(m-p) Sandy. From left to right: T799, 0.50°, 0.75° and 1.0° resolution. Black dots represent GTSM coastal 

points used in the statistical analysis 



Appendix A 

 

149 

 

Figure A.8 Spatial map of maximum storm surge heights and difference in maximum storm surge heights 

for (a-d) Irma, (e-h) Patricia, (i-l) Haiyan and (m-p) Sandy. From left to right: maximum storm surge height 
in T799 resolution forcing, difference between T799 resolution forcing and 0.50°, 0.75° and 1.0° resolution 

forcing 



 

 

150 

 

Figure A.9 Spatial map of maximum storm surge heights and difference in maximum storm surge heights 

for (a-d) Giovanna, (e-h) Yasi, (i-l) Nargis and (m-p) Gonu. From left to right: maximum storm surge 

height in T799 resolution forcing, difference between T799 resolution forcing and 0.50°, 0.75° and 1.0° 

resolution forcing
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Supplementary Tables A 
Table A.1 Maximum wind speeds (m/s) around landfall 

 Irma Sandy Nargis Yasi Haiyan Giovanna Gonu Patricia 

T799 40.0 31.0 32.6 29.6 34.1 40.1 30.6 25.2 

0.25° 40.3 35.3 30.0 31.9 34.5 39.0 29.2 24.9 

0.30° 39.2 35.1 30.6 32.1 33.7 38.1 28.9 25.1 

0.40° 38.2 33.4 29.2 31.9 31.5 34.0 28.3 24.1 

0.50° 36.1 32.1 28.2 30.1 30.3 34.0 27.5 23.4 

0.75° 31.6 29.4 25.8 29.8 26.3 27.7 25.2 20.1 

1.0° 28.9 30.4 22.6 25.8 24.4 25.6 23.8 18.1 

 

Table A.2 Minimum MSLP (hPa) around landfall 

 Irma Sandy Nargis Yasi Haiyan Giovanna Gonu Patricia 

T799 942.3 956.3 973.0 972.4 965.9 937.8 955.1 984.2 

0.25° 942.5 945.4 975.3 975.0 965.5 937.5 958.5 984.5 

0.30° 942.8 945.6 976.1 975.0 966.1 939.4 957.2 984.8 

0.40° 943.3 946.2 977.6 975.0 967.5 945.6 959.6 987.2 

0.50° 946.7 946.0 977.2 975.3 968.0 955.6 960.6 987.9 

0.75° 949.4 948.4 983.2 977.3 976.0 961.7 967.3 993.7 

1.0° 956.1 948.0 988.9 973.4 973.7 965.5 971.0 995.5 
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Table A.3 Average maximum storm surge heights at the GTSM output stations for the different TCs. Values between brackets indicate the maximum storm surge height 

(in m) 

 

Table A.4 Relative difference in maximum storm surge height (%) compared to the T799 resolution forcing 

 Irma Sandy Nargis Yasi Haiyan Giovanna Gonu Patricia 

0.25° 0.83 1.06 5.31 1.22 -2.51 -0.92 2.14 0.73 

0.30° 2.17 3.42 9.35 2.29 8.26 -0.94 4.88 0.23 

0.40° 8.66 5.89 15.53 4.61 9.81 7.07 8.51 0.64 

0.50° 14.5 6.13 19.78 7.86 24.34 14.81 14.69 1.33 

0.75° 28.23 9.65 37.99 12.89 25.16 35.41 23.70 -1.07 

1.0° 39.62 14.66 45.80 19.90 23.79 39.05 19.99 9.93 

 

Table A.5 Relative difference in average maximum storm surge height at the GTSM output stations (%) compared to the T799 resolution forcing 

 Irma Sandy Nargis Yasi Haiyan Giovanna Gonu Patricia 

0.25° 0.92 0.43 5.29 0.84 1.50 0.51 1.44 0.36 

0.30° 3.46 1.83 7.80 1.59 3.15 2.43 2.38 0.37 

0.40° 7.42 3.84 13.66 4.20 8.04 5.19 4.23 1.02 

0.50° 13.27 5.58 19.65 6.26 12.22 11.31 6.23 1.09 

0.75° 22.34 9.96 37.39 12.10 20.42 21.84 12.21 -0.74 

1.0° 33.04 15.42 47.58 18.74 28.01 28.75 16.28 8.79 

 Irma Sandy Nargis Yasi Haiyan Giovanna Gonu Patricia 

#stations 106 155 82 58 86 30 244 10 

T799 1.72 (2.59) 1.62 (2.22) 1.54 (2.10) 1.17 (1.74) 0.52 (0.81) 0.38 (0.54) 0.31 (0.51) 0.17 (0.18) 

0.25° 1.70 (2.57) 1.61 (2.20) 1.46 (1.99) 1.16 (1.72) 0.52 (0.83) 0.38 (0.54) 0.31 (0.50) 0.17 (0.18) 

0.30° 1.66 (2.54) 1.59 (2.15) 1.42 (1.90) 1.16 (1.70) 0.51 (0.74) 0.38 (0.54) 0.31 (0.49) 0.17 (0.18) 

0.40° 1.59 (2.37) 1.55 (2.09) 1.33 (1.77) 1.12 (1.66) 0.48 (0.73) 0.36 (0.50) 0.30 (0.47) 0.17 (0.18) 

0.50° 1.49 (2.22) 1.53 (2.09) 1.24 (1.69) 1.10 (1.60) 0.46 (0.61) 0.34 (0.46) 0.29 (0.44) 0.17 (0.18) 

0.75° 1.33 (1.86) 1.46 (2.01) 0.96 (1.30) 1.03 (1.51) 0.42 (0.60) 0.30 (0.35) 0.28 (0.39) 0.17 (0.19) 

1.0° 1.15 (1.57) 1.37 (1.90) 0.81 (1.14) 0.95 (1.39) 0.38 (0.61) 0.27 (0.33) 0.26 (0.41) 0.16 (0.17) 
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Table A.6 Absolute difference in maximum storm surge height (m) compared to the T799 resolution forcing 

 Irma Sandy Nargis Yasi Haiyan Giovanna Gonu Patricia 

0.25° 0.02 0.02 0.1 0.02 -0.02 0.00 0.01 0.00 

0.30° 0.06 0.08 0.20 0.04 0.07 -0.01 0.02 0.00 

0.40° 0.22 0.13 0.33 0.08 0.08 0.04 0.04 0.00 

0.50° 0.38 0.14 0.42 0.14 0.20 0.08 0.08 0.00 

0.75° 0.73 0.21 0.80 0.22 0.20 0.19 0.12 0.00 

1.0° 1.03 0.33 0.96 0.35 0.19 0.21 0.10 0.02 

 

Table A.7 Absolute difference in average maximum storm surge height (m) at the GTSM output stations compared to the T799 resolution forcing 

 Irma Sandy Nargis Yasi Haiyan Giovanna Gonu Patricia 

0.25° 0.02 0.01 0.08 0.01 0.01 0.00 0.00 0.00 

0.30° 0.06 0.03 0.12 0.02 0.02 0.01 0.01 0.00 

0.40° 0.13 0.06 0.21 0.05 0.04 0.02 0.01 0.00 

0.50° 0.23 0.09 0.30 0.07 0.06 0.04 0.02 0.00 

0.75° 0.38 0.16 0.58 0.14 0.11 0.08 0.04 0.00 

1.0° 0.57 0.25 0.73 0.22 0.15 0.11 0.05 0.02 

 

Table A.8 RMSE (m) compared to the T799 resolution forcing 

 Irma Sandy Nargis Yasi Haiyan Giovanna Gonu Patricia 

0.25° 0.03 0.02 0.09 0.01 0.01 0.00 0.00 0.00 

0.30° 0.07 0.04 0.13 0.02 0.02 0.01 0.01 0.00 

0.40° 0.15 0.07 0.23 0.06 0.06 0.02 0.01 0.00 

0.50° 0.27 0.10 0.32 0.10 0.09 0.06 0.02 0.00 

0.75° 0.42 0.19 0.60 0.18 0.14 0.11 0.05 0.01 

1.0° 0.63 0.29 0.76 0.28 0.18 0.13 0.06 0.02 
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Appendix B  

Supplementary Notes B 
Here, we provide additional information on the validity of STORM and the 

STORM+climate change (STORM-C) datasets. We first present the STORM-C 

statistics for the four GCMs and in all basins. Then, we focus on the validation and 

justification of our method. We show the STORM model outcomes when directly 

using the tropical cyclone (TC) data from the global climate models (GCMs). Next, 

we demonstrate the way the delta approach propagates through STORM, by 

performing a perfect model run. Subsequently, we test the sensitivity of the model 

outcomes to various changes in variables by performing a sensitivity analysis. 

STORM climate change datasets 
Table B.1 shows the statistics for the TC characteristics (mean and standard 

deviation) for the STORM-B dataset and each of the four STORM-C datasets. A 

discussion of the results is given in Section 5.3.1. 

 

Figure B.1 Latitudinal distribution per basin of the location of maximum intensity in the STORM-B and 

STORM-C datasets 



Appendix B 

 

155 

Table B.1 Basin-wide mean and standard deviation (between brackets) of tropical cyclone characteristics of 1,000 36-year samples from the STORM-B and STORM-
C datasets. STORM baseline resembles the baseline-climate STORM dataset, generated using IBTrACS and corresponding to the 1980-2017 climate conditions. 

Similarly, the four “Δ=” columns represent the STORM-C dataset for each of the four GCMS. The last column shows the STORM statistics aggregated over all GCM 

datasets to show the general direction and magnitude of change. For STORM-C, the second number between brackets indicates how many (out of four) GCMs agree on 

the sign of change 

 STORM baseline Δ=CMCC Δ=CNRM Δ=EC-Earth Δ=HadGEM 
Aggregated over 

GCMs 

Genesis freq. 

(avg/yr) 

EP 14.5 (0.6) 15.6 (0.6) 14.5 (0.7) 14.9 (0.7) 15.2 (0.6) 15.1 (0.8; 3) 

NA 10.9 (0.6) 12.6 (0.6) 9.3 (0.5) 7.5 (0.4) 9.9 (0.6) 9.8 (1.9; 3) 

NI 2.0 (0.2) 1.7 (0.2) 1.6 (0.2) 2.6 (0.3) 1.8 (0.2) 1.9 (0.4; 3) 

SI 12.3 (0.6) 10.5 (0.6) 11.6 (0.6) 11.2 (0.6) 11.4 (0.6) 11.2 (0.7; 4) 

SP 9.4 (0.5) 9.5 (0.5) 8.2 (0.5) 9.5 (0.6) 10.3 (0.6) 9.4 (0.9; 2) 

WP 23.1 (0.8) 21.9 (0.9) 20.2 (0.8) 23.1 (0.8) 23.5 (0.8) 22.2 (1.5; 2) 

Global 72.4 (1.4) 72.0 (1.5) 65.5 (1.4) 68.8 (1.5) 72.2 (1.5) 69.6 (3.1; 4) 

Average 

pressure along 

track (hPa) 

EP 985.6 (0.4) 979.2 (0.5) 978.1 (0.6) 978.1 (0.6) 977.2 (0.6) 978.2 (0.9; 4) 

NA 985.6 (0.6) 982.7 (0.6) 981.6 (0.8) 980.5 (0.9) 981.1 (0.8) 981.5 (1.1; 4) 

NI 984.3 (1.8) 982.8 (1.8) 981.6 (1.7) 979.9 (1.5) 982.0 (1.9) 981.6 2.0; 4) 

SI 979.5 (0.5) 976.7 (0.6) 975.1 (0.6) 974.9 (0.6) 974.9 (0.6) 975.4 (0.9; 4) 

SP 981.9 (0.5) 977.4 (0.7) 977.8 (0.8) 976.2 (0.7) 976.5 (0.7) 977.0 (1.0; 4) 

WP 974.6 (0.6) 968.4 (0.7) 965.4 (0.8) 967.0 (0.6) 964.9 (0.7) 966.4 (1.5; 4) 

Global 981.9 (4.0) 977.8 (4.9) 976.6 (5.6) 976.1 (4.6) 976.1 (5.7) 976.7 (5.3; 4) 

Minimum 

pressure (hPa) 

EP 971.5 (0.8) 960.2 (0.9) 958.4 (1.1) 958.1 (1.1) 956.2 (1.0) 958.2 (1.8; 4) 

NA 972.7 (1.2) 968.4 (1.1) 966.1 (1.4) 964.5 (1.6) 965.1 (1.5) 966.1 (2.0; 4) 

NI 971.6 (3.6) 969.0 (3.3) 967.4 (3.3) 964.5 (2.7) 968.0 (3.5) 967.2 (3.6; 4) 

SI 966.0 (0.9) 959.8 (1.1) 957.5 (1.1) 957.6 (1.1) 956.8 (1.1) 957.9 (1.6; 4) 

SP 969.4 (1.0) 961.1 (1.2) 961.5 (1.5) 958.8 (1.4) 959.3 (1.3) 960.2 (1.8; 4) 

WP 956.3 (1.0) 947.7 (1.1) 943.1 (1.2) 945.5 (1.0) 942.1 (1.2) 944.6 (2.5; 4) 

Global 967.9 (5.9) 961.0 (7.2) 959.0 (8.2) 958.2 (6.6) 958.2 (8.7) 959.1 (7.8; 4) 
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Maximum 

wind speed  

(m/s) 

EP 37.0 (0.5) 43.6 (0.5) 44.6 (0.6) 44.8 (0.6) 45.8 (0.6) 44.7 (1.0; 4) 

NA 34.7 (0.7) 37.2 (0.7) 38.8 (0.8) 39.6 (0.9) 39.5 (0.9) 38.8 (1.3; 4) 

NI 33.4 (1.8) 35.8 (1.8) 36.2 (1.7) 37.9 (1.4) 35.9 (1.8) 36.5 (1.9; 4) 

SI 33.9 (0.5) 37.8 (0.6) 38.8 (0.6) 38.6 (0.6) 39.2 (0.6) 38.6 (0.8; 4) 

SP 33.4 (0.5) 38.2 (0.6) 38.1 (0.7) 39.4 (0.7) 39.3 (0.6) 38.8 (0.9; 4) 

WP 37.6 (0.4) 41.2 (0.5) 43.1 (0.5) 42.4 (0.4) 43.6 (0.5) 42.6 (1.0; 4) 

Global 35.0 (1.9) 39.0 (2.8) 39.9 (3.1) 40.4 (2.6) 40.4 (3.4) 39.9 (3.0; 4) 

Landfall 

counts (avg/yr) 

EP 0.3 (0.1) 0.4 (0.1) 0.6 (0.1) 0.5 (0.1) 0.6 (0.1) 0.5 (0.1; 4) 

NA 1.6 (0.1) 1.7 (0.1) 1.9 (0.1) 2.0 (0.2) 1.9 (0.1) 1.9 (0.2; 4) 

NI 2.8 (0.4) 3.0 (0.3) 3.1 (0.4) 3.2 (0.3) 3.0 (0.4) 3.1 (0.4; 4) 

SI 0.8 (0.1) 0.9 (0.1) 0.9 (0.1) 0.9 (0.1) 0.8 (0.1) 1.1 (0.2; 3) 

SP 0.8 (0.1) 0.9 (0.1) 0.9 (0.1) 0.9 (0.1) 0.8 (0.1) 0.9 (0.1; 3) 

WP 2.2 (0.1) 2.7 (0.1) 2.8 (0.1) 2.6 (0.1) 2.7 (0.1) 2.7 (0.1; 3) 

Global 8.6 (0.4) 9.6 (0.4) 10.3 (0.4) 10.5 (0.4) 10.0 (0.4) 10.1 (0.5; 4) 

Landfall 

pressure (hPa) 

EP 983.1 (2.7) 980.6 (2.3) 979.9 (2.4) 981.0 (2.4) 980.6 (2.4) 980.5 (2.4; 4) 

NA 985.8 (1.0) 984.4 (1.0) 984.6 (1.3) 983.2 (1.2) 983.9 (1.0) 9840 (1.3; 4) 

NI 981.6 (2.4) 983.4 (2.1) 982.6 (1.9) 980.5 (1.7) 981.8 (2.0) 982.1 (2.2; 3) 

SI 980.1 (1.2) 978.7 (1.4) 978.3 (1.2) 978.0 (1.1) 977.3 (1.3) 978.1 (1.3; 4) 

SP 981.4 (1.5) 977.4 (1.7) 977.9 (1.9) 975.7 (1.8) 975.8 (2.0) 976.7 (2.1; 4) 

WP 980.9 (0.7) 977.7 (0.7) 975.4 (0.8) 976.9 (0.7) 975.5 (0.7) 976.4 (1.2; 4) 

Global 982.1 (2.5) 980.3 (3.1) 979.7 (3.4) 979.2 (3.0) 978.9 (3.2) 979.5 (3.2; 4) 
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STORM and global climate model simulations 
One of the novel aspects in this study is the methodology of projecting a climate 

change signal (delta) onto the historical TC data from IBTrACS. The main reason of 

using IBTrACS is because TCs, and more particularly TC intensity, is poorly 

captured by GCMs (Roberts et al., 2020a). To demonstrate this, we first compare the 

present-climate (1979-2014) statistics of four GCM/basin combinations with 

statistics from historical data from IBTrACS (1980-2015) (“present climate” column 

in Table B.2). The latter time period was chosen to have an equal temporal length to, 

and maximum overlap with, the present-climate GCM data. Secondly, we use the 

present- and future-climate TC statistics from the same GCM-basin combinations and 

amplify this to 1,000 years of synthetic data using STORM (“STORM+GCM” 

column in Table B.2), to assess their statistics. 

Table B.2  Comparison of tropical cyclone characteristics in the global climate models (GCMs). The 
“baseline climate” column shows the comparison of these characteristics between 36 years of baseline-

climate GCM data (1979-2014) and historical data from IBTrACS (1980-2015). The “STORM+GCM” 

column shows the statistics extracted from 1,000 years of synthetic data, using the baseline (1979-2014) 

and future (2015-2050) GCM data as input for STORM. 

 Basin GCM 
Present climate STORM + GCM 

IBTrACS GCM Present Future 

Genesis 

frequency 

(avg/yr) 

EP CMCC 14.4 (4.1) 30.3 (4.8) 31.7 (5.7) 33.5 (5.3) 

SI CNRM 12.6 (3.9) 18.1 (3.2) 19.1 (4.1) 18.0 (4.2) 

NA EC-Earth 10.6 (4.0) 5.9 (2.5) 7.2 (2.6) 5.2 (2.0) 

WP HadGEM 22.2 (4.0) 35.8 (5.5) 37.4 (6.2) 38.4 (6.1) 

Average 

pressure 

(hPa) 

EP CMCC 988.6 (11.8) 1003.5 (6.4) 994.9 (5.2) 994.8 (4.6) 

SI CNRM 980.2 (12.1) 1003.3 (7.0) 985.4 (7.0) 986.0 (6.5) 

NA EC-Earth 991.6 (12.7) 1007.7 (4.1) 994.3 (3.2) 994.2 (3.8) 

WP HadGEM 978.7 (14.8) 998.8 (6.2) 984.0 (11.4) 
983.4 

(14.4) 

Minimum 

pressure 

(hPa) 

EP CMCC 973.9 (25.0) 989.6 (17.1) 989.2 (11.6) 989.3 (8.8) 

SI CNRM 961.9 (25.4) 990.4 (16.4) 978.8 (12.9) 
979.6 

(12.4) 

NA EC-Earth 977.3 (25.1) 998.3 (10.6) 992.2 (5.5) 992.1 (6.9) 

WP HadGEM 961.5 (28.2) 985.9 (13.7) 975.2 (20.3) 
973.4 
(25.9) 

Maximum 

wind 

speed 

(m/s) 

EP CMCC 35.9 (13.5) 24.9 (6.9) 26.2 (7.2) 26.5 (6.4) 

SI CNRM 36.0 (12.7) 23.6 (7.7) 26.4 (7.6) 25.8 (7.1) 

NA EC-Earth 34.6 (13.1) 18.3 (4.5) 20.7 (3.8) 20.8 (4.9) 

WP HadGEM 35.7 (11.9) 23.8 (5.5) 28.5 (9.4) 29.3 (11.1) 
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Landfall 

counts 

(avg/yr) 

EP CMCC 1.9 (1.7) 9.2 (4.5) 0.2 (0.8) 0.3 (0.9) 

SI CNRM 4.4 (2.5) 0.0 (0.0) 1.3 (2.1) 1.3 (2.1) 

NA EC-Earth 7.8 (5.1) 11.1 (5.9) 0.9 (1.6) 0.9 (1.6) 

WP HadGEM 18.7 (4.5) 27.5 (22.1) 2.0 (2.7) 1.8 (2.6) 

Landfall 

pressure 

(hPa) 

EP CMCC 982.6 (14.6) 
1003.5 
(12.9) 

989.7 (16.9) 
993.7 
(10.4) 

SI CNRM 976.1 (19.9) - 985.3 (7.1) 985.8 (6.9) 

NA EC-Earth 984.0 (19.4) 1008.7 (4.5) 994.0 (4.8) 994.0 (3.9) 

WP HadGEM 978.9 (15.9) 996.5 (11.0) 983.4 (11.6) 
983.2 

(13.6) 

 

 

Figure B.2 Distribution of tropical cyclone categories (on the Saffir-Simpson scale) in each of the four 

model/basin combinations. Shown are the present-climate dataset comparisons (historical data from 

IBTrACS versus climate data from the global climate models –GCMs-), and 1,000 years of synthetic data 

using the present- and future-climate GCM runs as input for STORM. 

For the present-climate comparison, we observe that there is little consensus in the 

specific basins between the GCMs and the historical data: in all cases, TCs are 

substantially weaker in the GCMs as compared to IBTrACS. Furthermore, there is 

also little agreement on the genesis frequency: in three out of four GCM/basin 
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combinations, there is an overestimation of TC occurrences compared to historical 

data. The largest difference can be seen for the CMCC model, where there are on 

average twice as much TC formations in the Eastern Pacific than in observations. 

Contrarily, there are almost twice as little formations in the North Atlantic in the EC-

Earth model. In the synthetic datasets (STORM+GCM column) we observe that the 

weak TC intensities are preserved by STORM, as for instance the average maximum 

wind speed is well below hurricane strength (<29 m/s), whereas the average TC in 

IBTrACS reaches wind speeds of around 35 m/s (Category 1 on the Saffir-Simpson 

scale). By design, STORM statistically resamples the statistics found in original input 

datasets, and as such the poor representation of TC intensity in the GCMs is 

propagated through STORM. Hence, using these GCMs as input for STORM will 

result in a (severe) underestimation of TC intensity, in turn affecting TC wind speed 

probabilities and risk assessments, especially for stronger storms. 

Perfect model run 
To overcome the limitations imposed by the GCMs, we need to diverge from directly 

using the GCM data, and instead create a STORM input dataset based on the observed 

TC statistics from IBTRACS. This way, we can ensure that we have a realistic 

number of TC formations, and that the statistics of stronger TCs are also included in 

STORM. Therefore, in this study, we adjust IBTrACS such to include the delta 

derived from the four GCMs, this way creating a “future climate” version of the 

historical statistics. To test if introducing such delta does not instigate anomalies, we 

perform a perfect model run using a combination of the four GCMs and four basins 

as input. In a perfect model run, we assume that the model itself is “perfect”, that is, 

we do not focus on intrinsic model errors, but rather assess the influence of the input 

dataset on the outcomes. 

Table B.3 Average of 36.000 years, sampled from 1,000 years of synthetic data from each of the models 
in the indicated basin. In run 1, we extract the present-climate variables and add the climate signal (Δ) onto 

them to produce a “future-climate version” of this present-climate dataset. In run 2, we directly use the 

future-climate variables. In both runs, we use the regression formula coefficients from the present-climate 

datasets. 

 Basin Model 
Run 1: 

Present climate + Δ 

Run 2: 

Future climate 

Genesis 

frequency 

(avg/yr) 

EP CMCC 33.3 (5.6) 33.7 (5.6) 

SI CNRM 18.0 (4.3) 18.0 (4.2) 

NA EC-Earth 5.1 (1.9) 5.2 (2.1) 

WP HadGEM 38.3 (6.2) 38.1 (6.1) 

Average 

pressure 

(hPa) 

EP CMCC 994.2 (5.6) 994.2 (5.6) 

SI CNRM 985.5 (6.7) 985.4 (6.8) 

NA EC-Earth 994.0 (3.6) 993.9 (4.0) 

WP HadGEM 985.4 (9.9) 985.3 (10.0) 
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Minimum 

pressure 

(hPa) 

EP CMCC 987.8 (12.2) 987.7 (12.5) 

SI CNRM 978.7 (12.5) 978.7 (12.6) 

NA EC-Earth 991.6 (6.1) 991.3 (7.1) 

WP HadGEM 977.2 (18.0) 977.2 (18.2) 

Maximum 

wind 

speed 

(m/s) 

EP CMCC 27.5 (8.0) 27.5 (8.1) 

SI CNRM 26.6 (7.5) 26.6 (7.5) 

NA EC-Earth 21.3 (4.6) 21.4 (5.2) 

WP HadGEM 27.9 (8.7) 27.8 (8.7) 

Landfall 

counts 

(avg/yr) 

EP CMCC 0.3 (1.1) 0.3 (1.1) 

SI CNRM 1.5 (2.2) 1.5 (2.2) 

NA EC-Earth 1.1 (1.8) 1.1 (1.8) 

WP HadGEM 1.9 (2.7) 2.0 (2.7) 

Landfall 

pressure 

(hPa) 

EP CMCC 991.3 (15.0) 990.7 (15.9) 

SI CNRM 985.4 (7.0) 985.4 (6.8) 

NA EC-Earth 993.4 (4.0) 993.4 (4.1) 

WP HadGEM 983.6 (11.2) 983.6 (11.4) 

 

In the data preprocessing step in STORM, we extract the various variables and 

variable distributions, as well as determine the coefficients for the regression 

formulas; see Figure 5.1 for an overview of all variables, and Bloemendaal et al. 

(2020c) for a full description of all variables and coefficients. Additionally, we also 

extract the delta from the four GCMs following the approach set out in Section 5.2. 

Next, to test whether the delta approach is stable and does not introduce anomalies, 

we perform two runs in which we use the coefficients from the present-climate GCM 

dataset, but vary the variables as follows: i) in the first run, we use the TC statistics 

from the present-climate GCM simulation, but add the delta to create a future-climate 

version of these present-climate statistics (we call this “present+Δ”). This approach 

mimics the methodology we apply to the observed TC statistics from the IBTrACS 

dataset; and ii) in the second run, we directly use the TC statistics from the future-

climate GCM simulation. If the present +Δ run performs well, the outcomes of the 

first run should compare well to the second one. These two run setups serve as input 

for STORM, and are used to generate 1,000 of synthetic data for four GCM/basin 

combinations. Subsequently, we randomly sample 1,000 times 36 years of data (to 

comply with the temporal length of the original GCM simulations; this totals to 

36,000 years of data), and extract the yearly number of genesis and landfall 

occurrences, as well as the of various TC intensity measures. We then calculate the 

mean and standard deviation of each of the six characteristics, see Table B.3. We 
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observe that the means and standard deviations of the two runs are almost identical 

to one another, which implies that adding the delta does not impose anomalies and 

thus that the delta approach is stable, mimicking the results that we would obtain if 

we were to use the TC statistics directly from a future-climate GCM dataset as input 

(run 2). 

Figure B.3 shows the distribution of TC categories for each of the four GCM/basin 

combinations for the present+Δ and future-climate STORM simulations in the perfect 

model setup. As was the case with the statistics of the various TC characteristics (see 

Table B.1) we also see that the average annual number of TCs per category is 

approximately equal in each of the category bins, meaning that the present+Δ perfect 

model run again mimics the results if we had used the future-climate GCM TC 

statistics instead, and that no anomalies are brought into the synthetic STORM 

datasets. 

 

Figure B.3 Distribution of tropical cyclone categories (average per year) on the Saffir-Simpson scale in 
1,000 random realizations of 36 years of data drawn from 1,000 years of synthetic data from STORM for 

the present (orange) and future climate (turquoise). Results are shown for (a) CMCC-CM2-VHR4 in the 

Eastern Pacific, (b) CNRM-CM6-1-HR in the South Indian, (c) EC-Earth3P-HR in the North Atlantic, and 

(d) HadGEM3-GC31-HM in the Western Pacific. 

Sensitivity analysis 
To analyze the influence of applying the delta approach on the different variables (see 

Figure 5.1 in Section 5.2) on the overall outcome of the STORM runs, we perform a 
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sensitivity analysis using the TC statistics from HadGEM in the Western Pacific. The 

reason we use this GCM in this basin is because it consists of the most TC data of all 

GCM/basin combinations, and the Western Pacific generally faces some of the 

strongest TCs of all basins. 

The statistics (mean and standard deviation) of six tropical cyclone characteristics for 

each of the sensitivity test runs are listed in Table B.4. Figure B.4 shows the 

distribution of TC categories in the STORM-B dataset, the STORM-C dataset, and 

the ten synthetic runs in which we kept each of the ten input variables constant (that 

is, we used the baseline-climate value and did not shift it using the delta approach set 

out in Section 5.2) while shifting the other variables. As such, we can analyze the 

individual influence of each of the variables on the STORM-C dataset. From Figure 

B.4, we see that most of the variables on itself do not influence the mean value of 

each of the characteristics, but the only variable that does is the Maximum Potential 

Intensity (MPI, in hPa). This variable is a measure of the theoretical maximum TC 

intensity possible at a location, dependent on environmental factors such as sea-

surface temperature (SST) and the environmental pressure. It directly influences TC 

intensification and weakening, as TCs will weaken as soon as they approach the MPI, 

and when they reach higher latitudes, where SSTs are lower (Bister and Emanuel, 

2002). From Table B.4 we can observe the influence of the MPI on the maximum 

intensity of a TC; the baseline climate MPI leads to approximately 2.4 m/s lower 

maximum wind speeds compared to its future-climate counterpart in the STORM-C 

dataset. This has a direct influence on the distribution of TC categories (Figure B.4), 

where we observe a substantial drop in Category-5 occurrences, similar to the 

STORM-B dataset. This means that the MPI predominantly affects the occurrence of 

the strongest TCs. 

 

Figure B.4 Relative frequency of tropical cyclone categories for the STORM baseline climate run 

(STORM-B), the STORM-climate change run (STORM-C), and the ten synthetic runs in which the named 

variable was kept constant (i.e. the baseline climate value) and not shifted according to the delta approach. 



Appendix B 

 

163 

Table B.4 Statistics of six key tropical cyclone characteristics for the baseline STORM run (STORM-B), the STORM-climate change run (STORM-C; IBTrACS+Δ), 
and the ten synthetic runs in which the named variable was kept constant (i.e. the baseline-climate value) and not shifted according to the delta approach. Average values 

of 1,000 times 36 years of data (36,000 years) are given, standard deviations are listed between brackets. 

 
Genesis 

frequency 

(avg/yr) 

Average pressure 

(hPa) 

Minimum pressure 

(hPa) 

Maximum wind 

speed (m/s) 

Landfall counts 

(avg/yr) 

Landfall pressure 

(hPa) 

STORM-B 23.9 (4.9) 974.6 (16.1) 956.4 (28.5) 37.5 (12.1) 2.2 (2.5) 980.9 (13.6) 

STORM-C 24.5 (5.0) 965.0 (19.8) 942.4 (31.9) 43.5 (12.7) 2.7 (2.8) 975.5 (15.0) 

∆𝒍𝒂𝒕𝟎, ∆𝒍𝒐𝒏𝟎 24.4 (5.0) 965.2 (19.8) 942.7 (32.0) 43.4 (12.8) 2.7 (2.8) 975.6 (15.2) 

∆𝑷𝟎 24.3 (4.9) 965.0 (19.8) 942.3 (32.0) 43.6 (12.8) 2.7 (2.8) 975.3 (15.2) 

𝜺𝑷 24.2 (4.9) 964.8 (19.9) 942.1 (32.0) 43.6 (12.8) 2.7 (2.7) 975.4 (15.3) 

𝜺𝒍𝒂𝒕, 𝜺𝒍𝒐𝒏 24.0 (4.9) 964.7 (20.0) 942.0 (31.9) 43.7 (12.7) 2.7 (2.8) 975.5 (15.3) 

Genesis location 24.0 (5.0) 966.2 (19.7) 944.4 (31.7) 42.7 (12.8) 2.8 (2.7) 976.3 (14.8) 

Genesis month 24.5 (4.7) 965.1 (19.8) 942.3 (32.0) 43.6 (12.7) 2.7 (2.7) 975.5 (15.1) 

Maximum Potential 

Intensity 
24.6 (4.9) 969.4 (16.5) 948.7 (27.7) 41.1 (11.4) 2.4 (2.6) 979.1 (13.3) 

Environmental 

pressure 
24.3 (4.8) 964.8 (19.8) 942.2 (32.0) 43.5 (12.8) 2.7 (2.7) 975.4 (15.3) 

∆𝑷.𝟎𝟏, ∆𝑷.𝟗𝟗 24.3 (5.1) 964.9 (19.8) 942.2 (32.0) 43.6 (12.8) 2.8 (2.8) 975.5 (15.0) 

Poisson parameter 23.7 (4.9) 964.9 (19.8) 942.1 (32.0) 43.6 (12.8) 2.7 (2.8) 975.1 (15.4) 
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Return period analysis – wind speeds for fixed return periods 
Figures B.5 and B.6 show the maximum wind speeds for the fixed return periods 

discussed in Chapter 5 for the individual GCMs. Figure B.7 shows the number of 

GCMs agreeing on the sign of change for the different return periods – this number 

provides an indication of the confidence in the sign of change. Figure B.8 shows the 

largest and smallest differences in maximum wind speed; Figure B.9 portrays to 

which GCM these largest and smallest changes are attributed to. 

 

Figure B.5 Spatial distribution of maximum 10-minute 10-meter wind speeds at the 100-yr return period 

in each of the four global climate models. The wind speeds are the average value of 1,000 random 

realizations of 10,000 years of data (sampled with replacement)  

 

Figure B.6 Same as Figure B.5, but now for the 1,000-yr return period. 
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Figure B.7 Number of global climate models agreeing on the sign of change compared to the STORM 

baseline climate datasets. 

 

Figure B.8 Maximum (top row) and minimum (bottom row) value of the difference in maximum wind 

speeds compared to the STORM baseline climate dataset. 
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Figure B.9 Global climate model having the maximum (top) and minimum (bottom) value of the 

difference in maximum wind speed compared to the STORM baseline climate dataset. 

Return period analysis – return periods for fixed wind speeds 
Figures B.10 and B.11 show the return periods for the fixed TC categories discussed 

in Chapter 5 for the individual GCMs. Figure B.12 shows the number of GCMs 

agreeing on the sign of change for the Category-1 and Category-3 return periods – 

this number provides an indication of the confidence in the sign of change. Figure 

B.13 shows the largest and smallest factor change in return periods; Figure B.14 

portrays to which GCM these largest and smallest changes are attributed to. 

 

Figure B.10 Spatial distribution of return periods (yr) at 10 km resolution, derived from applying a 2D-

wind parameterization to the synthetic tropical cyclone tracks in the STORM+GCM datasets. The return 

periods are the average value of 1,000 random realizations of 10,000 years of data (sampled with 

replacement) and determining RPs using Weibull’s plotting formula to each realization at Category 1 

(maximum 10-minute 10-meter wind speeds ≥ 29 m/s) tropical cyclone strength. Sub-panels show 

outcomes for each of the four global climate models. 
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Figure B.11 Same as Figure B.10, but now for Category-3 (maximum 10-minute 10-meter wind speeds ≥ 

43.4 m/s) tropical cyclone strength. 

 

Figure B.12 Number of models agreeing on the sign of change compared to the STORM baseline climate 

dataset 
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Figure B.13 Maximum (top row) and minimum (bottom row) factor difference in return periods compared 

to the STORM baseline climate dataset. A negative factor indicates an increase in return period, equivalent 

to a decrease in probability. A positive factor indicates a decrease in return period, equivalent to an increase 

in probability. 

 

Figure B.14  Global climate model having the highest (top) and lowest (bottom) difference in return period 

compared to the STORM baseline climate dataset. 
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