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 Agriculture waste and renewable energy 

To meet the needs of the growing world population, each year the global production of food 

has to increase. As an unavoidable side-effect, this results in increasing amounts of 

agricultural waste generated as byproducts, e.g. crop residues, straw, stubbles, seed hulls, etc. 

A large amount of organic carbon is retained in this waste, of which most is left to decompose 

or is burned, so contributing to uncontrolled carbon dioxide emission. Based on a report from 

the Food and Agriculture Organization of the United Nations (FAO), the greenhouse gases 

emissions of the world in 2018 from burning crop residues is 30,454.37 gigagrams (Gg), and 

these emissions increased by 21% since 2000. Asia, Americas and Africa are the top three 

continents with the largest emission. Maize, rice and wheat are the top three burned crops 

(Figure 1). These numbers are expected to increase as the world population increases. 

 

Figure 1: A) The CO2 emission (Gg per year) increased from 2000 to 2018. B) The amount of emissions 

from the five continents. C) Burned waste classified by crop (Modified from FAO.org). 
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Lignocellulosic biomass is the primary component of agricultural waste. Only a small 

fraction of this is recycled or reused as fertilizer, as a feedstock or in mushroom cultivation 

(Gaitán-Hernández, Cortés, and Mata 2014). In many countries these wastes are not 

efficiently managed and are often disposed of by burning (Ravindra, Singh, and Mor 2019; 

Cassou, Jaffee, and Ru 2018). This wasteful discarding of valuable resource contributes 

significantly to air pollution. In 2020 many Asian agricultural countries such as Vietnam and 

India suffered air pollution for weeks during the harvest period. 

Vietnam is the second largest rice exporter in the world. About of 44,046,250 tons of paddy 

rice were produced in 2018. A study by Le, Phuong and Linh, published in 2020 showed that 

around the Red River Delta in 2018 about 3.24 million metric tons (Mt) of rice straw was 

burned with an emission of about 3.82 Mt of carbon dioxide and 301 Gg of carbon monoxide 

(Le, Phuong, and Linh 2020). The amount of CO2 and CO accounted for 89.77% and 7.09% 

of all gaseous emissions, respectively. This is an appalling waste of valuable resources. Under 

proper treatment such biomass could be converted into raw materials and recycled for other 

carbon-based products. 

One possible treatment of organic waste is fermentation and the production of bioethanol. 

This is an interesting product as it might substitute fuels derived from fossil carbon in the 

future. Ethanol  is biodegradable, less toxic and causes less environmental pollution than 

gasoline (Balat 2011). When burned, ethanol produces carbon dioxide and water. Some of 

this carbon dioxide will be recycled by plants to create biomass, which can be used as raw 

material again for bioethanol production. In theory, such a process is a closed cycle with net 

zero carbon dioxide release to the atmosphere. Bioethanol is usually made in the sugar 

fermentation process called saccharification. Raw materials can be starch, sugar and 

lignocellulosic materials (Gírio et al. 2010; Kim 2018). When recycling organic carbon from 

agricultural waste, depending on the feedstock used, the global greenhouse gas emissions can 

be reduced by 30-85% (Saini, Saini, and Tewari 2015). 

1.1.1 The mission of BE-Basic 

The Biotechnology-based Ecologically Balanced Sustainable Industrial Consortium (BE-

Basic) is an international public-private partnership (https://be-basic.org/). The foundation 

collaborates with industries and institutes from different countries to contribute to the 

transition towards a bio-based economy. In this economy, fossil fuel is replaced by biomass 
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from agricultural waste or non-edible plants. For a smooth transition, research in BE-Basic 

focuses on new technologies and insights into process of carbon release from waste. The 

philosophy of BE-Basic is to focus on enzyme-based reactions, so moving away from the 

classical chemistry which often comes with considerable energy inputs and emission of 

hazardous substances. Under the paradigm of “green chemistry”, processes are designed that 

can generate valuable chemical products from waste in a sustainable way, without noxious 

emissions. One of the fields of research is to use high-throughput experimentation and 

(meta)genomic mining to identify enzymes and other products for improved properties 

(https://be-basic.org/research/high-throughput-experimentation-metagenomic-mining/). 

Enzymes can break down biomass into substrate for the fermentation of bioethanol. 

 Lignocellulose as renewable source 

Plant biomass is one of the most viable renewable resources for biofuel and chemical 

feedstock (Bornscheuer, Buchholz, and Seibel 2014). Plant cell walls are composed of 

carbohydrate polymers such as cellulose, hemicellulose and aromatic polymers such as 

lignin. These structures consist of cross-linked matrices to protect the plant from physical 

and chemical damages (Jönsson and Martín 2016). Generally lignocellulose biomass is made 

up of about 10% - 20% lignin, 20% - 30% hemicellulose and 40% - 60% cellulose (Figure 2) 

(H. Chen 2014b). Hemicellulose mainly consists of pentoses such as xylose, arabinose and 

galactose. The proportion of these components varies between plants and species such as 

hardwood, softwood or grasses (Schutyser et al. 2017). 

Cellulose is the most abundant polysaccharide on earth. It is synthesized by binding (1,4)-D-

glucopyranose units via β-1,4 linkages. In nature, cellulose molecules join together to form 

microfibrils. Within this structure, the highly compact crystalline regions are separated by 

amorphous regions. The insoluble cellulose in the plant cell wall provides strength and 

flexibility to the cell wall, allowing turgor. 

Hemicellulose is a short, amorphous and highly branched polymer. Sugar monomers include 

xylose, mannose, galactose, rhamnose and arabinose. Hemicellulose links to cellulose via 

hydrogen bonding and to lignin via ionic interaction. 
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Figure 2: The cell wall structure of a plant. Hemicellulose (blue) is entwined with cellulose (green) 

and lignin (brown). Together they create a matrix, forming a strong barrier to protect the plant. 

Modified from (Bamdad, Hawboldt, and MacQuarrie 2018; Chitra Devi et al. 2020) 

Lignin is a heterogeneous cross-linked aromatic polymer, which is composed of three phenyl 

propane monomers: coumaryl, coniferyl and sytingyl (Bornscheuer, Buchholz, and Seibel 

2014; Kim 2018). Different alternative chemical forms of these monomers are found in 

different plants. Lignin fills the space between cellulose and hemicellulose. It gives the plant 

cell wall strength and rigidity as well as physical and chemical protection (Saini, Saini, and 

Tewari 2015; Maurya, Singla, and Negi 2015). 

1.2.1 Current pretreatment methods 

For bioethanol production, hemicellulose is the main source of material. However, it is well 

protected by lignin. When lignin is present as intact structure, a lower yield of monomeric 

sugar is obtained. A pretreatment method is needed to disrupt the lignin structure and loosen 

the plant cell wall for enzymatic access to cellulose (Fig 3). Such a pretreatment reduces the 

crystallinity and increases the amorphous state of cellulose. Currently, this is the most 

challenging step in the production of bioethanol from plant remains. A large number of 

investigations have been conducted to identify ways to efficiently break down the cellulosic 

component in lignocellulose. There are four main types of pretreatment methods (Maurya, 

Singla, and Negi 2015). 
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Figure 3: Enzymes is the natural ways to breakdown of lignocellulose. This requires the least amount 

of energy and chemicals. 

1.2.1.1 Physical pretreatments 

Lignocellulosic materials can be pulverized by grinding, shearing, milling or chipping. The 

particle size of the biomass is reduced to increase surface area. The disadvantages of this 

method are high power and high energy consumption (Wi et al. 2013; I. S. Choi et al. 2013). 

1.2.1.2 Physico-chemical pretreatment 

In case of steam explosion, biomass is subjected at high pressure to saturated steam for 

several minutes, then the pressure is released. The sudden pressure reduction causes the fibers 

to separate. Ammonia fiber expansion (AFEX) uses ammonia to cause fibers to swell and 

change formation. The biomass is treated with ammonia at 90-100°C for 30-60 min. Another 

method is wet oxidation: the biomass is treated with water and air at 120°C for 30 min. This 

process catalyzes the formation of acids from hydrolytic pressure and oxidative reactions. 

These pretreatments require high energy, chemicals and machines to create the high pressure 

and high temperatures (Ye et al. 2016; M. J. Taylor, Alabdrabalameer, and Skoulou 2019). 
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1.2.1.3 Chemical treatments 

Different chemical agents are used such as acids and alkaline. Acid is used for the 

solubilization of hemicellulose and lignin. Alkaline is used for the removal of lignin from the 

biomass. It also removes acetyl and uronic acid from hemicellulose. Both methods are 

expensive and produce toxic compounds. The treated material has to be cleaned for further 

processing (Abedinifar et al. 2009). 

1.2.1.4 Biological processes 

The biological methods rely on enzymes that can release sugars from lignocellulose. Such 

enzymes are naturally present in many fungi that grow on dead or live wood (Zhao et al. 

2013; Baldrian et al. 2016). Different fungal species are used: brown rot, white rot and soft 

rot fungi. This process requires little energy and proceeds under mesophilic conditions. 

However the yields are low and the process is time-consuming. A lot of investigations have 

been directed towards finding more efficient pretreatments. One strategy is to look for 

specialized enzymes present in micro-organisms (fungi and bacteria). The staggering 

diversity of the microbial world, which extends far beyond the microbial species that can be 

cultured in the laboratory, is considered to hold great promises for this new type of 

biotechnology. Therefore, many scientists are screening the genomes of microorganisms in 

search for novel genes that could be deployed for lignocellulose processing (Jönsson and 

Martín 2016; Kim 2018; Kucharska et al. 2018). 

Carbohydrate-active enzymes 

Enzymes that are involved with carbohydrate metabolism are grouped under the term 

carbohydrate-active enzymes (CAZys). It is a large and heterogenous group of proteins with 

the common property that they catalyze the degradation of carbohydrates and related 

molecules. The enzymes are grouped based on their sequence and activity profile. There are 

six groups, designated as glycoside hydrolases (GH), glucosyltransferases (GT), molecules 

with auxiliary activity (AA), carbohydrate esterases (CE), polysaccharide lyases (PL) and 

carbohydrate-binding molecules (CBM). Together, these six groups allow the complete 

breakdown of lignocellulose (Table 1). 
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Table 1: Cocktail of enzymes for complete lignocellulose degradation (Parisutham, Kim, and Lee 

2014). 

Cellulases Hemicellulases Pectinolytic 

enzymes 

Lignin 

degradation 

Cell wall 

loosening 

enzymes 

Cellobiohydrolase 

Endoglucanase 

β-Glucosidase 

Phospho-β-

glucosidase 

Endoxylanase 

β-Xylosidase 

Acetyl xylan esterase 

Feruloyl esterase 

Glucuronoyl esterase 

Arabinofuranosidase 

Galactosidase 

Glucuronidase 

Mannanase 

Xyloglucan hydrolase 

Polygalacturonases 

Pectin/pectate lyases 

Pectin methyl 

esterase 

Lignin peroxidase 

Aryl-alcohol 

oxidase 

Laccase 

Glyoxal oxidase 

Cellobiose 

dehydrogenase 

Expansin 

Swollenin 

Loosinin 

Cellulose 

induced 

protein 

 

 

 

By way of example, we discuss one specific group of enzymes that is receiving special 

attention in this thesis. Alpha-arabinofuranosidases belong to the group of hemicellulases. 

They are exo-enzymes excreted by bacteria to hydrolyze the terminal nonreducing α-L-

arabinofuranosyl side-chains from L-arabino-containing polysaccharides. This removal of 

side-chains eases the complete degradation of hemicellulose by endo-1,5-α-L-arabinanases 

that attack the hemicellulose backbone (Fig. 4). 

Arabinofuranosidases have a potential application in agro-industrial processes: fruit, 

vegetables and cereals processing. The discovery of new and effective arabinofuranosidases 

might contribute to the sustainable conversion of hemicelluloses to bioethanol and organic 

chemicals. 
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Figure 4: Enzymes required for complete breakdown of hemicellulose. The points of attack of the 

different enzymes are indicated by arrows. Image from (de Souza 2013). 

 Concept of animal guts to optimize catalytic functions 

Decomposition of organic matter is a natural process, where materials are broken down by 

microbes to smaller building blocks. Animals usually do not have cellulolytic activity of their 

own, they rely on microbes in their gut. Of special interest are animals that feed on 

recalcitrant organic matter, as they must have gut microbes with special catalytic properties. 

Therefore, in this thesis I explored the microbiomes of three groups of animals, ruminants 

and detritivore arthropods, that are well-known for their capacity to digest recalcitrant plant 

materials (K. T. Lee et al. 2018; Do, Le, et al. 2018; Fountain and Hopkin 2005; Brune and 

Dietrich 2015). As the degradation of such materials is crucial for survival of these animals, 

they are relevant targets for the discovery of new cellulolytic activities. 

1.3.1 Termites 

Termites are a popular model for microbial biodiversity and lignocellulose degrading 

enzymes (Ni and Tokuda 2013). Worker termites are known for their diets containing high 

lignocellulosic fiber components. They can degrade 74–99% of cellulose and 65–87% of 

hemicellulose from biomass within hours after feeding (Geng et al. 2018; Hongjie Li et al. 
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2017b). The degradation of plant biomass is performed by host enzymes and microorganism 

inside the gut (Xie et al. 2014), Fig. 5. 

 

Figure 5: The termite gut structure of lower and higher termite. The figure also shows the different 

carbohydrate enzymes found in each part of the gut. Differences in oxygen and hydrogen partial 

pressures (P) in kPa, intestinal pH between different groups of termites. C: crop, M: midgut; ms, mixed 

segment; P1–P5, proctodeal segments. Modified from (Brune 2014; Hongjie Li et al. 2017b). 

A discrimination is made between lower and higher termites based on their gut morphologies 

and microorganisms. Their anaerobic intestinal tract has different metabolic activities and 

microbial communities. It is composed of a foregut, a midgut and a hindgut (Fig. 5). Woody 

food sources are grinded in the foregut and transferred to the midgut. This is a secretion site, 

where nutrients are absorbed. Few microorganisms are found in the foregut and the midgut. 

The largest compartment is the hindgut, which is divided into several smaller segments. An 

abundance of microorganisms resides in this region, such as archaea, bacteria and protists. 

The lower termites have more protists in their hindgut than higher termites. The gut of higher 

termite has evolved to become longer and with a higher pH (Brune 2014; Brune and Friedrich 

2000).  
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The termite gut systems are very similar to current pretreatment methods for lignocellulose. 

The microorganisms inside the gut are highly selective to be able to survive the high pressure, 

alkaline and anaerobic conditions. The termite gut is like a small lignocellulose degradation 

factory. The system is similar to the abiotic grinding, pressure and alkaline pretreatment 

method. Since the gut condition is quite specific, adapted species might have specific traits 

for their survival. 

1.3.2 Goats 

Through evolution animal guts have evolved to become specialized to degrade the food that 

the host consumes. Ruminant animals have coevolved with the microbial consortium that 

harness enzymatic hydrolysis to release fermentable sugar from plant cell wall 

polysaccharide. The released sugars are subsequently fermented by the microbes to short 

chain fatty acids as the main food source for the host (Fig 6). 

 

Figure 6: The goat gut system. Image from (Connie et al. 2016). 

Goats are known for their abilities to adapt to harsh environments due to their behavioral, 

morphological, physiological as well as genetic properties (Berihulay et al. 2019). They also 

explore a very diverse diet including grass, plants, root, stems, and shoots. Plant fibers are 

broken down by fungi, bacteria and protists inside the goat rumen to generate 

monosaccharaides. Some bacteria and protists metabolized the monosaccharides to generate 

CO2, NH4, volatile fatty acids and H2. Archaea use the H2 to generate methane, which in turn 

eliminates the inhibiting effect of hydrogen on fermentation. As a result of this, ruminants 

are well-known for their ability to create methane (Agrawal, Karim, and Kumar 2014). The 
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released sugars are fermented by the microbes to short-chain fatty acids that serve as the main 

energy source for the host. Genomes of the plant cell wall degrading microbes in the rumen 

represent a rich source of novel and highly active plant cell wall degrading enzymes. 

1.3.3 Springtails 

 

Figure 7: Schematic drawing of the gut system of Sinella coeca, a collembolan; fg = foregut, mg = 

midgut, hg = hindgut, Ph = pharynx, Oe = oesophagus, th2, th3 = second and third thoracic segment, 

a1 to a6 = abdominal segments, Ep.1 = intestinal epithelium. Figure from Hopkin (1997). 

Springtails (Collembola) are hexapods belonging to the wingless branch of six-legged 

arthropods, a sister group of the insects. A great variety of species live in organic soils of 

forests, grasslands and agricultural fields (Fountain and Hopkin 2005). They are mostly 

unspecialized feeders, eating the mycelia of saprotrophic fungi and mycorryhizae, as well as 

dead organic matter. The gut of springtails consists of three compartments, like in termites, 

however, the main digestive compartment is not the hindgut but the midgut (Fig. 7). The 

midgut has an epithelial lining consisting of large digestive cells, which take up nutrients 

digested by microbes in the lumen. Collembola moult throughout their lives and with every 

moult the midgut lining is renewed as well. The recurrent regeneration of the midgut 

epithelium does not, however, prevent the build-up of a diverse community of 

microorganisms, the composition of which depends on the host strain as well as on the 

environment (Valeria Agamennone et al. 2015). The microbial communities in the gut are 

dominated by Proteobacteria, Actinobacteria, Bacteriodetes and Firmicutes (Valeria 

Agamennone et al. 2019). 
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 Methodology 

1.4.1 General strategy 

Each animal host has a different gut system and so different mini eco-environments. 

Microorganisms form large populations in the guts and help the host with a suit of functions 

varying from decomposition of organic matters and mineralization, cycling of nutrients, 

defense against pathogens and metabolic digestion. These gut symbionts might contain 

interesting enzymes that can be used to break down biomass. Theoretically, this can be very 

beneficial for pretreatment plants as the natural enzymes have been prone to natural selection, 

thereby optimized and adapted to sometimes hard to process diets throughout the animal’s 

evolution. 

 

Figure 8: The overall process of mining for active enzymes using bioinformatics. The DNA of the gut 

content from the host are extracted and sequenced. After passing a quality tests, reads are used for an 

assembly. The assembly creates large segments of DNA called contigs (sometimes a whole bacterial 

genome, but usually fragments of them).  Bacterial genes are predicted from long contigs. The CAZy 

database is used to screen for enzymes with carbohydrate activities. Genes of interest are mined based 

on specific criteria. These genes are either cloned from the metagenome DNA or synthesized. They are 

ligated into an E. coli host  for recombinant expression. Expressed proteins are collected and purified. 

Activity of the protein is tested using enzyme assays, usually reactions that can be monitored at a 

specific absorbance or color change. 
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The traditional investigation method to identify active enzymes requires members of a 

microbiome to be cultured for further testing. However, the microorganisms that are 

culturable make up only a small fraction of the microbiome. The process makes it difficult to 

identify new species and novel genes (Wade 2002). The advancement in next-generation 

sequencing technologies, has led to taxonomic classification and functional metagenomics 

analysis of unculturable microorganisms at an unprecedented level. The ribosomal RNA 

genes from bacteria and fungi contain highly conserved regions, which can be targeted by 

primers for the identification of different species. This allows for identification of more 

variable regions to be used for taxonomic classification, where empirically defined 

divergence threshold have been agreed to link certain taxonomic levels such from strain/ 

species up to phylum level. Functional metagenomics is the study of genomes of all 

organisms in an environment sample (Schloss and Handelsman 2005). The process allows to 

study of microbiomes in their natural environments. The targets of study are culturable and 

unculturable microorganisms from the animal host, which can breakdown lignocellulose. 

This process can help us to understand more about the interaction between the 

microorganisms and the host. Figure 8 provides a general work flow. 

1.4.2 DNA isolation, sequencing and assembly 

First, the gut contents from the animals are isolated and DNA is extracted from the microbial 

community (Do, Dao, et al. 2018; Do, Le, et al. 2018; Valeria Agamennone et al. 2015). The 

quality of the DNA is checked before sending it out for sequencing. In metagenomics 

projects, the Illumina short read strategy is often used (Pearman, Freed, and Silander 2019). 

The raw reads are subjected to preprocessing. All general primer sequences used from next-

generation sequencing are removed by trimming. Also, reads that do not meet specific quality 

such as singleton, too short or below Q20 are either trimmed or removed from the database 

(Valeria Agamennone et al. 2019). 

A large part of the metagenome may be represented by contamination, especially from the 

host. On top of that, some animal species also contain (endo)symbionts, which can bias the 

overall analysis towards these organisms. For example, springtails contain endosymbiotic 

Wolbachia bacteria that dominate the microbial DNA isolated from the host. To have a clear 

view of the metagenome, the host, as well as the Wolbachia and some known virus 

contamination need to be removed from the data. Consequently, it reduces the number of 
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reads, but this reduced sequence output in turn speeds up the downstream assembly process. 

To compensate for reduced output, multiple samples are pooled together to improve on 

quality. 

 

Figure 9: Creation of draft genome from sequencing reads. Reads are aligned, where overlaps help to 

join multiple reads together to create contig. The scaffold are made up of large contigs with gap. Some 

of the reads are then used to fill out gaps from the large contigs to create draft genome. Image taken 

from (Sohn and Nam 2018). 

Obviously, a microbiome consists of a wide diversity of microorganisms. Hence, the reads 

derive from different organisms present in the microbial community. But for a better 

understanding of the community structure, reads of the same species need to be joined 

together, a process called assembly. Sequence reads that overlap help to join different reads 

to create longer contigs. A general work flow of microbial population assembly is depicted 

in figure 9. 
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Figure 10: Assembly using k-mers. A) The short read is divided into multiple instances with the example 

of k-mer =4. B) The graph of Eulerian de Bruijn graph. C) Kmers are stacked together to create contigs. 

Erroneous k-mers which appears in less reads are removed. Image modified from (Sohn and Nam 

2018). 

The program SPADES uses a Eulerian de Bruijn graph approach for the assembly of 

metagenomes (Bankevich et al. 2012). For this method, a specific kmer’s length is set. The 

short reads are then classified using this specific length. These k-mers are then stacked 

together to create a graph with multiple paths (Fig. 10). The most optimal path is selected, 

based on pre-set probability and accuracy tresholds? SPADES also has the option to combine 

multiple contigs from different k-mers to extend the contig length, by lowering the consensus 

accuracy. This process is often used for de novo assemblies (Sohn and Nam 2018). 

1.4.3 Discovery of functional genes and assessment of activity  

The contigs are subsequently used to identify open reading frames (ORF) from bacterial 

species (Hyatt et al. 2010). To that end, the ORFs are translated in predicted proteins and 

used as query to search for homology in online non-redundant protein databases with 

BLAST. The result of such homology searches shows similarities of predicted peptides is 
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with characterized proteins in databases, in the ideal case with known and proven functions 

(Altschul et al. 1990). 

To identify proteins with carbohydrate activities, protein homologies are searched against the 

CAZy database. The dbCAN2 uses multiple programs for the identification CAZymes. 

DIAMOND aligns sequences of high similarity with the CAZymes conserve domains, 

Hotpep is used to identify of short, conserved protein sequence motifs and HMMER uses the 

statistical Hidden Markov Models for training and identifying of conserved domain of 

potential CAZymes proteins (Zhang et al. 2018; Busk et al. 2017; Bystroff and Krogh 2008). 

Sequences with homologies to known proteins, which pass certain thresholds are more likely 

to be active ones. However, picking proteins with lower similarities are more likely to exert 

potentially novel novel catalytic functions. 

After screening for candidate genes, the protein is either cloned from the DNA metagenomics 

pool or in vitro synthesized. Primers are designed to create restriction sites to easily 

incorporate a gene into a plasmid. The plasmid is transformed into E. coli for expression. The 

plasmid is designed such that the expressed protein contains an N-terminal string of histidine 

residues, a so-called His-tag. The bacterial host is cultured to enhance the amount of cells 

containing recombinant protein A crude protein extract obtained after lysis of the host is 

loaded into a his-tag column. The proteins with the his-tag bind to the Cobalt beads due to 

their negative charge. A washing solution containing imidazol at low to high concentration 

is used to elute the column. The washing solution slowly removes all non his-tag protein. 

Imidazol competes for the protein of interest and at the correct concentration expels this 

protein from the beads (Spriestersbach et al. 2015). The protein of interest is collected from 

one of the fractions. 

To study the activity of the isolated protein a variety of methods can be used. Because 

enzymes break down substrate into specific products, the activity assay is usually directed 

towards monitoring the rate at which product concentrations increase or substrate 

concentrations decrease, usually by spectrophometry. Activity assays are performed at 

different conditions (substrate concentration, pH, temperature, etc.), to characterize the 

enzyme’s properties. Important properties of the enzyme are its substrate binding affinity 

(expressed as the parameter KM in the Michaelis-Menten model) and the maximal reaction 
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rate Vmax. These parameters are estimated by curve-fitting in a graph of reaction rate 

measurements at different substrate concentrations. 

 Scope, approach and outline of the thesis 

In this thesis we are interested in exploring the microbial communities in the guts of animals 

to identify relevant enzymes with functions that can be used in industrial applications of 

lignocellulose breakdown. Animals were chosen that have a variety of biomass digestion 

strategies. Goats and termites can deal with hard woody materials and springtails with small 

decomposing wood items, dead organic matter and fungi. The microorganisms inside their 

guts are support digestion and subsequent nutrition as well as a variety of other functions 

including defense against pathogens and the production of antimicrobials. By analyzing the 

host-microbe interactions we also aim to increase our understanding of their co-evolution. 

The use of bioinformatics tools will help to identify and discover enzymes as well as the 

genes functional in the microorganisms. 

Main question for the thesis are formulated as follows 

1. What microbial communities are present in the three selected animal species, how 

do they compare to each other? 

2. Which functionalities are encoded in the metagenomes of these communities (with 

emphasis on carbohydrate metabolism)? 

3. What are the properties of metagenome-derived enzymes as possible candidates for 

bio-based degradation of organic waste? 

In Chapter 2, we describe the gut composition of the goat gut in related to the carbohydrate 

active enzymes especially hemicellulose degrading enzymes. The research looks at the 

bacterial community diversity inside the goat gut. 

In Chapter 3, we look at the springtail as a model of interest to explore the functional potential 

of the microbiome. Using bioinformatics tools we focus on carbohydrate metabolism 

functions, as well as antibiotic biosynthesis gene clusters.  

In Chapter 4, we compare the gut microbiomes from three different invertebrates: springtails, 

isopods and termites. By expanding the animals using the same methodology from chapter 

3, we look at the important functions such as the ability to break down carbohydrate for food 
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source as well as antibiotic resistance and the production of secondary metabolites. We 

observed that for each gut community, a specific set of carbohydrate enzymes are required 

even though they are not contributed by the same microorganisms. 

In Chapter 5, we describe the activity of hemicellulases identified from the metagenome gut 

of termites and springtails. The scope of this chapter is to show the potential of using 

bioinformatics tools to mine for hemicellulase genes. To do this we expressed the genes of 

interest in E. coli against hemicellulose substrate. We observed activity as predicted by the 

bioinformatics tools. 

In Chapter 6 we describe an α-L-arabinofuranosidase gene from the springtail similarly found 

in the gut of the termite. This could be a novel horizontal gene transfer from long time ago. 

The scope of this chapter was to show the evolutionary of this protein, which show activity 

like the one from chapter 5. 

In the final Chapter 7, I present a general discussion of results from previous chapters in light 

of the research question of the thesis. I will also provide an outlook to future research on this 

topic. 
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2.1 Abstract 

The scarcity of enzymes having an optimal activity in lignocellulose deconstruction is an 

obstacle for industrial-scale conversion of cellulosic biomass into biofuels. With the aim of 

mining novel lignocellulolytic enzymes, a ~9 Gb metagenome of bacteria in Vietnamese 

native goats’ rumen was sequenced by Illumina platform. From the data, 821 ORFs encoding 

carbohydrate esterases (CEs) and polysaccharide lyases (PLs) serving for lignocellulose pre-

treatment, 816 ORFs encoding 11 glycoside hydrolase families (GHs) of cellulases, and 

2,252 ORFs encoding 22 GHs of hemicellulases, were mined. The carbohydrate binding 

module (CBM) was also abundant with 763 ORFs, of which 480 ORFs are located with 

lignocellulolytic enzymes. The enzyme modularity analysis showed that CBMs are usually 

present in endoglucanase, endo 1,3-beta-D-glucosidase, and endoxylanase, whereas 

fibronectin 3-like module (FN3) mainly represents in GH3 and immunoglobulin-like domain 

(Ig) was located in GH9 only. Every domain located in each ORF was analyzed in detail to 

contribute enzymes’ modularity which is valuable for modelling, to study the structure, and 

for recombinant production. With the aim of confirming the annotated results, a mined ORF 

encoding CBM63 was highly expressed in E. coli in soluble form. The purified recombinant 

CBM63 exhibited no cellulase activity, but enhanced a commercial cellulase activity in the 

destruction of a paper filter. 

2.2 Introduction 

Lignocellulose waste comprising agro-industrial biomass is inexpensive, renewable, 

abundant, and provides a unique natural resource for enhancing bio-economy (Anwar, 

Gulfraz, and Irshad 2014) to substitute the fossil-based economy. 

Overcoming the limitations of fossil-based economy, bio- based economy has the advantage 

to (i) be environmentally, economically and socially sustainable; (ii) decrease the dependence 

on fossil fuel; (iii) reduce atmospheric greenhouse gas emission, which is responsible for 

causing climate change; and (iv) stimulate regional and rural development (Jong et al. 2011). 

Lignocellulose can be converted into sugar molecules by microbial enzymes and the released 

sugars can be fermented into various high value products including bio-fuels, materials for 

food, bulk chemicals such as bioplastics, and value-added fine chemicals for pharmaceuticals 

and human health (Asgher, Ahmad, and Iqbal 2013; Iqbal, Kyazze, and Keshavarz 2013; 

Millati et al. 2011; Irshad et al. 2013). Therefore, lignocellulose biomass has recently gained 
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increasing research interest and special importance (Asgher, Ahmad, and Iqbal 2013; 

Baumann and Westermann 2016; Ofori-Boateng and Lee 2013). 

The conversion of lignocellulose into higher-value products requires a multi-step process 

including (i) pre-treatment (e.g. mechanical, chemical, or biological), (ii) saccharification by 

enzymes, and (iii) fermentation into end products (Arumugam and Mahalingam 2015). A 

major obstacle to lignocellulose conversion in industry lies in the inefficient deconstruction 

of plant material owing to the retention of the natural lignocellulose structure. Also, currently 

available enzymes which can hydrolyze lignocellulose show a low and ineffective activity 

(Hess et al. 2011; Sebastian et al. 2013). In nature, individual enzymes interact 

synergistically, or are comprised of multi-modules (modularity), to degrade lignocellulose 

effectively. In modularity, besides the catalytic core, these enzymes also possess non-

catalytic functionally-important domains, including carbohydrate-binding modules (CBMs), 

fibronectin 3-like modules (FN3s), dockerins, immunoglobulin-like domains (Ig), or 

functionally unknown “X” domains (Sweeney and Xu 2012). These domains are important 

for solubility, optimal activity (Ding et al. 2008; Wilson 2008), stability and even thermo-

stability of the catalytic activity (Araki et al. 2006; X. Jia et al. 2016). In Clostridia, these 

enzyme modules are organized in so called cellulosomes through cohensin-dockerin 

complexes (Dou et al. 2015). Apparently, organisation and interaction of these microbial 

enzymes for the hydrolysis of lignocellulose are essential in the industrial development of 

lignocellulose breakdown, which is an important source for the green energy sector (M. 

Kumar, Varma, and Kumar 2016; Yang et al. 2014). Many recent studies have identified 

numerous potentially enzymatic pathways for biomass conversion, but less is known about 

the efficacy of catalytic activity of the enzyme modularity in biomass transformation and 

digestion (M. Kumar, Varma, and Kumar 2016). Thus, the discovery of novel enzyme 

modularity for lignocellulose saccharification is required. 

Traditionally, functional microbial screening is applied to isolate genes involved in 

lignocellulose breakdown. More recently, metagenomics can identify candidate genes from 

environmental samples circumventing the need for culturing. This is important, since more 

than 99% of microorganisms from environmental samples are uncultivable and their 

functional significance is overlooked. Thus, next generation sequencing of whole 

metagenomic DNA from environmental samples with a high lignocellulose breakdown 

capacity is very powerful for the discovery of genes relevant in this process (M. Kumar, 
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Varma, and Kumar 2016; Sebastian et al. 2013). The digestive tract of termites (Do et al. 

2014; M. Kumar, Varma, and Kumar 2016; Sebastian et al. 2013), and Korean goat rumen 

(Lim et al. 2013) represent rapid and efficient lignocellulose degradation environments, 

which make it more likely to discover enzymes that play an essential role in this process. 

Much emphasis has been given to investigating enzymes from microbiota that can hydrolyse 

cellulose, and hemicellulose substrates. However, much less information is available on the 

collocation of important domains (FN3, CBM and Ig) forming modules with catalytic 

domains to eventually create an efficient system for optimal lignocellulose degradation. Lim 

et al. (2013) reported nine CBM domains, dockerin-1, and FN3 domains, and these domains 

were collocated within cellulase and glycosyl hydrolase (GH) families, but lacked all 

information on genes for many hemicellulases and genes for lignocellulose pretreatment. In 

addition, most identified cellulases lacked a co-localized with CBM and/or FN3 domain (Lim 

et al. 2013). 

Here, we report on the analysis of a large dataset generated by Illumina-based de novo 

sequencing of bacterial metagenomic DNA extracted from the rumen of native goats living 

in the natural high mountain at Ninh Binh and Thanh Hoa, Vietnam. These animals consume 

different plant materials with a high content of lignocellulose. Therefore, we hypothesize that 

the microbial digestive system of this animal has adapted to degrade substantial amounts of 

lignocellulose efficiently. A previous study used only one database to analyze goat rumen to 

identify potentially relevant enzymes (Lim et al. 2013). In this study, we have subjected all 

open reading frames (ORFs) to six available functional annotation tools. This integrated 

approach increased the number of identified cellulases and hemicellulases, and enzymes 

related to lignocellulose pretreatment. We have also analyzed the presence of collocated FN3, 

CBM, and Ig domains, thereby elucidating the potential of an enzyme to participate in 

modularity. This information may become necessary for the recombinant production of 

optimal enzyme cocktails. 
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2.3 Materials and Methods 

2.3.1  Sampling and extraction of bacterial metagenomic DNA 

The goat lines used in this study were a Vietnamese native breed (Co) and a hybrid (Bach 

Thao) generated by Beetal and Jamnapari long time ago. Adult Co animals, weigh 

approximately 30 to 35 kg (Fig. S1A) and live on natural hay in high rocky mountains at 

private goat farms at Ninh Binh and Thanh Hoa provinces in Vietnam. The domestic goat 

breed Co has a small body with brown or black hair, a large head, small short ears, and short 

horns. The breed Bach Thao is diverse in morphology and size (Fig. S1B). Three Co animals 

and two Bach Thao animals were sampled in Ninh Binh province (GPS coordinates 

20.269002, 105.893267), while two Co animals and three Bach Thao animals were sampled 

in Thanh Hoa province (GPS coordinates 19.897450 105.795899). The diet of both goat lines 

consists of a variety of grasses, leaves of trees in the mountains, and also crop residues at 

night. 

In total, ten selected goats were slaughtered at a local slaughter house. Rumen fluid from each 

goat was filtered through four layers of cheesecloth, and the remains was suspended in 2 liters 

of PBS buffer (137 mM NaCl, 2.0 mM KH2PO4, 10 mM Na2HPO4, and 2.7 mM KCl, pH 

7.4). It was filtered through a new set of four layers of cheesecloth. The resulting fluids were 

centrifuged at 700 rpm (approximately 150–200 g) for 10 min to separate protozoa and plant 

debris from bacteria. This step was repeated twice. The bacteria in the supernatant were 

pelleted by centrifugation (4,500 g for 5 min), washed twice with PBS buffer, and 

resuspended in 500 ml of PBS buffer. 

Genomic DNA was isolated from the bacteria-enriched fluid and purified using a PSP Spin 

Stool DNA Plus Kit (Stratec, Germany) according to the manufacturer’s protocol. The 

extracted DNA was checked by agarose gel electrophoresis, quantified and quality-checked 

by NanoDrop ND-2000C (Implen, US) before storage. Equal amounts of DNA from the 10 

goat rumens were mixed for sequencing. The mixed metagenomic DNA showed only slight 

degradation, and was concentrated to 132 mg/ml (OD260/280 value of 1.92). Total 10 mg of 

the DNA was sent to BGI-Hong Kong Co. Ltd. for sequencing. 
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2.3.2  Metagenome sequencing and assembly 

The paired-end library was prepared as described elsewhere (Do et al. 2014). The 

metagenomic DNA was sequenced using next generation ultra high throughput sequencing 

system Illumina HiSeq2500 (Illumina, San Diego, CA, USA). The raw sequence data was 

analyzed using a standard bioinformatics approach as follows. Adaptor sequences and reads 

containing >10% “N” bases, and reads containing >50% low quality base scores (Q < 20), 

were removed from the raw data. The reads were then assembled by SOAPdenovo2 (Luo et 

al. 2012) with different k-mer sizes in parallel, and Rabbit tool (You et al. 2013) was used to 

extend the length of SOAPdenovo-derived contigs. Reads were then mapped back to the final 

contigs for each assembly in order to choose the most optimal k-mer size and to select the 

best assembly with regard to N50 and coverage. Contigs with a length of >200 bps were kept 

for open reading frame (ORF) prediction using 

MetaGeneMark (W. Zhu, Lomsadze, and Borodovsky 2010). The predicted genes were 

further clustered using CD-hit (W. Li and Godzik 2006). The genes having a sequence 

identity ≥95% and alignment coverage ≥95% were merged and kept for functional annotation. 

2.3.3 Functional annotation 

All the predicted ORFs were blasted against public databases: (i) Swiss-Prot; (ii) Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al. 2008); (iii) Non-supervised 

Orthologous Groups (eggNOG); (iv) Cluster of Orthologous Groups (COG) (Powell et al. 

2012); (v) Carbohydrate-Active enZYmes (CAZy) database (Bernard et al. 2008); and (vi) 

Gene Ontology (GO) (Ashburner et al. 2000). A flow chart of the bioinformatics pipeline for 

analysis of the bacterial metagenomic DNA extracted from Vietnamese native goats’ rumen 

is represented in Fig. S2. Top hits, those with an E-value lower than 10–5 and a sequence 

coverage >50%, and the highest sequence similarity, were used for further analysis. 

Lignocellulolytic enzyme families (Pfam, protein families) were predicted by performing 

Interproscan (https://www.ebi.ac.uk/interpro/). 

For taxonomic classification, homology of the mapped ORFs was queried to previously 

characterized ORFs in the non-redundant (NR) database in NCBI. In this way, organism 

diversity was obtained in the goat rumens at the phylum level. For the annotation of species, 

the best matching ORFs, whose E value was lower than e–5, were preserved in the classified 
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group for further analysis. The ORFs in the classified group were subjected to MEGAN 

(version 4.6) (Huson et al. 2007) for assignment into NCBI taxonomy using the lowest 

common ancestor (LCA) algorithm. 

This project was deposited in the DNA Databank of Japan (DDBJ) with the accession ID 

PSUB006562. 

2.3.4 CBM63 expression, purification and activity analysis 

For assessment of the functional annotated results, the ORF 57,823 encoding CBM63 was 

chosen for E. coli gene expression and activity analysis. 

This gene (858 bps) contains a 5’ terminal sequence of 78 bps encoding a signal peptide and 

another sequence spanning the remaining 777 bps codes for a mature CBM63. The gene 

encoding mature CBM63 was synthesized by Genescript (USA) and cloned into pET22b(+) 

(Novagen) at NcoI and XhoI restriction sites. The obtained plasmid was introduced into E. 

coli BL21 (DE3) (Novagen). For protein expression, a single-colony transformant was 

inoculated into 10 ml Luria-Bertani broth (supplemented with 100 mg/ml ampicillin; LBA), 

and grown overnight at 37°C in a rotary shaker (200 rpm). The overnight culture (0.2 ml) 

was then transferred to 20 ml of fresh LBA and cultivated at 37°C, 200 rpm until the optical 

density (OD600) reached 0.6–0.8. Subsequently, the cells were induced for CBM63 expression 

by adding 0.5 mM IPTG and continuously grown for 4 hours at 25°C. The cells were 

harvested by centrifugation at 6,000 rpm for 10 min at 4°C, and suspended in water to a 

density of OD600 = 10. The cells were disrupted by sonication on an ice bath (10 pulses, 30 s 

each at 100 W with 20 s intermission). The soluble fraction was separated from the pellet by 

centrifugation at 13,000 rpm for 10 min at 4°C. The expressed proteins in soluble and 

insoluble fractions were analyzed by SDS-PAGE. The recombinant CBM63 was purified by 

Immobilized Metal Affinity Chromatography (IMAC) with a 5 mL Ni-charged Sepharose 

Fast Flow column (HisTrap; GE Healthcare). Before loading the sample, the column was 

equilibrated with 10 column volumes (CV) of buffer (20 mM KH2PO4, 0.5 M NaCl, pH 7.4) 

containing 50 mM imidazole. After applying the soluble fraction to the column, it was washed 

with 5 CV of the same buffer containing 100 mM imidazole, and eluted by 10 CV of the 

buffer containing 500 mM imidazole. The protein concentration in the purified fractions was 

measured by NanoDrop ND-2000C (Implen, US) and was checked by electrophoresis SDS-

PAGE and then desalted using a PD10 desalting column (GE Healthcare). 
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The purified CBM63 was used to check the activity with carboxymethyl cellulose (CMC, 

Sigma) and filter paper as substrates. Whatman No. 1 filter paper was cut into very small 

pieces by scissors. The total reaction volume was 0.5 ml containing: 10 mg of the filter paper 

(or 0.1 mg CMC); 0.05 ml of 0.05 M Na-citrate buffer, pH 6; and 0.3 mg purified CBM63 

protein with, or without, 0.025 U of cellulase (Sigma). The reaction was performed at 50°C 

for exactly 90 min and then stopped immediately by adding 0.5 ml of dinitro salicylic (DNS) 

reagent. All the tubes were boiled for 5 min and the absorbance at 540 nm was measured. 

Each measurement was made in triplicate. The activity of the protein was calculated as the 

amount of reducing sugar (corresponding to mM glucose in this study) released (Miller 1959). 

2.4 Results and Discussion 

2.4.1 Sequencing analysis 

Illumina sequencing of the metagenomic DNA yielded 89,964,640 reads. Of these, 

84,625,346 reads (94.07%) were useful reads used for assembly to 172,918 contigs larger 

than 200 bp by a SOAPdenovo assembly tool using a k-mer size of 51. From the contigs, 

164,644 ORFs were predicted (Table S1). The inventory of ORFs length distribution is shown 

in Fig. S3. 

 

Figure 1: Analysis of the goat rumen microbial community structure at the phylum level. The numbers 

of ORFs affiliated in each phylum and its percentage are indicated however percentage is not indicated 

for less than 3.14%. 
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Similarity searches using BLAST against the non-redundant protein sequence database 

showed that 122,304 ORFs (74.3%) retrieved a Blast hit. The nrBLAST output was subjected 

to MEGAN (version 4.6) (Huson et al. 2007) for taxonomic assignment. Among 39,579 

ORFs affiliated in taxonomic classification, most of the genes (99.8%) originated from 

bacteria. Only nine ORFs belonged to Eukaryota, two ORFs originated from viruses and 67 

ORFs were classified to Archaea (Fig. 1). This confirms the enrichment of bacterial DNA 

during the metagenomic DNA extraction of goat rumen samples.  

Among the bacterial genes, phylum Bacteroidetes was the most represented, accounting for 

63.6%, followed by Firmicutes (22.6%), and Proteobacteria (7.5%) (Fig. 1). Also, these phyla 

are most abundantly represented in the microbial eco-system in Japanese goat rumens 

(Denman et al. 2015). Earlier studies showed that the dominance of Bacteroidetes is 

correlated to the presence of cellulolytic glycoside hydrolases (GH), which play an important 

role in lignocellulose degradation (Güllert et al. 2016; Han et al. 2015). The dominance of 

Bacteroidetes may reflect high lignocellulolytic degradation activity in the goat rumen. 

For functional annotation, the ORFs were blasted against diverse databases. In total, 141,521 

ORFs were annotated. Typical eukaryotic COG categories, such as RNA processing and 

modification, chromatin structure were almost not represented in our data set (Fig. S4). This 

result supports again the observation that our metagenomic DNA extraction was highly 

enriched for bacterial DNA. 

The number of ORFs matching to each of the COG, eggNOG, KEGG, GO, CAZy, and Swiss-

Prot, databases were 37,007 (Fig. S4), 134,843; 56,751; 86,693; 7,898 and 33,471 ORFs, 

respectively. However, in this study we are specifically interested in gene functions related 

to carbohydrate metabolism. As such, 3,642 genes could be annotated to the COG category 

carbohydrate transport and metabolism, while 17,984 ORFs received this annotation with 

eggNOG. Moreover, a subset of this gene set (11,999 ORFs) could be identified to be 

involved in the carbohydrate metabolism category in KEGG. As expected, almost all genes 

annotated by CAZy databases (7,898 ORFs) were valuable for mining carbohydrate 

degrading enzymes. 
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2.4.2 Functional annotation showed an abundance of ORFs encoding putative 

enzymes/proteins for lignocellulose degradation 

The CAZy annotation exhibited mainly four kinds of catalytic domain related to carbohydrate 

degradations that comprised GHs (4,715 ORFs), glycosyl transferases (GTs: 1,956 ORFs), 

polysaccharide lyases (PLs: 229 ORFs), and carbohydrate esterases (CEs: 969 ORFs). The 

4,715 ORFs classified in GHs categories were divided into 65 GH families (Table 1). 

According to CAZy, within these families, 11 GHs belonged to cellulases (Table S2), 22 GHs 

belonged to hemicellulases (Table S3), and 32 GHs contain other activity domains. 

Unfortunately, no enzyme responsible for lignin-degradation, such as Mn-peroxidase or 

laccase, was found. An earlier study showed that the lignin degradation process in ruminants 

is usually limited in rumen, due to the anaerobic conditions (Susmel and Stefanon 1993). 

Microflora in animal rumen is constituted by facultative anaerobic bacteria (1–10 x 109 per 

ml) protozoa and fungi, however fungi are found to play a predominant role in lignin 

degradation (Kasuya et al. 2007; Susmel and Stefanon 1993), while bacteria and protozoa are 

responsible for the efficient degradation of cellulose and hemicellulose (Moreira et al. 2013; 

Susmel and Stefanon 1993). In addition, lignin was revealed to have a positive function in 

the rumen to help maintain the reservoir of buffering exchangeable cations for feed digestion 

(Moreira et al. 2013). 

Carbohydrate esterase families (CE and PL) are known to enhance lignocellulose 

pretreatment. The ORFs encoding these families were found in abundance in our data with a 

total of 821 ORFs. Most CEs were related to pectin esterase, only CE6 was suggested to be 

reductase and carboxylesterase. We identified 61 ORFs that contain both hemicellulase 

(GH10), as well as esterase (CE1), domains. In addition, another 19 ORFs encoded 

bifunctional domains. Within this group, 18 ORFs encoded both hemicellulase GH26 and 

esterase CE7, while 1 ORF encoded a protein with hemicellulase GH43 and esterase CE6 

domains (Table S4). The enzyme with a bifunctional domain may be useful for application 

because, at the same time, two activities can be synergistically exhibited simultaneously for 

improving the substrate degradation (Neddersen and Elleuche 2015). The ORFs divided into 

PL groups in this study mostly have catalytic domains for pectin degradation (Table S4). 
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Table 1. Summary of CAZy annotation of the genes from bacterial metagenomic DNA extracted from 

Vietnamese native goats’ rumen. 

Name ORFs Name ORFs Name ORFs Name ORFs Name ORFs Name ORFs 

CBM: 763 CE: 969 GH: 4,715 GH2 372 GH5 192 GT: 1,956 

CBM0 11 CE1 257 GH0 30 GH20 40 GH51 138 GT0 28 

CBM2 13 CE10 163 GH1 16 GH23 105 GH53 79 GT1 7 

CBM3 3 CE11 47 GH10 116 GH24 37 GH57 45 GT10 4 

CBM4 11 CE12 104 GH103 3 GH25 109 GH63 1 GT11 40 

CBM6 122 CE13 3 GH105 112 GH26 98 GH64 1 GT19 45 

CBM9 2 CE14 2 GH106 46 GH27 19 GH66 2 GT2 933 

CBM13 31 CE15 35 GH108 6 GH28 210 GH67 58 GT23 1 

CBM20 66 CE2 33 GH109 4 GH29 67 GH73 62 GT26 19 

CBM22 2 CE3 1 GH11 2 GH3 400 GH74 1 GT28 60 

CBM25 2 CE4 66 GH112 1 GH30 16 GH77 115 GT3 35 

CBM32 62 CE6 105 GH113 1 GH31 152 GH78 65 GT30 52 

CBM34 6 CE7 68 GH115 121 GH32 61 GH8 48 GT32 20 

CBM35 26 CE8 75 GH119 1 GH33 42 GH84 3 GT35 74 

CBM37 56 CE9 10 GH120 4 GH35 75 GH88 7 GT4 397 

CBM38 2 PL: 229 GH125 4 GH36 52 GH89 17 GT41 2 

CBM41 2 PL1 108 GH127 62 GH38 1 GH9 46 GT5 63 

CBM48 127 PL10 36 GH13 326 GH4 2 GH91 1 GT51 111 

CBM50 205 PL11 76 GH130 44 GH42 1 GH92 37 GT8 6 

CBM57 9 PL9 9 GH16 35 GH43 641 GH94 50 GT83 6 

CBM61 4   GH18 14 GH44 2 GH95 115 GT9 53 

CBM63 1   GH19 3 GH48 1 GH97 178   
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For cellulose degradation, the functional annotation has assigned 816 ORFs encoding 

cellulases, which were categorized in 11 GHs (Table S2). While, according to CAZy, GH16, 

GH5, GH8, GH9 were related to endoglucanase, GH3 was beta-glucosidase, and GH16 was 

suggested to be glucan endo-1,3-beta-D-glucosidase and licheninase. For hemicellulose 

degradation, after integration of COG, KEGG and GO annotated results, a total of 2,252 

ORFs were predicted to encode hemicellulases, including endo1,4-beta-xylanase, beta-

xylosidase, and 20 kinds of branching enzymes (Table S3). 

Besides the catalytic core, many of lignocellulases possess non-catalytic, but functionally 

important, domains for their activity. These domains include CBM, FN3, dockerins, Ig, and 

so-called unknown “X” domains. CBM has an affinity to an individual or bundled 

polysaccharide chains, as well as to single carbohydrate molecules. Thus, it anchors or directs 

host enzymes to targeted carbohydrate substrates (Guillén, Sánchez, and Rodríguez-Sanoja 

2010). In some cases, CBM exerts the ability to disrupt crystalline cellulose microfibrils to 

assist cellulase reactions (Ding et al. 2008; Wilson 2008). In this study, 763 ORFs harbouring 

domains of 21 types of CBM, including a CBM63 (which may possess expansin activity to 

disrupt the crystal structure of lignocellulose), were mined (Table S5). In this, 15 types of 

CBMs (480 ORFs) were collocalized with cellulase (9 ORFs), and hemicellulase domains 

(241 ORFs) (Tables S2 and S3). Interestingly, all CBMs collocated with endoglucanase 

catalytic domain and endo 1,3-beta-D-glucosidase catalytic domain, but never co-localized 

with beta-glucosidase domain (which accounted for ~50% predicted cellulases). This 

suggests that, during cellulose degradation, endoglucanase first opens up the cellulose 

structure and subsequently digests cellulose into cellobiose and other small polysaccharides. 

Apparently, this enzyme needs CBM for more affinity to the substrate to function more 

optimally. Overall, CBM domains presented in 10% ORFs encoded hemicellulases and 1% 

ORFs encoded cellulases. In a previous study, Dai et al. (2012) also described 10% of the 

plant cell wall-targeting GH proteins carrying a CBM. CBM4 and CBM22 have the capacity 

to bind to xylan and beta-1,3/beta-1,4-glucans, while CBM22 has a thermo-stabilizing effect 

for catalytic domains (Araki et al. 2006). Interestingly, CBM4 domain was identified in CE1, 

and CBM22 was collocated with CE3. In the group of hemicellulases having CBM domains, 

endo-1,4-betaxylanase accounted for 30.6% (23 ORFs). Thus, the presence of CBM domain 

is clearly associated with enzymes participating in the first step of lignocellulose degradation 

for enhancing the enzyme affinity to more effectively decompose substrate. 
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The fibronectin-3-like module is known to loosen up the cellulose surface, and may separate 

cellulose chains and expose additional sites of cellulose for hydrolysis by the covalently-

attached catalytic domain (Kataeva et al. 2002). In our study, 214 ORFs with FN3 domains 

were observed to be collocated with GH5 (1 ORF), and GH3 domains (213 ORFs for beta-

glucosidase) (Table S2). This is in agreement with the finding in a previous study that beta-

glucosidase did not harbour CBM but contained an FN3 domain (Sweeney and Xu 2012). 

Another previous study showed that bacterial FN3 sequences were identified only in 

extracellular matrix proteins (Kataeva et al. 2002). This suggests that many bacterial beta-

glucosidases are secreted into the goat’s rumen, playing an important role in the 

transformation of cellulose to glucose as a nutrient for the goat, rather than providing a carbon 

source for bacterial consumption. 

In this study, we also identified Ig domains (30 ORFs) responsible for stabilization and 

enhanced thermo-stability of collocated catalytic domains, accompanied by only GH9 

catalytic domains. This association is confirmed by another study, where Ig plays a vital role 

in activating GH9 enzymes (Kataeva et al. 2004). 

2.4.3 Comparison of metagenomic data from Vietnamese and Korean goats’ rumen in 

the emphasis of the ORFs for putative lignocellulases 

We compared ORFs data encoding cellulases to the data published by Lim et al. (2013), and 

found that the endoglucanase GH8 was present in both datasets in comparable abundance, 

while GH44 and GH48 were also present in both datasets, although at a low abundance (Fig. 

2) (Lim et al., 2013). This result may reflect the presence of a well-defined group of cellulase 

GHs that have evolved as a specific adaptation to the specific digestive circumstances in goat 

rumen. However, these two studies also differ considerably. For instance, GH9, GH44, and 

GH10 represent endoglucanases that were identified in both Korean and Vietnam goats’ 

rumen, although at a lower abundance (~1/2 times) in our sample. The same pattern is 

observed in the case of cellulase PF00150, where a 37 times greater abundance was identified 

in the Korean goat rumen as compared with the Vietnamese goat rumen. In contrast, GH5, 

which is responsible for endoglucanase, showed a 6.4 times greater abundance in the Vietnam 

data (Fig. 2). Some GHs were only observed in the Korean goat rumen data, but were absent 

in the Vietnamese goat rumen data. Whereas, many GHs for cellulase activity were observed 
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in the Vietnamese goat rumen sequences, but were absent in Korean goat rumen data. For 

instance, endoglucanase GH45 and cellobiose hydrolase (CBH) were identified only in the 

Korean goat rumen, with a total of 241 genes. Meanwhile, we observed 453 ORFs assigned 

to the families GH1, GH16, GH3, GH64, and GH74, and comprising endoglucanase, beta-

glucosidase, 6phospho-beta-glucosidase, beta-glucosidase-related glycosidase, cellobiose 

phosphorylase, glucan endo-1,3-betaD-glucosidase, and licheninase activities, only in the 

Vietnamese goat rumen data (Table S2, Fig. 2). Overall, the total genes annotated by the same 

databases (CAZy) for cellulases were 749 genes in our study and 687 genes in the Korean 

goat rumen data (Fig. 2). 

 

Figure 2: Comparison of modules located in lignocellulolytic enzymes in the metagenomic data of 

Vietnamese native goats rumen and Korean goats rumen. Carbohydrate-binding modules (CBM), 

glycoside hydrolases (GHs) for cellulases and hemicellulases, and other unfunctional domains located 

in lignocellulolytic enzymes annotated by CAZy and Interpro, that were observed only in the 

metagenomic data of Korean goats’ rumen (A) (Lim et al., 2013) or exhibited only in Vietnamese native 

goats’ rumen (B) and found in both metagenomic data of Vietnamese and Korean goat rumen bacteria 

(C). 
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The size of the Korean goat rumen data is 2.4 fold greater than the Vietnamese goat rumen 

metagenomic data. These results indicate that bacterial cellulase genes in the rumen of the 

Vietnamese native goats are more abundant than those in the Korean goats. In addition, in 

our study, some ORFs could not be annotated into the GH family, but were still predicted to 

have an activity linked to beta-glucosidase, cellulase M/endoglucanase, and endoglucanase. 

The total number of ORFs assigned from all databases for cellulases were 816 ORFs (Table 

S2). The difference in cellulase genes may lie in the bacterial sources. Several studies have 

provided evidence that the rumen microbiome can be influenced and shaped by the host 

genotype (An, Dong, and Dong 2005; Hess et al. 2011; Kittelmann and Janssen 2011; Nelson 

et al. 2003; Sundset et al. 2007), diet preference (Han et al. 2015; Tajima et al. 2001; Z. Zhu 

et al. 2014), as well as the habitat (Sundset et al. 2007). In the case of the host genotype, the 

Korean goats used for mining lignocellulase genes represent the Saanen hybrid line, and in 

this study we used genotypes derived from Co and Bach Thao hybrid lines. In general, these 

genotypes are omnivorous animals, feeding mainly on natural plants, leaves, agricultural 

waste such as straw, cornstalks, and sugarcane tops. However, we chose goats living in a 

mountainous area and feeding particularly on various plant and agriculture waste. 

Although the overall abundance of cellulase genes is comparable to the rumen data of 

Vietnamese and Korean goat rumen data, the distribution of specific GH enzymes differs 

considerably between the two studies. This supports the notion that effective hydrolyzation 

of cellulases in any lignocelluose-degrading ecosystem is highly diverse and cannot be linked 

to a specific group of catalytic domains represented by a defined set of enzymes (Hu et al. 

2013; M. Liu et al. 2013; Tiwari, Misra, and Sangwan 2013). 

According to the CAZy annotation, 22 GHs having hemicellulase activities were found 

(Table S3). However, only GH10 and GH26 were observed in both metagenomic data from 

Korean and Vietnamese goat rumen. Overall, the absolute number of genes belonging to 

GH10 and GH26 in Korean goat rumen data (~256 ORFs) was slightly higher than in 

Vietnamese goat rumen data (214 ORFs). In contrast, the other 20 GHs, which accounted for 

2,037 ORFs, were observed in our data but not described in the Korean dataset (Fig. 2). This 

suggests that bacteria in Vietnamese goat rumen adapted specifically to the digestion of 

diverse lignocellulose materials in the tree and dry crop residues, which may be harsher to 

digest when compared with digesting lignocellulose present in young leaves. 
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Of the 2,252 ORFs predicted to have hemicellulase activities, 20 kinds of branching enzymes 

were identified (Table S3). Remarkably, all the branching enzymes were absent in the Korean 

goat rumen dataset (Lim et al. 2013). The high abundance of hemicellulases in our 

metagenomic dataset may be explained by the specific diet requirements of Vietnamese 

native goat breeds. 

The CEs and PLs were not represented at all in the bacterial metagenomic data from Korean 

goats rumen (Lim et al. 2013), indicating that the present dataset from Vietnam goat rumen 

is more diverse in the number and function of genes. The number of CEs and PLs genes 

affiliated to Bacteroidetes were approximately 16 times higher than that affiliated to 

Firmicutes. Detailed results will be published in the future. 

The four most abundant CBMs (CBM6, CBM50, CBM48, CBM32) of the 21 CBM types in 

our data were also identified to be the four most abundant CBMs in cow rumen (Hess et al. 

2011). When comparing our data with data from Korean goat rumen (Lim et al. 2013), CBM2, 

CBM3, and CBM4-9 were identified in both datasets, but their abundance was much lower 

among the Vietnamese sequences. Other CBM domains (CBM5-12, CBMX-2, CBM11, 

CBM19) were completely lacking in our data. In contrast, 12 CBMs among 463 ORFs were 

annotated only in the Vietnamese dataset. In total, 510 ORFs were annotated in our data, 

which was threefold higher compared with the CBM-containing genes in the Korean dataset 

(162 genes) (Fig. 2). Bacterial expansin is usually found in strains belonging to Bacillus 

subtilis (Kerff et al. 2008) and Hahella chejuensis (H. J. Lee et al. 2010), which are involved 

in disrupting the crystal structure of lignocellulose, enabling other cellulases to further 

depolymerize the liberated polysaccharides. After an extensive search in our data, we found 

only one gene for expansin that was annotated to be CBM63 according to CAZy. Finally, it 

is worth mentioning that expansin was not identified and described in Korean goat rumen 

(Lim et al. 2013), again indicating the more diverse and rich content of the Vietnamese goat 

rumen microbiome. 

In agreement with the previous study in goat rumen, dockerin type I was only annotated in 

GH9, supporting previous observations (Borne et al. 2013; Hirano et al. 2015; Lim et al. 

2013). Dockerin type I only exists in cellulosome modularity (Borne et al. 2013; Hirano et 

al. 2015). The low abundance of dockerin type I in this sample indicates that a cellulosome 

structure is not established in the Vietnamese goat rumen microbiome. This is supported by 
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the fact that we also did not find any cohensin, dockerin type II in this data, which is essential 

for cellulosome assembly. 

In Korean goat rumen metagenomic data, no clear correlation was found between FN3 and a 

specific catalytic domain (Lim et al. 2013). 

2.4.4 Expression of CBM63 for preliminary confirmation of annotated results 

With regard to the confirmation of functional annotated results of the genes from 

metagenomic data, a nucleotide sequence of 777 bp encoding for mature CBM63 was 

expressed in E. coli. By MEGAN analysis, the CBM63 was assigned to be originated from 

Ruminococcus flavefaciens. 

 

Figure 3: Expression of CBM63 protein in E. coli. SDS-PAGE analysis of purified CBM63 from 

recombinant E. coli extract (A), and assessment of CBM63 ability to enhance cellulase activity by DNS 

method (B). M: Standard proteins (Fermentas). 

In the amino acid sequence, CBM63 was the most closely identical with expansin of 

Clostridium sp Marseille-P2415 NCBI (WP_077613372.1, 45%) and Bacillus atrophaeus 

NCBI (WP_061669738.1, 43%). CBM63 also possesses a conserved catalytic domain of 

endoglucanase at the C terminus. In E. coli, a substantial part of the expressed CBM63 (30 

kDa) was soluble and highly accumulating in E. coli cells. The recombinant protein was 

successfully purified by His-tag affinity column (Fig. 3). The purified and desalted CBM63 

did not exhibit endoglucanase activity to digest CMC but was capable of significantly 

enhancing commercial cellulase activity to convert filter paper (a typical crystal 

lignocellulose) into reducing sugars as detected by DNS reagent. 
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With the purpose of confirming the functional annotated results of the genes from 

metagenomic data, Hess et al. (2011) mined 27,755 putative carbohydrate-active genes from 

cow rumen’s metagenomic data and expressed 90 candidate proteins which had an amino 

acid sequence identity to known carbohydrate-active proteins ranging from 26% up to 96%. 

They discovered that 57% recombinant proteins exhibited enzymatic activity. There was no 

link between enzymatic activity with the degree of amino acid sequence identity (Hess et al. 

2011). In agreement with this study, we also expressed seven other cellulose-, hemicellulose-

, pectin-active genes in E. coli, of which five showed enzymatic activities and the remaining 

enzymes were expressed at too low a level (data will be published elsewhere). This indicates 

that the majority of mined genes possess actual activity. 

In conclusion, we were able to annotate a wide diversity of hemicellulase genes that are 

associated with CBMs in our samples. We also observed CBMs located in cellulases and 

enzymes for lignocellulose pretreatment, but to a much lesser extent. The FN3 domain was 

in high abundance and showed a clear association with GH3, while the Ig domain was more 

linked to GH9. This resource will be highly useful, when recombinant enzyme assays are 

needed to be applied as cocktail enzymes to accomplish a more optimal industrial degradation 

of lignocellulose. 
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Figure S1: Goat breed Co (A) and Bach Thao (B) in Ninh Binh, Thanh Hoa, Vietnam 

 

 

 

Figure S2: Bioinformatics pipeline for analysis of metagenomic DNA data of bacteria extracted from 

Vietnamese native goats' rumen. 
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Figure S3: Length distribution of the optimal assemblies. The horizontal axis corresponds to the contig 

length, and the vertical axis corresponds to the contig number 
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Figure S3: Length distribution of the optimal assemblies. The horizontal axis corresponds to the contig 

length, and the vertical axis corresponds to the contig number 
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Table S1: Illumina’sHiSeq sequencing and SOAPdenovo2 assembly metrics of the bacterial 

metagenomic DNA in the rumen of goats collected in Vietnam. 
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Table S2: Inventory of putative genes encoding cellulolytic enzymes annotated by CAZy, COG, 

KEEG databases in Vietnamese native goats' rumen. 
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Table S3: Inventory of putative genes encoding hemicellulolytic enzymes annotated by CAZy, COG, 

and KEEG databases in Vietnamese native goats' rumen. 
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Table S4: Inventory of putative genes for the enzymes involved in lignocellulose pretreatment, 

annotated by CAZy, KEEG, COG, and GO databases in Vietnamese native goats' rumen. 
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Table S5: Inventory of putative genes encoding carbohydrate-binding model (CBM) annotated by 

CAZy in Vietnamese native goats' rumen. 
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3.1 Abstract 

The microbiome associated with an animal’s gut and other organs is considered an integral 

part of its ecological functions and adaptive capacity. To better understand how microbial 

communities influence activities and capacities of the host, we need more information on the 

functions that are encoded in a microbiome. Until now, the information about soil 

invertebrate microbiomes is mostly based on taxonomic characterization, achieved through 

culturing and amplicon sequencing. Using shotgun sequencing and various bioinformatics 

approaches we explored functions in the bacterial metagenome associated with the soil 

invertebrate Folsomia candida, an established model organism in soil ecology with a fully 

sequenced, high-quality genome assembly. Our metagenome analysis revealed a remarkable 

diversity of genes associated with antimicrobial activity and carbohydrate metabolism. the 

microbiome also contains several homologs to F. candida genes that were previously 

identified as candidates for horizontal gene transfer (HGT). We suggest that the 

carbohydrate- and antimicrobialrelated functions encoded by Folsomia’s metagenome play 

a role in the digestion of recalcitrant soilborn polysaccharides and the defense against 

pathogens, thereby significantly contributing to the adaptation of these animals to life in the 

soil. Furthermore, the transfer of genes from the microbiome may constitute an important 

source of new functions for the springtail. 

3.2 Introduction 

Microorganisms inhabit every type of environment, and many live in association with 

eukaryotic hosts. These microbes can influence their host’s ecology and evolution by 

contributing to a variety of processes such as digestion, immunity, and protection from 

pathogens (Engel and Moran 2013). Hexapods are good models to study host-associated 

microorganisms: they constitute the most diverse and abundant group of eukaryotic 

organisms on earth, and in many cases the establishment of specific microbial symbioses may 

have provided the key for their evolutionary success. Some hexapods depend on microbial 

symbionts for nutritional or defensive purposes (Douglas 2016; Kroiss et al. 2010), 

suggesting that a good understanding of their biology should include the study of their 

associated microbes. This has been described as a “new imperative for the life sciences” 

(McFall-Ngai et al. 2013). 
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The majority of microorganisms is not accessible through traditional culturing techniques 

(Rappé and Giovannoni 2003) and metagenomic sequencing is an appropriate tool to study 

the diversity of species and functions of microbes in different ecosystems (Streit and Schmitz 

2004). Metagenomics of insect-associated microbial communities has provided important 

insights in the interactions between microorganisms and their hosts, including the discovery 

of metabolites with potential biotechnological applications. For example, metagenomics of a 

termite’s gut microbiota has elucidated the mechanisms underlying wood degradation in this 

environment, while also identifying bacterial enzymes with interesting hydrolytic functions 

(Warnecke et al. 2007). Other studies have found that microbial symbionts of insects are 

important sources of novel antimicrobials (Lin Wang et al. 2015). 

The springtail Folsomia candida Willem 1902 (Hexapoda: Collembola) is a small 

invertebrate living in soil environments, where it feeds on fungal hyphae, decaying organic 

material and microorganisms. This species is a commonly used test organism in 

ecotoxicology and in ecogenomics (Fountain and Hopkin 2005) and recently its genome and 

transcriptome have been sequenced (Faddeeva-Vakhrusheva et al. 2017). Approximately 

2.8% of the genes in the genome of F. candida are of foreign origin, having been acquired 

from bacteria and fungi through HGT (Faddeeva-Vakhrusheva et al. 2017). Many of these 

genes are involved in carbohydrate metabolism, specifically in cell wall degradation; these 

functions may aid the animal in extracting nutrients from polysaccharides resulting from the 

degradation of plant and fungal biomass in the soil. In addition, several foreign genes are 

involved in antibiotic biosynthesis (Roelofs et al. 2013; Suring et al. 2017). These genes are 

strongly induced by stress exposure (Nota et al. 2008; Suring et al. 2016) and it is 

hypothesized that they may be involved in regulating the composition of gut microbial 

communities in F. Candida (Thimm et al. 1998), or in protecting the springtails from 

pathogens. In fact, F. candida has been shown to be non-susceptible to some microbial 

pathogens present in soil environments (Broza, Pereira, and Stimac 2001; Dromph and 

Vestergaard 2002). 

Recently, we have shown that bacteria isolated from this springtail display inhibitory activity 

against a variety of pathogens, including entomopathogenic soil fungi (V. Agamennone et al. 

2018). This suggests that the microbiota associated with F. candida may be a source of 

antimicrobial compounds, most likely involved in regulatory and defensive functions. 

Similar mechanisms have been observed in the honey bee: here, symbiotic lactic acid bacteria 
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(LAB) active against transient environmental microbes are suggested to play an important 

role in the establishment and maintenance of a normal gut microbiota through the production 

of various antimicrobial agents (Vásquez et al. 2012). Furthermore, the gut microbiota of F. 

candida may be involved in the breakdown of dietary component and in the uptake of 

nutrients. A nutritional role of gut microorganisms has been described for many other 

invertebrates and animals in general (Valdes et al. 2018; Engel and Moran 2013). Even 

though the exact role of the gut microbiota in F. candida and its potential nutritional and 

defensive functions still need to be elucidated, we suggest that gut bacteria are an important 

factor interacting with the springtail, and that they provide physiological traits advantageous 

to thrive in a microbe-dominated environment such as the soil. 

In this paper, we provide the first functional description of the gut bacterial community of a 

springtail based on a whole-metagenome sequencing approach. We hypothesize that the gut 

microbiome may aid in nutrient uptake and pathogen defense of F. Candida (Engel and 

Moran 2013), thereby optimizing the fitness of the host. Furthermore, both functions are of 

potential interest for biobased applications: we identified a number of enzymes involved in 

lignocellulose break down and encoding compounds with predicted antimicrobial activity. 

Aside from constituting beneficial traits for an animal living in the soil environment, these 

functions may also represent good targets for drug discovery and for the development of 

biotechnological applications. Using a comparative analysis between genes of the gut 

microbiome and foreign genes in F. candida, we have identified functions possibly 

assimilated by the host through HGT. 

3.3 Materials and Methods 

3.3.1 Test organism 

Folsomia candida individuals originated from a laboratory stock culture (“Berlin strain” VU 

University Amsterdam) that was originally established from specimens sampled in the field, 

and then maintained in stable laboratory conditions for several years. Springtails were 

cultured in plastic boxes with a bottom of plaster of Paris and charcoal. Cultures were kept 

in climate rooms at 20°C temperature, 75% humidity and a 12 hour light-dark cycle. The 

springtails were fed dry baker’s yeast (Dr. Oetker, Bielefeld, Germany), and they were 

starved for 2 days prior to DNA isolation. 
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3.3.2 Sample preparation and DNA isolation 

DNA was isolated from four different source samples. Two samples (Fc1 and Fc3) consisted 

of guts dissected from F. candida individuals; one sample (Fc4) consisted of whole 

springtails; one sample (Fc2) consisted of a mixture of whole animals and dissected guts. 

Dissected guts were rinsed in sterile PBS and whole springtails were rinsed three times in 

sterile water before processing. After the washing steps, DNA was directly isolated from two 

of the samples (Fc3 and Fc4) while additional steps were applied to prepare samples Fc1 and 

Fc2. For these two samples, we separated bacterial cells from F. candida’s cells by using the 

method described by Engel, Martinson, and Moran 2012, with modifications. The samples 

were crushed in PBS in a 1.5 ml microcentrifuge tube, using a plastic pestle. The samples 

were then gently vortexed, to encourage separation of cells, before being passed through 20 

µm and 8 µm filters in succession. The filtered samples were centrifuged at 10 000 g for 30 

min to harvest cells, and the pellet was resuspended in 200 µl TE buffer. For sample Fc2, an 

additional step with a density gradient was applied. An 80% Percoll solution in 0.15 mol l−1 

NaCl was prepared. 1 ml of this solution was placed in a 2 ml microcentrifuge tube and spun 

at 20,000 g for 20 min to create a gradient. The 200 µl of TE buffer containing the cells was 

gently placed on top of the gradient, and the tube was centrifuged at 400 g for 20 min. 

Bacterial cells were then visible as a band and were collected using a pipette. The cells were 

centrifuged at max speed for 5 min and washed with TE buffer to remove residual Percoll 

solution. DNA was extracted from all samples using the PowerSoil DNA Isolation Kit 

(MOBIO Laboratories Inc., Carlsbad, CA, USA) and quantified using a Qubit 2.0 

(Invitrogen, Carlsbad, CA, USA). 

3.3.3 Library preparation and sequencing 

Metagenomic libraries for the four samples were prepared using the TruSeq Nano DNA 

Library Preparation Kit (Illumina Inc., San Diego, CA, USA) with the following 

modifications. First, genomic DNA (250 ng) was sheared in a Covaris S2 (Covaris Inc., 

Woburn, MA, USA) with the following settings: duty cycle 10%, intensity 5.0, bursts per 

second 200, duration 300 s, mode frequency sweeping, power 23 W, temperature 5.5°C to 

6°C. Fragmented DNA was cleaned using Agencourt AMPure XP beads (Beckman Coulter 

Inc., Brea, CA, USA) to remove short fragments. After end repair, cleaning was performed 

again to select the appropriate library size (180 bp). Then, 3′ end adenylation and adapter 
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ligation were performed, and the ligated fragments were subjected to two rounds of clean-

up. PCR was used to enrich the ligated DNA fragments. The PCR program started with 3 

min at 98°C, followed by eight amplification cycles (20 s at 98°C, 15 s at 60°C and 30 s at 

72°C) and a final extension step of 5 min at 72°C. The amplified library was cleaned and its 

quality was assessed with a Bioanalyzer on a DNA 7,500 chip (Agilent Technologies, Santa 

Clara, CA, USA). Finally, libraries were equimolarly combined and the concentration of the 

final pool was checked using a High Sensitivity DNA chip. 10 pmol of barcoded DNA was 

sequenced on an Illumina HiSeq 2,500 using 125 base, paired end run mode. 

3.3.4 Data analysis 

Raw reads of the four samples obtained from the sequencer were trimmed using 

Trimmomatic version 0.36 (Bolger, Lohse, and Usadel 2014) to remove adapters and low 

quality reads, with the following options: ILLUMINACLIP:TruSeq3-PE. fa:2:30:10, 

LEADING:3, TRAILING:3, SLIDINGWINDOW:4:20, MINLEN:36. Metaphlan2 was used 

to characterize the taxonomic profile of the metagenome (Truong et al. 2015). Bowtie2 

(Langmead and Salzberg 2012) was used to create reference genomes for Folsomia candida 

(BioProject accession: PRJNA299291) (Faddeeva-Vakhrusheva et al. 2017), Wolbachia 

pipientis (BioProject accession: PRJNA300838) (Faddeeva-Vakhrusheva et al. 2017), 

Saccharomyces cerevisiae (Assembly accession: ASM105121v1) and Homo sapiens 

(Assembly accession: GRCh38. p7), and to align and identify reads originating from these 

organisms in the metagenome. SAMtools was used to remove the reads aligned to the 

reference genomes of the above mentioned organisms from the metagenome. This program 

was also used to merge all the four sequencing samples together for comprehensive 

bioinformatic analysis (Heng Li et al. 2009). Only paired ends were extracted with Bedtools 

(Quinlan and Hall 2010). FastQC (Andrews and others 2010) was used to check the quality 

of the reads at different processing stages. Assembly was done using SPAdes version 3.9.0 

with the (–meta) setting for metagenomic and k-mer values 21, 41, 65, 75, 87, 91, 95. This 

range of K-mer was found to give the best assembly result (Bankevich et al. 2012). The 

quality of contigs was checked with Quast 4.2 (Gurevich et al. 2013). Prodigal (version 2.6.3) 

was used for genes prediction with the option -m -p meta for predicting metagenomic genes 

with no gaps (Hyatt et al. 2010). Taxonomic assignment was done using Metaphlan2. The 

predicted proteins were uploaded to GhostKOALA webservice for KEGG assignment 
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(Kanehisa, Sato, and Morishima 2016). For functional annotation, blastp was performed 

against the Swiss-Prot, refseq and NR databases, with a threshold e-value of 1e-6. 

InterProScan5 was used with the addition of panther database to identify protein domains 

using HMM model (Quevillon et al. 2005). Blast2GO was used to integrate the blastp and 

interproscan results for further improving functional annotation (Götz et al. 2008). HMMER 

version 3.0 was used with CAZy database (version 6) using HMM model to identify 

carbohydrate-active genes (Lombard et al. 2014). These genes were subjected to filtering 

using an e-value threshold of 1e-5 for alignments over 80aa, and a threshold of 1e-3 for 

shorter alignments. The CARD database was used to identify resistance genes (B. Jia et al. 

2017). All the amino acid sequences of anti-resistance proteins were merged and subjected 

to blastp with a threshold e-value of 1e-6. All the sequences with more than 60% identity 

with their top blast hit were collected. Descriptions of the ARO terms was obtained from the 

online database (https://card.mcmaster.ca/). The KEGG, Pfam and NR databases were used 

to confirm the accuracy of the functional annotations obtained with CAZY and CARD. 

Secondary metabolite biosynthetic gene clusters were identified for contigs larger than 3 000 

bp using the antiSMASH2 program (Weber et al. 2015). To identify homologies and 

orthologies between the genome of F. candida and the metagenome, a reciprocal blast was 

performed. The metagenomic protein sequences were blasted against the host proteins, and 

vice versa. Sequences that were top hits of each other were extracted using a homemade 

script, and those matching F. candida’s foreign genes were identified (Faddeeva-

Vakhrusheva et al. 2017). For a detailed explanation of the methods used to identify the 

foreign genes within the genome of the springtail, we refer to the publication from Faddeeva-

Vakhrusheva et al. 2017. Phyre2 was used to predict the structure of the protein of the best 

reciprocal blast hits (L. A. Kelley et al. 2015). 

3.3.5 Data deposition 

The raw sequencing data was deposited in NCBI’s Sequence Read Archive (SRA) under 

accesison number SRP149127. The Whole Genome Shotgun (WGS) project was deposited 

at DDBJ/ENA/GenBank under accession number QIRE00000000. The version described in 

this paper is version QIRE01000000. 
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3.4 Results 

3.4.1 Sequencing results, assembly and annotation 

Table 1 summarizes the sequencing results by indicating, for each sample, the preparation 

method used and the number of raw and filtered reads obtained. Approximately 90% of the 

reads passed the trimming step. Most of these reads (more than 97%) originated from the 

host Folsomia candida, and were removed during the next filtering step along with reads 

from Wolbachia pipientis, Saccharomyces cerevisiae (used as food source for F. candida, 

and therefore likely to contaminate the genomic libraries) and human DNA. The proportion 

of reads of prokaryotic origin was slightly higher in dissected gut samples compared to whole 

springtail samples (compare sample Fc3 to Fc4), and it was much higher in samples treated 

with the cell-separation method compared to untreated samples (compare sample Fc2 to Fc4, 

and Fc1 to Fc3). When combining dissection and cell-separation, the proportion of 

prokaryotic reads increased by a factor 5 (compare sample Fc1 to Fc4). The lowest proportion 

of Wolbachia was observed in the FC3 sample (untreated dissected guts). 

Table 1. Preparation method and number of raw and filtered reads obtained for each sample. For 

each sample, the number of raw reads and the numbers of reads surviving each processing step is 

indicated. The percentages in bracket indicate the numbers of reads after each step relative to the 

number of raw reads. 

Sample 

ID 

Sample type Sample 

preparation 

method 

Raw reads Reads after 

trimming 

Reads after 

bowtie 

Filtered 

reads 

Fc1 Dissected guts (1 000) Filter and DNA 

isolation 

138,555,106 121,428,759 

(87.6%) 

3,605,008 

(2.6%) 

5,806,361 

(1.23%) 

Fc2 Whole springtails (300) 

and dissected guts (400) 

Filter + Percoll 

and DNA 

isolation 

133,586,006 116,187,374 

(87%) 

1,811,553 

(1.36%) 

Fc3 Dissected guts (250) Direct DNA 

isolation 

103,864,717 93,503,412 

(90%) 

535,052 

(0.52%) 

Fc4 Whole springtails (60) Direct DNA 

isolation 

94,686,416 84,746,773 

(89.5%) 

372,193 

(0.39%) 
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A total of 5,806,361 high quality paired reads were used for assembly, which resulted in 

107,138 contigs with a total length of 69 Mb (Table 2). Prodigal predicted 147,851 protein-

coding sequences (CDSs), 133,594 of which were annotated in Swiss-Prot (Supplementary 

File 1). 132,657 genes (99%) were of bacterial origin, 665 genes were annotated as 

Eukaryota, 209 as viruses, 33 as Archaea, 30 as vectors or uncultured microorganisms and 

14,257 were unassigned. Supplementary Fig. 1 shows the length distribution of the contigs. 

The 20 longest contigs (more than 100,000 bp each) were assigned either to Pseudomonas or 

Microbacterium. 

Table 2. Results of assembly and annotation. N50 = the size of the contig that, together with the larger 

contigs, contains 50% of the total metagenome length; N75 = the size of the contig that, together with 

the larger contigs, contains 75% of the total metagenome length; L50 = number of contigs whose 

summed length is 50% of the metagenome size; L75 = number of contigs whose summed length is 75% 

of the metagenome size. 

Number of contigs 107,138 

Largest contig (bp) 1,306,495 

Total length 69,108,988 

N50 2,514 

N75 853 

L50 1,835 

L75 10,181 

GC% 60.2% 

Gene count 147,851 

Genes with function prediction 133,500 

 

3.4.2 Taxonomic classification 

The dominant bacterial taxa in the metagenome of F. candida were Proteobacteria (50% of 

the reads), Actinobacteria (32%), Bacteroidetes (12%) and Firmicutes (6%) (Fig. 1). These 

phyla constituted 99.5% of all the reads. 35 additional phyla were found in the remaining 

0,5% of reads. 826 bacterial genera (excluding singletons) were identified. 23 of these genera 
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covered 83% of the reads. The most abundant genus was Microbacterium (Actinobacteria, 

13.1% of the reads), followed by Paraburkholderia (Betaproteobacteria, 7.2%), 

Pseudomonas (Gammaproteobacteria, 6.3%), Staphylococcus (Firmicutes, 5.6%), 

Sphingopixis (Alphaproteobacteria, 5.5%), Stenotrophomonas (Gammaproteobacteria, 

5.4%), Pseudoxanthomonas (Gammaproteobacteria, 5.4%), Gordonia (Actinobacteria, 

4.1%), Burkholderia (Betaproteobacteria, 3.4%) and 14 other genera each with a relative 

abundance higher than 1%. The overview of the identified taxonomic groups at the phylum, 

class and genus level is give in Supplementary Fig. 2. 

 

Figure 1: Phylogenetic distribution of the bacterial community in the metagenome of F. candida. The 

size of the circles is proportionate to the abundance of the taxa. The phylogeny was built based using 

Metaphlan on high quality raw reads. 

3.4.3 Overall functional analysis 

Comparison of the genes with the KEGG database recovered a number of functions. The 

most abundant functional categories were associated with membrane transport, signal 
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transduction, carbohydrate and amino-acid metabolism, and the genetic information 

processes replication and repair and translation (Fig. 2A).  

 

 

Figure 2: Functional annotation. (A) Detailed representation of the functional classes belonging to six 

main functional categories. (B) Functions mapped on the phylogenetic tree. The heights of the bars 

represent the numbers of kegg terms found for each bacterial species and for each functional category, 

in proportion to the width of the rings surrounding the taxonomic tree. A bar as high as the ring 

represents 50 kegg terms. 
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Mapping of the functions on the phylogenetic tree shows that most predicted genes within 

any functional category are assigned to few bacterial species, namely the Proteobacteria 

Acinetobacter johnsonii, A. lwoffii, Pseudomonas stutzeri, Paraburkholderia phytofirmans, 

Azoarcus toluclasticus, Sphingopixis alaskensis, the Actinobacteria Gordonia araii, 

Cutibacterium acnes and three Propionibacterium species, and the Firmicutes 

Staphylococcus equorum (Fig. 2B). The next sections present the functions related to 

carbohydrate metabolism, secondary metabolite production and antibiotic resistance 

identified in F. candida’s microbiome. 

3.4.4 Carbohydrate metabolism 

Carbohydrate metabolism was investigated by comparing predicted genes in F. candida’s 

microbiome with the carbohydrate-active enzymes (CAZY) database. 2,004 genes were 

predicted to code for enzymes involved in carbohydrate metabolism. 1,988 (99.2%) of these 

genes were of bacterial origin and they mostly originated from Proteobacteria (43%) and 

Actinobacteria (36%). The complete list of CAZymes is presented in Supplementary File 2, 

and an overview of the identified pathways involved in starch and sucrose metabolism is 

given in Supplementary Fig. 3.  

 

Figure 3: Column chart indicating the distribution of Carbohydrate Active EnZyme (CAZy) domains 

among the bacterial phyla retrieved in the metagenome. CBM: carbohydrate-binding module; CE: 

carbohydrate esterase; GH: glycoside hydrolase; GT: glycosyltransferase; AA: auxiliary activity; PL: 

polysaccharide lyase. 
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The carbohydrate-related genes were assigned to five CAZy classes and three modules (Fig. 

3). 664 genes were identified as glycosyltransferases (GT, 33.1% of the total), 598 as 

glycoside hydrolases (GH, 30%), 420 as carbohydrate esterases (CE, 21%) and 206 as 

carbohydrate-binding modules (CBM, 10.1%). The GT, GH and CE CAZymes classes were 

overrepresented in the metagenome compared to the genome of F. candida (data not shown). 

Instead, enzymes with a carbohydrate-binding module (CBM) were more abundant in the 

genome of the host. 23 of the genes encoding carbohydrate-active enzymes had a best 

reciprocal blast hit against foreign genes in the genome of F. candida. 

3.4.5 Secondary metabolites 

We screened the gut microbiome for the presence of secondary metabolite biosynthesis 

pathways related to antimicrobial activity. In total, 166 pathways were identified, 96 of which 

are putatively involved in the production of an unknown type of secondary metabolite 

(Supplementary Table 1). 32 pathways are related to saccharide or fatty acid-containing 

metabolites, and one cluster showed similarity to metabolites with both a saccharide and fatty 

acid component. Thirteen clusters are represented by non-ribosomal protein synthases 

(NRPS), which encode multi-domain and multifunctional enzymes involved in the 

biosynthesis of a large class of biologically active natural products. Another group of 

ribosomally-synthesized antimicrobial peptides, bacteriocins, are represented by four 

biosynthetic clusters. We also identified known antibiotics classes among the antismash 

clusters, namely rifamycin, spectinomycin, chalcomycin, and the antifungal bacillomycin. 

3.4.6 Antibiotic resistance 

Predicted genes were mapped against the CARD database to determine the occurrence of 

antibiotic resistance genes (ARGs) in the gut microbiome of F. candida (B. Jia et al. 2017). 

The analysis recovered 811 genes, corresponding to 209 unique terms in the CARD database. 

Figure 4 provides an overview of the identified antibiotic resistance mechanisms and of the 

drug classes to which resistance is conferred. The complete list of genes with accession and 

classification in CARD is provided in Supplementary File 4. Most antibiotic resistance 

mechanisms retrieved involved antibiotic target alteration (52%), followed by efflux 

processes (33%) and antibiotic target replacement (8%). The most abundant class of 

antibiotics associated with resistance was that of fluoroquinolones (16%), followed by 
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aminocoumarins (10%), peptide antibiotics, lipopeptide antibiotics and tetracyclines (9% 

each), macrolides, beta-lactams and rifamycin (5% each). Several classes of ARGs involved 

in resistance to clinically relevant antibiotics, such as β-lactams and tetracycline, were 

identified (Figs 4 and 5). 

 

Figure 4. Overview of the drug mechanisms (left) and classes (right) associated with antibiotic 

resistance recovered in the metagenome of F. candida. The data was obtained by mapping predicted 

genes against the CARD database (B. Jia et al. 2017) and by extracting the “resistance mechanism” 

and “drug class” categories from the results. 

 

Figure 5: Genes from the F. candida’s metagenome predicted to be involved in β-lactam resistance are 

represented as colored items in KEGG’s β-lactam resistance pathway. The pathway map was obtained 

from the KEGG database (Kanehisa et al. 2019). 
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3.4.7 Host-microbiome interaction and horizontal gene transfer 

A reciprocal blast was performed between the proteins in the F. candida genome and the 

predicted protein sequences in the metagenome, to identify orthologies between the 

springtails’ genome and metagenome. The list of best reciprocal blast hits was then compared 

with the list of 809 horizontally transferred genes in the genome of F. candida. We 

hypothesize that the identified orthologs between gut microbiome and the host genome have 

undergone HGT from the gut microbiome into the host genome. 

 

Figure 6. Venn diagram showing overlap (best-reciprocal blast hits) between proteins from F. 

candida’s genome (light-blue) and proteins from its gut microbiome (green). The red circle contains 

the horizontally transferred genes, and the number in red indicates the overlap with the gut microbiome. 

Within the gut microbiome, 1,204 predicted protein sequences showed a best reciprocal blast 

hit with predicted protein sequences in the host genome. Most of these genes are involved in 

basic metabolic functions that are highly conserved across most life forms, such as 

transcription, translation, fatty acid metabolism, chaperone activity, amino acid biosynthesis, 

nucleic acid biosynthesis and ATP biosynthesis. Of these 1,204 genes, 113 had a best 

reciprocal blast hit against one of the 809 foreign genes in F. candida (Fig. 6). The complete 

list of these 113 genes is given in Supplementary File 5. Taxonomic and functional annotation 

suggests that Pseudomonas, Microbacterium and Gordonia may be the potential donors of 

26, 12 and 9 genes respectively, jointly accounting for almost 50% of them (Supplementary 

File 5). 

Annotation analysis showed that 23 of the 113 genes are CAZymes. Supplementary Fig. 4 

shows the predicted protein structures of both the metagenomic read and the animal contig 
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for the top three reciprocal blast hits, corresponding to a glycosidase, an arabinosidase, and 

an isocitrate lyase. We also identified a non-ribosomal peptide synthase potentially involved 

in bacteriocin synthesis, one polyketide synthase and several enzymes associated with 

detoxification (monooxygenases ABC transporters, gluthatione-S-transferases, and copper 

oxidase). Most of the 71 remaining annotated genes are related to basic metabolic processes. 

Because we did not conduct gene expression analysis on the gut microbiome, we are currently 

unable to verify whether these genes are transcribed and thus functional in the microbial 

community. 

3.5 Discussion 

In this study, we applied both dissection and a cell separation method to enrich the bacterial 

fraction of springtail samples, with the aim of increasing the proportion of bacterial reads 

after sequencing. The cell separation method was developed by Engel, Martinson, and Moran 

2012 and it was more effective than dissection when applied to F. candida. Although 

dissection normally helps to effectively target the microbial component (Gontang et al. 2017), 

this may be more complicated in microarthropods such as springtails because of their small 

size. A combination of dissection and cell separation method proved to be most effective in 

increasing the proportion of prokaryotic reads. Still, more than 97% of the reads in any 

sample belonged to the host Folsomia candida: recovery of genetic material from symbiotic 

microorganisms can be problematic in microhabitats such as insect guts, due to the much 

higher abundance of host DNA (Paula et al. 2016). 

Wolbachia can dominate the bacterial population in F. candida (Valeria Agamennone et al. 

2015). By discarding organs containing high amounts of Wolbachia (brain and ovaries), 

dissection should be effective in reducing the occurrence of the endosymbiont in the samples. 

Indeed, sample FC3 (consisting of guts obtained through dissection) had the lowest 

proportion of Wolbachia reads. Cell separation is also expected to reduce the amount of 

Wolbachia DNA in the samples. Because of its intracellular location (gut epithelium, ovaries 

and brain), a method that separates the eukaryotic cells from the prokaryotic ones without 

lysing them should be effective in reducing the amount of host and Wolbachia DNA in the 

same step. However, in this study, a combination of dissection and filtering resulted in an 

increased amount of Wolbachia reads (9.26% in sample FC1 vs 3.03% in sample FC2). 

Because of the difference in size between prokaryotic genomes and the host genome 
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(resulting in sequencing biases), and because of possible lysis of host cells during the 

treatment of samples FC1 and FC2, resulting in the release of Wolbachia cells, it is difficult 

to conclude whether filtering was an effective strategy to reduce the representation of the 

endosymbiont in the metagenomic dataset. 

The number of contigs and the total length after assembly are comparable to other soil 

invertebrate-associated metagenomes (Suen et al. 2010; Cheng et al. 2013; He et al. 2013). 

Although this was not attempted here, it may be possible to recover the genome of one or 

more species using the data collected in this study (Sangwan, Xia, and Gilbert 2016). 

With 826 bacterial genera identified, the level of diversity in F. candida approaches that 

described in the hindgut of termites, wood-feeding insects that have one of the most complex 

microbiota of any animal group (Bourguignon et al. 2018). Other soil invertebrates are 

characterized by comparable or even higher levels of microbial diversity. For example, Pass 

et al. 2015, studied the microbiome of the earthworm Lumbricus rubellus and found no less 

than 9,120 host-specific OTUs. This very diverse community was dominated by 

Proteobacteria and Actinobacteria, very similar to the situation in F. candida. High diversity 

was also observed in the gut of two cockroach species, with approximately 1,000 OTUs 

(Berlanga et al. 2016), whereas slightly lower counts were detected in the ant Cephalotes 

varians (445 OTUs), in the compost worm Eisenia fetida (338 OTUs) and in the isopod 

Armadillidium vulgare (153 OTUs) (Kautz et al. 2013; D. Liu et al. 2018; Dittmer et al. 

2016). 

The bacterial community in F. candida was dominated by Proteobacteria species, and within 

this group the Gammaproteobacteria were particularly abundant (21% of the reads). 

Proteobacteria, a large taxon of functionally diverse bacteria, dominate the microbiome of 

terrestrial insects and other soil invertebrates such as earthworms, nematodes and isopods 

(Pass et al. 2015; Yun et al. 2014; Esposti and Romero 2017; M. Berg et al. 2016; Bouchon, 

Zimmer, and Dittmer 2016). Pseudomonas, one of the most abundant bacteria detected in F. 

candida, is commonly found in the microbiome of soil invertebrates like termites, ants and 

beetles, isopods and nematodes, as well as in their environment (D. Liu et al. 2018; Dittmer 

et al. 2016; Esposti and Romero 2017; Aylward et al. 2014). Pseudomonas, together with 

Rickettsia and Chryseobacterium, was also the most abundant OTU in the microbiome of the 

springtail Orchesella cincta (Bahrndorff et al. 2018). Another abundant bacterium in F. 
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candida was Paraburkholderia. This genus includes many soil species, a few of which are 

used as plant probiotics thanks to their growth-promoting and possibly defensive properties 

(X. Chen et al. 2018). Other members of the Proteobacteria identified in F. candida’s 

microbiota were Sphingopixis, Stenotrophomonas, Pseudoxanthomonas, Burkholderia, all of 

which were detected in soil invertebrates (worms, cockroaches, termites, ants and beetles) 

(Esposti and Romero 2017). The most abundant bacterium in F. candida was 

Microbacterium. Members of the Microbacteriaceae have been previously identified in 

different species of beetles (S. T. Kelley and Dobler 2011; Scully et al. 2013), and 

Actinobacteria in general (although in low amounts) have been found in cockroaches 

(Gontang et al. 2017) and in a few species of insects (ants, beetles and termites) characterized 

by nutritional symbioses with fungi (Kautz et al. 2013; Aylward et al. 2014). Actinobacteria 

are also one of the dominant bacterial groups in other soil invertebrates such as earthworms 

(Pass et al. 2015; D. Liu et al. 2018; L. Ma et al. 2017). 

The observed bacterial diversity in F. candida is comparable to that previously detected by 

16S high-throughput sequencing in the same lab-reared population of springtails (Valeria 

Agamennone et al. 2015). However, the taxonomic distribution between the two studies is 

very different. Based on 16S sequencing, Pseudomonas was the most abundant bacterial 

genus with 42% of the reads (Valeria Agamennone et al. 2015). Nine other dominant OTUs 

were identified, including Bacillus (19% of the reads), a member of the Actinomycetales 

(9%), Escherichia sp. (4%) and Ochrobactrum sp. (3%). Microbacterium accounted only for 

0.3% of the read, and Paraburkholderia was not identified. This discrepancy can be 

explained by the difference in sequencing methods applied. High-throughput amplicon 

sequencing is subjected to PCR bias, with differences in the amplification efficiency of DNA 

from different bacterial species; in shotgun metagenomic sequencing, on the other hand, 

biases can be caused by the method chosen for taxonomic assignment, possibly leading to 

misidentifications (Tessler et al. 2017). 

The majority of reads in F. candida’s metagenome originated from pathways involved in 

membrane transport, carbohydrate and amino acid metabolism, replication, translation and 

repair. The abundance of genes involved in carbohydrate and amino acid metabolism may 

suggest a nutritional role of the microbiota. The springtails used in this study were reared 

exclusively on baker’s yeast (Saccharomyces cerevisiae), and specific microbial enzymes 
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could aid in the breakdown of components of the fungal cell wall, including various 

polysaccharides and glycoproteins (Manjula and Podile 2005). Natural populations of 

springtails may also benefit from the presence of such functions in their microbiome. In fact, 

carbohydrate-related functions are often enriched in the gut microbiome of different soil 

invertebrates, such as beetles, nematodes and isopods (Cheng et al. 2013; Bouchon, Zimmer, 

and Dittmer 2016; Scully et al. 2013; C. C. Smith et al. 2017; Brune and Dietrich 2015), some 

of which rely on symbiotic microbes for the breakdown of long polymers such as lignin, 

cellulose and other plant-derived products (Cheng et al. 2013; Brune and Dietrich 2015). F. 

candida is an euedaphic springtail species whose natural diet includes not only yeasts and 

other fungi, commonly occurring in the soil environment, but also decaying plant material. 

Recently, the microbiota of another springtail species, the epiedaphic Orchesella cincta, was 

studied, and some of the main functions predicted based on the microbial community 

structure were related to the breakdown of dietary components and of plant secondary 

metabolites (Bahrndorff et al. 2018). In a previous study we observed substantial overlap in 

the composition of the bacterial communities between a lab-reared and a field population of 

springtails (Valeria Agamennone et al. 2015). This suggests that similar carbohydrate-

degrading functions may be present in both lab-reared and field populations of springtails. 

Amino acid-related functions may also be beneficial for the host. Some intracellular 

endosymbionts biosynthesize essential amino acids that are lacking in the diet of their host 

(Douglas 2016) and gut bacteria may exert similar functions (Leitão-Gonçalves et al. 2017). 

A contribution to the host’s nutrition may also explain the abundance of functions related to 

membrane transport in F. candida. Transport allows host-symbiont exchanges and therefore 

it constitutes one of the most important functions in the maintenance of the symbiosis with 

bacteria providing nutrients (Charles et al. 2011). 

In accordance with the taxonomic assignment, most genes in the above discussed categories 

were predicted to belong to Proteobacteria and Actinobacteria species. Many genes were 

annotated to Acinetobacter johnsonii, a member of the Gammaproteobacteria that has been 

described as an opportunistic pathogens for animals as well as a possible reservoir of 

antibiotic resistance genes (Montaña et al. 2016; Tian et al. 2016). Acinetobacter was also a 

dominant genus in the microbiome of the earthworm Eisenia fetida (Dittmer et al. 2016) and 

it was identified in other soil invertebrates such as the Longitarsus beetle and the isopod 

Armadillidium vulgare (Dittmer et al. 2016; S. T. Kelley and Dobler 2011). Many functions 



Antimicrobial and carbohydrate in the metagenome of Folsomia candida 

 

71 

3 

were also assigned to the genus Propionibacterium. This group of Actinobacteria includes 

species with good probiotic potential due to their capacity to modulate microbiota, gut 

metabolic activity and the immune system (Cousin et al. 2011). Interestingly, the 

immunomodulatory and anti-inflammatory properties of Propionibacterium have been 

observed not only in human and mouse models (Cousin et al. 2011), but also in soil 

invertebrates (Kwon, Lee, and Lim 2016). An abundance of genes was taxonomically 

assigned to a few other groups, among which Gordonia, a genus of Actinomycetes including 

many symbionts of terrestrial invertebrates (Sowani, Kulkarni, and Zinjarde 2018) and 

Pseudomonas, commonly found in soils and in soil invertebrates (Esposti and Romero 2017). 

Carbohydrate-degrading enzymes are commonly found in the bovine rumen (Jose et al. 

2017), in the gut of wood-feeding insects such as termites and woodwasps (Adams et al. 

2011; Warnecke et al. 2007) and in the microbial community of fungus gardens associated 

with leaf-cutter ants (Aylward et al. 2012). These enzymes are often of microbial origin, 

suggesting that herbivorous animals can exploit the catalytic activities of microbial 

symbionts to access nutrients stored in plant biomass (Suen et al. 2010). In termites, the 

symbiotic relationship with a complex community of bacteria, archaea and protists in the gut 

enables the digestion of lignocellulose, conferring these insects a unique ecological position 

in tropical and subtropical ecosystems (Brune and Dietrich 2015). Whether similar 

relationships between Collembola and their microbiome exist is unknown at the moment, but 

microbial functions related to carbohydrate metabolism are likely to significantly contribute 

to the ecological role of springtails as members of the soil decomposer community. 

Warnecke et al 2017 found 700 glycoside hydrolase (GH) catalytic domains corresponding 

to 45 CAZY families in the microbiome of wood-feeding termites (Warnecke et al. 2007). In 

the microbiome of F. candida, we identified a comparable number of genes encoding for 

enzymes with a capacity to break down long chain carbohydrates such as starch, lignin and 

cellulose. In nature, these enzymes may aid F. candida in extracting nutrients from the plant 

biomass that constitutes part of its diet, as was suggested for the springtail O. cincta 

(Bahrndorff et al. 2018). 

A large number of glycoside hydrolases was also observed among F. candida foreign genes 

(Faddeeva-Vakhrusheva et al. 2017). Interestingly, some of the foreign genes that were also 

best reciprocal hits between the genome and the metagenome of F. candida were identified 
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as CAZymes (Supplementary File 2). HGT of cellulose-degrading enzymes has been 

previously observed in plant-feeding insects (Pauchet and Heckel 2013) and may be an 

important mechanism providing soil invertebrates with advantageous traits for living in the 

soil (Eyun et al. 2014). 

The microbiome of F. candida contained several pathways responsible for the biosynthesis 

of secondary metabolites. This is a class of compounds that are often involved in competition 

and interaction between species, and they may contribute to the establishment and the 

maintenance of a stable gut microbiota through the exclusion of transient or pathogenic 

microbes (Richardson et al. 2015; Jousset, Scheu, and Bonkowski 2008). Secondary 

metabolites often find applications in the biotechnological and medical sector. The main 

contributors to the identified pathways seem to be Gordonia, Pseudomonas fluorescens, 

Bacillus and Streptomyces. 

A few of the identified pathways were represented by NRPSs, a class of enzymes responsible 

for the biosynthesis of natural products with a broad range of biological activities and 

pharmaceutical properties. Cluster 10 and 28 show resemblance with an NRPS producing 

pyoverdines, siderophores well known for their high affinity for Fe3+ under low iron 

availability (Schalk and Guillon 2013). Another NRPS involved in the biosynthesis of the 

siderophore nocobactin was identified in cluster 95. Three clusters show homology to NRPSs 

involved in antibacterial and antifungal activity. Cluster 31 shows substantial similarity 

(47%) to an NRPS producing orfamide, a compound of bacterial origin with antifungal 

properties and with good potential as biocontrol agent against fungal pathogens (Z. Ma et al. 

2016). Cluster 130 represents an NRPS involved in microsclerodermin biosynthesis, an 

antifungal compound produced by a marine sponge (Xiaohui Zhang et al. 2012). A recent 

study also showed that this compound has properties of pharmaceutical relevance, as it can 

inhibit NFkappaB transcription in a human pancreatic cell line leading to apoptosis (Guzmán 

et al. 2015). Finally, the NRPS identified in cluster 48 showed similarity to the NRPS 

involved in biosynthesis of the antibiotic caryoynencin, a compound originally isolated from 

a plant pathogen. Very recently it has been shown that this compound is produced by a 

symbiont of a herbivorous beetle, protecting its eggs against detrimental microbes (Flórez et 

al. 2017). 
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We also identified a number of bacteriocins, a class of compounds with potential as natural 

food preservative (Gálvez et al. 2007). Many bacteriocins are biosynthesized by lactic acid 

bacteria, and in Folsomia’s gut microbiome these clusters are homologous to Pseudomonas 

fluorescens and Gordonia effusa. 

Several other interesting biosynthesis clusters with functions related to medical applications 

were found, such as lymphostin, a known immunosuppressant isolated from Streptomyces 

(Aotani, Nagata, and Yoshida 1997), and chartreusin, that exerts strong chemotherapeutic 

activity against various tumor cell lines (Z. Xu et al. 2005). We also identified a mangotoxin 

biosynthesis cluster. Mangotoxin causes apical necrosis of plant tissue, which may aid in 

food processing and digestion by the host (Arrebola et al. 2003). Biosynthesis of the volatile 

compound homoserine lactone (hserlactone) may be related to communication between fungi 

and bacteria (Shiner, Rumbaugh, and Williams 2005), while ectoine may serve as osmolyte 

conferring resistance to salt, dessication and temperature stress (Mosier et al. 2013). 

The distribution of antibiotic resistance genes (ARGs) in microbiomes sampled across 

environments and organisms is still not well understood. A large-scale metagenomics study 

indicated that soils harbor most classes of ARGs (Nesme et al. 2014). In the gut microbiome 

of F. candida, we identified over 200 unique terms associated with antibiotic resistance 

distributed over more than 800 genes, more than twice the number detected in human 

microbiomes and almost eight times the number detected in the giant African snail Achatina 

(Fitzpatrick and Walsh 2016). This might be explained by the intimate association between 

the springtail and the soil ecosystem. 

The presence of ARGs in the gut of Folsomia may have ecological relevance. It is noteworthy 

that we identified a substantial number of β-lactamases, probably resulting from the selective 

pressure caused by β -lactam production by the host itself (Suring et al. 2017). For example, 

Bacillus toyonensis, a member of F. candida’s microbiota, is highly resistant to β-lactams 

(Janssens et al. 2017). Furthermore, interactions between bacterial communities with 

antibiotic biosynthesis capacity and communities showing resistance to such antibiotics can 

also be expected. Observations from this and other studies indicate a potential for 

Pseudomonas, Streptomyces and Gordonia strains isolated from F. candida to synthesize 

antibiotics (see section above, Supplementary File 3 and (V. Agamennone et al. 2018)), while 

Streptomyces, Enterococcus and Staphylococcus are abundant among ARG-containing 
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bacterial strains in Folsomia’s gut (Supplementary File 4). This supports the notion that 

antibiotics regulate the homeostasis of microbial communities, and may even be beneficial 

for commensal bacteria in environments such as the animal gut (Linares et al. 2006). Finally, 

Engel & Moran (Engel and Moran 2013) suggested that this balance may be important in 

facilitating colonization resistance against parasites and bacteria pathogenic to the host. The 

data provided in this study will be highly relevant in formulating concrete hypotheses to 

investigate the ecological connectivity of antibiotic-biosynthetic and ARG-containing 

bacteria in gut microbiomes. 

A previous study had identified 809 foreign genes in F. candida’s genome, which were 

validated by physical linkage with native genes (through PacBio long read single molecule 

sequencing), blast analysis and phylogenetic inference (Faddeeva-Vakhrusheva et al. 2017). 

Moreover, Faddeeva et al. used RNA sequencing to show that almost 60% of this gene set 

was actively transcribed, indicating functional relevance (Faddeeva-Vakhrusheva et al. 

2017). Here, we applied best reciprocal blast analysis to identify microbial protein sequences 

orthologous to predicted protein-coding sequences in the genome of F. candida. We 

hypothesize that this would provide circumstantial evidence of horizontal gene transfer from 

members of the gut microbiome into the host genome. Indeed, within the gut microbiome we 

identified 113 best reciprocal blast hits with predicted protein sequences of foreign genes of 

the springtail, possibly indicating HGT from the gut microbiome to the host genome. The 

foreign genes without a best reciprocal blast hit within the gut microbiome may have been 

transferred from other microbial sources, for example the over 30% of foreign genes that 

conferred top blast hits with fungal donors (Faddeeva-Vakhrusheva et al. 2017). 

Alternatively, other genes may have been transferred to the host genome early in the 

evolution of F. candida. In that case, the accumulation of mutations over time would lead to 

low similarity with members of the microbiome, preventing the identification of the possible 

source of these genes through best reciprocal blast searches. A number of foreign genes with 

best reciprocal blast hit with genes in the microbiome were CAZymes, involved in the 

degradation of polymers such as cell wall components. Gene transfer of carbohydrate-active 

enzymes may optimize the capacity of F. candida to extract nutrients from their diet 

(Faddeeva-Vakhrusheva et al. 2016), thereby contributing to their adaptation to life in the 

soil. 
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Horizontal gene transfer from prokaryotes to eukaryotic host genomes has become a highly 

controversial topic. There are claims that gene transfer only occurs between hosts and 

mitochondria, plastids and endosymbionts, and that other HGT cases are the result of 

differential loss of ancestral genes, that originated prior to the last eukaryotic common 

ancestor (Martin 2017). However, this hypothesis overestimates gene contents of ancestral 

genomes, and is therefore unlikely (Leger et al. 2018). We suggest that the foreign genes in 

Folsomia’s genome are most likely acquired via horizontal gene transfer (Faddeeva-

Vakhrusheva et al. 2017). Here, we propose that part of these HGT events could have taken 

place by interaction with the gut microbiota. In the gut environment host and microorganisms 

maintain an intimate physical association with many opportunities for interaction, thus 

increasing chances for gene transfer to occur (J. Huang 2013). Two recent studies provide 

evidence for bacterial DNA transfer into somatic human cells (Riley et al. 2013; Schröder et 

al. 2011) through bacterial type IV secretion system (T4SS). This system is known to mediate 

interbacterial conjugative DNA transfer and transkingdom protein transfer into eukaryotic 

host cells during bacterial pathogenesis. Schroder et al. showed that T4SS-dependent DNA 

transfer into host cells may occur naturally during human infection with Bartonella (Schröder 

et al. 2011). Furthermore, Ridley et al. identified a Pseudomonas strain as a donor of foreign 

DNA detected in human stomach carcinomas (Riley et al. 2013). It is still unclear why 

functions that can be provided by the microbiome would be incorporated and maintained in 

F. candida’s genome. In the case of foreign genes involved in lignocellulose breakdown, we 

speculate that such functions, when controlled by the host, could provide fitness advantage 

in terms of energy balance and nutrient acquisition. Similarly, transferred genes involved in 

detoxification may protect the host for natural toxins that are quite common in the soil. These 

and other hypotheses should be tested by conducting gene knockdown and other experiments. 

We have provided an insight in the metagenome of a collembolan species, F. candida. Most 

bacterial diversity is attributed to four phyla, that are also representative for soil microbial 

ecosystems, possibly confirming the interaction of F. candida with its natural environment. 

A broad spectrum of gene functions was identified, most notably related to carbohydrate 

metabolism, antibiotic resistance and secondary metabolite production. These functions were 

presented and discussed in the context of their ecological relevance and in the light of 

potential biotechnological applications. Finally, we presented data suggesting that the gut 

microbiome may have been a source of genes acquired by the host through HGT. These genes 
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may have conferred a fitness advantage to the springtail, during adaptive evolution in the soil 

ecosystem. 

Supplementary Materials 

Supplementary Figure 1. Contig length distribution. 

Supplementary Figure 2. Identified taxonomic groups at the phylum, class and genus level. 

Supplementary Figure 3. Diagram of the pathways involved in starch and sucrose metabolism. Pink 

boxes indicate the genes identified in the microbiome.  

Supplementary Figure 4. Predicted protein structures of the top three reciprocal blast hits between the 

metagenome and the genome of F. candida, corresponding to a glycosidase (A), an arabinosidase (B), 

an isocitrate lyase (C). The predicted structures of the microbial genes are on the left, the predicted 

proteins of the springtail are on the right.  

Supplementary Table 1. Summary of antiSMASH results. 

Supplementary File 1. List of all the predicted genes with the corresponding taxonomies (based on 

MetaPhlan) and functional annotations (based on NCBI protein database)* 

Supplementary File 2. Complete list of the 2004 genes predicted to code for enzymes involved in 

carbohydrate metabolism* 

Supplementary File 3. Complete list of antiSMASH results. For each of the 166 contigs with a hit in 

the antiSMASH database* 

Supplementary File 4. Complete list of the predicted genes with a hit to antibiotic resistance in the 

Comprehensive Antibiotic Resistance Database (CARD) (B. Jia et al. 2017)(B. Jia et al. 2017)* 

Supplementary File 5. List of all best reciprocal hits between Folsomia candida’s genome and 

metagenome that are also predicted foreign genes (HGT), including their taxonomic and functional 

annotation* 

*available online at the VU University Library: www.ub.vu.nl 
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Supplementary Figure 1. Contig length distribution.  

 

 

 
 
 

Supplementary Figure 2. Identified taxonomic groups at the phylum, class and genus level. 
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Supplementary Figure 3. Diagram of the pathways involved in starch and sucrose metabolism. 

Pink boxes indicate the genes identified in the microbiome 
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Supplementary Figure 4. Predicted protein structures of the top three reciprocal blast hits between 

the metagenome and the genome of F. candida, corresponding to a glycosidase (A), an arabinosidase 

(B), an isocitrate lyase (C). The predicted structures of the microbial genes are on the left, the predicted 

proteins of the springtail are on the right. 
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Supplementary Table 1. Summary of antiSMASH results 

 

Cluster type Number of contigs 

Arylpolyene 1 

Bacteriocin 4 

Cf_fatty_acid 14 

Cf_fatty_acid -Cf_saccharide 1 

Cf_putative 96 

Cf_saccharide 18 

Cf_saccharide-Cf_fatty_acid 1 

Ectoine 1 

Hserlactone 3 

Nrps 13 

Nrps-Arylpolyene 1 

Other 2 

Siderophore 2 

T1pks 1 

T1pks-Nrps 1 

T3pks 1 

T3pks-Cf_saccharide 1 

Terpene 5 

TOTAL 166 

For each type of secondary metabolite cluster, the number of contigs in F. candida’s metagenome in 

which the cluster was detected is indicated. Cf indicates a putative cluster identified with the 

ClusterFinder algorithm. Pks = polyketide synthase. Nrps = non-ribosomal peptide synthetase. The 

complete output of the antiSMASH analysis is given in Supplementary File 3. 
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4.1 Abstract  

Microorganisms associated with the guts of invertebrates represent a specialized community 

with a diversity of functions in the degradation of organic material or microbial interactions. 

These communities remain relatively little explored especially with reference to their role in 

the ecology of the host. In addition, the gut microbiome is a rich source of discovery of novel 

catalytic functions of possible relevance to biotechnology. In this paper, we report on a 

comparison of three species of invertebrates, a termite, a terrestrial isopod and a springtail, 

that represent three different functions in the decomposing community of a soil ecosystem: 

wood degradation, plant leaf degradation and fungivory. We analyze previously published 

metagenomes with respect to carbohydrate-associated enzymes (CAZy), microbial resistance 

(CARD) and the production of antimicrobial metabolites (Antismash). The three hosts 

differed significantly in the microbial community composition. Of all metagenomic contigs, 

70% to 80% could be allocated to a bacterial phylum, Proteobacteria being the most 

dominant, followed by Firmicutes, Bacteriodetes, Actinobacteria, and Spirochaeta. We 

identified 162 CAZy families. The distribution of the main categories was similar among 

hosts, but each host had 10 -30 specific CAZy families and the most diverse were found in 

the termite. There was very little overlap between the hosts at the gene level. All three 

metagenomes had genes encoding functions in antimicrobial resistance. The isopod 

metagenome had most of them, especially with regard to antibiotic efflux transporters. The 

springtail was the least diverse in terms of antibiotic resistance genes in their microbiome. 

Regarding the production of secondary metabolites, a high diversity of non-ribosomal 

peptide synthetases was found in springtail metagenome and many bacteriocins in termite 

metagenome. The isopod metagenome had fewer genes encoding the production of secondary 

compounds. Comparing the three hosts, we conclude that each species has a microbiome that 

overlaps only with the other microbiomes on a high taxonomic level. When analyzed on a 

more detailed level, it turns out that each species is unique and has many functional genes 

not found in another species. This is all the more surprising as the soil invertebrate 

community is often lumped together as a single unit in soil ecosystem studies. We show that 

soil decomposer animals include a microbiome with unprecedented diversity and many 

unique functions.  
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4.2 Introduction 

Many animals depend crucially on the microbiome they carry within and on their bodies. The 

symbiotic microorganisms are connected to their host through a variety of pathways, 

including the digestive, immune, circulatory, and neuro-endocrinological systems. Through 

these interactions, the microbiome influences the behaviour of animals and their ecological 

function. A better knowledge of the relationship between animals and their microbiome has 

been considered “an imperative for the life sciences” (McFall-Ngai et al. 2013).  

This argument holds especially for invertebrates that live in the soil environment. Soil 

represents an enormous reserve of microbial communities of which the vast richness has 

penetrated since microbiologists began to sequence the environmental DNA (Fierer 2017). It 

is expected that the soil microbial communities also harbour many unknown functions that 

once revealed, could be used in biotechnology, such as new pathways of carbohydrate 

degradation, unknown antimicrobial agents and new catalytic functions for the synthesis of 

bio-based chemicals (Handelsman 2004; Riesenfeld, Goodman, and Handelsman 2004).   

A special position is held by many species of soil invertebrates, earthworms, mites, 

springtails, termites, isopods and the like, and the microbiota associated with them. In 

estimates for global biodiversity it is assumed that every single invertebrate may contain 

several species of microbial symbionts that are not yet known. This multiplies present 

estimates of global biodiversity to 2 billion species, of which threequarters are bacteria 

(Larsen et al. 2017). Conversely, it may be expected that many invertebrates depend on their 

microbial communities with regard to food digestion, defense against pathogens and 

metabolic functions. This interdependence of microbes, invertebrates and ecosystem function 

is only beginning to be explored.  

The metagenomics approach has been very helpful in accessing the unexplored richness of 

microbial communities associated with invertebrates. Metagenomics is the large-scale 

sequencing of microbial DNA of a community as a whole. Not only the species composition 

is the main interest of metagenomics, but also the collective set of functional genes active in 

a community. Using next-generation sequencing, a more or less complete overview of the 

functional potentials of an animal-associated microbiome can be obtained. This approach has 

been applied to model species such as aphids and honeybees (Engel, Martinson, and Moran 
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2012; Engel and Moran 2013). In this paper we apply a similar approach to three selected 

species of soil invertebrate.  

Termites (infraorder Isoptera of the subphylum Hexapoda) are an order of insects well-known 

for their complicated social structure and caste system. The lower termites are known to 

harbour a complex community of bacteria, archaea and protists that allow them to digest food 

items such as lignocellulose that cannot be digested by almost all animals (Brune and Dietrich 

2015). Terrestrial isopods or woodlice (order Isopoda of the arthropod subphylum Crustacea) 

are known leaf eaters, which through their activity contribute to the degradation of organic 

matter in soil. Their gut microbiome contains an unexpected richness of symbionts and 

parasitic microbes (Bouchon, Zimmer, and Dittmer 2016). Springtails (class Collembola of 

subphylum Hexapoda) are an abundant group of microarthropods present in any soil, mostly 

consisting of fungal grazers which are known for their remarkable resistance to pathogenic 

fungi. Their gut microbiome has been explored recently (Valeria Agamennone et al. 2019). 

Together these three groups capture a wide range of food habits and ecological functions and 

a comparison of their microbiomes may shed light on the relationship between gut microbial 

communities and ecological function.  

In this paper we focus on three functional categories of genes in the metagenomes, which we 

believe are of crucial importance in the ecological function of soil invertebrates: (1) 

degradation of carbohydrates, more specifically the genes classified as carbohydrate-

associated enzymes (CAZymes), (2) genes associated with microbial resistance catalogued 

in the Resistance Gene Identifier database RGI, and (3) genes associated with the 

biosynthesis of secondary metabolites, as revealed by comparison to the antiSMASH 

database. We compare the metagenomes of the three invertebrates with regard to these three 

functional gene categories in order to shed light on the relationship between microbial 

metagenomes and the ecological function of their hosts. 

4.3 Material and Methods 

We compared the microbiomes of three different soil invertebrates. The termite Coptotermes 

gestroi (Isoptera, Rhinotermitidae), also called Asian subterranean termite, is a common 

termite originally occurring in South-East Asia, but now spread across the world and 

considered a pest in many places. The woodlouse Armadillidium vulgare (Isopoda, 

Armadillidiidae) is a widely distributed species associated with dead leaves and wood in the 
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temperate regions, and also in anthropogenic habitats. The springtail Folsomia candida 

(Collembola: Isotomidae) is a common species of microarthropod associated with rich soils 

and compost heaps across the world. All animals were collected from their natural habitat 

and cultured in the laboratory in an attempt to remove the direct influence of microbial 

communities at their place of collection. For details of library preparation, sequencing and 

metagenomic assembly we refer to Do et al. (2014) for C. gestroi, to Bredon et al. (2018) for 

A. vulgare, and to Agamennone et al. (2015,2019) for F. candida.  

The four samples of F. candida metagenomes based on different DNA extraction method 

were obtained from (Valeria Agamennone et al. 2015). They were processed individually and 

also pooled together using the same metagenomic assembly approach (Valeria Agamennone 

et al. 2019). The three species of A. vulgare metagenomes from the laboratory strain were 

combined together and subjected to CD-HIT (version 4.8.1) processing with the setting –c 1 

–n 10 to remove contigs with 100% identity (Fu et al. 2012). Qualities of all three 

metagenome assemblies were checked using QUAST (version 4.6.1) (Gurevich et al. 2013). 

The contigs were analysed for genes associated with the production of secondary compounds 

by means of the antiSMASH server version 5.1.2 with full settings (Blin et al. 2019). Genes 

were predicted using Prodigal with the –m for metagenomics setting (Hyatt et al. 2010). 

Kraken2 was used to profile the metagenomes and so identify the bacterial composition 

(Wood, Lu, and Langmead 2019). Predicted genes with complete open reading frames and a 

stop codon were used for further analysis. For identifying genes associated with carbohydrate 

activity enzymes from all three metagenomes, we used the dbCAN2 with the CAZy database 

version 8 (Zhang et al. 2018). This program combines results from hidden Markov models, 

sequence aligner DIAMOND and short sequence predictor HOTPEP to cluster CAZy 

families based on family-specific domains. To identify and analyse genes related to 

antimicrobial resistance, the Resistant Gene Identifier (RGI) program (version 5.1.0) was 

used on the Comprehensible Antibiotic Resistance Database CARD version 3.0.5 (Alcock et 

al. 2020). To cover all possible antibiotic resistance genes (ARGs) the default settings from 

RGI was used. Hits with low coverage but high identity percentage were included for the 

analysis. The proteins identified were subjected to BLASTp (version 2.10.0) searches against 

the non-redundant (NR) database with the default setting for e-value to confirm their 

annotation (Altschul et al. 1990). The contigs, which contain proteins associated with 

CAZymes, antimicrobial resistance and secondary metabolites were mapped back to the 
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taxonomic result from Kraken2. Closely related taxonomic at the genus level were 

agglomerated. The taxonomy chart was drawn using GraPhlAn version 1.1.3 (Asnicar et al. 

2015) using an custom script. For the stacked bar plot, taxonomic with the abundance below 

1% were merged into a group called Others. Figures were generated using R and the ggplot2 

package (Wickham 2009; R Core Team 2018). The CAZyme proteins from all three 

metagenomes were used to construct a protein BLASTp database and aligned against each 

other with the default e-value. Proteins with over 90% identity were kept for similarity 

analysis. 

4.4 Results 

The metagenome of A.vulgare lab strains consists of 123,613 contigs, of which 5,038 were 

100% identical. Isopod, springtail and termite metagenomes contained 118,575, 106,798 and 

79,262 contigs, respectively. As a first step in our comparison of metagenomes we explored 

the taxonomic diversity of bacteria associated to hosts. There were significant differences in 

taxonomic composition between the three gut communities of isopod, Armadillidum vulgare 

(Av), springtail, Folsomia candida (Fc) and termites, Coptotermes gestroi (Cg) as only 

26.1%, 74.3% and 46.2% of contigs respectively, were taxonomically classified (Table 1). 

The communities are dominated by Proteobacteria, with 24,868 (80.59%), 45,666 (57.59%) 

and 17,061 contigs (46.65%) of the isopod, springtail and termite microbiomes, respectively. 

The second largest community in isopod and termite and the third largest in the springtail is 

Firmicutes, with 2,542 (8.24%), 7,348 (20.09%) and 5,359 (6.76%) contigs, respectively. 

Remarkably, the Actinobacteria with 22,156 contigs (27.94%) is the third largest group in 

the F. candida microbiome. Even though Spirochaetes were found in all gut communities, 

they are more abundant in the termite with 2,112 contigs (5.77%). Other common phyla are 

Bacteroidetes with 1,410 (4.57%), 4,836 (6.10%) and 3,343 (9.14%) contigs in, respectively, 

isopod, springtail and termite (Table 1). 

Next, we considered the three functional gene categories of our interest: genes encoding 

carbohydrateactive enzymes for metabolism, genes encoding proteins related to 

antimicrobial resistance for defense and genes related to the production of secondary 

metabolites (Fig. 1). 
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Table 1: Assembly metrics of the studied metagenomes   

  Armadillidium 

vulgare  

Folsomia 

candida  

Coptotermes 

gestroi  

Total Contigs  118,575  106,798  79,262  

Contigs (<5,000 bp)  116,411  105,611  77,422  

contigs (>= 5,000 bp)  1,263  766  1,301  

contigs (>= 10,000 bp)  634  315  407  

contigs (>= 25,000 bp)  202  72  104  

contigs (>= 50,000 bp)  65  34  28  

Largest contig (bp)  435,086  1,306,495  183,852  

Total length (bp)  91,552,032  69,056,649  90,150,744  

Total length (< 5,000 bp)  34,831,365  15,817,019  59,385,192  

Total length (>= 5,000 bp)  21,976,144  17,802,470  14,989,078  

Total length (>= 10,000 bp)  17,579,018  14,693,322  9,065,738  

Total length (>= 25,000 bp)  10,927,209  11,028,500  4,603,586  

Total length (>= 50,000 bp)  6,238,296  9,715,338  2,107,150  

N50  1,300  2,513  1,215  

GC (%)  42.57  60.02  50.95  

Taxonomic assignment  

(contigs)  

30,857  79,289  36,575  

 

A total of 1,392 contigs containing either one or all of the above functional groups were 

mapped backed into their taxonomic groups. An overview of the taxonomic groups 

contributing to all three functional gene categories is given in Fig. 1. There were 461, 303 

and 628 contigs for isopod, springtail and termite, respectively. The same phyla as mentioned 

above were shown to contain genes contributing to carbohydrate metabolism, antimicrobial 

defense and secondary metabolism (Fig. 1A). 

However, at the lower taxonomic level, there was considerable diversity within the phyla. 

Two large phyla, Gammaproteobacteria and Alphaproteobacteria (subdivisions of the large 

group of Proteobacteria) had different genera contributing to the functional metagenomes. 

The springtail metagenome had 20.13% Alphaproteobacteria and 8.25% 

Gammaproteobacteria. The isopod metagenome contained mostly Gammaproteobacteria at 

88.50%, while the termite contained 24.52% (Fig. 1B).  
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Figure 1A: Phylogenetic distribution of bacterial taxa in the metagenomes of the three species of 

decomposer invertebrates. The centre circle shows a phylogeny of the contigs; the names of a few 

common genera are indicated by capital letters (see the upper left inset). The second ring indicates the 

names of the phyla to which they belong. The next three rings indicate in which hosts these genera were 

found (grey nabla symbol F. candida, dark grey A. vulgare and black triangle C. gestroi, see inset up 

right). The outer three circles indicate the number of contigs (by bar length) in the three functional 

categories (see inset up right): secondary compound biosynthesis (antiSMASH), antimicrobial 

resistance (RGI) and carbohydrate-active enzymes (CAZy). B) Taxonomic abundance at phylum, class 

and genus level. Taxonomic genera below 0.01% were merged together into the others group.  
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The genus Pseudomonas contributed to all three functional groups in all three investigating 

gut microbiomes. The proportion of Pseudomonas contigs in the springtail, termite and 

isopod were 6.60%, 16.40% and 4.58%, respectively. Similarly, Vibrio was found in all 

functional groups and all metagenomes and was most abundant in the isopod (17.57%, Fig. 

1B).  

4.4.1 Carbohydrate-active enzymes  

In total, 163 CAZy families were identified and divided into six functional classes. The 

overview of CAZymes in Fig. 2 shows that we identified 627, 905 and 648 full-length CAZy 

proteins for A. vulgare, C. gestroi and F. candida, respectively. Among the three species, the 

termite community possesses the greatest diversity of CAZymes in comparison to the isopod 

and springtail with 135 CAZy families. In all three metagenomes, Proteobacteria (669 

contigs), Actinobacteria (148 contig) and Firmicutes (276 contigs) are the main CAZymes 

contributors (Fig. 2). These groups of bacteria are known to break down cellulose (López-

Mondéjar et al. 2016). Within these phyla, the genera Enterobacter, Pseudomonas, Vibrio, 

Lactococcus and Microbacterium contain many CAZyme proteins.    

The four main focus CAZyme classes for plant biomass degradation are glycosyl hydrolases 

(GH), carbohydrate esterases (CE), polysaccharide lyases (PL) and a group of enzymes 

classified as auxiliary activities (AA, redox enzymes that act in conjunction with CAZymes). 

Finally the non-catalytic carbohydrate binding molecules (CBM) can direct enzymes to the 

substrates and also help with cell-wall hydrolysis (Bernard et al. 2008; Biely 2012; Zhao et 

al. 2013; M. E. Taylor and Drickamer 2014). 

A total of 43 common CAZy families were shared between the three metagenomes (Fig. 2). 

However, the PL class from springtail was low and did not share any CAZymes families with 

the other two. The top most common CAZy families detected in all three gut metagenomes 

were CBM50, GH1, GH13 and GH23 corresponding to 86, 67, 130 and 111 proteins, 

respectively. The GH1 family represents hemicellulose degradation activity, specifically 

through beta-glucosidases and  beta-galactosidases. GH13 is one of the largest groups of 

glycosyl hydrolases which act on substrates containing α-glucoside linkages. This family is 

specialised in starch degrading and does not include cellulase or hemicellulase activities 

(López-Mondéjar et al. 2016). CBM50 can bind to N-acetylglucosamine residues in bacterial 
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peptidoglycans and chitin (Bussi and Gutierrez 2019). These peptidoglycans are then subject 

to lytic transglycosylases from family GH23 (Dik et al. 2017).  

 

Figure 2: Number of CAZymes classified by five categories, in the microbiome of the three arthropod 

host species. The evolutionary relationship between the hosts is given on the left. Fc = F. candida 

(springtail) Cg = Coptotermes gestroi (termite), Av = Armadillidium vulgare (isopod). GH = glucoside 

hydrolysases, CE = carbohydrate esterases, GT = glycosyl transferase, CBM = carbohydrate-binding 

molecules, PL = polysaccharide lyases, and AA = enzymes with auxiliary activities. The left graph 

provides the crude number, while in the right graph the numbers are normalized to the termite 

microbiome.  

Several CAZy families appeared to be host-species specific. Termites had 32 unique families, 

the largest being CBM9, GH106, GH113, GH29, GH32 and GH95. There were 3, 4, 3, 15, 6 

and 3 proteins respectively. The second animal exhibiting the most diverse CAZymes is the 

springtail in which 16 of the 101 CAZy families are unique. The classes AA7 and CE5 had 

7 and 6 proteins that were only found in springtails. In contrast, out of the 88 CAZy families 

found in the isopod, only 11 are unique and only GH127 appears to be isopod-specific. There 

were seven proteins in the GH127 family and all were predicted to be β-

Larabinofuranosidase. Most of the host-specific glucoside hydrolases are hemicelluloses. 

Interestingly, springtails turned out to have the largest number of carbohydrate esterases (102 

proteins, Fig. 3). 

Enzymes from families CE8, PL1, PL2, PL9, GH28, GH78, and GH88 can break down 

pectin. Interestingly, most of these classes were not found in F. candida. This could indicate 

that pectin is not a main resource for the gut bacteria of the springtail, and the host may not 

rely on pectin as a carbon sources. Alternatively, the host could produce these enzymes itself 

and does not need the help of the microbiome. In contrast to springtails, the isopod 

metagenome appeared to contain multiple pectate lyases (PL1, 3 proteins), periplasmic 
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pectate lyases (PL2, 2 proteins) and pectinesterases (CE8, 5 proteins); the latter enzyme 

catalyzes the de-esterification of pectin to pectate and methanol. Only a single pectate lyase 

was found in the termite. So, it seems that isopods rely on pectin much more than termites 

and springtails (Supplement Table. 1).  

 

Figure 3: Classification of carbohydrate-active enzymes identified in the microbial metagenomes of 

the three decomposer invertebrates, specified for four different functional categories. Righ: Enzymes 

with auxiliary activity (AA), carbohydrate-binding molecules (CBM), and carbohydrate esterases (CE). 

Lower graph: glucoside hydrolases (GH). The number of contigs falling into a functional group is given 

for each of the three hosts (stacked upon each other): Av= A. vulgare (isopod), Cg = C. gestroi (termite) 

and Fc = F. candida (springtail).  

Cellulase families GH1 (67 proteins), GH3 (43 proteins), GH5 (12 proteins) and GH6 (36 

proteins) were found in all metagenomes in high abundance. This group of enzymes cleaves 

the β-1,4 bond in the cellulose chain. They are important for the breakdown of all dead plant 

biomass. There were 11 GH8 genes and 3 GH9 genes in both termites and isopods, 

respectively, but none of them in springtails. The lytic polysaccharide mono-oxygenase from 

the AA10 family, which can degrade cellulose, was found in springtails and termites (1 and 

4 proteins, respectively). 
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Hemicelluloses such as xylans, xyloglucans, arabinoxylans and glucomannans can be broken 

down by a variety of enzymes. The enzymes from the families GH2 (14 proteins), GH16 (8 

proteins) and GH43 (31 proteins) were found in all gut metagenomes. Xylanases from GH30, 

GH39 and GH11 were only found in the termite. Each of these CAZyme families only contain 

a single gene. The other xylanase families GH26 and GH42 were not found in the isopod, 

instead, a single gene from GH53 was isopod-specific. Carbohydrate esterases in CAZy 

families CE1 and CE10 contain 44 and 52 proteins respectively. 

 

Figure 4A: Bay-Curtis dissimilarity plot for microbiome samples colored by host. The significant was 

calculated using permanova with the p-value of 0.003. The first two axes explained 23.83% and 43.73% 

of the changes. The springtail was colored  purple, termite blue and isopod green. B: Venn Diagram 

of bacterial genera found to be present with a carbohydrate-active gene with 90% similarity between 

in the metagenomes of three host species. Fc = F. candida (springtail), Cg = C. gerstoi (termite), Av = 

A. vulgare (isopod). Three common genera are indicated by name.  

Cutin is one of two waxy polymers that are the main components of the plant cuticle. The 

springtail is the only group that has 6 cutinases from the CE5 family, which attach to the ester 

bond to release cutin monomers. 

The PCoA shows that for all samples from the three metagenomes clustered closely together 

(Fig. 4A). Using the dissimilarity matrix Bray-Curtis were generated with the permanova 

significant of 0.003. The sparseness  of the springtail samples came from different DNA 

extraction methods (Valeria Agamennone et al. 2015; 2019). It is interesting to see that the 

termite is in the center of the isopod and the springtail. This was also observed in the HGT 

analysis, where the termite contain similar carbohydrate active genes to both the springtail 

and the isopod, but none shared similar genes together (Fig. 4B). Springtails and termites 
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share CAZy proteins from the genus Pseudomonas, while isopods and termites share CAZy 

proteins from Enterobacter and Serratia. There was no overlap at all between springtails and 

isopods. Even on the level of functional categories (with a more relaxed criterion for 

similarity at 90%), there is hardly any overlap. The unique character of the CAZys repertoire 

in each microbiome is remarkable.  

4.4.2  Antibiotic resistance genes  

The isopod, termite and springtail metagenomes were scanned with Resistance Gene 

Identifier (RGI) using the Comprehensive Antibiotic Resistance Database (CARD), with 

default settings. The CARD database (version 3.0.5) is one of the most well developed AR 

Ontology (ARO) available with 82 pathogens, 67,366 resistomes and 92,896 AMR allele 

sequences. 

 

Figure 5: Number of genes classified as antibiotic resistance genes, in the microbial metagenomes of 

the isopod (Armadillidium vulgare, Av), the termite (Coptotermes gestroi, Cv) and the springtail 

(Folsomia candida, Fc). The genes are classified according to five different functional categories  from 

CARD database.  

The ARG profiles of the three gut metagenomes appeared to be quite diverse (Fig. 5). The 

isopod metagenome had 75 predicted ARGs, followed by the termite metagenome with 43 

ARGs and 18 ARGs for springtail gut. With regard to antibiotic mechanisms the isopod is 

the most diverse in terms of the five functional groups described above. Out of these, 

antibiotic efflux and inactivation are the two most common mechanisms in all gut 

metagenomes. Genes encoding antibiotic efflux pumps were 44, 25 and 11 for isopod, termite 
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and springtail respectively. All gut metagenomes contain the resistance-nodulationcell 

division (RND) efflux pumps, but also the major facilitator superfamily (MFS) and ATP-

binding cassette (ABC) antibiotic efflux pumps. Termites have multidrug and toxic 

compound extrusion (MATE) transporters which were not found in the metagenomes of the 

other hosts (Piddock 2006a). 

Mechanisms relying on antibiotic inactivation cause changes to the antibiotic compound 

itself (degradation, binding), so that it can no longer affect the target (Hoffman 2001). The 

isopod contained 15 antibiotic inactivation ARGs, 12 were found in the termite and 4 in the 

springtail. Beta-lactamases (enzymes that degrade beta-lactam antibiotics) were most 

common. Interestingly, aminoglycoside was absent in the springtail, and only identified in 

isopod and termite guts. 

A similar situation holds for antibiotic target alteration proteins. These were abundant in the 

isopod metagenome (12 genes), while the termite genome contained only 3 genes and none 

were found in the springtail (Fig. 6). However, the springtail metagenome was the only one 

to contain genes associated with antibiotic target replacement. This mechanism relies on the 

production of alternative proteins that function in a similar way as the principal antibiotic 

target proteins but through a slightly different structure. The more alternative proteins 

present, the less active antibiotics can reach the correct target. 

The antibiotic target protection mechanism of the springtail metagenome is predicted to be 

directed against tetracycline. Different from springtails, the isopod gut metagenome had 

glycopeptides and other peptides as antibiotic target replacements, predicted to act against 

fluoroquinolone. The antibiotic target protection mechanism was absent from the termite 

metagenome. The springtail metagenome also contained the largest group of target 

replacement mechanisms addressing penicillin antibiotics (penam). In this resistance 

mechanism, a protein similar to the antibiotic target is produced, but with lower binding 

affinity to the active antibiotic so the cell is rescued from antibiotic inhibition. Both the 

termite and the isopod are lacking this mechanism. Finally, low permeability of the outer 

bacterial cell wall is another mechanism to become resistant. This mechanism can be 

observed in the termite and isopod metagenomes but is lacking in the springtail metagenome. 
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Figure 6: Classification of antibiotic resistance genes in the metagenomes of the three invertebrate 

species, according to six functional categories. RND = resistance-nodulation-division efflux pumps, 

MFS = major facilitator superfamily efflux pumps, ABC = ATP binding cassette efflux pumps, MATE 

= multidrug and toxic compound extrusion efflux pumps. MLS = macrolide, lincosamide and 

streptogramin antibiotics. ATA = aurintricarboxylic acid. Penam = penicillin antibiotics, MCC-CPP 

= maleidomethyl-cyclohexane-carboxylate bound to cell penetrating peptides. Av = Armadillium 

vulgare (isopod), Cg = Coptotermes gestroi (termite), Fc = Folsomia candida (springtail).  

 

In summary, our survey of antibiotic resistance genes in the guts of the three invertebrates 

shows striking differences between the hosts, which are much more profound in comparison 

to the large taxonomic overlap of the microbial communities on the level of bacterial phyla 

(Table 2). 
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Table 2. Bacterial composition (in %) (by BLAST within the contig) of microbial metagenomes 

associated with the three different invertebrate hosts.  

   Hosts   

  

Bacterial phylum  

Armadillidium 

vulgare  

Folsomia 

candida  

Coptotermes 

gestroi  

Actinobacteria  1.72  27.9  7.61  

Bacteriodetes  4.57  6.10  9.14  

Cyanobacteria  1.11  0.10  0.94  

Firmicutes  8.24  6.76  20.1  

Planctomycetes  0.13  0.13  1.22  

Proteobacteria  80.6  57.6  46.7  

Spirochaetes  0.45  0.02  5.77  

Tenericutes  1.04  0.03  0.14  

Not assigned  2.14  1.36  8.38  

 

4.4.3  Gene clusters involved in secondary metabolite biosynthesis (antiSMASH)  

The assembled sequences from gut metagenomes of all three soil invertebrates were mined 

using antiSMASH. A total of 17 types of biosynthetic gene clusters (BGCs) appeared in 115 

contigs across three gut metagenomes (Fig. 7). Non-ribosomal peptide synthetases (NRPS), 

bacteriocin, arylpolyene and siderophores are among the most common secondary 

metabolites that appeared in all three organisms. The NRPS gene clusters function similarly 

to an assembly line, where multiple genes modify the metabolite. Non-ribosomal peptides 

(NRP) are the final products and have a wide variety of biological functions, from iron 
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acquisition, to insecticidal, nematicidal, phytotoxic, antimicrobial, and antiviral activities (Le 

Govic et al. 2019). 

 

Figure 7: Relative composition of biosynthetic gene clusters in the metagenomes of the three 

invertebrate species. The different colors indicate different structural categories identified using the 

AntiSMASH database. T1PKS = Type I polyketide synthase, NAGNN = N-acetylglutaminylglutamin, 

T3PKS = type III polyketide synthase, NRPS = non-ribosomal peptide synthase, Ras-RIPP = 

ribosomally synthesized and posttranslationally modified peptides, LAP = lingual antimicrobial 

peptide. The three hosts are Av = Armadillidium vulgare (isopod), Cg = Coptotermes gestroi (termite), 

and Fc = Folsomia candida (springtail).  

The springtail metagenome contained the most diverse set of such genes with 13 types of 

BGCs (Table 3). These include NRPSs, and clusters encoding the synthesis of bacteriocins, 

terpenes, homoserine lactone, siderophores, betalactone, type III polyketide synthases 

(T3PKS), and ectoine. An osmoregulation cluster called N-acetyl-L-glutaminyl-L-glutamine 

amide (NAGGN) and a siderophore biosynthetic gene cluster were found on one contig of 

745 kbp long (Fig. 8A). Siderophores are used by bacteria to acquire iron from the 

environment; they are typically induced by microbial infection (Holden and Bachman 2015; 

Page 2019; Kramer, Özkaya, and Kümmerli 2020). The siderophore gene cluster is 53 kbp 
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long and has a 97 - 100% similarity to gene clusters from different Pseudomonas species 

(Pseudomonas sp. NFIX49 NZ_FOYE01000001_c1, Pseudomonas sp. GM25 

NZ_AKJQ01000040_c2 and Pseudomonas fluorescens strain H24 NZ_LACH01000031_c3 

). This cluster shows 21 % similarity with a pyoverdin biosynthesis cluster in Pseudomonas 

protegens Pf-5 (BGC0000413 from MIBiG database) (Kautsar et al. 2020). Pyoverdin is a 

virulence factor. By regulating iron availability it can secure iron as a nutrient, but also 

regulate virulence factors and biofilm formation. Free iron is toxic and can have antimicrobial 

properties (Kang et al. 2018). Another large contig, of 650 kbp, contained two bacteriocin 

clusters (Fig. 8B). Bacteriocins are ribosomally synthesized peptides, which are produced to 

be active against various strains of bacteria (Yang et al. 2014; Chikindas et al. 2018). The 

most interesting contig with a length of 409 kbp has four different types of BGCs: bacteriocin, 

NRPS, NRPS with arylpolyene and siderophore biosynthesis genes (Fig. 8C). This contig is 

annotated to be homologous to Pseudomonas sp. The central NRPS has 68% similarity 

towards NZ_JTGH01000016_c3 from Pseudomonas fluorescens. About 71% of this gene 

cluster is similar to a lokisin biosynthesis cluster, which is a plant antifungal identified in 

Pseudomonas spp. (Omoboye, Oni, et al. 2019; Gu et al. 2020; Omoboye, Geudens, et al. 

2019). The other NRPS, annotated as arylpolyene is predicted to produce rimosamide. This 

secondary metabolite acts against the antibiotic activity of blasticidin (McClure et al. 2016).  

These valuable BGCs have been found in other Pseudomonas strains as well, and help to 

protect the cell against infection of various pathogenic bacteria and fungi. Furthermore, four 

T3PKS (type III polyketide synthases) were only found in the springtail metagenome. The 

best predicted gene cluster is 43 kbp long containing multiple biosynthesis, regulatory and 

core genes. The whole cluster has 60% genes similarity toward Microbacterium species. 

However, this could be a new cluster as we could not find a good homolog in the databases; 

it shows only 4% similarity with regard to the formicamycins A-M biosynthetic gene cluster 

from Streptomyces. Formicamycin is also known to have antibacterial activity (Qin et al. 

2020). 
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Table 3. Number of secondary metabolite biosynthetic gene clusters (BCGs) assigned to 17 different 

metabolite categories in the gut microbiomes of the three species of soil invertebrate (Av = 

Armadillidium vulgare, woodlouse; Fc = Folsomia candida, springtail, and Cg = Coptotermes gestroi, 

termite). For explanation of gene cluster names, see the legend to Fig. 7.  

Secondary metabolite encoded by BGC  Armadillidium 

vulgare  

Folsomia 

candida  

Coptotermes 

gestroi  

arylpolyene  9  2  12  

thiopeptide  2  0  0  

NRPS  4  14  11  

bacteriocin  5  6  12  

T1PKS  1  2  0  

ectoine  2  2  0  

siderophore  2  2  1  

betalactone  0  2  1  

NAGGN  0  1  1  

T3PKS  0  4  0  

NRPS, arylpolyene  0  1  0  

terpene  0  7  3  

hserlactone  0  3  0  

resorcinol  0  2  2  

RaS-RiPP  0  0  2  

LAP  0  0  1  

ladderane  0  0  1  
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Figure 8: Overview of a DNA segment in the contigs of the springtail gut metagenome: A: cluster of 

NAGGN and NRPS. B: two bacteriocins on the same contig. C: encoding four different biosynthetic 

gene clusters, a bacteriocin producing gene, an NRPS expected to synthesize lokisin, another one for 

rinosamide production, as well a siderophore encoding gene. These contigs are annotated to 

Pseudomonas. 

The termite gut metagenome contains NRPS clusters that are quite different from the two 

other host metagenomes. A cluster of biosynthesis genes of 46 kbp shows 100% identity 

toward Pseudomonas fluorescens. It is 50% similar to a bananamide 1-3 biosynthesis cluster 

from the same species. This metabolite confers antimicrobial activity against the oomycete 

(water mould) Pythium myriotylum and the ascomycete fungus Pyricularia oryzae 

(Omoboye, Geudens, et al. 2019). Interestingly, a cluster of NRPS genes predicted to 

biosynthesize ralsolamycin (40% similarity) is also present in the termite metagenome. This 

metabolite is an inducer of chlamydospore formation in fungi (Baldeweg et al. 2017). The 

termite also shows the highest number of bacteriocins. This could be related to the diversity 

of microorganisms in the termite gut (see above). Finally, the termite metagenome also 
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contains type III polyketide synthases (different from the ones in springtails), which are 

known to produce active enzymes synthesizing antimicrobials. 

A cluster that was found in both springtail and termite metagenomes is linked to betalactome 

biosynthesis with 13% genes similar to fengysin biosynthesis genes in Bacillus velezensis, 

an antifungal compound. Another NRPS cluster shared between termite and springtail 

metagenomes contains a single NRPS gene, and shows 100% similarity to Paraburkholderia 

rhizoxinica. The gene contains conserved domains of gene clusters to produce rhizomide A-

C. They were 1.7 kbp and 3.1 kbp long in the springtail and termite metagenomes, 

respectively. Rhizomide A is shown to have weak antitumor properties in human cell lines 

(X. Wang et al. 2018). 

The isopod metagenome contains two thiopeptides gene clusters that are 63% and 68% 

identical to the homologous gene clusters in Enterobacter cloacae and Pluralibacter 

gergoviae respectively. This group of antibiotics is directed exclusively to Gram-positive 

bacteria and has no antibiotic effects on Gram-negative bacteria. Most of the secondary 

metabolite clusters found in the isopod metagenome are aryl polyene BGCs, which are 

responsible for pigmentation in Gram-negative bacteria.  

4.5 Discussion 

Our analysis revealed remarkably differences in functional genes of the metagenome of three 

soil invertebrate species. The functions explored are expected to be crucial to life in soil: 

carbohydrate degradation, antimicrobial defense and production of secondary metabolites. 

Our findings show that the termite contains the most diverse community of microorganisms 

followed by the springtail and the isopod. This result is consistent with our previous finding 

(Valeria Agamennone et al. 2019). The top five common prokaryotic genera in microbiota 

are Paraburkholderia, Pseudomonas, Stenotrophomonas, Enterobacter and Microbacterium. 

However, there are very large differences in community composition and only few genera 

are present in all hosts. Pseudomonas is the only common genus found in all three gut 

metagenomes. This contrasts with the relatively large similarity of microbiomes when 

classified by bacterial phylum.  

Carbohydrate degradation is achieved by carbohydrate-active enzymes and include all 

proteins that bind to carbohydrates, hydrolyse glycoside bonds in polysaccharides, cleave off 
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specific side chains, etc. Obviously, the activity of such enzymes is crucial for the nutrition 

of soil invertebrates which often consume large amounts of organic material of plant and 

fungal origin. It may be expected that all invertebrates, like many higher animals, rely on 

their microbiomes to ensure appropriate nutrition. One of the most dominant enzymes in the 

metagenomes are glycosyl hydrolases, which hydrolyse the glycosidic bond between 

carbohydrates or between carbohydrates and non-carbohydrate moieties (protein or lipid). In 

addition, the cross linking of hemicellulose with lignin in plant biomass is weakened by 

carbohydrate esterases. These enzymes de-acetylate the polysaccharide side-chains. Pectin is 

a component of the plant cell wall with a function in cell adhesion and cell wall hydration. 

Glycosidic bonds between carbohydrates of glycosaminoglycans and pectin are broken down 

by polysaccharide lyases, using a non-hydrolysis mechanism (Xiao and Anderson 2013).   

Antibiotics are widely used to combat bacterial infections in health care, agriculture and 

animal farming. However, the anthropogenic overuse of antibiotics constitutes a severe 

hazard since the number of resistant pathogens increases (Kraemer, Ramachandran, and 

Perron 2019). Microorganisms in the environment are known to evolve resistance against a 

large number of antibiotics. Antibiotic resistance can spread rapidly in a microbial 

community when the resistance genes are encoded on plasmids or mobile genetic elements 

such as integrons and transposons. Using the metagenomics approach can help to broaden 

knowledge regarding the type of antibiotic resistance as well as mechanisms, transmission 

and evolution of microorganisms from a specific mini ecosystem (Garmendia et al. 2012; 

Mullany 2014; Watford and Warrington 2018).  

The third investigated gene category comprises gene clusters involved in secondary 

metabolite biosynthesis, which could have novel and interesting properties (Khater, Anand, 

and Mohanty 2016; Naughton et al. 2017; Zheng et al. 2019). By investigating key functional 

attributes of the microbial metagenomes, carbohydrate enzyme activity, antibiotic resistance 

and secondary metabolites, as we did in this paper, it may be possible to achieve a better 

understanding of the interaction of microorganisms with their hosts, including the host’s 

lifestyles, food sources and ecological functions in the soil environment.   

Below we compare the three different invertebrates with respect to the above-mentioned gene 

categories encoded in their metagenomes. 
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4.5.1 Termite  

The number of CAZymes in the termite metagenome is much larger than the number in the 

springtail and the isopod, and it has the most diversified microbiome. It contain 32 unique 

CAZy families not found in the other species. It is known that the so-called lower termites 

such as Coptotermes gestroi harbour various groups of bacteria, archaea and protists for the 

digestion of lignocellulose (Tai et al. 2015). We found that Firmicutes and Proteobacteria 

are two major contributors to cellulases. They are also more prevalent than Spirochaetes, 

which are often found in large abundance in lower and higher wood eating termites. This 

could be related to environmental factors, diets or host genetics (X. F. Huang et al. 2013). 

The phylum of Firmicutes is known to have several cellulose fermentors, which are important 

to lignocellulose breakdown (Su et al. 2017). Some of them can work in alkaline solution 

(Husseneder 2010). Other well-known glycosyl hydrolase groups for cellulose and 

hemicellulose degradation (GH1, GH9) are also present. Similar observations were done in 

the gut microbiome of a higher termite from Brazil (Grieco et al. 2019). We also found 

multiple hemicellulose degrading CAZy groups solely in the termite: (endo-beta-1,4-

xylanase, α-L-fucosidase, α-glucuronidase, beta-mannase, and beta-xylosidase). This shows 

the diversity of enzymes that the termite microbiome deploys to breakdown different types 

of hemicellulose.  

Regarding antibiotic resistance, the termite gut metagenome is the only one that has genes 

encoding multidrug and toxic compound extrusion (MATE), which consist of Na+/H+ drug 

antiporters. This system is found in Gram-positive microorganisms (Piddock 2006a). The 

resistance gene diversity found in the termite is intermediate between the isopod and the 

springtail (Peterson and Scharf 2016a; 2016b).   

Besides, the termite gut metagenome contained different clusters of genes encoding 

biosynthesis of secondary metabolites with anti-bacterial and fungal properties. The termite 

gut is a great place to identify novel antifungal as there are many bacteria protect the host 

from antagonistic fungi (Um et al. 2013; Benndorf et al. 2018). We identified a bananamide 

and ralsolamycin gene synthesis clusters, that have antifungal properties. 
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4.5.2 Springtail  

Collembola include a wide variety of feeding habits, varying from root-eating, fungivory and 

detritivory to predation, with very little food specialization, although there are diverging 

views on this (M. P. Berg, Stoffer, and Van Den Heuvel 2004). Folsomia candida is usually 

considered a fungivore, although some claim it prefers nematodes over soil fungi (Q. Lee and 

Widden 1996). In the laboratory, they readily feed on yeast. A remarkable property of F. 

candida is that it is extremely resistant to entomopathogenic fungi known for quickly kill 

termites and ants (Broza, Pereira, and Stimac 2001), which suggest that a living with fungi is 

the prime lifestyle of this animal.  

In our survey of CAZymes in the springtail metagenome, we found a low number of 

polysaccharide lyases and a large number of carbohydrate esterases, no pectinases but many 

cutinases. Since pectin is a typical constituent of plant cell walls and cutine is found in the 

plant cuticle, this would suggest that F. candida is better equipped to feeding on the surface 

of plant leaves than degrading the cell wall itself. Enzymes with chitinase activity, 

contributing to the degradation of fungal cell walls (such as CBM50 and GH23) are also 

found in the springtail metagenome, but these belong to CAZymes that are shared between 

the three hosts.  

In previous studies we have shown that the mycorrhizal fungus (AMF) Rhizophagus 

irregularis (Glomus intraradices) is a food source for the springtail (Duhamel et al. 2013; 

Faddeeva-Vakhrusheva et al. 2017). Five genes from the group AA1 were found in the 

springtail’s gut metagenome, which are known for their laccase activity. Another large group, 

AA3, contains cellobiose dehydrogenases, which oxidize cellobiose and cellodextrins to 

produce glucose (Sützl et al. 2018). For the breakdown of hemicellulose, the springtail gut 

metagenome contains large amounts of acetyl xylan esterases. There are more xyloglucanases 

(GH16) from the springtail than the other two gut metagenomes. Crystal cellulose-binding 

enzymes are more abundant in the springtail. Overall, this shows that the springtail contains 

some but not a very complex cocktail of enzymes to break down lignocellulose. 

In terms of antibiotic resistance, the springtail microbiome contained fewer genes than 

identified in the other two invertebrate gut microbiomes. However, it is the only metagenome 

that encodes proteins for protection against tetracycline and penan. Also remarkable, the 

springtail gut microbiome contains the largest number of gene clusters encoding biosynthesis 
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of secondary metabolites, among the three host species microbiomes investigated. It shows 

a wide-ranging capacity for the production of antibiotics as well as antifungal metabolites 

within its metagenome. Many of the large assembled contigs are assigned to Pseudomonas 

spp., which contains bacteriocin and antifungal gene clusters. We reported on one of the 

longest contigs with four different types of BGCs: bacteriocin, lokisin, rimosamide and 

siderophore biosynthesis genes were present. Bacteriocins are multifunctional substances, 

which are produced by the ribosomes. At certain concentration, bacteriocins display 

antimicrobial activities and can stop biofilm formation through the inhibition of quorum 

sensing. Some can have additional properties such as interfering with cell division process as 

well as biological functions (Algburi et al. 2017; Chikindas et al. 2018). The lokisin cluster 

was shown to trigger systemic resistance and direct antagonism against Magnaporthe oryzae 

as well as inhibiting fungal growth (Hultberg et al. 2010; Omoboye, Oni, et al. 2019; Gu et 

al. 2020). The rimosamide and associated NRPS/PKS-type gene cluster contain a very similar 

structure and biosynthesis to detoxin family (Yonehara et al. 1968). This cluster was observed 

in Streptomyces rimosus and is capable of negating the antibiotic activity of blasticidin from 

Bacillus cereus (McClure et al. 2016). Another observed cluster is the siderophores 

pyoverdine. During an infection, Pseudomonas aeruginosa produce pyoverdine, which is a 

core set of virulence factors. It can also act as a siderophore for absorbing iron from the 

environment for biofilm formation (Kang et al. 2018; Bonneau, Roche, and Schalk 2020). 

This would allow the springtail to benefit from resistance to entomopathogenic fungi, 

although a causal relation has, of course, not yet been demonstrated. We have previously 

shown that some of the antibiotic-producing genes have migrated to the host’s genome by 

horizontal gene transfer (Suring et al. 2017). 

4.5.3 Isopod  

For hemicellulose degrading enzymes, a large number of α-galactosidases from GH4 and 

GH31 were observed. The isopod metagenome also has more hemicellulase and/or cellulase 

genes from GH8 and GH9. Many of these enzymes are due to Proteobacteria. The other 

phyla such as Spirochaetes and Firmicutes are present but in low abundance (Bredon et al. 

2018; 2020). Another remarkable property of the isopod metagenome is that it is represented 

by numerous pectin-degrading enzymes, which are totally absent from the springtail 
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metagenome. This suggests that isopods, much more than springtails are equipped to degrade 

the cell wall polysaccharides of plant leaves, which accordant with their dietary preference.   

Interestingly, the isopod metagenome contains a large number of antibiotic resistance genes. 

To our knowledge, this is new finding as this has not been reported earlier in literature. The 

wide range of resistance genes encoding membrane pumps is particularly striking. The 

resistance/nodulation/division (RND) and major facilitator superfamily (MFS) are the two 

largest antibiotic efflux mechanisms in the isopod. The RND superfamily is found 

specifically in the Gram-negative microorganisms, where they form a tripartite complex 

across the two membranes. The MFS family is widely distributed in Gram-positive and 

Gram-negative bacteria. These pumps are activated to eliminate endogenous toxic 

compounds (Piddock 2006a; Nikaido 2010; Blanco et al. 2016; Piddock 2006b). By 

understanding these pumps, it is possible to design inhibitors to target efflux pumps of 

resistance microorganisms (Blanco et al. 2016).  

The isopod gut metagenome also contains thiopeptide biosynthetic gene clusters, which 

affect Grampositive but not Gram-negative bacteria. They are macrocyclic peptide antibiotics 

and can be used clinically to combat pathogenic Staphylococcus and Bacillus infections. 

They are also valuable as they can inhibit the protein synthesis in Gram-positive bacteria of 

methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant 

Enterococcus faecium (VRE). They have been shown to have antimalarial and anticancer 

activities (Rogers, Cundliffe, and McCutchan 1998; Donia, Ravel, and Schmidt 2008; 

Engelhardt, Degnes, and Zotchev 2010).  

4.6 Conclusions 

By investigating different functional gene groups encoded in the microbiomes of three 

different hosts it is possible to match some of the microbiome functionalities to the host 

environment as well as to their feeding habits. This functional diversity lies underneath an 

appreciable similarity in microbial community composition at high taxonomic levels. 

Different communities play similar but also different roles in different host animals. Our 

study illustrates the complexity of interactions between soil invertebrates, their microbiomes 

and the soil microbial community and the inappropriateness of lumping them together as 

simply “decomposers”. 
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Supplements 

Supplemental Table 1: Overview of CAZymes found in Armadillidium vulgare (Av), Folsomia candida 

(Fc) and Coptotermes gestroi (Cg) 
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Supplemental Table 1. Overview of CAZy families found in the metagenomes of Armadillidium vulgare 

(Av), Folsomia candida (Fc) and Coptotermes gestroi (Cg). The number of identified genes falling into 

each category is specified. 

 

 CAZy family Known activities  Av Fc Cg 

Lignin 

modifying 
enzymes 

AA1 Laccase 2 5 9 

AA2 Manganese peroxidase; versatile peroxidase; lignin peroxidase 4 3 1 

AA3 Cellobiose dehydrogenase 6 16 5 

Hemicellulases CE1 Acetyl xylan esterase; feruloyl esterase 8 25 11 

CE3 Acetyl xylan esterase 2 0 0 

CE4 Acetyl xylan esterase 6 14 24 

CE5 Acetyl xylan esterase 0 6 0 

CE7 Acetyl xylan esterase 0 1 4 

CE12 Acetyl xylan esterase 7 1 2 

GH2 β-galactosidase; β-mannosidase; α-L-arabinofuranosidase 3 5 6 

GH4 α-galactosidase 13 3 6 

GH11 Endo-β-1,4-xylanase 0 0 2 

GH16 Xyloglucanase 1 5 2 

GH27 α-galactosidase 0 1 1 

GH29 α-L-fucosidase 0 0 15 

GH31 α-galactosidase; α-xylosidase 5 0 2 

GH35 β-galactosidase 1 2 4 

GH36 α-galactosidase 6 4 7 

GH39 β-xylosidase 0 0 1 

GH42 β-galactosidase 0 1 1 

GH43 β-xylosidase; α-Larabinofuranosidase; arabinanase; xylanase 8 1 22 

GH53 Endo-β-1,4-galactanase 1 0 0 

GH57 α-galactosidase 0 1 3 

GH67 α-glucuronidase 0 0 1 

GH113 β-mannanase 0 0 3 

GH116 β-xylosidase 0 0 2 

GH120 β-xylosidase 0 0 2 

Hemicellulases 

and/or 
cellulases 

GH1 β-glucosidase; β-galactosidase; exo-β-1,4-glucanase; 

βmannosidase; β-xylosidase 

24 7 36 

GH3 β-glucosidase; exo-β-1, 4-glucanase; xylan 1,4-β-xylosi dase;α-L-
arabinofuranosidase 

16 10 17 

GH5 Endo-β-1,4-glucanase; βglucosidase; exo-β-1,4-glucanase; endo-β-

1,4-xylanase; βmannosidase; endo-β-1,4-manno sidase; 

cellobiohydrolase 

6 2 4 

GH6 Endo-β-1,4-glucanase; cellobiohydrolase 11 20 5 

GH8 Endo-β-1,4-glucanase; endo-1, 4-β-xylanase 9 0 2 

GH9 Endo-β-1,4-glucanase; βglucosidase; exo-β-1,4-glucanase; 
cellobiohydrolase 

2 0 1 

GH30 β-glucosidase; endo-β-1, 4-xylanase; β-xylosidase 0 0 2 

GH51 Endo-β-1,4-glucanase; endo-β-1,4-xylanase; β-glucosidase; β-
xylosidase; α-L-arabinofuranosidase 

0 1 4 

GH94 Cellobiose phosphorylase 1 0 1 

Lignocellulose-

binding 
modules 

CBM6 Cellulose-binding 0 0 1 

CBM9 Crystal cellulose-binding 0 3 0 

CBM13 Xylan-binding 1 1 2 

CBM23 Mannan-binding 0 2 0 

CBM32 Galactose-binding 0 1 5 

CBM35 Xylan, mannans and β-galactan binding 2 0 0 

CBM51 Galactose-binding 1 0 3 

CBM67 L-rhamnose-binding 1 1 4 

Pectin PL1 Pectate lyases 3 0 1 
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5.1 Abstract  

In this study, we identified two hemicellulose degrading enzymes, an α-L-

arabinofuranosidase (LAraf43) and an α-glucuronidase (PGluc67) in two different animal gut 

metagenomes. Carbohydrate Activity enZyme (CAZy) database  was used to identify these 

enzymes. The LAraf43 is predicted to be a glycoside hydrolase of family 43 from the 

Coptotermes termite gut bacterium Lactococcus lactis. The PGluc67 protein sequence was 

deduced from goat gut metagenomes and predicted to be a glycoside hydrolase of family 67 

from a non-characterized Prevotella species. Both enzymes were expressed and characterized 

in Escherichia coli. The activity assays with purified enzymes revealed that LAraf43 

hydrolyzed synthetic p-nitrophenol-α-L-arabinofuranoside at 37°C and pH 7.4 with a Km of 

0.104 ± 0.05 mg/ml and a Vmax of 12.4 ± 5.0 U/mg. The PGluc67 hydrolyzed aldutriouronic 

acid with a Km of 3.92 ± 1.76 mM and a Vmax of 55.0 ± 17.6 U/mg at 37°C and pH 7.4.   

5.2 Introduction  

The breakdown of lignocellulose through the action of recombinant enzymes is receiving 

increased attention, because it could facilitate a more sustainable way of generating organic 

building blocks for industrial use. Plant cell wall material is one of the most abundant carbon 

resources on earth and a possible source of bio-based chemicals. Lignocellulose is the main 

component of the dry woody part of a plant and consists of 23%-38% hemicellulose and 

41%-51% cellulose depending on the plant species (H. Chen 2014a; Boonmee 2012). 

Currently, lignocellulose is broken down by chemical means to isolate fermentable 

monomeric sugars such as glucose, xylose and pentoses at a high cost of energy and/or waste 

(Das et al. 2012; Amin et al. 2017). Complete enzymatic degradation of lignocellulose is 

difficult as each component in the complex polysaccharide structure is made up of distinct 

precursors and linkages and so will require multiple enzymes to hydrolyze the various bonds 

(de Souza 2013; Bornscheuer, Buchholz, and Seibel 2014). Therefore, it is important to 

identify enzymes with novel functions or improved catalytic activities that may foster such 

bio-based recovery of fermentable sugars from lignocellulose. 

The microbiome present in the gut of wood-feeding animals is a potential source of novel 

plant cell wall-degrading enzymes, because the associated microbial communities have 

coevolved with their hosts (Brune and Dietrich 2015; Puniya, Singh, and Kamra 2015; 

Valeria Agamennone et al. 2019). Potentially interesting enzymes that can break down 
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complex polysugars/polysaccharides such as hemicellulose have already been isolated from 

microbiomes of termites (Brune 2014; Hongoh 2011; Ni and Tokuda 2013; Breznak and 

Brune 2002) and goats (Do, Le, et al. 2018; K. T. Lee et al. 2018; Al-Masaudi et al. 2019; G. 

Wang, Luo, Meng, et al. 2011; G. Wang, Luo, Wang, et al. 2011). These enzymes cleave 

side-chains and glycosidic linkages in the polymeric backbone to release sugars that may be 

used by the microbes as an energy source. The two major mechanisms of such glycoside 

hydrolases are known as i) inverting, where the product has a stereochemistry opposite to the 

substrate and ii) retaining, where the anomeric configuration of the product is the same as 

that of the substrate (Sweeney and Xu 2012). 

Hemicellulose consists of a heteropolymer of the pentoses D-xylose, L-arabinose and 

hexoses, such as D-mannose, D-glucose and D-galactose (Ravindran and Jaiswal 2016). It 

strengthens the lignocellulose matrix by linking cellulose microfibrils and lignin together 

(Gírio et al. 2010). Due to its heterogeneous structure, multiple de-branching enzymes, such 

as α-arabinofuranosidase, α-glucuronidase, acetyl-xylan esterase and phenolic acid esterase, 

are required for the complete degradation of hemicelluloses. This is a critical step, because 

their removal disrupts the lignocellulose matrix and makes the structure more accessible to 

other enzymes, such as endo-xylanases, eventually leading to complete hydrolysis into 

monomer sugars (Lagaert et al. 2014; C. C. Lee, Kibblewhite, Wagschal, Li, Robertson, et 

al. 2012).  

The α-L-arabinofuranosidases hydrolyze the terminal α-L-arabinofuranosyl groups from L-

arabino-containing polysaccharides and oligosaccharides. These enzymes are found in 

different CAZy families but are mostly abundant in glycoside hydrolase family 43 (GH43). 

All enzymes in this family are characterized by a 5-fold β-propeller structure and are of the 

so-called inverting type, yet their activities are diverse and range from β-xylosidase; α-L-

arabinofuranosidase; xylanase; α-1,2-L-arabinofuranosidase; exo-α-1,5-L-

arabinofuranosidase; exo-α-1,5-L-arabinanase; β-1,3-xylosidase; exo-α-1,5-L-arabinanase; 

endo-α-1,5-L-arabinanase; exo-β-1,3-galactanase to β-D-galactofuranosidase 

(www.cazy.org) (Maehara et al. 2014; Dimarogona and Topakas 2016). 

Degradation of polysaccharides and oligosaccharides by α-L-arabinofuranosidases releases 

L-arabinose residues. This natural sweetener can be used as a food flavor and a source of 

pharmaceutical products (Fehér 2018). Feeding of L-arabinose and sucrose to rats showed 



Chapter 5 

112 

reduced insulin level in blood, as L-arabinose noncompetitively inhibits intestinal sucrose, 

resulting in slowing down of the glycemic response (Kaneko et al. 1998; Kotake et al. 2016). 

The same effect was observed in human and so L-arabinose has the potential to be used in 

diabetes treatments (Kaats et al. 2011). In addition, α-L-arabinofuranosidase can play a role 

in the production of bio-ethanol. Traditionally, hexoses were one of the main substrates for 

the production of bioethanol, however, with the discovery of microorganisms that can 

ferment pentoses, there has been increasing interest in α-L-arabinofuranosidase (Das et al. 

2012). 

Other side chains in lignocellulose, like the 4-O-methyl-D-glucuronic acid (MeGlcA) found 

in xylose, can prevent enzymatic hydrolysis of xylan and can be covalently cross-linked to 

lignin (C. C. Lee, Kibblewhite, Wagschal, Li, Robertson, et al. 2012). The α-glucuronidase 

from the glycoside hydrolase family 67 acts on such xylooligomers to release MeGlcA. This 

family comprises only two types of enzymes; α-glucuronidase and xylan α-1, 2-

glucuronidase. Both are inverting enzymes and fold into a characteristic (β/α)8 barrel domain 

structure (Nurizzo, Nagy, et al. 2002). α-glucuronidase is currently applied in bio-bleaching 

of paper pulp, fermentation for animal feed and to remove MeGlcA after alkaline 

pretreatment of plant cell wall materials for bio-ethanol production (Septiningrum et al. 2015; 

Rhee et al. 2017; C. C. Lee, Kibblewhite, Wagschal, Li, and Orts 2012). 

Metagenomics approaches supported by bioinformatics and subsequent biotechnology may 

help to recover and characterize novel genes from interesting ecosystems, where most of the 

species may be uncultivable. In this paper, we describe the identification of a novel α-

glucuronidase (PGluc67) and an α-L-arabinofuranosidase (LAraf43). The genes encoding 

these enzymes were identified in the metagenomes from two gut microbiomes from termites 

and goat, respectively and cloned. Subsequently, they were expressed in Escherichia coli and 

the purified enzymes were biochemically characterized. 

5.3 Materials and Methods  

5.3.1 Selection of hemicellulose-degrading enzymes  

Previously described metagenome assemblies from the Coptotermes termite gut metagenome 

(Do et al. 2014) and native Vietnamese goat rumens metagenome (Do, Le, et al. 2018; Do, 

Dao, et al. 2018) were used for the analysis. The bacterial open reading frames (ORFs) from 

these metagenomes were analyzed in silico as follows. A hidden Markov model (HMM) 
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database for the Carbohydrate Activity enZymes (CAZy) was obtained from dbCAN 

(http://csbl.bmb.uga.edu/dbCAN/) (Yin et al. 2012). Protein sequences were analyzed using 

HMMER 3.0 (Eddy 1998) to identify CAZymes candidates. The nucleotide and protein 

sequences of these candidates were analyzed using basic local alignment search tool 

(BLAST) software from the National Center for Biotechnology Information (NCBI) to 

establish sequence homologies (Altschul et al. 1997). For predicting the 3 dimensional (3D) 

structures model, the protein sequence was analyzed using the Phyre2 web server 

(http://www.sbg.bio.ic.ac.uk/phyre2/html) (L. A. Kelley et al. 2015) and SWISS-MODEL 

(https://swissmodel.expasy.org) (Waterhouse et al. 2018) with default settings. The 

nucleotide sequences were analyzed for the presence of signal peptides using gram negative 

and gram positive settings using the SignalP 4.1 server 

(http://www.cbs.dtu.dk/services/SignalP) (Almagro Armenteros et al. 2019). Bacterial 

promoters were identified using BPROM (http://www.softberry.com). Contig analysis, 

protein molecular weight and isoelectric point (pI) value calculations were done using 

Cloning Manager 9.0 (Sci-Ed Software, USA). 

5.3.2 Plasmid construction for recombinant expression  

A metagenomic DNA library of Coptotermes termite guts (Do et al. 2014) was amplified 

using the REPLIg kit (Qiagen, Germany) prior to be used as a template to PCR the gene 

sequences. Oligonucleotide primers were designed based on the predicted α-L-

arabinofuranosidase (LAraf43) gene from the Coptotermes termite gut metagenome. The 

gene encoding LAraf43 was amplified using the 5’-primer (5’-

GGGCATATGAGCAATTATACTGCACC-3’), which included the ATG translational start 

codon inside a NdeI restriction site (shown in italic) and 20 nucleotides of the ORF. The 3’-

primer (5’-TTTCTCGAGCTATTGAATAGTAAATTTCTGAGGTT-3’) included a stop 

codon (TAG), containing an XhoI restriction site and the preceding 26 nucleotides of the 

ORF. Three guanine and thymine residues were added at the 5’-end of the 5’-primer and 3’-

primer, respectively, to create a good binding site for the respective restriction enzymes. The 

gene sequence was amplified using Taq polymerase and the product was purified on a 1% 

agarose gel. It was digested with NdeI and XhoI and ligated into NdeI/XhoI-digested pET16b 

vector, resulting in the plasmid pET16-LAraf43 with an N-terminal His-tag. The resulting 

plasmid was transformed into XL1-blue chemically competent cells. Successfully 
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transformed colonies were screened by restriction digestion and correct inserts were 

confirmed by DNA sequencing (Macrogen). After quality control, intact pET16-LAraf43 

plasmid DNA was transformed in E. coli protein expression strain Rosetta2 (DE3) 

(Novagen). 

The predicted sequence encoding an α-glucuronidase (PGluc67) was selected from the 

available goat rumen metagenome data (Do, Le, et al. 2018). The identified PGluc67 was 

also predicted to include a signal peptide. Codon usage of the ORF was optimized for 

enhanced expression in E. coli. The resulting ORF was chemically synthesized in such a way 

that the predicted signal peptide was omitted and replaced by the endogenous pelB signal 

sequence from pET22b resulting in the pET22b-pelB-PGluc67 vector (GenScript, USA). 

This is expected to direct the protein to the periplasm of E. coli cells expressing the construct 

(Singh et al. 2013). The resulting plasmid was transformed into E. coli Rosseta2 for protein 

expression. 

5.3.3 Recombinant protein expression and purification of LAraf43  

A 10 mL culture was inoculated from a glycerol stock of transformed Rosetta2 and diluted 

into 200 ml of LB medium with 100 mg/ml ampicillin at 37°C until the culture reached an 

optical density at 600nm (OD600) of 0.6-0.8. At that point gene expression was induced by 

adding 50 µM isopropyl-beta-D-thiogalactopyranoside (IPTG) and cultures were further 

incubated for 2 hours at 37°C. Cells were harvested by centrifugation and suspended in 8 mL 

of phosphate buffer saline (PBS; pH 7.4). A cocktail of protease inhibitors cOmplete™, 

EDTA free (Roche) was added followed by two passages at ~1.7 k psi through a OneShot 

cell disruptor (Constant Systems Ltd) at room temperature. The cell extract was centrifuged 

at 586 × g for 10 min and 100,000 × g for 1 hour to remove debris and membrane fragments. 

The cleared cell extract was mixed with TALON Superflow resin (GE, Sweden), which had 

been pre-equilibrated with buffer A (50 mM potassium phosphate buffer, 500 mM sodium 

chloride, 10% glycerol, 10 mM Imidazole pH 7.5) and incubated at 4°C, for 1 hour. The 

mixture was transferred to a disposable 5 ml polypropylene column (Thermo Scientific) and 

then washed with 10 mL of buffer A. The His-tagged proteins were eluted from the beads by 

adding 10 mL of Buffer B (50 mM sodium phosphate buffer, 500 mM sodium chloride, 10% 

glycerol, 400 mM imidazole pH 7.5). Subsequently, a Vivaspin 20, MWCO 10 kDa column 

was used to concentrate the sample and remove salts. A volume of 20 mL PBS pH 7.4 was 
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added and centrifuged at 6000 x g and this was repeated five times after which the retentate 

was collected and aliquoted. The concentration of purified protein was measured using the 

BCA protein assay kit (Thermo Scientific) with bovine serum albumin (BSA) as the standard. 

Crude extracts or purified protein samples were denatured in sample buffer with dithiothreitol 

(DTT), boiled for 10 min and applied to 10% gradient sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE, BIORAD) along with the molecular weight marker to 

determine the molecular weight and purity. The gel was stained with 0.1 % Coomassie Blue 

as previously described by (Lämmli 1970). 

5.3.4 Enzyme assays for LAraf43  

Synthetic p-nitrophenyl-α-L-arabinofuranoside (pNP-α-L-Araf) was purchased from 

Megazyme International (Wicklow, Ireland). Alpha-L-arabinofuranosidases catalyze the 

release of p-nitrophenol (pNP) from pNP-α-L-Araf, which can be measured at 405 nm. Each 

assay mixture contained 10 µL of a 25 mM pNP-α-L-Araf solution with 88 µL of PBS buffer 

(pH 7.4) and 2 µL of enzyme solution. The reaction was carried out at 37°C for 6 hours 

measuring pNP every 15 minutes. A standard curve of pNP was generated to estimate the 

amount of pNP released from the reaction. One unit of enzyme activity was defined as the 

amount of enzyme releasing 1 µmol of PNP from PNP-α-LAraf per min under these 

conditions. The assay activity was performed in triplicate as mentioned above, unless 

otherwise stated.  

The initial rate of hydrolysis to determine kinetic parameters were obtained from different 

pNP-α-L-Araf concentrations in the range 0 – 0.5 mM at pH 7.4 in PBS and at 37°C. The 

reaction was started by adding 2 µL LAraf43 to the reaction in a final volume of 100 µL. 

Initial rates were plotted against pNP-α-L-Araf concentrations and kinetic parameters were 

estimated by fitting the Michaelis-Menten equation, linearized by reciprocal transformations.  

5.3.5 Enzyme assays for PGluc67  

Alpha-glucuronidase catalyzes the conversion of aldotriouronic acid (Megazyme, Ireland) to 

4-O-methyl-α-D-glucuronic acid, which is subject to oxidization by urinate dehydrogenase 

(UDH) to form glucarate coupled to reduction of NAD to NADH (Yoon et al. 2009). The 

activity of α-glucuronidase was determined by measuring NADH at 340 nm. The reaction 

was conducted in 50 mM PBS buffer pH 7.4, containing 0.375 to 6 mg/mL, stop buffer, 
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NAD+ and urinate dehydrogenase (UDH). The Stop buffer, NAD+ and UDH were used as 

provided by the manufacturer. Enzymes were incubated with each reagent for 5 min at 37°C 

followed by assaying the residual activity. 

The kinetic activity of PGluc67 was assayed at 37°C after 0, 5, 10, 15 and 30 min. Kinetic 

parameters of the purified enzyme were estimated in duplicate and repeated in three separate 

days. Vmax and Km of the Michaelis-Menten model were estimated by linear regression after 

reciprocal transformation. 

5.3.6 Effects of pH and temperature on PGluc67 activity and stability  

Reactions were conducted at various pHs and temperatures. The effect of pH on the activity 

and stability of PGluc67 were determined in a series of different buffers with 0.5 mg/ml BSA: 

100 mM sodium acetate (pH 3 - 5); 100 mM MES (pH 6); 100 mM MOPS (pH 7) and 100 

mM HEPES (pH 8 - 9). The activity of PGluc67 was assayed as described above.  

The effect of temperature on the activity and stability of PGluc67 was determined in 

Polymerase chain reaction machines at temperatures ranging from 10 to 70°C. Temperature 

stability was determined by incubating the enzyme for 30 min at various temperatures from 

30 up to 70°C, followed by activity assaying as previously described.   

5.3.7 Effects of chemical agents and metal cations  

The effect of several metal ions and chemical agents on PGluc67 activity was determined. 

The Mn2+, Ca2+, Mg+, K+, Ni2+, Zn2+ and Fe3+ metals ions were assayed at concentration of 

10 mM in the reaction mixture at pH 7 in triplicate. Chemical agents such as urea, triton X-

100 (Sigma-Aldrich, USA), and β-mercaptoethanol (MERCK, USA) were tested at 1 µM. 

Imidazole and tween-80 were tested at a concentration of 10 mM. The activity was 

determined as described above and presented as a percentage in comparison to the activity 

without the test compound. The reaction was carried out in triplicate.  

5.3.8 Substrate specificity  

The synthetic compounds 4-nitrophenyl-β-glucoside (pNPG) and 4-nitrophenol-β-D-

xylopyranoside (pNPX) were tested with 400 µL enzyme, 100 µL substrate and 10 mM PBX 

5x, pH 6.0 and incubated at 37°C for 1 hour. The reaction was stopped by adding 1M Na2CO3. 

Measurements were carried out at 405 nm.  
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5.3.9 Extending the contig containing the PGluc67-encoding operon  

The original sequence data used to identify the PGluc67’s ORF was assembled using a single 

k-mer value (Do, Le, et al. 2018). To obtain a better overview of the genomic region, we 

reprocessed the raw dataset to extend the contig length using multiple k-mer values. Low 

quality raw reads from the sequencer were removed using the programme bbduk with the 

following options: ktrim=r k=23 mink=7 hdist=1 tpe tbo qtrim=rl trimq=20 ftm=5 maq=20 

minlen=36 (Bushnell 2017). A contamination library containing fungal, human, plant, 

protozoal and viral sequences was generated. Raw reads were aligned against this library 

using Kraken2 (Wood and Salzberg 2014). Any reads that matched to the contamination 

library were removed from the metagenome. For the assembly, MetaSPAdes version 3.13.0 

with k-mer values 21, 33, 55, 77, 99 was used (Bankevich et al. 2012). Contig annotation 

tool (CAT) was used to remove contamination and uncharacterized contigs from the 

assembly (von Meijenfeldt et al. 2019). The resulting contigs were made into a nucleotide 

database using makeblastdb (Camacho et al. 2009). The original contig with the ORF 

encoding PGluc67 was aligned again this database and yielded a hit Contig with 100% 

identity and coverage that was used for further research. 

5.4 Results  

5.4.1 Sequence analysis of LAraf43  

An ORF encoding LAraf43 was identified in the sequences obtained from a previously 

described gut metagenome of the Coptotermes termite (Do et al. 2014). The ORF was 

identified on scaffold4611_1 of 9,042 bp long. This contig was 99.12% identical to the 

corresponding region in the genome of Lactococcus lactis strain A106 (NCBI accession 

CP009472.1), 98.01% identical to that of L. lactis strain NCDO2118 (NCBI accession 

CP009054.1) and 98.01% identical to that of L. lactis strain 147 (NCBI accession 

CP001834.1) and thus apparently derived from a L. lactis species present in the termite gut. 

Strikingly, these three sequenced genomes of L. lactis strains were all isolated from plant 

sources and not from dairy. They all have an identical gene synteny that differs from what 

found in dairy related L. lactis isolates but similar in scaffold4611_derived from the termite 

gut (Passerini et al. 2013; Siezen et al. 2011). Specifically, these isolates contained a full-

length functional ORF encoding an α-L-arabinofuranosidase with an average of 98% amino 
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acid identity with LAraf43 and, additionally, an ORF encoding araT encoding an arabinose-

proton symporter, which was not found in genome sequences of dairy-derived L. lactis 

(Passerini et al. 2013; Siezen et al. 2011). However, the araT ORF in the scaffold4611_1 

appeared truncated due to a single nucleotide deletion. We cannot exclude this derived from 

a sequencing error, but the remaining 3’-part of ORF encodes for putative transporter from 

the major facilitator superfamily (MFS) and could function as such in its truncated form. The 

BLASTP result revealed a MFS domain and the 3D structure was predicted to be a protein 

transporter (data not shown). General L-arabinose processing genes found in all L. lactis 

genomes were also detected on scaffold4611_1 and the three sequenced genomes. An L-

arabinose operon (or araBAD) was observed upstream from LAraf43. Downstream of 

LAraf43, two ORFs were identified coding for a MFS transporter (araP), annotated to encode 

a disaccharide transporter and a GntR family transcriptional regulator (araR), respectively 

(Fig. 1). 

 

Figure 1: Gene organization of the conserved region containing the α-arabinofuranosidase gene 

(green) in three sequenced L. lactis genomes (above) aligned to scaffold4611_1 of the metagenome of 

termite gut (below). The gene names are: araA, L-arabinose isomerase; araD, L-ribulose-5-phosphate 

4-epimerase; araB, L-ribulokinase; araT, arabinose-proton symporter; araF, α-N-

arabinofuranosidase; araP, disaccharide permease; araR, GntR family arabinose operon repressor; 

MFS, major facilitator superfamily membrane transporter (blue arrow). The asterisk showed the 

missing nucleotide on the scaffold4611_1.  

L. lactis is a species that belongs to the Firmicute phylum and is often found in insect gut 

microbiomes (Kaoutari et al. 2013; Do et al. 2014; Shannon et al. 2001; Shelomi et al. 2015). 

Addition of arabinoxylan oligosaccharides into the host dietary results in the expansion of L. 

lactis population (Geraylou et al. 2013). It has been reported that some L. lactis strains can 

grow using L-arabinose as carbon source (Golomb and Marco 2015; Passerini et al. 2013) 

and the contig-sequence shows synteny with plant-derived L. lactis genome regions, 

suggesting a similarity in metabolic capacities. 
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Figure 2: Alignment of amino acid sequences of LAraf43 with α-L-arabinofuranosidase from Weissella 

(APU52332.1), the uncharacterized Lactococcus (WP_058219862.1), Lactobacillus (APU52333.1), 

exo-1,5-α-Larabinofuranosidase from Streptomyces avermitilis (BAC68753.1), and that of 

Streptomyces chartreusis (BAA90772.1). The alignment was restriced to the catalytic domain as given 

in CAZy and was generated using ClustalW. The asterisks show the putative catalytic residues within 

the family, with the amino acid residues (D14, D138 and E199 in LAraf43) highlighted in blue.   

The LAraf43 gene is 972 bp long and encodes a polypeptide of 324 amino acid residues with 

a molecular mass of 37.57 kDa and pI of 5.59. BLASTP results showed that LAraf43 contains 

a conserved amino acid motif (position 4 – 312) that shows high sequence homology to the 

Glycoside Hydrolase 43 (GH43) family (Fig. 2). When compared with known and 

characterized proteins in the GH43 family, the LAraf43 clusters into subgroup 26 (data not 

shown). Proteins in this subgroup often do not contain a carbohydrate-binding module 

(CBM) (Mewis et al. 2016). Further analysis indicated that the encoded protein did not 

include an N-terminal signal peptide, which renders the protein cytoplasmic. 
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Figure 3 A: Model of the 3D structure of LAraf43 generated by the Phyre2 website. The image was 

generated using Pymol (64). B: SDS-PAGE of samples obtained during purifiucation of LAraf43 

enzyme. Lane M, molecular weight maker; Total, total cell sample; Soluble, Soluble fraction after ultra-

centrifugation; Flow through, Flow through from the Nickel column, Wash1, First wash; Elution, 

purified α-L-arabinofuranosidase enzyme; two band are detected, one of them corresponds in size the 

His-tagged protein purified.  

Sequence analysis of LAraf43 showed that a protein with a predicted α-N-

arabinofuranosidase activity from L. lactis was its closes orthologue with 99.38% identity 

(NCBI accession WP_058219862.1). No α-arabinofuranosidase gene from L. lactis has been 

functionally characterized. Similar enzymes that have been characterized are APU52332.1 

from Weissella, AGT14430.1 from L. brevis DSM 20054, APU52333.1 from L. brevis 

DSMZ 1269, BAC68753.1 from S. avermitilis and BAA90772.1 from S. chartreusis GS901 

with 75.86 %, 72.06 %, 72.06 %, 53.65 % and 49.31 % identity to LAraf43, respectively 

(Linares-Pastén et al. 2017; Michlmayr et al. 2013; Matsuo et al. 2000; Ichinose et al. 2008). 

Amino acid sequence of LAraf43 had higher similarity to dimer and tetramer proteins (Table 

1). The solved structure of the exo-α-arabinofuranosidase protein from L. brevis DSMZ 1269 

served as model to predict the 3D structure of LAraf43 (Fig. 3A) (Linares-Pastén et al. 2017; 

Fujimoto et al. 2010). The resulting model showed the characteristic five-bladed β-propeller 

domain of the GH43 family. The α-arabinofuranosidase enzymes from the GH43 family are 

further characterized by an active site comprised of three conserved amino acid residues, two 

aspartic acids and one glutamic acid (Pason et al. 2015), which all three are present in 
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LAraf43 at positions (D14, D138 and E199) that match with the known enzymes (Table 1; 

Fig. 2) (Michlmayr et al. 2013; Matsuo et al. 2000; Ichinose et al. 2008). This conserved 

motif is a general feature of enzymes that have an inverting function as their catalytic activity 

(Lagaert et al. 2014; Sweeney and Xu 2012). As noticed by Linares-Pasten et al. 2017, α-

arabinofuranosidases with a long loop region within the blade V fold show exo-enzymatic 

activity. This region of the predicted model of LAraf43 was identical to SaAraf43A (data not 

shown) (Linares-Pastén et al. 2017). Exo enzymes can cleave both ends of a long-chain 

substrate instead of cleaving it in the middle. LAraf43 was further predicted to be a 

homodimer with exo-1, 5-α-L-arabinofuranosidase activity based upon sequence similarity 

to structurally of characterized enzymes. 

5.4.2 Biochemical characterization of LAraf43  

The LAraf43 gene was cloned from the Coptotermes termite gut metagenomes by PCR and 

inserted into a pET16b expression vector in such a way that a His-tag was fused to the N-

terminus of the encoded protein. The plasmid was successfully transformed in E. coli 

Rosetta2. Upon induction of LAraf43 expression, high protein levels were detected in cell 

samples on coomassie brilliant blue-stained SDS-PAGE. However, when the cells were lysed 

and subsequent steps were performed to purify the His-tagged proteins the amount of soluble 

protein obtained was very low. Apparently, the majority of proteins that were expressed 

ended up in aggregates. Furthermore, the purified recombinant protein fraction showed two 

bands on the SDS-PAGE gel running at ~41 and ~56 kDa, respectively. The molecular weight 

of the histidyl-tagged N-terminus was calculated to be 40.1 kDa, which corresponds to the 

lower band. The extra band at 56 kDa could be a background protein that co-eluted in the 

purification process or an aggregation product of LAraf43 (Sagné et al. 1996) (Fig. 3B). 

LAraf43 was found to have enzymatic activity despite the presence of the His-tag, suggesting 

that the tag did not interfere with the protein structure and function (Carson et al. 2007). The 

purified protein also appeared stable, since it did not show loss of activity nor proteolysis 

during tests after 1 month of storage at 4°C. 

The specific activity of the enzyme was determined based on the rate of pNP release as 

described in the Method section. Kinetic parameters estimated from the initial reaction rates 

were Km of 2.70 ± 0.01 mM and a Vmax of 0.08 ± 3.0 e-4 U/mg at 37°C and pH 7.4. 
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5.4.3 Sequence analysis of PGluc67  

We identified a 10,772-bp contig from the metagenome of Vietnamese goat rumen that 

contained an ORF encoding a glycoside hydrolase of family 67 (GH67), which we named 

PGluc67. After reassembly of our raw sequencing data using multiple k-mer values, the 

resulting extended contig, called NODE_717, was 21,956 bp long and contained the original 

operon with 100% identity. BLASTN analysis of the complete contig showed that only small 

fragments aligned to sequences in the NCBI nucleotide database, suggesting low similarity 

to previously released DNA fragments. The highest similarity of 83.56 % nucleotide identity 

over a segment of 1,820 nucleotides was observed when the fragment was aligned to a 5,463 

bp fragment of an uncultured bacterial clone obtained from a metagenome of a cow (NCBI 

accession JN684207.1) (C. C. Lee, Kibblewhite, Wagschal, Li, and Orts 2012). This segment 

included a predicted ORF encoding an α-glucuronidase. Importantly, however, the overall 

gene organization on the cow rumen contig is very different from that of NODE_717. 

Sequence analysis of ORFs on NODE_717 showed that it encodes a sensor histidine kinase 

(baeS) downstream of PGluc67, which has been observed for other glycoside hydrolases as 

well (Rhee et al. 2017; Lingling Wang et al. 2013). Upstream of the ORF encoding PGluc67 

lies a gene cluster encoding a polysaccharide outer membrane exporter (wzA), a regulator for 

the chain length of O-antigen polysaccharides (wzZ), an oligosaccharide repeats unit 

polymerase (wzY), a transmembrane lipid transporter protein (flippase, wzX), two glycosyl 

transferases family 2 (GT2), a TDP-4-oxo6-deoxy-D-glucose transaminase (wecE), two 

wcaJ, UDP-glucose:undecaprenyl-phosphate glucose-1-phosphate transferase and the wzI, 

surface assembly of capsule (Fig. 4A). All genes are predicted to be involved in production 

of exopolysaccharides in Gram-negative bacteria (Fig. 4B) (Marolda et al. 2010; 2006; Vinés 

et al. 2005; Reid and Whitfield 2005; Furlong and Furlong 2013; Valvano, Furlong, and Patel 

2011; Schmid, Sieber, and Rehm 2015). Further upstream are lipocalin and endonuclease 

proteins. This gene cluster is also linked with the response to envelope stress (Campanacci et 

al. 2006; 2004). Homology searches of these proteins showed their top hit were proteins from 

Prevotella species with 42.31% to 92.86% identity at the amino acid level. Similar result was 

obtained after CAT analysis (data not shown). This is a very common genus of Bacteroidetes 

that is also commonly found in animal guts (Lim et al. 2013; Flint and Bayer 2008; 
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Henderson et al. 2013), and suggested to be involved in colanic acid (CA) production (Dodd 

et al. 2010; Roberts and Whitfield 1999; Corbett and Roberts 2008). 

 

Figure 4 A: Gene organization on NODE_717 from goat rumen metagenome containing the α-

glucuronidaseencoding gene PGluc67. The other ORFs are baeS, encoding a sensor histidine kinase; 

wzA, polysaccharide outer membrane exporter; wzZ, chain length determinant protein; wzX, flippase, 

transmembrane lipid transporter; Wzy, oligosaccharide repeat unit polymerase; GT2, glycosyl 

transferase family 2; bcsA, bacterial cytoplasmic membrane cellulose synthase subunit A; wecE, TDP-

4-oxo- 6-deoxy-D-glucose transaminase; wcaJ, UDP-Glc:Und-P Glc-1-P transferase and wzi, Outer 

membrane protein. B: predicting proteins involved in the CA production. PGluc67 cleaves to generate 

glucuronic acid as precursor for colanic acid. 1: The WcaJ protein initiates the capsule synthesis. 2: 

GTs add sugar to the exopolysaccharides. 3: The exopolysaccharide is flipped by Wzx. 4: Longer chain 

of exoploysaccharide is polymerized by Wzy. 5: The whole process is controlled by Wzz. 6: Capsule is 

transported to the outter membrane through Wza protein. 7: Exopolysaccharides are attached to the 

outer membrane surface with Wzi.  

The ORF of PGluc67 is 1,974 bp long and appears to encode a protein with a signal peptide 

targeting the Sec machinery for export out of the cytoplasm. It suggests the protein is located 

in the periplasm if the contig is derived from a Gram-negative bacterium, as the other contig 

ORFs suggested (Tsirigotaki et al. 2017; Dalbey, Wang, and van Dijl 2012). BLASTP 

indicated homology to the conserved motif of the GH67 family from amino acid 56 to 350 

(data not shown). The PGluc67 protein without signal peptide was highly homologous to 
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several characterized α-glucuronidases enzymes AFE48530.1 from uncultured cow rumen 

bacterium, ADI70674.1 from Prevotella bryantii B14, ACE83468.1 from Cellvibrio 

japonicus Ueda107, AFJ94648.1 from uncultured compost bacterium, AAG09715.1 from 

Geobacillus stearothermophilus 236 and AGL48978.1 from Thermotoga maritima MSB8 

with 87%, 53.6%, 50.4%, 44.6%, 43.12% and 42.3% similarity on amino acid level, 

respectively (C. C. Lee, Kibblewhite, Wagschal, Li, and Orts 2012; Dodd et al. 2010; Ruile, 

Winterhalter, and Liebl 1997; C. C. Lee, Kibblewhite, Wagschal, Li, Robertson, et al. 2012; 

I.-D. Choi, Kim, and Choi 2005; Nurizzo, Nagy, et al. 2002). Only α-glucuronidase proteins 

from Prevotella and Bacteroides contain a signal peptide. Crystal structures of C. japonicus 

and G. stearothermophilus were used for predicting the structure of PGluc67 (Nurizzo, Nagy, 

et al. 2002; Golan et al. 2004). The α-D-glucuronidase protein sequence contains two highly 

conserved amino acids (D332 and E360 in PGluc67), which act as critical catalytic residues 

for the inverting mechanism (Fig. 5A) (Zaide et al. 2001; Nurizzo, Nagy, et al. 2002). 

Similarly to other inverting group of enzyme, E360 acts ac catalytic acid and D332 acts as 

catalytic base (Fig. 5B) (Cuskin et al. 2015). PGluc67 was predicted to be homodimer with 

Calcium and Zinc binding site (data not shown). 

The α-D-glucuronidase signal peptide was replaced by a PelB signal peptide and codon usage 

was optimized for expression in E. coli. When expressed from a pET22 plasmid the 

recombinant PGluc67 encoded a 667 amino acid sequence with pelB signal and a His-tag at 

the C-terminus and it was predicted to have 66 kD and a pI of 6.55. The pelB leader sequence 

improves solubility and transfers the protein to the periplasm (Singh et al. 2013; Freudl 2018; 

J. H. Choi and Lee 2004).  
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Figure 5 A: Alignment of PGluc67 with other characterized α-glucuronidase from uncultured 

bacterium (AFJ94648.1 and AFE48530.1), Thermotoga maritima (AAD35149.1), Prevotella bryantii 

(B14ADI70674.1) and Bacteroides ovatus (EDO10005.1). The asterisks show amino acid residues that 

constitute the active site within the catalytic domain, which are highlighted in blue. The alignment was 

done using ClustalW. B: 3D model of PGluc67 generated by Phyre2, with the active site shown by 

purple side chains. C: SDS-PAGE of purified samples of PGluc67. From left to right: molecular weight 

marker, and two concentrations of the sample. D: Effect of pH on PGluc67 activity. E: Effect of 

temperature (red squares) and heat stability (blue circles) at different temperatures. The activity at the 

optimal temperature was defined as 100%.   

5.4.4 Biochemical characterization of PGluc67  

The PGluc67 was overexpressed and purified from E. coli Rosetta2 yielding 2.7 mg/mL of 

PGluc67 protein. The recombinant protein migrated between the 50 kDa and 68 kDA markers 

as predicted (Fig. 5C).   
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The purified protein was stored at 4°C for testing and did not show loss of activity nor 

proteolysis after 1 month of storage. As expected, PGluc67 did not show any β-glucosidase 

and β-xylosidase activities (data not shown). Activity measurements show hydrolase activity 

toward aldotriouronic acid with β-(1,4)-D-xylo-oligosaccharides and Dglucuronic acids as 

substrates, conducted according to the two-step essay described in the Methods section, 

revealed that PGluc67 has this activity, and it is optimal at pH 6-8 (Fig 5D). The optimal 

temperature for PGluc67 was 30°C. 

Table 2: Average effect on enzyme activity of PGluc67 at several concentrations of metals and chemical 

agents. 

Metal ions/ Chemicals Concentration Relative activity (%) 

Control - 100 

Mn2+ 10 mM 116±5.3 

Ca2+ 10 mM 106±6.7 

Mg2+ 10 mM 98±19.7 

K+ 10 mM 86±12.1 

Ni2+ 10 mM 31±12.2 

Zn2+ 10 mM 0.1±2.9 

Fe3+ 10 mM 0 

Urea 1 µM 107±11.4 

Triton X-100 1 µM 106±25.4 

2-Mercaptoethanol 1 µM 89±11.3 

Imidazole 10 mM 81±7.1 

Tween 10 mM 0 

 

The relative activity dropped to 43% at 20°C and 84% at 40°C. The activity decreased 

drastically at 50°C and above. After 30 min incubation at a temperature range from 30°C and 

40°C, PGluc67 retained 100% and 75% of its activity respectively (Fig 5E).  

The kinetic parameters of PGluc67 towards aldotriouronic acids were calculated based on 

Michaelis-Menten analysis. Different concentrations of aldotriouronic acid were used to 



Characterization of hemicellulases from animal gut microbiomes  

 

127 

5 

generate kinetic curves. The kinetic parameters as derived from initial rates for hydrolysis 

for at 50 mM PBS pH 7.5 were Km = 3.92 ± 1.76 mM and Vmax = 55.0 ± 17.6 U/mg.   

Since GH67 enzymes have metal ions as co-factors, the effect various metal ions on PGluc67 

activity was evaluated. The activity of PGluc67 for aldotriouronic acid increased to 115.7 % 

for Mn+. The same metal ion showed a similar effect when tested with α-glucuronidase from 

a mixed culture (C. C. Lee, Kibblewhite, Wagschal, Li, Robertson, et al. 2012) and from 

Thermotoga maritima (Suresh et al. 2002). The activity of PGluc67 was not affected by Ca2+. 

PGluc67 enzyme activity was, however, adversely affected at 10 mM of Mg2+, K+ and Ni2+, 

where the activity decreased to 97.8 %, 86.3 % and 30.7 % respectively. PGluc67 showed no 

activity in the presence of 10 mM of Zn2+ and Fe3+ (Table 2). 

The effect of adding different putatively inhibiting reagents was also tested. Urea, Triton X-

100, 2-mercaptoethanol, imidazole and tween-80 were added to the reaction mixture of the 

first step at various concentrations. At 1 µM a small increase of activity was found for urea 

(107.2 %) and Triton X-100 (106.3 %). Concentrations of 1 µM 2mercaptoethanol and 10 

mM imidazole reduced PGluc67 to 89 % and 80.7% respectively. Tween-80 10 mM caused 

the enzyme to lose its activity completely (Table 2). 

5.5  Discussion  

The use of lignocellulose from agricultural waste is on the rise. Recycling of biomass 

provides great benefits to the environment as this carbon source may be used to generate bio-

based materials which are presently derived from fossil fuels (Kalia et al. 2017). However, 

an environmentally friendly way of extracting fermentable carbohydrates from lignocellulose 

is still a challenge and often requires chemical treatments that cost energy and generate waste. 

The use of natural enzymes could be an advantage, since these have evolved to become 

specialized and efficient in breaking down biomass to generate building blocks and carbon 

sources. In the recent past, metagenomics approaches have been used to identify applicable 

enzymes from ecosystems that are specialized in biomass processing (Lingling Wang et al. 

2013; Hongjie Li et al. 2017a; Joynson et al. 2017; Warnecke et al. 2007). Within the 

biomass, hemicelluloses are cross-linked with microfibrils and lignins to strengthen the plant 

cell wall to protect it from chemicals and physical damage. The diversity of hemicelluloses 

creates random linkages and makes them very difficult to process. To access the carbon-rich 

cellulose, hemicelluloses need to be removed. On top of that, degradation of hemicellulose 
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also releases monomers for different chemical applications (X. Liu and Kokare 2016; Asghar 

et al. 2019). We report here on the use of bioinformatics tools and molecular approaches to 

identify and characterize two hemicellulases. 

The plant specific pentose L-arabinose is one of the abundant sugars in hemicellulose, and it 

accounts for 5-10% of cell wall sugar in rice (Oryza sativa) and Arabidopsis (Arabidopsis 

thaliana) (Kotake et al. 2016; Olofsson, Bertilsson, and Lidén 2008). The enzyme α-L-

arabinofuranosidase hydrolyzes arabinoxylan to produce L-arabinose (Ichinose et al. 2008; 

Linares-Pastén et al. 2017). In bacteria, this enzyme is classified into families GH2, GH3, 

GH43, GH5, GH54 and GH62, with GH43 being the most abundant (www.cazy.org). An α-

L-arabinofuranosidase GH43 called LAraf43 was bioinformatically identified from a gut-

derived L. lactis genome. LAraf43 is predicted to be a part of L-arabinose processing operon 

homologous to similar operons found in plant-derived L. lactis. This species can survive 

using L-arabinose as energy source (Golomb and Marco 2015; Passerini et al. 2013). The 

plant-derived L. lactis possess gene clusters specialized in breaking down hemicellulose to 

generate L-arabinose. The highly active α-arabinofuranosidase from this cluster would also 

give a gut-derived L. lactis a competitive edge over other gut bacteria. 

The degradation of arabinoxylan by L. lactis is regulated by the araR protein in response to 

substrate availability. Extracellularly released L-arabinose is transported into the cell via an 

arabinose-proton symporter, AraT, while disaccharides are taken up via AraP. In our 

metagenomics assembly, the AraT encoding ORF is truncated due to a single-nucleotide 

deletion. Although it needs to be investigated whether this deletion is real or a sequencing 

error, the remaining ORF encodes a protein with the characteristics of an MFS membrane 

transporter. It is tempting to speculate that this MFS protein can transport arabinoxylan 

oligosacharides into the cell (Tauzin et al. 2016). This would be required for their 

degradation, since LAraf43 lacks a signal peptide and is not expected to be active externally. 

It seems that the catalytic function and the transport function, which are combined in one 

large protein in AraT of plant-derived L. lactis, are encoded by two separate ORFS in our 

metagenome. However, we are not sure whether the second ORF is expressed at all, since it 

appears to lack a promoter and a functional ribosome binding site. In any case, imported 

oligosaccharides could be hydrolyzed by LArafa43 to L-arabinose and then are expected to 

be further processed by araBAD-encoded proteins to produce D-xylulose-5-phosphate 

(Passerini et al. 2013; Gírio et al. 2010; Kuge and Teramoto 2015). 
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Comparative sequence analysis and 3D modeling showed that LAraf43 has all activity 

requirements. Its catalytic domain includes an aspartic acid residue at position 138 which acts 

as pKa modulator of the catalytic glutamic acid residue at position 199 and also ensures the 

correct orientation of the substrate. A water molecule oriented by D138 is activated by 

aspartic acid at position 14 to allow nucleophile attack on the anomeric carbon in the 

substrate. In addition the catalytic acid E199 donates a proton to the anomeric carbon 

resulting in breaking the glycosidic bond while inverting the anomeric configuration 

(Linares-Pastén et al. 2017; Maehara et al. 2014; Till et al. 2014). Similar to other α-L-

arabinofuranosidase from GH43 sub 26, Laraf43 is likely to be an exo-α-1,5-L-

arabinofuranosidase.  

The LAraf43 gene was cloned from a termite gut metagenome. Previously, Margolles and 

De los Reyes-Gavilán (2003) described the expression of an α-L-arabinofuranosidase from 

Bifidobacterium longum in L. lactis. However, the α-L-arabinofuranosidase from L. lactis 

was not characterized (Margolles and De los Reyes-Gavilán 2003). Our study is the first to 

demonstrate activity of L. lactis-like arabinofuranosidase against pNP-α-l-Araf. The enzyme 

follows Michaelis-Menten kinetics and has the highest specific activity among all 

characterized GH43 subfamily 26 members. The specific activity of LAraf43 is 0.08 U/mg, 

which is considerably lower than that of the previously characterized α-L-

arabinofuranosidases from Weissella sp. strain 142, L. brevis, S. chartreusis and S. avermitilis 

which are 5.4 U/mg, 1.94 U/mg, 3.16 U/mg and 2.92 U/mg, respectively (Linares-Pastén et 

al. 2017; Matsuo et al. 2000; Ichinose et al. 2008). LAraf43 specific activity was tested at pH 

7.4 and at a temperature of 37°C, which is similar to the termite gut environment (Brune, 

Emerson, and Breznak 1995; Brune 2014). The optimal pH condition for the characterized 

α-L-arabinofuranosidases was found to be from 5.5 to 7 with an optimum ranging between 

37 and 45°C (Table 1). For Lactobacillus brevis DSM1269 (LbAraf43) and Weissella strain 

142 (WAraf43), specific activities towards pNP-α-l-Araf were measured at pH 5.5 and a 

temperature of 37°C, which were lower than their optimal values. This could reduce the 

specific activity of these enzymes (Linares-Pastén et al. 2017). The α-L-AFase II protein 

from Streptomyces chartreusis GS901, has an optimal pH at 7.0 but is very unstable at 

temperature lower than 40°C (Ichinose et al. 2008). 
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Another critical residue in hemicellulose is 4-O-methyl-D-glucuronic acid, which is cross-

linked to lignin thereby preventing xylan hydrolysis. This residue can be cleaved by α-

glucuronidase from families GH4, GH67 and GH115. We have identified an α-glucuronidase 

from the GH67 family called PGluc67 and showed that its closest homologue is an enzyme 

encoded by an uncultured bacterium from a cow rumen. 

By studying the operon, it is possible to predict the taxonomy as well as understanding the 

gene function. Based on gene organization, it is predicted that the pathway identified from 

NODE_717 is similar to the Wzx/Wzy dependent pathway for biosynthesis of colanic acid. 

This acid is produced by gram-negative bacteria to form a protective capsule to shield the 

bacterial cell surface (Hanna et al. 2003; Furlong and Furlong 2013). It is made up of repeat 

units of D-glucose, D-fructose, D-glucuronic and D-galactose in different compositions that 

vary between strains and species. The wzx/wxy dependent pathway for the production of 

colanic acid in E. coli is the most well-studied and contains 19 genes (Schmid, Sieber, and 

Rehm 2015; Stevenson et al. 2006).  

The gene organization found on the goat rumen contig NODE_717 has not been observed in 

Prevotella as well as other gram-negative bacteria species, but since homology of encoded 

proteins appeared highest to Prevotella proteins, it could derive from a Prevotella bacterium. 

The predicted functionality for the genes in the segment is based upon the functions of known 

orthologues. Under cell wall stress, the sensory kinase BaeS protein would be activated as 

part of a BaeSR two-component system known for being responsive to such conditions 

(Leblanc, Oates, and Raivio 2011; Vinés et al. 2005). It is predicted that carbohydrates are 

transported to the periplasm by a BtuB transporter, with the help of a tonB protein. The 

periplasmic PGluc67 releases D-glucuronic acid from carbohydrates as the precursor for CA 

production, which can be transported into the cell via another transporter such as an ATP 

Binding Casette (ABC) transporter, which all were not encoded by ORFs on NOD_717 but 

these could be located on another operon. 

The Wcaj protein initiates the start of CA production by transferring the first glucose unit to 

the lipid II carrier need for CA synthesis. Other glycosyl transferase proteins such as BcsA 

and GT2, with the transaminase WecE then attach other sugars to the chain (Schmid, Sieber, 

and Rehm 2015; Marolda et al. 2006; Whitney and Howell 2013). This small repeating unit 

is translocated across the inner membrane through the flippase protein (Wza) (Hong, Liu, 
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and Reeves 2018). Polymerization of multiple individual repeats is then subsequently carried 

out by the periplasmic Wzy protein, which functions as an oligosaccharide repeat unit 

polymerase add more repeat units to the chain. The length of these chains is regulated by 

Wzz protein. The polymerized repeats are then transported to the cell surface via a Wza 

transporter and attached to the cell surface by means of a Wzi protein (Furlong and Furlong 

2013; Schmid, Sieber, and Rehm 2015; Bentley et al. 2006). 

Comparing to other known CA operons, the fragment lacks genes encoding the Wzb and Wzc 

proteins (Fig. 6). They are needed for the production of the capsule and to release 

polysaccharides extracellularly. These enzymes could be a part of a different operon 

elsewhere on the genome. However it has also been reported that alternative transport routes 

can act in the absence of Wzc and Wzb proteins (Bentley et al. 2006; Y. T. Huang et al. 2018; 

Pereira et al. 2018). 

 

Figure 6: Comparison of different functional Wzx gene cluster from different bacterium including 

function. (Modified from Schmid et al. 2015 and Huang et al. 2018)  

The presence of PGluc67 in the operon strengthens our conclusion that these proteins are 

likely to be functional. Sequence analysis revealed two conserved amino acid residues, 

aspartic acid D332 (general base) and glutamic acid E360 (general acid). The catalytic action, 

which is accompanied by a stereochemic inversion, happens when the general base 

deprotonates a water molecule and at the same time the general acid donates a proton to the 

anomeric carbon of the glycoside (Zaide et al. 2001; Nurizzo, Nagy, et al. 2002). The α-

glucuronidase was predicted to have glycosyl hydrolase activity towards xylose to produce 

MeGlcA residues.  
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The kinetic activity of PGluc67 at 37°C and pH 6 – 8 and optimum temperature from 20°C 

– 40°C is in agreement with the gut conditions from which the metagenome was assembled. 

The α-glucuronidases from another uncultured bacterium, Thermotoga maritima and 

GH115’s from Bacteroides ovatus also show an optimal pH around this range (C. C. Lee, 

Kibblewhite, Wagschal, Li, Robertson, et al. 2012; C. C. Lee, Kibblewhite, Wagschal, Li, 

and Orts 2012; Rogowski et al. 2014). Most of the characterized α-glucuronidase proteins 

are acidic and so not very suitable for usage after alkaline pretreatment. Only the uncultured 

bacterium AFJ94648.1 has an optimal pH range from 5.5 to 9.5 (C. C. Lee, Kibblewhite, 

Wagschal, Li, Robertson, et al. 2012). Thermotoga maritima is a marine hyperthermophilic 

bacterium, which can grow at a temperature of 90°C and above. Its α-glucuronidase is more 

stable at the range 60°C – 100°C (Ruile, Winterhalter, and Liebl 1997). Multiple factors can 

lead to hyperthermophilic activity such as salt bridges, hydrogen bonds, specific amino acids 

and α helices (S. Kumar, Tsai, and Nussinov 2002). The specific activity of PGluc67 is 46.8 

± 2.10 U/mg and is higher than α-glucuronidase from G. stearothermophilus 236 but lower 

than the xylan α-1,2-glucuronidase / α-glucuronidase from Cellvibrio japonicas with 15.3 

U/mg and 61.3 U/mg respectively (Nagy et al. 2002; I.-D. Choi, Kim, and Choi 2005). 

The activity of PGluc67 was tested in the presence of various metal cations and chemicals. 

Calcium and zinc were predicted to bind to PGluc67 (data not shown). Indeed, PGluc67 

activity was slightly increased when calcium ions was present; the same was observed with 

α-glucuronidase from the fungal Aspergillus niger (Kiryu et al. 2005). The α-glucuronidase 

from T. maritima is slightly activated by Mn2+ ions, and lost its activity in the presence of 

Zn2+ (Ruile, Winterhalter, and Liebl 1997). In the presence of Mg2+, K+ and Ni2+ ions, 

PGluc67 lost some activity similarly to α-glucuronidases from G. stearothermophilus and 

Paenobacillus curdlanolyticus. Metal ion such as zinc inhibited PGluc67, similarly to effects 

found in G. stearothermophilus, P. curdlanolyticus and S. degradans (Zaide et al. 2001; 

Septiningrum et al. 2015; I.-D. Choi, Kim, and Choi 2005). 

While we have characterized two new enzymes involved in hemicellulose degradation, we 

realize that multiple enzymes are needed for its total degradation. The xylan is broken down 

using xylanase into xylo-oligosaccharides with ferulic and acetic acid as byproducts in 

combination with acetylxylan esterase and feruloyl esterase. Esterases then remove the acetyl 

group to loosen the bond for xylanases. The structure is further broken down into by α-L-

arabinofuranosidase to produce arabinose while α-glucuronidase generates glucuronic acid. 
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Oligosaccharides are converted to xylose sugars with the help of xylosidases (Dodd and Cann 

2009; X. Liu and Kokare 2016). By combining multiple enzymes such as xylanase, α-L-

arabinofuranosidase, and α-glucuronidase, it is possible to rapidly release xylose sugars. 

Multiple experiments have been reported regarding this approach. McKee et al. 2016 reported 

a cocktail of xylanase, α-glucuronidase, α-l-arabinofuranosidase and β-xylosidase, which 

were selected to efficiently break down glucuronoarabinoxylan and to generate 

arabinofuranose, xylopyranose and MeGlcA monosaccharides (McKee et al. 2016). A similar 

approach using a high temperature resistance enzyme cocktail was tested for the 

biotechnology industry. A hyperthermophilic α-glucuronidase from T. maritima was used in 

combination with β-xylosidase. Similar results were obtained showing xylose, xylobiose and 

4-O-methylglucuronic acid as products (Zhou et al. 2018). This short summary illustrates the 

complexity of complete degradation of hemicellulose. 

We show in this paper that bioinformatic tools are of great value to explore CAZymes in 

functional metagenomes and identify potentially valuable enzymes for industrial 

applications. It is possible to create a pipeline for high-throughput candidate gene selection. 

The two new hemicellulases that we have identified were showing high activity, which could 

be used for lignocellulose degradation. Further research must show their usefulness in an 

industrial set-up. 
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 Table 1: Comparison of different characterized α-L-arabinofuranosidase.  

Name  Species  % id  

LAraf43  

kDA  pH  Temp  Substrates  Homology  Accession  Specific activity 

pNP-a- 

L-Araf  

Ref  

Abf3  Lactobacillus 
brevis DSM  

20054  

72.06  38  5.5  37  pNP-a-L-Araf, 1,5-a-L- 

Arabinobiose,1,5-a-L- 

Arabinotriose  

tetramer  AGT14430.1  1.79 U/mg  (59)  

LbAraf4  Lactobacillus 

brevis DSMZ  

1269  

72.06  40  6  45  pNP-a-L-Araf, 1,5-a-L- 

Arabinobiose,1,5-a-L- 

Arabinotriose  

tetramer  APU52333.1  1.94 U/mg  (58)  

AFase II  Streptomyces 
chartreusis  

GS901  

49.31  37  7  50  Arabinoxylan,  

Arabinogalactan,Arabinan,De 

branched Arabinan,methyl 
5O-α-Larabinofuranosyl-α-

Larabinofuranoside  

monomer  BAA90772.1  3.16 U/mg  (60)  

SaAraf43A  Streptomyces 

avermitilis  

NBRC 14893  

53.65  52  6  45  pNP-a-L-Araf  monomer  BAC68753.1  2.92 U/mg  (61)  

LAraf43  Lactococcus  

Lactis  

100  40  7  37  pNP-a-L-Araf  Dimer  none  12 U/mg  This 

article  

WAraf43  Weissella sp.strain 
142  

75.86  40  6  45  pNP-a-L-Araf, 1,5-a-L- 

Arabinobiose,1,5-a-L- 

Arabinotriose  

Dimer  APU52332.1  5.4 U/mg  (58)  
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6.1 Introduction  

In regular transmission genetics, a genome is passed from the parents to the offspring and its 

DNA sequence reflects the evolutionary history of the organism. However, this is not always 

the case as genomes are changing and can be altered through loss of genes, expansion or 

contraction of non-coding or selfish elements. Different loci can have different evolutionary 

rates due to unequal selection pressures. Genes can be gained through duplication or acquired 

from foreign sources by horizontal gene transfer. Horizontal gene transfer (HGT) is a 

mechanism by which organisms may acquire functions that can hardly be obtained by 

selection on standing genetic variation. The frequency of successful HGT depends on the 

ability of the host to take in the foreign DNA, the ease at which the foreign DNA can 

recombine with the host DNA, the access to the germline and the frequency of the donor in 

the environment (Husnik and McCutcheon 2018).  

Once integrated, the newly acquired DNA is subjected to selection. Only DNA that can 

transcribed and translated into proteins for the host to gain new functionalities or to contribute 

to existing functions are maintained. In addition, such genes are often adapted to the host. 

Non-beneficial genes are lost over time. After an HGT event, organisms will experience 

different evolutionary pressures. HGT is an important mechanism for evolutionary 

innovation and the exploitation of new habitats (Soucy, Huang, and Gogarten 2015; Husnik 

and McCutcheon 2018).  

There are several ways by which genes can be transferred from one organism to another: 

transformation, transduction, bacterial conjugation and gene transfer agents. Conjugation 

implies that donor and recipient are in physical contact and genetic material is exchanged 

through a conjugation pilus. This process if often found among bacteria. Agrobacterium spp. 

uses this HGT mechanism to transfer T-DNA to plant cells. Transformation implies that 

environmental DNA is taken up by the recipient. Transduction is a mechanism in which 

phages or viruses deliver genetic material to the recipient. All of these mechanisms are seen 

in archaea and bacteria and have been crucial for the evolution for both of these organisms   

HGT is not common among eukaryotes, or between prokaryotes and eukaryotes. When 

sequencing genomes of little-known animals several authors have claimed examples of HGT 

from bacteria into eukaryotes. Some of these examples have not withstood further 

investigation and may be due to contamination. However, that does not mean that such events 
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do not occur. Several solid cases for HGT in invertebrates have been made, including 

nematodes, tardigrades, rotifers and springtails (Mayer et al. 2011; Faddeeva-Vakhrusheva 

et al. 2017; Gladyshev, Meselson, and Arkhipova 2008). In animal genomes, due to their 

complexity it is difficult to identify HGT events. In the case of a bacterial donor, due to the 

high frequency of HGT among bacteria themselves, the donor DNA might or might not have 

the same evolutionary history as most of the genes from the donor bacterial genome. Other 

factors include bias in phylogenetic trees due to long-branch attraction, genes loss and 

shortage of samples to infer the donor of the DNA (Husnik and McCutcheon 2018).   

The hexapod class Collembola has been shown to be a hot spot of horizontal gene transfer. 

In the genome of the model species Folsomia candida the percentage of open reading frames 

due to horizontal gene transfer after thorough validation was estimated as 2.8% (Faddeeva-

Vakhrusheva et al. 2017). Since springtails live in close proximity with soil microbial 

communities and because they evolved as an ancestral group of hexapods, the opportunity 

for HGT is realistic. The class Collembola includes several species capable of anhydrobiosis, 

a mechanism of extreme droughttolerance that includes dissolution of the nuclear membrane 

and partial fragmentation of the genome. Anhydrobiosis has been suggested as a mechanism 

of HGT in nematodes and bdelloid rotifers (Husnik and McCutcheon 2018).  

A recurrent question in HGT cases is how the (usually prokaryotic) donor DNA can be not 

only inserted but also expressed in a eukaryotic environment. Only in a few cases it has been 

demonstrated that sequences acquired by HGT from prokaryotic donors are actually 

expressed in the host genome, potentially contributing to the enhancement of its fitness. 

These events have occurred in the evolutionary past and most likely continue to occur to 

shape eukaryotic genomes. Among the various genes acquired by HGT in springtails, 

biosynthesis clusters for beta-lactam antibiotics are one of the most striking (Roelofs et al. 

2013). However, another important functional contribution of HGT is related to 

carbohydrate-active enzymes. Carbohydrates are needed for multiple biological purposes 

such as energy storage, signal transduction and intracellular trafficking (Mewis et al. 2016). 

They are also the future of renewable fuel. This is why it is important to identify enzymes 

that can breakdown biomass. Obviously, the degradation of recalcitrant biomass is an 

extremely important capacity for any detritivore soil invertebrate (Bredon et al. 2018). All 

soil invertebrates rely on a microbial gut community.  
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The carbohydrate active enzymes (CAZymes) form a diverse group of enzymes and other 

proteins, all with a function in carbohydrate metabolism. The CAZymes database is the 

largest and most well-known of all sequence-based classification systems. It is made up of 

glycosyl hydrolases (GHs), glycosyltransferases (GTs), polysaccharide lyases (PLs), 

carbohydrate esterases (CEs), carbohydrate binding modules (CBMs) and auxiliary activities 

(AAs). These enzymes jointly are responsible for the breakdown of lignocellulose, an 

abundant carbohydrate resource in soil ecosystems. We previously applied this database to 

identify carbohydrate-active enzymes in the metagenome of the springtail (Faddeeva-

Vakhrusheva et al., 2017; Agamennone et al., 2019; Le, submitted). We were able to link 

several HGT CAZy genes in the host genome to a putative microbial donor. We also showed 

that most of them are transcriptionally active. Here, we further characterize one of these HGT 

CAZymes: ɑ-L-arabinofuranosidase.  

 

Figure 1:  Catalytic activity of ɑ-L-arabinofuranosidase: the cleavage (indicated by arrows) of an L- 

arabinose side-group from the hemicullose backbone.  

This enzyme catalyzes the cleavage of L-arabinose side chains in hemicellulose, an important 

step in the final breakdown of this poly-sugar compound into monomeric sugars (Fig. 1). In 

this paper we provide functional evidence of its activity in vitro. In addition, we show that 

this gene, although of prokaryotic origin, shows adaptive evolution: it underwent 

eukaryotization and acquired an eukaryotic signal peptide, most likely to ensure extracellular 

action of the enzyme in the gut lumen of the host.  
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6.2 Methods  

6.2.1 Gene annotation  

Previously described transcripts from Folsomia candida was used for the analysis (Faddeeva-

Vakhrusheva et al. 2017). Prodigal was used on the transcript to predicted bacterial Open 

Reading  

Frames (ORF). Proteins with start and stop codons were scanned against the Carbohydrate 

Activity enZymes (CAZy) database using the hidden Markov model (HMM) model with the 

default settings (Yin et al. 2012). The CAZyme candidate genes were further explored using 

the basic local alignment search tool (BLAST) software from the National Center for 

Biotechnology Information (NCBI) to establish sequence homologies (Altschul et al. 1997). 

The 3-dimensional (3D) structures model and the binding sites were predicted using the 

Phyre2 web server (L. A. Kelley et al. 2015) and SWISS-MODEL (Waterhouse et al. 2018) 

with default settings. Nucleotide sequences were analyzed for the presence of signal peptides 

using gram negative and gram-positive settings using the SignalP4.1 server (Almagro 

Armenteros et al. 2019). Protein molecular weight and isoelectric point (pI) value 

calculations were done using Cloning Manager 9.0 (Sci-Ed Software, USA). The protein was 

blasted again the springtail proteins and transcript at https://collembolomics.nl/ using default 

settings (Faddeeva-Vakhrusheva et al. 2017).  

6.2.2 Plasmid construction for recombinant expression  

Total RNA from whole springtails was extracted using the SV Total RNA isolation system 

according to manufacturer’s protocol (Promega, Wisconsin, US). Subsequently, messenger 

RNA was converted to cDNA using oligo dT(15)-guided reverse transcription with AMV 

reverse transcriptase according to manufacturer’s instructions (Promega, Wisconsin, US). 

PCR was performed on cDNA by applying the following oligonucleotide primers designed 

on the predicted α-L-arabinofuranosidase (FcAraf43) gene from the ORF of Folsomia 

transcript:  5’-primer (5’GGGCATATGGCTTTCACAAAAATATTG-3’), which included 

the ATG translational start codon inside a NdeI restriction site (shown in italic) and 20 

nucleotides of the ORF; The 3’-primer (5’- AAACTCGAGTTATTCCCCACTTGGAAC-

3’) included a stop codon (TAG), containing an XhoI  
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restriction site and the preceding 26 nucleotides of the ORF. Three guanine and thymine 

residues were added at the 5’-end of the 5’-primer and 3’-primer, respectively, to create a 

good binding site for the respective restriction enzymes. The gene sequence was amplified 

using Taq and Pfu polymerases and the product was purified on a 1% agarose gel. It was 

digested with NdeI and XhoI and ligated into NdeI/XhoI-digested pET16b vector, resulting 

in the plasmid pET16-FcAraf43 with an N-terminal His-tag. The resulting plasmid was 

transformed into XL1-blue chemically competent cells. Successfully transformed colonies 

were screened by restriction digestion and correct inserts were confirmed by DNA 

sequencing (Macrogen). After quality control, intact pET16-FcAraf43 plasmid DNA was 

transformed in E. coli expression strain Rosetta2 (DE3) (Novagen).  

6.2.3 Recombinant protein expression and purification of FcAraf43  

A glycerol stock of transformed Rosetta2 was used to inoculate into 200 ml of LB medium 

and 100 µg/ml ampicillin at 37°C. Cells were cultured until the optical density at 600 nm 

(OD600) reached 0.6-0.8. The cultures were induced by adding 50 µM isopropyl-beta-D- 

thiogalactopyranoside (IPTG) for gene expression and further incubated for 2 hours at 37°C. 

After centrifugation, the cells were harvested and suspended in 8 ml of phosphate buffer 

saline (PBS; pH 7.4). Protease inhibitors cOmplete™, EDTA free (Roche) cocktail, was 

added followed by two passages at ~1.7 k psi through a OneShot cell disruptor (Constant 

Systems Ltd) at room temperature. The debris and membrane fragments were removed from 

the cell extract after centrifugation at 586 g for 10 min and 100,000 g for 1 hour. TALON 

Superflow resin (GE, Sweden) premixed with buffer A (50 mM potassium phosphate buffer, 

500mM sodium chloride, 10% glycerol, 10 mM imidazole pH 7.5) was added to the cleared 

cell extract and mixed. The mixture was incubated at 4°C, for 1 hour and transferred to a 

disposable 5 ml polypropylene column (Thermo Scientific) to be washed with 10 ml of buffer 

A. Several wash solutions with increasing imidazole concentration up to 200 mM were used. 

The His-tagged proteins were eluted from the beads by adding 10 ml of buffer B (50 mM 

sodium phosphate buffer, 500 mM sodium chloride,  

10% glycerol, 400 mM imidazole pH 7.5). To concentrate the sample and remove salts, a 

Vivaspin 20, MWCO 10 kDa column was used. About 20 ml PBS pH7.4 was added and 

centrifuged at 6,000 g for five times after which the retentate was collected and aliquoted. 

The BCA protein assay kit (Thermo Scientific) with bovine serum albumin (BSA) as the 
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standard was used to measure the concentration of purified protein. For displaying protein, 

the crude extracts or purified protein samples were denatured in sample buffer with 

dithiothreitol (DTT), boiled for 10 min and applied to 10% gradient sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE, BIORAD) along with the molecular weight 

marker to determine the molecular weight and purity. The gel was stained with 0.1% 

coomassie blue as previously described by Lämmli (Lämmli 1970).  

6.2.4 Cell-free protein expression  

About 25 µL of plasmid was extracted and used with the PURE protein expression system 

(New England Biolabs, US). The mixture was incubated at 37°C overnight. The proteins 

collected were ran on SDS-PAGE. The rest of the proteins were washed and condensed for 

activity testing.  

6.2.5 Enzyme assays for FcAraf43  

Synthetic p-nitrophenyl-α-L-arabinofuranoside (pNP-α-L-Araf) was purchased from 

Megazyme International (Wicklow, Ireland). Alpha-L-arabinofuranosidases catalyze the 

release of pnitrophenol (pNP) from pNP-α-L-Araf, which can be measured at 405 nm (Biotek 

USA). Each assay mixture contained 10 µl of a 25 mM pNP-α-L-Araf solution with 88 µl of 

PBS buffer (pH 7.4) and 2 µl of enzyme solution. The reaction was carried out at 37°C and 

measuring pNP overnight. Readouts in blanks were subtracted from sample reads. As a 

positive control, an active α-Larabinofuranosidase gene from Lactococcus lactis was used. 

The assay activity was performed in triplicate as mentioned above, unless otherwise stated.  

6.2.6 Phylogenetic analysis 

Sequences of characterized GH43 enzymes from www.cazy.org were used to create a 

phylogenetic tree using ngphylogeny.fr with the advance FastTree analysis applying 1,000 

bootstrap replicates (Lemoine et al. 2019). Clustal omega was used to align these sequences 

together (Sievers et al. 2011).  

6.3 Results:  

Results from collembolomic web server, show that the FcAraf43 open reading frame of 1,029 

bp length was mapped back to scaffold 4 (Fcan01_Sc004) of the genome of the Folsomia 

candida with 100% identity. The FcAraf43 protein of 343 amino acids was predicted from 
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the Fcan01_09776-PA transcript (Faddeeva-Vakhrusheva et al. 2017). This gene has 

underwent the process of changing to the host genome as there is a predicted polyadenylation 

signal (AATAAA) 79 bp downstream of FcAraf43 ORF (Fig. 2). 

  

Figure 2: Genomic context and 3D protein structure of FcAraf43. 2A: Genomic context and putative 

3D structure of Fc Araf43. The signal peptide is the first 19 amino acids. The green segment is the 

conserved region characteristic for the CAZy GH43 family 1. The purple triangles indicates the 

locations of residues contributing to the active catalytic site.  2B: The predicted 3D structure of the α 

– L – arabinofuranosidase. The five-blade spatial structure is characteristic of enzymes in the GH43 

CAZy group.  

 

The core of the protein matches glycosyl hydrolase group 43 group 1 in the CAZy database. 

Alignment of FcAraf43 against the non-redundant protein database using blastp show that it 

is close to a similar sequence in the sister species Orchesella cincta (ODM95222.1), the 

midge Bradysia coprophila (XP_037044875.1) and the bacterium Thermoanaerobacterium 

thermosaccharolyticum (WP_015311875.1) with 68.31%, 51.69% and 40.17%, respectively. 

This enzyme was predicted to be a case of putative HGT, because a very similar gene in the 

sister genome of O. cincta had only microbial sequences in the top blast hits. The sequence 

in the Folsomia genome, and the protein predicted from the Fcan01_18043-PA transcript was 

78% identical, with an e-value smaller than 0.01, to the O. cincta sequence. This latter protein 

was annotated  as  an  α-L-arabinofuranosidase  from Streptomyces 

chartreusis (https://collembolomics.nl/). 
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Figure 3: Protein alignment and phylogenetic relation of FcAraf43: 2A alignment, each color is 

linked to particular amino acid. The asterisks show the common amino acids. 2B Phylogenetic tree of 

FcAraf43 with fungi and bacterial genes from classified CAZy family 43. The outgroup is 

Micromonospora. The number shows the bootstrap after 1,000 repeats. The Araf43 is clustered with 

Streptomyces chartreus. The fungal genes include Humicola, Magnaporthe, Chrysosporium and 

Penicillium. 
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An N-terminal signal peptide of 19 amino acid was detected in the FcAraf43 gene. This 

shows that this protein is targeted for excretion to the extracellular environment. Further 

analysis shows that the predicted three-dimensional structure consists of five bladed-beta 

propellers found in the GH43 group. Two of the three active sites corresponding to amino 

acid positions 45 and 154 are aspartic acid while the third, at amino acid position 215 is a 

glutamic acid. These are conserved residues. The two aspartates act as general acid and pKa 

modulators. The glutamate acts as a general acid. Together they ensure the inverting 

glycoside hydrolase reaction, characteristic for GH43 CAZymes. The same conserved 

regions were also identified in GH43 enzymes of Cellvibrio japonicas (Nurizzo, Turkenburg, 

et al. 2002).  

Alignment analysis with similar proteins from bacteria as well as fungi shows that both 

aspartates are conserved (Fig. 3A). The glutamate position, however, is different between 

prokaryote and eukaryote versions of the gene. As seen in the gene tree, FcAraf43 does fall 

within the bacterial clade of arabindonfuranisidases, and shows some resemblance with 

Streptomyces chartreus. This suggests a bacterial origin of the HGT. However, unique branch 

length of FcAraf43 is quite long and therefore indicative  of a long evolutionary history of 

the HGT event  (Fig. 3B). 

 

Figure 4: Protein gel of cell free expression of FcAraf43 . Lane 1: in vitro FcAraf43 expressed using 

cell-free system. Lane 1: Molecular weight standard. Lane 2: Positive control α-arabinofuranosidase 

enzyme from a Lactococcus strain through the in vitro method. Lane 3: FcAraf43 in vitro. Lane4: 

Positive control cell culture LcAraf43. Lane5 Cell culture FcAraf43. Lane 6: Negative control empty 

pet16 vector. 
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The FcAraf43 protein was expressed in E. coli. However, a protein band at the expected size 

was not found (Fig. 4). The gene was transferred into a new vector pGEMT (Promega, USA) 

and expressed in the cell-free protein expression system PURE express (BioLabs, USA). The 

total protein was used for the activity testing.  

Analysis against the positive control showed that even under the cell free system little protein 

was expressed. However, the small amount of protein showed activity even though the 

amount was not as high as in the positive control from Lactococcus lactis. 

 

 

Figure 5: Activity of Folsomia candida arabinofuranosidase 43 (FcAraf43), expressed in a cell-free 

extract after recombinant expression in E. coli. The absorbance at 405 mm of the F. candida geneis 

compared the activity of L. lactis arabinofuranosidase 43 (LcAraf43).  

 

Further analysis of the protein on the gel was performed. The start and end peptide of the 

protein were found to be intact (Fig. 4). The bands appearing at 37 KDa were identified as a 

housekeeping genes from E. coli (P. Hensbergen, personal communication). 

The absorbance of the FcAraf43 at 405 mm is 0.203 (Fig 5). This shows that FcAraf43 is 

active (center), but at a lower rate than the Lactococcus positive control (right), which was 

recorded at 0.280. This could be due to the fact that the gene is from a eukaryotic origin and 

so difficult to be expressed in the bacterial host E. coli.  
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6.4 Discussion 

We have identified a functionally novel gene in Folsomia candida that has α-

arabinofuranosidase activity, that potentially evolved in the host after horizontally gene 

transfer.  

The enzyme α-L-arabinofuranosidase is used in many industries such as food, animal feed 

and wine (Numan and Bhosle 2006; Yaru Wang et al. 2015; Thakur, Sharma, and Goyal 

2019). By identifying a new variant of this protein it is possible to understand more about the 

enzyme and its evolution as well as potential function in combination with other CAZymes 

to break down biomass.  

The gene was identified and cloned through the analysis of the active transcriptome of the 

springtail. The gene was predicted to be belong to the glycosyl hydrolase group 43. The 

predicted 3D structures from FcAraf43 shows a 5-bladed β-propeller structure with variable 

binding mechanisms and amino acids in the catalytic centre that are common to CAZymes in 

this group. The enzyme contains two aspartic acid and a two glutamic acid residue, which 

essentially contribute to the active site (Nurizzo, Turkenburg, et al. 2002; Vandermarliere et 

al. 2009; Jiang et al. 2012).  

The gene shows multiple characteristics of HGT. It is small, only 1,029 bp. Small functional 

inserted DNA fragments are often tolerated better in a host genome than longer ones (Husnik 

and McCutcheon 2018). The GC content of FcAraf43 is 47% and is higher than the average 

value of 37.5% in the springtail nuclear genome (Faddeeva-Vakhrusheva et al. 2017). It is 

expected that over time, the gene will change, for instance in GC content to become equal to 

the host (Husnik and McCutcheon 2018). FcAraf43 is predicted an old HGT gene as it shows 

long unique branch length after splitting off from a potentially bacterial ancestor (Fig. 2B) . 

Moreover, it is located on scaffold 4 of the F. candida genome assembly (Faddeeva-

Vakhrusheva et al. 2017), which is a gene-rich region with most abundant density of HGT 

genes. This scaffold is also rich in  DNA transposon and retrotransposon sequences, 

potentially facilitating HGT (Husnik and McCutcheon 2018).   

Phylogenetic analysis shows that the outgroup is the bacteria Micromonospora echinospora. 

The closest gene to FcAraf43 is Streptomyces chartreusis. There is a 55% confidence for the 

clade.  
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However, further blastp analysis shows that there is only 32.10% protein identity with 

Streptomyces_avermitilis and 29.82% with Streptomyces_chartreusis. The species 

Streptomyces seem to be closely cluster into clades, which contain fungi Magnaporthe, 

Chrysosporium and  

Penicillium. This species is an ancient group of bacteria of about 380 million years old, which 

have ~ 300,000 gene transfer event as well as large number of point mutations (McDonald 

and Curriea 2017). They contain many bacterial conjugative elements. These elements can 

integrate modular mobile genetic elements into a host genome (Stewart et al. 2017). 

However, as pointed out by Mcdonald and Currie 2017, the HGT events are quite rare and 

due to different evolution rate it is difficult to locate the event.   

One of the reasons why the gene was maintained in the host genome may be due to its 

advantage to the host nutrition as well as exploring the host into new niches such as in helping 

digesting hemicellulose (Ricard et al. 2006). Biomass is an abundance source of energy. 

Effectively degradation of this energy source will be very beneficial to the host. Having this 

gene helps the springtail to breakdown hemicellulose and decrease its dependence on the gut 

microbiome. There are other cases where HGTs gene have been found in relation to 

herbivorous insect. Even though these events are very rare, however they do occurs. A 

functional mananase was found in the coffee berry borer beetle, Hypothenemus hampei. This 

gives the beetle advantages in degrading the polysaccharide of the coffee seeds (Acuña et al. 

2012). Endoglucanases and pectinases were also observed in plant parasitic nematodes 

(Scholl et al. 2003). Another common feature found is most of these cell wall or other glycan 

degrading enzymes is that they are secreted. This was observed in other host such as 

nematode (Danchin et al. 2010), spider mite (Grbić et al. 2011) and parasitic wasp (Di Lelio 

et al. 2019). The signal peptide was found was the Sec/SPI  secretory signal peptides. It is 

transported by the Sec translocon and cleaved by Signal Peptidase I (Lep) (Owji et al. 2018; 

Almagro Armenteros et al. 2019).    

FcAraf43 seems to be, however, incompletely optimized and so more testing needs to be 

done for a better understanding of the enzymes. It might also be used in a cocktail in to 

breakdown biomass. 
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6.5 Conclusion:  

We have identified an active novel HGT α-L-arabinofurnosidase from the Folsomia candida. 

The HGT gene helps the springtail to digest hemicellulose from plant biomass. This in turn 

helps the springtail from utilizing the energy sources of arabinose and help it to survive in 

the niche environments.   
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7.1 Introduction 

Microorganisms are found everywhere on Earth and are an important part of nature. They 

live in communities depending on the environment they are in. In the recent years, researches 

focusing on gut microorganisms have demonstrated the significant impact they have on their 

hosts (Belkaid and Hand 2014). Symbionts in the gut have multiple functions, such as 

breaking down food to provide nutrients, modulate the immune systems as well as influence 

the host development (McFall-Ngai et al. 2013). We know that in humans, babies born by 

caesarean section lack key microbes present in naturally born infants (Callaway 2019; 

Casaburi et al. 2019). As the children get older, the gut microbiome continues to change. 

Wilmanski et al (2020) showed that the core microbiome becomes increasingly unique as 

humans grow up healthy. In unhealthy individuals the core microbiome was maintained up 

to high age, but did not show the pattern of increasing uniqueness (Wilmanski et al. 2020). 

More and more researches are showing the importance and impact of the gut microbiome on 

the host such as healthy aging and survival (Oliphant and Allen-Vercoe 2019; Wilmanski et 

al. 2020).  

The gut bacteria can break down specific nutrients and can provide valuable and sometimes 

essential resources to the host (Rowland et al. 2018). On top of that, these organisms need to 

compete with other microbes and produce toxins, metabolites and organic compounds. These 

secondary metabolites and/or compounds are not required for the growth of the species but 

essential for the survival of the organism. Resistance genes and production of antimicrobial 

products can protect the microorganisms from other competitive community members 

(Baron, Diene, and Rolain 2018; Casals-Pascual, Vergara, and Vila 2018). Microbiomes that 

have multiple functions, as mentioned above, are more likely to be selected and stay in the 

gut. These properties can be determined by looking at the metagenomes. A complex system 

of genes is required for the organism to live in the gut environment. By studying these, it is 

possible to identify novel genes and also to understand the interaction between the host and 

its symbionts.  

The gut main function is to extract nutrients from food. The intestinal tract is populated by 

mostly beneficial microorganisms. The host must strike a balance between possible 

assistance from symbionts and protecting itself from pathogen invasion. This is why the 

microbiome residing in an animal gut is defined by the environmental conditions in the gut 
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(pH, anoxia, host immune factors, reactive oxygen species), but also the diet and lifestyle of 

the host (Thursby and Juge 2017; Moran, Ochman, and Hammer 2019; Rinninella et al. 2019; 

Wilkins et al. 2019). The microorganisms adapt and provide benefits to the host for example 

by supporting digestion, nutrient synthesis, toxin metabolism, pathogen protection and 

metabolism of toxins (Moran, Ochman, and Hammer 2019).  

In this thesis, we investigated the gut metagenomics of goats and compared the guts of three 

invertebrates, termite, springtail and isopod. All hosts have the capacity of degrading 

recalcitrant biomass, with the termite and goat being the best adapted to deploy this function. 

We used bioinformatics tools to investigate functional enzymes to breakdown hemicellulose. 

The methodology is strengthened by applying the same approach to different animal guts. 

First, we used whole genome sequencing and bioinformatics techniques to study the 

composition of goat guts in Vietnam (Chapter 2). A similar approach was carried out for the 

springtail (Chapter 3). The guts of the invertebrates were compared with regard to their 

biomass degrading, antibiotic resistance and secondary metabolites capabilities (Chapter 4). 

Finally using metagenome data, we mined and characterized two hemicellulases: α-L-

arabinofuranosidase and glucuronidase from the goat and termite guts (Chapter 5). Further 

investigations were conducted into the evolution of a hemicellulase, α-L-arabinofuranosidase 

from the springtail, which was demonstrated to be active in the eukaryotic genome after 

horizontal gene transfer from a prokaryote (Chapter 6).  

In the Discussion below, I will first try to answer the three main questions that were posed in 

the introduction of the thesis:  

1. What microbial communities are present in the different animal hosts, and how do 

they compare to each other?  

2. Which functionalities are encoded in the metagenomes of these communities (with 

emphasis on carbohydrate metabolism)?  

3. What are the properties of metagenome-derived enzymes as possible candidates for 

biobased degradation of organic waste?  
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7.2 Different species with similar functionalities  

The termite appears to have the most diverse collection of microbial species in its gut, due to 

the large number of identified and unidentified taxa. Along the three compared invertebrates, 

the isopod has the least number of contigs from prokaryotic species. The common phyla 

found in the guts of the three invertebrates were Proteobacteria, Bacteriodetes, Firmicutes 

and Actinobacteria. Their abundance is also different from host to host. The Actinobacteria 

are most represented in the springtail, which is commonly observed among gut microbial 

genomes from invertebrates living in the soil (Pass et al. 2015). Agamennone et al (2018) 

already showed that this group contributes most to the biochemical functions to Folsomia’s 

gut microbiome. Firmicutes and Bacteroides can perform anaerobic digestion process (Flint 

and Bayer 2008; Campanaro et al. 2016; Güllert et al. 2016). Some species of the 

Proteobacteria  are  capable  of  both aerobic  and  anaerobic  metabolism (Mhuantong et al. 

2015; N. Zhu et al. 2016). Other phyla such as Spirochaetes and Planctomycetes were higher 

in termite than in springtail or isopod. Further analysis showed that genera common to 

springtail, termite and isopod were Pseudomonas, Enterobacter, Lactococcus, 

Staphylococcus and Microbacterium. In the isopod, the Tenericutes phylum is higher than 

the other gut metagenomes. This phylum might contain pathogens and/or mutualistic 

symbionts and plays a role in degrading recalcitrant carbon sources in the gut of their hosts 

(Yong Wang et al. 2020). However, not all of these species are in high abundance in the 

metagenomes. Some low abundance species could also contribute and drive the gut 

composition (Benjamino et al. 2018).  

Another soil living organism, the nematode Caenorhabditis elegans contains the core 

families of Burkholderiaceae, Pseudomonadaceae, Xanthomonadaceae and 

Enterobacteriaceae (Proteobacteria), and Bacillaceae (Firmicutes) in its gut (M. Berg et al. 

2016). Similarly, the goat gut was also populated with Bacteroidetes, Firmicutes, 

Proteobacteria, Spirochaetes and Cyanobacteria (Do, Dao, et al. 2018; Do, Le, et al. 2018; 

Moran, Ochman, and Hammer 2019). This suggests that some form of commonality exists 

among communities in the gut, across a wide range of animals.  

In Drosophila, the dominant phyla are Firmicutes and Proteobacteria. Interestingly, 

Actinobacteria, Bacteriodetes and Cyanobacteria appear to be related to the egg and larval 

stages of the fruit fly and influence development. However, in adult flies, and as the flies get 
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older, the number of gut bacteria decreases (Wong, Ng, and Douglas 2011; Bost et al. 2018). 

Another insect, the honey bee, also contains Firmicutes, Bacteroidetes, Betaproteobacteria 

and Gammaproteobacteria as dominant phyla, although their species compositions are very 

specific. Their alpha diversity is only 5-10 (Moran, Ochman, and Hammer 2019), much lower 

than in the gut microbiomes of termites, springtails and woodlice. The diversity of species 

seems to be driven by environmental factors such as the food source, as fruit flies feed on 

microbes in fermenting fruits and honey bee predominantly on pollens. The less diverse diet 

of honey bees might not require a diverse array of enzymes to breakdown the structure of 

biomass.  

Taken together, this illustrates the complexity of interactions between the gut microbiome 

and the host. One thing that needs to be considered is that not all species are identified, which 

opens up possibilities of finding novel microbiome species/interactions in new hosts. This is 

in line with Larsen et al. (2017), who estimated that there are still a large number of new 

microbial species in every new host genome amenable to deeper investigation (Larsen et al. 

2017; Douglas 2019). For example, new genome information was obtained for the 

Verminephrobacter strains, symbiotic bacteria living in the nephridia of earthworms. These 

bacteria possess crucial genes and pathways and play a pivotal role in micronutrient delivery, 

such as nitrogen fixation, to the host (Arumugaperumal et al. 2020).   

7.3 Functionalities of gut metagenomes  

It is now clear that the structure of the gut microbial community is related to variation in diet, 

gut structure, and immune system among animals (Moran, Ochman, and Hammer 2019). The 

importance of microbes to the host depends on how much the host relies on the nutrients 

and/or other functions provided by the microbes. The conditions in the guts and host diets 

makes the gene pool dynamic and highly adaptive. Consequently, animals contain extremely 

different functional gut communities. For the bacteria to be able to survive in the gut, they 

need a number of functional genes.   

Clearly, diet is an important driving factor shaping gut communities. The termites and goats 

are well known their abilities to digest wood (Do, Le, et al. 2018) and isopod and springtails 

are decomposers, which feed on decaying biomass and fungal materials on the soil (Fountain 

and Hopkin 2005; Bouchon, Zimmer, and Dittmer 2016). Their gut microbiome communities 

were investigated for the enzymes that can breakdown polymeric carbohydrates, antibiotic 
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resistance genes and gene clusters involved with the synthesis of secondary metabolites. 

Carbohydrates are the source of energy for all heterotrophic organisms. Biomass is made up 

of complex polymeric molecules, which need to be broken down before any animal can use 

them.  

In my thesis I focused on lignocellulose as major carbohydrate source for decomposers. 

Removal of lignin will release hemicellulose and cellulose. To fully break down biomass 

multiple groups of enzymes are required directed towards cellulose, hemicellulose and lignin. 

The glycoside hydrolase (GH) enzymes break down cellulose and hemicellulose. Esterases 

(CE) cleave ester bonds while uronic acid-containing polysaccharides are cleaved by 

polysaccharide lyase (PL). Finally, glycosyl transferases (GT) move sugar moieties to 

saccharide and nonsaccharide acceptors (Breton et al. 2006; Kameshwar and Qin 2017).  

A large number of carbohydrate-active enzymes (CAZymes) have been identified in different 

hosts. To centralize the ever-increasing information on this class of enzymes, an online 

database system has been created named CAZy (http://www.cazy.org/) (Lombard et al. 

2014). From a gut microbiome perspective, I showed that the termite has the largest number 

of CAZymes for breaking down lignin, hemicellulose and cellulose, more than the other two 

invertebrates. They contain the highest number of laccases (AA1) for breaking down lignin, 

and multiple enzymes from groups CE4, GH1, GH3, GH36, GH43 for breaking down 

hemicellulose and cellulose. When comparing the CAZyme content among gut microbiomes 

of termite species, major variation is observed associated with their ability to breakdown 

different types of biomass (Warnecke et al. 2007; Brune and Dietrich 2015; Grieco et al. 

2019). Surprisingly, the springtail contains a large number of cellobiose dehydrogenases, 

which enable lignin degradation, next to hemicellulases and cellulases from the groups CE1, 

CE4, GH3 and GH6. Whether or not these CAZyme groups vary among springtail species 

needs further elucidation, since our studies are among the first to investigate this. In terms of 

carbohydrate-active enzymes the isopod has the lowest total number. However, they have the 

largest number of pectate lyases, more than the other two gut metagenomes. They also have 

many α-galactosidases (GH4), beta-glucosidases (GH1, GH3), and endo-beta-1,4glucanases 

(GH6). Again, data on variation of CAZyme gene content among gut microbiomes of isopod 

species is currently lacking.  
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Further analysis focusing on CAZyme contents among the species investigated in this thesis, 

suggests that there may be a core CAZyme group shared among animals. Many of these core 

enzymes represent GH1, GH3 and GH6 CAZymes, which code for glucosidase, 

galactosidase, as well as xylanase and arabinofuranosidase activity. Despite this functional 

similarity, the specific bacterial species that contribute to this core CAZyme activity differ 

from host to host. The three host species seem to deploy different taxonomic groups of 

microorganisms to fully degrade biomass with similar overall activity. In other words, it 

doesn’t seem to matter who provides the CAZyme functionality as long as its activity is 

maintained in the gut. I also speculate that a high level of functional redundancy exists in the 

environment with respect to CAZyme functions, providing animals with the capability to 

incorporate these functions despite living in totally different ecological niches, while thriving 

on comparable carbohydrate (e.g. lignocellulose) sources. This could explain why the 

composition of their gut microbial communities may be functionally convergent, despite their 

taxonomic divergence.   

The dynamics of gut bacteria depend not only on the host but also on temporal shifts in 

environmental resources consumed. Zhu et al. (2016) showed how a change of resources 

leads the changes in the abundance of enzymes over multiple days (N. Zhu et al. 2016). 

However, despite the taxonomic flexibility of the microbiome, the core enzyme constitution 

remained more or less stable, only fluctuating in abundance. The same phenomenon can be 

observed in humans. Even though the gut microbiome becomes more unique with age, the 

metabolic functions still retain similar traits (Wilmanski et al. 2020).  

As a case study, I focused in my thesis on a unique carbohydrate-active enzyme function, 

identified in springtails. The glycosyl hydrolase ɑ-L-arabinofuranosidase was subjected to 

further analysis. From a phylogenetic comparison of its sequence to databases it turned out 

that this gene was most likely acquired by F. candida through horizontal gene transfer 

(Chapter 6) (Faddeeva-Vakhrusheva et al. 2017). The enzyme catalyzes the cleavage of L-

arabinose side-chains in hemicellulose, an important step in the final breakdown of this poly-

sugar compound into monomeric sugars. In Chapter 6 we provided functional evidence of its 

activity. In addition, we show that the gene, although of prokaryotic origin, shows adaptive 

evolution: it underwent eukaryotization by acquiring a eukaryotic signal peptide, most likely 
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to ensure extracellular action of the enzyme in the gut lumen of the host. This example 

illustrates the intense interaction between the metagenome in the gut and the host genome.   

Folsomia candida is among the animals (together with tardigrades, rotifers and nematodes) 

with the highest percentage of HGT genes in its genome (Faddeeva-Vakhrusheva et al. 2017). 

Earlier, we showed that also a cluster of genes associated with the production of beta-lactam 

biosynthesis was acquired by F. candida through HGT (Roelofs et al. 2013; Suring et al. 

2017). Whether HGT is also a property of the other invertebrate genomes (termite, isopod) 

is not well investigated, because these organisms have not yet been subjected to detailed 

genomic analysis. It might be speculated that the occurrence of anhydrobiosis in Collembola, 

although not known for F. candida itself, might have played a role in acquiring novel gene 

functions through HGT in its evolutionary ancestors (J. Huang 2013). Anhydrobiosis is also 

known in rotifers, tardigrades and nematodes, where HGT has been indicated as an 

evolutionary scenario for acquiring novel gene functions (Abad et al. 2008; Flot et al. 2013; 

Yoshida et al. 2017).  

7.4 Enzymes for the bio-based economy  

When novel enzymes, recovered from invertebrate microbiomes, are considered as 

candidates for biotechnological application, their biosynthesis and function must be 

optimized with respect to the specific conditions for which it is intended. This is commonly 

done by heterologous expression and testing of the recombinantly expressed enzyme under 

various conditions. Several heterologous expression systems have been specifically 

optimized for increased CAZyme production, so that they may become more viable for 

industrial and biotechnological applications. For instance, Zymomonas mobilis confers an 

alternative glucose metabolism pathway compared to the conventional glycolytic pathway. 

As a consequence, it exerts high sugar uptake, lower cellular biomass yield and high alcohol 

formation, and has been successfully used as an efficient host for heterologous expression of 

extracellular cellulases (Linger, Adney, and Darzins 2010). Also, engineering its amino acid 

composition based on molecular modelling might be an relevant option (Chettri, Verma, and 

Verma 2020). Optimization could be achieved with respect to: 
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- Specificity. Many enzymes have multiple functions. The activity with respect to the prime 

function could be enhanced by engineering the enzyme towards that particular function.  

- Substrate dependence. The enzyme could be optimized to show the highest reaction rate 

under the substrate concentrations that are prevalent in the intended application.  

- pH dependence. In some cases, enzymes are used to release sugar from polymeric 

carbohydrates obtained after alkaline or acid treatments of lignocellulose. In these cases, 

the novel enzyme needs optimization with respect to its pH-dependency.  

- Temperature. Enzymes isolated from ectothermic invertebrates are expected to show a 

temperature optimum at relatively low temperature. In biotechnology applications, the 

desired temperature of the reaction mixture might be higher and so an optimization is 

needed. 

Two engineering methods, supported by computational biology, are in general applied to 

improve the above-mentioned properties for CAZymes (Figure 1). Directed protein evolution 

comprises a way of natural selection that can be implemented in a controlled manner under 

laboratory conditions to be applied on modification and testing towards more optimized 

CAZyme peptide structures. Variation in amino acid constitution is generated by random 

mutagenesis through, for instance, error-prone PCR on CAZyme cDNA amplification. The 

synthesized variants are subsequently screened and selected for the desired property. The 

advantage of directed evolution is that the method is less dependent on pre-knowledge about 

peptide structure. Many studies have been published on directed evolution on CAZymes 

targeting diverse functional modifications. For instance, Adesioye et al. (2018) subjected a 

an acetyl xylan esterase to directed evolution, which resulted in more thermostable 

determinants of carbohydrate esterase 7 family members (Adesioye et al. 2018). 

A second approach (Figure 1) is rational design, where site-directed mutagenesis is applied 

to achieve pre-determined amino acid mutations, based on the structural and catalytic 

information of the enzyme of interest (Chettri, Verma, and Verma 2020). Following this 

approach, a laccase of Bacillus sp. HR03 was engineered by replacing a negative residue with 

hydrophobic residues on the surface of the protein, thereby enhancing thermo-resistance as 

well as solvent stability (Rasekh et al. 2014). 
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Figure 1: Two approaches to optimizing CAZymes, A directed evolution B rational design. Figure 

courtesy of Chettri et al. 2020. 

Nevertheless, the exponentially growing number of predicted CAZymes from an exploding 

number of metagenomics studies has not been accompanied by a systematic and accurate 

attribution of function. Only a tiny fraction has been experimentally verified, which has 

become apparent in my thesis work as well. A potential solution for this is provided by 

Helbert (Helbert et al. 2019). They tried to better explore the sequence-to-function 

relationships of CAZymes by applying a strategy based on a rational bioinformatic selection 

of CAZyme targets from the existing database, followed by synthetic protein synthesis, and 

subsequent screening of recombinant proteins on a wide diversity of carbohydrate substrates. 

Only 14% exhibited actual enzymatic activity, but they found three new types of enzyme 

activities that had not been described previously (Helbert et al. 2019). This shows the power 

of combining a bioinformatic approach with a high throughput wet-lab testing and validation 

approach in the process of discovering new and more optimal enzyme functions.  

These considerations illustrate that the isolation of enzymes from invertebrate metagenomes 

is only the first step in the development of novel activities for the bio-based industry. In this 
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thesis I have not yet been able to point out specific enzymes for direct biotechnological use. 

Still, my work is a possible contribution to a better insight into the molecular space of novel 

activity. If we know more about the sequences of gut enzymes in relation to the functions 

they have in different hosts, the basis for biotechnological optimization will be broadened. 

By looking at the space of possibilities provided by nature, solutions in biotechnology will 

be obtained more rapidly.  

7.5 The future of the bio-based industry  

Currently, we are urgently looking for the replacement of the traditional fossil fuel to more 

sustainable resources. The longer it takes for the transition to take place, the more will 

pollution, damage to the environment and human health become a problem. The bio-economy 

(BE) is a circular production of renewable biological resources as well as their conversion 

into food, feed, bio-based products and bioenergy. Multiple industries such as agriculture, 

forestry, fisheries, food and others are part of this bio-economy.  Biorefineries provide the 

alternative sustainable solution for the production of bioproducts and bioenergy (Aristizábal-

Marulanda and Cardona Alzate 2019). The biomass from agricultural waste is one of the 

preferred resources for supporting the urgent transition from fossil-based to sustainable 

energy (Chettri, Verma, and Verma 2020). Biorefineries breakdown plant materials into 

cellulose, hemicellulose and lignin. These structures can be further hydrolyzed to sugar 

monomers for fermentation or to various end products (Fernando et al. 2006). This approach 

benefits not only waste management but also reduces greenhouse gas emissions. The 

biorefinery market was estimated to be $714,6 billion by 2021 (Chettri, Verma, and Verma 

2020).  

As shown in my thesis, the animal guts are somewhat similar to biorefineries. In the animal 

guts, the biomass has a short retention time. The gut microorganisms are under selective 

pressure and competing against each other for the breaking down of biomass. Under different 

environmental conditions different bacteria and other microorganisms would contribute 

comparable enzymes for the biomass degradation. It emphasizes the notion that the origin of 

a certain trait is not so much an issue, provided that the trait can be delivered by any microbe 

that can be picked up by the host. This leads to a high level of functional convergence among 

multiple enzymes from different organisms (Chettri, Verma, and Verma 2020).  
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However, despite the large number of investigations in this field, there are still many 

unknown parameters with regard to information about CAZymes producers and genes 

involved. Biomass is difficult to breakdown and need tailor treatments. Traditional methods 

for pretreatment require pressure and heat to destroy the carbohydrates. The logical 

subsequent step is to further treat the resulting biomass with enzyme cocktails. Different 

types of pretreatments, physical and chemical, would need different treatment methods for 

downstream processes (Fig. 2). The condition of the fermentation process requires enzymes 

to be optimized for a specific pH and temperature. An effective way would be to have a range 

of cocktails, with multiple synergistic enzymes working together to generate different 

products and/or monomers (Merino and Cherry 2007; Bredon et al. 2018; Lopes, Ferreira 

Filho, and Moreira 2018).  

 

Figure 2: Multiple factors such as composition of biomass, pre-treatment methodology, inhibitors 

generation, different CAZymes ratio and optimum activity conditions can impact the effectiveness of 

the cocktail (Chettri, Verma, and Verma 2020). 

Currently, there are some commercially available cocktails. The core enzymes of the cocktail 

include endoglucanases, exoglucanes, and beta glucosidase (Gao et al. 2014). These enzymes 

have previously been reported in the chapter 4 of my thesis. Additional enzymes such as 
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polysaccharide monooxygenases cleave the glycosidic bonds of cellulose via oxidation 

(Foreman et al. 2003) and hemicellulases can help to open up the structure and allows more 

cellulose to be accessed (Várnai et al. 2011).    

The resulting products are furthermore suitable for later process such as saccharification 

(Horn et al. 2012). On top of that, the enzymatic enzymes approach help to maximum yield 

from biomass recycling and also produce alternative bioproducts. Enzymes such as laccase 

(Dao et al. 2021), lignin-peroxidases and manganases are used for the breaking down of dye 

(Yadav and Yadav 2015). Cellulases are used in textile industries for dye removal, fabric 

softening, and biopolishing; they are also used for biopulping in the paper industry. In animal 

feed production, cellulases are used to increase the nutritional value. They are even used as 

biopesticides due to their ability to degrade the cell wall of plant pathogens (Garron and 

Henrissat 2019). 

With improved sequencing, metagenomics is becoming increasingly popular due to the 

ability to investigate uncultivated microorganisms and their functions in the target mini-

ecosystem (Chettri, Verma, and Verma 2020). Metagenomics helps to look into the 99% of 

uncultured bacteria where there are potential novel enzymes. The development of 

bioinformatics tools helps to understand these microorganisms and their interactions/roles as 

well as their contribution toward the breaking down of biomass. The third-generation 

sequencing methods of Pacific Bioscience (PacBio) and Oxford Nanopore’s MinION are 

capable of generating long read sequences. With the introduction of long read sequencing, 

more researches are using this technique for metagenomics (Haro-Moreno, López-Pérez, and 

Rodríguez-Valera 2020; Moss, Maghini, and Bhatt 2020; Maguire et al. 2021). Long read 

sequencing helps to identify complete open reading frames which is instrumental in 

annotation (Haro-Moreno, López-Pérez, and Rodríguez-Valera 2020).   

By combining different omics approaches, the metabolic pathways involved in plant 

degradation can be mapped completely (Heyer et al. 2017). Meta-transcriptomics looks the 

gene expression from all microorganisms in the community. This approach can help to 

identify active genes as well as the microbe-microbe interactions ((Morita et al. 2011; F. Liu 

et al. 2012; Stark, Giersch, and Wünschiers 2014). Similarly, metaproteomics is the study of 

all the proteins in the studied community. The approach reveals the functional traits of 

microorganisms (Chettri, Verma, and Verma 2020).  
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On top of that, a set of more advanced high throughput techniques should also be employed. 

For example, combining metagenomics with expression of environmental DNA using 

multiple hosts growing on carbohydrate specific medium can help to screen for substrate-

specific enzymes. Van Dijk et al (2020) reported a high throughput screening to identify the 

growth and ethanol production of a lignocellulose hydrolyzing strain of Saccharomyces 

cerevisiae. Multiple enzymes activity could also be investigated via automation systems 

(Bonowski et al. 2010; Navarro et al. 2010). When screening a large number of organisms 

and enzymes, it benefit greatly to have a large diversity of samples. Databases can help to 

solve problems or predict trends. Machine learning model when given a database to study 

can help to improve its prediction. The eCAMI is a k-merbased application that can be used 

for identification, classification, and genome annotation of CAZymes using a bipartite 

network algorithm (Jing Xu et al. 2020). Recently, Alphafold 2 was able to predict protein 

folding with a high accuracy using known protein crystals as the training model (Callaway 

2020). Bioinformatic tools could also be used to predict random and/or direct mutations sites 

to make enzymes more thermostable, as explained in section 3 of this chapter. Newly 

modified enzymes can have activities up to 14 times the activity of the wild type (Anbar et 

al. 2012; M. A. Smith et al. 2012; Yoav et al. 2019). As more enzymes and microorganisms 

and biomass degrading cocktails are identified and improved, the fraction of products that 

are suitable for refineries of the bio-based economy will increase.  

For the biorefineries to be functional, the technical, practicalities, as well as social aspect of 

biorefineries should also be addressed. There needs to be an effort from the government, 

scientists and farmers and public-private partnerships at national and local level to work 

together. For example, in Vietnam, burning of agricultural waste was common practice for a 

long time. For the farmers there is no incentive to recycle as there are no economic benefit. 

Other factors such as program conditions, incentive offered, famer’s environmental 

preference, cultural characteristics and agricultural trends can affect the adoption of waste 

recycling (Piñeiro et al. 2020). The government and the scientific community could provide 

information as well as paying for the raw material. This would help the farmers to understand 

the important of recycling because they will get an extra source of income. Reports show that 

for short term adoption, economic benefit is essential. For the long term, the positive outcome 

for the environment and/or the farm would be the driver (Piñeiro et al. 2020).  
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In the future biorefineries recycling organic waste will generate benefits associated with 

energy conservation, food security, and mitigation of climate change at the same meeting 

societal demands for bio-products, chemicals and substances. 



Bibliography 

164 

Bibliography 

Abad, Pierre, Jérôme Gouzy, Jean Marc Aury, Philippe Castagnone-Sereno, Etienne G.J. Danchin, 

Emeline Deleury, Laetitia Perfus-Barbeoch, et al. 2008. “Genome Sequence of the Metazoan 

Plant-Parasitic Nematode Meloidogyne Incognita.” Nature Biotechnology 26 (8): 909–15. 

https://doi.org/10.1038/nbt.1482. 

Abedinifar, Sorahi, Keikhosro Karimi, Morteza Khanahmadi, and Mohammad J. Taherzadeh. 2009. 

“Ethanol Production by Mucor Indicus and Rhizopus Oryzae from Rice Straw by Separate 

Hydrolysis and Fermentation.” Biomass and Bioenergy 33 (5): 828–33. 

https://doi.org/10.1016/j.biombioe.2009.01.003. 

Acuña, Ricardo, Beatriz E. Padilla, Claudia P. Flórez-Ramos, José D. Rubio, Juan C. Herrera, Pablo 

Benavides, Sang Jik Lee, et al. 2012. “Adaptive Horizontal Transfer of a Bacterial Gene to an 

Invasive Insect Pest of Coffee.” Proceedings of the National Academy of Sciences of the United 

States of America 109 (11): 4197–4202. https://doi.org/10.1073/pnas.1121190109. 

Adams, Aaron S., Michelle S. Jordan, Sandye M. Adams, Garret Suen, Lynne A. Goodwin, Karen W. 

Davenport, Cameron R. Currie, and Kenneth F. Raffa. 2011. “Cellulose-Degrading Bacteria 

Associated with the Invasive Woodwasp Sirex Noctilio.” ISME Journal 5 (8): 1323–31. 

https://doi.org/10.1038/ismej.2011.14. 

Adesioye, Fiyinfoluwa A., Thulani P. Makhalanyane, Surendra Vikram, Bryan T. Sewell, Wolf Dieter 

Schubert, and Don A. Cowana. 2018. “Structural Characterization and Directed Evolution of a 

Novel Acetyl Xylan Esterase Reveals Thermostability Determinants of the Carbohydrate 

Esterase 7 Family.” Applied and Environmental Microbiology 84 (8): 2695–2712. 

https://doi.org/10.1128/AEM.02695-17. 

Agamennone, V., D. Roelofs, N. M. van Straalen, and T. K.S. Janssens. 2018. “Antimicrobial Activity 

in Culturable Gut Microbial Communities of Springtails.” Journal of Applied Microbiology. 

https://doi.org/10.1111/jam.13899. 

Agamennone, Valeria, Dennis Jakupović, James T. Weedon, Wouter J. Suring, Nico M. van Straalen, 

Dick Roelofs, and Wilfred F.M. Röling. 2015. “The Microbiome of Folsomia Candida: An 

Assessment of Bacterial Diversity in a Wolbachia-Containing Animal.” FEMS Microbiology 

Ecology 91 (11). https://doi.org/10.1093/femsec/fiv128. 

Agamennone, Valeria, Ngoc Giang Le, Nico M. van Straalen, Abraham Brouwer, and Dick Roelofs. 

2019. “Antimicrobial Activity and Carbohydrate Metabolism in the Bacterial Metagenome of 

the Soil-Living Invertebrate Folsomia Candida.” Scientific Reports 9 (1): 7308. 



Bibliography 

165 

S 

https://doi.org/10.1038/s41598-019-43828-w. 

Agrawal, AR, SA Karim, and Rajiv Kumar. 2014. “Sheep and Goat Production: Basic Differences, 

Impact on Climate and Molecular Tools for Rumen Microbiome Study.” … . J. Curr. Microbiol. 

App. …. Vol. 3. http://ijcmas.com/vol-3-1/A.R.Agrawal, et al.pdf. 

Al-Masaudi, Saad, Abdessamad El Kaoutari, Elodie Drula, Elrashdy M. Redwan, Vincent Lombard, 

and Bernard Henrissat. 2019. “A Metagenomics Investigation of Carbohydrate-Active Enzymes 

along the Goat and Camel Intestinal Tract.” International Microbiology 22 (4): 429–35. 

https://doi.org/10.1007/s10123-019-00068-2. 

Alcock, Brian P., Amogelang R. Raphenya, Tammy T.Y. Lau, Kara K. Tsang, Mégane Bouchard, 

Arman Edalatmand, William Huynh, et al. 2020. “CARD 2020: Antibiotic Resistome 

Surveillance with the Comprehensive Antibiotic Resistance Database.” Nucleic Acids Research 

48 (D1): D517–25. https://doi.org/10.1093/nar/gkz935. 

Algburi, Ammar, Saskia Zehm, Victoria Netrebov, Anzhelica B. Bren, Vladimir Chistyakov, and 

Michael L. Chikindas. 2017. “Subtilosin Prevents Biofilm Formation by Inhibiting Bacterial 

Quorum Sensing.” Probiotics and Antimicrobial Proteins 9 (1): 81–90. 

https://doi.org/10.1007/s12602-016-9242-x. 

Almagro Armenteros, José Juan, Konstantinos D. Tsirigos, Casper Kaae Sønderby, Thomas Nordahl 

Petersen, Ole Winther, Søren Brunak, Gunnar von Heijne, and Henrik Nielsen. 2019. “SignalP 

5.0 Improves Signal Peptide Predictions Using Deep Neural Networks.” Nature Biotechnology 

37 (4): 420–23. https://doi.org/10.1038/s41587-019-0036-z. 

Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman. 1990. “Basic 

Local Alignment Search Tool.” Journal of Molecular Biology 215 (3): 403–10. 

https://doi.org/10.1016/S0022-2836(05)80360-2. 

Altschul, Stephen F, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang, Zheng Zhang, Webb 

Miller, and David J Lipman. 1997. “Gapped BLAST and PSI-BLAST: A New Generation of 

Protein Database Search Programs.” Nucleic Acids Research. Vol. 25. Oxford University Press. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC146917/pdf/253389.pdf. 

Amin, Farrukh Raza, Habiba Khalid, Han Zhang, Sajid U Rahman, Ruihong Zhang, Guangqing Liu, 

and Chang Chen. 2017. “Pretreatment Methods of Lignocellulosic Biomass for Anaerobic 

Digestion.” AMB Express 7 (1): 72. https://doi.org/10.1186/s13568-017-0375-4. 

An, Dengdi, Xiuzhu Dong, and Zhiyang Dong. 2005. “Prokaryote Diversity in the Rumen of Yak (Bos 

Grunniens) and Jinnan Cattle (Bos Taurus) Estimated by 16S RDNA Homology Analyses.” 



Bibliography 

166 

Anaerobe 11 (4): 207–15. https://doi.org/10.1016/j.anaerobe.2005.02.001. 

Anbar, Michael, Ozgur Gul, Raphael Lamed, Ugur O. Sezerman, and Edward A. Bayer. 2012. 

“Improved Thermostability of Clostridium Thermocellum Endoglucanase Cel8A by Using 

Consensus-Guided Mutagenesis.” Applied and Environmental Microbiology 78 (9): 3458–64. 

https://doi.org/10.1128/AEM.07985-11. 

Andrews, Simon, and others. 2010. “FastQC: A Quality Control Tool for High Throughput Sequence 

Data. 2010.” Https://Www.Bioinformatics.Babraham.Ac.Uk/Projects/Fastqc/. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 

Anwar, Zahid, Muhammad Gulfraz, and Muhammad Irshad. 2014. “Agro-Industrial Lignocellulosic 

Biomass a Key to Unlock the Future Bio-Energy: A Brief Review.” Journal of Radiation 

Research and Applied Sciences 7 (2): 163–73. https://doi.org/10.1016/j.jrras.2014.02.003. 

Aotani, Yumiko, Hiroyuki Nagata, and Mayumi Yoshida. 1997. “Lymphostin (LK6-A), a Novel 

Immunosuppressant from Streptomyces Sp. KY11783: Structural Elucidation.” Journal of 

Antibiotics 50 (7): 543–45. https://doi.org/10.7164/antibiotics.50.543. 

Araki, Rie, Shuichi Karita, Akiyoshi Tanaka, Tetsuya Kimura, and Kazuo Sakka. 2006. “Effect of 

Family 22 Carbohydrate-Binding Module on the Thermostability of Xyn10B Catalytic Module 

from Clostridium Stercorarium.” Bioscience, Biotechnology and Biochemistry 70 (12): 3039–

41. https://doi.org/10.1271/bbb.60348. 

Aristizábal-Marulanda, Valentina, and Carlos A. Cardona Alzate. 2019. “Methods for Designing and 

Assessing Biorefineries: Review.” Biofuels, Bioproducts and Biorefining 13 (3): 789–808. 

https://doi.org/10.1002/bbb.1961. 

Arrebola, Eva, Francisco M. Cazorla, Victoria E. Durán, Eugenia Rivera, Francisco Olea, Juan C. 

Codina, Alejandro Pérez-García, and Antonio De Vicente. 2003. “Mangotoxin: A Novel 

Antimetabolite Toxin Produced by Pseudomonas Syringae Inhibiting Ornithine/Arginine 

Biosynthesis.” Physiological and Molecular Plant Pathology 63 (3): 117–27. 

https://doi.org/10.1016/j.pmpp.2003.11.003. 

Arumugam, N., and P.U. Mahalingam. 2015. “Lignocellulose Plant Biomass ; an Emerging Alternative 

Fuel Resource.” Everyman’s Science XLIX (5): 291–95. 

Arumugaperumal, Arun, Sayan Paul, Saranya Lathakumari, Ravindran Balasubramani, and Sudhakar 

Sivasubramaniam. 2020. “The Draft Genome of a New Verminephrobacter Eiseniae Strain: A 

Nephridial Symbiont of Earthworms.” Annals of Microbiology 70 (1): 3. 

https://doi.org/10.1186/s13213-020-01549-w. 



Bibliography 

167 

S 

Asghar, Ali, Rastegari Ajar, Nath Yadav, and Arti Gupta. 2019. “Prospects of Renewable 

Bioprocessing in Future Energy Systems.” Edited by Ali Asghar Rastegari, Ajar Nath Yadav, 

and Arti Gupta. Vol. 10. Biofuel and Biorefinery Technologies. Cham: Springer International 

Publishing. https://doi.org/10.1007/978-3-030-14463-0. 

Asgher, Muhammad, Zanib Ahmad, and Hafiz Muhammad Nasir Iqbal. 2013. “Alkali and Enzymatic 

Delignification of Sugarcane Bagasse to Expose Cellulose Polymers for Saccharification and 

Bio-Ethanol Production.” Industrial Crops and Products 44 (January): 488–95. 

https://doi.org/10.1016/j.indcrop.2012.10.005. 

Ashburner, Michael, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler, J. Michael 

Cherry, Allan P. Davis, et al. 2000. “Gene Ontology: Tool for the Unification of Biology.” 

Nature Genetics 25 (1): 25–29. https://doi.org/10.1038/75556. 

Asnicar, Francesco, George Weingart, Timothy L. Tickle, Curtis Huttenhower, and Nicola Segata. 

2015. “Compact Graphical Representation of Phylogenetic Data and Metadata with GraPhlAn.” 

PeerJ 2015 (6): e1029. https://doi.org/10.7717/peerj.1029. 

Aylward, Frank O., Kristin E. Burnum, Jarrod J. Scott, Garret Suen, Susannah G. Tringe, Sandra M. 

Adams, Kerrie W. Barry, et al. 2012. “Metagenomic and Metaproteomic Insights into Bacterial 

Communities in Leaf-Cutter Ant Fungus Gardens.” ISME Journal 6 (9): 1688–1701. 

https://doi.org/10.1038/ismej.2012.10. 

Aylward, Frank O., Garret Suen, Peter H.W. Biedermann, Aaron S. Adams, Jarrod J. Scott, Stephanie 

A. Malfatti, Tijana Glavina Del Rio, et al. 2014. “Convergent Bacterial Microbiotas in the Fungal 

Agricultural Systems of Insects.” MBio 5 (6). https://doi.org/10.1128/mBio.02077-14. 

Bahrndorff, Simon, Nadieh De Jonge, Jacob Kjerulf Hansen, Jannik Mørk Skovgaard Lauritzen, Lasse 

Holt Spanggaard, Mathias Hamann Sørensen, Morten Yde, and Jeppe Lund Nielsen. 2018. 

“Diversity and Metabolic Potential of the Microbiota Associated with a Soil Arthropod.” 

Scientific Reports 8 (1). https://doi.org/10.1038/s41598-018-20967-0. 

Balat, Mustafa. 2011. “Production of Bioethanol from Lignocellulosic Materials via the Biochemical 

Pathway: A Review.” Energy Conversion and Management 52 (2): 858–75. 

https://doi.org/10.1016/j.enconman.2010.08.013. 

Baldeweg, Florian, Hirokazu Kage, Sebastian Schieferdecker, Caitilyn Allen, Dirk Hoffmeister, and 

Markus Nett. 2017. “Structure of Ralsolamycin, the Interkingdom Morphogen from the Crop 

Plant Pathogen Ralstonia Solanacearum.” Organic Letters 19 (18): 4868–71. 

https://doi.org/10.1021/acs.orglett.7b02329. 



Bibliography 

168 

Baldrian, Petr, Petra Zrůstová, Vojtěch Tláskal, Anna Davidová, Věra Merhautová, and Tomáš Vrška. 

2016. “Fungi Associated with Decomposing Deadwood in a Natural Beech-Dominated Forest.” 

Fungal Ecology 23 (October): 109–22. https://doi.org/10.1016/j.funeco.2016.07.001. 

Bamdad, Hanieh, Kelly Hawboldt, and Stephanie MacQuarrie. 2018. “A Review on Common 

Adsorbents for Acid Gases Removal: Focus on Biochar.” Renewable and Sustainable Energy 

Reviews. Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.05.261. 

Bankevich, Anton, Sergey Nurk, Dmitry Antipov, Alexey A. Gurevich, Mikhail Dvorkin, Alexander 

S. Kulikov, Valery M. Lesin, et al. 2012. “SPAdes: A New Genome Assembly Algorithm and 

Its Applications to Single-Cell Sequencing.” J. Comput. Biol. 19 (5): 455–77. 

https://doi.org/10.1089/cmb.2012.0021. 

Baron, Sophie A., Seydina M. Diene, and Jean Marc Rolain. 2018. “Human Microbiomes and 

Antibiotic Resistance.” Human Microbiome Journal. Elsevier Ltd. 

https://doi.org/10.1016/j.humic.2018.08.005. 

Baumann, Ivan, and Peter Westermann. 2016. “Microbial Production of Short Chain Fatty Acids from 

Lignocellulosic Biomass: Current Processes and Market.” BioMed Research International 2016. 

https://doi.org/10.1155/2016/8469357. 

Belkaid, Yasmine, and Timothy W. Hand. 2014. “Role of the Microbiota in Immunity and 

Inflammation.” Cell. Cell Press. https://doi.org/10.1016/j.cell.2014.03.011. 

Benjamino, Jacquelynn, Stephen Lincoln, Ranjan Srivastava, and Joerg Graf. 2018. “Low-Abundant 

Bacteria Drive Compositional Changes in the Gut Microbiota after Dietary Alteration.” 

Microbiome 6 (1): 86. https://doi.org/10.1186/s40168-018-0469-5. 

Benndorf, René, Huijuan Guo, Elisabeth Sommerwerk, Christiane Weigel, Maria Garcia-Altares, Karin 

Martin, Haofu Hu, et al. 2018. “Natural Products from Actinobacteria Associated with Fungus-

Growing Termites.” Antibiotics 7 (3): 1–25. https://doi.org/10.3390/antibiotics7030083. 

Bentley, Stephen D., David M. Aanensen, Angeliki Mavroidi, David Saunders, Ester Rabbinowitsch, 

Matthew Collins, Kathy Donohoe, et al. 2006. “Genetic Analysis of the Capsular Biosynthetic 

Locus from All 90 Pneumococcal Serotypes.” PLoS Genetics 2 (3): 0262–69. 

https://doi.org/10.1371/journal.pgen.0020031. 

Berg, Matty P., Mirjam Stoffer, and Harry H. Van Den Heuvel. 2004. “Feeding Guilds in Collembola 

Based on Digestive Enzymes.” In Pedobiologia, 48:589–601. Elsevier GmbH. 

https://doi.org/10.1016/j.pedobi.2004.07.006. 

Berg, Maureen, Ben Stenuit, Joshua Ho, Andrew Wang, Caitlin Parke, Matthew Knight, Lisa Alvarez-



Bibliography 

169 

S 

Cohen, and Michael Shapira. 2016. “Assembly of the Caenorhabditis Elegans Gut Microbiota 

from Diverse Soil Microbial Environments.” ISME J. 10 (8): 1998–2009. 

https://doi.org/10.1038/ismej.2015.253. 

Berihulay, Haile, Adam Abied, Xiaohong He, Lin Jiang, and Yuehui Ma. 2019. “Adaptation 

Mechanisms of Small Ruminants to Environmental Heat Stress.” Animals 9 (3): 1–9. 

https://doi.org/10.3390/ani9030075. 

Berlanga, Mercedes, Carlos Llorens, Jaume Comas, and Ricardo Guerrero. 2016. “Gut Bacterial 

Community of the Xylophagous Cockroaches Cryptocercus Punctulatus and Parasphaeria 

Boleiriana.” PLoS ONE 11 (4). https://doi.org/10.1371/journal.pone.0152400. 

Bernard, Thomas, Brandi I. L. Cantarel, Bernard Henrissat, Vincent Lombard, Pedro M. Coutinho, 

Corinne Rancurel, Thomas Bernard, Vincent Lombard, and Bernard Henrissat. 2008. “The 

Carbohydrate-Active EnZymes Database (CAZy): An Expert Resource for Glycogenomics.” 

Nucleic Acids Research 37 (SUPPL. 1): D233–38. https://doi.org/10.1093/nar/gkn663. 

Biely, Peter. 2012. “Microbial Carbohydrate Esterases Deacetylating Plant Polysaccharides.” 

Biotechnology Advances. Elsevier. https://doi.org/10.1016/j.biotechadv.2012.04.010. 

Blanco, Paula, Sara Hernando-Amado, Jose Reales-Calderon, Fernando Corona, Felipe Lira, Manuel 

Alcalde-Rico, Alejandra Bernardini, Maria Sanchez, and Jose Martinez. 2016. “Bacterial 

Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.” 

Microorganisms 4 (1): 14. https://doi.org/10.3390/microorganisms4010014. 

Blin, Kai, Simon Shaw, Katharina Steinke, Rasmus Villebro, Nadine Ziemert, Sang Yup Lee, Marnix 

H. Medema, and Tilmann Weber. 2019. “AntiSMASH 5.0: Updates to the Secondary Metabolite 

Genome Mining Pipeline.” Nucleic Acids Research 47 (W1): W81–87. 

https://doi.org/10.1093/nar/gkz310. 

Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. 2014. “Trimmomatic: A Flexible Trimmer for 

Illumina Sequence Data.” Bioinformatics 30 (15): 2114–20. 

https://doi.org/10.1093/bioinformatics/btu170. 

Bonneau, Anne, Béatrice Roche, and Isabelle J. Schalk. 2020. “Iron Acquisition in Pseudomonas 

Aeruginosa by the Siderophore Pyoverdine: An Intricate Interacting Network Including 

Periplasmic and Membrane Proteins.” Scientific Reports 10 (1): 1–11. 

https://doi.org/10.1038/s41598-019-56913-x. 

Bonowski, Felix, Ana Kitanovic, Peter Ruoff, Jinda Holzwarth, Igor Kitanovic, van Ngoc Bui, Elke 

Lederer, and Stefan Wölfl. 2010. “Computer Controlled Automated Assay for Comprehensive 



Bibliography 

170 

Studies of Enzyme Kinetic Parameters.” Edited by Vladimir Brusic. PLoS ONE 5 (5): e10727. 

https://doi.org/10.1371/journal.pone.0010727. 

Boonmee, Atcha. 2012. “Hydrolysis of Various Thai Agricultural Biomasses Using the Crude Enzyme 

from Aspergillus Aculeatus Iizuka FR60 Isolated from Soil.” Brazilian Journal of Microbiology 

43 (2): 456–66. https://doi.org/10.1590/S1517-83822012000200005. 

Borne, Romain, Edward A. Bayer, Sandrine Pagès, Stéphanie Perret, and Henri Pierre Fierobe. 2013. 

“Unraveling Enzyme Discrimination during Cellulosome Assembly Independent of Cohesin - 

Dockerin Affinity.” FEBS Journal 280 (22): 5764–79. https://doi.org/10.1111/febs.12497. 

Bornscheuer, Uwe, Klaus Buchholz, and Jürgen Seibel. 2014. “Enzymatic Degradation of 

(Ligno)Cellulose.” Angewandte Chemie - International Edition 53 (41): 10876–93. 

https://doi.org/10.1002/anie.201309953. 

Bost, Alyssa, Vincent G. Martinson, Soeren Franzenburg, Karen L. Adair, Alice Albasi, Martin T. 

Wells, and Angela E. Douglas. 2018. “Functional Variation in the Gut Microbiome of Wild 

Drosophila Populations.” Molecular Ecology 27 (13): 2834–45. 

https://doi.org/10.1111/mec.14728. 

Bouchon, Didier, Martin Zimmer, and Jessica Dittmer. 2016. “The Terrestrial Isopod Microbiome: An 

All-in-One Toolbox for Animal-Microbe Interactions of Ecological Relevance.” Frontiers in 

Microbiology 7 (SEP). https://doi.org/10.3389/fmicb.2016.01472. 

Bourguignon, Thomas, Nathan Lo, Carsten Dietrich, Jan Šobotník, Sarah Sidek, Yves Roisin, Andreas 

Brune, and Theodore A. Evans. 2018. “Rampant Host Switching Shaped the Termite Gut 

Microbiome.” Current Biology 28 (4): 649-654.e2. https://doi.org/10.1016/j.cub.2018.01.035. 

Bredon, Marius, Jessica Dittmer, Cyril Noël, Bouziane Moumen, and Didier Bouchon. 2018. 

“Lignocellulose Degradation at the Holobiont Level: Teamwork in a Keystone Soil Invertebrate 

06 Biological Sciences 0605 Microbiology.” Microbiome 6 (1): 1–19. 

https://doi.org/10.1186/s40168-018-0536-y. 

Bredon, Marius, Benjamin Herran, Joanne Bertaux, Pierre Grève, Bouziane Moumen, and Didier 

Bouchon. 2020. “Isopod Holobionts as Promising Models for Lignocellulose Degradation.” 

Biotechnology for Biofuels 13 (1). https://doi.org/10.1186/s13068-020-01683-2. 

Breton, Christelle, Lenka Šnajdrová, Charlotte Jeanneau, Jaroslav Koča, and Anne Imberty. 2006. 

“Structures and Mechanisms of Glycosyltransferases.” Glycobiology 16 (2): 29R-37R. 

https://doi.org/10.1093/glycob/cwj016. 

Breznak, John A, and Andreas Brune. 2002. “Role of Microorganisms in the Digestion of 



Bibliography 

171 

S 

Lignocellulose by Termites.” Annual Review of Entomology 39 (1): 453–87. 

https://doi.org/10.1146/annurev.ento.39.1.453. 

Broza, Meir, Roberto M. Pereira, and Jerry L. Stimac. 2001. “The Nonsusceptibility of Soil Collembola 

to Insect Pathogens and Their Potential as Scavengers of Microbial Pesticides.” Pedobiologia 45 

(6): 523–34. https://doi.org/10.1078/0031-4056-00104. 

Brune, Andreas. 2014. “Symbiotic Digestion of Lignocellulose in Termite Guts.” Nature Reviews 

Microbiology 12 (3): 168–80. https://doi.org/10.1038/nrmicro3182. 

Brune, Andreas, and Carsten Dietrich. 2015. “The Gut Microbiota of Termites: Digesting the Diversity 

in the Light of Ecology and Evolution.” Annual Review of Microbiology 69 (1): 145–66. 

https://doi.org/10.1146/annurev-micro-092412-155715. 

Brune, Andreas, David Emerson, and John A Breznak. 1995. “The Termite Gut Microflora as an 

Oxygen Sink : Microelectrode Determination of Oxygen and PH Gradients in Guts of Lower and 

Higher Termites . The Termite Gut Microflora as an Oxygen Sink : Microelectrode 

Determination of Oxygen and PH Gradients in Guts Of.” Applied and Environmental 

Microbiology 61 (7): 2681–87. 

Brune, Andreas, and Michael Friedrich. 2000. “Microecology of the Termite Gut: Structure and 

Function on a Microscale.” Current Opinion in Microbiology. Current Biology Ltd. 

https://doi.org/10.1016/S1369-5274(00)00087-4. 

Bushnell, Brian. 2017. “BBTools User Guide - DOE Joint Genome Institute.” Joint Genome Institute. 

2017. http://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/. 

Busk, P. K., B. Pilgaard, M. J. Lezyk, A. S. Meyer, and L. Lange. 2017. “Homology to Peptide Pattern 

for Annotation of Carbohydrate-Active Enzymes and Prediction of Function.” BMC 

Bioinformatics 18 (1): 214. https://doi.org/10.1186/s12859-017-1625-9. 

Bussi, Claudio, and Maximiliano G Gutierrez. 2019. “From Hairballs to Hypotheses–Biological 

Insights from Microbial Networks.” FEMS Microbiology Reviews 43 (4): 341–61. 

https://doi.org/10.1093/FEMSRE. 

Bystroff, Christopher, and Anders Krogh. 2008. “Hidden Markov Models for Prediction of Protein 

Features.” In Protein Structure Prediction, 173–98. Humana Press. https://doi.org/10.1007/978-

1-59745-574-9_7. 

Callaway, Ewen. 2019. “C-Section Babies Are Missing Key Microbes.” Nature, September. 

https://doi.org/10.1038/d41586-019-02807-x. 

———. 2020. “‘It Will Change Everything’: DeepMind’s AI Makes Gigantic Leap in Solving Protein 



Bibliography 

172 

Structures.” Nature. NLM (Medline). https://doi.org/10.1038/d41586-020-03348-4. 

Camacho, Christiam, George Coulouris, Vahram Avagyan, Ning Ma, Jason Papadopoulos, Kevin 

Bealer, and Thomas L Madden. 2009. “BLAST+: Architecture and Applications.” BMC 

Bioinformatics 10 (1): 421. https://doi.org/10.1186/1471-2105-10-421. 

Campanacci, Valérie, Russell E. Bishop, Stéphanie Blangy, Mariella Tegoni, and Christian Cambillau. 

2006. “The Membrane Bound Bacterial Lipocalin Blc Is a Functional Dimer with Binding 

Preference for Lysophospholipids.” FEBS Letters 580 (20): 4877–83. 

https://doi.org/10.1016/j.febslet.2006.07.086. 

Campanacci, Valérie, Didier Nurizzo, Silvia Spinelli, Christel Valencia, Mariella Tegoni, and Christian 

Cambillau. 2004. “The Crystal Structure of the Escherichia Coli Lipocalin Blc Suggests a 

Possible Role in Phospholipid Binding.” FEBS Letters 562 (1–3): 183–88. 

https://doi.org/10.1016/S0014-5793(04)00199-1. 

Campanaro, Stefano, Laura Treu, Panagiotis G. Kougias, Davide De Francisci, Giorgio Valle, and Irini 

Angelidaki. 2016. “Metagenomic Analysis and Functional Characterization of the Biogas 

Microbiome Using High Throughput Shotgun Sequencing and a Novel Binning Strategy.” 

Biotechnology for Biofuels 9 (1): 26. https://doi.org/10.1186/s13068-016-0441-1. 

Carson, Mike, David H Johnson, Heather Mcdonald, Christie Brouillette, and Lawrence J Delucas. 

2007. “Biological Crystallography His-Tag Impact on Structure.” Research Papers Acta Cryst 

63: 295–301. https://doi.org/10.1107/S0907444906052024. 

Casaburi, Giorgio, Rebbeca M. Duar, Daniel P. Vance, Ryan Mitchell, Lindsey Contreras, Steven A. 

Frese, Jennifer T. Smilowitz, and Mark A. Underwood. 2019. “Early-Life Gut Microbiome 

Modulation Reduces the Abundance of Antibiotic-Resistant Bacteria.” Antimicrobial Resistance 

and Infection Control 8 (1): 131. https://doi.org/10.1186/s13756-019-0583-6. 

Casals-Pascual, Climent, Andrea Vergara, and Jordi Vila. 2018. “Intestinal Microbiota and Antibiotic 

Resistance: Perspectives and Solutions.” Human Microbiome Journal. Elsevier Ltd. 

https://doi.org/10.1016/j.humic.2018.05.002. 

Cassou, Emilie, Steven M. Jaffee, and Jiang Ru. 2018. The Challenge of Agricultural Pollution: 

Evidence from China, Vietnam, and the Philippines. The Challenge of Agricultural Pollution: 

Evidence from China, Vietnam, and the Philippines. Washington, DC: World Bank. 

https://doi.org/10.1596/978-1-4648-1201-9. 

Charles, Hubert, Séverine Balmand, Araceli Lamelas, Ludovic Cottret, Vicente Pérez-Brocal, Béatrice 

Burdin, Amparo Latorre, et al. 2011. “A Genomic Reappraisal of Symbiotic Function in the 



Bibliography 

173 

S 

Aphid/Buchnera Symbiosis: Reduced Transporter Sets and Variable Membrane Organisations.” 

PLoS ONE. https://doi.org/10.1371/journal.pone.0029096. 

Chen, Hongzhang. 2014a. Biotechnology of Lignocellulose: Theory and Practice. Biotechnology of 

Lignocellulose: Theory and Practice. https://doi.org/10.1007/978-94-007-6898-7. 

———. 2014b. “Chemical Composition and Structure of Natural Lignocellulose.” In Biotechnology of 

Lignocellulose, 25–71. Springer Netherlands. https://doi.org/10.1007/978-94-007-6898-7_2. 

Chen, Xing, Christopher Karl Yost, João Marcelo Pereira Alves, Gehong Wei, Xiangchen Li, Wenjun 

Tong, Lina Wang, Siddiq Ur Rahman, and Shiheng Tao. 2018. “A Novel Strategy for Detecting 

Recent Horizontal Gene Transfer and Its Application to Rhizobium Strains.” Frontiers in 

Microbiology | Www.Frontiersin.Org 1: 973. https://doi.org/10.3389/fmicb.2018.00973. 

Cheng, Xin Yue, Xue Liang Tian, Yun Sheng Wang, Ren Miao Lin, Zhen Chuan Mao, Nansheng Chen, 

and Bing Yan Xie. 2013. “Metagenomic Analysis of the Pinewood Nematode Microbiome 

Reveals a Symbiotic Relationship Critical for Xenobiotics Degradation.” Scientific Reports 3. 

https://doi.org/10.1038/srep01869. 

Chettri, Dixita, Ashwani Kumar Verma, and Anil Kumar Verma. 2020. “Innovations in CAZyme Gene 

Diversity and Its Modification for Biorefinery Applications.” Biotechnology Reports 28. 

https://doi.org/10.1016/j.btre.2020.e00525. 

Chikindas, Michael L., Richard Weeks, Djamel Drider, Vladimir A. Chistyakov, and Leon MT Dicks. 

2018. “Functions and Emerging Applications of Bacteriocins.” Current Opinion in 

Biotechnology 49 (February): 23–28. https://doi.org/10.1016/j.copbio.2017.07.011. 

Chitra Devi, V., S. Mothil, R. Sathish Raam, and K. Senthilkumar. 2020. “Thermochemical Conversion 

and Valorization of Woody Lignocellulosic Biomass in Hydrothermal Media.” In , 45–63. 

Springer, Singapore. https://doi.org/10.1007/978-981-15-0410-5_4. 

Choi, Il-Dong, Hwa-Young Kim, and Yong-Jin Choi. 2005. “Gene Cloning and Characterization of α-

Glucuronidase of Bacillus Stearothermophilus No. 236.” Bioscience, Biotechnology, and 

Biochemistry 64 (12): 2530–37. https://doi.org/10.1271/bbb.64.2530. 

Choi, In Seong, Jae Hoon Kim, Seung Gon Wi, Kyoung Hyoun Kim, and Hyeun Jong Bae. 2013. 

“Bioethanol Production from Mandarin (Citrus Unshiu) Peel Waste Using Popping 

Pretreatment.” Applied Energy 102 (February): 204–10. 

https://doi.org/10.1016/j.apenergy.2012.03.066. 

Choi, J. H., and S. Y. Lee. 2004. “Secretory and Extracellular Production of Recombinant Proteins 

Using Escherichia Coli.” Applied Microbiology and Biotechnology 64 (5): 625–35. 



Bibliography 

174 

https://doi.org/10.1007/s00253-004-1559-9. 

Connie, Rye, Robert Wise, Vladimir Jurukovski, Jean DeSaix, Jung Choi, and Yael Avissar. 2016. 

“Biology.” OpenStax. 2016. 

https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_

Biology_(Boundless)/34%3A_Animal_Nutrition_and_the_Digestive_System/34.1%3A_Digest

ive_Systems/34.1A%3A_Digestive_Systems. 

Corbett, David, and Ian S. Roberts. 2008. “Chapter 1 Capsular Polysaccharides in Escherichia Coli.” 

Advances in Applied Microbiology 65 (08): 1–26. https://doi.org/10.1016/S0065-

2164(08)00601-1. 

Cousin, Fabien J., Denis D.G. Mater, Benoît Foligné, and Gwénaël Jan. 2011. “Dairy Propionibacteria 

as Human Probiotics: A Review of Recent Evidence.” Dairy Science and Technology. 

https://doi.org/10.1051/dst/2010032. 

Cuskin, Fiona, Arnaud Baslé, Simon Ladevèze, Alison M. Day, Harry J. Gilbert, Gideon J. Davies, 

Gabrielle Potocki-Véronèse, and Elisabeth C. Lowe. 2015. “The GH130 Family of Mannoside 

Phosphorylases Contains Glycoside Hydrolases That Target β-1,2-Mannosidic Linkages in 

Candida Mannan.” Journal of Biological Chemistry 290 (41): 25023–33. 

https://doi.org/10.1074/jbc.M115.681460. 

Dai, Xin, Yaxin Zhu, Yingfeng Luo, Lei Song, Di Liu, Li Liu, Furong Chen, et al. 2012. “Metagenomic 

Insights into the Fibrolytic Microbiome in Yak Rumen.” PLoS ONE 7 (7). 

https://doi.org/10.1371/journal.pone.0040430. 

Dalbey, R. E., P. Wang, and J. M. van Dijl. 2012. “Membrane Proteases in the Bacterial Protein 

Secretion and Quality Control Pathway.” Microbiology and Molecular Biology Reviews 76 (2): 

311–30. https://doi.org/10.1128/mmbr.05019-11. 

Danchin, Etienne G.J., Marie Noëlle Rosso, Paulo Vieira, Janice De Almeida-Engler, Pedro M. 

Coutinho, Bernard Henrissat, and Pierre Abad. 2010. “Multiple Lateral Gene Transfers and 

Duplications Have Promoted Plant Parasitism Ability in Nematodes.” Proceedings of the 

National Academy of Sciences of the United States of America 107 (41): 17651–56. 

https://doi.org/10.1073/pnas.1008486107. 

Dao, Anh T.N., Sander J. Loenen, Kees Swart, Ha T.C. Dang, Abraham Brouwer, and Tjalf E. de Boer. 

2021. “Characterization of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Biodegradation by 

Extracellular Lignin-Modifying Enzymes from Ligninolytic Fungus.” Chemosphere 263 

(January): 128280. https://doi.org/10.1016/j.chemosphere.2020.128280. 



Bibliography 

175 

S 

Das, Saprativ P, Rajeev Ravindran, Shadab Ahmed, Debasish Das, Dinesh Goyal, Carlos M G A Fontes, 

Arun Goyal, D Goyal, and C M G A Fontes. 2012. “Bioethanol Production Involving 

Recombinant C. Thermocellum Hydrolytic Hemicellulase and Fermentative Microbes.” Appl 

Biochem Biotechnol 167: 1475–88. https://doi.org/10.1007/s12010-012-9618-7. 

Denman, Stuart E., Gonzalo Martinez Fernandez, Takumi Shinkai, Makoto Mitsumori, and Christopher 

S. McSweeney. 2015. “Metagenomic Analysis of the Rumen Microbial Community Following 

Inhibition of Methane Formation by a Halogenated Methane Analog.” Frontiers in Microbiology 

6 (OCT): 1087. https://doi.org/10.3389/fmicb.2015.01087. 

Dijk, Marlous van, Ignis Trollmann, Margarete Alice Fontes Saraiva, Rogelio Lopes Brandão, Lisbeth 

Olsson, and Yvonne Nygård. 2020. “Small Scale Screening of Yeast Strains Enables High-

Throughput Evaluation of Performance in Lignocellulose Hydrolysates.” Bioresource 

Technology Reports 11 (September): 100532. https://doi.org/10.1016/j.biteb.2020.100532. 

Dik, David A., Daniel R. Marous, Jed F. Fisher, and Shahriar Mobashery. 2017. “Lytic 

Transglycosylases: Concinnity in Concision of the Bacterial Cell Wall.” Critical Reviews in 

Biochemistry and Molecular Biology. Taylor and Francis Ltd. 

https://doi.org/10.1080/10409238.2017.1337705. 

Dimarogona, M., and E. Topakas. 2016. Regulation and Heterologous Expression of Lignocellulosic 

Enzymes in Aspergillus. New and Future Developments in Microbial Biotechnology and 

Bioengineering: Aspergillus System Properties and Applications. Elsevier B.V. 

https://doi.org/10.1016/B978-0-444-63505-1.00012-9. 

Ding, Shi You, Qi Xu, Michael Crowley, Yining Zeng, Mark Nimlos, Raphael Lamed, Edward A. 

Bayer, and Michael E. Himmel. 2008. “A Biophysical Perspective on the Cellulosome: New 

Opportunities for Biomass Conversion.” Current Opinion in Biotechnology 19 (3): 218–27. 

https://doi.org/10.1016/j.copbio.2008.04.008. 

Dittmer, Jessica, Jérôme Lesobre, Bouziane Moumen, and Didier Bouchon. 2016. “Host Origin and 

Tissue Microhabitat Shaping the Microbiota of the Terrestrial Isopod Armadillidium Vulgare.” 

FEMS Microbiology Ecology 92 (5). https://doi.org/10.1093/femsec/fiw063. 

Do, Thi Huyen, Trong Khoa Dao, Khanh Hoang Viet Nguyen, Ngoc Giang Le, Thi Mai Phuong 

Nguyen, Tung Lam Le, Thu Nguyet Phung, Nico M. van Straalen, Dick Roelofs, and Nam Hai 

Truong. 2018. “Metagenomic Analysis of Bacterial Community Structure and Diversity of 

Lignocellulolytic Bacteria in Vietnamese Native Goat Rumen.” Asian-Australasian Journal of 

Animal Sciences 31 (5): 738–47. https://doi.org/10.5713/ajas.17.0174. 

Do, Thi Huyen, Ngoc Giang Le, Trong Khoa Dao, Thi Mai Phuong Nguyen, Tung Lam Le, Han Ly 



Bibliography 

176 

Luu, Khanh Hoang Viet Nguyen, et al. 2018. “Metagenomic Insights into Lignocellulose-

Degrading Genes through Illumina Based de Novo Sequencing of the Microbiome in Vietnamese 

Native Goats’ Rumen.” Journal of General and Applied Microbiology 64 (3): 108–16. 

https://doi.org/10.2323/jgam.2017.08.004. 

Do, Thi Huyen, Thi Thao Nguyen, Thanh Ngoc Nguyen, Quynh Giang Le, Cuong Nguyen, Keitarou 

Kimura, and Nam Hai Truong. 2014. “Mining Biomass-Degrading Genes through Illumina-

Based de Novo Sequencing and Metagenomic Analysis of Free-Living Bacteria in the Gut of the 

Lower Termite Coptotermes Gestroi Harvested in Vietnam.” Journal of Bioscience and 

Bioengineering 118 (6): 665–71. https://doi.org/10.1016/j.jbiosc.2014.05.010. 

Dodd, Dylan, and Isacc K. O. Cann. 2009. “Enzymatic Deconstruction of Xylan for Biofuel 

Production.” GCB Bioenergy 1 (1): 2–17. https://doi.org/10.1111/j.1757-1707.2009.01004.x. 

Dodd, Dylan, Young Hwan Moon, Kankshita Swaminathan, Roderick I. Mackie, and Isaac K.O. Cann. 

2010. “Transcriptomic Analyses of Xylan Degradation by Prevotella Bryantii and Insights into 

Energy Acquisition by Xylanolytic Bacteroidetes.” Journal of Biological Chemistry 285 (39): 

30261–73. https://doi.org/10.1074/jbc.M110.141788. 

Donia, Mohamed S., Jacques Ravel, and Eric W. Schmidt. 2008. “A Global Assembly Line for 

Cyanobactins.” Nature Chemical Biology 4 (6): 341–43. https://doi.org/10.1038/nchembio.84. 

Dou, Tong Yi, Hong Wei Luan, Guang Bo Ge, Ming Ming Dong, Han Fa Zou, Yu Qi He, Pan Cui, et 

al. 2015. “Functional and Structural Properties of a Novel Cellulosome-like Multienzyme 

Complex: Efficient Glycoside Hydrolysis of Water-Insoluble 7-Xylosyl-10-Deacetylpaclitaxel.” 

Scientific Reports 5 (September). https://doi.org/10.1038/srep13768. 

Douglas, Angela E. 2016. “How Multi-Partner Endosymbioses Function.” Nature Reviews 

Microbiology 14 (12): 731–43. https://doi.org/10.1038/nrmicro.2016.151. 

———. 2019. “Simple Animal Models for Microbiome Research.” Nature Reviews Microbiology. 

Nature Publishing Group. https://doi.org/10.1038/s41579-019-0242-1. 

Dromph, Karsten M., and Susanne Vestergaard. 2002. “Pathogenicity and Attractiveness of 

Entomopathogenic Hyphomycete Fungi to Collembolans.” Applied Soil Ecology 21 (3): 197–

210. https://doi.org/10.1016/S0929-1393(02)00092-6. 

Duhamel, Marie, Roel Pel, Astra Ooms, Heike Bucking, Jan Jansa, Jacintha Ellers, Nico M. Van 

Straalen, Tjalf Wouda, Philippe Vandenkoornhuyse, and E. Toby Kiers. 2013. “Do Fungivores 

Trigger the Transfer of Protective Metabolites from Host Plants to Arbuscular Mycorrhizal 

Hyphae?” Ecology 94 (9): 2019–29. https://doi.org/10.1890/12-1943.1. 



Bibliography 

177 

S 

Eddy, Sean R. 1998. “Profile Hidden Markov Models.” Bioinformatics 14 (9): 755–63. 

https://doi.org/10.1093/bioinformatics/14.9.755. 

Engel, Philipp, Vincent G. Martinson, and Nancy A. Moran. 2012. “Functional Diversity within the 

Simple Gut Microbiota of the Honey Bee.” Proceedings of the National Academy of Sciences of 

the United States of America 109 (27): 11002–7. https://doi.org/10.1073/pnas.1202970109. 

Engel, Philipp, and Nancy A. Moran. 2013. “The Gut Microbiota of Insects - Diversity in Structure and 

Function.” FEMS Microbiology Reviews 37 (5): 699–735. https://doi.org/10.1111/1574-

6976.12025. 

Engelhardt, Kerstin, Kristin F. Degnes, and Sergey B. Zotchev. 2010. “Isolation and Characterization 

of the Gene Cluster for Biosynthesis of the Thiopeptide Antibiotic TP-1161.” Applied and 

Environmental Microbiology 76 (21): 7093–7101. https://doi.org/10.1128/AEM.01442-10. 

Esposti, Mauro Degli, and Esperanza Martinez Romero. 2017. “The Functional Microbiome of 

Arthropods.” PLoS ONE 12 (5). https://doi.org/10.1371/journal.pone.0176573. 

Eyun, Seong Il, Haichuan Wang, Yannick Pauchet, Richard H. Ffrench-Constant, Andrew K. Benson, 

Arnubio Valencia-Jiménez, Etsuko N. Moriyama, and Blair D. Siegfried. 2014. “Molecular 

Evolution of Glycoside Hydrolase Genes in the Western Corn Rootworm (Diabrotica Virgifera 

Virgifera).” PLoS ONE 9 (4). https://doi.org/10.1371/journal.pone.0094052. 

Faddeeva-Vakhrusheva, Anna, Martijn F.L. Derks, Seyed Yahya Anvar, Valeria Agamennone, Wouter 

Suring, Sandra Smit, Nico M. van Straalen, and Dick Roelofs. 2016. “Gene Family Evolution 

Reflects Adaptation to Soil Environmental Stressors in the Genome of the Collembolan 

Orchesella Cincta.” Genome Biology and Evolution 8 (7): 2106–17. 

https://doi.org/10.1093/gbe/evw134. 

Faddeeva-Vakhrusheva, Anna, Ken Kraaijeveld, Martijn F.L. Derks, Seyed Yahya Anvar, Valeria 

Agamennone, Wouter Suring, Andries A. Kampfraath, et al. 2017. “Coping with Living in the 

Soil: The Genome of the Parthenogenetic Springtail Folsomia Candida.” BMC Genomics 18 (1). 

https://doi.org/10.1186/s12864-017-3852-x. 

Fehér, Csaba. 2018. “Novel Approaches for Biotechnological Production and Application of L-

Arabinose.” Journal of Carbohydrate Chemistry. 

https://doi.org/10.1080/07328303.2018.1491049. 

Fernando, Sandun, Sushil Adhikari, Chauda Chandrapal, and Naveen Murali. 2006. “Biorefineries: 

Current Status, Challenges, and Future Direction.” Energy and Fuels.  American Chemical 

Society . https://doi.org/10.1021/ef060097w. 



Bibliography 

178 

Fierer, Noah. 2017. “Embracing the Unknown: Disentangling the Complexities of the Soil 

Microbiome.” Nature Reviews Microbiology. Nature Publishing Group. 

https://doi.org/10.1038/nrmicro.2017.87. 

Fitzpatrick, David, and Fiona Walsh. 2016. “Antibiotic Resistance Genes across a Wide Variety of 

Metagenomes.” FEMS Microbiology Ecology 92 (2): 1–8. 

https://doi.org/10.1093/femsec/fiv168. 

Flint, Harry J, and Edward A Bayer. 2008. “Plant Cell Wall Breakdown by Anaerobic Microorganisms 

from the Mammalian Digestive Tract.” In Annals of the New York Academy of Sciences, 

1125:280–88. https://doi.org/10.1196/annals.1419.022. 

Flórez, Laura V., Kirstin Scherlach, Paul Gaube, Claudia Ross, Elisabeth Sitte, Cornelia Hermes, Andre 

Rodrigues, Christian Hertweck, and Martin Kaltenpoth. 2017. “Antibiotic-Producing Symbionts 

Dynamically Transition between Plant Pathogenicity and Insect-Defensive Mutualism.” Nature 

Communications 8. https://doi.org/10.1038/ncomms15172. 

Flot, Jean François, Boris Hespeels, Xiang Li, Benjamin Noel, Irina Arkhipova, Etienne G.J. Danchin, 

Andreas Hejnol, et al. 2013. “Genomic Evidence for Ameiotic Evolution in the Bdelloid Rotifer 

Adineta Vaga.” Nature 500 (7463): 453–57. https://doi.org/10.1038/nature12326. 

Foreman, Pamela K., Doug Brown, Lydia Dankmeyer, Ralph Dean, Stephen Diener, Nigel S. Dunn-

Coleman, Frits Goedegebuur, et al. 2003. “Transcriptional Regulation of Biomass-Degrading 

Enzymes in the Filamentous Fungus Trichoderma Reesei.” Journal of Biological Chemistry 278 

(34): 31988–97. https://doi.org/10.1074/jbc.M304750200. 

Fountain, Michelle T., and Steve P. Hopkin. 2005. “Folsomia Candida (Collembola): A ‘Standard’ Soil 

Arthropod.” Annual Review of Entomology 50 (1): 201–22. 

https://doi.org/10.1146/annurev.ento.50.071803.130331. 

Freudl, Roland. 2018. “Signal Peptides for Recombinant Protein Secretion in Bacterial Expression 

Systems.” Microbial Cell Factories 17 (1): 1–10. https://doi.org/10.1186/s12934-018-0901-3. 

Fu, Limin, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. 2012. “CD-HIT: Accelerated for 

Clustering the next-Generation Sequencing Data.” Bioinformatics 28 (23): 3150–52. 

https://doi.org/10.1093/bioinformatics/bts565. 

Fujimoto, Zui, Hitomi Ichinose, Tomoko Maehara, Mariko Honda, Motomitsu Kitaoka, and Satoshi 

Kaneko. 2010. “Crystal Structure of an Exo-1 , 5- α - L -Arabinofuranosidase from Streptomyces 

Avermitilis Provides Insights into the Mechanism of Substrate Discrimination between Exo- and 

Endo-Type Enzymes in Glycoside Hydrolase Family 43 *.” The Journal of Biological Chemistry 



Bibliography 

179 

S 

285 (44): 34134–43. https://doi.org/10.1074/jbc.M110.164251. 

Furlong, Sarah E, and Sarah Ellen Furlong. 2013. “Structure-Function Analysis of UDP-Sugar : 

Polyisoprenyl Phosphate Sugar-1-Phosphate Transferases,” no. September. 

Gaitán-Hernández, Rigoberto, Norberto Cortés, and Gerardo Mata. 2014. “Improvement of Yield of 

the Edible and Medicinal Mushroom Lentinula Edodes on Wheat Straw by Use of Supplemented 

Spawn.” www.sbmicrobiologia.org.br. 

Gálvez, Antonio, Hikmate Abriouel, Rosario Lucas López, and Nabil Ben Omar. 2007. “Bacteriocin-

Based Strategies for Food Biopreservation.” International Journal of Food Microbiology 120 

(1–2): 51–70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001. 

Gao, Dahai, Carolyn Haarmeyer, Venkatesh Balan, Timothy A. Whitehead, Bruce E. Dale, and Shishir 

P.S. Chundawat. 2014. “Lignin Triggers Irreversible Cellulase Loss during Pretreated 

Lignocellulosic Biomass Saccharification.” Biotechnology for Biofuels 7 (1): 175. 

https://doi.org/10.1186/s13068-014-0175-x. 

Garmendia, L., A. Hernandez, M. B. Sanchez, and J. L. Martinez. 2012. “Metagenomics and 

Antibiotics.” Clinical Microbiology and Infection 18 (SUPPL. 4): 27–31. 

https://doi.org/10.1111/j.1469-0691.2012.03868.x. 

Garron, Marie Line, and Bernard Henrissat. 2019. “The Continuing Expansion of CAZymes and Their 

Families.” Current Opinion in Chemical Biology. Elsevier Ltd. 

https://doi.org/10.1016/j.cbpa.2019.08.004. 

Geng, Alei, Yanbing Cheng, Yongli Wang, Daochen Zhu, Yilin Le, Jian Wu, Rongrong Xie, Joshua S. 

Yuan, and Jianzhong Sun. 2018. “Transcriptome Analysis of the Digestive System of a Wood-

Feeding Termite (Coptotermes Formosanus) Revealed a Unique Mechanism for Effective 

Biomass Degradation.” Biotechnology for Biofuels 11 (1): 24. https://doi.org/10.1186/s13068-

018-1015-1. 

Geraylou, Zahra, Caroline Souffreau, Eugene Rurangwa, Gregory E. Maes, Katina I. Spanier, 

Christophe M. Courtin, Jan A. Delcour, Johan Buyse, and Frans Ollevier. 2013. “Prebiotic 

Effects of Arabinoxylan Oligosaccharides on Juvenile Siberian Sturgeon (Acipenser Baerii) with 

Emphasis on the Modulation of the Gut Microbiota Using 454 Pyrosequencing.” FEMS 

Microbiology Ecology 86 (2): 357–71. https://doi.org/10.1111/1574-6941.12169. 

Gírio, F M, C Fonseca, F Carvalheiro, L C Duarte, S Marques, and R Bogel-Łukasik. 2010. 

“Hemicelluloses for Fuel Ethanol: A Review.” Bioresource Technology. 

https://doi.org/10.1016/j.biortech.2010.01.088. 



Bibliography 

180 

Gladyshev, Eugene A., Matthew Meselson, and Irina R. Arkhipova. 2008. “Massive Horizontal Gene 

Transfer in Bdelloid Rotifers.” Science 320 (5880): 1210–13. 

https://doi.org/10.1126/science.1156407. 

Golan, Gali, Dalia Shallom, Anna Teplitsky, Galia Zaide, Smadar Shulami, Timor Baasov, Vivian 

Stojanoff, Andy Thompson, Yuval Shoham, and Gil Shoham. 2004. “Crystal Structures of 

Geobacillus Stearothermophilus α-Glucuronidase Complexed with Its Substrate and Products.” 

Journal of Biological Chemistry 279 (4): 3014–24. https://doi.org/10.1074/jbc.M310098200. 

Golomb, Benjamin L., and Maria L. Marco. 2015. “Lactococcus Lactis Metabolism and Gene 

Expression during Growth on Plant Tissues.” Journal of Bacteriology 197 (2): 371–81. 

https://doi.org/10.1128/jb.02193-14. 

Gontang, Erin A., Frank O. Aylward, Camila Carlos, Tijana Glavina Del Rio, Mansi Chovatia, Alison 

Fern, Chien Chi Lo, et al. 2017. “Major Changes in Microbial Diversity and Community 

Composition across Gut Sections of a Juvenile Panchlora Cockroach.” PLoS ONE 12 (5). 

https://doi.org/10.1371/journal.pone.0177189. 

Götz, Stefan, Juan Miguel García-Gómez, Javier Terol, Tim D. Williams, Shivashankar H. Nagaraj, 

María José Nueda, Montserrat Robles, Manuel Talón, Joaquín Dopazo, and Ana Conesa. 2008. 

“High-Throughput Functional Annotation and Data Mining with the Blast2GO Suite.” Nucleic 

Acids Research 36 (10): 3420–35. https://doi.org/10.1093/nar/gkn176. 

Govic, Yohann Le, Nicolas Papon, Solène Le Gal, Jean Philippe Bouchara, and Patrick Vandeputte. 

2019. “Non-Ribosomal Peptide Synthetase Gene Clusters in the Human Pathogenic Fungus 

Scedosporium Apiospermum.” Frontiers in Microbiology 10. 

https://doi.org/10.3389/fmicb.2019.02062. 

Grbić, Miodrag, Thomas Van Leeuwen, Richard M. Clark, Stephane Rombauts, Pierre Rouzé, 

Vojislava Grbić, Edward J. Osborne, et al. 2011. “The Genome of Tetranychus Urticae Reveals 

Herbivorous Pest Adaptations.” Nature 479 (7374): 487–92. 

https://doi.org/10.1038/nature10640. 

Grieco, Maria B., Fabyano A.C. Lopes, Louisi S. Oliveira, Diogo A. Tschoeke, Claudia C. Popov, 

Cristiane C. Thompson, Luna C. Gonçalves, et al. 2019. “Metagenomic Analysis of the Whole 

Gut Microbiota in Brazilian Termitidae Termites Cornitermes Cumulans, Cyrilliotermes 

Strictinasus, Syntermes Dirus, Nasutitermes Jaraguae, Nasutitermes Aquilinus, Grigiotermes 

Bequaerti, and Orthognathotermes Mirim.” Current Microbiology 76 (6): 687–97. 

https://doi.org/10.1007/s00284-019-01662-3. 

Gu, Yilin, Yi Nan Ma, Jing Wang, Zhenyuan Xia, and Hai Lei Wei. 2020. “Genomic Insights into a 



Bibliography 

181 

S 

Plant Growth-Promoting Pseudomonas Koreensis Strain with Cyclic Lipopeptide-Mediated 

Antifungal Activity.” MicrobiologyOpen, June. https://doi.org/10.1002/mbo3.1092. 

Guillén, Daniel, Sergio Sánchez, and Romina Rodríguez-Sanoja. 2010. “Carbohydrate-Binding 

Domains: Multiplicity of Biological Roles.” Applied Microbiology and Biotechnology 85 (5): 

1241–49. https://doi.org/10.1007/s00253-009-2331-y. 

Güllert, Simon, Martin A. Fischer, Dmitrij Turaev, Britta Noebauer, Nele Ilmberger, Bernd Wemheuer, 

Malik Alawi, et al. 2016. “Deep Metagenome and Metatranscriptome Analyses of Microbial 

Communities Affiliated with an Industrial Biogas Fermenter, a Cow Rumen, and Elephant Feces 

Reveal Major Differences in Carbohydrate Hydrolysis Strategies.” Biotechnology for Biofuels 9 

(1): 121. https://doi.org/10.1186/s13068-016-0534-x. 

Gurevich, Alexey, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. 2013. “QUAST: Quality 

Assessment Tool for Genome Assemblies.” Bioinformatics 29 (8): 1072–75. 

https://doi.org/10.1093/bioinformatics/btt086. 

Guzmán, Esther A., Kelly Maers, Jill Roberts, Hilaire V. Kemami-Wangun, Dedra Harmody, and Amy 

E. Wright. 2015. “The Marine Natural Product Microsclerodermin A Is a Novel Inhibitor of the 

Nuclear Factor Kappa B and Induces Apoptosis in Pancreatic Cancer Cells.” Investigational New 

Drugs 33 (1): 86–94. https://doi.org/10.1007/s10637-014-0185-3. 

Han, Xufeng, Yuxin Yang, Hailong Yan, Xiaolong Wang, Lei Qu, and Yulin Chen. 2015. “Rumen 

Bacterial Diversity of 80 to 110-Day- Old Goats Using 16s RRNA Sequencing.” PLoS ONE 10 

(2): e0117811. https://doi.org/10.1371/journal.pone.0117811. 

Handelsman, Jo. 2004. “Metagenomics: Application of Genomics to Uncultured Microorganisms.” 

Microbiology and Molecular Biology Reviews 68 (4): 669–85. 

https://doi.org/10.1128/mmbr.68.4.669-685.2004. 

Hanna, Andrea, Michael Berg, Valerie Stout, and Anneta Razatos. 2003. “Role of Capsular Colanic 

Acid in Adhesion of Uropathogenic Escherichia Coli.” Applied and Environmental Microbiology 

69 (8): 4474–81. https://doi.org/10.1128/AEM.69.8.4474-4481.2003. 

Haro-Moreno, Jose M., Mario López-Pérez, and Francisco Rodríguez-Valera. 2020. “Long Read 

Metagenomics, the next Step?” BioRxiv. bioRxiv. https://doi.org/10.1101/2020.11.11.378109. 

He, Shaomei, Natalia Ivanova, Edward Kirton, Martin Allgaier, Claudia Bergin, Rudolf H. Scheffrahn, 

Nikos C. Kyrpides, Falk Warnecke, Susannah G. Tringe, and Philip Hugenholtz. 2013. 

“Comparative Metagenomic and Metatranscriptomic Analysis of Hindgut Paunch Microbiota in 

Wood- and Dung-Feeding Higher Termites.” PLoS ONE. 



Bibliography 

182 

https://doi.org/10.1371/journal.pone.0061126. 

Helbert, William, Laurent Poulet, Sophie Drouillard, Sophie Mathieu, Mélanie Loiodice, Marie 

Couturier, Vincent Lombard, et al. 2019. “Discovery of Novel Carbohydrate-Active Enzymes 

through the Rational Exploration of the Protein Sequences Space.” Proceedings of the National 

Academy of Sciences of the United States of America 116 (13): 6063–68. 

https://doi.org/10.1073/pnas.1815791116. 

Henderson, Gemma, Faith Cox, Sandra Kittelmann, Vahideh Heidarian Miri, Michael Zethof, 

Samantha J. Noel, Garry C. Waghorn, and Peter H. Janssen. 2013. “Effect of DNA Extraction 

Methods and Sampling Techniques on the Apparent Structure of Cow and Sheep Rumen 

Microbial Communities.” Edited by Stefan Bertilsson. PloS One 8 (9): e74787. 

https://doi.org/10.1371/journal.pone.0074787. 

Hess, Matthias, Alexander Sczyrba, Rob Egan, Tae Wan Kim, Harshal Chokhawala, Gary Schroth, 

Shujun Luo, et al. 2011. “Metagenomic Discovery of Biomass-Degrading Genes and Genomes 

from Cow Rumen.” Science 331 (6016): 463–67. https://doi.org/10.1126/science.1200387. 

Heyer, Robert, Kay Schallert, Roman Zoun, Beatrice Becher, Gunter Saake, and Dirk Benndorf. 2017. 

“Challenges and Perspectives of Metaproteomic Data Analysis.” Journal of Biotechnology. 

Elsevier B.V. https://doi.org/10.1016/j.jbiotec.2017.06.1201. 

Hirano, Katsuaki, Satoshi Nihei, Hiroki Hasegawa, Mitsuru Haruki, and Nobutaka Hirano. 2015. 

“Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation 

of Crystalline Cellulose, as Revealed by in Vitro Reconstitution of the Clostridium 

Thermocellum Cellulosome.” Applied and Environmental Microbiology 81 (14): 4756–66. 

https://doi.org/10.1128/AEM.00772-15. 

Hoffman, Stacey B. 2001. “Mechanisms of Antibiotic Resistance.” Compendium on Continuing 

Education for the Practicing Veterinarian 23 (5): 464–72. 

https://doi.org/10.1128/microbiolspec.vmbf-0016-2015. 

Holden, Victoria I., and Michael A. Bachman. 2015. “Diverging Roles of Bacterial Siderophores during 

Infection.” Metallomics 7 (6): 986–95. https://doi.org/10.1039/c4mt00333k. 

Hong, Yaoqin, Michael A. Liu, and Peter R. Reeves. 2018. “Progress in Our Understanding of Wzx 

Flippase for Translocation of Bacterial Membrane Lipid-Linked Oligosaccharide.” Journal of 

Bacteriology 200 (1): 1–14. https://doi.org/10.1128/JB.00154-17. 

Hongoh, Yuichi. 2011. “Toward the Functional Analysis of Uncultivable, Symbiotic Microorganisms 

in the Termite Gut.” Cellular and Molecular Life Sciences 68 (8): 1311–25. 



Bibliography 

183 

S 

https://doi.org/10.1007/s00018-011-0648-z. 

Horn, Svein Jarle, Gustav Vaaje-Kolstad, Bjørge Westereng, and Vincent G.H. Eijsink. 2012. “Novel 

Enzymes for the Degradation of Cellulose.” Biotechnology for Biofuels. BioMed Central. 

https://doi.org/10.1186/1754-6834-5-45. 

Hu, Jinguang, Valdeir Arantes, Amadeus Pribowo, and Jack N. Saddler. 2013. “The Synergistic Action 

of Accessory Enzymes Enhances the Hydrolytic Potential of a ‘Cellulase Mixture’ but Is Highly 

Substrate Specific.” Biotechnology for Biofuels 6 (1): 1–12. https://doi.org/10.1186/1754-6834-

6-112. 

Huang, Jinling. 2013. “Horizontal Gene Transfer in Eukaryotes: The Weak-Link Model.” BioEssays 

35 (10): 868–75. https://doi.org/10.1002/bies.201300007. 

Huang, Xing Feng, Matthew G. Bakker, Timothy M. Judd, Kenneth F. Reardon, and Jorge M. Vivanco. 

2013. “Variations in Diversity and Richness of Gut Bacterial Communities of Termites 

(Reticulitermes Flavipes) Fed with Grassy and Woody Plant Substrates.” Microbial Ecology 65 

(3): 531–36. https://doi.org/10.1007/s00248-013-0219-y. 

Huang, Yao Ting, Wei Yao Chuang, Bing Ching Ho, Zong Yen Wu, Rita C. Kuo, Mengwei Ko, and 

Po Yu Liu. 2018. “Comparative Genomics Reveals Diverse Capsular Polysaccharide Synthesis 

Gene Clusters in Emerging Raoultella Planticola.” Memorias Do Instituto Oswaldo Cruz 113 

(10): e180192. https://doi.org/10.1590/0074-02760180192. 

Hultberg, M., T. Alsberg, S. Khalil, and B. Alsanius. 2010. “Suppression of Disease in Tomato Infected 

by Pythium Ultimum with a Biosurfactant Produced by Pseudomonas Koreensis.” BioControl 

55 (3): 435–44. https://doi.org/10.1007/s10526-009-9261-6. 

Husnik, Filip, and John P. McCutcheon. 2018. “Functional Horizontal Gene Transfer from Bacteria to 

Eukaryotes.” Nature Reviews Microbiology 16 (2): 67–79. 

https://doi.org/10.1038/nrmicro.2017.137. 

Huson, Daniel H., Alexander F. Auch, Ji Qi, and Stephan C. Schuster. 2007. “MEGAN Analysis of 

Metagenomic Data.” Genome Research 17 (3): 377–86. https://doi.org/10.1101/gr.5969107. 

Husseneder, Claudia. 2010. “Comparison of the Bacterial Symbiont Composition of the Formosan 

Subterranean Termite from Its Native and Introduced Range.” The Open Microbiology Journal. 

Vol. 4. https://doi.org/10.2174/1874285801004010053. 

Hyatt, Doug, Gwo Liang Chen, Philip F. LoCascio, Miriam L. Land, Frank W. Larimer, and Loren J. 

Hauser. 2010. “Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site 

Identification.” BMC Bioinformatics 11. https://doi.org/10.1186/1471-2105-11-119. 



Bibliography 

184 

Ichinose, Hitomi, Makoto Yoshida, Zui Fujimoto, and Satoshi Kaneko. 2008. “Characterization of a 

Modular Enzyme of Exo-1,5-α-L- Arabinofuranosidase and Arabinan Binding Module from 

Streptomyces Avermitilis NBRC14893.” Applied Microbiology and Biotechnology 80 (3): 399–

408. https://doi.org/10.1007/s00253-008-1551-x. 

Iqbal, Hafiz Muhammad Nasir, Godfrey Kyazze, and Tajalli Keshavarz. 2013. “Advances in the 

Valorization of Lignocellulosic Materials by Biotechnology: An Overview.” BioResources 8 (2): 

3157–76. https://doi.org/10.15376/biores.8.2.3157-3176. 

Irshad, Muhammad, Zahid Anwar, Hamama Islam But, Amber Afroz, Nadia Ikram, and Umer Rashid. 

2013. “The Industrial Applicability of Purified Cellulase Complex Indigenously Produced by 

Trichoderma Viride through Solid-State Bio-Processing of Agro-Industrial and Municipal Paper 

Wastes.” BioResources 8 (1): 145–57. https://doi.org/10.15376/biores.8.1.145-157. 

Janssens, Thierry K.S., Tjalf E. De Boer, Valeria Agamennone, Niels Zaagman, Nico M. Van Straalen, 

and Dick Roelofs. 2017. “Draft Genome Sequence of Bacillus Toyonensis Vu-Des13, Isolated 

from Folsomia Candida (Collembola: Entomobryidae).” Genome Announcements 5 (19). 

https://doi.org/10.1128/genomeA.00287-17. 

Jia, Baofeng, Amogelang R. Raphenya, Brian Alcock, Nicholas Waglechner, Peiyao Guo, Kara K. 

Tsang, Briony A. Lago, et al. 2017. “CARD 2017: Expansion and Model-Centric Curation of 

the Comprehensive Antibiotic Resistance Database.” Nucleic Acids Research 45 (D1): D566–

73. https://doi.org/10.1093/nar/gkw1004. 

Jia, Xiaojing, Weibo Qiao, Wenli Tian, Xiaowei Peng, Shuofu Mi, Hong Su, and Yejun Han. 2016. 

“Biochemical Characterization of Extra- and Intracellular Endoxylanse from Thermophilic 

Bacterium Caldicellulosiruptor Kronotskyensis.” Scientific Reports 6 (February). 

https://doi.org/10.1038/srep21672. 

Jiang, Daohua, Junping Fan, Xianping Wang, Yan Zhao, Bo Huang, Jianfeng Liu, and Xuejun C. 

Zhang. 2012. “Crystal Structure of 1,3Gal43A, an Exo-β-1,3-Galactanase from Clostridium 

Thermocellum.” Journal of Structural Biology 180 (3): 447–57. 

https://doi.org/10.1016/j.jsb.2012.08.005. 

Jong, Ed de, Adrian Higson, Patrick Walsh, and Maria Wellisch. 2011. “Task 42 Biobased Chemicals 

- Value Added Products from Biorefineries.” A Report Prepared for IEA Bioenergy-Task, 36. 

Jönsson, Leif J., and Carlos Martín. 2016. “Pretreatment of Lignocellulose: Formation of Inhibitory by-

Products and Strategies for Minimizing Their Effects.” Bioresource Technology 199: 103–12. 

https://doi.org/10.1016/j.biortech.2015.10.009. 



Bibliography 

185 

S 

Jose, V. Lyju, Ravi P. More, Thulasi Appoothy, and A. Sha Arun. 2017. “In Depth Analysis of Rumen 

Microbial and Carbohydrate-Active Enzymes Profile in Indian Crossbred Cattle.” Systematic 

and Applied Microbiology 40 (3): 160–70. https://doi.org/10.1016/j.syapm.2017.02.003. 

Jousset, A., S. Scheu, and M. Bonkowski. 2008. “Secondary Metabolite Production Facilitates 

Establishment of Rhizobacteria by Reducing Both Protozoan Predation and the Competitive 

Effects of Indigenous Bacteria.” Functional Ecology 22 (4): 714–19. 

https://doi.org/10.1111/j.1365-2435.2008.01411.x. 

Joynson, Ryan, Leighton Pritchard, Ekenakema Osemwekha, and Natalie Ferry. 2017. “Metagenomic 

Analysis of the Gut Microbiome of the Common Black Slug Arion Ater in Search of Novel 

Lignocellulose Degrading Enzymes.” Frontiers in Microbiology 8 (NOV): 2181. 

https://doi.org/10.3389/fmicb.2017.02181. 

Kaats, Gilbert R, Samuel C Keith, Patti L Keith, Robert B Leckie, Nicholas V Perricone, and Harry G 

Preuss. 2011. “A Combination of L-Arabinose and Chromium Lowers Circulating Glucose and 

Insulin Levels after an Acute Oral Sucrose Challenge.” Nutrition Journal 10 (1): 42. 

https://doi.org/10.1186/1475-2891-10-42. 

Kalia, Vipin Chandra, Yogesh S. Shouche, Hemant J. Purohit, and Praveen Rahi. 2017. Mining of 

Microbial Wealth and Metagenomics. Mining of Microbial Wealth and MetaGenomics. 

https://doi.org/10.1007/978-981-10-5708-3. 

Kameshwar, Ayyappa Kumar Sista, and Wensheng Qin. 2017. “Metadata Analysis of Phanerochaete 

Chrysosporium Gene Expression Data Identified Common CAZymes Encoding Gene 

Expression Profiles Involved in Cellulose and Hemicellulose Degradation.” International 

Journal of Biological Sciences 13 (1): 85–99. https://doi.org/10.7150/ijbs.17390. 

Kanehisa, Minoru, Michihiro Araki, Susumu Goto, Masahiro Hattori, Mika Hirakawa, Masumi Itoh, 

Toshiaki Katayama, et al. 2008. “KEGG for Linking Genomes to Life and the Environment.” 

Nucleic Acids Research 36 (SUPPL. 1). https://doi.org/10.1093/nar/gkm882. 

Kanehisa, Minoru, Yoko Sato, Miho Furumichi, Kanae Morishima, and Mao Tanabe. 2019. “New 

Approach for Understanding Genome Variations in KEGG.” Nucleic Acids Research 47 (D1): 

D590–95. https://doi.org/10.1093/nar/gky962. 

Kanehisa, Minoru, Yoko Sato, and Kanae Morishima. 2016. “BlastKOALA and GhostKOALA: KEGG 

Tools for Functional Characterization of Genome and Metagenome Sequences.” Journal of 

Molecular Biology 428 (4): 726–31. https://doi.org/10.1016/j.jmb.2015.11.006. 

Kaneko, Satoshi, Mitsue Arimoto, Misako Ohba, Hideyuki Kobayashi, Tadashi Ishii, and Isao 



Bibliography 

186 

Kusakabe. 1998. “Purification and Substrate Specificities of Two α-L- Arabinofuranosidases 

from Aspergillus Awamori IFO 4033.” Applied and Environmental Microbiology 64 (10): 4021–

27. http://www.ncbi.nlm.nih.gov/pubmed/9758835. 

Kang, Donghoon, Daniel R. Kirienkoa, Phillip Webster, Alfred L. Fisher, and Natalia V. Kirienko. 

2018. “Pyoverdine, a Siderophore from Pseudomonas Aeruginosa, Translocates into C. Elegans, 

Removes Iron, and Activates a Distinct Host Response.” Virulence 9 (1): 804–17. 

https://doi.org/10.1080/21505594.2018.1449508. 

Kaoutari, Abdessamad El, Fabrice Armougom, Jeffrey I Gordon, Didier Raoult, and Bernard Henrissat. 

2013. “The Abundance and Variety of Carbohydrate-Active Enzymes in the Human Gut 

Microbiota.” Nature Reviews Microbiology 11 (7): 497–504. 

https://doi.org/10.1038/nrmicro3050. 

Kasuya, Natsuki, Itsuko Wada, Mimune Shimada, Hiroshi Kawai, and Hisao Itabashi. 2007. “Effect of 

Presence of Rumen Protozoa on Degradation of Cell Wall Constituents in Gastrointestinal Tract 

of Cattle.” Animal Science Journal 78 (3): 275–80. https://doi.org/10.1111/j.1740-

0929.2007.00435.x. 

Kataeva, Irina A., Ronald D. Seidel, Ashit Shah, Larry T. West, Xin Liang Li, and Lars G. Ljungdahl. 

2002. “The Fibronectin Type 3-like Repeat from the Clostridium Thermocellum 

Cellobiohydrolase CbHa Promotes Hydrolysis of Cellulose by Modifying Its Surface.” Applied 

and Environmental Microbiology 68 (9): 4292–4300. https://doi.org/10.1128/AEM.68.9.4292-

4300.2002. 

Kataeva, Irina A., Vladimir N. Uversky, John M. Brewer, Florian Schubot, John P. Rose, B. C. Wang, 

and Lars G. Ljungdahl. 2004. “Interactions between Immunoglobulin-like and Catalytic Modules 

in Clostridium Thermocellum Cellulosomal Cellobiohydrolase CbhA.” Protein Engineering, 

Design and Selection 17 (11): 759–69. https://doi.org/10.1093/protein/gzh094. 

Kautsar, Satria A., Kai Blin, Simon Shaw, Jorge C. Navarro-Muñoz, Barbara R. Terlouw, Justin J.J. 

Van Der Hooft, Jeffrey A. Van Santen, et al. 2020. “MIBiG 2.0: A Repository for Biosynthetic 

Gene Clusters of Known Function.” Nucleic Acids Research 48 (D1): D454–58. 

https://doi.org/10.1093/nar/gkz882. 

Kautz, Stefanie, Benjamin E.R. Rubin, Jacob A. Russell, and Corrie S. Moreaua. 2013. “Surveying the 

Microbiome of Ants: Comparing 454 Pyrosequencing with Traditional Methods to Uncover 

Bacterial Diversity.” Applied and Environmental Microbiology. 

https://doi.org/10.1128/AEM.03107-12. 

Kelley, Lawrence A., Stefans Mezulis, Christopher M. Yates, Mark N. Wass, and Michael J.E. 



Bibliography 

187 

S 

Sternberg. 2015. “The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis.” 

Nature Protocols 10 (6): 845–58. https://doi.org/10.1038/nprot.2015.053. 

Kelley, Scott T., and Susanne Dobler. 2011. “Comparative Analysis of Microbial Diversity in 

Longitarsus Flea Beetles (Coleoptera: Chrysomelidae).” Genetica 139 (5): 541–50. 

https://doi.org/10.1007/s10709-010-9498-0. 

Kerff, Frédéric, Ana Amoroso, Raphaël Herman, Eric Sauvage, Stéphanie Petrella, Patrice Filée, 

Paulette Charlier, et al. 2008. “Crystal Structure and Activity of Bacillus Subtilis YoaJ (EXLX1), 

a Bacterial Expansin That Promotes Root Colonization.” Proceedings of the National Academy 

of Sciences of the United States of America 105 (44): 16876–81. 

https://doi.org/10.1073/pnas.0809382105. 

Khater, Shradha, Swadha Anand, and Debasisa Mohanty. 2016. “In Silico Methods for Linking Genes 

and Secondary Metabolites: The Way Forward.” Synthetic and Systems Biotechnology. 2016. 

https://doi.org/10.1016/j.synbio.2016.03.001. 

Kim, Daehwan. 2018. “Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and 

Detoxification Strategies: A Mini Review.” Molecules 23 (2). 

https://doi.org/10.3390/molecules23020309. 

Kiryu, Takaaki, Hirofumi Nakano, Taro Kiso, and Hiromi Murakami. 2005. “Purification and 

Characterization of a Novel α-Glucuronidase from Aspergillus Niger Specific for O -α- D -

Glucosyluronic Acid α- D -Glucosiduronic Acid.” Bioscience, Biotechnology, and Biochemistry 

69 (3): 522–29. https://doi.org/10.1271/bbb.69.522. 

Kittelmann, Sandra, and Peter H. Janssen. 2011. “Characterization of Rumen Ciliate Community 

Composition in Domestic Sheep, Deer, and Cattle, Feeding on Varying Diets, by Means of PCR-

DGGE and Clone Libraries.” FEMS Microbiology Ecology 75 (3): 468–81. 

https://doi.org/10.1111/j.1574-6941.2010.01022.x. 

Kotake, Toshihisa, Yukiko Yamanashi, Chiemi Imaizumi, and Yoichi Tsumuraya. 2016. “Metabolism 

of L-Arabinose in Plants.” Journal of Plant Research 129 (5): 781–92. 

https://doi.org/10.1007/s10265-016-0834-z. 

Kraemer, Susanne A., Arthi Ramachandran, and Gabriel G. Perron. 2019. “Antibiotic Pollution in the 

Environment: From Microbial Ecology to Public Policy.” Microorganisms 7 (6). 

https://doi.org/10.3390/microorganisms7060180. 

Kramer, Jos, Özhan Özkaya, and Rolf Kümmerli. 2020. “Bacterial Siderophores in Community and 

Host Interactions.” Nature Reviews Microbiology. Nature Research. 



Bibliography 

188 

https://doi.org/10.1038/s41579-019-0284-4. 

Kroiss, Johannes, Martin Kaltenpoth, Bernd Schneider, Maria Gabriele Schwinger, Christian Hertweck, 

Ravi Kumar Maddula, Erhard Strohm, and Ale Svatos. 2010. “Symbiotic Streptomycetes 

Provide Antibiotic Combination Prophylaxis for Wasp Offspring.” Nature Chemical Biology 6 

(4): 261–63. https://doi.org/10.1038/nchembio.331. 

Kucharska, Karolina, Piotr Rybarczyk, Iwona Hołowacz, Rafał Łukajtis, Marta Glinka, and Marian 

Kamiński. 2018. “Pretreatment of Lignocellulosic Materials as Substrates for Fermentation 

Processes.” Molecules 23 (11). https://doi.org/10.3390/molecules23112937. 

Kuge, Takayuki, and Haruhiko Teramoto. 2015. “AraR , an L -Arabinose-Responsive Transcriptional 

Regulator in Corynebacterium Glutamicum ATCC 31831 , Exerts Different Degrees of 

Repression Depending on the Location of Its Binding Sites Within.” Journal of Bacteriology 197 

(24): 3788–96. https://doi.org/10.1128/JB.00314-15.Editor. 

Kumar, Manoj, Ajit Varma, and Vivek Kumar. 2016. “Ecogenomics Based Microbial Enzyme for 

Biofuel Industry.” Science International 4 (1): 1–11. https://doi.org/10.17311/sciintl.2016.1.11. 

Kumar, Sandeep, Chung-jung Tsai, and Ruth Nussinov. 2002. “Factors Enhancing Protein 

Thermostability.” Protein Engineering, Design and Selection 13 (3): 179–91. 

https://doi.org/10.1093/protein/13.3.179. 

Kwon, Gayeung, Jiyun Lee, and Young Hee Lim. 2016. “Dairy Propionibacterium Extends the Mean 

Lifespan of Caenorhabditis Elegans via Activation of the Innate Immune System.” Scientific 

Reports 6 (1): 1–11. https://doi.org/10.1038/srep31713. 

Lagaert, Stijn, Annick Pollet, Christophe M. Courtin, and Guido Volckaert. 2014. “β-Xylosidases and 

α-L-Arabinofuranosidases: Accessory Enzymes for Arabinoxylan Degradation.” Biotechnology 

Advances. Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2013.11.005. 

Lämmli, U. K. 1970. “Cleavage of Structural Proteins during the Assembly of the Head of 

Bacteriophage T4.” Nature 227 (5259): 680–85. https://doi.org/10.1038/227680a0. 

Langmead, Ben, and Steven L. Salzberg. 2012. “Fast Gapped-Read Alignment with Bowtie 2.” Nature 

Methods 9 (4): 357–59. https://doi.org/10.1038/nmeth.1923. 

Larsen, Brendan B., Elizabeth C. Miller, Matthew K. Rhodes, and John J. Wiens. 2017. “Inordinate 

Fondness Multiplied and Redistributed: The Number of Species on Earth and the New Pie of 

Life.” Quarterly Review of Biology 92 (3): 229–65. https://doi.org/10.1086/693564. 

Le, Hoang Anh, Do Minh Phuong, and Le Thuy Linh. 2020. “Emission Inventories of Rice Straw Open 

Burning in the Red River Delta of Vietnam: Evaluation of the Potential of Satellite Data.” 



Bibliography 

189 

S 

Environmental Pollution 260 (May): 113972. https://doi.org/10.1016/j.envpol.2020.113972. 

Leblanc, Shannon K.D., Christopher W. Oates, and Tracy L. Raivio. 2011. “Characterization of the 

Induction and Cellular Role of the BaeSR Two-Component Envelope Stress Response of 

Escherichia Coli.” Journal of Bacteriology 193 (13): 3367–75. 

https://doi.org/10.1128/JB.01534-10. 

Lee, Charles C., Rena E. Kibblewhite, Kurt Wagschal, Ruiping Li, George H. Robertson, and William 

J. Orts. 2012. “Isolation and Characterization of a Novel GH67 α-Glucuronidase from a Mixed 

Culture.” Journal of Industrial Microbiology and Biotechnology 39 (8): 1245–51. 

https://doi.org/10.1007/s10295-012-1128-7. 

Lee, Charles C, Rena E Kibblewhite, Kurt Wagschal, Ruiping Li, and William J. Orts. 2012. “Isolation 

of α-Glucuronidase Enzyme from a Rumen Metagenomic Library.” Protein Journal 31 (3): 206–

11. https://doi.org/10.1007/s10930-012-9391-z. 

Lee, Hee Jin, Saeyoung Lee, Hyeok Jin Ko, Kyoung Heon Kim, and In Geol Choi. 2010. “An Expansin-

like Protein from Hahella Chejuensis Binds Cellulose and Enhances Cellulase Activity.” 

Molecules and Cells 29 (4): 379–85. https://doi.org/10.1007/s10059-010-0033-z. 

Lee, Kyung Tai, Sazzad Hossen Toushik, Jin Young Baek, Ji Eun Kim, Jin Sung Lee, and Keun Sung 

Kim. 2018. “Metagenomic Mining and Functional Characterization of a Novel KG51 

Bifunctional Cellulase/Hemicellulase from Black Goat Rumen.” Journal of Agricultural and 

Food Chemistry 66 (34): 9034–41. https://doi.org/10.1021/acs.jafc.8b01449. 

Lee, Queena, and Paul Widden. 1996. “Folsomia Candida, a ‘fungivorous’ Collembolan, Feeds 

Preferentially on Nematodes Rather than Soil Fungi.” Soil Biology and Biochemistry 28 (4–5): 

689–90. https://doi.org/10.1016/0038-0717(95)00158-1. 

Leger, Michelle M., Laura Eme, Courtney W. Stairs, and Andrew J. Roger. 2018. “Demystifying 

Eukaryote Lateral Gene Transfer (Response to Martin 2017 DOI: 10.1002/Bies.201700115).” 

BioEssays 40 (5): 1700242. https://doi.org/10.1002/bies.201700242. 

Leitão-Gonçalves, Ricardo, Zita Carvalho-Santos, Ana Patrícia Francisco, Gabriela Tondolo Fioreze, 

Margarida Anjos, Célia Baltazar, Ana Paula Elias, Pavel M. Itskov, Matthew D.W. Piper, and 

Carlos Ribeiro. 2017. “Commensal Bacteria and Essential Amino Acids Control Food Choice 

Behavior and Reproduction.” PLoS Biology 15 (4). 

https://doi.org/10.1371/journal.pbio.2000862. 

Lelio, Ilaria Di, Anna Illiano, Federica Astarita, Luca Gianfranceschi, David Horner, Paola Varricchio, 

Angela Amoresano, Pietro Pucci, Francesco Pennacchio, and Silvia Caccia. 2019. “Evolution of 



Bibliography 

190 

an Insect Immune Barrier through Horizontal Gene Transfer Mediated by a Parasitic Wasp.” 

PLoS Genetics 15 (3). https://doi.org/10.1371/journal.pgen.1007998. 

Lemoine, Frédéric, Damien Correia, Vincent Lefort, Olivia Doppelt-Azeroual, Fabien Mareuil, Sarah 

Cohen-Boulakia, and Olivier Gascuel. 2019. “NGPhylogeny.Fr: New Generation Phylogenetic 

Services for Non-Specialists.” Nucleic Acids Research 47 (W1): W260–65. 

https://doi.org/10.1093/nar/gkz303. 

Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo 

Abecasis, and Richard Durbin. 2009. “The Sequence Alignment/Map Format and SAMtools.” 

Bioinformatics 25 (16): 2078–79. https://doi.org/10.1093/bioinformatics/btp352. 

Li, Hongjie, Daniel J. Yelle, Chang Li, Mengyi Yang, Jing Ke, Ruijuan Zhang, Yu Liu, et al. 2017a. 

“Lignocellulose Pretreatment in a Fungus-Cultivating Termite.” Proceedings of the National 

Academy of Sciences 114 (18): 4709–14. https://doi.org/10.1073/pnas.1618360114. 

———. 2017b. “Lignocellulose Pretreatment in a Fungus-Cultivating Termite.” Proceedings of the 

National Academy of Sciences of the United States of America 114 (18): 4709–14. 

https://doi.org/10.1073/pnas.1618360114. 

Li, Weizhong, and Adam Godzik. 2006. “Cd-Hit: A Fast Program for Clustering and Comparing Large 

Sets of Protein or Nucleotide Sequences.” Bioinformatics 22 (13): 1658–59. 

https://doi.org/10.1093/bioinformatics/btl158. 

Lim, Sooyeon, Jaehyun Seo, Hyunbong Choi, Duhak Yoon, Jungrye Nam, Heebal Kim, Seoae Cho, 

and Jongsoo Chang. 2013. “Metagenome Analysis of Protein Domain Collocation within 

Cellulase Genes of Goat Rumen Microbes.” Asian-Australasian Journal of Animal Sciences 26 

(8): 1144–51. https://doi.org/10.5713/ajas.2013.13219. 

Linares-Pastén, Javier A., Peter Falck, Khalil Albasri, Sven Kjellström, Patrick Adlercreutz, Derek T. 

Logan, and Eva Nordberg Karlsson. 2017. “Three-Dimensional Structures and Functional 

Studies of Two GH43 Arabinofuranosidases from Weissella Sp. Strain 142 and 

Lactobacillus Brevis.” FEBS Journal 284 (13): 2019–36. https://doi.org/10.1111/febs.14101. 

Linares, J. F., I. Gustafsson, F. Baquero, and J. L. Martinez. 2006. “Antibiotics as Intermicrobiol 

Signaling Agents Instead of Weapons.” Proceedings of the National Academy of Sciences of the 

United States of America 103 (51): 19484–89. https://doi.org/10.1073/pnas.0608949103. 

Linger, Jeffrey G., William S. Adney, and Al Darzins. 2010. “Heterologous Expression and 

Extracellular Secretion of Cellulolytic Enzymes by Zymomonas Mobilis.” Applied and 

Environmental Microbiology 76 (19): 6360–69. https://doi.org/10.1128/AEM.00230-10. 



Bibliography 

191 

S 

Liu, Dianfeng, Bin Lian, Chunhao Wu, and Peijun Guo. 2018. “A Comparative Study of Gut Microbiota 

Profiles of Earthworms Fed in Three Different Substrates.” Symbiosis 74 (1): 21–29. 

https://doi.org/10.1007/s13199-017-0491-6. 

Liu, Fanghua, Amelia Elena Rotaru, Pravin M. Shrestha, Nikhil S. Malvankar, Kelly P. Nevin, and 

Derek R. Lovley. 2012. “Promoting Direct Interspecies Electron Transfer with Activated 

Carbon.” Energy and Environmental Science 5 (10): 8982–89. 

https://doi.org/10.1039/c2ee22459c. 

Liu, Min, Jiali Gu, Wenping Xie, and Hongwei Yu. 2013. “Directed Co-Evolution of an Endoglucanase 

and a β-Glucosidase in Escherichia Coli by a Novel High-Throughput Screening Method.” 

Chemical Communications 49 (65): 7219–21. https://doi.org/10.1039/c3cc42485e. 

Liu, Xiangyang, and Chandrakant Kokare. 2016. Microbial Enzymes of Use in Industry. Biotechnology 

of Microbial Enzymes: Production, Biocatalysis and Industrial Applications. Elsevier Inc. 

https://doi.org/10.1016/B978-0-12-803725-6.00011-X. 

Lombard, Vincent, Hemalatha Golaconda Ramulu, Elodie Drula, Pedro M. Coutinho, and Bernard 

Henrissat. 2014. “The Carbohydrate-Active Enzymes Database (CAZy) in 2013.” Nucleic Acids 

Research 42 (D1): D490–95. https://doi.org/10.1093/nar/gkt1178. 

Lopes, A. M., E. X. Ferreira Filho, and L. R.S. Moreira. 2018. “An Update on Enzymatic Cocktails for 

Lignocellulose Breakdown.” Journal of Applied Microbiology 125 (3): 632–45. 

https://doi.org/10.1111/jam.13923. 

López-Mondéjar, Rubén, Daniela Zühlke, Dörte Becher, Katharina Riedel, and Petr Baldrian. 2016. 

“Cellulose and Hemicellulose Decomposition by Forest Soil Bacteria Proceeds by the Action of 

Structurally Variable Enzymatic Systems.” Scientific Reports 6 (1): 1–12. 

https://doi.org/10.1038/srep25279. 

Luo, Ruibang, Binghang Liu, Yinlong Xie, Zhenyu Li, Weihua Huang, Jianying Yuan, Guangzhu He, 

et al. 2012. “SOAPdenovo2: An Empirically Improved Memory-Efficient Short-Read de Novo 

Assembler.” GigaScience 1 (1). https://doi.org/10.1186/2047-217X-1-18. 

Ma, Lili, Yuwei Xie, Zhihua Han, John P. Giesy, and Xiaowei Zhang. 2017. “Responses of Earthworms 

and Microbial Communities in Their Guts to Triclosan.” Chemosphere 168: 1194–1202. 

https://doi.org/10.1016/j.chemosphere.2016.10.079. 

Ma, Zongwang, Niels Geudens, Nam P. Kieu, Davy Sinnaeve, Marc Ongena, José C. Martins, and 

Monica Höfte. 2016. “Biosynthesis, Chemical Structure, and Structure-Activity Relationship of 

Orfamide Lipopeptides Produced by Pseudomonas Protegens and Related Species.” Frontiers in 



Bibliography 

192 

Microbiology 7 (MAR). https://doi.org/10.3389/fmicb.2016.00382. 

Maehara, Tomoko, Zui Fujimoto, Hitomi Ichinose, Mari Michikawa, Koichi Harazono, and Satoshi 

Kaneko. 2014. “Crystal Structure and Characterization of the Glycoside Hydrolase Family 62 α-

L-Arabinofuranosidase from Streptomyces Coelicolor.” Journal of Biological Chemistry 289 

(11): 7962–72. https://doi.org/10.1074/jbc.M113.540542. 

Maguire, Meghan, Julie A. Kase, Dwayne Roberson, Tim Muruvanda, Eric W. Brown, Marc Allard, 

Steven M. Musser, and Narjol González-Escalona. 2021. “Precision Long-Read Metagenomics 

Sequencing for Food Safety by Detection and Assembly of Shiga Toxin-Producing Escherichia 

Coli in Irrigation Water.” Edited by Pina Fratamico. PLoS ONE 16 (1): e0245172. 

https://doi.org/10.1371/journal.pone.0245172. 

Manjula, K., and A. R. Podile. 2005. “Production of Fungal Cell Wall Degrading Enzymes by a 

Biocontrol Strain of Bacillus Subtilis AF 1.” Indian Journal of Experimental Biology 43 (10): 

892–96. 

Margolles, Abelardo, and Clara G. De los Reyes-Gavilán. 2003. “Purification and Functional 

Characterization of a Novel α-L-Arabinofuranosidase from Bifidobacterium Longum B667.” 

Applied and Environmental Microbiology 69 (9): 5096–5103. 

https://doi.org/10.1128/AEM.69.9.5096-5103.2003. 

Marolda, Cristina L., Bo Li, Michael Lung, Mei Yang, Anna Hanuszkiewicz, Amanda Roa Rosales, 

and Miguel A. Valvano. 2010. “Membrane Topology and Identification of Critical Amino Acid 

Residues in the Wzx O-Antigen Translocase from Escherichia Coli O157:H4.” Journal of 

Bacteriology 192 (23): 6160–71. https://doi.org/10.1128/JB.00141-10. 

Marolda, Cristina L., Laura D. Tatar, Cristina Alaimo, Markus Aebi, and Miguel A. Valvano. 2006. 

“Interplay of the Wzx Translocase and the Corresponding Polymerase and Chain Length 

Regulator Proteins in the Translocation and Periplasmic Assembly of Lipopolysaccharide O 

Antigen.” Journal of Bacteriology 188 (14): 5124–35. https://doi.org/10.1128/JB.00461-06. 

Martin, William F. 2017. “Too Much Eukaryote LGT.” BioEssays. 

https://doi.org/10.1002/bies.201700115. 

Matsuo, Noriki, Satoshi Kaneko, Atsushi Kuno, Hideyuki Kobayashi, and Isao Kusakabe. 2000. 

“Purification, Characterization and Gene Cloning of Two α-l-Arabinofuranosidases from 

Streptomyces Chartreusis GS901.” Biochemical Journal. Vol. 346. 

https://doi.org/10.1042/bj3460009. 

Maurya, Devendra Prasad, Ankit Singla, and Sangeeta Negi. 2015. “An Overview of Key Pretreatment 



Bibliography 

193 

S 

Processes for Biological Conversion of Lignocellulosic Biomass to Bioethanol.” 3 Biotech 5 (5): 

597–609. https://doi.org/10.1007/s13205-015-0279-4. 

Mayer, Werner E., Lisa N. Schuster, Gabi Bartelmes, Christoph Dieterich, and Ralf J. Sommer. 2011. 

“Horizontal Gene Transfer of Microbial Cellulases into Nematode Genomes Is Associated with 

Functional Assimilation and Gene Turnover.” BMC Evolutionary Biology 11 (1): 13. 

https://doi.org/10.1186/1471-2148-11-13. 

McClure, Ryan A., Anthony W. Goering, Kou San Ju, Joshua A. Baccile, Frank C. Schroeder, William 

W. Metcalf, Regan J. Thomson, and Neil L. Kelleher. 2016. “Elucidating the Rimosamide-

Detoxin Natural Product Families and Their Biosynthesis Using Metabolite/Gene Cluster 

Correlations.” ACS Chemical Biology 11 (12): 3452–60. 

https://doi.org/10.1021/acschembio.6b00779. 

McDonald, Bradon R., and Cameron R. Curriea. 2017. “Lateral Gene Transfer Dynamics in the Ancient 

Bacterial Genus Streptomyces.” MBio 8 (3). https://doi.org/10.1128/mBio.00644-17. 

McFall-Ngai, Margaret, Michael G Hadfield, Thomas C G Bosch, Hannah V Carey, Tomislav 

Domazet-Lo, Angela E Douglas, Nicole Dubilier, et al. 2013. “Animals in a Bacterial World, a 

New Imperative for the Life Sciences.” Proc. Natl. Acad. Sci. 110 (9): 3229–36. 

https://doi.org/10.1073/pnas.1218525110. 

McKee, Lauren S., Hampus Sunner, George E. Anasontzis, Guillermo Toriz, Paul Gatenholm, Vincent 

Bulone, Francisco Vilaplana, and Lisbeth Olsson. 2016. “A GH115 α-Glucuronidase from 

Schizophyllum Commune Contributes to the Synergistic Enzymatic Deconstruction of Softwood 

Glucuronoarabinoxylan.” Biotechnology for Biofuels 9 (1): 1–13. 

https://doi.org/10.1186/s13068-015-0417-6. 

Meijenfeldt, F A Bastiaan von, Ksenia Arkhipova, Diego D Cambuy, Felipe H Coutinho, and Bas E 

Dutilh. 2019. “Robust Taxonomic Classification of Uncharted Microbial Sequences and Bins 

with CAT and BAT.” BioRxiv, 530188. https://doi.org/10.1101/530188. 

Merino, Sandra T., and Joel Cherry. 2007. “Progress and Challenges in Enzyme Development for 

Biomass Utilization.” Advances in Biochemical Engineering/Biotechnology 108 (April): 95–

120. https://doi.org/10.1007/10_2007_066. 

Mewis, Keith, Nicolas Lenfant, Vincent Lombard, and Bernard Henrissat. 2016. “Dividing the Large 

Glycoside Hydrolase Family 43 into Subfamilies: A Motivation for Detailed Enzyme 

Characterization.” Applied and Environmental Microbiology 82 (6): 1686–92. 

https://doi.org/10.1128/aem.03453-15. 



Bibliography 

194 

Mhuantong, Wuttichai, Varodom Charoensawan, Pattanop Kanokratana, Sithichoke 

Tangphatsornruang, and Verawat Champreda. 2015. “Comparative Analysis of Sugarcane 

Bagasse Metagenome Reveals Unique and Conserved Biomass-Degrading Enzymes among 

Lignocellulolytic Microbial Communities.” Biotechnology for Biofuels 8 (1): 16. 

https://doi.org/10.1186/s13068-015-0200-8. 

Michlmayr, Herbert, Johannes Hell, Cindy Lorenz, Stefan Böhmdorfer, Thomas Rosenau, and 

Wolfgang Kneifel. 2013. “Arabinoxylan Oligosaccharide Hydrolysis by Family 43 and 51 

Glycosidases from Lactobacillus Brevis DSM 20054.” Applied and Environmental Microbiology 

79 (21): 6747–54. https://doi.org/10.1128/aem.02130-13. 

Millati, Ria, Siti Syamsiah, Claes Niklasson, Muhammad Nur Cahyanto, Knut Lundquist, and 

Mohammad J Taherzadeh. 2011. “Biological Pretreatment: Review.” BioResources 6 (4): 5224–

59. 

Miller, Gail Lorenz. 1959. “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing 

Sugar.” Analytical Chemistry 31 (3): 426–28. https://doi.org/10.1021/ac60147a030. 

Montaña, Sabrina, Sareda T.J. Schramm, German Matías Traglia, Kevin Chiem, Gisela Parmeciano Di 

Noto, Marisa Almuzara, Claudia Barberis, et al. 2016. “The Genetic Analysis of an 

Acinetobacter Johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer.” 

PLoS ONE 11 (8). https://doi.org/10.1371/journal.pone.0161528. 

Moran, Nancy A., Howard Ochman, and Tobin J. Hammer. 2019. “Evolutionary and Ecological 

Consequences of Gut Microbial Communities.” Annual Review of Ecology, Evolution, and 

Systematics 50: 451–75. https://doi.org/10.1146/annurev-ecolsys-110617-062453. 

Moreira, Leonardo Marmo, Fernando de Paula Leone, Ricardo Augusto Mendonça Vieira, and José 

Carlos Pereira. 2013. “A New Approach about the Digestion of Fibers by Ruminants.” Revista 

Brasileira de Saude e Producao Animal. 2013. https://doi.org/10.1590/S1519-

99402013000200008. 

Morita, Masahiko, Nikhil S. Malvankar, Ashley E. Franks, Zarath M. Summers, Ludovic Giloteaux, 

Amelia E. Rotaru, Camelia Rotaru, and Derek R. Lovleya. 2011. “Potential for Direct 

Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates.” MBio 2 (4). 

https://doi.org/10.1128/mBio.00159-11. 

Mosier, Annika C., Nicholas B. Justice, Benjamin P. Bowen, Richard Baran, Brian C. Thomas, Trent 

R. Northen, and Jillian F. Banfield. 2013. “Metabolites Associated with Adaptation of 

Microorganisms to an Acidophilic, Metal-Rich Environment Identified by Stable-Isotope-

Enabled Metabolomics.” MBio 4 (2). https://doi.org/10.1128/mBio.00484-12. 



Bibliography 

195 

S 

Moss, Eli L., Dylan G. Maghini, and Ami S. Bhatt. 2020. “Complete, Closed Bacterial Genomes from 

Microbiomes Using Nanopore Sequencing.” Nature Biotechnology 38 (6): 701–7. 

https://doi.org/10.1038/s41587-020-0422-6. 

Mullany, Peter. 2014. “Functional Metagenomics for the Investigation of Antibiotic Resistance.” 

Virulence 5 (3): 443–47. https://doi.org/10.4161/viru.28196. 

Nagy, Tibor, Kaveh Emami, Carlos M.G.A. G A Fontes, Luis M.A. A Ferreira, David R. Humphry, 

and Harry J. Gilbert. 2002. “The Membrane-Bound α-Glucuronidase from Pseudomonas 

Cellulosa Hydrolyzes 4-O-Methyl-D-Glucuronoxylooligosaccharides but Not 4-O-Methyl-D-

Glucuronoxylan.” Journal of Bacteriology 184 (17): 4925–29. 

https://doi.org/10.1128/JB.184.17.4925-4929.2002. 

Naughton, Lynn M., Stefano Romano, Fergal O’Gara, and Alan D.W. Dobson. 2017. “Identification of 

Secondary Metabolite Gene Clusters in the Pseudovibrio Genus Reveals Encouraging 

Biosynthetic Potential toward the Production of Novel Bioactive Compounds.” Frontiers in 

Microbiology 8 (AUG). https://doi.org/10.3389/fmicb.2017.01494. 

Navarro, David, Marie Couturier, Gabriela G.D. da Silva, Jean Guy Berrin, Xavier Rouau, Marcel 

Asther, and Christophe Bignon. 2010. “Automated Assay for Screening the Enzymatic Release 

of Reducing Sugars from Micronized Biomass.” Microbial Cell Factories 9 (1): 58. 

https://doi.org/10.1186/1475-2859-9-58. 

Neddersen, Mara, and Skander Elleuche. 2015. “Fast and Reliable Production, Purification and 

Characterization of Heat-Stable, Bifunctional Enzyme Chimeras.” AMB Express 5 (1): 1–12. 

https://doi.org/10.1186/s13568-015-0122-7. 

Nelson, Karen E., Stephen H. Zinder, Ioana Hance, Patrick Burr, David Odongo, Delia Wasawo, Agnes 

Odenyo, and Richard Bishop. 2003. “Phylogenetic Analysis of the Microbial Populations in the 

Wild Herbivore Gastrointestinal Tract: Insights into an Unexplored Niche.” Environmental 

Microbiology 5 (11): 1212–20. https://doi.org/10.1046/j.1462-2920.2003.00526.x. 

Nesme, Joseph, Sébastien Cécillon, Tom O. Delmont, Jean Michel Monier, Timothy M. Vogel, and 

Pascal Simonet. 2014. “Large-Scale Metagenomic-Based Study of Antibiotic Resistance in the 

Environment.” Current Biology 24 (10): 1096–1100. https://doi.org/10.1016/j.cub.2014.03.036. 

Ni, Jinfeng, and Gaku Tokuda. 2013. “Lignocellulose-Degrading Enzymes from Termites and Their 

Symbiotic Microbiota.” Biotechnology Advances 31 (6): 838–50. 

https://doi.org/10.1016/j.biotechadv.2013.04.005. 

Nikaido, Hiroshi. 2010. “Structure and Mechanism of RND-Type Multidrug Efflux Pumps.” Advances 



Bibliography 

196 

in Enzymology and Related Areas of Molecular Biology. Vol. 77 1. 

https://doi.org/10.1002/9780470920541.ch1. 

Nota, Benjamin, Martijn J.T.N. Timmermans, Oscar Franken, Kora Montagne-Wajer, Janine Mariën, 

Muriel E. De Boer, Tjalf E. De Boer, Bauke Ylstra, Nico M. Van Straalen, and Dick Roelofs. 

2008. “Gene Expression Analysis of Collembola in Cadmium Containing Soil.” Environmental 

Science and Technology. https://doi.org/10.1021/es801472r. 

Numan, Mondher Th, and Narayan B. Bhosle. 2006. “α-L-Arabinofuranosidases: The Potential 

Applications in Biotechnology.” Journal of Industrial Microbiology and Biotechnology 33 (4): 

247–60. https://doi.org/10.1007/s10295-005-0072-1. 

Nurizzo, Didier, Tibor Nagy, Harry J. Gilbert, and Gideon J. Davies. 2002. “The Structural Basis for 

Catalysis and Specificity of the Pseudomonas Cellulosa α-Glucuronidase, GlcA67A.” Structure. 

Vol. 10. https://doi.org/10.1016/S0969-2126(02)00742-6. 

Nurizzo, Didier, Johan P. Turkenburg, Simon J. Charnock, Shirley M. Roberts, Eleanor J. Dodson, 

Vincent A. McKie, Edward J. Taylor, Harry J. Gilbert, and Gideon J. Davies. 2002. “Cellvibrio 

Japonicus α-l-Arabinanase 43a Has a Novel Five-Blade β-Propeller Fold.” Nature Structural 

Biology 9 (9): 665–68. https://doi.org/10.1038/nsb835. 

Ofori-Boateng, Cynthia, and Keat Teong Lee. 2013. “Sustainable Utilization of Oil Palm Wastes for 

Bioactive Phytochemicals for the Benefit of the Oil Palm and Nutraceutical Industries.” 

Phytochemistry Reviews 12 (1): 173–90. https://doi.org/10.1007/s11101-013-9270-z. 

Oliphant, Kaitlyn, and Emma Allen-Vercoe. 2019. “Macronutrient Metabolism by the Human Gut 

Microbiome: Major Fermentation by-Products and Their Impact on Host Health.” Microbiome 

7 (1): 1–15. https://doi.org/10.1186/s40168-019-0704-8. 

Olofsson, Kim, Magnus Bertilsson, and Gunnar Lidén. 2008. “A Short Review on SSF - An Interesting 

Process Option for Ethanol Production from Lignocellulosic Feedstocks.” Biotechnology for 

Biofuels 1: 1–14. https://doi.org/10.1186/1754-6834-1-7. 

Omoboye, Olumide Owolabi, Niels Geudens, Matthieu Duban, Mickaël Chevalier, Christophe Flahaut, 

José C. Martins, Valérie Leclère, Feyisara Eyiwumi Oni, and Monica Höfte. 2019. 

“Pseudomonas Sp. COW3 Produces New Bananamide-Type Cyclic Lipopeptides with 

Antimicrobial Activity against Pythium Myriotylum and Pyricularia Oryzae.” Molecules 24 (22). 

https://doi.org/10.3390/molecules24224170. 

Omoboye, Olumide Owolabi, Feyisara Eyiwumi Oni, Humaira Batool, Henok Zimene Yimer, René De 

Mot, and Monica Höfte. 2019. “Pseudomonas Cyclic Lipopeptides Suppress the Rice Blast 



Bibliography 

197 

S 

Fungus Magnaporthe Oryzae by Induced Resistance and Direct Antagonism.” Frontiers in Plant 

Science 10 (July): 901. https://doi.org/10.3389/fpls.2019.00901. 

Owji, Hajar, Navid Nezafat, Manica Negahdaripour, Ali Hajiebrahimi, and Younes Ghasemi. 2018. “A 

Comprehensive Review of Signal Peptides: Structure, Roles, and Applications.” European 

Journal of Cell Biology. Elsevier GmbH. https://doi.org/10.1016/j.ejcb.2018.06.003. 

Page, Malcom G.P. 2019. “The Role of Iron and Siderophores in Infection, and the Development of 

Siderophore Antibiotics.” Clinical Infectious Diseases 69 (Suppl 7): S529–37. 

https://doi.org/10.1093/cid/ciz825. 

Parisutham, Vinuselvi, Tae Hyun Kim, and Sung Kuk Lee. 2014. “Feasibilities of Consolidated 

Bioprocessing Microbes: From Pretreatment to Biofuel Production.” Bioresource Technology. 

Elsevier Ltd. https://doi.org/10.1016/j.biortech.2014.03.114. 

Pason, Patthra, Kanok Wongratpanya, Thidarat Nimchua, Somphit Sornyotha, Siriluck Imjongjairak, 

Khanok Ratanakhanokchai, Chakrit Tachaapaikoon, Paripok Phitsuwan, and Rattiya 

Waeonukul. 2015. “Multifunctional Properties of Glycoside Hydrolase Family 43 from 

Paenibacillus Curdlanolyticus Strain B-6 Including Exo-β-Xylosidase, Endo-Xylanase, and α-L-

Arabinofuranosidase Activities.” BioResources 10 (2): 2492–2505. 

https://doi.org/10.15376/biores.10.2.2492-2505. 

Pass, Daniel Antony, Andrew John Morgan, Daniel S. Read, Dawn Field, Andrew J. Weightman, and 

Peter Kille. 2015. “The Effect of Anthropogenic Arsenic Contamination on the Earthworm 

Microbiome.” Environmental Microbiology 17 (6): 1884–96. https://doi.org/10.1111/1462-

2920.12712. 

Passerini, Delphine, Michèle Coddeville, Pascal Le Bourgeois, Pascal Loubière, Paul Ritzenthaler, 

Catherine Fontagné-Faucher, Marie-Line Daveran-Mingot, and Muriel Cocaign-Bousquet. 

2013. “The Carbohydrate Metabolism Signature of Lactococcus Lactis Strain A12 Reveals Its 

Sourdough Ecosystem Origin.” Applied and Environmental Microbiology 79 (19): 5844–52. 

https://doi.org/10.1128/aem.01560-13. 

Pauchet, Yannick, and David G. Heckel. 2013. “The Genome of the Mustard Leaf Beetle Encodes Two 

Active Xylanases Originally Acquired from Bacteria through Horizontal Gene Transfer.” 

Proceedings of the Royal Society B: Biological Sciences 280 (1763). 

https://doi.org/10.1098/rspb.2013.1021. 

Paula, Débora P., Benjamin Linard, Alex Crampton-Platt, Amrita Srivathsan, Martijn J.T.N. 

Timmermans, Edison R. Sujii, Carmen S.S. Pires, Lucas M. Souza, David A. Andow, and Alfried 

P. Vogler. 2016. “Uncovering Trophic Interactions in Arthropod Predators through DNA 



Bibliography 

198 

Shotgun-Sequencing of Gut Contents.” PLoS ONE 11 (9). 

https://doi.org/10.1371/journal.pone.0161841. 

Pearman, William S., Nikki E. Freed, and Olin K. Silander. 2019. “The Advantages and Disadvantages 

of Short- And Long-Read Metagenomics to Infer Bacterial and Eukaryotic Community 

Composition.” BioRxiv. bioRxiv. https://doi.org/10.1101/650788. 

Pereira, Sara B., Marina Santos, José P. Leite, Carlos Flores, Carina Eisfeld, Zsófia Büttel, Rita Mota, 

et al. 2018. “The Role of the Tyrosine Kinase Wzc (Sll0923) and the Phosphatase Wzb (Slr0328) 

in the Production of Extracellular Polymeric Substances (EPS) by Synechocystis PCC 6803.” 

MicrobiologyOpen, no. June 2018: 1–15. https://doi.org/10.1002/mbo3.753. 

Peterson, Brittany F., and Michael E. Scharf. 2016a. “Lower Termite Associations with Microbes: 

Synergy, Protection, and Interplay.” Frontiers in Microbiology 7 (APR). 

https://doi.org/10.3389/fmicb.2016.00422. 

———. 2016b. “Metatranscriptome Analysis Reveals Bacterial Symbiont Contributions to Lower 

Termite Physiology and Potential Immune Functions.” BMC Genomics 17 (1): 1–12. 

https://doi.org/10.1186/s12864-016-3126-z. 

Piddock, Laura J.V. 2006a. “Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux 

Pumps in Bacteria.” Clinical Microbiology Reviews 19 (2): 382–402. 

https://doi.org/10.1128/CMR.19.2.382-402.2006. 

———. 2006b. “Multidrug-Resistance Efflux Pumps - Not Just for Resistance.” Nature Reviews 

Microbiology 4 (8): 629–36. https://doi.org/10.1038/nrmicro1464. 

Piñeiro, Valeria, Joaquín Arias, Jochen Dürr, Pablo Elverdin, Ana María Ibáñez, Alison Kinengyere, 

Cristian Morales Opazo, et al. 2020. “A Scoping Review on Incentives for Adoption of 

Sustainable Agricultural Practices and Their Outcomes.” Nature Sustainability 3 (10): 809–20. 

https://doi.org/10.1038/s41893-020-00617-y. 

Powell, Sean, Damian Szklarczyk, Kalliopi Trachana, Alexander Roth, Michael Kuhn, Jean Muller, 

Roland Arnold, et al. 2012. “EggNOG v3.0: Orthologous Groups Covering 1133 Organisms at 

41 Different Taxonomic Ranges.” Nucleic Acids Research 40 (D1). 

https://doi.org/10.1093/nar/gkr1060. 

Puniya, Anil Kumar, Rameshwar Singh, and Devki Nandan Kamra. 2015. Rumen Microbiology: From 

Evolution to Revolution. Rumen Microbiology: From Evolution to Revolution. 

https://doi.org/10.1007/978-81-322-2401-3. 

Qin, Zhiwei, Rebecca Devine, Thomas J Booth, Elliot H E Farrar, Matthew N Grayson, Matthew I 



Bibliography 

199 

S 

Hutchings, and Barrie Wilkinson. 2020. “Formicamycin Biosynthesis Involves a Unique 

Reductive Ring Contraction †.” https://doi.org/10.1039/d0sc01712d. 

Quevillon, E., V. Silventoinen, S. Pillai, N. Harte, N. Mulder, R. Apweiler, and R. Lopez. 2005. 

“InterProScan: Protein Domains Identifier.” Nucleic Acids Research 33 (SUPPL. 2). 

https://doi.org/10.1093/nar/gki442. 

Quinlan, Aaron R., and Ira M. Hall. 2010. “BEDTools: A Flexible Suite of Utilities for Comparing 

Genomic Features.” Bioinformatics 26 (6): 841–42. 

https://doi.org/10.1093/bioinformatics/btq033. 

R Core Team. 2018. “A Language and Environment for Statistical Computing.” R Foundation for 

Statistical Computing 2: https://www.R-project.org. http://www.r-project.org. 

Rappé, Michael S., and Stephen J. Giovannoni. 2003. “The Uncultured Microbial Majority.” Annual 

Review of Microbiology 57: 369–94. https://doi.org/10.1146/annurev.micro.57.030502.090759. 

Rasekh, Behnam, Khosro Khajeh, Bijan Ranjbar, Nasrin Mollania, Banafsheh Almasinia, and Hassan 

Tirandaz. 2014. “Protein Engineering of Laccase to Enhance Its Activity and Stability in the 

Presence of Organic Solvents.” Engineering in Life Sciences 14 (4): 442–48. 

https://doi.org/10.1002/elsc.201300042. 

Ravindra, Khaiwal, Tanbir Singh, and Suman Mor. 2019. “Emissions of Air Pollutants from Primary 

Crop Residue Burning in India and Their Mitigation Strategies for Cleaner Emissions.” Journal 

of Cleaner Production 208 (January): 261–73. https://doi.org/10.1016/j.jclepro.2018.10.031. 

Ravindran, Rajeev, and Amit Kumar Jaiswal. 2016. “A Comprehensive Review on Pre-Treatment 

Strategy for Lignocellulosic Food Industry Waste: Challenges and Opportunities.” Bioresource 

Technology 199: 92–102. https://doi.org/10.1016/j.biortech.2015.07.106. 

Reid, Anne N, and Chris Whitfield. 2005. “Functional Analysis of Conserved Gene Products Involved 

in Assembly of Escherichia Coli Capsules and Exopolysaccharides: Evidence for Molecular 

Recognition between Wza and Wzc for Colanic Acid Biosynthesis.” Journal of Bacteriology 

187 (15): 5470–81. https://doi.org/10.1128/JB.187.15.5470-5481.2005. 

Rhee, Mun Su, Neha Sawhney, Young Sik Kim, Hyun Jee Rhee, Jason C. Hurlbert, Franz J. St. John, 

Guang Nong, John D. Rice, and James F. Preston. 2017. “GH115 α-Glucuronidase and GH11 

Xylanase from Paenibacillus Sp. JDR-2: Potential Roles in Processing Glucuronoxylans.” 

Applied Microbiology and Biotechnology 101 (4): 1465–76. https://doi.org/10.1007/s00253-

016-7899-4. 

Ricard, Guénola, Neil R. McEwan, Bas E. Dutilh, Jean Pierre Jouany, Didier Macheboeuf, Makoto 



Bibliography 

200 

Mitsumori, Freda M. McIntosh, et al. 2006. “Horizontal Gene Transfer from Bacteria to Rumen 

Ciliates Indicates Adaptation to Their Anaerobic, Carbohydrates-Rich Environment.” BMC 

Genomics 7 (1): 22. https://doi.org/10.1186/1471-2164-7-22. 

Richardson, Leif L., Lynn S. Adler, Anne S. Leonard, Jonathan Andicoechea, Karly H. Regan, Winston 

E. Anthony, Jessamyn S. Manson, and Rebecca E. Irwin. 2015. “Secondary Metabolites in Floral 

Nectar Reduce Parasite Infections in Bumblebees.” Proceedings of the Royal Society B: 

Biological Sciences 282 (1803). https://doi.org/10.1098/rspb.2014.2471. 

Riesenfeld, Christian S., Robert M. Goodman, and Jo Handelsman. 2004. “Uncultured Soil Bacteria 

Are a Reservoir of New Antibiotic Resistance Genes.” Environmental Microbiology 6 (9): 981–

89. https://doi.org/10.1111/j.1462-2920.2004.00664.x. 

Riley, David R., Karsten B. Sieber, Kelly M. Robinson, James Robert White, Ashwinkumar Ganesan, 

Syrus Nourbakhsh, and Julie C. Dunning Hotopp. 2013. “Bacteria-Human Somatic Cell Lateral 

Gene Transfer Is Enriched in Cancer Samples.” PLoS Computational Biology. 

https://doi.org/10.1371/journal.pcbi.1003107. 

Rinninella, Emanuele, Pauline Raoul, Marco Cintoni, Francesco Franceschi, Giacinto Abele Donato 

Miggiano, Antonio Gasbarrini, and Maria Cristina Mele. 2019. “What Is the Healthy Gut 

Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and 

Diseases.” Microorganisms 7 (1): 14. https://doi.org/10.3390/microorganisms7010014. 

Roberts, Ian S, and Chris Whitfield. 1999. “Structure , Assembly and Regulation of Expression of 

Capsules in Escherichia Coli.” Molecular Microbiology 31 (5): 1307–19. 

Roelofs, Dick, Martijn J.T.N. Timmermans, Paul Hensbergen, Hans Van Leeuwen, Jessica Koopman, 

Anna Faddeeva, Wouter Suring, et al. 2013. “A Functional Isopenicillin N Synthase in an Animal 

Genome.” Mol. Biol. Evol. 30 (3): 541–48. https://doi.org/10.1093/molbev/mss269. 

Rogers, M. John, Eric Cundliffe, and Thomas F. McCutchan. 1998. “The Antibiotic Micrococcin Is a 

Potent Inhibitor of Growth and Protein Synthesis in the Malaria Parasite.” Antimicrobial Agents 

and Chemotherapy 42 (3): 715–16. https://doi.org/10.1128/aac.42.3.715. 

Rogowski, Artur, Arnaud Baslé, Cristiane S. Farinas, Alexandra Solovyova, Jennifer C. Mortimer, Paul 

Dupree, Harry J. Gilbert, and David N. Bolam. 2014. “Evidence That GH115 α-Glucuronidase 

Activity, Which Is Required to Degrade Plant Biomass, Is Dependent on Conformational 

Flexibility.” Journal of Biological Chemistry 289 (1): 53–64. 

https://doi.org/10.1074/jbc.M113.525295. 

Rowland, Ian, Glenn Gibson, Almut Heinken, Karen Scott, Jonathan Swann, Ines Thiele, and Kieran 



Bibliography 

201 

S 

Tuohy. 2018. “Gut Microbiota Functions: Metabolism of Nutrients and Other Food 

Components.” European Journal of Nutrition. Dr. Dietrich Steinkopff Verlag GmbH and Co. 

KG. https://doi.org/10.1007/s00394-017-1445-8. 

Ruile, Peter, Christoph Winterhalter, and Wolfgang Liebl. 1997. “Isolation and Analysis of a Gene 

Encoding α-Glucuronidase, an Enzyme with a Novel Primary Structure Involved in the 

Breakdown of Xylan.” Molecular Microbiology 23 (2): 267–79. https://doi.org/10.1046/j.1365-

2958.1997.2011568.x. 

Sagné, C, M F Isambert, J P Henry, and B Gasnier. 1996. “SDS-Resistant Aggregation of Membrane 

Proteins: Application to the Purification of the Vesicular Monoamine Transporter.” The 

Biochemical Journal 316 ( Pt 3: 825–31. 

http://www.ncbi.nlm.nih.gov/pubmed/8670158%0Ahttp://www.pubmedcentral.nih.gov/articler

ender.fcgi?artid=PMC1217424. 

Saini, Jitendra Kumar, Reetu Saini, and Lakshmi Tewari. 2015. “Lignocellulosic Agriculture Wastes 

as Biomass Feedstocks for Second-Generation Bioethanol Production: Concepts and Recent 

Developments.” 3 Biotech. Springer Verlag. https://doi.org/10.1007/s13205-014-0246-5. 

Sangwan, Naseer, Fangfang Xia, and Jack A. Gilbert. 2016. “Recovering Complete and Draft 

Population Genomes from Metagenome Datasets.” Microbiome 4. 

https://doi.org/10.1186/s40168-016-0154-5. 

Schalk, Isabelle J., and Laurent Guillon. 2013. “Pyoverdine Biosynthesis and Secretion in Pseudomonas 

Aeruginosa: Implications for Metal Homeostasis.” Environmental Microbiology 15 (6): 1661–

73. https://doi.org/10.1111/1462-2920.12013. 

Schloss, Patrick D., and Jo Handelsman. 2005. “Metagenomics for Studying Unculturable 

Microorganisms: Cutting the Gordian Knot.” Genome Biology. BioMed Central. 

https://doi.org/10.1186/gb-2005-6-8-229. 

Schmid, Jochen, Volker Sieber, and Bernd Rehm. 2015. “Bacterial Exopolysaccharides: Biosynthesis 

Pathways and Engineering Strategies.” Frontiers in Microbiology 6 (MAY): 1–24. 

https://doi.org/10.3389/fmicb.2015.00496. 

Scholl, Elizabeth H., Jeffrey L. Thorne, James P. McCarter, and David Mck Bird. 2003. “Horizontally 

Transferred Genes in Plant-Parasitic Nematodes: A High-Throughput Genomic Approach.” 

Genome Biology 4 (6): R39. https://doi.org/10.1186/gb-2003-4-6-r39. 

Schröder, Gunnar, Ralf Schuelein, Maxime Quebatte, and Christoph Dehio. 2011. “Conjugative DNA 

Transfer into Human Cells by the VirB/VirD4 Type IV Secretion System of the Bacterial 



Bibliography 

202 

Pathogen Bartonella Henselae.” Proceedings of the National Academy of Sciences of the United 

States of America 108 (35): 14643–48. https://doi.org/10.1073/pnas.1019074108. 

Schutyser, Wouter, Tom Renders, Gil Van den Bossche, Sander Van den Bosch, Steven-Friso 

Koelewijn, Thijs Ennaert, and Bert F. Sels. 2017. “Catalysis in Lignocellulosic Biorefineries: 

The Case of Lignin Conversion.” In Nanotechnology in Catalysis, 537–84. Weinheim, Germany: 

Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527699827.ch23. 

Scully, Erin D., Scott M. Geib, Kelli Hoover, Ming Tien, Susannah G. Tringe, Kerrie W. Barry, Tijana 

Glavina del Rio, Mansi Chovatia, Joshua R. Herr, and John E. Carlson. 2013. “Metagenomic 

Profiling Reveals Lignocellulose Degrading System in a Microbial Community Associated with 

a Wood-Feeding Beetle.” PLoS ONE 8 (9). https://doi.org/10.1371/journal.pone.0073827. 

Sebastian, Raveendar, Jae-Young Kim, Tae-Hun Kim, and Kyung-Tai Lee. 2013. “Metagenomics: A 

Promising Approach to Assess Enzymes Biocatalyst for Biofuel Production.” Asian Journal of 

Biotechnology 5 (2): 33–50. https://doi.org/10.3923/ajbkr.2013.33.50. 

Septiningrum, Krisna, Hiroshi Ohi, Rattiya Waeonukul, Patthra Pason, Chakrit Tachaapaikoon, 

Khanok Ratanakhanokchai, Junjarus Sermsathanaswadi, Lan Deng, Panida Prawitwong, and 

Akihiko Kosugi. 2015. “The GH67 α-Glucuronidase of Paenibacillus Curdlanolyticus B-6 

Removes Hexenuronic Acid Groups and Facilitates Biodegradation of the Model 

Xylooligosaccharide Hexenuronosyl Xylotriose.” Enzyme and Microbial Technology 71: 28–35. 

https://doi.org/10.1016/j.enzmictec.2015.01.006. 

Shannon, A. L., G. Attwood, D. H. Hopcroft, and J. T. Christeller. 2001. “Characterization of Lactic 

Acid Bacteria in the Larval Midgut of the Keratinophagous Lepidopteran, Hofmannophila 

Pseudospretella.” Letters in Applied Microbiology 32 (1): 36–41. https://doi.org/10.1046/j.1472-

765X.2001.00854.x. 

Shelomi, Matan, Irnayuli R. Sitepu, Kyria L. Boundy-Mills, and Lynn S. Kimsey. 2015. “Review of 

the Gross Anatomy and Microbiology of the Phasmatodea Digestive Tract.” Journal of 

Orthoptera Research 24 (1): 29–40. https://doi.org/10.1665/034.024.0105. 

Shiner, Erin K., Kendra P. Rumbaugh, and Simon C. Williams. 2005. “Interkingdom Signaling: 

Deciphering the Language of Acyl Homoserine Lactones.” FEMS Microbiology Reviews 29 (5): 

935–47. https://doi.org/10.1016/j.femsre.2005.03.001. 

Sievers, Fabian, Andreas Wilm, David Dineen, Toby J. Gibson, Kevin Karplus, Weizhong Li, Rodrigo 

Lopez, et al. 2011. “Fast, Scalable Generation of High-Quality Protein Multiple Sequence 

Alignments Using Clustal Omega.” Molecular Systems Biology 7 (1): 539. 

https://doi.org/10.1038/msb.2011.75. 



Bibliography 

203 

S 

Siezen, Roland J., Jumamurat R. Bayjanov, Giovanna E. Felis, Marijke R. van der Sijde, Marjo 

Starrenburg, Douwe Molenaar, Michiel Wels, Sacha A. F. T. van Hijum, and Johan E. T. van 

Hylckama Vlieg. 2011. “Genome-Scale Diversity and Niche Adaptation Analysis of 

Lactococcus Lactis by Comparative Genome Hybridization Using Multi-Strain Arrays.” 

Microbial Biotechnology 4 (3): 383–402. https://doi.org/10.1111/j.1751-7915.2011.00247.x. 

Singh, Pranveer, Likhesh Sharma, S. Rajendra Kulothungan, Bharat V. Adkar, Ravindra Singh 

Prajapati, P. Shaik Syed Ali, Beena Krishnan, and Raghavan Varadarajan. 2013. “Effect of 

Signal Peptide on Stability and Folding of Escherichia Coli Thioredoxin.” PLoS ONE 8 (5). 

https://doi.org/10.1371/journal.pone.0063442. 

Smith, Chad C., Robert B. Srygley, Frank Healy, Karthikeyan Swaminath, and Ulrich G. Mueller. 2017. 

“Spatial Structure of the Mormon Cricket Gut Microbiome and Its Predicted Contribution to 

Nutrition and Immune Function.” Frontiers in Microbiology 8 (MAY). 

https://doi.org/10.3389/fmicb.2017.00801. 

Smith, Matthew A., Andrea Rentmeister, Christopher D. Snow, Timothy Wu, Mary F. Farrow, Florence 

Mingardon, and Frances H. Arnold. 2012. “A Diverse Set of Family 48 Bacterial Glycoside 

Hydrolase Cellulases Created by Structure-Guided Recombination.” FEBS Journal 279 (24): 

4453–65. https://doi.org/10.1111/febs.12032. 

Sohn, Jang Il, and Jin Wu Nam. 2018. “The Present and Future of de Novo Whole-Genome Assembly.” 

Briefings in Bioinformatics 19 (1): 23–40. https://doi.org/10.1093/bib/bbw096. 

Soucy, Shannon M., Jinling Huang, and Johann Peter Gogarten. 2015. “Horizontal Gene Transfer: 

Building the Web of Life.” Nature Reviews Genetics 16 (8): 472–82. 

https://doi.org/10.1038/nrg3962. 

Souza, Wagner Rodrigo de. 2013. “Microbial Degradation of Lignocellulosic Biomass.” In Sustainable 

Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization. 

https://doi.org/10.5772/54325. 

Sowani, Harshada, Mohan Kulkarni, and Smita Zinjarde. 2018. “An Insight into the Ecology, Diversity 

and Adaptations of Gordonia Species.” Critical Reviews in Microbiology 44 (4): 393–413. 

https://doi.org/10.1080/1040841X.2017.1418286. 

Spriestersbach, Anne, Jan Kubicek, Frank Schäfer, Helena Block, and Barbara Maertens. 2015. 

“Purification of His-Tagged Proteins.” In Methods in Enzymology, 559:1–15. Academic Press 

Inc. https://doi.org/10.1016/bs.mie.2014.11.003. 

Stark, Lucy, Tina Giersch, and Röbbe Wünschiers. 2014. “Efficiency of RNA Extraction from Selected 



Bibliography 

204 

Bacteria in the Context of Biogas Production and Metatranscriptomics.” Anaerobe 29 (October): 

85–90. https://doi.org/10.1016/j.anaerobe.2013.09.007. 

Stevenson, Gordon, Kanella Andrianopoulos, Matthew Hobbs, and Peter R Reeves. 2006. 

“Organization of the Escherichia Coli K-12 Gene Cluster Responsible for Production of the 

Extracellular Polysaccharide Colanic Acid Downloaded from Http://Jb.Asm.Org/ on February 

24 , 2015 by Tamil Nadu Veterinary & Animal Science University.” Journal of Bacteriology 

178 (16): 4885–93. http://jb.asm.org/. 

Stewart, Christopher J., Nicholas D. Embleton, Emma C.L. Marrs, Daniel P. Smith, Tatiana Fofanova, 

Andrew Nelson, Tom Skeath, et al. 2017. “Longitudinal Development of the Gut Microbiome 

and Metabolome in Preterm Neonates with Late Onset Sepsis and Healthy Controls.” 

Microbiome 5 (1): 75. https://doi.org/10.1186/s40168-017-0295-1. 

Streit, Wolfgang R., and Ruth A. Schmitz. 2004. “Metagenomics - The Key to the Uncultured 

Microbes.” Current Opinion in Microbiology 7 (5): 492–98. 

https://doi.org/10.1016/j.mib.2004.08.002. 

Su, Lijuan, Lele Yang, Shi Huang, Yan Li, Xiaoquan Su, Fengqin Wang, Cunpei Bo, En Tao Wang, 

and Andong Song. 2017. “Variation in the Gut Microbiota of Termites (Tsaitermes Ampliceps) 

Against Different Diets.” Applied Biochemistry and Biotechnology 181 (1): 32–47. 

https://doi.org/10.1007/s12010-016-2197-2. 

Suen, Garret, Jarrod J. Scott, Frank O. Aylward, Sandra M. Adams, Susannah G. Tringe, Adrián A. 

Pinto-Tomás, Clifton E. Foster, et al. 2010. “An Insect Herbivore Microbiome with High Plant 

Biomass-Degrading Capacity.” PLoS Genetics. https://doi.org/10.1371/journal.pgen.1001129. 

Sundset, Monica A., Kirsti E. Præsteng, Isaac K.O. Cann, Svein D. Mathiesen, and Roderick I. MacKie. 

2007. “Novel Rumen Bacterial Diversity in Two Geographically Separated Sub-Species of 

Reindeer.” Microbial Ecology 54 (3): 424–38. https://doi.org/10.1007/s00248-007-9254-x. 

Suresh, Cuddapah, Ahmed Abu Rus’d, Motomitsu Kitaoka, and Kiyoshi Hayashi. 2002. “Evidence 

That the Putative α-Glucosidase of Thermotoga Maritima MSB8 Is a PNP α-D-

Glucuronopyranoside Hydrolyzing α-Glucuronidase.” FEBS Letters 517 (1–3): 159–62. 

https://doi.org/10.1016/S0014-5793(02)02611-X. 

Suring, Wouter, Janine Mariën, Rhody Broekman, Nico M. Van Straalen, and Dick Roelofs. 2016. 

“Biochemical Pathways Supporting Beta-Lactam Biosynthesis in the Springtail Folsomia 

Candida.” Biology Open 5 (12): 1784–89. https://doi.org/10.1242/bio.019620. 

Suring, Wouter, Karen Meusemann, Alexander Blanke, Janine Mariën, Tim Schol, Valeria 



Bibliography 

205 

S 

Agamennone, Anna Faddeeva-Vakhrusheva, et al. 2017. “Evolutionary Ecology of Beta-Lactam 

Gene Clusters in Animals.” Molecular Ecology 26 (12): 3217–29. 

https://doi.org/10.1111/mec.14109. 

Susmel, P., and B. Stefanon. 1993. “Aspects of Lignin Degradation by Rumen Microorganisms.” 

Journal of Biotechnology 30 (1): 141–48. https://doi.org/10.1016/0168-1656(93)90035-L. 

Sützl, Leander, Christophe V.F.P. Laurent, Annabelle T. Abrera, Georg Schütz, Roland Ludwig, and 

Dietmar Haltrich. 2018. “Multiplicity of Enzymatic Functions in the CAZy AA3 Family.” 

Applied Microbiology and Biotechnology 102 (6): 2477–92. https://doi.org/10.1007/s00253-

018-8784-0. 

Sweeney, Matt D., and Feng Xu. 2012. “Biomass Converting Enzymes as Industrial Biocatalysts for 

Fuels and Chemicals: Recent Developments.” Catalysts 2 (2): 244–63. 

https://doi.org/10.3390/catal2020244. 

Tai, Vera, Erick R. James, Christine A. Nalep, Rudolf H. Scheffrahn, Steve J. Perlman, and Patrick J. 

Keelinga. 2015. “The Role of Host Phylogeny Varies in Shaping Microbial Diversity in the 

Hindguts of Lower Termites.” Edited by C. R. Lovell. Applied and Environmental Microbiology 

81 (3): 1059–70. https://doi.org/10.1128/AEM.02945-14. 

Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura, and Y. Benno. 2001. “Diet-

Dependent Shifts in the Bacterial Population of the Rumen Revealed with Real-Time PCR.” 

Applied and Environmental Microbiology 67 (6): 2766–74. 

https://doi.org/10.1128/AEM.67.6.2766-2774.2001. 

Tauzin, Alexandra S., Elisabeth Laville, Yao Xiao, Sébastien Nouaille, Pascal Le Bourgeois, Stéphanie 

Heux, Jean Charles Portais, et al. 2016. “Functional Characterization of a Gene Locus from an 

Uncultured Gut Bacteroides Conferring Xylo-Oligosaccharides Utilization to Escherichia Coli.” 

Molecular Microbiology 102 (4): 579–92. https://doi.org/10.1111/mmi.13480. 

Taylor, Martin J., Hassan A. Alabdrabalameer, and Vasiliki Skoulou. 2019. “Choosing Physical, 

Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose 

into Solid Fuels.” Sustainability (Switzerland) 11 (13). https://doi.org/10.3390/su11133604. 

Taylor, Maureen E., and Kurt Drickamer. 2014. “Convergent and Divergent Mechanisms of Sugar 

Recognition across Kingdoms.” Current Opinion in Structural Biology. Elsevier Ltd. 

https://doi.org/10.1016/j.sbi.2014.07.003. 

Tessler, Michael, Johannes S. Neumann, Ebrahim Afshinnekoo, Michael Pineda, Rebecca Hersch, Luiz 

Felipe M. Velho, Bianca T. Segovia, et al. 2017. “Large-Scale Differences in Microbial 



Bibliography 

206 

Biodiversity Discovery between 16S Amplicon and Shotgun Sequencing.” Scientific Reports 7 

(1). https://doi.org/10.1038/s41598-017-06665-3. 

Thakur, Abhijeet, Kedar Sharma, and Arun Goyal. 2019. “α-l-Arabinofuranosidase: A Potential 

Enzyme for the Food Industry.” In , 229–44. https://doi.org/10.1007/978-981-13-3263-0_12. 

Thimm, Torsten, Andrea Hoffmann, Heinz Borkott, Jean Charles Munch, and Christoph C. Tebbe. 

1998. “The Gut of the Soil Microarthropod Folsomia Candida (Collembola) Is a Frequently 

Changeable but Selective Habitat and a Vector for Microorganisms.” Appl. Environ. Microbiol. 

64 (7): 2660–69. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC106441/pdf/am002660.pdf. 

Thursby, Elizabeth, and Nathalie Juge. 2017. “Introduction to the Human Gut Microbiota.” 

Biochemical Journal. Portland Press Ltd. https://doi.org/10.1042/BCJ20160510. 

Tian, Shijing, Muhammad Ali, Li Xie, and Lin Li. 2016. “Genome-Sequence Analysis of Acinetobacter 

Johnsonii MB44 Reveals Potential Nematode-Virulent Factors.” SpringerPlus. 

https://doi.org/10.1186/s40064-016-2668-5. 

Till, M., D. Goldstone, G. Card, G. T. Attwood, C. D. Moon, and V. L. Arcus. 2014. “ Structural 

Analysis of the GH43 Enzyme Xsa43E from Butyrivibrio Proteoclasticus .” Acta 

Crystallographica Section F Structural Biology Communications 70 (9): 1193–98. 

https://doi.org/10.1107/s2053230x14014745. 

Tiwari, Pragya, B. N. Misra, and Neelam S. Sangwan. 2013. “β -Glucosidases from the Fungus 

Trichoderma: An Efficient Cellulase Machinery in Biotechnological Applications.” BioMed 

Research International 2013. https://doi.org/10.1155/2013/203735. 

Truong, Duy Tin, Eric A. Franzosa, Timothy L. Tickle, Matthias Scholz, George Weingart, Edoardo 

Pasolli, Adrian Tett, Curtis Huttenhower, and Nicola Segata. 2015. “MetaPhlAn2 for Enhanced 

Metagenomic Taxonomic Profiling.” Nature Methods. Nature Publishing Group. 

https://doi.org/10.1038/nmeth.3589. 

Tsirigotaki, Alexandra, Jozefien De Geyter, Nikolina Šoštarić, Anastassios Economou, and Spyridoula 

Karamanou. 2017. “Protein Export through the Bacterial Sec Pathway.” Nature Reviews 

Microbiology 15 (1): 21–36. https://doi.org/10.1038/nrmicro.2016.161. 

Um, Soohyun, Antoine Fraimout, Panagiotis Sapountzis, Dong Chan Oh, and Michael Poulsen. 2013. 

“The Fungus-Growing Termite Macrotermes Natalensis Harbors Bacillaene-Producing Bacillus 

Sp. That Inhibit Potentially Antagonistic Fungi.” Scientific Reports 3 (1): 1–7. 

https://doi.org/10.1038/srep03250. 

Valdes, Ana M., Jens Walter, Eran Segal, and Tim D. Spector. 2018. “Role of the Gut Microbiota in 



Bibliography 

207 

S 

Nutrition and Health.” BMJ 361: 36–44. https://doi.org/10.1136/bmj.k2179. 

Valvano, Miguel A, Sarah E Furlong, and Kinnari B Patel. 2011. Bacterial Lipopolysaccharides. 

https://doi.org/10.1007/978-3-7091-0733-1. 

Vandermarliere, Elien, Tine M. Bourgois, Martyn D. Winn, Steven Van Campenhout, Guido Volckaert, 

Jan A. Delcour, Sergei V. Strelkov, Anja Rabijns, and Christophe M. Courtin. 2009. “Structural 

Analysis of a Glycoside Hydrolase Family 43 Arabinoxylan Arabinofuranohydrolase in 

Complex with Xylotetraose Reveals a Different Binding Mechanism Compared with Other 

Members of the Same Family.” Biochemical Journal 418 (1): 39–47. 

https://doi.org/10.1042/BJ20081256. 

Várnai, Anikó, Laura Huikko, Jaakko Pere, Matti Siika-aho, and Liisa Viikari. 2011. “Synergistic 

Action of Xylanase and Mannanase Improves the Total Hydrolysis of Softwood.” Bioresource 

Technology 102 (19): 9096–9104. https://doi.org/10.1016/j.biortech.2011.06.059. 

Vásquez, Alejandra, Eva Forsgren, Ingemar Fries, Robert J. Paxton, Emilie Flaberg, Laszlo Szekely, 

and Tobias C. Olofsson. 2012. “Symbionts as Major Modulators of Insect Health: Lactic Acid 

Bacteria and Honeybees.” PLoS ONE 7 (3). https://doi.org/10.1371/journal.pone.0033188. 

Vinés, Enrique D., Cristina L. Marolda, Aran Balachandran, and Miguel A. Valvano. 2005. “Defective 

O-Antigen Polymerization in TolA and Pal Mutants of Escherichia Coli in Response to 

Extracytoplasmic Stress.” Journal of Bacteriology 187 (10): 3359–68. 

https://doi.org/10.1128/JB.187.10.3359-3368.2005. 

Wade, W. 2002. “Unculturable Bacteria - The Uncharacterized Organisms That Cause Oral Infections.” 

In Journal of the Royal Society of Medicine, 95:81–83. Royal Society of Medicine Press. 

https://doi.org/10.1258/jrsm.95.2.81. 

Wang, Guozeng, Huiying Luo, Kun Meng, Yaru Wang, Huoqing Huang, Pengjun Shi, Xia Pan, et al. 

2011. “High Genetic Diversity and Different Distributions of Glycosyl Hydrolase Family 10 and 

11 Xylanases in the Goat Rumen.” PLoS ONE 6 (2). 

https://doi.org/10.1371/journal.pone.0016731. 

Wang, Guozeng, Huiying Luo, Yaru Wang, Huoqing Huang, Pengjun Shi, Peilong Yang, Kun Meng, 

Yingguo Bai, and Bin Yao. 2011. “A Novel Cold-Active Xylanase Gene from the Environmental 

DNA of Goat Rumen Contents: Direct Cloning, Expression and Enzyme Characterization.” 

Bioresource Technology 102 (3): 3330–36. https://doi.org/10.1016/j.biortech.2010.11.004. 

Wang, Lin, Yu Feng, Jianqing Tian, Meichun Xiang, Jingzu Sun, Jianqing Ding, Wen Bing Yin, Marc 

Stadler, Yongsheng Che, and Xingzhong Liu. 2015. “Farming of a Defensive Fungal Mutualist 



Bibliography 

208 

by an Attelabid Weevil.” ISME Journal 9 (8): 1793–1801. 

https://doi.org/10.1038/ismej.2014.263. 

Wang, Lingling, Ayat Hatem, Umit V. Catalyurek, Mark Morrison, and Zhongtang Yu. 2013. 

“Metagenomic Insights into the Carbohydrate-Active Enzymes Carried by the Microorganisms 

Adhering to Solid Digesta in the Rumen of Cows.” Edited by Hauke Smidt. PLoS ONE 8 (11): 

e78507. https://doi.org/10.1371/journal.pone.0078507. 

Wang, Xue, Haibo Zhou, Hanna Chen, Xiaoshu Jing, Wentao Zheng, Ruijuan Li, Tao Sun, et al. 2018. 

“Discovery of Recombinases Enables Genome Mining of Cryptic Biosynthetic Gene Clusters in 

Burkholderiales Species.” Proceedings of the National Academy of Sciences of the United States 

of America 115 (18): E4255–63. https://doi.org/10.1073/pnas.1720941115. 

Wang, Yaru, Huiying Luo, Wenxia Yang, Peilong Yang, Pengjun Shi, Bin Yao, Huoqing Huang, Kun 

Meng, and Yingguo Bai. 2015. “A Novel Bifunctional GH51 Exo-α-l-

Arabinofuranosidase/Endo-Xylanase from Alicyclobacillus Sp. A4 with Significant Biomass-

Degrading Capacity.” Biotechnology for Biofuels 8 (1): 197. https://doi.org/10.1186/s13068-

015-0366-0. 

Wang, Yong, Jiao Mei Huang, Ying Li Zhou, Alexandre Almeida, Robert D. Finn, Antoine Danchin, 

and Li Sheng He. 2020. “Phylogenomics of Expanding Uncultured Environmental Tenericutes 

Provides Insights into Their Pathogenicity and Evolutionary Relationship with Bacilli.” BMC 

Genomics 21 (1): 408. https://doi.org/10.1186/s12864-020-06807-4. 

Warnecke, Falk, Peter Luginbühl, Natalia Ivanova, Majid Ghassemian, Toby H. Richardson, Justin T. 

Stege, Michelle Cayouette, et al. 2007. “Metagenomic and Functional Analysis of Hindgut 

Microbiota of a Wood-Feeding Higher Termite.” Nature 450 (7169): 560–65. 

https://doi.org/10.1038/nature06269. 

Waterhouse, Andrew, Martino Bertoni, Stefan Bienert, Gabriel Studer, Gerardo Tauriello, Rafal 

Gumienny, Florian T. Heer, et al. 2018. “SWISS-MODEL: Homology Modelling of Protein 

Structures and Complexes.” Nucleic Acids Research 46 (W1): W296–303. 

https://doi.org/10.1093/nar/gky427. 

Watford, Shelby, and Steven J. Warrington. 2018. Bacterial DNA Mutations. StatPearls. StatPearls 

Publishing. http://www.ncbi.nlm.nih.gov/pubmed/29083710. 

Weber, Tilmann, Kai Blin, Srikanth Duddela, Daniel Krug, Hyun Uk Kim, Robert Bruccoleri, Sang 

Yup Lee, et al. 2015. “AntiSMASH 3.0-A Comprehensive Resource for the Genome Mining of 

Biosynthetic Gene Clusters.” Nucleic Acids Research 43 (W1): W237–43. 

https://doi.org/10.1093/nar/gkv437. 



Bibliography 

209 

S 

Whitney, J. C., and P. L. Howell. 2013. “Synthase-Dependent Exopolysaccharide Secretion in Gram-

Negative Bacteria.” Trends in Microbiology 21 (2): 63–72. 

https://doi.org/10.1016/j.tim.2012.10.001. 

Wi, Seung Gon, In Seong Choi, Kyoung Hyoun Kim, Ho Myeong Kim, and Hyeun Jong Bae. 2013. 

“Bioethanol Production from Rice Straw by Popping Pretreatment.” Biotechnology for Biofuels 

6 (1): 166. https://doi.org/10.1186/1754-6834-6-166. 

Wickham, Hadley. 2009. Ggplot2. Ggplot2. Springer New York. https://doi.org/10.1007/978-0-387-

98141-3. 

Wilkins, Laetitia G.E., Matthieu Leray, Aaron O’Dea, Benedict Yuen, Raquel S. Peixoto, Tiago J. 

Pereira, Holly M. Bik, et al. 2019. “Host-Associated Microbiomes Drive Structure and Function 

of Marine Ecosystems.” PLoS Biology 17 (11): e3000533. 

https://doi.org/10.1371/journal.pbio.3000533. 

Wilmanski, Tomasz, Christian Diener, Noa Rappaport, Sushmita Patwardhan, Jack Wiedrick, Jodi 

Lapidus, John C. Earls, et al. 2020. “Gut Microbiome Pattern Reflects Healthy Aging and 

Predicts Extended Survival in Humans.” BioRxiv 3 (2): 274–86. 

https://doi.org/10.1101/2020.02.26.966747. 

Wilson, David B. 2008. “Three Microbial Strategies for Plant Cell Wall Degradation.” Annals of the 

New York Academy of Sciences 1125: 289–97. https://doi.org/10.1196/annals.1419.026. 

Wong, Chun Nin Adam, Patrick Ng, and Angela E. Douglas. 2011. “Low-Diversity Bacterial 

Community in the Gut of the Fruitfly Drosophila Melanogaster.” Environmental Microbiology 

13 (7): 1889–1900. https://doi.org/10.1111/j.1462-2920.2011.02511.x. 

Wood, Derrick E., Jennifer Lu, and Ben Langmead. 2019. “Improved Metagenomic Analysis with 

Kraken 2.” BioRxiv 20 (1): 1–13. https://doi.org/10.1101/762302. 

Wood, Derrick E, and Steven L Salzberg. 2014. “Kraken: Ultrafast Metagenomic Sequence 

Classification Using Exact Alignments.” Genome Biology 15 (3): R46. 

https://doi.org/10.1186/gb-2014-15-3-r46. 

Xiao, Chaowen, and Charles T. Anderson. 2013. “Roles of Pectin in Biomass Yield and Processing for 

Biofuels.” Frontiers in Plant Science. Frontiers Research Foundation. 

https://doi.org/10.3389/fpls.2013.00067. 

Xiaohui Zhang, Melissa R Jacob, R Ranga Rao, Yan-Hong Wang, Ameeta K Agarwal, David J 

Newman, Ikhlas A Khan, Alice M Clark, and Xing-Cong Li. 2012. “Antifungal Cyclic Peptides 

from the Marine Sponge Microscleroderma Herdmani.” Research and Reports in Medicinal 



Bibliography 

210 

Chemistry 2 (May): 7. https://doi.org/10.2147/rrmc.s30895. 

Xie, Shangxian, Ryan Syrenne, Su Sun, and Joshua S. Yuan. 2014. “Exploration of Natural Biomass 

Utilization Systems (NBUS) for Advanced Biofuel-from Systems Biology to Synthetic Design.” 

Current Opinion in Biotechnology. Elsevier Ltd. https://doi.org/10.1016/j.copbio.2014.02.007. 

Xu, Jing, Han Zhang, Jinfang Zheng, Philippe Dovoedo, and Yanbin Yin. 2020. “ECAMI: 

Simultaneous Classification and Motif Identification for Enzyme Annotation.” Edited by Jinbo 

Xu. Bioinformatics 36 (7): 2068–75. https://doi.org/10.1093/bioinformatics/btz908. 

Xu, Zhongli, Kathrin Jakobi, Katrin Welzel, and Christian Hertweck. 2005. “Biosynthesis of the 

Antitumor Agent Chartreusin Involves the Oxidative Rearrangement of an Anthracyclic 

Polyketide.” Chemistry and Biology 12 (5): 579–88. 

https://doi.org/10.1016/j.chembiol.2005.04.017. 

Yadav, Meera, and H. S. Yadav. 2015. “Applications of Ligninolytic Enzymes to Pollutants, 

Wastewater, Dyes, Soil, Coal, Paper and Polymers.” Environmental Chemistry Letters. Springer 

Verlag. https://doi.org/10.1007/s10311-015-0516-4. 

Yang, Shih-Chun, Chih-Hung Lin, Calvin T. Sung, and Jia-You Fang. 2014. “Antibacterial Activities 

of Bacteriocins: Application in Foods and Pharmaceuticals.” Frontiers in Microbiology 5 

(MAY): 241. https://doi.org/10.3389/fmicb.2014.00241. 

Ye, Xiaokun, Zhen Zhang, Yuancai Chen, Jiaqi Cheng, Zhenghua Tang, and Yongyou Hu. 2016. 

“Physico-Chemical Pretreatment Technologies of Bioconversion Efficiency of Paulownia 

Tomentosa (Thunb.) Steud.” Industrial Crops and Products 87 (September): 280–86. 

https://doi.org/10.1016/j.indcrop.2016.04.045. 

Yin, Yanbin, Xizeng Mao, Jincai Yang, Xin Chen, Fenglou Mao, and Ying Xu. 2012. “DbCAN: A 

Web Resource for Automated Carbohydrate-Active Enzyme Annotation.” Nucleic Acids 

Research 40 (W1). https://doi.org/10.1093/nar/gks479. 

Yoav, Shahar, Johanna Stern, Orly Salama-Alber, Felix Frolow, Michael Anbar, Alon Karpol, Yitzhak 

Hadar, Ely Morag, and Edward A. Bayer. 2019. “Directed Evolution of Clostridium 

Thermocellum β-Glucosidase a towards Enhanced Thermostability.” International Journal of 

Molecular Sciences 20 (19): 4701. https://doi.org/10.3390/ijms20194701. 

Yonehara, Hiroshi, Haruo Seto, Shojiro Aizawa, Tetsuro Hidaka, Akira Shimazu, and Noboru Ōtake. 

1968. “The Detoxin Complex, Selective Antagonists of Blasticidin S.” Journal of Antibiotics. J 

Antibiot (Tokyo). https://doi.org/10.7164/antibiotics.21.369. 

Yoon, Sang Hwal, Tae Seok Moon, Pooya Iranpour, Amanda M Lanza, and Kristala Jones Prather. 



Bibliography 

211 

S 

2009. “Cloning and Characterization of Uronate Dehydrogenases from Two Pseudomonads and 

Agrobacterium Tumefaciens Strain C58.” Journal of Bacteriology 191 (5): 1565–73. 

https://doi.org/10.1128/JB.00586-08. 

Yoshida, Yuki, Georgios Koutsovoulos, Dominik R. Laetsch, Lewis Stevens, Sujai Kumar, Daiki D. 

Horikawa, Kyoko Ishino, et al. 2017. Comparative Genomics of the Tardigrades Hypsibius 

Dujardini and Ramazzottius Varieornatus. BioRxiv. Vol. 15. Public Library of Science. 

https://doi.org/10.1101/112664. 

You, Minsheng, Zhen Yue, Weiyi He, Xinhua Yang, Guang Yang, Miao Xie, Dongliang Zhan, et al. 

2013. “A Heterozygous Moth Genome Provides Insights into Herbivory and Detoxification.” 

Nature Genetics 45 (2): 220–25. https://doi.org/10.1038/ng.2524. 

Yun, Ji Hyun, Seong Woon Roh, Tae Woong Whon, Mi Ja Jung, Min Soo Kim, Doo Sang Park, 

Changmann Yoon, et al. 2014. “Insect Gut Bacterial Diversity Determined by Environmental 

Habitat, Diet, Developmental Stage, and Phylogeny of Host.” Applied and Environmental 

Microbiology 80 (17): 5254–64. https://doi.org/10.1128/AEM.01226-14. 

Zaide, Galia, Dalia Shallom, Smadar Shulami, Gennady Zolotnitsky, Gali Golan, Timor Baasov, Gil 

Shoham, and Yuval Shoham. 2001. “Biochemical Characterization and Identification of 

Catalytic Residues in α-Glucuronidase from Bacillus Stearothermophilus T-6.” European 

Journal of Biochemistry 268 (10): 3006–16. https://doi.org/10.1046/j.1432-1327.2001.02193.x. 

Zhang, Han, Tanner Yohe, Le Huang, Sarah Entwistle, Peizhi Wu, Zhenglu Yang, Peter K. Busk, Ying 

Xu, and Yanbin Yin. 2018. “DbCAN2: A Meta Server for Automated Carbohydrate-Active 

Enzyme Annotation.” Nucleic Acids Research 46 (W1): W95–101. 

https://doi.org/10.1093/nar/gky418. 

Zhao, Zhongtao, Huiquan Liu, Chenfang Wang, and Jin Rong Xu. 2013. “Comparative Analysis of 

Fungal Genomes Reveals Different Plant Cell Wall Degrading Capacity in Fungi.” BMC 

Genomics 14 (1): 274. https://doi.org/10.1186/1471-2164-14-274. 

Zheng, Yu, Ayana Saitou, Chiung Mei Wang, Atsushi Toyoda, Yohei Minakuchi, Yuji Sekiguchi, 

Kenji Ueda, et al. 2019. “Genome Features and Secondary Metabolites Biosynthetic Potential of 

the Class Ktedonobacteria.” Frontiers in Microbiology 10 (APR): 893. 

https://doi.org/10.3389/fmicb.2019.00893. 

Zhou, Tao, Yemin Xue, Fengjiao Ren, and Yuanyuan Dong. 2018. “Antioxidant Activity of 

Xylooligosaccharides Prepared from Thermotoga Maritima Using Recombinant Enzyme 

Cocktail of β-Xylanase and α-Glucuronidase.” Journal of Carbohydrate Chemistry 37 (4): 210–

24. https://doi.org/10.1080/07328303.2018.1455843. 



Bibliography 

212 

Zhu, Ning, Jinshui Yang, Lei Ji, Jiawen Liu, Yi Yang, and Hongli Yuan. 2016. “Metagenomic and 

Metaproteomic Analyses of a Corn Stover-Adapted Microbial Consortium EMSD5 Reveal Its 

Taxonomic and Enzymatic Basis for Degrading Lignocellulose.” Biotechnology for Biofuels 9 

(1). https://doi.org/10.1186/s13068-016-0658-z. 

Zhu, Wenhan, Alexandre Lomsadze, and Mark Borodovsky. 2010. “Ab Initio Gene Identification in 

Metagenomic Sequences.” Nucleic Acids Research 38 (12): e132. 

https://doi.org/10.1093/nar/gkq275. 

Zhu, Zhi, Suqin Hang, Shengyong Mao, and Weiyun Zhu. 2014. “Diversity of Butyrivibrio Group 

Bacteria in the Rumen of Goats and Its Response to the Supplementation of Garlic Oil.” Asian-

Australasian Journal of Animal Sciences 27 (2): 179–86. 

https://doi.org/10.5713/ajas.2013.13373. 

 

 

 

 

  



Summary 

213 

S 

Summary 

ISOLATION AND CHARACTERIZATION OF NOVEL ENZYMATIC 

ACTIVITIES FROM GUT METAGENOMES TO SUPPORT 

LIGNOCELLULOSE BREAKDOWN 

The agricultural sector produces a large amount of organic waste as by-products (crop 

remains, foliage, seed pods, straw, etc.). Currently, these materials are not properly treated 

and their uncontrolled disposal can lead to many problems. In many countries crop remains 

are burned on the field, sometimes causing severe air pollution as well as damage health. 

This contributes to climate change and could impact the climate further to the point of 

irreversible damage. To realize a sustainable agriculture, organic wastes should not be 

disposed or burned but used as a cheap source for biomaterials. In line with the philosophy 

of the bio-based economy, agricultural waste is recycled and used as raw material in the 

chemical industry, replacing fossil fuels. However, the process of converting agricultural 

waste into useful products is not efficient and can be improved further for optimization. 

One of the dominant components of agricultural waste is lignocellulose, a complex 

biomaterial that is difficult to handle. To break down this complex structure, large amounts 

of energy or chemicals for treatment are required. This thesis aims to explore novel natural 

biological catalysts that can help to degrade lignocellulose and deliver useful compounds for 

the bio-based chemical industry. 

To discover such novel catalysts, I looked at the digestive systems of a number of different 

animals: goats, springtails, isopods and termites. Animal guts are mini ecosystems that 

contain many unknown interesting bacteria. These microorganisms are adapted to the host 

and might have interesting properties that can be explored. By looking at these organisms 

and their catalysts it is possible to identify and mine novel genes that can be used to 

breakdown biomass. This process creates substrates that can be used for many other 

procedures. 

In this thesis my main focus was on enzymes that can break down carbohydrates. The various 

bonds in complex carbohydrate molecules are cleaved by different enzymes. Every bacterium 

has a suit of carbohydrate-active enzymes, called CAZymes. Using metagenomics and 
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bioinformatic tools, I explored the genomes of microbial communities in search of novel 

CAZymes. Unlike traditional culturing methods, metagenomics is aimed at the whole 

genome of the communities involved, that is, all bacteria jointly. In addition, I also 

investigated genes encoding antibiotic resistance, and the production of secondary 

metabolites since these two gene categories greatly contribute to the survival of bacteria in 

complex microbial communities. This provided a better understanding about the bacterial 

contribution to the host and within the bacterial community. 

In Chapter 2 a metagenomic approach was applied to identify the bacterial species and their 

gene complements in the guts of the Ninh Binh’s mountain goats. These goats from Vietnam 

feed on grass as well as woody plants and so have a large number of carbohydrate degrading 

enzymes. In our survey, we identified 821 carbohydrate esterases and polysaccharide lyases, 

816 cellulases and 2,252 hemicelullases. A promising protein with a carbohydrate-binding 

domain was recombinantly expressed in Escherichia coli and its catalytic activity studied. 

The protein accelerated the action of a commercial cellulase in the degradation of paper. 

In Chapter 3, we looked at the functional potential of the microbiome associated with the 

springtail Folsomia candida. Springtails (Collembola) are invertebrates that feed on dead 

organic material and fungi and so are expected to harbor a specialized microbial community 

to aid in digestion. Using a bioinformatics approach, we focused on carbohydrate metabolism 

functions, as well as antibiotic biosynthesis gene clusters and secondary metabolites. In the 

microbiome, we found several genes with strong homology to genes in the F. candida 

genome, that were previously identified as genes resulting from horizontal gene transfer. 

These genes are part of the soil-adaptive repertoire as they help the springtails to degrade 

recalcitrant compounds and defense against pathogens. The microbiome constitutes an 

important source of new functions for the springtail. 

In Chapter 4, the gut microbiomes of the three invertebrates: springtails, isopods and termites 

were compared. While springtails are mostly fungivorous, isopods are detritivores and 

termites can degrade woody materials. The analysis revealed an enormous diversity of gut 

bacteria. Interestingly, the core enzymes for breaking down carbohydrate are similar in the 

three hosts. In addition to the core complement, each species had 10-30 CAZy families 

specific to that species. The diversity of organic matter breakdown potential is much greater 

than commonly assumed in ecological studies. 
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Chapter 5 looks at two interesting hemicellulase genes, an α-L-arabinofuranosidase and an 

α-glucuronidase, identified in the previous chapter. These genes were isolated, cloned and 

expressed in a recombinant system. Their activity as a function of the substrate concentration 

was characterized and the Michaelis-Menten parameters estimated. The data showed how 

efficient bioinformatic tools can be used to identify novel and active genes. 

In Chapter 6 we compared the α-L-arabinofuranosidase from the springtail with a similar 

gene found in the termite. This gene was predicted to be a functional novel horizontal gene, 

which was transferred from long time ago. Since its uptake in a eukaryotic genome, the gene 

was modified to fit the new host, as it contained a 19 amino acid signal peptide, normally 

only found in eukaryotes, which targets the gene product for excretion. This illustrates how 

the springtail has adapted to the soil environment by recruiting and modifying genes from its 

microbiome. 

The work on this thesis shows the possibilities of using bioinformatic tools to investigate the 

microbiome communities and mine for interesting enzymes from metagenomes. The 

bacterial community appears to be very diverse and different between hosts. However, at the 

enzymatic level there is a core group of carbohydrate enzymes and antibiotic resistances. 

Some of the studied enzymes show the potential for bio-applications. The method could be 

further tested on different animal metagenomes. 

With the expansion of sequencing and bioinformatic tools as well as advances in computing 

and machine learning, it is possible to use and understand more about the natural 

environment. These tools could help to mine enzymes with interesting properties. Together 

with enzyme characterization, the bioinformatic tools could be improved further. When the 

whole process is streamlined and part of a pipeline, a large number of enzymes can be 

identified and tested to find optimal conditions for their action. These enzymes can be 

combined together to create cocktails, which can efficiently breakdown biomass. Since the 

enzymes are natural and the products are used as substrates, little energy and resources are 

wasted. Beneficial enzymes and bacteria are also preserved and promoted. By creating a 

recycling plant, agricultural waste can turn into new substrates and products, which in turn 

can help to improve the environment.
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Samenvatting 

ISOLATIE EN KARAKTERISERING VAN NIEUWE ENZYMATISCHE 

ACTIVITEITEN IN DARM-METAGENOMEN TEN BEHOEVE VAN DE 

AFBRAAK VAN LIGNOCELLULOSE 

De landbouwsector produceert als nevenproduct een grote hoeveelheid organisch afval 

(overblijfselen van gewassen, loof, zaadhuiden, stro, enz.). Op dit moment wordt dit 

materiaal niet correct behandeld; deze ongecontroleerde afvalbehandeling kan 

milieuproblemen veroorzaken. In veel landen worden de organische restanten verbrand op 

het veld en veroorzaken luchtverontreiniging en bedreigen de volksgezondheid. Dit draagt 

ook bij aan klimaatverandering en kan het klimaat zelfs brengen naar het punt van een 

onomkeerbare verandering. Voor een duurzame landbouw moet het afval niet weggegooid 

of verbrand worden, maar gebruikt als een goedkope bron van biomaterialen. In lijn met het 

uitgangspunt van de bio-gebaseerde economie, moet organisch afval hergebruikt worden als 

uitgangsmateriaal in de chemische industrie, ter vervanging van fossiele brandstoffen. 

Echter, het proces om landbouw-afval om te zetten in waardevolle producten is niet erg 

efficiënt en moet verder geoptimaliseerd worden. 

Een van de dominante bestanddelen van landbouw-afval is lignocellulose, een complexe 

biologische materie waar niet goed mee te werken is. Om deze complexe structuur af te 

breken zijn behandelingen nodig die veel energie vergen of veel chemicaliën. Dit proefschrift 

stelt zich tot doel om nieuwe biologische katalysatoren te verkennen die kunnen helpen om 

lignocellulose af te breken en waardevolle bestanddelen voor de bio-gebaseerde chemische 

industrie te leveren. 

Om zulke nieuwe katalysatoren te ontdekken heb ik gekeken naar de verteringsstelsels van 

een aantal verschillende dieren: geiten, springstaarten, isopoden en termieten. De darm van 

een dier is een mini-ecosysteem dat vele onbekende bacteriën bevat. Door te kijken naar deze 

organismen en hun enzymen is het mogelijk om nieuwe genen te identificeren die gebruikt 

kunnen worden om biomassa af te breken. Dit proces levert substraten die gebruikt kunnen 

worden voor vele andere procedures. 
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Mijn belangrijkste doel in dit proefschrift was om enzymen te vinden die koolhydraten 

kunnen afbreken. De verschillende chemische bindingen in complexe koolhydraat-moleculen 

worden door verschillende enzymen gesplitst. Elke bacterie heeft een verzameling van 

koolhydraat-actieve enzymen, genoemd CAZymes. Met behulp van metagenomica en 

bioïnformatische technieken heb ik de genomen van microbiële gemeenschappen 

onderzocht, op zoek naar nieuwe CAZymes. In tegenstelling tot traditionele microbiële 

kweekmethodes is metagenomica gericht op het hele genoom van de betreffende 

levensgemeenschap, dat wil zeggen, alle bacteriën gezamenlijk. Bovendien heb ik ook genen 

onderzocht die coderen voor resistentie tegen antibiotica en genen die betrokken zijn bij de 

productie van secundaire metabolieten, aangezien deze twee gencategorieën belangrijk 

bijdragen aan de overleving van bacteriën in complexe microbiële gemeenschappen. Hiermee 

werd een beter begrip verkregen van de bijdrage van bacteriën aan de gastheer en aan de 

bacteriële gemeenschap. 

In Hoofdstuk 2 heb ik een metagenomica-benadering toegepast om de bacteriële soorten en 

hun verzameling genen te identificeren in de darm van Ninh-Binh-berggeiten. Deze 

Vietnamese dieren eten gras en houtige planten en hebben daarom een groot aantal 

koolhydraat-afbrekende enzymen. In ons genoomonderzoek identificeerden we 821 

koolhydraat-esterases en polysaccharide-lyases, 816 cellulases and 2,252 hemicellulases. 

Een veelbelovend koolhydraat-bindend eiwit werd recombinant tot expressie gebracht in 

Escherichia coli en de katalytische activiteit werd bestudeerd. Het eiwit versnelde de werking 

van een commercieel cellulase bij de afbraak van papier. 

In Hoofdstuk 3 keken we naar het functionele potentieel van het microbioom geassocieerd 

met de springstaart Folsomia candida. Springstaarten (Collembola) zijn evertebraten die zich 

voeden met dood organisch materiaal en schimmels en daarom naar verwachting beschikken 

over een microbiële gemeenschap die de spijsvertering ondersteunt. Met gebruikmaking van 

de bioïnformatica richtten we onze aandacht op functies in het koolhydraatmetabolisme en 

ook op genclusters betrokken bij de synthese van antibiotica en secundaire metabolieten. In 

het microbioom vonden we verschillende genen die sterk homoloog waren met genen in het 

genoom van F. candida die eerder gekwalificeerd waren als horizontaal overgedragen. Deze 

genen zijn onderdeel van het bodem-adaptieve repertoire, het gencomplement dat de 

springstaarten helpt om recalcitrante verbindingen af te breken en zich te verdedigen tegen 
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pathogenen. Het microbioom vertegenwoordigt een belangrijke bron van nieuwe functies 

voor de springstaart. 

In Hoofdstuk 4 werden de darm-microbiomen van drie evertebraten vergeleken: 

springstaarten, isopoden en termieten. Terwijl springstaarten hoofdzakelijk fungivoor zijn, 

zijn isopoden detritivoor en termieten kunnen houtig materiaal afbreken. De analyse legde 

een enorme diversiteit aan darmbacteriën bloot. Interessant was dat de kernenzymen voor de 

afbraak van koolhydraten van de drie gastheren vergelijkbaar waren. Maar bovenop de kern-

genen had elke soort nog 10-30 CAZy-families die specifiek waren voor die soort. De 

diversiteit van het potentieel om organische stof af te breken is veel groter dan wat 

gebruikelijk wordt aangenomen in ecologische studies. 

Hoofdstuk 5 richtte zich op twee interessante hemicellulase-genen, een alfa-L-

arabinofuranosidase en een alfa-glucuronidase, die in het voorgaande hoofdstuk werden 

geïdentificeerd. Deze genen werden geïsoleerd, gekloneerd en tot expressie gebracht in een 

recombinant-DNA-systeem. Hun activiteit als functie van de substraatconcentratie werd 

gekarakteriseerd en de Michaelis-Menten-parameters werden geschat. De gegevens laten 

zien hoe efficiënt bioïnformatische technieken kunnen zijn bij de identificatie van nieuwe 

werkzame genen. 

In Hoofdstuk 6 vergeleken we het alfa-L-arabinofuranosidase van de springstaart met een 

soortgelijk gen dat aangetroffen werd in de termiet. Dit gen was eerder aangewezen als een 

nieuw functioneel gen dat lang geleden in het genoom terecht is gekomen door horizontale 

genoverdracht. Sinds de opname in een eukaryoot genoom is het gen gemodificeerd en 

aangepast aan de nieuwe gastheer, namelijk, het bleek een signaalpeptide te bevatten van 19 

aminozuren dat normaal gesproken alleen bij eukaryoten voorkomt en dat het genproduct 

adresseert voor excretie. Dit laat zien hoe de springstaart aangepast is aan het bodemmilieu 

door uit zijn microbioom genen te recruteren en te modificeren. 

Het onderzoek van dit proefschrift illustreert de mogelijkheden om met bioïnformatische 

technieken microbioomgemeenschappen te onderzoeken en na te speuren op interessante 

enzymen in het metagenoom. De bacteriële gemeenschap blijkt zeer divers te zijn en te 

verschillen tussen gastheren. Echter op het niveau van de enzymen is er een gedeelde 

kerngroep van koolhydraat-geassocieerde enzymen en genen betrokken bij resistentie tegen 
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antibiotica. Sommige van deze enzymen zijn potentieel biotechnologisch toepasbaar. De 

bioïnformatische aanpak zou verder getest kunnen worden op andere dierlijke metagenomen. 

Met de verdere ontwikkeling van methodes voor sequentiebepaling en bioïnformatische 

analyse, gekoppeld aan geavanceerde rekenmethodes en machinaal leren, is het mogelijk om 

het natuurlijk milieu beter te begrijpen. Deze technieken zouden ons kunnen helpen om meer 

enzymen met interessante eigenschappen op te sporen. Naast de verdere karakterisering van 

de enzymen kunnen ook de bioïnformatische technieken verbeterd worden. Als het hele 

proces opgenomen wordt in een gestroomlijnde geautomatiseerde productielijn, kan een 

groot aantal enzymen ontdekt worden en getest om de optimale condities te vinden voor hun 

werking. Deze enzymen kunnen gecombineerd worden om mengsels te maken die efficiënt 

biomassa kunnen afbreken. Aangezien enzymen een natuurlijke oorsprong hebben en de 

producten direct gebruikt worden als uitgangsmaterialen, gaan er nauwelijks energie en 

hulpbronnen verloren. Gunstige enzymen en bacteriën worden behouden en gestimuleerd. 

Door bio-fabrieken op te richten kan landbouw-afval omgezet worden in nieuwe substraten 

en producten, wat vervolgens kan helpen om het milieu te verbeteren. 
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