
VU Research Portal

Structuring Multilevel Discrete-Event Systems With Dependence Structure Matrices

Goorden, Martijn; van de Mortel-Fronczak, Joanna; Reniers, M.A.; Fokkink, Wan; Rooda,
J.E.

published in
IEEE Transactions on Automatic Control
2020

DOI (link to publisher)
10.1109/TAC.2019.2928119

document version
Peer reviewed version

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Goorden, M., van de Mortel-Fronczak, J., Reniers, M. A., Fokkink, W., & Rooda, J. E. (2020). Structuring
Multilevel Discrete-Event Systems With Dependence Structure Matrices. IEEE Transactions on Automatic
Control, 65(4), 1625-1639. [8759973]. https://doi.org/10.1109/TAC.2019.2928119

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 07. Nov. 2022

https://doi.org/10.1109/TAC.2019.2928119
https://research.vu.nl/en/publications/c6861839-cf29-4ca0-b57f-60e7092f418d
https://doi.org/10.1109/TAC.2019.2928119

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 1

Structuring Multilevel Discrete-Event Systems
with Dependency Structure Matrices

Martijn Goorden, Joanna van de Mortel-Fronczak, Michel Reniers, Senior Member, IEEE, Wan Fokkink,
and Jacobus Rooda

Abstract—Despite the correct-by-construction property, one
of the major drawbacks of supervisory control synthesis is
state-space explosion. Several approaches have been proposed
to overcome this computational difficulty, such as modular,
hierarchical, decentralized, and multilevel supervisory control
synthesis. Unfortunately, the modeler needs to provide additional
information about the system’s structure or controller’s structure
as input for most of these non-monolithic synthesis procedures.
Multilevel synthesis assumes that the system is provided in a tree-
structured format which may resemble a system decomposition.
In this paper, we present a systematic approach to transform a
set of plant models and a set of requirement models provided
as extended finite automata into a tree-structured multilevel
discrete-event system to which multilevel supervisory control
synthesis can be applied. By analyzing the dependencies between
the plants and the requirements using dependency structure
matrix techniques, a multilevel clustering can be calculated.
With the modeling framework of extended finite automata, plant
models and requirements depend on each other when they share
events or variables. We report on experimental results of applying
the algorithm’s implementation on several models available in the
literature to assess the applicability of the proposed method. The
benefit of multilevel synthesis based on the calculated clustering
is significant for most large-scale systems.

Index Terms—Supervisory control, multilevel discrete-event
systems, dependency structure matrices, extended finite au-
tomata.

I. INTRODUCTION

THE complexity of high-tech systems has increased over
the last few decades due to increasing market demands

for better performance and verified safety. Furthermore, the
time-to-market has to be decreased while the quality of the
engineering process has to be increased. Model-based systems
engineering approaches provide support for dealing with these
demands in the context of supervisory controller design. In this
paper, discrete-event systems (DESs) are considered for which
supervisory controllers need to be developed. The supervisory
control theory (SCT) of Ramadge-Wonham [1], [2] provides
an approach to synthesize supervisory controllers such that the
controlled system behavior exhibits the specified behavior.

A DES can be modeled with Extended Finite Automata
(EFAs), see [3]. Extended finite automata are finite automata
enhanced with discrete variables. This allows for more com-
pact model representation as shown in [4] and for the usage

M. Goorden, J. van de Mortel-Fronczak, M. Reniers, W. Fokkink
and J. Rooda are with Department of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven, The Netherlands.
(email: m.a.goorden@tue.nl, j.m.v.d.mortel@tue.nl, m.a.reniers@tue.nl,
w.j.fokkink@tue.nl, j.e.rooda@tue.nl)

This work is supported by Rijkswaterstaat, part of the Ministry of Infras-
tructure and Water Management of the Government of the Netherlands.

Manuscript received ; revised

of state-based requirements as introduced in [5], [6]. Further-
more, EFAs allow for efficient symbolic computations with
binary decision diagrams, see [7].

A major drawback of synthesizing supervisory controllers
is the step where the supremal controllable language is calcu-
lated. Although the time complexity of this step is polynomial
in the number of states that represent the system, this num-
ber increases exponentially with the number of constituent
models used to represent the system, as already observed
in [2]. Several attempts exploiting different architectures are
proposed to overcome these computational difficulties: modu-
lar [8]–[12], hierarchical [13]–[16], decentralized [17]–[20],
distributed [21]–[25], coordinated [9], [26]–[28], composi-
tional [29]–[31], and, more recently, multilevel supervisory
control synthesis [32].

Although such techniques help in reducing the complexity
of synthesis, applying them may require more effort from an
engineer than monolithic synthesis. A problem with several
of these supervisory control architectures is that, besides the
plant models and control requirements, additional information
about the system’s structure or controller’s structure needs to
be provided as input for synthesis. For example, hierarchical
supervisory control needs a hierarchical mapping of events
or traces between the different levels, decentralized control
requires projections to the subsystem alphabets, and multilevel
control needs a tree-structured system. Sometimes, additional
properties need to be satisfied, for example coobservability in
decentralized control, see [18]. For those supervisory control
synthesis procedures that require additional information, often
a systematic approach is missing in the literature to transform
any DES plant models together with control requirements to
the appropriate input needed for such a procedure.

In this paper, we exploit the structure embedded in the
set of plant models and the set of requirement models by
using Dependency Structure Matrices (DSMs). A DSM is
an N × N matrix capturing the dependencies among N
system elements. A DSM provides a concise representation
for the analysis of the structure of systems in many areas
of engineering and research, see for industrial examples [33],
[34]. With appropriate analysis techniques, such as clustering
and sequencing, one is able to highlight important aspects in
system structures, such as modules of system elements and
cycles of process steps, respectively.

In addition to most suggestions found in the SCT literature
to analyze the relationship between plant models (e.g., shared
events in [35], [36]), we analyze the relationship within the
combined set of plant models and the requirement models,
as also suggested in [37]. The motivation is twofold: (1)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 2

{R1, . . . , Rk}

{P1, . . . , Pg}

PR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1
2
3
4
5 •
• •
• • • • • • • • • • •

• • • • • •
• • • • • • •

PC

5
5

1

1

1
1

2

2

1

3

3

1

4

4

1
•

• • •
• •
• • •
•

P1, P4, R1

P5, P3, R3 P4, R4

P5 P1, P2, P3, R6, . . . , R15

P1 P3, R2, R5P2

S1

S2 S8

S3 S4

S5 S7S6

record

transform
and

cluster create synthesize

Fig. 1. Overview of the proposed method. It starts with a given set of plant models {P1, . . . , Pg} and a given set of requirement models {R1, . . . , Rk}.
First, the dependencies between the plant models and the requirement models are recorded in a rectangular Domain Mapping Matrix (DMM). Then, this
DMM is transformed into a Dependency Structure Matrix (DSM) and subsequently clustered. From the clustered DSM, a Multilevel Discrete Event System
(MLDES) is created. Finally, multilevel synthesis of [32] can be applied to synthesize a supervisor for each node in the MLDES.

supervisory control synthesis requires both plant models and
requirement models, and (2) plant models of realistic systems
are often not directly related to each other and only indirectly
via the requirements, see for example [38]. The work of [37]
introduces control-flow nets to analyze dependencies in the
system and subsequently abstract away those parts of the
system that will not contribute to a potential blocking issue.
Control-flow nets are defined for shuffle systems with server
and buffer specifications, which limits the applicability. The
introduction of DSMs could be seen as a generalization of
control-flow nets.

The contribution of this paper is a proposal for a systematic
approach to transform a set of plant models and a set of
requirement models into a tree-structured multilevel discrete-
event system with the properties needed for multilevel su-
pervisory control synthesis of [32]. Multilevel synthesis is
chosen as it resembles the multilevel (or decompositional)
way of thinking of engineers and directly raises the question
how to obtain a multilevel structure. The proposed method
is summarized in Figure 1. First a domain mapping matrix
is created that relates plant models to requirement models. A
DSM is constructed from this domain mapping matrix with
the plant models as system elements. Two plant models are
related to each other when there exists a requirement that
depends on both plant models. The DSM is clustered to
identify a clustering of plant models. Finally, this clustering
is transformed into a tree-structured multilevel discrete-event
system (MLDES) such that multilevel supervisory control
synthesis can be applied resulting in a supervisor for each
node.

This paper is an extended version of [39]. Firstly, this
paper uses the modeling formalism of EFAs, instead of
finite automata (FAs). By using EFAs, plant models and
requirement models depend on each other by shared events
and shared variables, instead of just shared events in the
FA formalism. Therefore, recording the dependencies should
be changed accordingly. The two subsequent steps in the
proposed method turn out to be independent of the chosen
modeling formalism. In the last step, when supervisors are
synthesized for each node, an EFA-based synthesis algorithm
should be used instead of an FA-based one. Furthermore,
defining the proposed method for EFAs makes it applicable to
both EFAs and FAs, since each FA is also an EFA. The second
extension is the inclusion of numerical results on the effect
of clustering parameters on the computational complexity
reduction of supervisor synthesis, on the effect of different

P

1
1

2

2

3

3

4

4

5

5

1

-

1
1
1

-

1

-
1

-

1
1

-

1
1

PC

1
1

4

4

2

2

5

5

3

3

1

-

1

-
1

1
1

-
1

1

-
1

-
1
1

Fig. 2. Left the unclustered example DSM P and right the clustered DSM
PC revealing two clusters.

clusterings on nonblocking control, and on the applicability of
the proposed method on small and large benchmark models.

This paper is structured as follows. The concepts and
notations used are provided in Section II regarding DSMs and
in Section III regarding SCT. The main results are presented
in Section IV with an illustrative example of a DES model of
a lock. Section V provides results of three experiments with
the implementation of the proposed method. The conclusions
are presented in Section VI.

II. DEPENDENCY STRUCTURE MATRICES

In this section, the concepts and notations related to Depen-
dency Structure Matrices (also called Design Structure Matri-
ces) used in this paper are summarized. A DSM is a square
matrix with the same entities along its axis (e.g., components
of a system) and cells representing relationships between the
entities (e.g., a spatial relationship). These relationships can be
different per DSM. DSMs with a single kind of off-diagonal
mark are called binary DSMs, while DSMs with off-diagonal
cells containing numbers are called numerical DSMs. Fig. 2
left shows an example DSM P of a system with five entities
numbered 1 through 5. A relationship between two entities is
indicated with a 1. The absence of a relation is indicated with
an empty matrix entry. Therefore, this DMS is a binary DSM.

A matrix in which the relationships between different
domains are described is called a Domain Mapping Matrix
(DMM), which is a rectangular matrix. A DMM can also be
binary or numerical. The generation of DSMs from DMMs
with matrix multiplications is described in [40], [41].

There exist different types of DSMs. Undirected relation-
ships result in a static DSM, while directed relationships result
in a dynamic DSM. The different types of DSMs allow for
different types of analyses of the considered system. In this

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 3

paper, a static DSM is analyzed. Often, the goal of analyzing
static DSMs is to find a modular structure by clustering the
entities of the DSM, as shown, for example, in [42]. Fig. 2
right shows the clustered example DSM PC . By reordering the
rows and columns of the unclustered DSM P , strongly related
entities are placed together to form a cluster. Entities 1 and 4
form a cluster and entities 2, 5, and 3 form a cluster. These
clusters are called modular clusters as each entity of the system
is included in exactly one of the clusters. Several heuristics
exists in literature to cluster a DSM, see for example [42].
Typically, different settings for these heuristics will result in
different clusters for the same DSM.

In [33], a more in-depth introduction to DSM analysis,
including notions not used in this paper, is given. Examples
and applications of DSMs can be found in the recent review
paper [34].

A. Multilevel Markov clustering
The clustering algorithm of [42] utilizes Markov cluster-

ing [43]. In Markov clustering, a symmetric stochastic matrix
P is used that represents the transition matrix of a Markov
chain. The clustering algorithm is an iterative process where
each iteration k consists of two steps: the expansion step and
the inflation step.

In the expansion step, the transition matrix of the previous
step Pk−1 is raised to the power α to obtain Pk = Pαk−1. The
new transition matrix represents the transition probabilities of
a Markov chain where a random walker has taken α steps.
In the inflation step, high transition probabilities are increased
and low transition probabilities are decreased by taking the
Hadamard (entry wise) power of Pk with coefficient β and
then normalizing the columns.

The Markov clustering terminates when a fixed-point is
reached [43]. The resulting invariant matrix is then interpreted
as the adjacency matrix of a weighted directed graph denoting
disjoint clusters.

To apply Markov clustering on a DSM, the DSM has to
be converted into a transition matrix of a Markov chain. To
this end, the DSM is interpreted as an adjacency matrix of
a weighted directed graph, where the rows and columns are
the nodes and the entries are the weights. For each node, a
positive fluid is injected to determine the influence of this node
on other nodes, while a negative fluid is injected to determine
the dependency of this node on other nodes. The strength of
the influence and dependency decreases with a factor µ each
time the flow passes through a node.

This Markov clustering is turned into a multilevel Markov
clustering by using graph coarsening. All elements within
a cluster are collapsed into a new super-node. The original
DSM is coarsened with these new super-nodes, where the new
weight between the super-nodes equals the sum of the inter-
cluster edge weights between the clusters.

III. MULTILEVEL DISCRETE-EVENT SYSTEMS

In this section, the concepts and notations of Supervisory
Control Theory used in this paper are summarized. A more
in-depth introduction to SCT, including notions not used in
this paper, can be found in [44], [45].

A. Preliminaries

Discrete-event systems can be modeled with extended finite
automata (EFAs). An EFA using variable set V with initial
valuation v̂0 is a 5-tuple (L,Σ,→, Lm, l0) where L is a finite
set of locations, Σ an alphabet, → ⊆ L × Σ × ΠV × L the
transition relation with ΠV the set of all update functions using
variables from V , Lm ⊆ L a set of marked locations indicating
‘accepting’ or ‘final’ locations, and l0 ∈ L the initial location.

The alphabet Σ is partitioned into two disjoint sets: the set
of controllable events Σc and the set of uncontrollable events
Σuc. Controllable events can be disabled by the supervisor,
e.g., switching on an actuator, while uncontrollable events
cannot be disabled, e.g., switching sensor values. We introduce
the function Alp(E) to represent the alphabet of EFA E.

In an EFA, each transition is augmented with an update
using variables, constants, the Boolean literals true (T) and
false (F), and the usual arithmetical and logical connectives,
see [46]. With each variable v ∈ V , a domain dom(v) of values
is associated. A valuation is a mapping v̂ : V →

⋃
v∈V dom(v)

with v̂(v) ∈ dom(v) for each v ∈ V . The set of all valuations
on V is denoted by Val(V). The initial valuation is denoted by
v̂0. An example of an update function is p(v̂1, v̂2) ≡ v̂1(v1) =
1 ∧ v̂2(v1) = 2 where v̂1 and v̂2 denote the current-state
and next-state valuations, respectively. This update function
evaluates to true if the current-state value of v1 equals 1 and
the next-state value equals 2. Formally, an update function
is a predicate function u : Val(V) × Val(V) → B. The set
of all update functions using variables from V is denoted by
ΠV . A more detailed discussion on predicates and combining
predicates can be found in [47]. From now on we assume
that there is a globally defined variable set V together with
domains of each variable and initial valuation v̂0.

In an EFA, a transition (l1, σ, u, l2) ∈ → can be taken if
u(v̂1, v̂2) evaluates to true with the current-state valuation v̂1
and next-state valuation v̂2. After taking the transition, the
current location l1 of the EFA has been updated to l2 and the
valuation v̂1 to v̂2.

It is not necessary to use all variables in an update.
Let Var(u) ⊆ V denote the variables used in update u.
This function can be extended to an EFA as Var(E) =⋃

(l1,σ,u,l2)∈→Var(u) providing the set of variables used
somewhere in this EFA.

An automaton is called prefix-closed if all locations are
marked. In a prefix-closed automaton it holds that for each
path from the initial location to a marked location all prefixes
also lead to a marked state.

For large-scale systems, the model is given as a collection
of EFA models Gs = {G1, G2, . . . , Gm}. Such a collection
is called a composed system. Two EFAs can be combined by
using the synchronous composition, see [46].

Definition 1 (Synchronous composition): Let Gk = (Lk,
Σk,→k, Lkm, l

k
0), k = 1, 2 be EFAs with variable set V . The

synchronous composition of G1 and G2 is

G1 ‖ G2 = (L1 × L2,Σ1 ∪ Σ2,→, L1
m × L2

m, (l
1
0, l

2
0))

where the transition relation → is defined as

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 4

• ((l11, l
2
1), σ, u, (l12, l

2
2)) ∈→ if σ ∈ Σ1∩Σ2 and there exist

(l11, σ, u
1, l12) ∈→1 and (l21, σ, u

2, l22) ∈→2 such that u =
u1 ∧ u2;

• ((l11, l
2
1), σ, u1, (l12, l

2
1)) ∈→ if σ ∈ Σ1 \ Σ2 and

(l11, σ, u
1, l12) ∈→1;

• ((l11, l
2
1), σ, u2, (l11, l

2
2)) ∈→ if σ ∈ Σ2 \ Σ1 and

(l21, σ, u
2, l22) ∈→2.

Synchronous composition is associative, i.e., (G1 ‖ G2) ‖
G3 = G1 ‖ (G2 ‖ G3) = G1 ‖ G2 ‖ G3.

A less frequently used notion is that of a product system
representation of FAs [2], which is here adapted for EFAs.
Let P(Gs) be the set of all partitions of the composed system
Gs, which is a lattice [48]. In the remainder, we write P
instead of P(Gs) for notational simplicity. A partition P ∈ P
is called a product system if for every pair of cells p1, p2 ∈
P , if p1 6= p2 then the alphabets are disjoint and the sets
of used variables are disjoint, i.e., Alp(p1) ∩ Alp(p2) = ∅
and Var(p1)∩Var(p2) = ∅ where Alp(p) =

⋃
Gi∈pAlp(Gi)

and Var(p) =
⋃
Gi∈pVar(Gi). The infimum of the set of all

product systems PS is called the most refined product system
partitioning and the most refined product system G′s = {‖Gi∈p
Gi | p ∈ inf(PS)}.

Proposition 1 (Most refined product system): Let Gs be a
composed system. Then inf(PS) ∈ PS .

Proof: As the lattice of partitions is finite, and the meet
of two product systems is again a product system, it follows
that inf(PS) ∈ PS .

EFA models in a product system representation do not
interact with each other, i.e., they behave asynchronously. The
product system representations ease the reasoning about the
system, see [10], [37]. Any composed system Gs can be
transformed into a product system representation; the trivial
one is just the synchronous product of all models. The most-
refined product system can be seen as the one obtained with
the least number of synchronous product operations.

Finally, in SCT a distinction is made between plant mod-
els and requirement models. Plant models describe the un-
controlled behavior of a system, while requirement models
describe the desired behavior of the system.

Requirements can be expressed with both EFAs and state-
based expressions [5], [6]. Mutual state exclusion requirements
refer to forbidden combinations of states of the plant models
in the composed system. We define the alphabet Alp(K) of a
mutual state exclusion expression K as the empty set and the
set of variables Var(K) as all variables used in K.

B. Monolithic supervisor synthesis

The objective is to design a controller whose function is
to disable controllable events so that the closed loop system
of the plant and the controller obeys the specified behavior.
SCT provides a method to synthesize a supervisor that ad-
heres to the following control objectives for given plant and
requirement models, see [49].
• Safety: all possible behavior of the controlled system

should always satisfy the imposed requirements.
• Controllability: uncontrollable events may never be dis-

abled by the supervisor.

• Non-blockingness: the controlled system should be able
to reach a marked state from every reachable state.

• Maximal permissiveness: the supervisor does not restrict
more behavior than strictly necessary to enforce safety,
controllability, and non-blockingness.

Monolithic supervisory control synthesis results in a single
supervisor S from a single plant model and a single require-
ment model. We refer to S as the automaton representation
of the synthesized supervisor. When the plant model and the
requirement model are given as a collection of models Ps and
Rs, respectively, the monolithic plant model P and require-
ment model R are obtained by performing the synchronous
products of the models in the respective collection.

C. Multilevel discrete-event systems

A multilevel discrete-event system (MLDES) is a system
with a tree-based structure, as recently proposed in [32]. More
formally, let T represent an index set for a tree structure, where
each element n ∈ T represents a node in the tree. An MLDES
is defined as a set Gs of subplants, {Gn | n ∈ T}, such that
global plant G is given by G =‖n∈T Gn.

The control synthesis problem of MLDES is stated as
follows. Consider the supervisory control problem where the
global plant is given as G =‖n∈T Gn and the global require-
ment K =‖n∈T Kn. Find a set of supervisors where the global
supervisor is given by S =‖n∈T Sn such that the controlled
system S ‖ G satisfies safety, controllability, nonblockingness,
and maximal permissiveness.

As shown in [32], the set of supervisors Ss can be con-
structed by synthesizing for each node n ∈ T a supervisor Sn
with monolithic supervisory control synthesis. The following
theorem states that there exists a solution satisfying safety for
FA models.

Theorem 1 (Existence of MLDES supervisors [32]): Con-
sider an MLDES with FA-based subplant set Gs and a set
of prefix-closed, controllable requirements {Kn | n ∈ T ∧
Kn ⊆ Σ∗Gn

} such that K =‖n∈T Kn. There exists a set of
supervisors Ss, where Ss = {Sn | n ∈ T ∧ Sn ‖ Gn = Kn},
such that S ‖ G = K with S ‖ G =‖n∈T Sn ‖ Gn.
For prefix-closed requirements it can then also be shown that
the solution is maximally permissive and nonblocking [32],
[44]. Otherwise, a nonblocking check, for example the one
described in [35], should be performed to assess whether
the system controlled by the resulting set of supervisors is
nonblocking. As stated by [32], the case of non-prefix closed
requirements in conjunction with controllability is part of
future research.

In [32], only FA-based models are considered. The exten-
sion of Theorem 1 to EFA-based models is part of ongoing
research.

IV. PROPOSED METHOD

In this section, the proposed method of transforming a set
of plant models and requirement models into an MLDES
is described. The input for the method can be any set of
plant models and requirement models. The transformation
consists of three stages: recording the dependencies between

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 5

Fig. 3. The lock at Terneuzen, The Netherlands. Image from
https://beeldbank.rws.nl, Rijkswaterstaat.

the models, finding a valid clustering of the composed system,
and constructing the MLDES. These three stages are explained
in detail below. Finally, the complete algorithm is provided.

In the remainder of this paper, a problem definition de-
notes any composed system, i.e., G =‖i∈I Gi, I =
{1, 2, . . . , g}, g ∈ N+, together with the composed global
requirement, i.e., K =‖j∈J Kj , J = {1, 2, . . . , k}, k ∈ N+.

Example Throughout this section, an illustrative example of
a lock is provided to explain the presented method. To maintain
different water levels within a canal, a lock is constructed
which allows ships to be lifted to the higher water level or to
be lowered to the lower level. Fig. 3 shows the lock located
at Terneuzen, The Netherlands.

The following subplants are present in this simplified
system:

• Side 1 entering light
• Side 1 leaving light
• Side 1 gate actuator
• Side 1 gate sensor
• Side 1 sewer actuator
• Side 1 sewer sensor
• Side 1 equal-water sensor

• Side 2 entering light
• Side 2 leaving light
• Side 2 gate actuator
• Side 2 gate sensor
• Side 2 sewer actuator
• Side 2 sewer sensor
• Side 2 equal-water sensor

On this system, 30 requirements are imposed to guarantee
the safe operation of the lock. These requirement are formu-
lated by engineers of Rijkswaterstaat. An example of a safety
requirement is that if there is no equal water level over a gate,
then the gate may not be opened. The complete model, and all
other models used later in this paper, can be found in [50].

A. Recording the dependencies

The relationships within the problem definition are ana-
lyzed. Since plant models and requirement models have a
different role in the synthesis process, we consider them
as different domains. The dependencies between plants and
requirements result in a DMM. From this domain mapping,
we could create in a later stage a DSM with plants as entities

PR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1
2
3
4
5
6
7
8
9

10 1
1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

1
1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Fig. 4. The DMM PR of the simple lock. Only the nonzero elements are
shown for readability.

and a DSM with requirements as entities, both using simple
matrix multiplications, see [40].

As a first step, we transform the general problem definition
into the most refined product system. Therefore, if we later
refer to an event or a variable, there will be only a single
plant model containing this event in the alphabet or using this
variable. Let the most refined product system be denoted by
{G′i | i ∈ I ′} with G =‖i∈I′ G′i, I ′ = {1, 2, . . . , g′}, g′ ≤ g.

Let the DMM be denoted by PR. Construct PR such
that PR(i, j) = 1 if the alphabets or the used variables
sets of component i and requirement j are not disjoint,
else PR(i, j) = 0. During the supervisory control synthesis
procedure, it may be possible that the behavior of G′i is
restricted by requirement Kj if PR(i, j) = 1. If PR(i, j) = 0,
we know that requirement Kj has no effect on the behavior
of plant model G′i during the supervisory control synthesis
procedure. Therefore, a binary DMM is sufficient and no need
for a numerical DMM is present.

Example The most refined product system of the simplified
lock is given by:

1) Side 1 entering light
2) Side 1 leaving light
3) Side 1 gate
4) Side 1 sewer
5) Side 1 equal-water sensor

6) Side 2 entering light
7) Side 2 leaving light
8) Side 2 gate
9) Side 2 sewer

10) Side 2 equal-water sensor

Instead of 14 components, the most refined product system
has 10 components. On each side, the gate actuator and sensor
have been merged, as well as the circulation sewer actuator
and sensor. The numbers before the components are used in
the remainder of this section to refer to a particular component
of the product system.

The resulting DMM of the simple lock example is shown in
Fig. 4. Consider the requirement mentioned before: if there is
no equal water over a gate, then the gate may not be opened.
For side 1, this is the third requirement. This requirement has a
relationship with the gate component (number 3) and the equal
water sensor component (number 5). Therefore, PR(3, 3) = 1,
PR(5, 3) = 1, and all other elements in column 3 of PR are
zero. This is done for all 30 requirements.

B. Finding a valid clustering

Before we can find clusters, we need to define a multilevel
clustering. A multilevel clustering can be seen as recursively

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 6

P

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

4
2
6

4
6
2

2
2

1

13
4
4

2
2

4
1

1

4
2
6

4
6
2

1

13
4
4

2
2

4

2
2

1

1

PC

1
1

2

2

3

3

5

5

6

6

7

7

8

8

10

10

4

4

9

9

4
2
6

4
6
2

2

2

1
13
4
4

1
1

4
2
6

4
6
2

2
1
13
4
4

2

1
1

2
4

2

4
2

2

Fig. 5. DSM P for the simple lock example: left the unclusterd P and right
the clustered PC .

partitioning set A, i.e., set A is partitioned into {A1, . . . , As}
where each cell Ai is again partitioned, and so on until
partitions with a single element are reached.

Definition 2 (Multilevel clustering): The set of all multilevel
clusterings CmA on a non-empty element set A is inductively
defined.
• When |A| = 1, (A,A) ∈ CmA .
• {A1, . . . , As} is a partition of A for some s ≥ 2, and
∀1 ≤ i ≤ s : (Ai,Mi) ∈ CmAi

with Mi the multilevel
clustering of Ai, then (A, {(Ai,Mi) | 1 ≤ i ≤ s}) ∈ CmA .

In tuple (A,M) ∈ CmA , A provides immediately all
elements in this multilevel clustering and set M contains
the multilevel clusterings of its children. For example,
({1, 2, 3}, {({1}, {1}), ({2, 3}, {({2}, {2}), ({3}, {3})})}) is
a multilevel clustering on the set {1, 2, 3}.

A multilevel clustering will function as a basis for creating
the tree index set T in the next step. To find a multilevel
clustering of the product system G =‖i∈I′ G′i, we first
transform DMM PR into a DSM with the plants as the
domain. Let DSM P be defined as P = PR · PRT with
PRT the transpose matrix of PR.

By creating DSM P from DMM PR, we have the following
interpretation. When P(a, b) = k we know that there exist k
requirements that use events or variables from both G′a and
G′b to describe the desired behavior. Therefore, in a multilevel
clustering based on DSM P a cluster of plant models indicates
that multiple requirements relate the plant models from the
cluster. Plant models from different clusters are related by none
or only some requirements.

Example Fig. 5 left shows the DSM P of the lock example.
For example, cell P (3, 1) = 4 indicates that there are four
requirements which use both plant component 1 (entering light
side 1) and plant component 3 (gate side 1). Furthermore, the
elements on the diagonal indicate the number of requirements
related to that particular plant component.

The clustering algorithm as presented in [42] is used to
find a multilevel clustering. This paper does not discuss which
clustering algorithm is the best for our purpose of eventually
synthesizing supervisors. Any valid multilevel clustering ac-
cording to Definition 2 can be used. Due to the bottom-up
partitioning approach used in [42], a valid multilevel clustering
is calculated. Furthermore, it does not require any information
on the structure of the multilevel clustering as input, like the

number of expected clusters or the number of hierarchical
layers.

Example Fig. 5 right shows the clustered DSM PC
for the simple lock model. The clustering is generated with
the algorithm presented in [42] with the parameter values
α = 2, β = 2.2, γ = 10 and µ = 2.0. There are three
clusters indicated: a cluster with the entering light, leaving
light, gate, and equal water sensor of side 1, a similar cluster
with elements of side 2, and a cluster with the circulation
sewers of both sides.

C. Constructing the MLDES

From now on we assume that we have a multilevel clustering
(I ′,M) on index set I ′ of the most refined product system
{G′i | i ∈ I ′}. We will use the information from DSM P and
DMM PR to construct the index set T of the tree structure
together with the set of plant models {Gn | n ∈ T} and the
set of requirement models {Kn | n ∈ T}.

In this section, we present algorithms to construct the tree
index set T and the problem definition at each node in the tree.
We first explain the algorithm to construct the index set of the
tree structure. Then we explain the algorithm to determine the
problem definition.

Algorithm 1 TransformCmtoT
Input: multilevel clustering (A,M), new node index n, DSM
P of (A,M), DMM PR, most refined product system {G′i},
set of requirements {Kj}
Output: index set of tree-structure T of (A,M), set of plant
models GT = {Gn | n ∈ T}, set of requirement models
KT = {Kn | n ∈ T}, last used node index m

1: Set T = {n} and m = n
2: Gn,Kn, Pmod ,PRmod =

CalculateGnandKn((A,M), P,PR, {G′i}, {Kj})
3: Set GT = {Gn}, KT = {Kn}
4: if size(M) > 1 then
5: for all (Ap,Mp) ∈M do
6: Tp, GTp ,KTp ,mp =

TransformCmtoT ((Ap,Mp),m+ 1,
Pmod ,PRmod , {G′i}, {Kj})

7: T = T ∪ Tp, GT = GT ∪GTp
, KT = KT ∪KTp

8: m = mp

9: end for
10: end if

Algorithm 1 creates the index set T of the tree structure
embedded in the given multilevel clustering (A,M). We apply
this algorithm recursively to do a depth-first search through
the multilevel clustering (I ′,M) obtained from the previous
step. This algorithm consists of two parts: first, the plant
model and requirement model are calculated for the new node
with Algorithm 2, and second, we explore new nodes further
down the tree and repeat the algorithm. Initially, Algorithm
1 is called with TransformCmtoT ((I ′,M), 1, P,PR, {G′i|i ∈
I ′}, {Kj |j ∈ J}).

When Algorithm 1 is performed, we know that there exists
a valid level in the tree structure. This level n is added to

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 7

the tree structure in Line 1 and noted that this is the last
tree index currently used. Furthermore, in Lines 2-3 the plant
model and requirement model on level n are calculated, see
Algorithm 2. This algorithm modifies the DSM P and DMM
PR. The algorithm continues if we can go further down in
the tree structure. At Lines 4-10 we go further down the tree
structure for each subcluster. In Line 6 the recursive call is
performed. The results of this call are added to the already
obtained results in Lines 7-8. The order of the calls chosen in
Line 5 only influences the order of the nodes.

The following proposition ensures that Algorithm 1 termi-
nates.

Proposition 2 (Termination of Algorithm 1): Given a valid
multilevel clustering (A,M) with A a finite set, Algorithm 1
terminates.

Proof: A new inductive call of Algorithm 1 is performed
when the cardinality of the current multilevel clustering
(A,M) is larger than 1. Furthermore, observe that the new
inductive calls are performed on subclusters of the current
multilevel clustering. For each subcluster (Ap,Mp) of (A,M)
it holds that |Ap| < |A| and thus finite. Therefore, we can
construct the following inductive proof.

Inductive base When |A| = 1, Algorithm 1 terminates.
Inductive hypothesis Assume that ∀(Ap,Mp) ∈M , Algo-

rithm 1 will terminate eventually for (Ap,Mp).
Inductive step In Algorithm 1 inductive calls are performed

for all (Ap,Mp) ∈ M . Since we know by the inductive
hypothesis that each of these inductive calls will terminate,
all inductive calls in Algorithm 1 will terminate. Therefore,
the call of Algorithm 1 with (A,M) will terminate.

Example Starting from the root node, we can identify three
subclusters: {1, 2, 3, 5}, {6, 7, 8, 10}, and {4, 9}. Searching
further, we see that the first subcluster has four child nodes,
the second subcluster also has four child nodes, and the third
subcluster has two child nodes. The resulting tree T has three
levels and is shown in Fig. 6.

Algorithm 2 shows the procedure to calculate the problem
definition for a certain node n in the tree structure. Con-
ceptually, the algorithm uses the DMM PR and DSM P to
calculate the plant model and requirement model for the node
as follows. If a singleton has been reached in the multilevel
clustering, a leaf node in the tree structure is reached, the
plant model in this singleton is directly placed in the node,
and requirements are identified that only have a dependency
with this plant model (and no other plant model). In all other
cases of multilevel clusterings, a regular node in the tree has
been reached, requirement models for this node are identified
based on dependencies outside the subclusters and within the
current cluster, and the plant models are those that relate to
the identified requirement models.

In detail, Algorithm 2 works as follows, where P (:, j)
indicates column vector j of matrix P . In Line 1 we create
Pmod and PRmod as we may modify it. We need to make a
distinction between a leaf node and a non-leaf node.

If we have reached a leaf node, then in Lines 3-4, plant
index set In at this node is set to the plant of the product
system indicated by the multilevel clustering. For this single

subplant, there may exist requirements which are only related
to this subplant. These requirements are identified in Line 4.

Algorithm 2 CalculateGnandKn

Input: multilevel clustering (A,M), DSM P of (A,M),
DMM PR, most refined product system {G′i}, set of require-
ments {Kj}
Output: Plant model Gn for top cluster of (A,M), require-
ment model Kn of top cluster (A,M), modified DSM Pmod ,
modified DMM PRmod

1: Pmod = P,PRmod = PR
2: if size(M) = 1 then
3: In = A
4: Jn = {j ∈ J | PR(A, j) = 1 ∧∑

i∈I′ PR(i, j) = 1}
5: else
6: for all (Ax,Mx), (Ay,My) ∈M,Ax 6= Ay do
7: for all x ∈ Ax, y ∈ Ay do
8: if Pmod(x, y) 6= 0 then
9: Jtemp = {j ∈ J | PRmod(a, j) = 1 ∧

PRmod(b, j) = 1}
10: Pmod = Pmod−∑

j∈Jtemp
PRmod(:, j) · PRmod(:, j)T

11: In = In ∪ {i ∈ I ′ | ∃j ∈ Jtemp :
PRmod(i, j) = 1}

12: Jn = Jn ∪ Jtemp

13: PRmod(:, Jtemp) = 0
14: end if
15: end for
16: end for
17: end if
18: Gn =‖i∈In G′i
19: Kn =‖j∈Jn Kj

If we did not reach a leaf node, the multilevel clustering
(A,M) consists of multiple subclusters. At the current node,
we need to identify the requirements which combine the
subclusters into this particular multilevel clustering (A,M).
To this end, we search in DSM P nonzero elements outside
each of the subclusters, but inside cluster (A,M). In Lines
6-8 we consider all possible combinations of elements from
two different subclusters. If we find a nonzero element in
Pmod , we know that there exists at least one requirement which
relates the two different subclusters to each other. In Line 9
we identify these requirements by searching DMM PRmod .
It is possible that one of these particular requirements also
relates to other subclusters or even relates to elements inside
a particular subcluster. To prevent placing a requirement in
multiple nodes, we update Pmod and PRmod by removing all
relationships resulting from the found requirements. When we
have found all requirements relating the subclusters together
at this node, we calculate at Lines 18 and 19 the plant model
and requirement model for this node.

Example Consider the first node 1. In Fig. 5 we can
identify three non-zero elements in P outside the clusters
{1, 2, 3, 5}, {6, 7, 8, 10}, and {4, 9} and in the lower trian-
gular part: P (8, 3), P (4, 8) and P (9, 3). For the first element

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 8

3
G′1

4
G′2

5
G′3

6
G′5

8
G′6

9
G′7

10
G′8

11
G′10

13
G′4

14
G′9

2
G′1 ‖ G′2 ‖ G′3 ‖ G′5

K3 ‖ K6 ‖ K7 ‖ K8 ‖ K9 ‖
K10 ‖ K11 ‖ K12 ‖ K13 ‖ K14 ‖ K15

7
G′6 ‖ G′7 ‖ G′8 ‖ G′10

K18 ‖ K21 ‖ K22 ‖ K23 ‖ K24 ‖
K25 ‖ K26 ‖ K27 ‖ K28 ‖ K29 ‖ K30

12
G′4 ‖ G′9
K1 ‖ K16

1
G′3 ‖ G′4 ‖ G′8 ‖ G′9

K2 ‖ K4 ‖ K5 ‖ K17 ‖ K19 ‖ K20

Fig. 6. Tree structure: index set T together with Gn and Kn.

P (8, 3), we search in PR for all j ∈ J such that PR(8, j) 6=
0 ∧ PR(3, j) 6= 0. From Fig. 4, we can see that only j = 5
and j = 20 satisfy this condition and are therefore added to
Jn. Repeating this for P (4, 8) and P (9, 3) results finally in
J(1,1,1) = {2, 4, 5, 17, 19, 20}.

To create In, we search again PR to find those i ∈ I ′ such
that PR(i, j) 6= 0, j ∈ Jn. From Fig. 4 we can conclude that
I(1,1,1) = {3, 4, 8, 9}.

The same approach can be applied to find Gn and Kn

for each node n ∈ T . Fig. 6 shows the resulting plant and
requirement models at each node. If a node does not show
a requirement model Kn, none of the original requirements
is placed at this node. A node will not get assigned any
requirement if there are no requirements related to only the
plant models in that node. For the simple lock model, there
are no requirements related to only a single plant model, see
the DMM in Fig. 4.

We can prove the following two Propositions 3 and 4, which
state that every original plant model and requirement model
is located somewhere in the constructed MLDES, respectively.
The necessary and sufficient condition in Proposition 4 simply
states that each requirement has a dependency with some plant
model, which is a reasonable assumption for models of real
systems.

Proposition 3 (Plant model conservation): Consider the
MLDES constructed with Algorithm 1, it holds that ‖i∈I′
Gi = G =‖n∈T Gn.

Proof: For each node n visited by Algorithm 1, Algo-
rithm 2 is called at Line 2. It follows from Algorithm 2, Line
18, that Gn =‖i∈In G′i where In ⊆ I ′. Thus,

‖n∈T Gn =‖n∈T (‖i∈In G′i) =‖i∈(∪n∈T In) G
′
i ⊆‖i∈I′ G′i.

(1)

For a valid multilevel clustering (I ′,M) on index set I ′ it
holds that each index is included in exactly one leaf node. For
the leaf node of element i, we know by Algorithm 2 that Gn =
G′i. Therefore, the subset equality in Equation 1 becomes a set
equality, since ∪n∈T,n is leaf node In = I ′.

Proposition 4 (Requirement model conservation): Consider
the MLDES constructed with Algorithm 1, it holds that ‖j∈J

Kj = K =‖n∈T Kn if and only if ∀j ∈ J : PR(:, j)T · PR(:
, j) ≥ 1.

Proof: (⇐) For each node n visited by Algorithm 1,
Algorithm 2 is called at Line 2. It follows from Line 19
of Algorithm 2 that Kn =‖j∈Jn Kj . So, to prove that
K =‖n∈T Kn, it suffices to prove that ∪n∈TJn = J .

Requirement j is added to Jn for some n if one of the
nonzero elements of PR(:, j) · PR(:, j)T is encountered by
Algorithm 2 when Algorithm 1 is at node n. From the
assumption that PR(:, j)T · PR(:, j) ≥ 1 it follows that there
exists at least one nonzero element in PR(:, j) · PR(:, j)T .
Therefore, we know that one of these nonzero elements is
checked if we check all elements of P = PR · PRT .

All diagonal elements of P are checked at the leaf nodes of
the tree structure. For all off-diagonal elements P (a, b) with
a, b ∈ I ′ it holds that we always can find two multilevel
clusters (Ax,Mx) and (Ay,My) such that Ax 6= Ay ∧ a ∈
Ax ∧ b ∈ Ay ∧∃(Ap,Mp) : (Ax,Mx), (Ay,My) ∈Mp. Since
Algorithm 1 starts at the root node of the tree structure and
inductively creates the index set T until it has reached all leaf
nodes, we must have found (Ap,Mp) such that Algorithm 2
checks P (a, b). Therefore, all elements of P are checked, is
one of the nonzero elements of PR(:, j) · PR(:, j)T encoun-
tered, is j added to Jn for some n, and finally ∪n∈TJn = J .

(⇒) From ‖j∈J Kj = K =‖n∈T Kn it follows that ∀j ∈
J, ∃n ∈ T : j ∈ Jn. Requirement j is added to Jn if one of
the nonzero elements of PR(:, j) · PR(:, j)T is encountered
by Algorithm 2 when Algorithm 1 is at node n.

From the argumentation above it follows that all elements
of P are checked whether that element is nonzero, and thus
all elements of PR(:, j) · PR(:, j)T are checked. Therefore,
as j ∈ Jn, the matrix PR(:, j) · PR(:, j)T should contain at
least one nonzero element. As each element in PR is either
zero or one, we can conclude that PR(:, j)T · PR(:, j) ≥ 1.

D. Complete algorithm

Algorithm 3 shows the steps performed to transform a
general problem definition into a tree-structured system with

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 9

at each node a plant model and a requirement model. The
following theorem states that the result of Algorithm 3 is a
valid input for synthesis of a set Ss of supervisors according
to [32] and Theorem 1. Algorithm 3 also works correctly for
FA models, as for those models Var(Gi) = Var(Kj) = ∅ for
all Gi and Kj by definition.

Algorithm 3 TransformToMLDES
Input: set of plant models {Gi | i ∈ I}, set of requirement
models {Kj | j ∈ J}
Output: index set of tree-structure T of MLDES, set of plant
models GT = {Gn | n ∈ T}, set of requirement models
KT = {Kn | n ∈ T}

1: Transform {Gi} to a most refined product system {G′i}
with new index set I ′.

2: Construct matrix PR such that PR(i, j) = 1 iff Alp(G′i)∩
Alp(Kj) 6= ∅ ∨Var(G′i) ∩Var(Kj) 6= ∅,∀i ∈ I ′, j ∈ J .

3: Calculate P = PR · PRT .
4: Cluster P , for example with algorithm presented in [42].

Assign the computed multilevel clustering to (I ′,M).
5: Transform (I ′,M) to the tree structure including {Gn},
{Kn} by Algorithm 1 with initial parameter values
TransformCmtoT ((I ′,M), 1, P,PR, {G′i}, {Kj})

Theorem 2 (Valid MLDES tree): Consider a general com-
posed system {Gi | i ∈ I} and prefix-closed requirements
{Kj | j ∈ J} with G =‖i∈I Gi and K =‖j∈J Kj ,
respectively. The output T, {Gn | n ∈ T}, and {Kn | n ∈ T}
generated by Algorithm 3 is an MLDES for synthesis of the
set Ss = {Sn | n ∈ T, Sn ‖ Gn ⊆ Kn} according to Theorem
1.

Proof: It suffices to show that G =‖n∈T Gn, K =‖n∈T
Kn and ∀n ∈ T : Kn ⊆ Σ∗Gn

. Theorems 3 and 4 show that
G =‖n∈T Gn and K =‖n∈T Kn, respectively. It only remains
to prove that ∀n ∈ T : Kn ⊆ Σ∗Gn

.
Consider a node n, it holds that Kn ⊆ Σ∗Gn

if ΣKn ⊆ ΣGn .
In Algorithm 2, Kn is constructed at Line 18 according to the
index set Jn. One can observe at Lines 3 and 10 of Algorithm
2 that ∀j ∈ Jn : ∀i ∈ I ′ ∧ PR(i, j) = 1 : i ∈ In. By the
construction of PR given in Line 2 of Algorithm 3 and the
fact that Gn =‖i∈In G′i, we can conclude that ΣKn ⊆ ΣGn .

Theorem 2 applies for prefix-closed requirements. In case
of non-prefix closed requirements, the presented method can
still be used to construct an MLDES. After synthesizing
supervisors for the MLDES, a nonconflicting check should
be performed as mentioned in Section III-C.

Example Fig. 6 shows the result after applying Algorithm
3. For each node n ∈ T , supervisor Sn is synthesized with
monolithic supervisory control synthesis procedure. Table I
shows the number of states and transitions of the supervisors.
For a comparison, also the number of states and transitions
are shown of the uncontrolled system and the supervisory
controller obtained with monolithic synthesis procedure. We
noticed in this example that all nodes at level 3 have no
requirements and each plant model is already located in one of
the nodes where a supervisor is synthesized, so no supervisors

TABLE I
RESULTS OF SUPERVISORY CONTROL SYNTHESIS ON THE SIMPLE LOCK

MODEL

Synthesis architecture Subsystem Number of
states

Number of
transitions

Uncontrolled system G 82.944 1.041.408

Monolithic supervisor Smono 688 4288

MLDES supervisors Sum 227 954

S(1,1,1) 176 824

S(2,1,1) 22 59

S(2,1,2) 22 59

S(2,1,3) 7 12

are synthesized at these nodes as any potential blocking state
in the plant models is solved by one of the four supervisors.

As can be seen, the constructed set of supervisors {Sn | n ∈
T} has a smaller automaton representation than a single
monolithic supervisor Smono. Furthermore, it has been checked
that the system controlled by the set of supervisors is nonblock-
ing. Therefore, it holds that ‖n∈T Sn = Smono.

E. Complexity analysis

The complexity of Algorithm 3 and performing subse-
quently multilevel synthesis depends on the reduction in size
of the problem definition in each node. In the worst case,
the most refined product system reduces the original set of
plants to only a single plant model, resulting in monolithic
synthesis. Nevertheless, in [32] it is shown that for some
MLDES a considerable gain in computational time complexity
of supervisor synthesis can be achieved.

In the next section, several models from the literature are
analyzed to assess the applicability of the presented method.
The purpose is (1) to determine whether the above described
worst-case scenario is present in models of realistic systems
and (2) to observe the complexity reduction for different
scenarios.

V. EXPERIMENTAL RESULTS

The presented method to transform any problem definition
into an MLDES using DSMs has been implemented in the
discrete-event systems tool CIF [51] and Matlab [52]. Three
different experiments have been executed. First, the effect of
different values for clustering parameters on the synthesized
supervisors has been investigated. Second, the effect of differ-
ent clusterings on nonblocking control has been investigated.
Finally, tests on benchmark models have been performed. The
CIF representation of the models used and results generated
can be found in [50].

A. Clustering parameters

The first experiment investigates the observed computa-
tional complexity by applying the proposed method with
different clustering settings. We chose α ∈ {1, 2, 3}, β ∈

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 10

Number of states

F
re

qu
en

cy

1e+00 1e+07 1e+14 1e+21 1e+28

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

Number of states

F
re

qu
en

cy

1e+00 1e+07 1e+14 1e+21 1e+28

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

Number of states

F
re

qu
en

cy

1e+00 1e+07 1e+14 1e+21 1e+28

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

α = 1 α = 2 α = 3

Fig. 7. Histograms in red of sum of controlled state space sizes split for
α = 1 (left), α = 2 (middle), and α = 3 (right). The blue histogram in the
background is the complete histogram without splitting the data.

{1.1, 1.2, . . . , 3.5}, and µ ∈ {1.1, 1.2, . . . , 7.5}. The ranges
are extended versions of the recommended ranges in [42]. As
the goal is to synthesize supervisors, we chose the sum over
the nodes in the MLDED tree of the controlled state space
size, i.e.,

∑
n∈T mcssn, as the quantitative index to compare

different clustering results (and no quantitative index based
on the clustered DSM). We performed all experiments on the
lockIII model.

lockIII A waterway lock is used in rivers and canals to
raise and lower vessels between different water levels [38].
This model has various subsystems: gates, paddles, culverts,
two-lamp traffic lights, and three-lamp traffic lights. An op-
erator can interact with the system through a human-machine
interface.

Fig. 7 shows three histograms with the results focussing on
the effect of parameter α. On the horizontal axis, the quan-
titative index is shown. In this case, the closer to the origin,
the better we consider the results. From these histograms, it
can be conclude that for the lockIII model it is better to have
α = 1 instead of α = 2 or α = 3. We can also explain this
result on a conceptual level. The parameter α is involved in
the expansion step where the probability matrix of a Markov
chain (representing the DSM) is raised to the power α, i.e., it
indicates a random walker walking α steps. The DSM of the
lockIII model is quite dense. Having an α > 1 results in the
ability that the random walker may reach (almost) all nodes.
This reduces the ability to cluster, as everything seems to be
directly connected to everything else.

Fig. 8 shows the effect of parameters β and µ. On the
vertical axis, the quantitative index is shown. Again, the closer
to the origin, the better we consider the results. First, we
focus on the effect of parameter β (the left scatter plot). We
may distinguish two regions in the scatter plot: approximately
β < 2 and β > 2. For β > 2 we see repetitive results in the
scatter plot, while for β < 2 we see both decrease of minimum
and increase of maximum. So, the interesting region to search
for the absolute minimum of the quantitative index is β < 2,
but from this scatter plot it is still unclear if, for example, the
smaller β is, the better are the synthesis results.

Second, we focus on the effect of parameter µ (the right
scatter plot). The results are really scattered around and no
distinct pattern can be detected.

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

N
um

be
r o

f s
ta

te
s

1.0 1.5 2.0 2.5 3.0 3.51e
+0

8
1e

+1
3

1e
+1

8
1e

+2
3

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

N
um

be
r o

f s
ta

te
s

1.0 2.0 3.0 4.0 5.0 6.0 7.01e
+0

8
1e

+1
3

1e
+1

8
1e

+2
3

β [−] µ [−]

Fig. 8. Scatter plots of all data with α = 1. On the left, the parameter β
is placed on the horizontal axis, while on the right it is parameter µ. Both
plots have the sum of controlled state space sizes on the vertical axis. In case
several parameter settings result in the same quantitative index, the circles are
drawn on top of each other.

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

β [−]

N
um

be
r

of
 s

ta
te

s

1.1 1.3 1.5 1.7 1.91e
+

08
1e

+
13

1e
+

18
1e

+
23

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

µ [−]

N
um

be
r

of
 s

ta
te

s

1.0 2.0 3.0 4.0 5.0 6.0 7.01e
+

08
1e

+
13

1e
+

18
1e

+
23

Fig. 9. Scatter plots of all data with α = 1 and increased precision of β. On
the left, the parameter β is placed on the horizontal axis, while on the right it
is parameter µ. Both plots have the sum of controlled state space sizes on the
vertical axis. In case several parameter settings result in the same quantitative
index, the circles are drawn on top of each other.

Looking at these results from an engineering perspective,
we can conclude the following. As an engineer, you may be
satisfied with a good reduction and not primarily the best
reduction. For lockIII, the monolithic controlled state space
size is 6.0 · 1024, so reducing this to 109 − 1010 is already
a good reduction, while ∼ 108 would be the best reduction.
No matter which β is chosen, there exist multiple values of µ
that would result in a good reduction. This manual search for
a good reduction turns out to be easy.

Finally, we were also interested in the effect of param-
eter β in the region β < 2. Therefore, we repeated the
above experiment for α = 1, β ∈ {1.1, 1.11, . . . , 2.0}, and
µ ∈ {1.1, 1.2, . . . , 7.5}. The results are shown in Fig. 9.
Two parameter settings having a quantitative index smaller
than 108 can now be identified, which were not observed
in Fig. 8. Nevertheless, no clear relationship between the
parameter values of β and µ and the quantitative index can be
observed. So, if the best reduction is desired, it may involve
more effort.

B. Nonblocking control

The second experiment investigates the effect of differ-
ent clustering outcomes on nonblocking control. Again, the
lockIII model is used for these experiments. The model does

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 11

not contain any conflicting requirements, so any clustering and
MLDES would result in nonconflicting supervisors. Therefore,
a conflicting requirement is introduced into the model. For this
new model, monolithic synthesis would result in nonblocking
control, while modular supervisors [10] would result in con-
flicting supervisors.

The following approach is used to create a conflicting re-
quirement. For requirement R1 = e needs C, which expresses
that event e is only allowed if condition C is satisfied, a new
potential conflicting requirement is R2 = e needs ¬C. The
combination of these two requirements expresses that event e
is never allowed to happen. Blocking event e is problematic if a
non-marked state can be reached having an outgoing transition
labeled with e and this transition must be included in any path
to a marked state.

Above strategy is insufficient for this experiment: both
requirements R1 = e needs C and R2 = e needs ¬C have
the same dependencies with plant models (the plant model
of e and those used in C). Therefore, these two require-
ments are always placed in the same node and synthesis
will resolve the blocking issue in that node. Therefore, the
condition of the artificial requirement is extended as follows:
R3 = e needs ¬C ∧ (D ∨ ¬D) with D another condition.
It is easy to see that ¬C and ¬C ∧ (D ∨ ¬D) are logically
equivalent. Therefore, this extended requirement results in the
same blocking issue as with the first artificial requirement. We
now use condition D to relate this extended requirement R3 to
another plant model not yet mentioned in the original require-
ment R1. This opens the possibility that both requirements
end up in different nodes in the MLDES.

We applied the above strategy to create an artificial blocking
requirement in lockIII. Conflicting supervisors are obtained
with clustering settings α = 1, β = 2.0, and µ = 4.6, and
nonconflicting supervisors with α = 1, β = 2.0, and µ = 4.5.
In the first clustering, the two conflicting requirements are
placed in different nodes, while in the latter they are placed in
the same node. These results show that the proposed method
may lead to a solution for nonblocking control, but it should
be further investigated under which conditions the nonblocking
result can be guaranteed.

C. Benchmark testing
The implementation of the presented algorithm has been

tested on several models available in the literature, which are
listed below. The models selected are either fully described in
the reference or fully available in the discrete-event systems
tool Supremica [53]. Most of the models have also been used
previously in benchmark testing, see, e.g., [7], [35], [46].

transfer-line In this transfer line, products are processed
by two machines [45]. The first machine places the products
after processing them in the first buffer. The second machine
takes products from the first buffer and places them in the
second buffer. A test unit verifies whether the products in
the second buffer are acceptable. If accepted, the products
leave the system, otherwise the products move back to the
first buffer.

circular-table In this manufacturing cell metal pieces are
drilled and tested [54]. The machine consists of a four-stages

circular table with four operational devices: an input conveyer,
a drilling machine, a test device, and a manipulator.

intertwined This models a manufacturing system where two
types of products are processed [17]. The system consists of
two machines, four handling devices, and six buffers. For each
type of product, a pre-specified production cycle is given.

agent-formation This multi-agent formation problem con-
siders a circular route where three agents can only travel clock-
wise [24], [45]. There are two alternative desired formations
possible: an equilateral triangle and an alignment curve. A
team leader or a remote operator decides which formation is
currently needed.

work-cycle This manufacturing system consists of three
machines and two buffers [49]. Parts are supplied through
an input buffer and are after processing stored in two output
buffers. In this system, the first buffer has a capacity of 16
products and the second buffer a capacity of 8 products.

agv A set of five automatic guided vehicles (AGVs) serve
several workstations in a manufacturing cell [20]. Each AGV
travels on one of the fixed circular routes serving two input
stations, three work stations, and a single output station.

central-lock This models the central locking system of
a BMW car. The modeled system consists of three doors
controlled by a central locking system. The model is derived
from the KorSys project and it is available in the tool Suprem-
ica [53].

cluster-tool An integrated manufacturing system that is
used for processing wafers [22]. Four robots move the wafers
in the system that consists of nine work chambers, three
buffers, an input load lock, and an output load lock. Wafers
need to be processed according to a pre-specified routing.

production-cell In this production cell, metal blanks need to
be forged by a press [55]. The feed belt forwards blanks from
the stock to the elevating rotary table. The first arm of the robot
picks up the blank and places it in the press. After processing,
the second arm from the same robot picks the blank and drops
it on the deposit belt. At the end of the deposit belt, the test
unit checks whether the forging was successful. If it passes
the test, the blank leaves the system, otherwise it is moved
back to the feed belt by the crane.

adas A car is modeled with two Advanced Driver Assis-
tance Systems (ADASs): Cruise Control (CC) and Adaptive
Cruise Control (ACC) [56]. CC is used to maintain a desired
velocity using feedback control. ACC is used to maintain a
constant inter-vehicle time gap with respect to the predecessor.
The user operates the ADASs with a human-machine interface
and can therefore choose between manual control, CC, or
ACC.

testbed-rail A railroad system is used to resemble a set
of three interacting work units in a manufacturing cell [57].
The trains simulate AGVs that handle material to and from
each work unit. Each unit has a small crane for loading and
unloading the material. Several switches in the track allow for
different train paths.

wafer-scanner This model concerns the routing of wafers
through a wafer scanner [58]. The system consists of two
areas: the wafer stage where wafers are measured and exposed,
and the wafer handler where several pre-exposure steps are

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 12

performed. The wafers enter and exit through the wafer han-
dler area. Furthermore, there are two dummy wafers available
in the system.

container-terminal A LEGO model of a container terminal
system is used to demonstrate model-based engineering [59].
The system consists of three lanes each with a moving crane
and a truck transporting containers between the three lanes.
Containers are loaded into the system in one lane and finally
unloaded via one of the other two lanes. The choice between
one of the two unload lanes depends on the color of the
container.

festo This didactic production line system consists of 28
actuators and 59 sensors [60]. Products undergo various pro-
cessing steps in six different workstations: distributing station,
handling station, testing station, buffering station, processing
station, and sorting station.

For each model we collect the following metrics: the mod-
eling formalism, the number of plant models |I|, the number
of requirement models |J |, the number of plant models in
the most refined product system |I ′|, the uncontrolled state
space size uss , the controlled state space size of the monolithic
supervisor mcss , the sum of the controlled state space sizes of
the multilevel supervisors mlcss =

∑
n∈T mcssn, the number

of supervisors ns , the calculation time t in seconds, and
whether the calculated set of supervisors is nonblocking. For
each individual model, a good clustering has been searched
manually. The used clustering parameter values can be found
in [50].

Table II shows the experimental results for the different
models. The models are ordered based on the uncontrolled
state space size. For some models, during the calculation
of some metrics an out-of-memory (OoM) error has been
encountered and indicated in Table II. A nonblocking check
has been performed for those models that have non-prefix
closed requirements. The table shows a wide range of diversity
of the different models. All calculations have been performed
on an HP ZBook laptop with Intel i7 2.4 GHz CPU and 8GB
RAM. At most 2 GB of the available RAM could be allocated
for the calculations.

The models can be clustered into two groups based on the
experimental results: the smaller models and the larger models.
The smaller models are the first 6 models (transfer-line up to
and including agv); the larger models are the last 10 models
(central-lock up to and including lockIII).

As expected, the benefit of multilevel synthesis is minimal
or sometimes even absent for the smaller models. The number
of independent plant models (indicated by |I ′|) is often too
small to allow for the creation of an effective MLDES. Only
for the circular-table model an MLDES can be created that
reduces the state space size of the multilevel supervisors. For
the agv model, an MLDES is not beneficial. The state space
size of the monolithic supervisor is already larger than the state
space size of the uncontrolled system. Dividing requirements
into different nodes even further increases the controlled state
space size.

For the larger models, the benefit of MLDESs becomes
more apparent. For example, for the two largest models (festo
and lockIII), the state space size of the multilevel supervisors is

significantly smaller than the state space size of the monolithic
supervisor.

The worst-case scenario as described in Section IV-E be-
comes reality for some of the presented models. The cluster-
tool as well as the wafer-scanner have a single plant in the
most refined product system representation (|I ′| = 1). For the
wafer-scanner it was already reported in [58] that monolithic
synthesis was not feasible. The testbed-rail resulted in only 4
plant models in the most refined product system representation,
of which one contains almost all the original plant models. For
this model, neither monolithic nor multilevel supervisors could
be synthesized.

Creating an MLDES tackles the out-of-memory problem for
the container model. While no monolithic supervisor could
be synthesized, six multilevel supervisors are synthesized.
MLDESs can be beneficial in case the synthesis of a mono-
lithic supervisor turns out to be infeasible.

Finally, the formulation of the requirements has influence
on the result of transforming a DES to an MLDES. For
example, one could have the state-transition exclusion require-
ment σ needs A.l1 ∧ B.l2 ∧ C.l3 stating that event σ is only
allowed when automaton A is in location l1 and automaton
B is in location l2 and automaton C is in location l3. As the
synthesized supervisor should satisfy all requirements, we can
rewrite this single requirement as a set of three requirements:
σ needs A.l1, σ needs B.l2, and σ needs C.l3. Each of these
three new requirements relates to a smaller set of plant models
than the original one, resulting in fewer relationships in the
DSM P , and finally locating these requirements in a lower
node in the MLDES. This creates the potential of obtaining a
smaller state space size of the multilevel supervisors.

To demonstrate this observation, the original adas model
is reformulated into adas* where requirements are split into
multiple smaller ones when possible. For the original adas
model we obtained a state space size of 1.1 · 108 states. By
splitting the requirements we can reduce the state space size
to 5.2 ·105 states. Also observe that the number of supervisors
is doubled from 8 to 16.

VI. CONCLUSION

In this paper, a framework is presented that can be used
to transform a set of plant models and a set of requirement
models into an MLDES. The plant models and requirement
models are represented by EFAs and state-based expressions.
Relationships between plant models and requirement models
are used to analyze the structure in the problem description
with DSM-based techniques in order to find an MLDES. For
each node in the MLDES a supervisor can be synthesized.

Experimental results obtained for a set of models from the
literature show that the presented approach helps in over-
coming the state space explosion problem. For some models
for which no monolithic supervisor could be synthesized,
multilevel supervisors could be synthesized after transforming
these models into an MLDES.

The benefit of MLDESs depends on the modeling decisions
made by the modeler in creating the model. First, when the
plant models are ‘loosely coupled’, i.e., only a few plant

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 13

TABLE II
EXPERIMENTAL RESULTS FOR DIFFERENT MODELS

Model Form. |I| |J | |I′| uss mcss mlcss ns t
Nonblocking

transfer-line FA 3 2 3 8 28 30 2 4.5 no

circular-table FA 5 8 5 32 151 91 2 4.8 yes

intertwined FA 6 6 2 256 9,216 9,248 3 4.5 yes

agent-formation EFA 4 13 1 1,000 304 304 1 0.27 yes

work-cycle EFA 5 2 1 1,224 1,188 1,188 1 0.02 yes

agv FA 5 8 5 1,664 4,406 9,837 3 4.9 no

central-lock FA 74 35 74 2.6 · 105 OoM 3.9 · 105 15 12.0 yes

cluster-tool FA 18 16 1 2.6 · 108 2.7 · 106 2.7 · 106 1 7.8 yes

production-cell FA 11 19 10 3.8 · 108 1.1 · 108 22,827 7 9.8 no

adas EFA 28 33 27 3.4 · 109 2.0 · 1010 1.1 · 108 8 5.5 yes

adas* EFA 28 72 27 3.4 · 109 2.0 · 1010 5.2 · 105 16 5.7 yes

testbed-rail FA 6 29 4 5.6 · 109 OoM OoM OoM OoM OoM

wafer-scanner EFA 48 37 1 OoM OoM OoM OoM OoM OoM

container-terminal EFA 45 35 15 3.8 · 1022 OoM 3.4 · 1018 6 275 yes

festo EFA 113 211 88 1.5 · 1026 2.2 · 1025 50,638 24 9.6 yes

lockIII EFA 71 198 51 6.0 · 1032 6.0 · 1024 3.1 · 109 30 14.9 yes

models need to be combined to get the most refined product
system, the benefit of MLDESs is very clear. For the festo
model, 24 supervisors are created to reduce the controlled
state space size of the monolithic supervisor of 2.2·1025 states
to only 50, 638 states for the multilevel supervisors. Second,
splitting a composite requirement into multiple separate, but
together equivalent, requirements can also benefit the result,
as shown with the adas model.

Future research directions include specifying modeling
guidelines to tackle the above mentioned problems. For in-
stance, it may be possible to define certain rewriting algorithms
like a ‘requirement decomposition’ algorithm. In case the
model cannot be rewritten (easily), one may need to use other
clustering architectures like, for example, overlapping clusters.
Another direction is to consider other supervisory control
architectures, like hierarchical and coordinated supervisory
control, and investigate the changes needed to the proposed
method such that proper input is generated for those architec-
tures.

Furthermore, the question remains whether a different struc-
ture analysis could guarantee nonblocking control of MLDES.
Finally, DSM-based structure analysis may also be useful for
guiding abstraction-based methods like coordination control
and compositional synthesis.

ACKNOWLEDGMENT

The authors thank prof.em. J.H. van Schuppen for several
fruitful discussions about the control of MLDESs and his
comments on a manuscript of this paper.

REFERENCES

[1] P. J. G. Ramadge and W. M. Wonham, “Supervisory Control of a Class of
Discrete Event Processes,” SIAM Journal on Control and Optimization,
vol. 25, no. 1, pp. 206–230, Jan. 1987.

[2] ——, “The control of discrete event systems,” Proceedings of the IEEE,
vol. 77, no. 1, pp. 81–98, Jan. 1989.

[3] M. Skoldstam, K. Åkesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variables,” in 46th IEEE Conf. on
Decision and Control, Dec. 2007, pp. 3387–3392.

[4] S. Miremadi, K. Åkesson, B. Lennartson, and M. Fabian, “Supervisor
computation and representation: a case study,” in 10th Int. Workshop on
Discrete Event Systems, Berlin, Germany, 2010, pp. 275–280.

[5] C. Ma and W. Wonham, Nonblocking Supervisory Control of State
Tree Structures, ser. Lecture Notes in Control and Information Sciences.
Springer Berlin Heidelberg, 2005, no. 317.

[6] J. Markovski, K. G. M. Jacobs, D. A. van Beek, L. J. Somers, and
J. E. Rooda, “Coordination of resources using generalized state-based
requirements.” 2010, pp. 300–305.

[7] Z. Fei, S. Miremadi, K. Åkesson, and B. Lennartson, “Efficient symbolic
supervisor synthesis for extended finite automata,” IEEE Transactions
on Control Systems Technology, vol. 22, no. 6, pp. 2368–2375, Nov.
2014.

[8] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of
discrete-event systems,” Mathematics of Control, Signals and Systems,
vol. 1, no. 1, pp. 13–30, Feb. 1988.

[9] K. C. Wong and W. M. Wonham, “Modular Control and Coordination
of Discrete-Event Systems,” Discrete Event Dynamic Systems, vol. 8,
no. 3, pp. 247–297, Oct. 1998.

[10] M. H. d. Queiroz and J. E. R. Cury, “Modular Supervisory Control
of Large Scale Discrete Event Systems,” in Discrete Event Systems, ser.
The Springer International Series in Engineering and Computer Science,
R. Boel and G. Stremersch, Eds. Springer US, 2000, no. 569, pp. 103–
110.

[11] K. Åkesson and M. Fabian, “Exploiting Modularity for Synthesis and
Verification of Supervisors,” in 15th Triennial World Congress, 2002.

[12] M. Teixeira, J. E. R. Cury, and M. H. d. Queiroz, “Local modular
Supervisory Control of DES with distinguishers,” in 16th IEEE Conf.
on Emerging Technologies and Factory Automation, Sep. 2011, pp. 1–8.

[13] H. Zhong and W. M. Wonham, “On the consistency of hierarchical
supervision in discrete-event systems,” IEEE Trans. Automat. Contr.,
vol. 35, no. 10, pp. 1125–1134, Oct. 1990.

[14] J. G. Thistle, “Logical aspects of control of discrete-event systems: A
survey of tools and techniques,” in 11th Int. Conf. on Analysis and
Optimization of Systems Discrete Event Systems, ser. Lecture Notes in
Control and Information Sciences, G. Cohen and J.-P. Quadrat, Eds.
Springer Berlin Heidelberg, 1994, no. 199, pp. 1–15.

[15] K. C. Wong and W. M. Wonham, “Hierarchical control of discrete-event

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 14

systems,” Discrete Event Dynamic Systems, vol. 6, no. 3, pp. 241–273,
Jul. 1996.

[16] R. J. Leduc, P. Dai, and R. Song, “Synthesis Method for Hierarchical
Interface-Based Supervisory Control,” IEEE Trans. Automat. Contr.,
vol. 54, no. 7, pp. 1548–1560, Jul. 2009.

[17] F. Lin and W. M. Wonham, “Decentralized control and coordination of
discrete-event systems with partial observation,” IEEE Trans. Automat.
Contr., vol. 35, no. 12, pp. 1330–1337, Dec. 1990.

[18] K. Rudie and W. M. Wonham, “Think globally, act locally: decentralized
supervisory control,” IEEE Trans. Automat. Contr., vol. 37, no. 11, pp.
1692–1708, Nov. 1992.

[19] T. S. Yoo and S. Lafortune, “A General Architecture for Decentral-
ized Supervisory Control of Discrete-Event Systems,” Discrete Event
Dynamic Systems, vol. 12, no. 3, pp. 335–377, Jul. 2002.

[20] L. Feng and W. M. Wonham, “Supervisory Control Architecture for
Discrete-Event Systems,” IEEE Trans. Automat. Contr., vol. 53, no. 6,
pp. 1449–1461, Jul. 2008.

[21] K. Cai and W. M. Wonham, “Supervisor Localization: A Top-Down
Approach to Distributed Control of Discrete-Event Systems,” IEEE
Trans. Automat. Contr., vol. 55, no. 3, pp. 605–618, Mar. 2010.

[22] R. Su, J. H. van Schuppen, and J. E. Rooda, “Aggregative Synthesis of
Distributed Supervisors Based on Automaton Abstraction,” IEEE Trans.
Automat. Contr., vol. 55, no. 7, pp. 1627–1640, Jul. 2010.

[23] C. Seatzo, M. Silva, and J. H. van Schuppen, Control of Discrete Event
Systems - Automata and Petri Net Perspectives, ser. Lecture Notes in
Computer Science. London: Springer, 2013, no. 433.

[24] K. Cai and W. M. Wonham, “New results on supervisor localization,
with case studies,” Discrete Event Dynamic Systems, vol. 25, no. 1-2,
pp. 203–226, May 2014.

[25] R. Zhang, K. Cai, Y. Gan, and W. M. Wonham, “Distributed supervisory
control of discrete-event systems with communication delay,” Discrete
Event Dynamic Systems, vol. 26, no. 2, pp. 263–293, Jan. 2015.

[26] J. Komenda and J. H. van Schuppen, “Coordination control of discrete-
event systems,” in 9th Int. Workshop on Discrete Event Systems, May
2008, pp. 9–15.

[27] J. Komenda, T. Masopust, and J. H. van Schuppen, “Supervisory
control synthesis of discrete-event systems using a coordination scheme,”
Automatica, vol. 48, no. 2, pp. 247–254, Feb. 2012.

[28] ——, “Coordination control of discrete-event systems revisited,” Dis-
crete Event Dynamic Systems, vol. 25, no. 1-2, pp. 65–94, Feb. 2014.

[29] R. Hill and D. Tilbury, “Modular supervisory control of discrete-event
sytems with abstraction and incremental hierarchical construction,” in
8th International Workshop on Discrete Event Systems, Jul. 2006, pp.
399–406.

[30] H. Flordal, R. Malik, M. Fabian, and K. Åkesson, “Compositional
Synthesis of Maximally Permissive Supervisors Using Supervision
Equivalence,” Discrete Event Dynamic Systems, vol. 17, no. 4, pp. 475–
504, Dec. 2007.

[31] R. Malik and H. Flordal, “Yet another approach to compositional
synthesis of discrete event systems,” in 9th International Workshop on
Discrete Event Systems, May 2008, pp. 16–21.

[32] J. Komenda, T. Masopust, and J. H. van Schuppen, “Control of an
engineering-structured multilevel discrete-event system,” in 13th Int.
Workshop on Discrete Event Systems, May 2016, pp. 103–108.

[33] S. D. Eppinger and T. R. Browning, Design structure matrix methods
and applications. MIT press, 2012.

[34] T. R. Browning, “Design structure matrix extensions and innovations:
a survey and new opportunities,” IEEE Trans. Eng. Manage., vol. 63,
no. 1, pp. 27–52, 2016.

[35] H. Flordal and R. Malik, “Compositional Verification in Supervisory
Control,” SIAM Journal on Control and Optimization, vol. 48, no. 3,
pp. 1914–1938, Jan. 2009.

[36] J. Komenda, T. Masopust, and J. H. van Schuppen, “Multilevel Coordi-
nation Control of Modular DES,” in 52th IEEE Conf. on Decision and
Control, Florence, Italy, Dec. 2013, pp. 6323–6328.

[37] L. Feng and W. M. Wonham, “Computationally Efficient Supervisor
Design: Control Flow Decomposition,” in 8th Int. Workshop on Discrete
Event Systems, Jul. 2006, pp. 9–14.

[38] F. F. H. Reijnen, M. A. Goorden, J. M. van de Mortel-Fronczak, and
J. E. Rooda, “Supervisory control synthesis for a waterway lock,” in 1st
IEEE Conf. on Control Technology and Applications, Aug. 2017, pp.
1562–1568.

[39] M. A. Goorden, J. M. van de Mortel-Fronczak, M. A. Reniers, and J. E.
Rooda, “Structuring multilevel discrete-event systems with dependency
structure matrices,” in 56th IEEE Conf. on Decision and Control, Dec.
2017, pp. 558–564.

[40] M. S. Maurer, “Structural awareness in complex product design,” Ph.D.
dissertation, Universität München, 2007.

[41] A. Yassine, D. Whitney, S. Daleiden, and J. Lavine, “Connectivity
maps: Modeling and analysing relationships in product development
processes,” Journal of Engineering Design, vol. 14, no. 3, pp. 377–394,
Sep. 2003.

[42] T. Wilschut, L. F. P. Etman, J. E. Rooda, and I. J. B. F. Adan, “Multilevel
flow-based Markov clustering for design structure matrices,” Journal of
Mechanical Design, vol. 139, no. 12, p. 121402, 2017.

[43] S. van Dongen, “Graph clustering via a discrete uncoupling process,”
SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 1, pp.
121–141, Jan. 2008.

[44] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Boston: Springer, 2008.

[45] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event Sys-
tems, ser. Communications and Control Engineering. Cham: Springer
International Publishing, 2019.

[46] S. Mohajerani, R. Malik, and M. Fabian, “A framework for com-
positional nonblocking verification of extended finite-state machines,”
Discrete Event Dynamic Systems, vol. 26, no. 1, pp. 33–84, Mar. 2016.

[47] R. Kumar, V. Garg, and S. I. Marcus, “Predicates and predicate trans-
formers for supervisory control of discrete event dynamical systems,”
IEEE Trans. Automat. Contr., vol. 38, no. 2, pp. 232–247, Feb. 1993.

[48] G. Birkhoff, Lattice theory. American Mathematical Soc., 1940, vol. 25.
[49] L. Ouedraogo, R. Kumar, R. Malik, and K. Åkesson, “Nonblocking

and safe control of discrete-event systems modeled as extended finite
automata,” IEEE Trans. on Automat. Sci. and Eng., vol. 8, no. 3, pp.
560–569, Jul. 2011.

[50] M. A. Goorden, J. M. van de Mortel-Fronczak, M. A. Reniers, W. J.
Fokkink, and J. E. Rooda, “CIF3 models used in the T-AC 2018 paper.”
[Online]. Available: https://github.com/magoorden/T-AC2018

[51] D. A. van Beek, W. J. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski,
J. M. van de Mortel-Fronczak, and M. A. Reniers, “CIF 3: Model-based
engineering of supervisory controllers,” in Tools and Algorithms for the
Construction and Analysis of Systems, ser. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, Apr. 2014, pp. 575–580.

[52] Mathworks, “Matlab.” [Online]. Available:
https://www.mathworks.com/products/matlab.html

[53] R. Malik, K. Åkesson, H. Flordal, and M. Fabian, “Supremica-An ef-
ficient tool for large-scale discrete event systems,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 5794–5799, Jul. 2017.

[54] M. H. de Queiroz and J. E. R. Cury, “Synthesis and implementation of
local modular supervisory control for a manufacturing cell,” in 6th Int.
Workshop on Discrete Event Systems, 2002, pp. 377–382.

[55] L. Feng, K. Cai, and W. M. Wonham, “A structural approach to
the non-blocking supervisory control of discrete-event systems,” The
International Journal of Advanced Manufacturing Technology, vol. 41,
no. 11-12, p. 1152, Apr. 2009.

[56] T. Korssen, V. Dolk, J. M. van de Mortel-Fronczak, M. A. Reniers, and
M. Heemels, “Systematic model-based design and implementation of
supervisors for advanced driver assistance systems,” IEEE Trans. Intell.
Transport. Syst., vol. 19, no. 2, pp. 533–544, 2017.

[57] R. J. Leduc, “PLC implementation of a DES supervisor for a manufac-
turing testbed: an implementation perspective,” Master’s thesis, Dept. of
Elect. Eng., Univ. of Toronto, Toronto, 1996.

[58] L. J. van der Sanden, M. A. Reniers, M. C. W. Geilen, A. A. Basten,
J. Jacobs, J. P. M. Voeten, and R. R. H. Schiffelers, “Modular model-
based supervisory controller design for wafer logistics in lithography
machines,” Proc. 18th ACM/IEEE Int. Conf. on Model Driven Engi-
neering Languages and Systems, 2015.

[59] M. A. Reniers and J. M. van de Mortel-Fronczak, “An engineering
perspective on model-based design of supervisors,” in 14th Int. Workshop
on Discrete Event Systems, May 2018, pp. 268–275.

[60] F. F. H. Reijnen, M. A. Goorden, J. M. v. d. Mortel-Fronczak, M. A.
Reniers, and J. E. Rooda, “Application of Dependency Structure Matri-
ces and Multilevel Synthesis to a Production Line,” in 2018 IEEE Conf.
on Control Technology and Applications, Aug. 2018, pp. 458–464.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL., NO., 15

Martijn Goorden received the M.Sc. degree (cum
laude) in systems and control from Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands,
in 2015. He is currently working towards the Ph.D.
degree in mechanical engineering.

His current research interests are in the area of
model-based systems engineering and supervisory
control synthesis.

Joanna van de Mortel-Fronczak received the
M.Sc. degree in computer science from AGH Uni-
versity of Science and Technology, Cracow, Poland,
in 1982 and the Ph.D. degree in computer science
from Eindhoven University of Technology, Eind-
hoven, The Netherlands, in 1993.

Since 1997, she has been with the Department
of Mechanical Engineering, Eindhoven University of
Technology. Her research interests include model-
based engineering and the synthesis of supervisory
control systems.

Michel Reniers (S’17) is currently an Associate
Professor in model-based engineering of supervisory
control at the Department of Mechanical Engineer-
ing, Eindhoven University of Technology. He has
authored over 100 journal and conference papers,
and is the supervisor of ten Ph.D. students. His
research portfolio ranges from model-based systems
engineering and model-based validation and testing
to novel approaches for supervisory control synthe-
sis. Applications of this work are mostly in the areas
of high-tech systems and cyber-physical systems.

Wan Fokkink received his Ph.D. degree in Com-
puter Science from the University of Amsterdam,
Amsterdam, The Netherlands.

Since 2004 he is full professor of Theoretical
Computer Science at the Vrije Universiteit Amster-
dam. Since 2012 he is moreover professor of Model-
Based System Engineering at Eindhoven University
of Technology.

His research focus is on the design and analysis
of distributed computer systems.

Jacobus Rooda received the M.Sc. degree from
Wageningen University of Agriculture Engineering,
Wageningen, The Netherlands, and the Ph.D. de-
gree from Twente University, Enschede, The Nether-
lands.

Since 1985, he has been a Professor of (Manu-
facturing) Systems Engineering at the Department
of Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands.

Since 2010, he is a Professor Emeritus. He is still
active in the research fields of engineering design

for industrial systems, and of supervisory control thereof.

