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1.1 Cognitively healthy centenarians
One important accomplishment of humankind is the extension of the average

life expectancy. Worldwide, this phenomenon has shown a remarkable

linear increase over the last two centuries,[1] and by 2050 there will be 3.2

million of centenarians in the world.[2] However, a consequence of an aged

population is the increased prevalence of age-related diseases.[3] Therefore,

an increasing fraction of individuals will spend part of their old age in

disability or dependence on others. A major contributor to poor health at

old age is cognitive decline and dementia, of which Alzheimer’s disease (AD)

is the most common type. [4, 5] However, dementia is not an inevitable

consequence of aging: in fact, a small proportion of the population (<0.1%)

reaches at least 100 years of age while maintaining a high level of cognitive

and physical functions, so-called cognitively healthy centenarians.[6, 7]

This raises questions as to what extent these centenarians have exceptional

features that protect or delay the onset of dementia and other age-related

diseases, and to what extent genetic factors are involved. To �nd an answer

to these questions, the 100-plus Study was initiated: a prospective cohort

study that aims at unraveling the environmental and genetic factors that are

associated with becoming a cognitively healthy centenarian.[6]

1.2 Epidemiology and genetics of Alzheimer’s disease
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder char-

acterized by the loss of cognitive functions, ultimately leading to loss of

independence, and death.[5, 8] In the aged Western populations it is cur-

rently one of the most prevalent diseases and poses a huge burden on patients,

their families, and society.[5, 4] Currently, there is no e�ective treatment to

prevent or to slow AD progression.[5, 8] The prevalence of AD increases

exponentially with age: while the disease is rare before the age of 65 years

(early-onset AD, EOAD), the more common form of the disease, late onset

AD (LOAD, age at onset >65 years), reaches ∼40% per year at 100 years of

age.[9] Next to aging, genetic factors play an important role: in fact, twin

studies indicated that the heritability of the common form of AD ranges

between 60-80%.[10] The strongest genetic risk factor for AD is APOE geno-

type, which was identi�ed in the early 1990s through linkage studies, and

in the Caucasian population determines up to 30% of the genetic risk of

AD.[11, 12, 13] The APOE genotype for each individual is determined by the

combination of two out of three alleles (ε2, ε3, and ε4), that make up the

six possible genotypes (ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4 and ε4/ε4). The
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ε3 allele is the most frequent in the population ( 77%), followed by the ε4

allele ( 15%) and lastly the ε2 allele ( 8%). In terms of AD risk, the ε4 allele

increases AD susceptibility, while the ε3 is neutral and the ε2 allele has a

protective e�ect against AD. Compared to carrying no ε4 allele, carrying one

copy of the ε4 allele (i.e. ε3/ε4 heterozygous genotype) increases AD-risk by

approximately 3-5 fold, while AD-risk is increased to 15-30 fold in individuals

who carry two copies of the ε4 allele (i.e. ε4/ε4 homozygous genotype).[11,

12, 13, 14] With the development of genotyping arrays in the early 2000s,

genome-wide association studies (GWAS) became possible, leading to the

identi�cation of additional genetic risk variants for LOAD.[15] Typically,

in GWAS the frequency of genetic variants is compared between a group

of individuals that manifest the phenotype of interest (cases) and a group

of individuals in which the phenotype of interest is absent (controls).[15]

Unlike linkage and family studies, typically hypothesis-driven, GWAS do

not require any prior knowledge and thus have the potential to reveal new

genetic discriminants of a given phenotype.[16] Additionally, the continuous

development of reference panels comprising tens of thousands of individ-

uals and next-generation imputation strategies have drastically improved

the number of genetic variants that can be analyzed, whilst simultaneously

reducing genotyping costs.[17, 18] Successive waves of GWAS of AD with

an increasing number of individuals have been performed, and the number

of variants identi�ed to in�uence the genetic risk to develop AD has steeply

increased.[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] Today, about 70 genetic

variants in addition to the APOE variants have been associated with a slight

modi�cation of the risk of AD from GWAS. [30] Besides being a powerful

instrument to delineate the genetic landscape of AD, GWAS studies have

been pivotal to understand the molecular events that are associated with AD

pathology (Figure 1.1). The amyloid hypothesis, which was proposed during

the �rst years of AD research, is the commonly adopted theory to explain AD

development. According to this theory, the imbalance between β-amyloid

production and clearance (i.e. β-amyloid metabolism) is at the basis of the

molecular cascade that lead to neuronal loss and ultimately to cognitive

decline (Figure 1.1).[31] However, drugs targeting β-amyloid have as of yet

been insu�ciently e�ective, as the decrease in the amount of β-amyloid in

the brain did not reduce the rate of disease progression and cognitive decline.

This has led, together with a better understanding of the genetic factors that

are associated with AD, to an evolution of the traditional β-amyloid theory

to encompass more complex disease aspects.[32] For example, part of the

current view of the etiology of AD is that the dysregulation of the endo-
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lysosomal tra�cking system and the immune response is a major causal

pathway, and that AD is not just a consequence of β-amyloid metabolism

(Figure 1.1).[33, 34] However, the extent to which di�erent pathways associ-

ated with AD overlap and contribute to the total risk to develop the disease

is mostly unknown.

1.3 Genetic factors underlying AD and longevity

Given the high prevalence of AD at old ages, and the importance of genetic

factors for AD, cognitively healthy centenarians are exceptional individuals

to study. Theoretically, it would be expected that genetic variants that are

associated with an increased risk to develop AD should have a negative

e�ect on longevity, as AD is associated with increased mortality. Therefore,

the frequency of these variants in extremely old and healthy individuals

is expected to be lower than in the general population. In fact, the largest

genetic risk factor for AD, APOE, is also the largest genetic factor known

to in�uence human longevity.[35] Surprisingly, only the APOE genotype is

associated with both the genetics of AD and longevity, with the ε4 allele

that increases AD risk and is associated with reduced longevity, and the ε2

allele which decreases AD risk and promote longer lifespan.[36] Such a small

overlap between the genetics of AD and longevity may be attributable to

several reasons: �rst, across di�erent populations and cohorts the genetics

of AD may be more homogeneous than the genetics of longevity; second, the

case-control approach typically applied in studies investigating the genetics

of AD cannot be robustly applied in studies investigating the genetics of

longevity. For example, in studies of longevity it is unclear which individu-

als should be considered as cases and/or as controls while for AD a�ected

individuals may be compared to (age- and population-matched) non-a�ected

individuals; third, given that longevity is the result of resisting or delaying

all deadly diseases, the e�ect on longevity of genetic variants associated

with one speci�c disease may be relatively small, such that a large number

of individuals of extreme age need to be compared to identify associated

genetic variants, and that is not always feasible.[16] Despite great interest

in understanding the relationship between cognitive decline due to AD and

extreme longevity with retained cognitive health, the extent to which cog-

nitively healthy super-agers are genetically protected against AD is largely

unknown, and therefore object of our investigations.
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Figure 1.1: Genetics underlying Alzheimer’s disease. The genetics factors at the

basis of Alzheimer’s disease are typically studied through Genome-Wide Association

Studies (GWAS), where the frequency of genetic variants across the genome is

compared between a sample of individuals with AD and a sample of individuals

without AD. Genetic variants with a signi�cant di�erence of frequency between AD

patients and controls modify the risk to develop AD. Each genetic variant is thought

to act at the gene level by regulating its expression or regulation. These genes, in

turnm play a role in the molecular events that lead to AD. The commonly accepted

theory explaining AD is based on the centrality of the β-amyloid metabolism.

Speci�cally, the imbalance between β-amyloid production and clearence is thought

to initiate the molecular cascade that eventually lead to cognitive decline and

dementia.
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1.4 Genetics of human longevity
Human longevity is one of the most complex phenotypes to study and it is

in�uenced by environmental and genetic variables (Figure 1.2).[3] Long-lived

individuals tend to cluster in families, which suggests that genetic factors

play a role in determining extreme human longevity. In fact, although the

heritability of lifespan up to ∼70 years of age ranges only 10-25%, the heri-

tability of becoming a centenarian raises up to ∼50%.[37, 38, 39] This means

that to reach higher ages we become increasingly dependent on the favor-

able genetic elements of our genomes. Ever since the GWAS-era started,

many GWAS of longevity have been performed, trying to unravel the genetic

architecture of extreme human aging and the relationship with age-related

diseases.[40, 41, 42, 43, 44, 45, 46] As a result, a constellation of genetic

variants has been associated with extended lifespan in independent studies.

However, apart from APOE and few other candidates (CDKN2B, ABO), the

replication of these genomic regions in independent studies has been chal-

lenging, in part due to heterogeneity in the study designs, methodologies, and

populations. While not fully replicated, the genetic variants discovered thus

far were known to associate with age-related diseases, including cardiovas-

cular diseases and cancer, and with immunological and metabolic signatures,

which are known hallmarks of aging (Figure 1.2).[42, 43, 46] Altogether,

this suggests that an extended human lifespan is associated with a lower

genetic risk of age-related diseases.[46][47][48] Given the uncertainties that

are associated with the genetic factors associated with extreme longevity, it

is of interest to determine the extent to which cognitively healthy agers are

genetically predisposed to live longer, and whether this information can be

used to predict overall survival.

1.5 GWAS limitations and alternative approaches
Despite the robustness of the GWAS approach to study complex polygenic

traits such as longevity and AD, there are some limitations to this strategy.

First, very large sample sizes are necessary to achieve su�cient statistical

power: the power to detect signi�cant associations is indeed a function of the

sample size, the variant e�ect-size (how much the variant-frequency is dif-

ferent between cases and controls), and the signi�cance threshold used (the

evidence-level that there is a true di�erence between the variant-frequency

in cases and controls).[16] Given that the e�ect-size of variants a�ecting

complex traits are mostly small, and that the burden of multiple test cor-

rection is massive due to the high number of variants that are tested, it
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Figure 1.2: Genetics underlying human longevity. The genetic factors that in-

�uence human longevity are thought to resemble those in�uencing the genetic risk

to develop age-related diseases, such as cardiovascular, autoimmune and neurode-

generative disorders, frailty, and cancer. Several GWAS have been performed on

longevity, and although the replication rate across multiple study is generally low,

multiple genomic regions across the genome have been linked to longevity. These

genetic factors, along with environmental variables, model the relationship between

longevity and age-related diseases, de�ning di�erent aging trajectories. On the

one end, protective elements (both genetic- and environmental-based) may shift

towards older ages the onset of age-related diseases and compress disability periods,

increasing the odds of successful aging. On the other, genetic predisposition to

diseases and environmental risk-factors may accelerate the onset of age-related

diseases, increasing late-life disability and shorthening lifespan.
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comes that the more individuals are compared, the higher the chance to �nd

signi�cant associations.[16] However, an alternative strategy to increase

statistical power may be to compare individuals that carry extreme pheno-

types, as the e�ect-size should be maximal when comparing individuals that

represent the extreme ends of a disease spectrum.[48, 49, 50] For AD and

other age-related diseases, extreme cases may be de�ned by sporadic AD

cases (i.e. cases with no familial AD) with a relatively early age at disease-

onset. Extreme controls are represented by individuals who reach extreme

ages without the disease. [48, 49, 50] Alternatively, instead of testing each

variant independently, which is typically done in GWAS, one could test the

combined e�ect of multiple variants that are associated with a certain dis-

ease. One of the most commonly used methods to test the combined e�ect

of multiple common variants is the construction of polygenic risk scores

(PRS).[51, 52] A PRS is a weighted score that quanti�es the individual risk to

a certain phenotype and therefore can be used to stratify patients according

to their genetic risk for a given trait or to identify individuals at the highest

genetic risk. Normally, PRS are constructed using genetic variants that are

identi�ed through GWAS, and under the assumption that genetic variants

do not change over time (i.e. the e�ect of a genetic variant does not change

at increasing ages), the PRS represents a powerful diagnostic and prognostic

tool.[52]

Another drawback of GWAS relates to the interpretation of signi�cant associ-

ations. The large majority of variants that are tested in GWAS are non-coding

variants, for which the downstream e�ects on gene and protein function

are unknown.[16] A trivial procedure is to associate the variant with the

closest gene, assuming a linear organization of the DNA, which underes-

timates the complexities of our genome. Given the amount of data that

is currently generated, multiple sources of variant annotation should be

taken into consideration, such as expression-quantitative-trait-loci (eQTLs,

i.e. associations between genetic variants and RNA expression), chromatin

structure, or structural variations. Finally, to better understand how genetic

factors a�ect di�erent traits, it can be informative to explore the extent of

association of a genomic region on di�erent phenotypes. Altogether, it may

be of interest to explore the added value of using extreme phenotypes in a

case-control genetic analysis of AD, and to provide an innovative framework

to perform gene-set enrichment analysis from set of SNPs.



1

22 Chapter 1. General Introduction

1.6 Aim of this thesis and outline

The overall objective of this thesis is to investigate the genetic factors un-

derlying extreme human longevity and the escape of Alzheimer’s disease,

for which we explore the genetic architecture of the cognitively healthy

centenarians from the 100-plus Study (Figure 1.3). The thesis is subdivided

into two sections: �rstly, we focus on the comparison of the cognitively

healthy agers with young AD cases and population controls in context of

Alzheimer’s disease and human longevity (chapter 2, chapter 3, chapter 4,

and chapter 5). Secondly, we focus on the collaborative e�orts in which

our cohort participated in terms of large GWAS of AD and longevity, and is

accompanied by the development of tools to integrate, visualize and analyze

results from GWAS (chapter 6, chapter 7, and chapter 8).

We �rst explore the added value of analyzing extreme phenotypes in the ge-

netic research of AD by comparing extreme controls, i.e. cognitively healthy

centenarians, and extreme AD cases, i.e. relatively young AD cases, in a

case-control study of AD (chapter 2). We report that cognitively healthy

centenarians have a lower frequency of genetic variants associated with in-

creased AD risk compared to the general population, and a higher frequency

of protective variants. This led to a 2-fold enrichment in the variant e�ect-

size when comparing AD cases with cognitively healthy agers, showing

that the use of extreme phenotypes in genetic studies of complex traits is

pro�table.

We then investigate the molecular pathways that are known to play a

role in AD pathogenesis and their association with resilience against AD, by

combining the e�ect of multiple variants into polygenic risk scores (PRSs)

and pathway-speci�c PRSs (chapter 3). We report that cognitively healthy

centenarians have the lowest PRS and pathway-speci�c PRS for all major

AD-associated pathways. Moreover, while the risk of AD was signi�cantly

associated with a higher pathway-speci�c PRS of all pathways, only the

immune system response and endocytosis pathways signi�cantly in�uenced

the resilience against AD, even after excluding APOE variants.

In chapter 4, we challenge to disentangle the e�ect on healthy aging from the

e�ect on AD risk of genetic variants that are associated with AD. Under the

hypothesis that genetic variants increasing the risk of AD should negatively

a�ect longevity, we found that most alleles that increase the risk of AD neg-

atively in�uence healthy longevity, with the e�ect on AD that explained, for

the majority of variants, the negative e�ect on healthy longevity. However,

a subset of variants preferentially involved in immune-related processes
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Figure 1.3: Roadmap to understand theGenetics of CognitivelyHealthyCen-
tenarians. All chapters in this thesis present analyses that are based on three

distinct population: (i), a sample of Alzheimer’s disease (AD) patients from the

Amsterdam Dementia Cohort and other cohorts, (ii) a sample of healthy individuals

from the di�erent studies, and (iii) a sample of cognitively healthy centenarians

from the 100-plus Study cohort. We will �rst focus on genetic variants associated

with AD (chapter 2, chapter 3, chapter 4 and chapter 6), and then we will focus on

the genetics of longevity (chapter 5, chapter 7 and chapter 8).
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seemed to a�ect more strongly longevity than AD, suggesting a bene�cial

e�ect not only against AD, but also against other age-related diseases, or a

general neuroprotective e�ect.

Then (chapter 5), we focus on human longevity and attempt to construct

a polygenic risk score that associates with cognitively healthy aging and

survival. Using the results from a study on parental longevity, we show that a

polygenic risk score of 330 variants was signi�cantly associated with becom-

ing a cognitively healthy centenarian. Furthermore, this PRS signi�cantly

predicted survival in an independent cohort and was functionally enriched

for biological pathways resembling the hallmarks of longevity, such as slow

cell di�erentiation and replacement, and oxidative stress.

In the second part of the thesis, we present the contribution of the cogni-

tively healthy centenarians from the 100-plus Study to large, collaborative

GWAS of AD (chapter 6) and longevity (chapter 7). In chapter 6, we combined

clinical studies and by-proxy studies in the largest GWAS of AD (at the time

of publication), leading to the discovery of six additional genetic variants

associated with AD. In addition to a better understanding of the genetic

landscape of AD, our �ndings enforced the role of β-amyloid processing

and immune response as central biological pathways in AD pathogenesis.

Furthermore, we showed the applicability and predictability of the PRS for

stratifying patients based on their genetic background and identifying those

at the highest risk for the disease.

In chapter 7, we collaborated on, to date, the largest GWAS of longevity. We

introduced an unbiased method to identify cases (i.e. long-lived individuals)

and controls on country-based survival percentiles. In addition to APOE
variants, we propose an additional variant near the GPR78 gene to a�ect

longevity, and through genetic correlation and gene expression analyses,

we showed overlap between the genetics of diseases and the genetics of

longevity.

Finally, (chapter 8) we developed snpXplorer, a tool that is freely available to

the scienti�c community to explore summary statistics of genetic studies,

compare levels of association between di�erent traits, and functionally an-

notate sets of genetic variants. This tool may be useful to explore the extent

of overlap between traits, which has applications in the diagnostic �eld.

The thesis ends with a summary and discussion.
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Abstract

The detection of genetic loci associated with Alzheimer’s disease

(AD) requires large numbers of cases and controls because variant

e�ect sizes are mostly small. We hypothesized that variant e�ect sizes

should increase when individuals who represent the extreme ends of

a disease spectrum are considered, as their genomes are assumed to

be maximally enriched or depleted with disease-associated genetic

variants. We used 1,073 extensively phenotyped AD cases with rel-

atively young age at onset as extreme cases (66.3 ± 7.9 years), 1,664

age-matched controls (66.0 ± 6.5 years) and 255 cognitively healthy

centenarians as extreme controls (101.4 ± 1.3 years). We estimated

the e�ect size of 29 variants that were previously associated with

AD in genome-wide association studies. Comparing extreme AD

cases with centenarian controls increased the variant e�ect size rela-

tive to published e�ect sizes by on average 1.90-fold (SE = 0.29, p =

0.0009). The e�ect size increase was largest for the rare high-impact

TREM2(R74H) variant (6.5-fold), and signi�cant for variants in/near

ECHDC3 (4.6-fold), SLC24A4−RIN3 (4.5-fold), NME8 (3.8-fold),

PLCG2 (3.3-fold), APOE− ε2 (2.2-fold), and APOE− ε4 (twofold).

Comparing extreme phenotypes enabled us to replicate the AD as-

sociation for 10 variants (p < 0.05) in relatively small samples. The

increase in e�ect sizes depended mainly on using centenarians as

extreme controls: the average variant e�ect size was not increased in

a comparison of extreme AD cases and age-matched controls (0.94-

fold, p=0.68), suggesting that on average the tested genetic variants

did not explain the extremity of the AD cases. Concluding, using

centenarians as extreme controls in AD case–control studies boosts

the variant e�ect size by on average twofold, allowing the replication

of disease-association in relatively small samples.
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2.1 Introduction

Alzheimer’s disease (AD) is often characterized by a slow but progressive

loss of cognitive functions, leading to loss of autonomy.[1] AD is rare at the

age of 65 years, but its incidence increases exponentially to 40% at the age of

100 years.[2] It is currently the most prevalent cause of death at old age and

one of the major health threats of the 21
st

century.[1] Better understanding

of the etiological factors that determine AD is warranted as no treatment

is currently available. Heritability plays an important role, as genetic fac-

tors are estimated to deter- mine 60–80% of the risk of AD. [3] About 30%

of the genetic risk is attributable to the ε4 allele of APOE gene, and large

collaborative e�orts have identi�ed over two dozen additional genetic loci

that are associated with a slight modi�cation of the risk of AD.[4, 5, 6, 7,

8, 9, 10, 11, 12, 13, 14, 15, 16, 17] The design of these association studies

relies on the comparison of very large numbers of cases with age-matched

controls, such that detected associations can be attributed speci�cally to the

disease.[18] However, given the prevalence of AD in the aging population, it

is likely that a signi�cant fraction of the controls will develop the disease

at a later age. Therefore, as the AD risk for future cases likely involves

the same genetic variants, using age-matched controls may quench variant

association signals. This may, in part, explain the mostly small variant e�ect

sizes associated with common variants. Also, GWAS studies mostly compare

common genetic variants that are widely propagated in the population; as a

consequence, these have mostly small e�ects on AD risk.[19] Rare genetic

variants often have larger e�ect sizes than com- mon variants, but as there are

fewer carriers available in the population, the requirement for large sample

sizes stands.[20] The power of genetic analyses is determined by the variant

frequency, the e�ect size of the variant, the sample size, and signi�cance

threshold set to be obtained.[21] Therefore, instead of increasing sample

sizes of genetic studies to detect novel disease-associated genetic loci, an

alternative strategy is to increase variant e�ect sizes by sampling individuals

with extreme phenotypes.[20, 22, 23] For AD and other age-related diseases,

extreme cases may be de�ned by having a relatively early age at disease

onset, and having the phenotypic features characteristic for the disease, as

de�ned by diagnostic assessment. Extreme controls are represented by indi-

viduals who reach extreme ages without the disease.[22, 24, 25] Indeed, in a

case–control study of type 2 diabetes, the e�ect sizes for variants that were

previously associated with the disease were increased when using centenari-

ans as extreme controls.[24] The e�ect of using extreme phenotypes in other
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age-related diseases has not been studied. Here, we explored the potential

of using extreme phenotypes for genetic studies of AD by investigating

the change in e�ect size of known AD-associated variants. Furthermore,

using an age- and population-matched reference group, we investigated the

contribution of each extreme phenotype.
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Table 2.1: Population characteristics

Extreme AD (EA) Centenarian controls (EC) Normal controls (NC)

Individuals 1,073 255 1,664

Females (%) 564 (52.6%) 191 (74.9%) 893 (53.7%)

Age (SD)
a

66.4 (7.8) 101.4 (1.3) 66.0 (6.5)

APOE ε4 (%) 981 (42.7) 44 (8.6) 533 (16.0)

APOE ε2 (%) 76 (3.5) 78 (15.3) 304 (9.1)

a
Age at onset for extreme Alzheimer’s disease cases, age at study inclusion for extreme

controls and normal controls; SD, standard deviation; ApoE, Apolipoprotein E allele count for

ε4 and ε2, respectively. Reference to the cohorts reported in this table are: [18, 19, 20]

2.2 Methods

2.2.1 Cohort description

As extreme AD cases group (denoted by EA), we used 1,149 AD cases from

the Amsterdam Dementia Cohort (ADC). The ADC comprises patients who

visit the memory clinic of the VU University Medical Center, The Nether-

lands.[21, 18] This cohort of AD patients is extensively characterized and

comprises 503 early-onset cases (denoted by eEA) with an age at onset <65

years, and 646 late-onset cases (denoted by lEA). Of the 503 early-onset cases,

255 had an age at onset <60 years (i.e., young early onset, denoted by yEA).

The diagnosis of probable AD was based on the clinical criteria formulated

by the National Institute of Neurological and Communicative Disorders and

Stroke-Alzheimer’s Disease and Related Disorders Association (NINCDS-

ADRDA) and based on National Institute of Aging-Alzheimer association

(NIA-AA).[22, 23] At baseline, all subjects underwent a standard clinical di-

agnostic assessment including neurological examination and standard blood

tests. In addition, all subjects underwent magnetic resonance imaging, an

electroencephalogram, and cerebrospinal �uid (CSF) was analyzed for most

patients.[24] Clinical diagnosis is made in consensus-based, multidisciplinary

meetings. Together, this elaborate diagnostic procedure reduces the chance

of misdiagnosis. The extensive phenotyping in combination with the early

disease onset generates an AD cohort that can be regarded extreme. As ex-

treme control group (denoted by EC), we used 268 self-reported cognitively

healthy centenarians from the 100-plus Study cohort.[20] This study includes

Dutch-speaking individuals who (i) can provide o�cial evidence for being

aged 100 years or older, (ii) self-report to be cognitively healthy, which is

con�rmed by a proxy, (iii) consent to donation of a blood sample, (iv) consent
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to (at least) two home visits from a researcher, and (v) consent to undergo an

interview and neuropsychological test battery. As normal controls (denoted

by NC) we used 1,717 middle-aged (55–85 year-old) individuals from a repre-

sentative sample of Dutch individuals from the Longitudinal Aging Study

Amsterdam (LASA) cohort.[19, 25] LASA is an ongoing longitudinal study of

older adults initiated in 1991, with the main objective to determine predictors

and consequences of aging. The Medical Ethics Committee of the VU Uni-

versity Medical Center (METC) approved the ADC cohort, the LASA study

and the 100-plus Study. All participants and/or their legal guardians gave

written informed consent for participation in clinical and genetic studies.

2.2.2 Genotyping and imputation methods

We selected 29 single-nucleotide variants for which evidence for a genome-

wide signi�cant association with AD was found in previous studies (Table

S1, Table S2).[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] Genetic vari-

ants were determined by standard genotyping or imputation methods. In

brief, we genotyped all individuals using the Illumina Global Screening

Array (GSAsharedCUSTOM_20018389_A2) and applied established quality

control methods.[26] We used high-quality genotyping in all individuals

(individual call rate > 98%, variant call rate > 98%), individuals with sex

mismatches were excluded and Hardy-Weinberg equilibrium-departure was

considered signi�cant at p < 1x10
−6

. Genotypes were prepared for impu-

tation using provided scripts (HRC-1000G-check-bim.pl).[27] This script

compares variant ID, strand and allele frequencies to the haplotype reference

panel (HRC v1.1, April 2016).[26] Finally, all autosomal variants were sub-

mitted to the Michigan imputation server (https://imputationserver.

sph.umich.edu).[26] The server uses SHAPEIT2 (v2.r790) to phase data and

imputation to the reference panel (v1.1) was performed with Minimac3.[26,

28] A total of 1,149 extreme AD cases, 1,717 normal controls and 268 extreme

(centenarian) controls passed quality control. Prior to analysis, we excluded

individuals of non-European ancestry (NEA = 67, based on 1000Genomes [29]

clustering) and individuals with a family relation (NEA=9,NEC=13,NNC=53,

identity-by-descent ≥0.3), [30] leaving 1,073 extreme AD cases (NeEA=464

and NlEA=609), 1,664 normal controls and 255 centenarian controls for the

analysis.

https://imputationserver.sph.umich.edu
https://imputationserver.sph.umich.edu
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2.2.3 Statistical analysis
For each AD-associated variant, we explored the change in e�ect size (E)

relative to reported e�ect sizes when (1) comparing extreme AD cases with

extreme (centenarian) controls (EA vs. EC); (2) comparing extreme AD cases

with normal controls (EA vs. NC); and (3) comparing normal AD cases with

extreme (centenarian) controls (NA vs. EC). To calculate variant e�ect sizes,

we used logistic regression models correcting for population strati�cation

(principal components 1–6).[31, 32] We calculated odds ratios relative to the

Haplotype Reference Consortium (HRC) alternative allele assuming additive

genetic e�ects, and estimated 95% con�dence intervals (CIs). We estimated

the change in e�ect size relative to reported e�ect sizes (E) as follows:

Ek1−2 =
logORk1−2
logORkl

(2.1)

where Ek1−2 indicates the e�ect size change for variant k in a comparison of

cohort 1 and cohort 2, e.g, EAPOEε4EA−EC indicates the e�ect size change for the

APOE ε4 variant when extreme AD cases (EA) are compared with cognitive

healthy centenarians (EC). The logORk1−2 denotes the e�ect size of variant k
when comparing cohort 1 and cohort 2. The e�ect size of variant k reported

in literature (Table S1) is denoted by logORkl . We estimated the added value

of using extreme (centenarian) controls rather than normal age-matched

controls in a case-control analysis. For this, we wanted to compute the

change in e�ect size when comparing non-extreme AD cases with extreme

controls (NA vs. EC). As we do not have direct access to normal AD cases,
we estimated the e�ect size for the NA-EC comparison by summing (1) the

e�ect size from the comparison of normal AD cases and normal controls, as

reported in literature (logORkl ), and (2) the e�ect size from the comparison

of normal controls (NC) with extreme (centenarian) controls (NC vs. EC), i.e.,
logORkNA−EC = logORkl +logOR

k
NC−EC . The added value of using extreme

controls in a case-control analysis then becomes:

EkNA−EC =
logORkl + logORkNC−EC

logORkk
(2.2)

To assess whether age at disease onset had an impact on the change in e�ect

size due to the extreme cases (EEA−NC), we estimated the logORkeEA−NC
(early-onset extreme AD cases vs. normal controls), logORklEA−NC (late-

onset extreme AD cases vs. normal controls) and the logORkyEA−NC (younger
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early-onset AD cases vs. normal controls), and their 95% CI. Then, we

computed the probability that the e�ect size changes EkeEA−NC and EklEA−NC
di�ered using a two-samples z-test (two-tailed p-value).

2.2.4 Determining significance of change in e�ect size
For each variant, we estimated Ek1−2 and a 95% CI by sampling (S=10,000)

from the logORk1−2 and logORkl based on their respective standard errors.

The probability of divergence between the distributions of the logORk1−2 and

the logORkl was determined using a two-sample z-test (two-tailed p-value).

The probability of observing Ek1−2 > 1, i.e, an increased e�ect size for variant

k, is considered to be a Bernoulli variable with p=0.5 (equal chance of having

an increased/decreased e�ect). The number of variants that show an increase

in e�ect (Ek1−2) then follows a binomial distribution. The average change in

e�ect size across all K=29 tested variants is calculated as follows:

Ē1−2 =
1
K

K∑
k

Ek1−2 (2.3)

Con�dence intervals and probability of divergence between Ē1−2 and previ-

ously reported e�ect sizes were estimated by sampling (S=10,000, two-tailed

p-value). Quality control of genotype data, population strati�cation analysis,

and relatedness analyses were performed with PLINK (v1.90b4.6), whereas

association analysis, downstream analyses, and plots were performed with

R (v3.3.2).[33, 34]



2

2.3 Results 39

Figure 2.1: Comparison of age at disease-onset and age at inclusion for cases
and controls in previously reported case-control comparisons, and in our
extreme phenotypes comparison. Weighted mean and (combined) standard de-

viation of the age at onset for AD cases and age at inclusion for controls. As weights,

we used the sample sizes of each GWA study. Note that previous case-control stud-

ies of AD included samples from multiple cohorts, sometimes overlapping across

studies. References to the cohorts reported in this �gure are: [7, 8, 13]

2.3 Results

After quality control of the genetic data, we included 1,073 extreme AD

cases (with mean age at onset 66.4 ± 7.8 and 52.7% females), 1,664 normal

(age-matched) controls (mean age at inclusion 66.0 ± 6.5, 53.7% females),

and 255 cognitive healthy centenarians as extreme controls (mean age at

inclusion 101.4 ± 1.3, 74.7% females) (Table 2.1). Within the extreme AD

cases group, there were 464 early- onset cases (mean age at onset 59.1 ±
4.1, 54% females), and 609 late-onset cases (mean age at onset 72.1 ± 4.8,

51% females). The age at onset of the extreme AD cases was on average 8.2

years earlier compared with previous GWA studies; the age at disease onset

was on average 15.4 years earlier in early-onset cases and 2.5 years earlier

in late-onset cases, whereas the age at study inclusion of our centenarian

controls was on average 29.5 years higher than for previously published
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controls (Figure 2.1).

2.3.1 E�ect of comparing extreme cases and centenarian controls

In a genetic comparison of extreme AD cases and centenarian controls

(EA–EC comparison) the average e�ect size over all 29 genetic variants

was 1.90-fold increased relative to the e�ect sizes reported in published stud-

ies (ĒEA−EC=1.90 ± 0.29; p=0.0009) (Figure 2.3). For 21 out of 29 variants,

we observed an increased e�ect size (EkEA−EC>1),which is signi�cantly more

than expected by chance (p=0.012) (Figure 2.2 and Table 2.2). The increase in

e�ect size ranged from 1.06 (variant near CASS4) to 6.46 (variant in TREM2
[R47H]) and was observed both in common variants (MAF>1%, n = 19) and

rare variants (MAF<1%; TREM2 [R47H] and ABI3) (Table 2.2). For variants

near or in the genes TREM2 (R47H), SLC24A4-RIN3, and ECHDC3, the increase

was more than fourfold compared with previously reported e�ect sizes. For

nine variants the e�ect size increase was two- to fourfold (in or near the

genes NME8, PLCG2, HLA-DRB1, CD2AP, ZCWPW1, ABCA7 [A > G], APOE
ε2, HS3ST1, and ABI3, in order from high to low e�ect size increases). For

nine variants the increase was between one- and twofold (in or near genes,

APOE ε4, EPHA1, CELF1, PTK2B, MS4A6A, SORL1, BIN1, PICALM, and CASS4)

(Figure 2.2). The e�ect sizes of six genetic variants were not increased in

our extreme phenotype analysis compared with previously reported e�ect

sizes (ĒEA−EC between 0 and 1): in or near TREM2 (R62H), KANSL1, CR1,
ABCA7 (G > C), CLU, and INPP5D. At last, the e�ect sizes of two variants were

in the opposite direction compared to previously reported e�ects(EkEA−EC ).

Speci�cally, for the variant in FERMT2 we found an inverted direction of

e�ect size and a lower magnitude of e�ect as compared with previous studies

(EFERMT 2EA−EC between 0 and -1). For the variant near MEF2C we observed a

larger e�ect size as compared with those previously published, but in the

opposite direction (EMEF2CEA−EC <1).

Overall, for seven common variants (MAF> 1%), the e�ect size was signi�-

cantly increased relatively to the previously reported e�ect sizes (Table 2.2), in

or near genes APOE ε2 (2.2-fold, p=1.4x10
−7

), APOE ε4 (2.0-fold, p=1.5x10
−9

),

SLC24A4-RIN3 (4.5-fold, p=2.8x10
−3

), ECHDC3 (4.6-fold, p=0.018), PLCG2
(3.3-fold p=0.028), NME8 (3.9-fold, p=0.033), and MEF2C (-1.9-fold, p=0.033).

Variants with signi�cant e�ect size changes were also more likely to be

associated with AD in a comparison of extreme cases and centenarians.

The association with AD reached nominal signi�cance (p<0.05) in 10 out

of 21 variants with a changed e�ect size >1 (Table 2.2). Next to APOE ε4
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Figure 2.2: Change in variant e�ect-size using extreme cases and centenar-
ian controls relative to published e�ect-sizes, for 29 AD associated genetic
variants. Dashed red line at EkEA−EC = 1 indicates same e�ect- size as reported

in literature. Orange bars indicate nominal statistical signi�cance for the associa-

tion with AD (p<0.05). Stars indicate signi�cant changes of e�ect-size relative to

previously reported e�ect sizes (p<0.05, two-sample z-test)

(logORAPOEε4EA−EC =2.1, SE=0.17, p=1.3x10
−33

) and APOE ε2 (logORAPOEε2EA−EC =-

1.8, p=3.2x10
−21

), variants in or near these genes were signi�cantly associated

with AD: SCL24A4-RIN3, PLCG2, ECHDC3, NME8, BIN1, ZCWPW1, ABCA7
(A > G), and HLA-DRB1 (Table 2.2).

2.3.2 E�ect of using extreme AD cases

The average e�ect size in a comparison of extreme AD cases with normal

controls (EA vs. NC) did not signi�cantly change relative to the previously

reported e�ect sizes (ĒEA−EC=0.94 ± 0.12, p=0.68) (Figure 2.3). The e�ect

size was signi�cantly increased for APOE ε4 variant (1.3-fold, p=1.4x10
−5

),

and nominally signi�cant for APOE ε2 (1.4-fold, p=0.017). For 14 individual

variants, we observed an increased e�ect size, but this was not more than

what could be expected by chance (p=0.5, Figure 2.4 and Table S3). We then

separated AD cases into early-onset extreme AD cases (NeEA=464, age at

onset <65 years) and late-onset extreme AD cases (NlEA=609), and estimated

the change in e�ect sizes. Unexpectedly, the average e�ect size in the early-

onset cases was lower relative to previously published e�ect sizes (ĒeEA−NC
was 0.86 ± 0.16, p=0.79), whereas for late-onset cases the e�ect size was
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similar to published e�ect sizes (ĒlEA−NC was 1.01 ± 0.14, p=0.46) (Figure 2.6

and Table S4). We found signi�cant di�erences between the e�ect sizes

in early-onset and late-onset AD cases (logORkeEA−NC and logORklEA−NC ,

respectively) for the variants in or near APOE ε2 (-0.41 vs. -0.89; p=0.05),

ZCWPW1 (0.01 vs. 0.24: p=0.016) and MS4A6A (0.12 vs. -0.13; p=0.0079).

When we extended the comparison with only the youngest early-onset AD

cases (NyEA=255, age at onset <60 years) and normal controls, the average

e�ect size was still lower than previously published e�ect sizes (ĒyEA−NC
was 0.87 ± 0.20, p=0.74) (Table S4).

2.3.3 E�ect of extreme controls
In a comparison of normal AD cases and extreme (centenarian) controls

(NA vs. EC), the e�ect size was on average 1.88-fold higher relative to

previously reported e�ect sizes (ĒNA−EC = 1.88 ± 0.24, p=0.0001) (Figure 2.3

and Figure 2.5). This was almost identical to the average increase in e�ect size

when we compared the extreme cases with centenarian controls (ĒEA−EC =

1.90 ± 0.29; p=0.0009) (Figure 2.3). At the variant level, the change in e�ect

sizes was similar in both analyses (Figure 2.7A). In fact, in a comparison of

normal AD cases with extreme controls, we observed an increased e�ect

size for 24/29 variants relative to published variant e�ect sizes (EkNA−EC> 1),

which is more than expected by chance (p=0.00027) (Figure 2.5 and Table

S3). As in the comparison of the extremes, we found a signi�cant increase

in e�ect size for variants in or near APOE ε2 (1.7-fold, p<5x10
−5

), APOE
ε4 (1.7-fold, p<5x10

−5
), NME8 (4.5-fold, p=0.0035), SLC24A4-RIN3 (3.9-fold,

p=0.0045) and PLCG2 (2.9-fold, p=0.019). The main exception to this was the

increased e�ect size of the rare TREM2 (R47H) variant (allele frequency =

0.001), which was increased more when using extreme AD cases than when

using normal AD cases in a comparison with extreme controls (6.46-fold vs.
3.42-fold) (Figure 2.7A). For this rare variant we identi�ed seven carriers in

1,073 extreme cases, and none in 255 centenarian controls. The e�ect size

increase did not reach signi�cance as CIs were large, which is according to

expectations for very rare variants in small sample sizes. However, overall,

the extreme controls contributed more to the e�ect size change than the

extreme cases in a comparison of the extremes (Figure 2.7B).
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2.4 Discussion

In this study, we found that the e�ect sizes of 29 variants previously identi�ed

in genetic case control analyses for AD were increased in a case–control

analysis of extreme phenotypes. The use of extreme AD cases and cognitively

healthy centenarians as extreme controls increased e�ect sizes for association

with AD up to sixfold, relative to previously published e�ect sizes. On

average, the use of extreme phenotypes almost doubled the variant e�ect

size. Although changes in e�ect size were di�erent per variant, the e�ect

size increase was driven mainly by the centenarian controls. This profound

increase enabled us to replicate the association with AD of 10 common

variants in relatively small samples. In a comparison of AD cases (either

normal or extreme) with centenarian controls, we observed signi�cant e�ect

size increases for variants in or near PLCG2, NME8, ECHDC3, SLC24A4-RIN3,
APOE ε2, and APOE ε4. We also found a large e�ect size increase for the rare

TREM2 (R47H) risk variant, which did not reach signi�cance owing to variant

rareness. This suggests that the tested variants or loci might (positively

or negatively) contribute to the long-term preservation of cognitive health

and/or to longevity in general. PLCG2, NME8, and TREM2 are implicated in

immunological processes,[8, 35] whereas SLC24A4, ECHDC3, and APOE are

involved in lipid and cholesterol metabolism (Table S5).[17, 36, 37] Both these

processes were previously associated with longevity,[38, 39] such that an

overlapping etiology of maintained cognitive health and maintained overall

health may contribute to the observed increase in e�ect size. However, with

the exception of the APOE locus, these loci were thus far not associated with

longevity in GWA studies.[40, 41, 42, 43] We speculate that the association

might be dependent on the maintained cognitive health in the centenarians

of the 100-plus Study cohort.[20] Alternatively, longevity studies may have

been underpowered to detect the association of these loci with extreme

survival. Future studies will have to establish the mechanism behind the

association of these genes with preserved cognitive health.

Next to APOE, the HLA-DRB1 locus has been associated with both AD

[13] and longevity.[40] However, its most informative variants, rs9271192

for AD and rs34831921 for longevity, are not in linkage disequilibrium (r2

= 0.04), suggesting that these are independent signals. Interestingly, the

variants for which the e�ect size did not signi�cantly increase when using ex-

treme cases and centenarian controls are also involved in immunity (variants

in/near TREM2, CR1, ABCA7, CLU, INPP5D, and MEF2C) and lipid/cholesterol

metabolism (variants in/near ABCA7 and CLU ) (Table S5). We speculate
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Figure 2.3: Average increase in e�ect-size for the di�erent comparisons. Av-

erage increase in e�ect sizes for: Extreme AD cases (NEA = 1,073), of which early

onset cases (NeEA = 464), late onset cases (NlEA = 609); centenarian controls (NEC
= 255); normal controls (NNC = 1,664). 95% con�dence intervals were estimated by

random sampling (S = 10,000)
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that the variants with an increased e�ect size might in�uence changes in

cognitive health during aging while variants with no increased e�ect size

do not in�uence these processes. Using extreme cases did not increase the

variant e�ect sizes relative to published e�ect sizes, even though most of

the extreme cases were biomarker con�rmed and their mean age at onset

was 8.2 years younger than the mean age at onset in other studies.[7, 8,

13] The only exception to this was the (non-signi�cant) e�ect size increase

for the rare TREM2 (R47H) risk variant, which was driven in part by using

extreme AD cases. This suggests that based on the tested genetic variants,

the phenotypically extreme cases presented in this study are not genetically

more extreme than cases presented in other studies. In fact, the variant e�ect

sizes of early-onset AD cases were on average lower than the variant e�ect

size of late-onset AD cases, and this persisted even when selecting only the

youngest early-onset cases. One explanation for this observation may be

that an early age at onset may be driven by rare, high-impact variants,[44]

whereas the disease onset at later ages may depend to a greater extent on

more common risk variants. Furthermore, we found signi�cant di�erences at

the variant level, between the e�ect sizes in early-onset and late-onset cases

for common variants in/near ZCWPW1 and APOE ε2, and also in -opposite

directions- for the variant in MS4A6A. These results are a �rst indication

that these variants may di�erentially in�uence age of disease onset, however,

future experiments will have to con�rm this �nding. Our main �nding is

that, in a genetic case-control study of extreme phenotypes, the majority of

the observed increase in e�ect size is attributable to the extreme controls,

implicating that collecting cohorts of extreme controls is pro�table. We note

that the centenarians used in this study were selected for their preserved

cognitive health, which might have further enlarged the e�ect size increase

for genetic variants that were previously identi�ed for their AD association.

We acknowledge that using centenarians as controls in genetic studies of AD

could result in the detection of variants associated with extreme longevity,

such that newly detected AD-associations need to be veri�ed in an age-

matched AD case-control setting. Nevertheless, the e�ect sizes for all but

two variants are in the same direction as previously reported, which suggests

that the tested AD variants do not have signi�cant pleiotropic activities that

counteract their AD-related survival e�ects. Notably, the two variants with

an opposite e�ect, in or near MEF2C and FERMT2, also did not associate

with AD in our age-matched case-control analysis. This suggests that the

AD association of these variants is not consistent across studies. This is in

line with results from unpublished GWASs of AD in which AD-associations
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of variants near the MEF2C and FERMT2 genes were not replicated [45, 46]

(p=0.053,[45] p=0.0003 for MEF2C [46] and p=1.6x10
−5

for FERMT2 [46]

variant, with 5.0x10
−8

being the genome-wide signi�cance threshold). A

strength of our study is that our cohorts of AD patients and controls, were

not previously used in the discovery of any of the known AD-associated

variants; we thus provide independent replication in a genetically homoge-

neous group of individuals, as they all came from one speci�c population

(Dutch). Concluding, in our comparison of cases and controls with extreme

phenotypes we found that on average, the e�ect of AD-related variants in

genetic association studies almost doubled, whereas at the variant level e�ect

sizes increased up to sixfold. The observed increment in e�ect size was

driven by the centenarians as extreme controls, identifying centenarians as

a valuable resource for genetic studies, with possible applications for other

age-related diseases.
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2.7 Supplementary Figures

Figure 2.4: Extreme AD cases vs. normal controls: EkEA−NC . The e�ect-size

change was signi�cant for 4 variants (p<0.05, two-sample z-test; bars annotated with

a star [*]). Orange bars indicate nominal statistical signi�cance for the association

with AD (p<0.05). Dashed red line (EkEA−NC = 1) indicates same e�ect-size as

reported in literature.

Figure 2.5: Normal ADs vs. Extreme (centenarian) controls: EkNA−EC . E�ect-

size change (EkNA−EC ) was signi�cant for 5 variants (p<0.05, two-sample z-test; bars

annotated with a star [*]). Orange bars indicate nominal statistical signi�cance

for the association with AD (p<0.05). Dashed red line indicates same e�ect-size as

reported in literature.
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Figure 2.6: Early onset AD vs normal controls and late onset AD vs nor-
mal controls. E�ect-sizes and 95% con�dence intervals of a comparison of

early onset AD cases (logORkeEA−NC , age at onset ≤ 65 years) and late-onset AD

(logORklEA−NC , age at onset > 65 years) with normal controls. For all the variants,

the 95% con�dence intervals overlapped. [*]: di�erence between logORkeEA−NC
and logORklEA−NC was signi�cant (p<0.05, two-sample z-test).
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Figure 2.7: Comparison of e�ect size changes at the variant level. A: E�ect
of using extreme AD cases vs. normal AD cases: x-axis: EkEA−EC : E�ect size

changes from a comparison of the extreme cases and extreme (centenarian) controls

relative to published e�ect sizes. Dashed line x-axis average e�ect-size increase

EkEA−EC at 1.90 ± 0.29; y-axis: EkNA−EC : e�ect-size changes from a comparison

normal AD cases with extreme (centenarian) controls relative to published e�ect

sizes. Dashed line y-axis: average e�ect-size increase EkNA−EC at 1.88 ± 0.24. See

Table 2.2 for EkEA−NC and Table S3 for EkEA−NC values. B. E�ect of using extreme
cases vs. using extreme controls: x-axis: e�ect-size changes of extreme AD cases

vs. normal controls relative to published e�ect-sizes. Dashed line x-axis: average

e�ect-size increase EkEA−NC at 0.94 ± 0.12. Y-axis: Variant e�ect-size change of

normal AD cases vs. extreme controls relative to published e�ect-sizes. Dashed line

y-axis: average e�ect-size increase EkNA−EC at 1.88 ± 0.24. See Table S3 for EkEA−NC
and EkNA−EC values.
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2.8 Supplementary Tables
Supplementary Tables can be accessed by scanning the following code or

accessing the journal’s website here.

https://www.nature.com/articles/s41431-018-0273-5
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Abstract

Developing Alzheimer’s disease (AD) is in�uenced by multiple genetic

variants that are involved in �ve major AD-pathways. Per individual,

these pathways may di�erentially contribute to the modi�cation of

the AD-risk. The pathways involved in the resilience against AD

have thus far been poorly addressed. Here, we investigated to what

extent each molecular mechanism associates with (i) the increased

risk of AD and (ii) the resilience against AD until extreme old age, by

comparing pathway-speci�c polygenic risk scores (pathway-PRS). We

used 29 genetic variants associated with AD to develop pathway-PRS

for �ve major pathways involved in AD. We developed an integrative

framework that allows multiple genes to associate with a variant, and

multiple pathways to associate with a gene. We studied pathway-PRS

in the Amsterdam Dementia Cohort of well-phenotyped AD patients

(N=1,895), Dutch population controls from the Longitudinal Aging

Study Amsterdam (N=1,654) and our unique 100-plus Study cohort of

cognitively healthy centenarians who avoided AD (N=293). Last, we

estimated the contribution of each pathway to the genetic risk of AD

in the general population. All pathway-PRS signi�cantly associated

with increased AD-risk and (in the opposite direction) with resilience

against AD (except for angiogenesis, p<0.05). The pathway that con-

tributed most to the overall modulation of AD-risk was β-amyloid

metabolism (29.6%), which was driven mainly byAPOE-variants. After

excluding APOE variants, all pathway-PRS associated with increased

AD-risk (except for angiogenesis, p<0.05), while speci�cally immune

response (p=0.003) and endocytosis (p=0.0003) associated with re-

silience against AD. Indeed, the variants in these latter two pathways

became the main contributors to the overall modulation of genetic risk

of AD (45.5% and 19.2%, respectively). The genetic variants associated

with the resilience against AD indicate which pathways are involved

with maintained cognitive functioning until extreme ages. Our work

suggests that a favorable immune response and a maintained endocy-

tosis pathway might be involved in general neuro-protection, which

highlight the need to investigate these pathways, next to β-amyloid

metabolism.
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3.1 Introduction

Owing changes in lifestyle and advances in healthcare, life expectancy has

greatly increased during the last century.[1] A consequence of an increased

fraction of aged individuals in the population is the increased prevalence of

age-related diseases. A major contribution to poor health and disability at old

age is cognitive decline due to Alzheimer’s disease (AD).[2] The incidence

of AD increases exponentially with age and reaches ∼40% per year at 100

years, making it one of the most prevalent diseases in the elderly.[3] Yet,

a small proportion of the population (<0.1%) avoids the disease, reaching

at least 100 years while maintaining a high level of cognitive health.[4]

Both the development and the resilience against AD are determined by a

combination of bene�cial and harmful environmental and genetic factors that

is unique for each individual.[1, 5, 6] Thus far, large collaborative genome-

wide association studies (GWAS) have discovered common genetic variants

associated with a small modi�cation of the risk of AD.[7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20] Of these, the alleles that encompass the APOE gene

explain the largest proportion of the risk to develop or the chance to escape

AD. We previously showed that those who avoided cognitive decline until

extreme ages (cognitively healthy centenarians) were relatively depleted

with genetic variants associated with an increased risk of AD.[21] However,

the degree of depletion of these variants in the genomes of cognitively

healthy centenarians relative to the middle-aged healthy individuals was

not constant, which might point towards a di�erential impact of associated

biological pathways on either avoiding or developing AD. This led us to

hypothesize that an individuals’ chance to develop AD or to being resilient

against AD may be determined by pathway-speci�c risk. Previous studies

indicated that �ve speci�c biological pathways associate strongly with AD

risk: immune response, β-amyloid metabolism, cholesterol/lipid dysfunction,

endocytosis and angiogenesis.[22, 23, 24, 25, 26, 27] However, the extent to

which di�erent pathways contribute to the polygenic risk of AD is unknown.

The degree to which a pathway contributes to the individual risk can be

studied with pathway-speci�c polygenic risk scores (PRS).[28, 29] In a typical

polygenic risk score, the e�ect-sizes of all genetic variants that signi�cantly

associate with a trait are combined.[30] In a pathway-speci�c PRS, additional

information is necessary: (i) the association of genetic variants to genes,

and (ii) the association of genes to pathways. Previous studies of pathway-

PRS in AD approached these challenges using the closest gene for variant

mapping. For this, a 1:1 relationship between variants and genes is assumed,
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however, as AD-associated variants are mostly intronic or intergenic, the

closest gene is not necessarily the gene a�ected by the variant. Additionally,

di�erent databases often have di�erent functional annotations of genes, and

this uncertainty was previously not taken into account when constructing

pathway-PRS.[28, 29]

An accurate mapping of the genetic risk of AD conferred by speci�c

molecular pathways may lead to a greater comprehension of individual AD

subtypes and might represent a �rst important step for the development of

targeted intervention strategies and personalized medicine.[31] Here, we

propose a novel integrative framework to construct pathway-PRS for the

�ve major pathways suggested to be involved in AD. We then tested whether

speci�c pathways di�erentially contributed to the risk of AD as well as to

the chance of avoiding AD until extreme old ages. Finally, we estimated

the contribution of each pathway to the polygenic risk of AD in the general

(healthy middle-aged) population.
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3.2 Methods
3.2.1 Populations

Population subjects are denoted by P : they consist of a representative Dutch

sample of 1,779 individuals aged 55-85 years from the Longitudinal Aging

Study Amsterdam (LASA).[32, 33] Patients diagnosed with AD are denoted

by A. The patients are either clinically diagnosed probable AD patients from

the Amsterdam Dementia Cohort (N=1,630) or pathologically con�rmed

AD patients from the Netherlands Brain Bank (N=436).[34, 35, 36] Escapers

of AD are denoted by C: these are 302 cognitively healthy centenarians

from the 100-plus Study cohort. This study includes individuals who can

provide o�cial evidence for being aged 100 years or older and self-report to

be cognitively healthy, which is con�rmed by a proxy.[4] All participants

and/or their legal representatives provided written informed consent for

participation in clinical and genetic studies. The Medical Ethics Committee

of the Amsterdam UMC (METC) approved all studies.

3.2.2 Genotyping and imputation
We selected 29 common genetic variants (minor allele frequency >1%) for

which a genome-wide signi�cant association with clinically identi�ed AD

cases was found (Table S1).[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

37, 38, 39] We genotyped all individuals using Illumina Global Screening

Array (GSAsharedCUSTOM_20018389_A2) and applied established qual-

ity control measures.[40] Brie�y, we used high-quality genotyping in all

individuals (individual call rate >98%, variant call rate >98%) and Hardy-

Weinberg equilibrium-departure was considered signi�cant at p <1x10
−6

.

Genotypes were prepared for imputation using provided scripts (HRC-1000G-

check-bim.pl).[41] This script compares variant ID, strand and allele fre-

quencies to the haplotype reference panel (HRC v1.1, April 2016).[41] Fi-

nally, all autosomal variants were submitted to the Michigan imputation

server (https://imputationserver.sph.umich.edu). The server uses

SHAPEIT2 (v2.r790) to phase data and imputation to the reference panel

(v1.1) was performed with Minimac3. Variant-genotypes of total of 1,779

population subjects, 302 centenarians and 2,052 AD cases passed quality

control. Prior to analysis, we excluded individuals of non-European ancestry

(NC = 2, NP = 63 and NA = 94 based on 1000Genomes clustering)[42] and

individuals with a family relation (NC = 7, NP = 62 and NA = 63, identity-

by-descent >0.3), leaving 1,654 population subjects, 293 cognitively healthy

centenarians and 1,895 AD cases for the analyses.

https://imputationserver.sph.umich.edu
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3.2.3 Polygenic risk score
To calculate the personal polygenic risk scores, or the genetic risk of AD

that a�ects a single individual, the e�ect-sizes of all genetic variants that

signi�cantly associate with AD are combined. Formally, a PRS is de�ned as

the sum of trait-associated alleles carried by an individual across a de�ned

set of genetic loci, weighted by e�ect-sizes estimated from a GWAS.[30]

We constructed a polygenic risk score (PRS) using 29 variants that were

previously associated with AD. As weights for the PRS, we used the variant

e�ect-sizes (log of odds ratio) as published in large GWAS of AD (Table S1).

Given a subject s, the PRS is de�ned as:

P RSs =
K∑
k

(dossk ∗ βk) (3.1)

whereK is the full set of variants, dossk is the allele dosage from the (imputed)

genotype of variant k in subject s and βk is the e�ect size as determined in

the largest published AD case-control GWAS (Table S1).

3.2.4 Mapping variants to pathways
We studied the �ve pathways implicated in AD: immune response, β-amyloid

metabolism, cholesterol/lipid dysfunction, endocytosis and angiogenesis.[22,

23, 24, 25, 43, 44] For these pathways we developed the variant-pathway

mapping Mk
p , which represents the degree of involvement of a given vari-

ant in the pre-selected pathways. To generate this value, we (i) associated

genetic variants to genes (variant-gene mapping), (ii) associated genes to

pathways (gene-pathway mapping) and (iii) combined these mappings in

the variant-pathway mapping.

Variant-gene mapping
The association of a variant with a speci�c gene is not straight-forward as the

closest gene is not necessarily the gene a�ected by the variant. The two most

recent and largest GWAS of AD addressed the relationship between genetic

variants and associated genes applying two independent methods.[20, 19]

Brie�y, one study used (i) gene-based annotation, (ii) expression-quantitative

trait loci (eQTL) analyses, (iii) gene cluster/pathway analyses, and (iv) di�er-

ential gene expression analysis between AD cases and healthy controls.[19]

The other study integrated (i) positional mapping, (ii) eQTL gene-mapping,

and (iii) chromatin interaction as implemented in the tool Functional Map-

ping and Annotation of Genome-Wide Association Studies (FUMA).[20, 45]
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The list of genes most likely a�ected by each variant was obtained from both

studies and used to derive a weighted mapping for each genetic variant k
to one or more genes g , mkg , denoted as the variant-gene mapping weight.

This weight was calculated by counting the number of times a variant k
was associated with gene g across the two studies and dividing this by the

total number of genes associated with the variant (Table S2). For variants

in/near CR1, PILRA, PLCG2, ABCA7 and APOE, we assumed the culprit gene

as known, and we assigned a 1:1 relationship between the variant and the

gene (Table S2).

Gene-pathway mapping
Each gene from the variant-gene mapping was classi�ed into the pre-de�ned

set of pathways integrating four sources of information:

• Gene-sets from the unsupervised pathway enrichment analysis within

MAGMA statistical framework from Kunkle et al.,[19] in which the

authors identi�ed 9 signi�cant pathways (coupled with the genes

involved in each pathway), which we mapped to 3 of the 5 pathways

of interest (Table S3);

• Associated genes from Gene-ontology (GO, from AmiGO 2 version

2.5.12, released on 2018-04) terms resembling the 5 pathways of interest

within the biological processes tree (including all child-terms) (Table

S4);[46, 47]

• Gene-sets derived from an unsupervised functional clustering analysis

within DAVID (v6.8, released on 2016-10):[48, 49] the gene-set from

the variant-gene mapping was used to obtain 12 functional clusters

which were then mapped to the 5 pre-selected pathways using a set of

keywords (Table S5 and Table S6);

• Gene-pathway associations from a recent review concerning the ge-

netic landscape of AD (Table S7);

By counting the number of times each gene was associated to each pathway

according to these sources, and dividing by the total number of associations

per gene, we obtained a weighted mapping of each gene g to one or more

pathways p, w
g
p , denoted as the gene-pathway mapping weight (Table S8

and Table S9). In case the gene-pathway mapping could not be calculated (i.e.
there was no mapping to any of the pathways of consideration), we excluded

the gene from further analyses (Table S8 and Table S9).

Variant-pathway mapping
To associate variants with pathways, we combined the variant-gene mapping
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and the gene-pathway mapping. Given a variant k, mapping to a set of genes

G, and a pathway p, we de�ne the weight of the variant to the pathway (Mk
p )

as:

Mk
p =

G∑
g

(mkg ∗w
g
p) (3.2)

wheremkg is the variant-gene mapping weight of variant k to gene g , and w
g
p

is the gene-pathway mapping weight of gene g to pathway p. In this way,

for each variant, we calculated a score indicative of the involvement of the

variant in each of the �ve pathways (variant-pathway mapping, Table S10).

For some variants no variant-pathway mapping was possible. We marked

these variants as unmapped (Table S10).

3.2.5 Pathway-specific polygenic risk score
For the pathway-speci�c polygenic risk score (pPRS), we extended the def-

inition of the PRS by adding as multiplicative factor the variant-pathway
mapping weight of each variant. Given a sample s and a pathway p, we

de�ned the pPRS as:

pPRSsp =
K∑
k

(dossk ∗ βk ∗M
p
k ) (3.3)

where M
p
k is the variant-pathway mapping of variant k to pathway p.

3.2.6 Association of PRSs in the three cohorts
We calculated the polygenic risk score (PRS) and pathway-PRS (pPRS) for the

population subjects, the AD cases and the cognitively healthy centenarians

(P, A and C, respectively). Prior to analyses, the PRSs of all three populations

were combined together and were scaled (µ=0, σ=1). We then investigated

the in�uence of APOE, gender and age on the risk scores: we calculated the

PRSs and pPRSs with and without the two APOE variants and we correlated

the resulting (p)PRSs with sex, age (age at inclusion for controls, age at

onset for cases) and population substructure components. To inspect the

di�erential contributions of the risk scores to AD development or resilience

against AD, we calculated (i) the association of the risk scores (PRS and

pPRS) with AD status by comparing AD cases and population subjects (A
vs. P), and (ii) the association of the risk scores with resilience against AD

by comparing cognitively healthy centenarians and population subjects (C



3

66 Chapter 3. Resilience against dementia

vs. P comparison). For the associations, we used logistic regression models

with the PRS and pPRS as predictors, adjusting for population substructure

(principal components 1-5). Resulting e�ect-sizes (log of odds ratio) can

be interpreted as the odds ratio di�erence per one standard deviation (SD)

increase in the PRS, with a corresponding estimated 95% con�dence intervals

(95% CI). Association analyses of the (p)PRS in the three population were

also strati�ed by sex. Last, we veri�ed the classi�cation performances of the

single variants as well as the (p)PRS by calculating the area under the ROC
curve for classi�cation of AD and resilience against AD.

3.2.7 Resilience against AD vs. increased AD-risk
To further investigate the relationship between the e�ect of each pathway

on AD and on resilience against AD, we calculated the change in e�ect-size.

This corresponds to the ratio between the e�ect-size of the association with

resilience against AD (log of odds ratios of C vs. P comparison) and the e�ect-

size of the association with AD (log of odds ratios of A vs. P comparison).

We calculated the change in e�ect-size for the pPRS including and excluding

APOE variants. We estimated 95% con�dence intervals for the e�ect-size

ratios by sampling, and we tested for signi�cant di�erence between the

change in e�ect-size including and excluding APOE variants (respectively for

each of pPRS) using t-test. A value for the change in e�ect-size of 1 indicates

a similar e�ect on increased risk of AD and resilience against AD. Although

a value for the change in e�ect size is unknown a priori, since all variants

considered are selected to be associated with AD, a value <1 is expected (i.e.
a larger e�ect on AD than on resilience against AD).

3.2.8 Contribution of each pathway to polygenic risk of AD
We estimated the contribution of each pathway to the genetic risk of AD

in the general population: this equals to the variance explained by each of

the pre-selected pathways to the genetic risk of AD. Mathematically, this is

the ratio between the variance of each pathway-PRS and the variance of the

combined PRS as calculated in the individuals of the general population. As

such, it is a function of the variant-pathway mapping, the e�ect-size (log of

odds ratio) of the variants, and the variant frequencies. Given a variant k
and the relative variant-pathway mapping Mk

p , we de�ned the percentage P
of the risk explained by each pathway p as:

P p =

∑K
k (M

p
k ∗ β

2
k ∗MAFk ∗ (1−MAFk)∑K

k β
2
k ∗MAFk ∗ (1−MAFk))

(3.4)
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where βk is the variant e�ect-size from literature, and MAFk ∗ (1−MAFk)
is the variance of a Bernoulli random variable that occurs with probability

MAFk , i.e. the minor allele frequency of each variant k in our cohort of

population subjects. Here, Mk
p is interpreted as the probability that variant k

belongs to pathway p. Importantly, for each variant,

∑P
pM

k
p = 1, so that each

variant contributes equally, yet di�erentially at the level of each pathway.

This means that the variance of a variant is only counted once, even if the

variant contributes to multiple pathways. When calculating the contributions

of each pathway, we also considered variants with missing variant-pathway

mapping. For these variants, the variant-pathway mapping was set to 1 for

an unmapped pathway. Together, the pathway PRS variances sum to the

total PRS variance.

3.2.9 Implementation
We performed quality control of genotype data as well as population strati�ca-

tion analysis and relatedness analysis with PLINK (v2.0). All subsequent anal-

yses were performed with R (v3.5.2), Bash and Python (v2.7.14) scripts. We

provide a R script to construct pPRS and PRS using our variant-pathway anno-

tation and user’s genotypes. In addition, all the scripts we used to perform the

analyses can be found at https://github.com/TesiNicco/pathway-PRS.

https://github.com/TesiNicco/pathway-PRS
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Figure 3.1: Boxplots of PRS and pPRS in the di�erent settings. A. The PRS

including all the 29 known AD-associated variants, with and without APOE variants.

As weight for the PRS, we used published variant e�ect-sizes (Table S1). B. and C.
The pPRS for each of the selected molecular pathways, including and excluding

APOE variants, respectively. For all plots, risk scores were calculated for AD cases,

population subjects and cognitively healthy centenarians. Then, risk scores were

compared between (i) AD cases and population subjects (A vs. P comparison) and

(ii) cognitively healthy centenarians and population subjects (C vs. P comparison).

For representation, we scaled all PRS and pathway-PRS to be µ=0 and σ=1. For

the comparison, we used logistic regression models with risk scores as predictors.

Annotation: ***, p-value of association <5x10
−6

; **, p-value of association <0.0005; *,

p-value of association <0.05.
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3.3 Results
After quality control of the genetic data, we included 1,654 population sub-

jects (with mean age at inclusion 62.7 ± 6.4, 53.2% females), 1,895 AD cases

(with mean age at onset 69.2 ± 9.9, 56.4% females), and 293 cognitively healthy

centenarians (with mean age at inclusion 101.4 ± 1.3, 72.6% females) (P, A
and C respectively).

3.3.1 Polygenic risk scores associate with AD and escape from AD
To each subject, we assigned a PRS representative of all 29 AD-associated

variants, including and excluding APOE variants. We found that the PRS,

when including APOE variants, signi�cantly associated with an increased

risk of AD and, in the opposite direction, with increased chance of resilience

against AD (A vs. P : OR=2.61, 95% CI=[2.40-2.83], p=8.4x10
−113

and C vs. P :

OR=0.54, 95% CI=[0.45-0.65], p=1.1x10
−10

(Figure 3.1 and Table S11). When

excluding APOE variants, the PRS was still signi�cantly associated with an

increased risk of AD and, in the opposite direction, with increased risk of

resilience against AD (A vs. P : OR=1.30, 95% CI=[1.22-1.40], p=3.1x10
−14

and

C vs. P : OR=0.78, 95% CI=[0.69-0.89], p=2.4x10
−4

) (Figure 3.1, and Table S11).

3.3.2 Pathway-specific PRS associate with AD and escape from AD
We annotated the 29 AD-associated genetic variants to 5 selected pathways

(Figure 3.2). According to our variant-gene mapping, the 29 AD-associated

variants mapped to 110 genes (Table S8). The number of genes associated

with each variant ranged from 1 (e.g. for variants in/near CR1, PILRA, SORL1,
ABCA7, APOE or PLCG2, to 30 (a variant in the gene-dense region within

the HLA region) (Figure 3.2 and Table S8). We were able to calculate the

gene-pathway mapping weight for 69 genes (Table S9). The remaining 41

genes were not mapped to the 5 pathways. In total, we calculated the variant-

pathway mapping for 23 loci to at least one of the pre-selected biological

pathways (Figure 3.2 and Table S10).

We then calculated the pPRS for each pathway in population subjects,

AD cases and cognitively healthy centenarians including and excluding

APOE variants (Figure 3.1B and Figure 3.1C). The number of variants that

contributed to each pPRS was 19 for immune response, 11 for β-amyloid

metabolism, 19 for endocytosis, 8 for cholesterol/lipid dysfunction and 4

for angiogenesis pathways (Table S10 and Table S11). Overall, the pPRS

(including and excluding the APOE variants) positively and signi�cantly

correlated with each other and with the overall PRS (Figure 3.5), and did not
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Figure 3.2: Variant-pathways mapping. Locus: chromosome and position of the

AD-associated genetic variants (coordinates are with respect to GRCh37). N.genes:
total number of genes associated with each variant according to variant-gene map-

ping. Variant-gene mapping: Genes: all genes with at least one annotation to the 5

selected molecular pathways associated with AD. Weight: the weight of the variant-

gene mapping. Gene-pathway mapping: Immune response, Beta-amyloid, Endocytosis,
Cholesterol/lipid, Angiogenesis: the weight of each molecular pathway at the gene

level. Variant-pathway mapping: summarization of each variant’s e�ect after com-

bining variant-gene and gene-pathway mappings. Red crosses indicate unmapped

genes.
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correlate with gender and age (Figure 3.5).

When including APOE variants, the pPRSs of all pathways (except for

angiogenesis) signi�cantly associated with increased risk of AD, indepen-

dently from gender (A vs. P, immune response: OR=2.15, 95% CI=[1.99-

2.32], p=2.0x10
−80

; β-amyloid metabolism: OR=2.52, 95% CI=[2.32-2.73],

p=7.8x10
−109

; endocytosis: OR=2.55, 95% CI=[2.35-2.77], p=1.7x10
−109

; choles-

terol/lipid dysfunction: OR=2.55, 95% CI=[2.35-2.76], p=2.1x10
−110

; angiogen-

esis: OR=1.05, 95% CI=[0.98-1.12], p=0.134) (Figure 3.1B, Table S11, Figure 3.6

and Table S12). The association of pPRSs with increased chance of being

resilient against AD was in the opposite direction for all pathways, and the

association was signi�cant for all pathways except for angiogenesis (C vs.
P, immune response: OR=0.64, 95% CI=[0.54-0.74], p=1.4x10

−8
; β-amyloid

metabolism: OR=0.59, 95% CI=[0.49-0.71], p=2.7x10
−8

; endocytosis: OR=0.55,

95% CI=[0.46-0.66], p=1.3x10
−10

; cholesterol/lipid dysfunction: OR=0.58,

95% CI=[0.48-0.70], p=1.8x10
−8

; angiogenesis: OR=0.90, 95% CI=[0.79-1.01],

p=0.078) (Figure 3.1B, Table S11). Directions of e�ects were consistent in

both males and females, but the signi�cance of associations was reduced due

to strati�cation (Table S12 and Figure 3.5). When excluding APOE variants,

the pPRSs of all pathways (except for the angiogenesis) was still signi�cantly

associated with increased risk of AD without speci�c gender e�ects (A vs.
P, immune response: OR=1.19, 95% CI=[1.11-1.27], p=5.5x10

−7
; β-amyloid

metabolism: OR=1.19, 95% CI=[1.12-1.28], p=2.0x10
−7

; endocytosis: OR=1.27,

95% CI=[1.19-1.36], p=2.8x10
−12

; cholesterol/lipid dysfunction: OR=1.18,

95% CI=[1.11-1.27], p=7.5x10
−7

; angiogenesis: OR=1.05, 95% CI=[0.98-1.12],

p=0.134) (Figure 3.1C, Table S11, Figure 3.6 and Table S12). The association

of pPRSs with increased chance of being resilient against AD was in the op-

posite direction for all pathways, yet the association was signi�cant only for

the immune response and the endocytosis pPRS (C vs. P, immune response:

OR=0.82, 95% CI=[0.72-0.94], p=0.003; β-amyloid metabolism: OR=0.91, 95%

CI=[0.80-1.03], p=0.131; endocytosis: OR=0.79, 95% CI=[0.70-0.90], p=0.0003;

cholesterol/lipid dysfunction: OR=0.91, 95% CI=[0.80-1.03], p=0.145; angio-

genesis: OR=0.90, 95% CI=[0.79-1.01], p=0.078) (Figure 3.1C and Table S11).

In the sex-strati�ed analysis, females reported consistent direction of e�ects

and signi�cant associations of immune response and endocytosis pathways,

while in males the direction was consistent for immune response, endocytosis

and angiogenesis pathways, and it was opposite for β-amyloid metabolism

and cholesterol/lipid dysfunction (yet not signi�cant) (Figure 3.6 and Table

S12). We note that apart from APOE variants (for which we strati�ed the anal-

yses for), there was no major driver in the pPRS as well as the single-variant
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associations (Figure 3.7 and Figure 3.8).

3.3.3 Comparison of e�ect on AD and escaping AD
To further evaluate the association of the pPRSs with AD and with resilience

against AD, we compared, for each pPRS, the reciprocal e�ect size associated

with resilience against AD with the e�ect size associated with increased risk

of AD (change in e�ect size, Figure 3.3A). When including APOE variants,

the change in e�ect-size was <1 for all pathways (except for the angiogenesis

pathway) (Figure 3.3B). This is expected as the e�ect-size of APOE variants

on causing AD is much larger than its e�ect on resilience against AD (Fig-

ure 3.3A). When excluding APOE variants, the change in e�ect-size was still

<1 for β-amyloid metabolism and cholesterol/lipid metabolism (respectively

0.54 and 0.58), but it approximated 1 for endocytosis (0.96) and it was larger

than 1 for the immune response and angiogenesis (respectively 1.12 and

2.15) (Figure 3.3B). Interestingly, we found that the relative e�ect-size for

immune response and endocytosis excluding APOE variants was signi�cantly

higher than that including APOE variants (p<2.1x10
−197

and p<8.9x10
−180

respectively), suggesting a larger e�ect on resilience against AD compared

to AD-risk for these pathways, speci�cally when excluding APOE variants

(Figure 3.3B).

3.3.4 Contributions of each pathway to the polygenic risk of AD
Finally, we estimated the relative contribution of each pathway to the poly-

genic risk of AD in the general population. This is indicative of the degree of

involvement of each pathway to the total polygenic risk of AD, and as such

it is based on out variant-pathway mapping. Including APOE variants, the

contribution of the pathways to the total polygenic risk of AD was 29.6% for

β-amyloid metabolism, 26.6% for immune response, 21.6% for endocytosis,

19.5% for cholesterol/lipid dysfunction, 0.3% for angiogenesis and 2.3% for

the unmapped variants (Figure 3.4A). When we excluded APOE variants, the

contribution of the pathways to the total polygenic risk of AD was 45.5% for

immune response, 19.2% for endocytosis, 13.7% for β-amyloid metabolism,

8% for cholesterol/lipid dysfunction, 1.4% for angiogenesis and 12.3% for the

unmapped variants (Figure 3.4B).



3

3.4 Discussion 73

Figure 3.3: Change in e�ect-size between association with escaping AD and
causing AD for the �ve pPRSs. A The e�ect-sizes (log of odds ratio) and the

relative 95% con�dence intervals of the association of the (p)PRS with both AD-risk

and resilience against AD, grouped by pathway. B. Each bar represents the ratio

between the e�ect-size of the association with escaping AD (Resilience e�ect in A)

and with causing AD (Risk e�ect in A), respectively with and without APOE variants.

Ratios larger than 1 are then indicative of larger e�ect-size on resilience against AD

compared to AD-risk. We then compared the change in e�ect-size for each pathway

when including and excluding APOE variants using t-tests. Annotation: ***, p-value

of association <5x10
−6

; **, p-value of association < 0.0005; *, p-value of association

< 0.05.

3.4 Discussion

In this work, we studied 29 common genetic variants known to associate

with AD using polygenic risk scores and pathway-speci�c polygenic risk

scores. As expected, we found that a higher PRS for AD was associated with

a higher risk of AD. Previous studies showed that polygenic risk score of

AD not only associated with increased risk of AD, but also with neuropatho-

logical hallmarks of AD, lifetime risk and the age at onset in both APOE ε4

carriers and non-carriers.[28, 29, 50, 51, 52, 53, 54] We now add that, using

our unique cohort of cognitively healthy centenarians, the PRS for AD also
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associates with resilience against AD at extremely old ages. This adds further

importance to the potentiality of using PRS and APOE genotype in a clinical

setting.[51, 50, 53, 55] In addition, our analyses suggest that the long-term

preservation of cognitive health is associated with the selective survival of

individuals with the lowest burden of risk-increasing variants or, vice versa,

the highest burden of protective variants. Using an innovative approach,

we studied �ve pathways previously found to be involved in AD as well as

the contribution of these pathways to the polygenic risk of AD. We showed

that all pathways-PRS except angiogenesis associate with increased AD risk,

both including and excluding APOE variants and independently from gender.

When we studied the association of pathways-PRS with resilience against AD

until extreme old ages, we found that, as expected, the enrichment of the pro-

tective APOE ε2 allele and the depletion of the risk-increasing APOE ε4 allele

represented a major factor in avoiding AD. However, when excluding the two

APOE variants, only immune response and endocytosis signi�cantly associ-

ated with an increased chance to be resilient against AD. Interestingly, both

pathways had a larger or similar e�ect on resilience against AD-resilience

compared to developing AD, suggesting that these pathways might be in-

volved in general neuro-protective functions. Based on the variant e�ect

size, variant frequency and our variant-pathway mapping, we found that the

β-amyloid metabolism (29.6%) followed by immune response (26.6%) were

the major contributors to general modi�cation of AD-risk. After excluding

APOE variants, according to our analysis, immune response (45.5%) and

endocytosis (19.2%) contributed most to the modi�cation of AD-risk.

Our approach to map variants to associated genes and to map genes to

pathways resulted in a weighted annotation of variants to pathways that

allowed for uncertainty in gene as well as pathway assignment, which was

not done previously. We note that considering uncertainty in variant-gene as

well as gene-pathway assignments is crucial because most genetic variants

are in non-coding regions, which makes the closest gene not necessarily the

culprit gene, and because di�erent functional annotation-sources often do

not overlap. In our variant-pathway mapping, a larger number of annotations

(both variant-genes and gene-pathways), generally causes a dilution of the

"true" variant e�ect, re�ecting increasing uncertainty in the annotation

sources used. This depends on the speci�c regions, for example, the HLA

region carries many genes with large linkage signals, however, all genes

in this region are typically annotated with immune response. We point

out that the power of the PRSs does not only re�ect the e�ect-size of the

variants, but also the number and frequency of the variants that contribute
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to the PRSs: due to this, a larger number of very common variants with

relatively small e�ect-size can still have more power (yet small ORs) than a

small number of relatively rare variants with high e�ect-size. The pathway-

speci�c PRS that we proposed in this manuscript can be re-used for the

identi�cation of subtypes of AD patients compromised in a speci�c AD-

associated pathway. This is of interest for clinical trials, in order to test

responsiveness to compounds in speci�c subsets of patients. For example,

monoclonal antibody targeting TREM2 receptors could work better in AD

patients who have an impaired immune response pathway. Recently, several

studies attempted to construct pathway-speci�c PRS to �nd heterogeneity

in AD patients based on a genetic basis.[28, 29] In line with our �ndings,

Ahmad et al. found that genes capturing endocytosis pathway signi�cantly

associated with AD and with the conversion to AD.[29] Other studies used

less variants [28] or less stringent selection for variants, and did not observe

a di�erential involvement of pathways in AD etiology.[56]

The amyloid cascade hypothesis has been dominating AD-related re-

search in the last two decades. However, treatments targeting amyloid

have, so far, not been able to slow or stop disease progression. This has led

to an increased interest for the other pathways that are important in AD

pathogenesis.[22] Part of the current view of the etiology of AD is that the

dysregulation of the immune response is a major causal pathway, and that

AD is not only a consequence of β-amyloid metabolism.[57, 58] In addition,

previous studies showed that healthy immune and metabolic systems are

associated with longer and healthier lifespan.[1, 59] Our results indicate that,

excluding APOE variants, the e�ect of immune response and endocytosis

on escaping AD is stronger or comparable to the e�ect on causing AD. This

suggests that these pathways might be involved in the maintenance of gen-

eral cognitive health, as the cognitively healthy centenarians represent the

escape of all neurodegenerative diseases until extreme ages. We recently

found evidence for this hypothesis in the protective low frequency variant in

PLCG2, which is involved in the regulation of the immune response.[52] This

variant is enriched in cognitively healthy centenarians, and protects against

AD as well as frontotemporal dementia and dementia with Lewy bodies.

We included this variant in the total PRS as well as in the pathway-PRS for

the immune response (variant-pathway mapping was 60%) and endocytosis

(variant-pathway mapping was 40%). Regarding endocytosis, this pathway is

thought to play a role both in neurons, as part of the β-amyloid metabolism,

but also in glia cells, as part of the immune response. Thus, a dysregulation in

the interplay between these pathways might lead to an imbalance of immune
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Figure 3.4: Explained variance of each pathway-speci�c PRS to polygenic
risk of AD The pie charts represents the explained variance of each pathway-

speci�c PRS to the polygenic risk of AD, including and excluding APOE variants.

The contributions are calculated according to (i) our variant-pathway mapping,

(ii) the e�ect size (log of odds ratio) of each variant from literature (Table S1), and

(iii) variant’s frequency in our cohort of middle-aged healthy population subjects.

We also considered variants with missing variant-pathway mapping (unmapped

pathway).

signaling factors, favoring the engulfment of synapses and AD-associated

processes. This, in turn, may contribute to the accumulation of amyloid and

tau pathologies.[60, 61, 62, 63]

We assessed the e�ect of common and low frequency variants on the

development and the escape of AD. Therefore, the contributions of rare,

causative variants associated with increased AD risk, such as those in APP,

PSEN1, PSEN2, TREM2 and SORL1were not considered. Despite the large odds

ratios to develop AD associated with carrying such variants, the frequency

of these variants in the population is ultra-low, and therefore have a minor

e�ect on the total AD risk in the population.[11, 12] However, future versions

of the PRS will most likely include the e�ect of carrying disease-associated

rare variants. This will a�ect individual PRS scores and the necessity to

accordingly adapt the results generated with current PRSs. Compared to

the sizes of recent GWAS of AD, we included relatively small sample sizes,

particularly with respect to the cognitively healthy centenarians, a very rare

phenotype in the population (<0.1%).[4] These sample sizes are however

su�cient to study PRSs. The cohorts that we used in this study were not

used in any GWAS of AD, therefore we provide independent replication of

AD PRS in a homogeneous group of (Dutch) individuals.

We note that, apart from APOE variants (for which we stratify the anal-

yses for), none of the other variants have been associated with longevity
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or well cognitive functioning in the largest and most recent GWAS.[64, 65]

We acknowledge that our variant-pathway mapping re�ects the current

state of imperfect knowledge at the level of AD-GWAS �ndings, variant-

gene and gene-mechanism relationships. Thus, as new variants, pathways or

functional relationships will be identi�ed, the contributions and the pathway-

speci�c PRSs will need to be recalculated. Of note: the study in which the

genome-wide signi�cant association with AD of the variant in/near KANSL1
was originally identi�ed, reported a larger e�ect size compared to the e�ect

size used in our manuscript, (β=0.31 and β=0.07, respectively), possibly be-

cause the original analysis was strati�ed by APOE. We cannot exclude that we

underestimated the contribution of KANSL1 in the analyses. Moreover, since

theKANSL1 variant did not map into one of the analyzed pathways, it was not

included in any of the pathway-speci�c PRS calculations. A limitation, not

exclusive to our work, is the highly debated role of APOE gene. We mapped

the e�ect of APOE to four pathways and we are aware this assignment is

relatively arbitrary. We add that APOE has well-studied (cardio)vascular

properties that are included in our cholesterol and lipid metabolism pathway.

The combination of a large e�ect and unclear pathway assignment makes

that pathway-PRS including APOE challenging to use. Lastly, we point out

that the variance contributions might change in di�erent populations, as it

depends on variant frequency and population heterogeneity.

Concluding, with the exclusion of APOE variants and based on our func-

tional annotation of variants, the aggregate contribution of the immune

response and endocytosis represents more than 60% of the currently known

polygenic risk of AD. This indicates that an intervention in these systems

may have large potential to prevent AD and potentially other related dis-

eases and highlights the critical need to study (neuro)immune response and

endocytosis, next to β-amyloid metabolism.
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3.7 Supplementary Figures

Figure 3.5: Correlation plot of the (p)PRS and covariates. The �gure shows

the correlation between the pathway-PRS (respectively with and without APOE
variants), the full-PRS (respectively with and without APOE variants), ages (ages

at study inclusion for controls, ages at diagnosis for AD cases) and the 5 principal

components derived from the population strati�cation analysis. We used Pearson

correlation and p-values were adjusted with Holm-Bonferroni correction.
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Figure 3.6: Sex-strati�ed analysis of the (p)PRS. The �gure shows the sex-

strati�ed analyses in the context of the overall analysis, respectively for the pathway-

PRS (including and excluding APOE variants) and the Full-PRS (including and ex-

cluding APOE variants). For each PRS (pathway-PRS or Full- PRS) we report both

the odds ratio for AD and those for AD-resilience.
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Figure 3.7: Area under ROC curve for classi�cation of AD or AD-Resilience
status, for each variant. The �gure shows the quality of the classi�cation of AD

and AD-Resilience status using single-variants.

Figure 3.8: Area underROC curve for classi�cation ofADandAD-Resilience
status, for each PRS and pPRS. The �gure shows the quality of the classi�cation

of AD and AD-Resilience status using PRS and pPRS.
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3.8 Supplementary Tables
Supplementary Tables can be accessed by scanning the following code or

accessing the journal’s website here.

https://www.nature.com/articles/s41398-020-01018-7
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Abstract

Human longevity is in�uenced by the genetic risk of age-related

diseases. As Alzheimer’s disease (AD) represents a common condi-

tion at old age, an interplay between genetic factors a�ecting AD

and longevity is expected. We explored this interplay by studying

the prevalence of AD-associated single-nucleotide-polymorphisms

(SNPs) in cognitively healthy centenarians, and replicated �ndings in

a parental-longevity GWAS. We found that 28/38 SNPs that increased

AD-risk also associated with lower odds of longevity. For each SNP,

we express the imbalance between AD- and longevity-risk as an

e�ect-size distribution. Based on these distributions, we grouped the

SNPs in three groups: 17 SNPs increased AD-risk more than they de-

creased longevity-risk, and were enriched for β-amyloid metabolism

and immune signaling; 11 variants reported a larger longevity-e�ect

compared to their AD-e�ect, were enriched for endocytosis/immune-

signaling, and were previously associated with other age-related dis-

eases. Unexpectedly, 10 variants associated with an increased risk of

AD and higher odds of longevity. Altogether, we show that di�erent

AD-associated SNPs have di�erent e�ects on longevity, including

SNPs that may confer general neuro-protective functions against AD

and other age-related diseases.
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4.1 Introduction

The human lifespan is determined by a bene�cial combination of environ-

mental and genetic factors.[1, 2] Long-lived individuals tend to cluster in

families, suggesting that the role of the genetic factors is considerable,[3,

4] however, the research of genetic variants that in�uence human lifespan

has yielded contrasting results: only the longevity-association of the APOE
alleles and few additional variants consistently replicated across studies

(CDKN2B, ABO).[5, 6] While the replication rate in independent studies is

low, a large collection of genetic variants has been associated with longevity

through genome-wide association studies (GWAS) in di�erent studies and

populations.[5, 6] The majority of these variants was previously identi�ed

to associate with other age-related conditions, including cardiovascular dis-

ease, autoimmune and neurological disorders, suggesting that the genetics

underlying human longevity depends on a lower risk for several age-related

diseases.[5, 6, 2] Of all age-related diseases, late-onset Alzheimer’s Disease

(AD) is the most common type of dementia and one of the most prevalent

causes of death at old age.[7] The largest risk factor for AD is aging: at 100

years of age, the disease’s incidence is about 40% per year.[8] Genetic factors

play a signi�cant role in AD as heritability was estimated to be 60-80%:[9]

the strongest common genetic risk factor for AD is the APOE ε4 allele, and

large collaborative GWAS have identi�ed 41 additional common variants

associated with a slight modi�cation of the risk of AD.[10, 11, 12, 13] De-

spite high incidence rates of AD at very old ages, AD is not an inevitable

consequence of aging, as demonstrated by individuals who surpass the age

of 100 years with high levels of cognitive functioning.[14] As AD-associated

variants increase the risk of AD, leading to earlier death, a negative e�ect

on longevity for these variants should be expected. However, apart from

APOE alleles, genetic variants that in�uence the risk of AD were not found

to a�ect the human lifespan in previous GWAS. In fact, often we assume that

AD-associated variants a�ect AD only, but this may still not hold true. For

example, at the molecular level, there may be other age-related traits that

share (part of) the biological pathways underlying AD. Nevertheless, for an

AD-associated variant that a�ects AD only, the relative e�ect on longevity

should be proportional to the corresponding e�ect on AD, albeit in a di�erent

direction. This means that if a variant increases the risk of AD 2-fold, then

carriers will have twice as much AD-related mortality as non-carriers, and as

a consequence, they will have twice as little chance to age into a cognitively

healthy centenarian. However, in case a genetic variant is protective against
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multiple conditions, it might be expected that the overall e�ect on longevity

results larger than the absolute e�ect on AD alone.

We have previously shown that cognitively healthy centenarians are

depleted with genetic variants that increased the risk of AD compared to

a general population. Yet, the extent of depletion was variant speci�c, sug-

gesting that a subset of AD-variants may be speci�cally bene�cial to reach

extremely old ages in good cognitive health.[15, 16] In addition, the extent to

which these variants a�ect other age-related diseases is mostly unknown.[17]

Using the notion of e�ect-size proportionality, we set out to investigate the

relationship between AD- and longevity- risk for genetic variants associated

with AD.
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4.2 Methods
4.2.1 Populations and selection of genetic variants

We included N=358 centenarians from the 100-plus Study cohort, which com-

prises Dutch-speaking individuals aged 100 years or older who self-report

to be cognitively healthy, which is con�rmed by a proxy.[14] As popula-

tion controls, we used population-matched, cognitively healthy individuals

from �ve studies: (i) the Longitudinal Aging Study of Amsterdam (LASA,

N=1,779),[18, 19] (ii) the memory clinic of the Alzheimer center Amsterdam

and SCIENCe project (N=1,206),[20, 21] (iii) the Netherlands Brain Bank

(N=40),[22] (iv) the twin study of Amsterdam (N=201)[23] and (v) the 100-

plus Study (partners of centenarian’s children, N=86).[14] See Supplementary
Methods: Populations for a detailed description of these cohorts. Throughout

the manuscript, we will refer to the union of the individuals from these

�ve studies as population subjects. The Medical Ethics Committee of the

Amsterdam UMC (METC) approved all studies. All participants and/or their

legal representatives provided written informed consent for participation

in clinical and genetic studies. Genetic variants in our populations were

determined by standard genotyping and imputation methods. All samples

were genotyped using the same commercial kit. After establishing quality

control of the genetic data (see Supplementary Methods: Quality control),
2,905 population subjects and 343 cognitively healthy centenarians were left

for the analyses (Table 4.1). We then selected 41 variants representing the

current genetic landscape of AD (Table S1).[13] We restricted our analysis

to high-quality variants with a minor allele frequency >1% in our cohorts,

which led to the exclusion of 3/41 variants (rare variants in the TREM2 gene

rs143332484 and rs75932628 and ABI3 gene rs616338), leaving 38 variants for

the analyses.

4.2.2 AD and longevity variant e�ect sizes
We �rst retrieved the e�ect-size on AD (EkAD ) for each AD variant, k, from

one of the largestGWAS of AD.[13] To estimate a con�dence interval, we

sampled (S=10000) from the published e�ect-sizes (log of odds ratios) and

their respective standard errors. To calculate the e�ect-size on longevity

(EkLGV ) for the same variants, we used a logistic regression model with

cognitive healthy centenarians as cases and population subjects as controls

while adjusting for population strati�cation (PC 1-5). The number of principal

components to include as covariates was arbitrarily chosen; however, as all

individuals were population-matched, we expected these components to
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correct all major population e�ects. The resulting p-values were corrected

for multiple testing (False Discovery Rate, FDR). To calculate the con�dence

interval, we repeated this bootstrapping procedure (B=10,000) of the data.

For convenience, variant e�ect-sizes on AD and longevity were calculated

with respect to the allele that increases the risk of AD, such that EkAD > 0.

Given a variant k, with a relative e�ect-size on AD (EkAD ) and on longevity

(EkLGV ), we de�ned that the variant has an expected direction if the variant

increases the risk of AD, i.e. EkAD > 0, and at the same time decreases the risk

of longevity, i.e. EkLGV < 0. Inversely, we de�ne that the longevity e�ect has

an unexpected direction if the allele that increased AD risk also increased the

risk of longevity, i.e. EkAD > 0 and EkLGV > 0. The probability of observing

an expected direction was considered a Bernoulli variable with p=0.5 (i.e.
equal chance of having an expected/unexpected direction), thus the number

of variants with an expected direction follows a binomial distribution.

4.2.3 Imbalance of variant e�ect direction
We represented each variant as a data point whose coordinates were de�ned

by the variant’s e�ect on AD (EkAD , on the y-axis) and its e�ect on longevity

(EkLGV , on the x-axis). See Figure 4.4 for an example. For each variant, we

then calculated the normalized angle, αk , of the vector representing the data

point with the x-axis:

αk =
atan2(EkAD ,E

k
LGV )

π/2
+1 (4.1)

where αk ∈ [−1;1]. This normalized angle relates to the imbalance between

the risk of AD and the risk of longevity. That is, for αk < 0 the variant

has an expected direction, while for αk > 0 the variant has an unexpected

direction. As the e�ect-sizes are sample estimates, we subsequently took their

con�dence interval into account to create, for each variant, a distribution of

the imbalance in the e�ect direction (IED). Hereto, we assumed a Gaussian

density for both EkAD and EkLGV , centered around E
k
AD and E

k
LGV and with

a variance equal to the estimated con�dence interval for both e�ect sizes,

respectively. We sampled 10,000 times from these distributions and calculated

the corresponding imbalance (αk), to get a (non-Gaussian) distribution of

the IED for that variant, IEDk . To group variants with similar patterns of

their IED distributions, we ordered the IED by their median value (
˜IEDk),

and de�ned a group of variants in which the e�ect sizes were in the expected

direction (
˜IEDk ≤ 0), which we subsequently split in those that have (i) a
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larger e�ect on longevity as compared to the e�ect on AD (
˜IEDk ≤ −1/2,

longevity-group), and those that have (ii) a larger e�ect on AD as compared

to the e�ect on longevity (−1/2 < ˜IEDk ≤ 0, AD-group). We de�ned a third

group of variants that have an e�ect in the unexpected direction (
˜IEDk > 0,

Unex-group). These cut-o� calues were not arbitrarily chosen, instead, they

represent the point at which the e�ect on AD equals the (negative) e�ect

on longevity (IEDk = −1/2) and the point at which no e�ect on longevity is

observed (IEDK = 0).

4.2.4 Replication of findings in large GWAS cohorts
To �nd additional evidence for our �ndings, we inspected the association

statistics of the 38 AD-associated variants in the largest GWAS on parental

longevity.[6] Brie�y, in this study o�spring’s genotypes were used to model

parental age at death. In this dataset, we looked at the signi�cance of as-

sociation with longevity for the 38 variants (p-values were corrected with

FDR) and their direction of e�ect. Finally, we tested the consistency in

the expected/unexpected directions between our study and the GWAS on

parental longevity using binomial tests. We did not use a case-control GWAS

of longevity as the most recent included our cohort, thus the resulting asso-

ciations would be biased.[5]

4.2.5 Linking variants with functional clusters
To investigate each variant’s functional consequences, we calculated the

variant-pathway mapping, which indicates the degree of involvement of

each genetic variant in AD-associated pathways (Figure 4.5). See Supple-

mentary Methods: variant-pathway mapping, for a detailed explanation

of our approach. Brie�y, the variant-pathway mapping depends on (i) the

number of genes each variant was associated with and (ii) the biological

pathways each gene was associated with. We calculated the variant-pathway

mapping for all 38 AD-associated variants. Finally, we compared the variant-

pathway mapping within each group of variants de�ned based on the IEDs
(Longevity-, AD- and Unex-groups) using Wilcoxon sum rank tests and

correcting p-values using FDR: this was indicative of whether a group of

variants was enriched for a speci�c functional cluster (Figure 4.5).

4.2.6 Cell-type annotation at the level of each cluster
To further explore the biological basis of the di�erent groups of variants

(Longevity-, AD- and Unex-groups), we calculated the degree of enrichment
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of each group for speci�c brain cell-types (see Supplementary Methods: cell-

type annotation, for a detailed description). This annotation depends on the

number of genes each variant was associated with, and the expression of

these genes in the di�erent brain cell-types, i.e. astrocytes, oligodendrocytes,

microglia, endothelial cells, and neurons. We �nally compared the cell-

speci�c annotations within each group of variants (Longevity-, AD- and

Unex-groups) using Wilcoxon sum rank tests and correcting p-values using

FDR, which indicated whether a group of variants was enriched for speci�c

brain cell-types (Figure 4.5).

4.2.7 Implementation
Quality control of genotype data, population strati�cation analysis and re-

latedness analysis were performed with PLINK (v2.0 and v1.9). All sub-

sequent analyses were performed with R (v3.6.3), Bash, and Python (v3.6)

scripts. All scripts are freely available at https://github.com/TesiNicco/

Disentangle_AD_Age.[24] Variant-gene annotation and gene-set enrich-

ment analyses were performed through the web-server that is freely accessi-

ble at https://snpxplorer.net.

https://github.com/TesiNicco/Disentangle_AD_Age
https://github.com/TesiNicco/Disentangle_AD_Age
https://snpxplorer.net
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Table 4.1: Population characteristics

Population controls Cognitively Healthy Centenarians

Individuals 2,905 343

Females (%) 1400 (48.2%) 246 (71.7%)

Age (SD)
a

68.3 (11.5) 101.4 (1.8)

ApoE ε4 (%) 1012 (17.38) 48 (7.15)

ApoE ε2 (%) 523 (9.00) 91 (13.26)

a
, Age at study inclusion; SD, standard deviation; ApoE, Apolipoprotein E allele count for

the ε4 and ε2, and relative allele frequency in population controls and cognitively healthy

centenarians. References to the cohorts reported in this table are: [21, 19, 14, 22, 23, 20]

4.3 Results
4.3.1 AD-associated variants also associate with longevity

We explored the association with longevity of 38 genetic variants previously

associated with AD from GWAS (Table S1). We tested these variants in

343 centenarians who self-reported to be cognitively healthy (mean age at

inclusion 101.4±1.3, 74.7% females), as opposed to 2,905 population subjects

(mean age at inclusion 68.3±11.5, 50.7% females) (Table 4.1). We found a

signi�cant association with longevity for two variants after multiple testing

correction (FDR<5%, variants in the APOE gene; rs429358 and rs7412, Table

S2). We compared the direction of e�ect on longevity with that on AD

as found in literature: of the 38 variants, 28 showed an association in the

expected direction, i.e. alleles that increased AD risk were associated with

lower odds of longevity, and this was signi�cantly more than expected by

chance (p=0.005 including APOE variants, p=0.01 excluding APOE variants,

see section 4.2).

4.3.2 Distributions of the imbalance in the e�ect direction (IED)
To study the relationship between the e�ect on AD and longevity for all 38

AD-associated variants in more detail, we created distributions of the imbal-

ance in the variant e�ect direction (IED): Figure 4.1. The IED of a variant

indicates (i) whether the e�ects on AD and longevity are in the expected or

unexpected direction, and (ii) how the e�etcs on AD and longevity relate

to each other. For example, the two variants rs7412 and rs429358 in APOE
gene signi�cantly associated with longevity in the expected direction and
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thus had tight con�dence intervals. The resulting IED relied completely in

the expected direction side (Figure 4.1). In addition, the e�ect on AD was

larger than that on longevity, causing the IED to slightly skew towards the

AD-side (Figure 4.1). However, as the association of a variant with longevity

became less strong (thus with larger con�dence intervals) or was in the

unexpected direction, the fraction of data points in the unexpected direction

increased. For example, for the intergenic variant rs6733839 close to BIN1
gene, we observed a larger e�ect on AD compared to cognitively healthy

aging (EBIN1
AD = 0.17, SE = 0.01 and EBIN1

LGV = −0.14, SE = 0.08, p = 0.09),

yet in the expected direction. The resulting IED is skewed towards the AD

side (Figure 4.1), and, due to large con�dence intervals on longevity, we

observed data points in the unexpected direction. Finally, variant rs593742
near ADAM10 gene (EADAM10

AD = 0.08, SE = 0.01 and EADAM10
LGV = 0.06,

SE = 0.09, p = 0.49) associated with higher odds of both AD and longevity

(unexpected direction of e�ect), with a resulting IED largely on the unex-

pected side with fewer data points on the expected direction (due to large

con�dence intervals).

4.3.3 Grouping variants based on IED distributions

Based on the median value of each IED distributions,
˜IEDk , we grouped

the variants into (i) a Longevity-group (variants with a
˜IEDk skewed to-

wards the longevity-end of the spectrum), (ii) an AD-group (variants with a

˜IEDk skewed towards the AD-end of the spectrum), and (iii) an Unex-group

(variants with a
˜IEDk in the unexpected direction). The AD-group included

17 variants (in/near genes APOE (1), APOE (2), SCIMP, PLCG2 (1), MS4A6A,

BIN1, PILRA, APP, PLCG2 (2), CR1, SLC24A4, TREML2, ACE, APH1B, FERMT2,

PICALM, CD33) and the longevity-group included 11 variants (in or near

genes SHARPIN (1), SHARPIN (2), HS3ST1, EPAH1, IQCK, PRKD3, CD2AP,
PLCG2 (3), SPI1, HLA, EDHDC3), such that the e�ect of 28/38 (74%) of all

variants was in the expected direction. The e�ect of 10 variants was in

the unexpected direction, the Unex-group: (PTK2B, CLU, KANSL1, INPP5D,
ABCA7, CHRNE, SORL1, IL34, ADAM10, CASS4) (Figure 4.1).

4.3.4 AD-associated variants in large GWAS of longevity

To �nd additional evidence for longevity associations, we inspected the AD-

associated variants’ e�ect in the largest GWAS on parental longevity.[6] Of

the 38 AD-associated variants, association statistics were available for 34 of

the variants (missing from Longevity-group: PLCG2 (3), SPI1; missing from
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Figure 4.1: Overview of the 38 genetic variants associated with Alzheimer’s
disease. A. Genomic coordinates (with respect to GRCh37), variant identi�er, and

closest gene. B. The variant-pathway mapping score for the four functional clusters

(darker colors represent stronger associations). Variants reporting red crosses could

not be annotated as no biological processes were found to be associated with the

related genes. C. The e�ect size on AD (from literature) and the observed e�ect size

on longevity (LGV) for each variant (darker colors indicate stronger e�ect). The

same color indicates expected direction (i.e. increased risk of AD and decreased

chance of longevity), while di�erent colors indicates unexpected direction. For

the longevity e�ects, we also annotate variants with a signi�cant association (*,

unadjusted p-value<0.05). D. The distribution of the imbalance direction of e�ect

(IED) of AD-risk and longevity (see section 4.2 for details). The Longevity-, AD- and

Unex-groups were derived based on the median value of the IED (blue vertical line).

E. Average expression of the genes associated with the variants in �ve di�erent

brain cell-types (the darker, the higher the expression).
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Unex-group: KANSL1, INPP5D). Overall, 21/26 (81%) of the variants in the

expected direction in our study (of which 6/9 variants in Longevity- and

15/17 variants in the AD-group), were also in the expected direction in the

independent parental longevity dataset. Variants in the expected direction in

the �rst analysis are signi�cantly more likely to be in the expected direction

in the replication analysis than in the unexpected direction (p=0.01, based on

a binomial test, Figure 4.3). Six AD-associated variants reached signi�cance

in the parental-longevity GWAS after correcting for multiple comparisons

(FDR<5%): variants in the APOE gene (rs429358 and rs7412) and variants

in/near PRKD3 (rs8764613), CD2AP (rs9381564), APH1B (rs117618017 ) and

BIN1 (rs6733839). Of these, variants in/near PRKD3 and CD2AP belonged

to the Longevity-group in our analysis. Conversely, only 2/8 (25%) variants

that we observed in the unexpected direction in our study were also in

the unexpected direction in the parental-longevity GWAS, such that these

variants were not more likely to be in the unexpected direction (p=0.29, based

on a binomial test, Figure 4.2).

4.3.5 Functional characterization of variants

The 38 AD-associated variants included coding variants (N=10), intronic

variants (N=20), and intergenic variants (N=8) (Table S3). 12/28 of the in-

tronic/intergenic variants had eQTL associations. In total, the 38 variants

mapped to 68 unique genes, with most variants mapping to one gene (N=21)

and fewer mapping to 2 genes (N=10), 3 genes (N=2), 4 genes (N=1), 5 genes

(N=2), 6 and 7 genes (N=1, respectively) (Figure 4.6 and Table S3). We per-

formed gene-set enrichment analysis using a sampling-based approach to

explore the biological processes enriched in the 68 genes associated with

AD-variants (see section 4.2 and Figure 4.5). We found 115 signi�cantly

enriched biological processes after correction for multiple tests (FDR<5%,

Table S4). After clustering these terms based on their semantic similarity, we

found four main clusters of biological processes: (i) β-amyloid metabolism,

(ii) lipid/cholesterol metabolism, (iii) endocytosis/immune signaling and

(iv) synaptic plasticity (Figure 4.1, ?? and Table S5). Next, we calculated the

variant-pathway mapping score (see Methods and Figure 4.5), which indicates

how well a variant is associated with each of the 4 functional clusters. In total,

we calculated the variant-pathway mapping for 30 variants; we imputed the

annotation of 6 variants (Table S5), while 2 variants could not be annotated

(variants rs7185636 and rs1582763 in/near IQCK and MS4A6A genes), because

the associated genes were not annotated with any biological process function
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(Table S5). Finally, we tested whether the Longevity-, AD- and Unex-groups

were enriched for speci�c functional clusters by comparing the distribution

of variant-pathway mapping within each group (see section 4.2, Figure 4.3,

and Figure 4.5). The Longevity-group was signi�cantly (FDR<10%) enriched

for the endocytosis/immune signaling functional cluster; the AD-group for

the endocytosis/immune signaling, β-amyloid metabolism and to a smaller

extent for the synaptic plasticity functional clusters; the Unex-group was

mainly enriched for the endocytosis and β-amyloid metabolism functional

clusters.

4.3.6 Expression of AD-associated genes in brain cell-types
We explored whether speci�c brain cell types, i.e. astrocytes, oligodendro-

cytes, microglia, endothelial cells and neurons, were enriched within each

group of variants (see section 4.2 Table S5, and Table S6). Figure 4.1 shows

the collapsed cell-type expression for all 38 AD-associated variants. We

then tested the enrichment for cell-type expression within the Longevity-

, AD- and Unex-groups. The Longevity-group was signi�cantly enriched

for myeloid and endothelial cells, the AD-group for myeloid cells, while

the Unex-group was signi�cantly enriched for endothelial cells (FDR<10%,

Figure 4.3).
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Figure 4.2: Forest plot of association statistics of AD-variants in our study
and the largest GWAS of parental longevity. The plot shows the association of

AD-variants in our study and the largest by-proxy GWAS on parental longevity.[6]

The association statistics of 34/38 variants were available from publicly available

summary statistics of Timmers et al. study. [6] Plotted e�ect-sizes are with respect

to the AD-risk increasing allele. Thus, an expected direction of e�ect is shown

for variants with a negative estimate. Nominally signi�cant associations with AD

(p<0.05) are annotated with an asterisk (*), and signi�cant associations after FDR

correction are annotated with two asterisks (**).
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4.4 Discussion
4.4.1 Summary of the findings

We studied the e�ect on longevity of 38 genetic variants previously asso-

ciated with AD through GWAS.[13] We found that a majority of 74% of

the alleles that increase the risk of AD is associated with lower odds of

becoming a centenarian (expected direction). Overall, most variants (N=17)

had a larger e�ect on AD than on longevity: these variants were associated

with β-amyloid metabolism and endocytosis/immune signaling, and were

primarily expressed in microglia. A subset of variants (N=11) had a larger

e�ect on longevity than their e�ect on AD. These variants were associated

mostly with endocytosis and immune signaling, and they were expressed

in microglia and endothelial cells. These variant-e�ects were con�rmed for

81% of the alleles in an independent dataset, the largest GWAS on parental

longevity. In contrast, 26% of the variants increased both the risk of develop-

ing AD and the risk of becoming a centenarian (N=10), (unexpected direction).

These unexpected e�ects could only be replicated for 2 of the variants in the

independent dataset, suggesting that the expected e�ects were more robust

across studies than the unexpected e�ects. Together, our �ndings suggest

that a subset of variants associated with AD-risk may also a�ect longevity,

for example through their e�ect on other age-related diseases.

4.4.2 AD-associated variants and their e�ect on healthy aging
A single study previously explored the extent to which 10 AD-associated

variants a�ect longevity: apart from APOE locus, none of the other 10 tested

AD-associated variants signi�cantly associated with longevity.[25] In ad-

dition to APOE, four variants showed a negative e�ect on longevity while

increasing AD-risk (in/near ABCA7, EPHA1, CD2AP, and CLU ). In agreement

with these �ndings, we also found that only the APOE variants signi�cantly

associated with longevity, and variants in/near EPHA1 and CD2AP belong

to the Longevity-group. However, in our study, we found that most alle-

les associated with an increased risk of AD associated with a decreased

chance of longevity. The inability to observe such an inverse relationship

between variant e�ects on AD and longevity in the previous study may be

explained by the relatively small sample sizes, combined with a low number

of (well-established) AD variants analyzed (N=10). In our study, groups sizes

were also relatively small, but the centenarians had a relatively high level of

cognitive health, which might have contributed to an increased e�ect size of

AD-associated genetic variants in our comparison.[15, 16]
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4.4.3 Di�erent trajectories of e�ect of AD-associated variants on longevity

Variants with a larger e�ect on AD than longevity
For most variants with e�ects in the expected direction, the risk-increasing ef-

fect on AD was more extensive than the negative e�ect on survival/longevity.

These variants, which include both APOE alleles, might negatively a�ect

lifespan because carriers are removed from the population with increasing

age due to AD-associated mortality. For the APOE variants speci�cally, the

distribution of the imbalance in the e�ect directions suggests a nearly similar

proportion of the increased risk of AD and decreased risk of longevity for

both APOE variants
˜IEDk ≈ 1/2. This explains why multiple previous studies

have associated APOE variants with longevity. In our cohort of centenarians,

the frequency of the deleterious ε4 allele is half of that of the population

controls (8% vs. 16%, respectively). In comparison, the frequency of the pro-

tective ε2 allele is nearly two-fold increased (16% vs. 9%).[15] Note, however,

that inclusion criteria of the centenarian cohort required them to self-report

to be cognitively healthy, which might have increased the observed longevity

e�ect. Apart from the APOE variants, the AD-group included 15 variants,

all of which were among the �rst to be associated with AD through GWAS

(CR1, CD33, BIN1, MS4A6A, PICALM, and SLC24A4),[26, 27] eventually rep-

resenting variants with the strongest e�ect on AD.Functional annotation

showed signi�cant enrichment of β-amyloid metabolism, which aligns with

the importance of functional APP metabolism in maintaining brain health.

We also observed functional enrichment of endocytosis and immune signal-

ing, and a speci�c cell-type enrichment for microglia. This is in line with the

currently growing hypothesis of the involvement of immune dysfunctions

in the etiology underlying AD.[28, 29]

Variants with a larger e�ect on longevity than AD
The second-largest group of variants constituted a subset of 11 variants with

a larger e�ect on longevity than the e�ect on AD, which suggests that these

variants may be involved in other age-related diseases or general age-related

processes. The AD-association of most of these variants is relatively recent,

likely due to small e�ect sizes (ORs) or variants rareness (low minor allele

frequency, MAF); both features necessitate a very large number of samples to

identify these variants as signi�cantly associating with the disease. The vari-

ants within this group were speci�cally enriched for immune response and

endocytosis, which are known hallmarks of longevity.[1, 30, 31] In addition

to the rare non-synonymous variant in the PLCG2 gene (rs72824905, MAF:
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0.6%), which was recently observed to be protective against AD, frontotem-

poral dementia (FTD) and dementia with Lewy bodies, other variants within

this group were previously linked with disease risk factors. One of the two

non-synonymous variants in the SHARPIN gene, variant rs34173062 (MAF:

5.7%), has been associated with respiratory system diseases in GWAS.[32, 33,

34] Variant rs7185636 (MAF: 17.1%), intronic of the IQCK gene, is in complete

linkage with a variant (rs7191155, R
2
=0.95), which was previously associated

with body-mass index (BMI).[35] The variant rs876461 (MAF: 13.0%) near the

PRKD3 gene is in linkage with variant rs13420463 (R
2
=0.42), which has been

associated with systolic blood pressure.[36] Further, the variant near CD2AP
gene associates with the development and maintenance of the blood-brain

barrier, a specialized vascular structure of the central nervous system which,

when disrupted, has been linked with epilepsy, stroke and AD.[37] Variant

rs9275152 (MAF: 10.4%) maps to the complex Human-Leukocyte-Antigen

(HLA) region, which codes for cell-surface proteins responsible for the reg-

ulation of the adaptive immune system. In numerous GWAS, variants in

the HLA region were associated with autoimmune diseases, cancer, and

longevity.[6, 38] The AD-associated variant in this region (rs9275152) is also

a risk variant for Parkinson’s disease.[39] Finally, the genomic region sur-

rounding the SPI1 gene (in which variant rs3740688 maps) has been previously

associated with cognitive traits (intelligence, depression)[40] and, with lower

evidence, with kidney disease and cancer.[41, 42] The remaining variants

rs56402156, rs7920721, and rs4351014 (in/near EPHA1, ECHDC3, and HS3ST1)

have not been directly associated with other traits, although their associated

genes were implicated in systemic lupus erythematosus (HS3ST1) and can-

cer (EPHA1, ECHDC3).[43, 44, 45] Together, these �ndings suggest that the

counterpart of each risk-increasing allele, the AD-protective alleles, might

give a survival advantage that is not only speci�c to AD. Their functional

and cell-type annotations suggest that they contribute to the maintenance

of regulatory stimuli in the immune and endosomal systems, which may be

essential to maintain brain and overall physical health, necessary to reach

extremely old ages in good cognitive health.[16]

Variants associated with increased risk of AD and increased longevity risk
Unexpectedly, ten variants increased the risk of AD while at the same time

increasing the chance to reach ages over 100 in good cognitive health, which

is an unexpected balance. We note that the IED distributions of these variants

were broad, and in some cases even showed a bimodal behavior (in/near

KANSL1, IL34, CHRNE): this is attributable to the small e�ect-sizes (and
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Figure 4.3: Comparison of functional annotation and cell-type annotation
within the Longevity-, AD- and Unex-groups. A. The weights of the 4 func-

tional clusters within the Longevity-, AD- and Unex-groups. B. The weights of the

di�erent cell-types in the brain, per group. Di�erences in functional weights and

cell-type weights within each group were calculated using Wilcoxon sum rank tests.

The resulting p-values were FDR-corrected.
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large standard errors) on longevity for these variants, which caused data

points to easily �ip between the expected and unexpected direction during

the sampling procedure. Replication of the direction of the variant e�ect in

an independent dataset of parental longevity indicated that the unexpected

direction was replicated in only the CLU and CHRNE variants, suggesting

that future studies will have to further explore (the robustness of) these

unexpected e�ects. One explanation for such counter-intuitive e�ects may be

a variant interaction with other variants, which was shown for the variant in

the KANSL1 and CLU gene with respect to the APOE genotype.[46] Therefore,

carrying the risk allele of such variants may speci�cally a�ect the risk of AD

in APOE ε4 allele carriers, which are not prevalent among cognitively healthy

centenarians. An alternative explanation may be that these variants have

age-dependent e�ects: for example, high blood pressure at midlife increases

the risk of AD, but after the age of 85 a high blood pressure protects against

AD.[47] Similarly, a high body-mass-index (BMI) increases the risk of AD at

midlife, while being protective at older ages.[48] In line with this hypothesis,

the AD variant in/near IL34 gene codes for a cytokine that is crucial for

the di�erentiation and the maintenance of microglia.[49] Although further

studies are needed, an excessive di�erentiation in middle-age individuals may

increase brain-related in�ammation and AD-risk, while it might compensate

for the slower di�erentiation and immune activity at very old ages. Indeed,

next to IL34, several genes that may be a�ected by these Unex-variants, such

as PTK2B and INPP5D, play a role in aging-associated processes, such as

cellular senescence or immunity.[50, 51]

4.4.4 Strengths and weaknesses

We acknowledge that our �ndings are based on relatively small sample sizes,

especially for the cognitively healthy centenarian group. This phenotype

is rare, and individuals need to be individually approached for study inclu-

sion,[14] which is prohibitive for large sample collection. As population

subjects in our comparison, we used individuals from �ve di�erent cohorts:

all from the same (Dutch) population, all tested cognitively intact, and did

not convert to dementia at the time of analyses. It is known that the analysis

of genetic variants with small e�ect-sizes in relatively small sample sizes

leads to large con�dence intervals: we took this uncertainty into account by

bootstrapping e�ect sizes, causing the IED of several variants to be widely

spread. By focusing our analysis on SNPs that were genome-wide signif-

icantly associated with AD (thus habving tight con�dence intervals), we
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limited this dispersion to the e�ects-sizes on longevity only. For this reason,

we anticipate that using a random set of SNPs (e.g. to investigate the basic

properties of the IED), would increase further more the dispersion of data

points along the longevity-AD-unexpected spectrum, as con�dence intervals

on both longevity and AD would likely be larger. Although our work repre-

sents a �rst step towards understanding the e�ect of AD-associated variants

on longevity, a replication analysis in larger cohorts of centenarians and/or

long-lived individuals is warranted to further support our �ndings. Secondly,

in the functional annotation analysis, we had to deal with the problem that

the downstream e�ect of AD-associated variants is often unclear. To accom-

modate this uncertainty, we allower multiple genes to be associated with

each variant. However, it is likely that our variant-pathways annotation will

change as we gain more understanding about these variant-gene-e�ects, the

likely a�ected genes, and their functions. When we inspected the parental-

longevity GWAS, most of the variants that were in the expected direction in

our study were also in the same direction in the GWAS; however, this was not

true for all variants. The variant that deviated the most between our study

and the parental-longevity GWAS was rs9275152 in the HLA region: while

we clustered this variant in the longevity-group, in the parental-longevity

GWAS the direction of e�ect was opposite (i.e. unexpected), suggesting that

the variant increased the risk of AD and at the same time the chance of a

long lifespan. The genomic region to which HLA maps is biologically known

to be a�ected by many recombination events and may be population- and

environment-dependent, which may explain this divergence.[52] In addi-

tion to HLA-variant, variant rs34674752 in the SHARPIN gene reported the

second-largest e�ect-size in our study (after APOE ε4), while the e�ect-size

of this variant in the GWAS was very small, yet in the expected direction.

To this end, we note that the individuals used in the parental-longevity

GWAS were themselves not extremely old individuals, such that possible

pleiotropic e�ects at very old ages, as described earlier, may not be observable

in this GWAS. However, while we observed overall consistency in e�ect-size

direction for variants in the expected direction, 6/8 of the variants in the

unexpected direction were in the expected direction in the GWAS, with vari-

ants near SORL1, IL34, and ADAM10 having the most noticeable di�erences.

We speculate that the relatively young ages of the GWAS samples, together

with the small sample size of our centenarian cohort may be the cause of

such discrepancy.
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4.4.5 Conclusions
Most AD-associated variants that increase the risk of the disease are associ-

ated with lower odds of longevity. We identi�ed a subset of variants with

a larger e�ect on longevity than on AD, that were previously associated as

risk-factors for other age-related diseases, and that are selectively enriched

for endocytosis and immune signaling functions.
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4.7 Supplementary Methods
4.7.1 Populations

The 100-plus Study focuses on the biomolecular aspect of preserved cogni-

tive health until extremely old ages. This study includes (1) Dutch-speaking

centenarians who can (2) provide o�cial evidence for being aged 100 years

or older, (3) self-report to be cognitively healthy, which is con�rmed by an

informant (i.e. a child or close relation), (4) consent to donation of a blood

sample and (5) consent to (at least) two home-visits from a researcher, which

includes an interview and neuropsychological testing.[14] This study also

includes (1) siblings or children from centenarians who participate in the

100-plus Study, or partners thereof who (2) agree to donate a blood sample, (3)

agree to �ll in a family history, lifestyle history, and disease history question-

naire. The Longitudinal Aging Study of Amsterdam (LASA) is an ongoing

longitudinal study of older adults initiated in 1991, with the main objective

to determine predictors and consequences of aging.[18, 19] The SCIENCe is

a prospective cohort study of subjective cognitive decline (SCD) patients.[20,

53] Participants undergo extensive assessment, including cerebrospinal �uid

collection (CSF) and optional amyloid positron emission tomography scan

(PET), with annual follow-up. The primary outcome measure is clinical

progression. All individuals were labeled cognitively intact. The Netherlands

Brain Bank (NBB) cohort is a prospective donor program for psychiatric

diseases. All subjects were labeled cognitively intact after neuropathological

examination.[22] The Netherland Twin Registry study (NTR) was established

in 2004 to collect biological and environmental data in twin families to create

a resource for genetic studies on health, lifestyle, and personality.[23]

4.7.2 Genotyping and imputation
Genetic variants in our populations were determined by standard genotyp-

ing and imputation methods, and we applied established quality control

methods: we genotyped all individuals with the Illumina Global Screening

Array (GSAsharedCUSTOM-20018389-A2) and excluded individuals with low-

quality genotypes (individual call rate <98%, variant call rate <98%), individ-

uals with sex mismatches and variants deviating from Hardy-Weinberg equi-

librium (p < 1x10−6). Genotypes were prepared for imputation comparing

variants identi�ers, strand and allele frequencies to the Haplotype Reference

Panel (HRC v1.1, April 2016), and all remaining variants were submitted to

the Sanger imputation server (https://imputation.sanger.ac.uk).[54]

The server uses EAGLE2 (v2.0.5) to phase the data, and imputation to the ref-

https://imputation.sanger.ac.uk
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erence panel was performed with PBWT.[55, 56] Before analysis, we excluded

individuals of non-European ancestry and individuals with a family relation,

leaving 2,905 population subjects and 343 cognitively healthy centenarians

for the analysis.

4.7.3 Variant annotation

Variant-gene mapping
We annotated each variant to the likely a�ected gene(s), so-called variant-
gene mapping, combining annotation from Combined Annotation Dependent

Depletion (CADD, v1.3), expression-quantitative-trait-loci in the blood (eQTL

from GTEx v8), and positional mapping (from RefSeq build 98).[57, 58, 59]

In the case of coding variants, we con�dently associated the variant with

the corresponding gene. Alternatively, we �rst considered possible eQTL

associations. When these were not available, we included all genes at increas-

ing distance d from the variant (starting with d ≤ 50kb, up to d ≤ 500kb,

increasing by 50kb until at least 1 gene was found). Our procedure allows

the association of each variant with one or multiple genes (Figure 4.5).

Gene-pathway mapping
The resulting list of genes was used to �nd the molecular pathways enriched

in the AD variants. See Figure 4.5 for a schematic representation of our

annotation framework. We realized that allowing multiple genes to associate

with each variant could result in an enrichment bias, as neighboring genes

are often functionally related. To control this, we implemented a sampling

technique: at each iteration, we (i) sampled one gene from the pool of genes

associated with each variant, and (ii) performed a gene-set enrichment anal-

ysis with the resulting list of genes. The gene-set enrichment analysis was

performed considering biological processes (BP) and implemented with the

enrichGO function of the R package clusterPro�ler, with all genes as back-

ground and correcting p-values controlling the False Discovery Rate (FDR).

Finally, we averaged p-values for each enriched term over the iterations

(N=1,000). To facilitate interpretation, we merged signi�cantly enriched

biological processes. First, we calculated the semantic similarity between all

signi�cant biological processes (i.e. FDR<5%) using Lin as a distance mea-

sure.[60] We then applied hierarchical clustering on the resulting distance

matrix and selected the number of functional clusters using the dynamic tree-

cut method as implemented in cutreeDynamic function from the R package

WGCNA, specifying 15 as the minimum number of terms per cluster (using

the default value of 20 resulted in 2 functional clusters only). To provide
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an interpretation of each functional cluster, we selected the most frequent

words describing the biological processes underlying each cluster, and show

this as word-clouds as implemented in R package wordcloud2. Finally, by

counting how often a functional cluster was associated with a gene, we could

calculate a weighted annotation of each gene to the 4 functional clusters,

so-called gene-pathway mapping (Figure 4.5). The variant-gene mapping as

well as the gene-pathway mapping procedures were performed using the

web-server application available at https://snpxplorer.net. [61] Due to

the initial selection of signi�cantly enriched BP, not every gene in the list

of variant-associated genes is annotated with (at least one of) these terms.

Consequently, these genes could not be related to the �nal functional clusters.

To overcome this, we connect these genes to the functional clusters using a

k-nearest neighbor (k-NN ) imputation. The k-NN model was initially trained

using the functional clusters as classes and the semantic similarity matrix

between the enriched biological processes as features (feature terms). Then,

for each gene with missing annotation, we (i) extracted all the biological pro-

cesses the gene is involved in (input biological processes), and (ii) calculated

the semantic similarity matrix between these terms and the feature terms,

which de�nes the similarity between the input biological processes and the

feature terms. Finally, we (iii) predicted the probability of classi�cation of

the similarity matrix to the classes (functional clusters), and used this as

weight for the gene-pathway mapping (Figure 4.5).

Variant-pathway mapping
The variant-pathway mapping represents the combined annotation of each

variant to the di�erent functional clusters. As such, it depends on the variant-

gene mapping and the gene-pathways mapping. Brie�y, given a variant k,

we (i) retrieved all the genes that were associated with the variant in the

variant-gene mapping, Gk , and (ii) retrieved all the biological processes

(gene ontology term identi�ers) that were associated with these genes, GOG.

Because we clustered biological processes into functional clusters, by looking

at which functional clusters the GOG belonged to, we could assign a weight

of association for variant k to each of the functional clusters.

4.7.4 Variant-cell-type mapping

To study brain-speci�c cell-types and their relationship with AD-associated

variants, we used the publicly available gene expression dataset GSE73721:

this dataset includes gene expression values of 6 fetal astrocyte samples, 12

adult astrocyte samples, 8 sclerotic hippocampal samples, 4 whole human

https://snpxplorer.net
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cortex samples, 4 adult mouse astrocyte samples, and 11 human samples

of other puri�ed central-nervous-system (CNS) cell-types. We restricted

to the gene expression of 12 astrocyte samples and 11 samples of puri�ed

CNS cell-types from the cortex of adult humans (total N=23, mean age of

41.5±19.6 years). To calculate the variant-cell-type mapping, we averaged

the gene expression of the genes mapping to the same variant.
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4.8 Supplementary Figures

Figure 4.4: Explanation of the distribution of imbalance variant e�ect direc-
tion (IED). The �gure shows the sequential steps for constructing the distribution

of the expected direction of variant e�ect for AD-risk compared to longevity for

two toy variants (SNP1 and SNP2). A. Axes de�nition, with the y-axis being the

e�ect-size for AD-risk (log of odds ratio) of a variant, derived from literature and set

positive by de�nition. The x-axis identi�es the e�ect-size of a variant on longevity.

This can be either positive or negative depending on the variant’s association in

cognitively healthy centenarians as opposed to population subjects. The blue area

represents that the two e�ects are in the expected direction with respect to each

other, i.e. a variant increases the risk of AD and at the same time decreases the

chance of longevity. Oppositely, the grey area refers to the unexpected direction

of e�ect. B. Two toy variants (SNP1 and SNP2) are shown as data points. α(1−2)
represents the angle of the data point vector with the x-axis. C. Normalization of

the α(1−2) value into an arbitrary space. Here, we used [−1;1]. D. Repeating this

procedure for each bootstrap iteration of each variant, we obtained the distribution

of imbalance e�ect direction for each variant (IED). Values smaller than 0 indicate

the expected direction of e�ect, whereas values larger than 0 refer to the unexpected

direction of e�ects. Additionally, values close to 0 indicate a larger AD e�ect than

longevity e�ect, and values close to -1 suggest that the variant’s longevity e�ect is

larger than the AD e�ect.
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Figure 4.5: Schematic representation of the variant-pathway and variant-
cell-typemapping. The �gure shows a schematic representation of the annotation

framework used to functionally annotate AD-associated variants and perform cell-

type enrichment. Outputs are represented as blue squares, while methods are

represented in orange. In the variant-gene mapping, showed in the grey box,

we start from a list of variants and, through the integration of predicted variant

consequences (CADD), eQTL and position, we obtain a list of genes. Note that here

multiple genes may be associated with each variant. The yellow box shows the

gene-pathway mapping: brie�y, we perform gene-set enrichment analysis followed

by clustering of the signi�cantly enriched pathways to obtain functional clusters.

We then calculate the gene-pathway mapping by looking at the (enriched) pathways

associated with each gene and their associated functional clusters to get a weight

for each gene-functional cluster association. Finally, we average the gene-pathway

mapping of each gene associated with the same variant. Imputation methods (k-NN )

are implemented for genes with missing annotation to obtain the gene-pathway

mapping. Together, the grey box and the yellow box form the variant-pathway

mapping. At the bottom, the green box shows the gene-cell-type enrichment using

the public dataset GSE73721 of gene expression in di�erent brain cell-types. Similar

to the gene-pathway mapping, we calculate a weight of association of each gene to

each cell-type, and we average these weights in case multiple genes mapped to the

same variant (variant-cell-type mapping).
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Figure 4.6: Variant-gene mapping for the 38 AD-associated variants. A. The

sources used to annotate each variant to the likely a�ected genes. Coding: variants

located in the coding region of a gene (e.g. synonymous or non-synonymous

variants). eQTL: variants associated with RNA expression changes in blood from

the GTEx consortium. Position: variants intronic or intergenic without evidence of

eQTL associations that were annotated based on neighboring genes. B. Barplot of

the number of genes associated with each variant. C. Distribution of genes across

the chromosomes. D. Distribution of the previously identi�ed variants along the

genome together with each variant’s minor allele frequency and annotation.
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4.9 Supplementary Material
Supplementary Tables can be accessed by scanning the following code or

accessing the journal’s website here.

https://www.medrxiv.org/content/10.1101/2021.02.02.21250991v1.supplementary-material


4

122 Chapter 4. The Alzheimer-Longevity axis

References
[1] Linda Partridge, Joris Deelen, and P.

Eline Slagboom. “Facing up to the

global challenges of ageing”. In: Na-
ture 561.7721 (Sept. 2018), pp. 45–56.

issn: 0028-0836, 1476-4687. doi: 10.
1038/s41586-018-0457-8.

[2] David Melzer, Luke C. Pilling, and

Luigi Ferrucci. “The genetics of hu-

man ageing”. In: Nature Reviews Ge-
netics (Nov. 2019). issn: 1471-0056,

1471-0064. doi: 10.1038/s41576-
019-0183-6.

[3] Thomas T. Perls et al. “Life-long sus-

tained mortality advantage of sib-

lings of centenarians”. In: Proceed-
ings of the National Academy of Sci-
ences of the United States of Amer-
ica 99.12 (June 2002), pp. 8442–8447.

issn: 0027-8424. doi: 10.1073/pnas.
122587599.

[4] Graziella Caselli et al. “Family clus-

tering in Sardinian longevity: a ge-

nealogical approach”. In: Experimen-
tal Gerontology 41.8 (Aug. 2006),

pp. 727–736. issn: 0531-5565. doi: 10.
1016/j.exger.2006.05.009.

[5] Joris Deelen et al. “A meta-analysis

of genome-wide association studies

identi�es multiple longevity genes”.

In: Nature Communications 10.1 (Dec.

2019). issn: 2041-1723. doi: 10.1038/
s41467-019-11558-2.

[6] Paul RHJ Timmers et al. “Genomics

of 1 million parent lifespans impli-

cates novel pathways and common

diseases and distinguishes survival

chances”. In: eLife 8 (Jan. 2019). issn:

2050-084X. doi: 10 . 7554 / eLife .
39856.

[7] “2012 Alzheimer’s disease facts and

�gures”. In: Alzheimer’s & Demen-
tia 8.2 (Mar. 2012), pp. 131–168. issn:

15525260. doi: 10.1016/j.jalz.
2012.02.001.

[8] María M. Corrada et al. “Dementia

incidence continues to increase with

age in the oldest old: The 90+ study”.

In: Annals of Neurology 67.1 (Jan.

2010), pp. 114–121. issn: 03645134,

15318249. doi: 10.1002/ana.21915.

[9] Margaret Gatz et al. “Role of genes

and environments for explaining

Alzheimer disease”. In: Archives of
General Psychiatry 63.2 (Feb. 2006),

pp. 168–174. issn: 0003-990X. doi: 10.
1001/archpsyc.63.2.168.

[10] Alzheimer Disease Genetics Consor-

tium (ADGC), et al. “Genetic meta-

analysis of diagnosed Alzheimer’s

disease identi�es new risk loci and

implicates Aβ, tau, immunity and

lipid processing”. In: Nature Genet-
ics 51.3 (Mar. 2019), pp. 414–430. issn:

1061-4036, 1546-1718. doi: 10.1038/
s41588-019-0358-2.

[11] Iris E. Jansen et al. “Genome-wide

meta-analysis identi�es new loci

and functional pathways in�uencing

Alzheimer’s disease risk”. In: Nature
Genetics 51.3 (Mar. 2019), pp. 404–413.

issn: 1061-4036, 1546-1718. doi: 10.
1038/s41588-018-0311-9.

[12] Rebecca Sims et al. “Rare coding vari-

ants in PLCG2, ABI3, and TREM2

implicate microglial-mediated innate

immunity in Alzheimer’s disease”.

In: Nature Genetics 49.9 (Sept. 2017),

pp. 1373–1384. issn: 1546-1718. doi:

10.1038/ng.3916.

[13] Itziar de Rojas et al. Common vari-
ants in Alzheimer’s disease: Novel as-
sociation of six genetic variants with
AD and risk strati�cation by polygenic
risk scores. preprint. Genetic and Ge-

nomic Medicine, Nov. 2019. doi: 10.
1101/19012021.

[14] Henne Holstege et al. “The 100-plus

Study of Dutch cognitively healthy

centenarians: rationale, design and

https://doi.org/10.1038/s41586-018-0457-8
https://doi.org/10.1038/s41586-018-0457-8
https://doi.org/10.1038/s41576-019-0183-6
https://doi.org/10.1038/s41576-019-0183-6
https://doi.org/10.1073/pnas.122587599
https://doi.org/10.1073/pnas.122587599
https://doi.org/10.1016/j.exger.2006.05.009
https://doi.org/10.1016/j.exger.2006.05.009
https://doi.org/10.1038/s41467-019-11558-2
https://doi.org/10.1038/s41467-019-11558-2
https://doi.org/10.7554/eLife.39856
https://doi.org/10.7554/eLife.39856
https://doi.org/10.1016/j.jalz.2012.02.001
https://doi.org/10.1016/j.jalz.2012.02.001
https://doi.org/10.1002/ana.21915
https://doi.org/10.1001/archpsyc.63.2.168
https://doi.org/10.1001/archpsyc.63.2.168
https://doi.org/10.1038/s41588-019-0358-2
https://doi.org/10.1038/s41588-019-0358-2
https://doi.org/10.1038/s41588-018-0311-9
https://doi.org/10.1038/s41588-018-0311-9
https://doi.org/10.1038/ng.3916
https://doi.org/10.1101/19012021
https://doi.org/10.1101/19012021


4

REFERENCES 123

cohort description”. In: (Apr. 2018).

doi: 10.1101/295287.

[15] Niccolò Tesi et al. “Centenarian con-

trols increase variant e�ect sizes

by an average twofold in an ex-

treme case–extreme control analy-

sis of Alzheimer’s disease”. In: Eu-
ropean Journal of Human Genetics
(Sept. 2018). issn: 1018-4813, 1476-

5438. doi: 10.1038/s41431- 018-
0273-5.

[16] Niccolò Tesi et al. “Immune response

and endocytosis pathways are as-

sociated with the resilience against

Alzheimer’s disease”. In: Transla-
tional Psychiatry 10.1 (Dec. 2020),

p. 332. issn: 2158-3188. doi: 10 .
1038/s41398-020-01018-7.

[17] Natalya Ponomareva et al. “Age-

dependent e�ect of Alzheimer’s risk

variant of CLU on EEG alpha rhythm

in non-demented adults”. In: Frontiers
in Aging Neuroscience 5 (2013). issn:

1663-4365. doi: 10 . 3389 / fnagi .
2013.00086.

[18] Emiel O. Hoogendijk et al. “The Lon-

gitudinal Aging Study Amsterdam:

cohort update 2016 and major �nd-

ings”. In: European Journal of Epi-
demiology 31.9 (Sept. 2016), pp. 927–

945. issn: 0393-2990, 1573-7284. doi:

10.1007/s10654-016-0192-0.

[19] M. Huisman et al. “Cohort Pro�le:

The Longitudinal Aging Study Am-

sterdam”. In: International Journal
of Epidemiology 40.4 (Aug. 2011),

pp. 868–876. issn: 0300-5771, 1464-

3685. doi: 10.1093/ije/dyq219.

[20] Rosalinde E. R. Slot et al. “Subjective

Cognitive Impairment Cohort (SCI-

ENCe): study design and �rst results”.

In: Alzheimer’s Research & Therapy
10.1 (Dec. 2018). issn: 1758-9193. doi:

10.1186/s13195-018-0390-y.

[21] Wiesje M. van der Flier and Philip

Scheltens. “Amsterdam Demen-

tia Cohort: Performing Research

to Optimize Care”. In: Journal of
Alzheimer’s Disease 62.3 (Mar. 2018).

Ed. by George Perry, Jesus Avila, and

Xiongwei Zhu, pp. 1091–1111. issn:

13872877, 18758908. doi: 10.3233/
JAD-170850.

[22] Marleen C. Rademaker, Geertje M.

de Lange, and Saskia J.M.C. Palmen.

“The Netherlands Brain Bank for Psy-

chiatry”. In: Handbook of Clinical
Neurology. Vol. 150. Elsevier, 2018,

pp. 3–16. isbn: 978-0-444-63639-3.

doi: 10.1016/B978-0-444-63639-
3.00001-3.

[23] Gonneke Willemsen et al. “The

Netherlands Twin Register Biobank:

A Resource for Genetic Epidemio-

logical Studies”. In: Twin Research
and Human Genetics 13.3 (June 2010),

pp. 231–245. issn: 1832-4274, 1839-

2628. doi: 10 . 1375 / twin . 13 . 3 .
231.

[24] Shaun Purcell et al. “PLINK: a tool set

for whole-genome association and

population-based linkage analyses”.

In: American Journal of Human Genet-
ics 81.3 (Sept. 2007), pp. 559–575. issn:

0002-9297. doi: 10.1086/519795.

[25] Hui Shi et al. “Genetic variants in-

�uencing human aging from late-

onset Alzheimer’s disease (LOAD)

genome-wide association studies

(GWAS)”. In: Neurobiology of Aging
33.8 (Aug. 2012), 1849.e5–1849.e18.

issn: 01974580. doi: 10 . 1016 / j .
neurobiolaging.2012.02.014.

[26] Denise Harold et al. “Genome-wide

association study identi�es variants

at CLU and PICALM associated with

Alzheimer’s disease”. In: Nature Ge-
netics 41.10 (Oct. 2009), pp. 1088–1093.

issn: 1546-1718. doi: 10.1038/ng.
440.

https://doi.org/10.1101/295287
https://doi.org/10.1038/s41431-018-0273-5
https://doi.org/10.1038/s41431-018-0273-5
https://doi.org/10.1038/s41398-020-01018-7
https://doi.org/10.1038/s41398-020-01018-7
https://doi.org/10.3389/fnagi.2013.00086
https://doi.org/10.3389/fnagi.2013.00086
https://doi.org/10.1007/s10654-016-0192-0
https://doi.org/10.1093/ije/dyq219
https://doi.org/10.1186/s13195-018-0390-y
https://doi.org/10.3233/JAD-170850
https://doi.org/10.3233/JAD-170850
https://doi.org/10.1016/B978-0-444-63639-3.00001-3
https://doi.org/10.1016/B978-0-444-63639-3.00001-3
https://doi.org/10.1375/twin.13.3.231
https://doi.org/10.1375/twin.13.3.231
https://doi.org/10.1086/519795
https://doi.org/10.1016/j.neurobiolaging.2012.02.014
https://doi.org/10.1016/j.neurobiolaging.2012.02.014
https://doi.org/10.1038/ng.440
https://doi.org/10.1038/ng.440


4

124 Chapter 4. The Alzheimer-Longevity axis

[27] Jean-Charles Lambert et al. “Genome-

wide association study identi�es vari-

ants at CLU and CR1 associated with

Alzheimer’s disease”. In: Nature Ge-
netics 41.10 (Oct. 2009), pp. 1094–1099.

issn: 1061-4036, 1546-1718. doi: 10.
1038/ng.439.

[28] Anastasia G. Efthymiou and Alison

M. Goate. “Late onset Alzheimer’s dis-

ease genetics implicates microglial

pathways in disease risk”. In: Molec-
ular Neurodegeneration 12.1 (Dec.

2017). issn: 1750-1326. doi: 10.1186/
s13024-017-0184-x.

[29] David V. Hansen, Jesse E. Han-

son, and Morgan Sheng. “Microglia

in Alzheimer’s disease”. In: The
Journal of Cell Biology 217.2 (Feb.

2018), pp. 459–472. issn: 0021-9525,

1540-8140. doi: 10 . 1083 / jcb .
201709069.

[30] Amir A. Sadighi Akha. “Aging and

the immune system: An overview”.

In: Journal of Immunological Meth-
ods 463 (Dec. 2018), pp. 21–26. issn:

00221759. doi: 10 . 1016 / j . jim .
2018.08.005.

[31] Santiago Solé-Domènech et al. “The

endocytic pathway in microglia dur-

ing health, aging and Alzheimer’s dis-

ease”. In: Ageing Research Reviews
32 (Dec. 2016), pp. 89–103. issn:

15681637. doi: 10 . 1016 / j . arr .
2016.07.002.

[32] William J. Astle et al. “The Allelic

Landscape of Human Blood Cell Trait

Variation and Links to Common Com-

plex Disease”. In: Cell 167.5 (2016),

1415–1429.e19. issn: 1097-4172. doi:

10.1016/j.cell.2016.10.042.

[33] Thorunn A. Olafsdottir et al. “Eighty-

eight variants highlight the role of

T cell regulation and airway remod-

eling in asthma pathogenesis”. In:

Nature Communications 11.1 (2020),

p. 393. issn: 2041-1723. doi: 10 .
1038/s41467-019-14144-8.

[34] Gleb Kichaev et al. “Leveraging Poly-

genic Functional Enrichment to Im-

prove GWAS Power”. In: American
Journal of Human Genetics 104.1

(2019), pp. 65–75. issn: 1537-6605.

doi: 10.1016/j.ajhg.2018.11.
008.

[35] Thomas J. Ho�mann et al. “A Large

Multiethnic Genome-Wide Associa-

tion Study of Adult Body Mass Index

Identi�es Novel Loci”. In: Genetics
210.2 (2018), pp. 499–515. issn: 1943-

2631. doi: 10.1534/genetics.118.
301479.

[36] Helen R. Warren et al. “Genome-wide

association analysis identi�es novel

blood pressure loci and o�ers biolog-

ical insights into cardiovascular risk”.

In: Nature Genetics 49.3 (Mar. 2017),

pp. 403–415. issn: 1546-1718. doi: 10.
1038/ng.3768.

[37] J. Nicholas Cochran et al. “The

Alzheimer’s disease risk factor

CD2AP maintains blood–brain bar-

rier integrity”. In: Human Molec-
ular Genetics 24.23 (Dec. 1, 2015),

pp. 6667–6674. issn: 0964-6906, 1460-

2083. doi: 10.1093/hmg/ddv371.

[38] Gergely Bodis, Victoria Toth, and

Andreas Schwarting. “Role of Hu-

man Leukocyte Antigens (HLA) in

Autoimmune Diseases”. In: Rheuma-
tology and Therapy 5.1 (June 2018),

pp. 5–20. issn: 2198-6576, 2198-6584.

doi: 10.1007/s40744-018-0100-
z.

[39] Sara Bandres-Ciga et al. “The Genetic

Architecture of Parkinson Disease

in Spain: Characterizing Population-

Speci�c Risk, Di�erential Haplotype

Structures, and Providing Etiologic

Insight”. In: Movement Disorders: O�-
cial Journal of the Movement Disorder

https://doi.org/10.1038/ng.439
https://doi.org/10.1038/ng.439
https://doi.org/10.1186/s13024-017-0184-x
https://doi.org/10.1186/s13024-017-0184-x
https://doi.org/10.1083/jcb.201709069
https://doi.org/10.1083/jcb.201709069
https://doi.org/10.1016/j.jim.2018.08.005
https://doi.org/10.1016/j.jim.2018.08.005
https://doi.org/10.1016/j.arr.2016.07.002
https://doi.org/10.1016/j.arr.2016.07.002
https://doi.org/10.1016/j.cell.2016.10.042
https://doi.org/10.1038/s41467-019-14144-8
https://doi.org/10.1038/s41467-019-14144-8
https://doi.org/10.1016/j.ajhg.2018.11.008
https://doi.org/10.1016/j.ajhg.2018.11.008
https://doi.org/10.1534/genetics.118.301479
https://doi.org/10.1534/genetics.118.301479
https://doi.org/10.1038/ng.3768
https://doi.org/10.1038/ng.3768
https://doi.org/10.1093/hmg/ddv371
https://doi.org/10.1007/s40744-018-0100-z
https://doi.org/10.1007/s40744-018-0100-z


4

REFERENCES 125

Society 34.12 (2019), pp. 1851–1863.

issn: 1531-8257. doi: 10.1002/mds.
27864.

[40] Gail Davies et al. “Study of 300,486 in-

dividuals identi�es 148 independent

genetic loci in�uencing general cog-

nitive function”. In: Nature Commu-
nications 9.1 (Dec. 2018). issn: 2041-

1723. doi: 10.1038/s41467- 018-
04362-x.

[41] Cristian Pattaro et al. “Genetic as-

sociations at 53 loci highlight cell

types and biological pathways rel-

evant for kidney function”. In: Na-
ture Communications 7 (Jan. 21, 2016),

p. 10023. issn: 2041-1723. doi: 10 .
1038/ncomms10023.

[42] Kyriaki Michailidou et al. “Associa-

tion analysis identi�es 65 new breast

cancer risk loci”. In: Nature 551.7678

(2017), pp. 92–94. issn: 1476-4687.

doi: 10.1038/nature24284.

[43] Carl D. Langefeld et al. “Transances-

tral mapping and genetic load in

systemic lupus erythematosus”. In:

Nature Communications 8 (2017),

p. 16021. issn: 2041-1723. doi: 10 .
1038/ncomms16021.

[44] N I Herath et al. “Epigenetic silenc-

ing of EphA1 expression in colorectal

cancer is correlated with poor sur-

vival”. In: British Journal of Cancer
100.7 (Apr. 2009), pp. 1095–1102. issn:

0007-0920, 1532-1827. doi: 10.1038/
sj.bjc.6604970.

[45] Sajjad Ra�q et al. “A genome wide

meta-analysis study for identi�cation

of common variation associated with

breast cancer prognosis”. In: PloS One
9.12 (2014), e101488. issn: 1932-6203.

doi: 10 . 1371 / journal . pone .
0101488.

[46] G. Jun et al. “A novel Alzheimer dis-

ease locus located near the gene en-

coding tau protein”. In:Molecular Psy-
chiatry 21.1 (Jan. 2016), pp. 108–117.

issn: 1476-5578. doi: 10.1038/mp.
2015.23.

[47] Emer R. McGrath et al. “Blood pres-

sure from mid- to late life and risk

of incident dementia”. In: Neurology
89.24 (Dec. 12, 2017), pp. 2447–2454.

issn: 1526-632X. doi: 10.1212/WNL.
0000000000004741.

[48] W. L. Xu et al. “Midlife overweight

and obesity increase late-life demen-

tia risk: a population-based twin

study”. In: Neurology 76.18 (May 3,

2011), pp. 1568–1574. issn: 1526-

632X. doi: 10 . 1212 / WNL .
0b013e3182190d09.

[49] Yaming Wang and Marco Colonna.

“Interkeukin-34, a cytokine crucial

for the di�erentiation and mainte-

nance of tissue resident macrophages

and Langerhans cells: Highlights”.

In: European Journal of Immunol-
ogy 44.6 (June 2014), pp. 1575–1581.

issn: 00142980. doi: 10.1002/eji.
201344365.

[50] S. J. Ryu et al. “Role of Src-speci�c

phosphorylation site on focal adhe-

sion kinase for senescence-associated

apoptosis resistance”. In: Apoptosis
11.3 (Mar. 2006), pp. 303–313. issn:

1360-8185, 1573-675X. doi: 10.1007/
s10495-006-3978-9.

[51] Samantha D. Pauls and Aaron J. Mar-

shall. “Regulation of immune cell sig-

naling by SHIP1: A phosphatase, scaf-

fold protein, and potential therapeu-

tic target”. In: European Journal of Im-
munology 47.6 (June 2017), pp. 932–

945. issn: 00142980. doi: 10.1002/
eji.201646795.

https://doi.org/10.1002/mds.27864
https://doi.org/10.1002/mds.27864
https://doi.org/10.1038/s41467-018-04362-x
https://doi.org/10.1038/s41467-018-04362-x
https://doi.org/10.1038/ncomms10023
https://doi.org/10.1038/ncomms10023
https://doi.org/10.1038/nature24284
https://doi.org/10.1038/ncomms16021
https://doi.org/10.1038/ncomms16021
https://doi.org/10.1038/sj.bjc.6604970
https://doi.org/10.1038/sj.bjc.6604970
https://doi.org/10.1371/journal.pone.0101488
https://doi.org/10.1371/journal.pone.0101488
https://doi.org/10.1038/mp.2015.23
https://doi.org/10.1038/mp.2015.23
https://doi.org/10.1212/WNL.0000000000004741
https://doi.org/10.1212/WNL.0000000000004741
https://doi.org/10.1212/WNL.0b013e3182190d09
https://doi.org/10.1212/WNL.0b013e3182190d09
https://doi.org/10.1002/eji.201344365
https://doi.org/10.1002/eji.201344365
https://doi.org/10.1007/s10495-006-3978-9
https://doi.org/10.1007/s10495-006-3978-9
https://doi.org/10.1002/eji.201646795
https://doi.org/10.1002/eji.201646795


126 Chapter 4. The Alzheimer-Longevity axis

[52] Timothy A. Jinam. “Human Leuko-

cyte Antigen (HLA) Region in Hu-

man Population Studies”. In: Evo-
lution of the Human Genome I. Ed.

by Naruya Saitou. Series Title: Evo-

lutionary Studies. Tokyo: Springer

Japan, 2017, pp. 173–179. isbn: 978-4-

431-56601-4 978-4-431-56603-8. doi:

10.1007/978-4-431-56603-8_9.

[53] Wiesje M. van der Flier et al. “Opti-

mizing patient care and research: the

Amsterdam Dementia Cohort”. In:

Journal of Alzheimer’s disease: JAD
41.1 (2014), pp. 313–327. issn: 1875-

8908. doi: 10.3233/JAD-132306.

[54] Shane McCarthy et al. “A reference

panel of 64,976 haplotypes for geno-

type imputation”. In: Nature Genetics
48.10 (Oct. 2016), pp. 1279–1283. issn:

1546-1718. doi: 10.1038/ng.3643.

[55] Richard Durbin. “E�cient haplotype

matching and storage using the po-

sitional Burrows-Wheeler transform

(PBWT)”. In: Bioinformatics (Oxford,
England) 30.9 (May 1, 2014), pp. 1266–

1272. issn: 1367-4811. doi: 10.1093/
bioinformatics/btu014.

[56] Po-Ru Loh et al. “Reference-based

phasing using the Haplotype Refer-

ence Consortium panel”. In: Nature
Genetics 48.11 (2016), pp. 1443–1448.

issn: 1546-1718. doi: 10.1038/ng.
3679.

[57] Philipp Rentzsch et al. “CADD: pre-

dicting the deleteriousness of vari-

ants throughout the human genome”.

In: Nucleic Acids Research 47 (D1 Jan.

2019), pp. D886–D894. issn: 0305-

1048, 1362-4962. doi: 10.1093/nar/
gky1016.

[58] Nuala A. O’Leary et al. “Reference

sequence (RefSeq) database at NCBI:

current status, taxonomic expansion,

and functional annotation”. In: Nu-
cleic Acids Research 44 (D1 Jan. 2016),

pp. D733–745. issn: 1362-4962. doi:

10.1093/nar/gkv1189.

[59] GTEx Consortium. “The Genotype-

Tissue Expression (GTEx) project”.

In: Nature Genetics 45.6 (June 2013),

pp. 580–585. issn: 1546-1718. doi: 10.
1038/ng.2653.

[60] Bridget T. McInnes and Ted Peder-

sen. “Evaluating measures of seman-

tic similarity and relatedness to dis-

ambiguate terms in biomedical text”.

In: Journal of Biomedical Informatics
46.6 (Dec. 2013), pp. 1116–1124. issn:

15320464. doi: 10 . 1016 / j . jbi .
2013.08.008.

[61] Niccolo Tesi et al. “snpXplorer: a web

application to explore human SNP-

associations and annotate SNP-sets”.

In:Nucleic Acids Research 49.W1 (May

2021), W603–W612. issn: 0305-1048.

doi: 10.1093/nar/gkab410.

https://doi.org/10.1007/978-4-431-56603-8_9
https://doi.org/10.3233/JAD-132306
https://doi.org/10.1038/ng.3643
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1093/bioinformatics/btu014
https://doi.org/10.1038/ng.3679
https://doi.org/10.1038/ng.3679
https://doi.org/10.1093/nar/gky1016
https://doi.org/10.1093/nar/gky1016
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1038/ng.2653
https://doi.org/10.1038/ng.2653
https://doi.org/10.1016/j.jbi.2013.08.008
https://doi.org/10.1016/j.jbi.2013.08.008
https://doi.org/10.1093/nar/gkab410


REFERENCES 127



5. Genetic predisposition to longevity

Polygenic risk score of longevity predicts longer sur-
vival across an age-continuum

Niccolo’ Tesi, Sven J. van der Lee, Marc Hulsman, Iris E. Jansen,

Najada Stringa, Natasja M. van Schoor, Martijn Huisman, Philip Schel-

tens, Wiesje M. van der Flier, Marcel J.T. Reinders, and Henne Holstege

This chapter was published in The Journal of Gerontology: Series A
https://doi.org/10.1093/gerona/glaa289

https://doi.org/10.1093/gerona/glaa289


5

129

Abstract

Studying the genome of centenarians may give insights into the molec-

ular mechanisms underlying extreme human longevity and the escape

of age-related diseases. Here, we set out to construct polygenic-

risk-scores (PRS) for longevity and to investigate the functions of

longevity-associated variants. Using a cohort of centenarians with

maintained cognitive health (N=343), a population-matched cohort of

older-adults from �ve cohorts (N=2,905), and summary statistics data

from a GWAS on parental longevity, we constructed a PRS including

330 variants that signi�cantly discriminated between centenarians

and older-adults. This PRS was also associated with longer survival in

an independent sample of younger individuals, (p=0.02), leading up to

a 4-year di�erence in survival based on common genetic factors only.

We show that this PRS was, in part, able to compensate for the delete-

rious e�ect of the APOE-ε4 allele. Using an integrative framework,

we annotated the 330 variants included in this PRS by the genes they

associate with. We �nd that they are enriched with genes associated

with cellular di�erentiation, developmental processes, and cellular

response to stress. Together, our results indicate that an extended

human lifespan is, in part, the result of a constellation of variants

each exerting small advantageous e�ects on aging-related biological

mechanisms that maintain overall health and decrease the risk of

age-related diseases.
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5.1 Introduction

The human aging process is in�uenced by genetic and environmental factors,

which makes it one of the most complex traits to study.[1, 2] Previous studies

estimated that the heritability of lifespan up to ∼70 years of age ranges 10-

25%.[3, 4] However, to reach higher ages we become increasingly dependent

on the favorable genetic elements of our genomes. In fact, the heritability of

becoming a centenarian has been estimated to be 60%.[5] Interestingly, cen-

tenarian genomes are depleted of single-nucleotide-polymorphisms (SNPs)

associated with age-related diseases, while they are enriched with protective

SNPs.[6, 7] Therefore, studying the genetic variants enriched in centenarians

may give insights into the underlying etiology of extreme human longevity.[6,

7]

The research of SNPs that in�uence the human lifespan has focused

mainly on the replication of candidate genes discovered in model organ-

isms.[8, 9] Recently, genome-wide association studies (GWAS) have been per-

formed to identify genetic loci associated with longevity. GWAS of longevity,

in which the frequency of genetic variants is compared between long-lived

persons and the average population, do not require prior knowledge and

have the potential to discover new genetic determinants.[10] These studies

have identi�ed a constellation of SNPs associated with a longer lifespan

across a wide range of populations.[11, 12, 13, 14, 15, 16] However, the associ-

ation of the identi�ed genetic loci has typically a low replication rate across

independent studies, with only the APOE-ε4 allele (variant rs429358) and

genetic variants in CDKN2A/B gene consistently associated with reduced

lifespan.[11, 14, 15, 17] The di�culty in replicating longevity-associated SNPs

may be attributable to di�erent measures of survival and longevity, di�erent

statistical methods, and population dynamics.[8, 15, 18] For example, some

studies used a dichotomous longevity phenotype based on the survival to

ages above 90 or 100 years, others used the top 10% or 1% of survivors in a

population,[12, 14] while other studies modeled age at death as a continuous

variable and yet others used more sophisticated statistical models.[13, 15]

On top of methodological and phenotypical divergencies between studies,

population dynamics including gene-environmental interactions and popu-

lation biases may potentially have a large e�ect on longevity,[18] and might

explain the poor replication rate in independent cohorts. Lastly, the genetic

variants identi�ed thus far carry small e�ects, such that large sample sizes

are required for an association with longevity to reach statistical signi�cance

in a GWAS setting.[8] Although poorly replicated, 29 genomic regions have
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been associated with a longer lifespan in the most recent GWAS studies.[11,

12, 14, 15, 16, 18] The genes that harbor these variants have been implicated

in age-related diseases including cardiovascular diseases (APOE, ANRIL),

type I diabetes (FOXO3, LPA), cancer (CDKN2B, BEND4), and neurological

diseases (APOE, GPR78, GRIK2).[13, 15] Together, this suggests that an ex-

tended human lifespan is associated with a lower genetic risk of age-related

diseases.[8, 15, 19] Indeed, centenarians across populations have been shown

to compress their disability period to the very end of their lives, escaping or

delaying age-related diseases until extreme ages.[5, 20, 21, 22]

We hypothesize that variants associated with longevity are maximally

enriched in cognitively healthy centenarians because, in addition to reaching

at least 100 years ( 1% of the population), these centenarians are cognitively

healthy, and represent an even smaller percentage of the general population

(∼0.1%).[20] We previously found that the selection for cognitive health next

to being 100 years or older is associated with prolonged longevity in this

cohort compared to centenarians from the general population.[20, 21, 22,

23] Therefore, the centenarians in this cohort represent the ideal group to

construct and test polygenic risk scores for longevity. A polygenic risk score

(PRS) is a weighted score of independent variants representative of the risk to

develop a phenotypic trait and can be used to study the combined in�uence

of genetic factors on a certain trait. Although a PRS of parental longevity was

previously associated with survival, validation in a cohort of extremely old

individuals is missing. Besides, to prioritize SNPs to include in the PRS using

a cohort of cognitively healthy agers may improve association statistics of the

PRS. In this study, we started from 29 genomic regions previously associated

with longevity: we annotated SNPs to likely a�ected genes and sought to

detect signi�cant associations using gene-based tests as opposed to single

variant associations. Importantly, we constructed polygenic risk scores (PRS)

combining the e�ect of multiple variants and tested the association of the

risk scores (i) with becoming a cognitively healthy centenarian, and (ii) with

survival in a subset of controls with follow-up data. We further explore the

relationship between the PRS and the deleterious e�ect of APOE-ε4 allele,

and using an innovative framework, we functionally annotate the variants

included in the best PRS model.
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5.2 Results

5.2.1 Study population

We studied the genetics underlying extreme human longevity in a case-

control setting using as cases individuals that reached at least 100 years

of age and who self-reported as cognitively healthy. As controls, we used

a sample of population-matched, older-adults drawn from �ve di�erent

studies (see section 5.4). After establishing quality control of the genotyping

data, 343 cognitively healthy centenarians (mean age at inclusion 101.4±1.8,

71.7% females) and 2,905 controls (mean age 68.3±11.5, 48.2 % females) were

included in the analyses (Table S1).

5.2.2 Linking genetic variants with genes

We linked genetic variants previously associated with longevity (Table S2)

to their likely a�ected genes. However, for non-coding variants, the closest

gene is not necessarily the a�ected gene. Of the 29 investigated variants,

only a few are coding (N=5), while most are intronic (N=16) or intergenic

(N=8), for which variant consequences are unclear. To investigate the variant-

e�ect on gene function, we combined variant consequences as predicted

by the Combined Annotation Dependent Depletion (CADD),[24] expression
quantitative-trait-loci (eQTL) in blood from the Genotype-Tissue Expression

(GTEx) consortium,[25] and positional information to associate each variant

to the gene(s) it likely a�ects. This allows each genetic variant to associate

with one or more genes, depending on annotation certainties. With this

procedure, the 29 genetic variants mapped to 65 unique genes: 16 SNPs

mapped to 1 gene, while 6 mapped to 2 genes, 4 to 3 genes, 1 to 6 genes, 1 to

8 genes, and 1 to 12 genes (Figure 5.5 and Table S3). This annotation tool is

freely accessible to the community at https://snpxplorer.eu.ngrok.io.

5.2.3 Combined association of multiple variants at the gene level

While single variant associations represent the standard procedure for GWAS,

we hypothesized that testing the aggregated association of multiple variants

across a gene might improve association statistics. In total, we tested the joint-

association of variants at the gene-level for 53/65 genes using the MAGMA

statistical framework (see section 5.4).[26] After correction for multiple tests

(False Discovery Rate, FDR), the association of APOE and CDKN2B genes

remained signi�cant at FDR<10% (p=3.14x10
−12

and p=0.002, respectively,

Figure 5.6 and Table S4).

https://snpxplorer.eu.ngrok.io
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Figure 5.1: Association of the PRSs with becoming a cognitively healthy cen-
tenarian and the e�ect of inclusion of sub-signi�cant variants. The top panel

shows the number of variants (in log10 scale) included in each PRS (including APOE
variants). The bottom panel shows the p-value of the di�erence in PRS score between

the cognitively healthy centenarians and controls. Circles denote PRSs including the

APOE variants and triangles PRSs without the APOE variants. Red points refer to the

most signi�cant models including and excluding APOE, respectively. Known refers

to the PRS including the 29 previously identi�ed variants associated with longevity.

PRS-x refers to the PRS including additional sub-signi�cant variants depending on

the p-value of association of the variants in the by-proxy GWAS on longevity: PRS-8

for variants with p<5x10
−8

; PRS-7 for variants with p<5x10
−7

; PRS-6 for variants

with p<5x10
−6

, etc.

5.2.4 Polygenic Risk Scores

A polygenic risk score (PRS) is a weighted score of independent variants

that quanti�es the genetic risk to develop a certain trait. As weights for the

PRS, we used e�ect-sizes as found in the summary statistics of the largest

GWAS on parental longevity.[15] First, we constructed a PRS using the pre-

viously identi�ed longevity variants and tested the association of the PRS
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with becoming a cognitively healthy centenarian. We found a signi�cant

association of the PRS (OR=1.42, 95% CI=[1.26-1.60], p=6.59x10
−9

), mainly

driven by APOE variants (when excluding the APOE variants: OR=1.07, 95%

CI=[0.96-1.20] and p=0.22) (Figure 5.1 and Table S5). Single-variant associa-

tion of these variants is available in Table S6. Next, we investigated whether

the addition of sub-signi�cant, independent longevity variants increased the

association of the PRS with becoming a cognitively healthy centenarian (see

section 5.4). The number of additionally included variants to the PRS was

based on the association p-value as found in the summary statistics provided

by Timmers et al.: PRS-8 (p<5x10
−8

, 19 variants in total), PRS-7 (p<5x10
−7

,

42 variants in total), PRS-6 (p<5x10
−6

, 94 variants), PRS-5 (p<5x10
−5

, 332

variants), PRS-4 (p<0.0005, 1,216 variants), PRS-3 (p<0.005, 3,620 variants),

PRS-2 (p<0.05, 8,339 variants) and PRS-1 (p<0.5, 16,926 variants) (Figure 5.1,

Table S5, Table S7). For all these PRSs, we tested the di�erence between

cognitively healthy centenarians and population controls. We observed a

consistent direction of the e�ect for all PRSs, with centenarians having on

average a higher score than population controls. Including APOE variants,

we found that the most predictive PRS was the PRS-6, which comprised 96

independent variants (OR=1.44, 95% CI=[1.28-1.61], p=8.39x10
−10

). Exclud-

ing APOE variants, the most predictive PRS was the PRS-5, comprising 330

independent variants (OR=1.27, 95% CI=[1.13-1.42], p=4.05x10
−5

, Figure 5.1,

Figure 5.7 and Table S5, Table S7). Single-variant association for all variants

is available in Table S8. A more stringent correction for population e�ects,

including 5 additional PCs as covariates, did not change our �ndings (Table

S9). Of note: while controls were a combination of di�erent cohorts, we did

not observe cohort-speci�c associations (Table S10 and Figure 5.11).

5.2.5 Survival analysis

We investigated whether the PRS could predict survival in a subset of the

population controls for which follow-up data were available. To investigate

the association of the PRS with survival considering APOE variants, we

performed a survival analysis using the PRS without APOE variants with the

highest evidence of association in our cohort, i.e. PRS-5. We performed a mul-

tivariate Cox regression to estimate the association of the PRS-5 with survival

while adjusting for age at inclusion, gender, population substructure, and

APOE-ε4 carriership. The PRS-5 was signi�cantly associated with survival

in the expected direction (hazard ratio, HR=0.89, 95% CI=[0.80-0.98], p=0.02),

i.e. having a higher PRS corresponded to reduced mortality. At 50% survival
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Figure 5.2: Association of the PRS-5 model without APOE on survival, strat-
i�ed by APOE-ε4 status. The top panel shows the survival curves for individuals

with high-PRS and low-PRS, strati�ed by APOE-ε4 status (dichotomized in “carriers”

of APOE-ε4 allele and non-carriers) in the population controls for which follow-up

data were available (N=1,620). The p-value refers to the association of the PRS-5 in

the multivariate Cox regression model while adjusting for gender, APOE-ε4 carrier-

ship (dichotomized), and population substructure (PCs 1-5). The lower panel shows

the number of samples in each category.

probability (P50), this resulted in 3.86-year di�erence in survival between

individuals with low-PRS that were APOE-ε4 carriers, and those with high-
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PRS that were not APOE-ε4 carriers (Figure 5.2). We observed that APOE-ε4

carriers with a low-PRS had the shortest survival (P50 CI=[0.39-0.65] at age

84.7), followed by non-APOE-ε4 carriers with low-PRS (P50 CI=[0.43-0.58]

at age 87.5), then, APOE-ε4 carriers with high-PRS (P50 CI=[0.38-0.63] at

age 88.5) while individuals non-APOE-ε4 carriers with high-PRS survived

longest (P50 CI=[0.43-0.59] at age 88.6) (Figure 5.2 and Table S11). However,

we did not observe a signi�cant interaction e�ect of PRS and APOE-ε4 status

(p=0.27). In line with the known di�erence in longevity between males and

females, gender was signi�cantly associated with survival (HR=1.82 for males

compared to females, 95% CI=[1.48-2.26], p=2.72x10
−8

). A separate analysis

in males and females suggested that the PRS was more strongly associated

with survival in males than in females (HRM=0.88, 95% CIM=[0.75-1.03] and

pM=0.11; HRF =0.93, 95% CIF=[0.80-1.05] and pF =0.24, Figure 5.8). How-

ever, we did not �nd a signi�cant interaction e�ect between PRS and gender

(p=0.60).

5.2.6 Functional annotation of PRS

We studied the functional implications of the 330 variants included in PRS-5.

First, we linked these variants to 471 unique genes (see section 5.4, Figure 5.9

and Table S12). Then, we looked in the GWAS catalog which variants and

associated genes, included in our PRS-5, were previously found to associate

with any trait. At the variant-level, of the 330 unique variants, 46 were

reported to associate with in total 115 previously analyzed traits, including

diseases such as coronary artery disease (CAD, NSNP =13), blood pres-

sure (NSNP =9), and cardiovascular diseases (NSNP =13), but also smoking

(NSNP =5) and parental longevity (NSNP =7) (Figure 5.3B). At the gene-

level, 300 of the 471 genes in our list were previously associated with lipid

metabolism, CAD, neurological traits, and immunological signatures (Fig-

ure 5.3C). Next, we performed a gene-set enrichment analysis to explore

the biological processes enriched in the 471 PRS-5-associated genes (see sec-

tion 5.4, also available at https://snpxplorer.eu.ngrok.io). We found

48 biological processes signi�cantly enriched after correction for multiple

tests (FDR<5%, Table S13), which we reduce to 8 by clustering similar terms

together based on semantic similarity measures. These terms pointed to-

wards regulatory and di�erentiation processes, cellular response to stress,

and nervous system development (Figure 5.3A and Table S14). To evaluate

the performance of our novel sampling-based method with respect to a tra-

ditional gene-set enrichment analysis, we applied the latter to the same 471

https://snpxplorer.eu.ngrok.io
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genes and we compared the results of both methods. The traditional gene-set

enrichment analysis yielded 122 signi�cantly enriched pathways, of which

45 pathways overlap with the 48 signi�cant pathways identi�ed using the

sampling-based approach (Table S15). This suggests that our sampling-based

approach may be considered conservative compared to traditional gene-set

enrichment analyses.

5.2.7 Gene expression of longevity-associated genes
Finally, we studied the expression of the genes linked with the previously

identi�ed longevity variants as well as with the PRS-5-associated variants,

using a publicly available dataset comprising RNA expression from the

hippocampus region in the brain. We compared the RNA-expression in

individuals aged 30-65 years (young, N=13) as opposed to those aged >80

years (old, N=16). We found that 174/432 available genes were di�erentially

expressed after correction for multiple tests (FDR<5%, Figure 5.4 and Table

S16): 41 genes were over-expressed in old individuals, while 133 were over-

expressed in young individuals.
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5.3 Discussion

In this study, we investigated the SNPs underlying extreme human longevity

using a sample of cognitively healthy centenarians from the 100-plus Study

cohort and a sample of population-matched older-adults. We constructed

a polygenic risk score (PRS) comprising 330 variants that was capable of
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distinguishing between cognitively healthy centenarians and population

controls. This PRS was signi�cantly associated with survival in an indepen-

dent sample of individuals and may compensate, in part, for the increased

mortality risk associated with the APOE-ε4 allele. Using a novel framework,

we functionally annotated the variants included in the PRS, which indicated

that these were previously associated with cardiometabolic, immunological,

oncological, and neurodegenerative conditions. Functional annotation of the

genes most likely a�ected by these variants revealed a signi�cant enrichment

for regulatory and di�erentiation processes, cellular response to stress, and

nervous system development.

We constructed a PRS that was associated with becoming a cognitively

healthy centenarian and also with prolonged survival across an age contin-

uum, even after excluding the two APOE alleles which associated strongest

with longevity. Including APOE alleles, the PRS comprising 29 previously

associated variants signi�cantly associated with becoming a cognitively

healthy centenarian, and association statistics only slightly improved upon

the addition of variants that sub-signi�cantly associated with longevity.

After excluding APOE variants, the association of this PRS was not signi�-

cant, likely due to the di�erent populations and study designs in which the

longevity-association of the 29 variants were identi�ed, their low number,

and the small e�ect-sizes. However, the inclusion of sub-signi�cant vari-

ants boosted the predictive performance of the PRS, which indicated that

these sub-signi�cant variants provide additional distinguishing power, but

in aggregate, this is relatively little compared to the strong APOE e�ect. The

predictive power of the PRS including 330 variants was highest, and having

a high-PRS score associated with longer survival in an independent sample

of older-adults. We did not identify single-variants driving the increase in

distinguishing power e�ect, such that we assume that all variants contributed

similarly. Adding even more variants with lower signi�cance to the PRS

decreased association statistics, which eventually stabilized, likely due to

random �uctuation of the data.

We explored the relationship between PRS and APOE-ε4 carriership:

fully according to expectations, APOE-ε4 carriers with a low-PRS had the

lowest survival, while as expected, non-APOE-ε4 carriers with a high-PRS
survived longest, on average 3.86 years longer. Between these extremes, non-

APOE-ε4 carriers with low-PRS had lower survival compared to APOE-ε4

carriers with a high-PRS. This suggests that the variants in the PRS may

compensate for the strong disease/mortality risk-increasing e�ect exerted by

the APOE-ε4 allele, however, replication in a large and independent dataset
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is needed to con�rm this �nding. A number of studies described this e�ect in

dementia, and although the results did not strongly replicate across di�erent

studies, several variants (e.g. rs5882 in the CETP gene and rs4934 in the

SERPINA3 gene) were reported to exhibit bu�ering e�ects with respect to

APOE-ε4.[27, 28] The majority of the variants included in the best PRS were

previously associated with age-related conditions and parental longevity.

Given that the variants included were selected from a study on parental

longevity, this was not surprising. Functionally, genetic variants were asso-

ciated with metabolite- and lipid measurements (serum metabolites, total

cholesterol, high- and low-density lipoproteins), cardiovascular-related traits

(blood pressure, coronary artery diseases, obesity, smoking), neurological

conditions (multiple sclerosis, schizophrenia, bipolar disorder) and immuno-

logical signatures (IgG glycosylation levels, Crohn’s disease, celiac disease).

These traits have been associated with longevity either directly, as part of

known hallmarks of aging, or indirectly, through their e�ect on age-related

diseases.[1, 8] Likewise, when we investigated the genes associated with the

variants in the PRS, we observed an enrichment for mechanisms associated

with the aging individual: chronic low-grade in�ammation, cellular stress,

and a reduced speed of cell-replacement, development, and di�erentiation.[1]

Recently, increased parental lifespan was associated with a lower PRS of

LDL-cholesterol levels, systolic blood pressure, and body mass index.[15] We

previously showed that cognitively healthy centenarians have a signi�cantly

lower PRS of Alzheimer’s Disease (AD) compared to population controls.[29]

The overlap between the variants that contribute to the AD-PRS and our

best longevity-PRS is limited: apart from APOE variants, the longevity-

associated variant rs9665907 is in LD with the known AD-variant rs11218343
(in/near SORL1, R

2
=0.39),[30] and the variant rs6558008 is in low LD with

the known AD-variant rs9331896 (in/near CLU, R
2
=0.05).[31] This suggests

that, in addition to the e�ect of APOE alleles, the SORL1- and CLU -associated

signals may partly overlap in the genetic association of AD and longevity

(in opposite directions). Two other studies investigated the relationship

between longevity and risk alleles for several age-related diseases: one

was able to discriminate between long-lived individuals and controls,[32]

while the other did not �nd signi�cant di�erences between centenarians

and controls.[33] We speculate that the main reason for this discrepancy is

that our PRS was constructed based on the association statistics from a well-

powered GWAS, which was not available when the previous studies were

performed. Additionally, the stricter selection criteria of the centenarians

from the 100-plus Study may have contributed to the discriminative power
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Figure 5.4: Volcano plot of 432 genes associated with the PRS-5 variants and
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ange diamonds refer to 33 genes associated with the previously identi�ed variants.

Annotations are shown for the 15 most signi�cant genes as well as for the 3 most

signi�cant genes that overlap between the two gene sets.

of the PRS.

Across populations, extreme longevity is known to be more prevalent

among females than males, which likely re�ects gender di�erences of envi-

ronmental exposure, disease predisposition, and genetics.[34] In our study,

we found that the e�ect-size of the PRS on male-survival was larger com-
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pared to female-survival, suggesting that males depend more on having

advantageous genetic variants to reach extreme ages than females. In the co-

hort investigated, an important environmental gender-di�erence is smoking

behavior: in accordance with the smoking behaviors in their birth cohort,

76% of the centenarian males had smoked regularly during their lifetime,

compared to only 15% of the females.[35] Biological di�erences may also

play a role: estrogens protect females from cardiovascular diseases during

their fertile period,[34, 36] produce more vigorous cellular and humoral

immune reactions, and are more resistant to infections caused by viruses

and other pathogens.[34] From a genetic perspective, impairments in DNA-

repair mechanisms become more prevalent with increasing ages, but there

are indications that this e�ect starts a decade earlier in males compared to

females.[36] Also, several studies reported that women have longer telomeres

compared to males.[36] Together, these studies suggest that females may be

more inherently predisposed to live longer than males and that di�erential ex-

posure to hazardous environments may lead to selective survival of resilient

males. Although conclusive evidence that explains the gender-di�erences

in longevity is still lacking, these aspects may in part explain our �nding

that males are more dependent on an advantageous genetic background to

reach extreme ages than females. Note that we did not �nd a signi�cant

interaction e�ect between PRS and gender, therefore these �ndings will have

to be replicated in a larger cohort.

5.3.1 Strengths and limitations

Linking variants with genes likely a�ected is di�cult: as such, exploiting

diverse sources of variant annotations, such as predicted variant conse-

quences, eQTLs, and genomic position is essential to pinpoint the genes

likely associated with a variant. We designed a novel framework that al-

lows multiple genes to associate with each variant, in which we consider

the annotation-certainties when performing gene-set enrichment analyses.

A limitation of our analysis is that our cohort of centenarians is relatively

small compared to the sample sizes of previous GWAS. Due to the rarity of

this phenotype in the general population, the collection of large cohorts is

prohibitive.[20] As a consequence of the limited size, we could not perform

exhaustive sex-strati�ed analyses and thus we cannot exclude that we failed

to identify sex-speci�c associations. Centenarians were compared with a

sample of controls combined from di�erent cohorts, yet from the same Dutch

population, which may be considered as a strength of our study. While the
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inclusion of di�erent cohorts with di�erent inclusion criteria had maximized

the available sample size in our study, this could potentially result in con-

founding e�ects. However, we assessed that no signi�cant cohort-speci�c

association or population e�ect a�ected our results, both at the single-variant

and PRS level. We note that our cohort of centenarians was collected in a

speci�c area during a speci�c time such that location- and period-e�ects may

in�uence genetic associations. This may in part challenge the replication

of the current �ndings in long-lived individuals from other populations or

collected at di�erent times.

5.3.2 Conclusions
We showed that a longevity PRS comprising 330 variants is signi�cantly

associated with cognitively healthy aging and with prolonged survival. We

found suggestive evidence that the PRS compensates for the deleterious e�ect

of high-impact APOE-ε4 allele and with a novel approach, we functionally

annotated the variants in this PRS, showing that many of these variants

were previously associated with age-related diseases and with aging-related

cellular mechanisms.
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5.4 Methods
5.4.1 Study population

As cases, we used a sample of 358 participants from the 100-plus Study

cohort.[20] This study includes Dutch-speaking individuals who can provide

o�cial evidence for being aged 100 years or older and self-report to be

cognitively healthy. As controls, we used (i) a sample of 1,779 Dutch older-

adults from the Longitudinal Aging Study of Amsterdam (LASA),[37] (ii) a

sample of 1,206 older-adults with subjective cognitive decline that visited

the memory clinic of the Alzheimer center Amsterdam and SCIENCe project,

who were labeled cognitively normal after extensive examination,[38] (iii)
a sample of 40 healthy controls from the Netherlands Brain Bank,[39] (iv)

a sample of 201 individuals from the twin study,[40] and (v) a sample of 86

older-adults from the 100-plus Study (partners of centenarian’s children).

Individuals with subjective cognitive decline were followed over time in the

SCIENCe project, and only individuals who did not convert to mild-cognitive-

impairment (MCI) or dementia during follow-up were included in this study.

We checked whether the inclusion of controls from cohorts with di�erent

inclusion criteria was problematic in terms of cohort-speci�c associations

both at the single-variant level (Table S10) and at the PRS-level (Figure 5.11).

The Medical Ethics Committee of the Amsterdam UMC (METC) approved all

studies. All participants and/or their legal representatives provided written

informed consent for participation in clinical and genetic studies.

5.4.2 Genotyping and imputation procedures
Genetic variants in our cohort were determined by standard genotyping

or imputation methods and we applied established quality control meth-

ods. All individuals were genotyped using Illumina Global Screening Array

(GSAsharedCUSTOM-20018389-A2). We used high-quality genotyping in

all individuals (individual call-rate >98%, variant call-rate >98%), individuals

with sex mismatches were excluded and departure from Hardy-Weinberg

equilibrium was considered signi�cant at p<1x10
−6

. Genotypes were pre-

pared for imputation using available scripts (HRC-1000G-check-bim.pl) to

compare variant ID, strand, and allele frequencies to the Haplotype Reference

Panel (HRC v1.1, April 2016).[41] All autosomal variants were submitted to

the Sanger imputation server (https://imputation.sanger.ac.uk). The

server uses MACH to phase data and imputation to the reference panel was

performed with PBWT. A total of 3,312 population subjects and 358 cente-

narians passed quality control. Prior to analysis, we excluded individuals of

https://imputation.sanger.ac.uk
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non-European ancestry based on 1000Genomes clustering and individuals

with a family relationship based on identity-by-descent >0.2.[42] This led

to the exclusion of 8 centenarians and 197 controls (non-European) and 7

centenarians and 210 controls (family relations), leaving 2,905 older-adults

and 343 cognitively healthy centenarians for the analyses.

5.4.3 Mapping genetic variants to a�ected genes

We selected 29 genetic variants for which there was evidence of a signi�cant

association with longevity from previous GWAS and candidate-gene studies

(Table S2), and we linked these variants to their likely a�ected genes (variant-

gene mapping). To do so, we combined annotation from CADD (v1.3),[24, 43]

eQTL in blood from GTEx consortium (v8)[25] and positional mapping up to

500 kb from the reported variants (RefSeq build 98).[44] CADD annotation

was used to inspect each variant’s consequences: in the case of coding

variants, we con�dently associated the variant with the corresponding gene.

For non-coding variants, we �rst considered possible eQTLs and in case

these were not available, we included all genes at increasing distance d from

the variant (starting with d ≤ 50kb, up to d ≤ 500kb, increasing by 50kb
until at least one match is found).

5.4.4 Gene-based association

At the gene-level, we combined multiple variants in a gene-based test using

MAGMA (v1.06).[26] As genes, we used those that were associated with

our variant-gene mapping, and as variants, we used those with minor allele

frequency >1% in our population. In MAGMA, we used a �anking window

of 2kb around each gene and as gene model, and adopted the snp-wise

top model (–gene-model snp-wise=top), which is most sensible when only

a small proportion of SNPs in a gene shows association.[26] Associations

were adjusted for population substructure (principal components 1-5) and

association p-values were corrected for multiple tests (FDR, correction for

the number of genes tested). The number of principal components used as

covariates was arbitrarily chosen: given the homogeneous population that

we used in this study, we believe this should account for any major population

e�ects. However, we repeated the main associations of the PRS including

5 additional PCs as covariates (Table S9). Before analyses, we explored

in�ation in MAGMA association statistics: we ran MAGMA with the stated

settings for 5,000 randomly selected genes and compared the observed p-

value distribution with an expected uniform distribution. The deviation
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between the median values of the observed and expected distributions is

indicative of test in�ation: we found that in�ation was 1.1.

5.4.5 Polygenic Risk Scores

We calculated a polygenic risk score (PRS) for each sample in our cohort. As

weights for the PRS, we used variant e�ect sizes (log of odds-ratios) available

in the summary statistics of the GWAS on parental longevity.[15] We decided

not to use weights from a case-control GWAS as the most recent included

our cohort, thus the resulting variant e�ect-sizes would be biased. Due to the

study setting, parental longevity e�ect-sizes are in general smaller than case-

control GWAS of longevity.[14, 15] This would a�ect the odds-ratios (OR) of

our associations, but not the signi�cance, as it would just shift the distribution

of the PRS while keeping the same distance between the groups (older-

adults and centenarians, in our case). It is then the power of the parental

longevity study, due to the large sample size, that determines replicability

and predictability of the PRS.[45] Therefore, we believe that using e�ect-

sizes from a parental longevity study has not impacted our �ndings. The

PRSs were Z-standardized and regressed against case-control status (with

centenarians as cases and older-adults as controls), correcting for population

substructure (PC 1-5). P-values were corrected using False Discovery Rate

(FDR). Resulting OR can be interpreted as OR-di�erence per one standard

deviation increase in the PRS. We calculated a set of di�erent PRSs: �rst, using

the set of 29 previously identi�ed variants; then, we recursively included in

the PRS independent variants that associated sub-signi�cantly with longevity.

The inclusion of variants was based on the reported signi�cance in the GWAS

summary statistics: PRS-8: p<5x10
−8

, PRS-7: p<5x10
−7

, PRS-6: p<5x10
−6

,

PRS-5: p<5x10
−5

, PRS-4: p<5x10
−4

, PRS-3: p<0.005, PRS-2: p<0.05 and PRS-1:

p<0.5. The selection of independent variants to include in each PRS was

performed with LD-based clumping (R
2
<0.001 within 750kb window) using

the genotypes of the European samples from the 1000Genome project (phase

3, N=503).[42] Due to their large e�ect-size, we strati�ed all PRSs by APOE
variants, i.e. we calculated PRSs with and without APOE variants.

5.4.6 Survival analysis

We investigated whether the PRS was predictive for survival in a subset of

the older-adults for which follow-up data were available. A total of 1,620

subjects (mean age 62.7±6.4 , 53% female) were eligible for the survival

analysis. The age at study inclusion was regarded as T1, while the age at
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last visit, death, or loss to follow-up was regarded as T2, with the survival

time calculated as T2-T1. The mean follow-up time was 10.4±6.9 years, and

at the time of analyses 380 individuals had deceased (23%). Survival analysis

was performed implementing left truncation as we anticipated selection bias

at old ages, and using the function Surv(T1, T2, death, type=”counting”) as

implemented in R-package survival. We performed a survival analysis using

the (Z-standardized) PRS without APOE variants with the highest evidence

of association in our cohort (Figure 5.10). Resulting Hazard Ratios (HR)

have to be interpreted with respect to 1 unit increase in the PRS. First, we

used a multivariate Cox regression to investigate the association of the PRS

after correcting for APOE-ε4 status (dichotomized), gender, and population

strati�cation (PC 1-5). For visualization purposes, we split the population

into high-PRS and low-PRS categories based on the median PRS value of

the individuals with age <65 years . We then calculated survival di�erences

between the individuals with low-PRS and those with high-PRS (stratifying for

APOE-ε4 status) in a univariate analysis and displayed survival probabilities

over age with Kaplan-Meier curves. We calculated di�erences in years at

50% survival probability between the PRSs. We tested the interaction e�ect

of (i) PRS and gender and (ii) PRS and APOE-ε4 status on survival by adding

an interaction term in the Cox regression model. To evaluate gender-speci�c

e�ects of the PRS on survival, we repeated the multivariate Cox regression

analyses separately in males and females.

5.4.7 Functional annotation of variants comprising the best PRS

We inspected the functional consequences of the variants included in the

best PRS model. First, we investigated these variants in the GWAS catalog

seeking for previous associations with any trait.[46] Similarly, we looked at

whether the genes associated with these variants were previously reported

to associate with any trait in the GWAS catalog. To do so, we linked variants

to genes as done for the previously identi�ed variants. However, we realized

that allowing multiple genes to associate with a variant could result in an

enrichment bias, as neighboring genes are often functionally related. To

control for this, we implemented sampling techniques (1000 iterations): at

each iteration, we (i) sampled one gene from the pool of genes associated

with each variant (thus allowing only a 1:1 relationship between variants and

genes), and (ii) looked whether the resulting genes were previously reported

in the GWAS catalog. Averaging by the number of iterations, we obtained

an unbiased estimation of the overlap of the PRS-associated genes with each
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trait in the GWAS catalog. Finally, we investigated the molecular pathways

enriched in the PRS-associated genes. Again, we used sampling techniques:

at each iteration, we (i) sampled one gene from the pool of genes associated

with each variant and (ii) performed gene-set overlap analysis with the re-

sulting list of genes. Gene-set enrichment analysis was performed with GOSt
function as implemented in R-package gpro�ler2, with Biological Processes

(GO:BP) as background, excluding electronic annotations and correcting

p-values using FDR.[47] Finally, we averaged p-values for each enriched

term over the iterations (N=1,000). To reduce the complexity of the resulting

enriched biological processes, we exploited the tool REVIGO.[48] This tool

summarizes enrichment results by removing redundant terms based on a

semantic similarity measure, and displays remaining terms in an embedded

space via eigenvalue decomposition of the pairwise distance matrix. We

chose Lin as semantic distance measure and allowed small similarity among

terms to be clustered.[49] Last, we compared results from our sampling-based

approach with a traditional gene-set enrichment approach, by applying both

methods to the full set of genes associated with all variants.

5.4.8 Gene expression of longevity-associated genes
We investigated the expression of the longevity-associated genes using the

publicly available dataset GSE11882, which comprises RNA-expression from

the hippocampus region in the brain. We selected samples reported to be

cognitively healthy and aged 30-65 years (young, N=13) and samples aged 80

years or more (old, N=16). We performed di�erential analysis (old vs. young)

on (i) the set of genes associated with the previously reported variants, and

(ii) the set of PRS-associated genes. Sample selection and di�erential analysis

were performed using the GEO2R platform.[50] We corrected p-values for

multiple tests (FDR) and displayed results with Volcano plot.

5.4.9 Implementation
Quality control of genotype data, population strati�cation analysis, related-

ness analysis and association analysis were performed with PLINK (v2.00a2LM
and v1.90b4.6), whereas PRS analysis,[51] functional enrichment analysis,

and plots were performed with a mixture of homemade R (v3.5.2), bash and

Python (v2.7.14) scripts. All scripts are available at https://github.com/

TesiNicco/CentenAssoc. Variant-gene annotation and gene-set enrich-

ment analysis are implemented in a package available at https://github.

com/TesiNicco/AnnotateMe and can be run at https://snpxplorer.net.

https://github.com/TesiNicco/CentenAssoc
https://github.com/TesiNicco/CentenAssoc
https://github.com/TesiNicco/AnnotateMe
https://github.com/TesiNicco/AnnotateMe
https://snpxplorer.net
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5.7 Supplementary Figures

Figure 5.5: Variant-gene mapping for the 29 previously identi�ed variants.
A. The sources used for the annotation of each variant to the likely a�ected genes.

Coding: variants that code for a change in the amino-acid sequence of the resulting

protein; eQTL: variants associated with RNA expression changes in blood from

GTEx consortium; Position: variants that are intronic or intergenic. B. Histogram of

the number of genes associated with each variant. C. Distribution of genes across the

chromosomes. In total, we mapped 29 variants to 65 unique genes. D. Distribution

of the previously identi�ed variants along the genome and each variant’s minor

allele frequency and annotation.
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Figure 5.6: Regional plots of the genetic variants contributing to the gene-
based tests that were signi�cantly associated with cognitively healthy ag-
ing, in our cohort. A. Centered on the CDKN2B gene. Blue diamonds represent

the variants (N=11) that were included in the gene-based test as performed within

MAGMA framework. B. Centered on the APOE gene. Blue diamonds represent

the variants (N=13) included in the gene-based test as performed within MAGMA

framework. In both �gures: genomic positions are plotted on the x-axis (with re-

spect to GRCh37); recombination rates are extracted from HapMap II; RefSeq genes

with the largest number of exons are displayed. The dashed blue line indicates the

threshold commonly adopted in GWAS for genome-wide signi�cance.
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Figure 5.7: Density distribution of the PRS-5 without APOE variants in pop-
ulation controls and cognitively healthy centenarians. The �gure shows the

distribution density of the PRS-5 including 330 variants (excluding APOE variants).

PRS was Z-standardized.

Figure 5.8: E�ect of PRS-5 on survival. Forest plot of the hazard ratios for PRS-5

in males (N=753), females (N=867), and combined (N=1620). The p-values refer to

the association of PRS-5 in the multivariate Cox regression model while adjusting

for gender (for the combined analysis only), APOE-ε4 carriership (dichotomized)

and population substructure (PCs 1-5).
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Figure 5.9: Variant-gene mapping for the variants included in PRS-5. A. The

resource used for the annotation of each variant. Coding: variants that code for a

change in the amino-acid sequence of the resulting protein; eQTL: variants associated

with RNA expression changes in blood from GTEx consortium; Position: variants

that are intronic or intergenic. B. Histogram of the number of genes associated

with each variant. C. Distribution of genes across the chromosomes. In total, we

mapped 330 variants to 471 unique genes. D. Distribution of variants included in

PRS-5 along the genome and each variant’s minor allele frequency and annotation

source.
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Figure 5.10: Distribution of PRS-5 in the subset of population controls used
in the survival analysis. The �gure shows the distribution of PRS-5 in the subset

of controls (N=1630) from the Longitudinal Aging Study of Amsterdam for which

follow-up data was available, that we used for the survival analysis. PRS were

Z-standardized (µ=0, σ=1).
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Figure 5.11: Figure S7: Distribution of PRS-5 comprising 330 genetic variants
across the di�erent cohorts of older-adults that were used as controls. The

�gure shows the distribution of the PRS-5 including (plot above) and excluding

(plot below) APOE variants in individuals (i) from the Longitudinal Aging Study of

Amsterdam (LASA, N=1,648), (ii) with subjective cognitive decline that were labeled

cognitively healthy after cognitive examination (SCD, N=1,038), (iii) cognitively

healthy from the Netherlands Brain Bank (NBB, N=37), (iv) cognitively healthy from

the twin study of Amsterdam (Twin, N=100) and (v) the partners of the centenarian’s

children from the 100-plus Study (100-plus, N=82). We tested for di�erences in PRS

across all cohorts with an anova test, and report the relative p-values in each plot.
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5.8 Supplementary Tables
Supplementary Tables can be accessed by scanning the following code or

accessing the journal’s website here.

https://academic.oup.com/biomedgerontology/advance-article/doi/10.1093/gerona/glaa289/5996044#supplementary-data
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Abstract

Genetic discoveries of Alzheimer’s disease are the drivers of our

understanding, and together with polygenetic risk strati�cation can

contribute towards planning of feasible and e�cient preventive and

curative clinical trials. We �rst perform a large genetic association

study by merging all available case-control datasets and by-proxy

study results (discovery n=409,435 and validation size n=58,190). Here,

we add six variants associated with Alzheimer’s disease risk (near

APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in

the SHARPIN gene). Assessment of the polygenic risk score and

stratifying by APOE reveal a 4 to 5.5 years di�erence in median age

at onset of Alzheimer’s disease patients in APOE ε4 carriers. Because

of this study, the underlying mechanisms of APP can be studied to

re�ne the amyloid cascade and the polygenic risk score provides a

tool to select individuals at high risk of Alzheimer’s disease.
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6.1 Background
Thus far, multiple loci associated with Alzheimer’s disease (AD) have been de-

scribed next to causal mutations in two subunits of γ-secretases, membrane-

embedded aspartyl complexes (PSEN1, PSEN2 genes), and the gene encoding

one target protein of these proteases, the amyloid precursor protein gene

(APP). The most prominent locus, APOE, was detected almost 30 years ago

using linkage techniques.[1] In addition, genome-wide association studies

(GWAS) of AD case-control datasets and by-proxy AD case-control studies

have identi�ed 30 genomic loci that modify the risk of AD.[2, 3, 4, 5, 6] These

signals account for 31% of the genetic variance of AD, leaving most of the

genetic risk as yet uncharacterized.[7] Further disentangling the genetic

constellation of common genetic variations underlying AD can drive our

biological insights of AD and can point toward novel drug targets. There are

over 50 million people living with dementia and the global cost of dementia is

well above 1 trillion US$.[8] This means there is a medical and economical ur-

gency to e�ciently test interventions that are under development. Therefore,

to increase power and reduce duration of trials, pre-symptomatic patients

that are at high genetic risk of disease are increasingly developed.[9] How-

ever, only carriers of causal mutations (APP, PSEN1, PSEN2) and the APOE ε4

allele are considered high risk, while other common and rare genetic variants

are ignored.[10] Despite that, the combined e�ects of all currently known

variants in a polygenic risk score (PRS) is associated with the conversion

of mild cognitive impairment (MCI) to AD,[11, 12], the neuropathological

hallmarks of AD, age at onset (AAO) of disease [13, 14, 15, 16] and lifetime

risk of AD.[17] Here, we aimed to comprehend and expand the knowledge of

the genetic landscape underlying AD and provide additional evidence that

a PRS of variants can be a robust tool to select high risk individuals with

an earlier age at onset. We �rst performed a meta-GWAS integrating all

currently published GWAS case-control data, by-proxy case-control data, and

the data from the Genome Research at Fundació ACE (GR@ACE) study.[18]

We con�rmed the novel observed associations in a large independent repli-

cation study. Then, we constructed an update of the PRS and tested whether

the e�ects of the PRS were in�uenced by diagnostic certainty, sex and AAO

groups. Lastly, we tested whether the PRS could be used to identify individu-

als at the highest odds of having AD and we compared age at onset of the

AD cases.
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Figure 6.1: Flow chart of analysis steps. Discovery meta-analysis in GR@ACE,

IGAP stage 1+2 and UKBiobank followed by a replication in 16 independent cohorts.

The genome-wide signi�cant signals found in meta-GWAS were used to perform a

Polygenic Risk Score in a clinical and pathological AD dataset. See Supplementary

Methods for more information about the cohorts included and methods to the PRS

generation.
a
, extended dataset (S.Moreno-Grau et al. 2019)[18];

b
, stage I + stage

II (Kunkle et al. 2019)[19];
c
, by proxy AD: meta-analysis of maternal and paternal

history of dementia (Marioni et al. 2018)[20];
d
, extra and independent GR@ACE

dataset incorporated only for replication purposes;
e
, pathologically con�rmed AD

cases;
f

, AD cases diagnosed based on clinical criteria;
g
, controls participants aged

55 years and younger. N=, total of individuals within speci�ed data.

6.2 Results

6.2.1 Meta-GWAS of AD

We combined data from three AD GWASs: the summary statistics calculated

from the GR@ACE case-control study (6,331 AD cases and 6,055 controls),[18]

the IGAP case-control study (up to 30,344 AD cases and 52,427 controls) [19]

and the UKB AD-by-proxy case-control study (27,696 cases of maternal AD

with 260,980 controls and 14,338 cases of paternal AD with 245,941 controls,

Figure 6.1, Supplementary Table 1).[20] Although we observed in�ation in

the resulting summary statistics (λ=1.08; see Figure 6.7d), it was not driven

by an un-modeled population structure (LD score regression intercept=1.04).

The full details of the studies are described in the supplementary methods.

After study-speci�c variant �ltering and quality-control procedures, we

performed a �xed-e�ects inverse-variance-weighted meta-analysis on the
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summary statistics of the three studies.[21] Using this strategy, we identi�ed

a genome-wide signi�cant (GWS) association (p<5x10
−8

) for 36 independent

genetic variants in 35 genomic regions (the APOE region contains signals

for ε4 and ε2). As a sensitivity analysis, we removed the AD-by-proxy study

and compared the resulted e�ect estimates with and without this dataset. We

found a high correlation between the e�ect estimates from the case-control

and by-proxy approaches for the signi�cant loci (R2 = 0.994, p = 8.1x10
−37

;

Figure 6.7e). Four genomic regions were not previously associated with AD

(see Manhattan Plot, Figure 6.2).

Figure 6.2: Manhattan plot of the overall GWAS meta-analysis for AD risk
(N = 467,623). Genome-wide associations with Alzheimer’s disease highlighting

the novel loci associated with AD (PRKD3/NDUFAF7, SHARPIN, CHRNE, PLCG2 and

APP).

Next, we aimed at replicating the associated loci in 16 cohorts (19,087

AD cases and 39,101 controls in total), many of them collected and analyzed

by the European Alzheimer’s Disease Biobank (JPND-EADB) project. We

tested all variants with suggestive association (p<10
−5

) located within a

200Kb region from the sentinel SNP. Overall, 384 variants were tested in

the replication datasets (Supplementary Table 2). Discovery and replication

were combined, and we identi�ed novel associations in six variants com-

prising �ve genomic loci annotated using FUMA (Table 6.1, Figure 6.3D-F,

Figure 6.8 and Supplementary Results).[22] In APP, we identi�ed a common

(MAF = 0.46) intronic variant associated with a reduced risk of AD (rs2154481,

OR = 0.95 [0.93-0.96], p= 9.3x10
−10

, Figure 6.3F). In SHARPIN (SHANK As-
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sociated RH Domain Interactor) gene, we found two missense mutations

(rs34173062/p.Ser17Phe and rs34674752/p.Pro294Ser) that are in linkage equi-

librium (R2=1.3x10
−6

, D’=0.014, p = 0.96). Both missense variants increased

AD risk (p.Ser17Phe, MAF = 0.085, OR = 1.14 [1.10-1.18], p = 9.6x10
−13

and

p.Pro294Ser, MAF = 0.052, OR = 1.13 [1.09-1.18], p = 1.0x10
−9

, Figure 6.3A-B).

A variant close to the genes PRKD3 and NDUFAF7 (rs876461, MAF = 0.143)

emerged as the most signi�cant variant in the region after the combined

analysis (OR = 1.07 [1.05-1.09], p = 1.3x10
−9

, Figure 6.3C). In the 3’-UTR re-

gion of CHRNE (Cholinergic Receptor Nicotinic Epsilon Subunit), rs72835061
(MAF = 0.085) was associated with a 1.09-fold increased risk of AD (95% CI
[1.06-1.11], p = 1.5x10

−10
, Figure 6.3E). Our analysis also strengthened the

evidence of association with AD for three additional genomic loci including

a novel association with a variant in PLCG2 (rs3935877, MAF= 0.13, OR =

0.92 [0.90-0.95], p = 6.9x10
−9

, Figure 6.3D), and con�rmed another common

variant in PLCG2, a stop gain mutation in IL34 and a variant near HS3ST1
(Table 6.1, Figure 6.9 and Supplementary Tables 2-3). We were not able to

replicate two loci (ELK2AP and SPPL2A regions) that showed suggestive

association with AD (p<1x10
−7

in discovery).

6.2.2 Polygenic Risk Scores

In order to assess the robustness and combined e�ect of the new genetic

landscape of AD (Figure 6.4, Supplementary Table 4), we constructed a

weighted PRS based on the 39 genetic variants (excluding APOE genotypes)

that showed GWS evidence of association with AD (see section 6.4, Figure 6.5

and Supplementary Table 5). We tested if the association of the PRS with AD

is independent of clinically important factors that are considered in the se-

lection of individuals for clinical trials. First, we showed that the association

of the PRS with clinically diagnosed AD cases is similar to the association

with pathologically con�rmed AD (OR = 1.30 vs. 1.38, per 1-SD increase in

the PRS). In this setting, adding variants below the GWS threshold did not

lead to a more signi�cant association of the PRS with AD (Figure 6.5A). Next,

we tested whether the PRS was associated with AD in the presence of con-

comitant brain pathologies (besides AD). Among our autopsy-con�rmed AD

patients (n=332), 84% had at least one concomitant pathology, and the PRS

was associated with AD in the presence of all tested concomitant pathologies

(Figure 6.5B). Moreover, the patients often had more than one concomitant

pathology (48.8%), but no di�erence was observed in the e�ect estimate

of the PRS when more than one pathology was present (Figure 6.5B). Last,
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we investigated the e�ect of sex and age at onset (AAO, Figure 6.5C). Our

analysis revealed that the e�ect of the PRS was the same in both sexes (Fig-

ure 6.5C) and was consistent with both early-onset (onset before 65 years;

OR = 1.58, 95% CI [1.22–2.05], p = 5.8x10
−4

) as well as with late-onset AD

(onset later than 85 years; OR = 1.29, 95% CI [1.10–1.51], p = 1.5x10
−3

). PRSs

has the potential to early identify subjects at risk of complex diseases.[23]

To identify people at the highest genetic risk of AD based on the PRS, we

used the validated 39-variants PRS in the large GR@ACE dataset. The PRS

was associated with a 1.27-fold (95% CI [1.23–1.32]) increased risk for every

standard deviation increase in the PRS (p = 7.3x10
−39

) and with a gradual

risk increase when we strati�ed the dataset into 2% percentiles of the PRS

(Figure 6.6A, Supplementary Table 6). Next, we strati�ed the dataset in APOE
genotype risk groups. The PRS percentiles were associated with AD within

the APOE genotype groups (Figure 6.6B and Supplementary Table 7). Finally,

we compared the risk extremes and found a 16.2-fold (95% CI [8.84–29.5],

p = 1.5x10
−19

) increased risk for the highest-PRS group (APOE ε4ε4) com-

pared with the lowest-PRS group (APOE ε2ε2/ε2ε3; Supplementary Table 8).

When we compared the median AAO in AD patients in these extreme risk

groups we found a 9-year di�erence in the median age (pWilcoxon = 1.7x10
−6

)

(Figure 6.6C). Lastly, we studied the e�ects on AAO of the PRS in the APOE
genotype groups. The PRS di�erentiated AAO only within APOE ε4 carriers.

In APOE ε4 heterozygotes the PRS determined a 4-year di�erence in median

AAO and in APOE ε4 homozygotes (pWilcoxon = 6.9x10
−5

), where the PRS

determined a median AAO di�erence of 5.5 years (pWilcoxon = 4.6x10
−5

). For

the selection of high-risk individuals, it is important to note that we found

no di�erence in the odds and AAO for AD for APOE ε4 heterozygotes with

the highest PRS compared to APOE ε4 homozygotes with the lowest PRS.

The Cox regression also showed an impact of APOE on AAO, mainly on

APOE ε4ε4 (signi�cant APOE-PRS interaction (p = 0.021), Figure 6.6).
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6.3 Discussion

This work adds on the ongoing global e�ort to identify genetic variants

associated with AD (Figure 6.4). In the present work, we reported on the

largest GWAS for AD risk to date, comprising genetic information of 467,623

individuals of European ancestry. We identi�ed six novel variants that were

not previously associated with the risk of AD and constructed a robust PRS

for AD demonstrating its potential value for selecting subjects at risk of

AD, especially within APOE ε4 carriers. This PRS was based on European

ancestries and may or may not generalize to other ancestries. Validation

in other populations will be required. We also acknowledge that controls

included in GR@ACE are younger than cases and some of the controls might

still develop AD later in life. This fact does not invalidate the analysis al-

though reported estimates must be considered conservative. The di�erences

in risk and AAO determined by the PRS of AD are relevant for design clinical

trials that over-represent APOE ε4 carriers, as APOE ε4 heterozygous with

highest PRS values have a similar risk and AAO to APOE ε4 homozygotes

(Figure 6.6b). These represents ∼1% of our control population, which is the

same percentage as all APOE ε4 homozygotes. A trial that aims to include

APOE ε4 homozygotes, could consider widening the selection criteria and

in this way hasten the enrollment process. Also, our PRS could aid at the

interpretation of the results of clinical trials, as it determines a relevant

proportion of the AAO, which could either mimic or obscure a treatment

e�ect.

The most interesting �nding from our GWAS is the discovery of a com-

mon protective (MAF (C-allele) = 0.483) intronic variant in the APP gene.

Our results directly support APP production or processing as a causal path-

way not only in familial AD but in common sporadic AD. The SNP is in

a DNase hypersensitive area of 295 bp (chr21:27473781-27474075) possibly

involved in the transcriptional regulation of the APP gene. rs2154481 is an

eQTL for the APP mRNA and an antisense transcript of the APP gene named

AP001439.2 in public eQTL databases (Figure 6.10).[26] Functional evidence

supports a modi�ed APP transcription as an LD block of 13 SNPs within

the APP locus (including rs2154481) increased the TFCP2 transcription factor

avidity to its binding site and increased the enhancer activity of this speci�c

intronic region.[27] Based on this evidence, we can postulate that a life-long

slightly higher APP gene expression protects the brain from AD insults. Still,

this seems counterintuitive as duplications of the gene lead to early-onset

AD.[28] A U-shaped e�ect, or hormesis e�ect of APP might help explain
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Figure 6.5: Polygenic Risk Scores for AD. A. The 39-SNP PRS association with

clinical (OR = 1.38, per 1-SD increase in the PRS, 95% CI [1.21-1.58], p = 1.5x10
−6

) and

pathologically con�rmed AD cases (OR = 1.30, 95% CI [1.18-1.44], p = 1.1x10
−7

). B.
PRS association with AD in the presence of concomitant brain pathologies (besides

AD). C. PRS association with AD strati�ed by sex and AAO. A similar association of

the PRS with AD was found in both sexes (ORmales = 1.33, [1.13-1.56], p = 5.8x10
−4

vs. ORf emales = 1.32, [1.19-1.47], p = 2.5x10
−7

).

our observations and it might also �t the accelerated cognitive deterioration

observed in AD patients treated with β-secretase inhibitors as these reduce

β-amyloid in their brain.[29, 30] An alternative hypothesis is that mecha-

nisms underlying the variant are related to the overexpression of protective

fragments of the APP protein.[31] Disentangling the molecular mechanism
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of our �nding will help re�ne and steer the amyloid hypothesis.

Additionally, other three variants identi�ed are altering protein sequence

or a�ecting regulatory motifs. Two independent missense mutations in

SHARPIN increased the AD risk. SHARPIN was previously proposed as

an AD candidate gene, and functional analysis of a rare missense variant

(NM_030974.3:p.Gly186Arg) resulted in the aberrant cellular localization of

the variant protein and attenuated the activation of NF-κB, a central me-

diator of in�ammatory and immune responses.[32, 33] Functional analysis

of the two identi�ed missense variants will show if the e�ect on immune

reaction in AD is similar. The variant located in the CHRNE which encodes a

subunit of the cholinergic receptor (AChR) is a strong modulator of CHRNE
expression. The same allele that increases AD risk increases the expression

in the brain and other tissues according to GTEx (p = 2.1x10
−13

) (Figure 6.11).

The detection of a potential hypermorph allele linked to AD risk and a�ect-

ing cholinergic function could reintroduce this neurotransmitter pathway

into the search for preventative strategies. Further functional studies are

needed to consolidate this hypothesis. Altogether, we described six novel

loci associated with sporadic AD. These signals reinforce that AD is a com-

plex disease in which amyloid processing and immune response play key

roles. We add to the growing body of evidence that the polygenic scores

of all genetic loci to date, in combination with APOE genotypes, are robust

tools that are associated with AD and its AAO. These properties make PRS

promising in selecting individuals at risk to apply preventative therapeutic

strategies.
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6.4 Methods
6.4.1 Samples and cohorts

Participants in this study were obtained from multiple sources, including raw

data from case-control samples collected by GR@ACE/DEGESCO, summary

statistics data from the case-control samples in the IGAP and the summary

statistics of AD-by-proxy phenotype from the UK Biobank (see Supplemen-

tary Methods). An additional case-control samples from 16 independent

cohorts (19,087 AD cases and 39,101 controls) was used for replication,

largely collected and analyzed by the European Alzheimer’s Disease Biobank

(JPND-EADB) project. Full descriptions of the samples and their respective

phenotyping and genotyping procedures are provided in the Supplementary

Methods.

6.4.2 Meta-GWAS of AD
After study-speci�c variant �ltering and quality-control procedures, we

performed a �xed-e�ects inverse-variance-weighted meta-analysis on the

discovery and follow-up stages.[21] To determine the lead SNPs (those with

the strongest association per genomic region), we performed clumping on

SNPs with a genome-wide signi�cant p-value (p<5x10
−8

) (PLINK v1.90, max-

imal linkage disequilibrium (LD) with R2 <0.001 and physical distance of

250Kb). In the APOE region, we only considered the APOE ε4 (rs429358)

and APOE ε2 (rs7412) SNPs.[34] LD information was calculated using the

GR@ACE imputed genotypes as a reference. Polygenicity and confounding

biases, such as cryptic relatedness and population strati�cation, can yield

an in�ated distribution of test statistics in GWAS. To distinguish between

in�ation from a true polygenic signal and bias we quanti�ed the contribution

of each by examining the relationship between test statistics and linkage dise-

quilibrium (LD) using the LD Score regression intercept (LDSC software).[35]

Chromosomal regions associated with AD in previous studies were excluded

from follow-up.[3, 19, 25] We tested all variants with suggestive associa-

tion (p<10
−5

) located in proximity (200 Kb) of genomic regions selected

for follow-up to allow for the potential re�nement of the top associated

variant. Conditional analyses were performed in regions where multiple

variants were associated with AD using logistic regression models, adjusting

for the genetic variants in the region. Regional plots were generated with a

mixture of homemade Python (v2.7) and R (v3.6.0) scripts. Brie�y, given an

input variant, we calculated the LD between the input variant and all the

surrounding variants within a window of length de�ned by the user. The LD
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was calculated in the 1000Genomes samples of European ancestry. We used

gene positions from RefSeq (release 93); in the case of multiple gene models

for a given gene, we reported the model with the largest number of exons.

We used recombination rates from HapMap II and chromatin states from

ENCODE/Broad (15 states were grouped to highlight the predicted functional

elements). As a reference genome, we used GRCh37. Quantile-quantile (QQ)

plots, Manhattan plots, and the exploration of genomic in�ation factors were

performed using the R package qqman.

6.4.3 Polygenic Risk Score

We calculated a weighted individual PRS based on the 39 genetic variants that

showed genome-wide signi�cant (GWS) evidence of association with AD in

the present study, excluding APOE to check the impact of PRS modulating

APOE risk (Table 6.1 and Supplementary Table 3). The selected variants were

directly genotyped or imputed with high quality (median imputation score

R2 = 0.93). The PRSs were generated by multiplying the genotype dosage of

each risk allele for each variant by its respective weight and then summing

across all variants. We weighted this by the e�ect size from previous IGAP

studies: Kunkle et al. (36 variants),[19] Sims et al. (2 variants),[6] Jun et al.
(MAPT locus),[24] Supplementary Table 5. The newly generated PRS was

validated using logistic regression adjusted by four principal components

in a sample of 676 AD cases diagnosed based on clinical criteria and 332

pathologically con�rmed AD cases from the European Alzheimer’s Disease

Biobank-Fundació ACE/Barcelona Brain Bank dataset (EADB-F.ACE/BBB,

Supplementary Information). This dataset was not used in prior genetic

studies. In this dataset, all pathologically con�rmed cases were scored for the

presence or absence of concomitant pathologies. In all analyses, we compared

the AD patients to the same control dataset (N=1,386). We performed analyses

to test the robustness of the PRS. We tested the e�ect of adding variants below

the genome-wide signi�cance threshold using a pruning and thresholding

approach. For this, we used the summary statistics of the IGAP study,[19]

and we selected independent variants using the clump_data() function from

the TwoSampleMR R-package (v0.4.25). We used strict settings for clumping

(R2 = 0.001 and window = 1 MB) and increasing p-value thresholds (>1x10
−7

,

>1x10
−6

, >1x10
−5

, >1x10
−4

, >1x10
−3

, >1x10
−2

). We tested the association

of the results with clinically diagnosed and pathologically con�rmed AD

patients. To evaluate the e�ect of diagnostic certainty, we tested whether

the PRS was di�erent between the two patient groups. For the PRS with 39
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genome-wide signi�cant variants, we tested whether the PRS had sex-speci�c

e�ects, whether it resulted in di�erent age-of-onset groups of AD, and the

e�ect of the PRS in the presence of concomitant brain pathologies. Risk

strati�cation of the validated PRSs. We searched for the groups at the highest

risk of AD in the GR@ACE dataset (6,331 AD cases and 6,055 controls). We

strati�ed the population into PRS percentiles, taking into account survival

bias anticipated at old age.[17] To eliminate selection bias, we calculated the

boundaries of the percentiles in the control participants aged 55 years and

younger (N=3,546). Based on the boundaries from this population, the rest

of the controls and all AD cases were then assigned into their appropriate

percentiles. We �rst explored risk strati�cation using only the PRSs. For

this, we split the PRSs into 50 groups (2 percentiles) and compared all groups

with that which had the lowest PRS. Second, we explored risk strati�cation

considering both the APOE genotypes and the PRSs. The APOE genotypes

were pooled in the analyses as APOE ε2ε2/ε2ε3 (N=998, split into 7 PRS

groups), APOE ε3ε3 (N=7,611, split into 25 PRS groups), APOE ε2ε4/ε3ε4

(N=3,399, split into 15 PRS groups) and APOE ε4ε4 (N=382, split into 3 PRS

groups). We studied the e�ect of PRS across groups of individuals strati�ed

by the APOE genotypes with the lowest PRS group (APOE as the reference

group using logistic regression models adjusted for four population ancestry

components). Finally, we compared the median age at onset using a Wilcoxon

test. We implemented a Cox regression model on the GR@ACE/DEGESCO

dataset case-only adjusted for covariates as APOE group, the interaction

between the PRS and APOE and four population ancestry components. All

analyses were done in R (v3.4.2).

6.4.4 Functional annotation

We used Functional Mapping and Annotation of Genome-Wide Associa-

tion Studies (FUMA, v1.3.4c) to interpret SNP-trait associations (see Supple-

mentary Methods).[22] FUMA is an online platform that annotates GWAS

�ndings and prioritizes the most likely causal SNPs and genes using infor-

mation from 18 biological data repositories and tools. As input, we used

the summary statistics of our meta-GWAS. Gene prioritization is based on a

combination of positional mapping, expression quantitative trait loci (eQTL)

mapping, and chromatin interaction mapping. Functional annotation was

performed by applying a methodology similar to that described by Jansen et
al.[25] We referred to the original publication for details on the methods and

repositories of FUMA.[22]
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6.4.5 Data availability
Summary statistics will be made available for download upon publication

(www.niagads.org).
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6.7 Supplementary Figures

Figure 6.7: Genome-wide association study. a-c, Principal component analysis

and QQ-plot for the GR@ACE dataset. d, QQplot Discovery meta-analysis.e, Cor-

relation between the e�ect estimates from the AD case-control and AD by proxy

approach for the signi�cant loci. We compared the results obtained to a second

meta-analysis using only the case-control datasets (IGAP Stages 1–2) and GR@ACE

datasets as a sensitivity analysis to identify false negative results given possible

dilution by the by- proxy approach in the UK Biobank (Supplementary Data 3). The

meta-analysis, including the by-proxy summary statistics, identi�ed 11 additional

loci reaching genome-wide signi�cance with respect to case-control-only results.

The incorporation of by-proxy summary statistics did not show an association in

two previously reported AD loci (rs7185636-IQCK and rs386572859-MAPT ) by the

IGAP consortium and replicated in the GR@ACE dataset (OR = 0.93[0.90-0.95], p =

4.5x10
−8

and OR = 0.81[0.75-0.87], p = 7.9x10
−9

, respectively).
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Figure 6.8: Forest plots for the six novel signals identi�ed in overall meta-
analysis. See sample size in Supplementary Data 1. Data are presented as Odds

Ratio (95% CI).
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Figure 6.9: LocusZoom and forest plots: strengthened evidence of associa-
tion with AD for three additional genomic loci. a, HS3ST1 loci. b, IL34 loci

and c, PLCG2 loci. Data for the forest plots are presented as Odds Ratio (95% CI).

The �rst was rs4351014 with AD (combined OR = 0.94 [0.92-0.95], p = 9.2x10
−12

).

This variant has been previously linked to HS3ST1. The second was a stop-codon

mutation (rs4985556, Tyr213Ter, MAF = 0.111) in the interleukin 34 (IL34) gene that

was previously reported in a by-proxy approach (combined OR = 1.08 [1.06-1.11], p
= 3.9x10

−10
). The third genomic region contains the PLCG2 gene, which has been

associated with AD twice before (the rare missense variant p.P522R in the PLCG2
gene and rs12444183 near the promotor region of PLCG2). After the combination

of discovery and follow-up, a third independent association signal emerged in the

PLCG2 region (rs3935877, e�ect allele frequency = 0.868, OR = 0.92 [0.90-0.95], p
= 6.9x10

−9
). We also strengthened the association of PLCG2-rs12444183 with AD

(MAF = 0.407, combined OR = 0.95 [0.93-0.96], p = 6.8x10
−12

). Conditional analyses

in the PLCG2 region showed that the association signals of all three variants are

independent. A conditional analysis on the nearby SCIMP locus (333 Kb) (Supple-

mentary Data 14) showed similar e�ects after adjustment for SCIMP, in line with

the fact that the two independent signals are in weak LD (R2
= 0.139, D’ = 0.446).
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Figure 6.10: Functional analysis. a Diagram of functional interpretation by 4

FUMA strategies. To link the novel variants to speci�c genes and functional motifs

in their genomic regions, we applied di�erent strategies implemented on the FUMA

platform. FUMA helps to generate hypotheses that are testable in functional ex-

periments aimed at proving causal relations. The genes APP, IL34, CHRNE, PLCG2,
and SHARPIN were the most likely candidate genes in the regions as they were

implicated in at least three mapping strategies (Supplementary Data 15-18). b, Dif-

ferential tissue expression for APP eQTL according to GTEx. Data are presented

as Normalized e�ect size (NES) with 95% CI. c, Di�erential expression of lncAPP

and mRNA in AD cases and controls (n=34 lncAPP and n=31 mRNA biologically

independent samples). No signi�cant di�erences were found between the total ex-

pression of the lncAPP (AP001439.2) and mRNA expression in the brain case/control

samples. d, Di�erential expression of lncAPP and mRNA strati�ed by genotype. The

allelic frequency was as expected (MAF = 0.41), as well as the eQTL e�ect for mRNA

(CC>TC>TT) and lncAPP (CC<TC<TT) according to GTEx. e, Expression of lncAPP

and mRNA strati�ed by rs2154481 allele C carriers or non-carriers in AD cases and

controls respectively. Interestingly, we saw an increase in the expression of the

lncAPP associated with the T allele that seems more exacerbated in the patients than

in the controls. If so, the protective C allele (rs2154481) would also be associated

with a decrease in the expression of the lncAPP, thus being able to modify the �nal

expression of APP. In c-e, data are represented as boxplots where the middle line is

the median, the lower and upper hinges correspond to the �rst and third quartiles,

the whiskers extend to the hinge to the inter-quartile range (IQR), while data beyond

the end of the whiskers are outlying points that are plotted individually according

to the manual of ggplot2 package in R.
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Figure 6.11: Expression for CHRNE eQTL. a, Di�erential tissue expression for

CHRNE eQTL according to GTEX. Data are presented as Normalized e�ect size (NES)

with 95% CI. b-c, Expression of the CHRNE transcript in the brain according to

BrainSeq and GTEx respectively. Data are represented as boxplots where the middle

line is the median, the lower and upper hinges correspond to the �rst and third

quartiles, the whiskers extend to the hinge to the inter-quartile range (IQR), while

data beyond the end of the whiskers are outlying points that are plotted individually

according to the manual of ggplot2 package in R
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6.8 Supplementary Tables
Supplementary Tables and Supplementary Information can be accessed by

scanning the following code or accessing the journal’s website here.

https://www.nature.com/articles/s41467-021-22491-8#Sec15
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Abstract

Human longevity is heritable, but genome-wide association (GWA)

studies have had limited success. Here, we perform two meta-analyses

of GWA studies of a rigorous longevity phenotype de�nition includ-

ing 11,262/3,484 cases surviving at or beyond the age corresponding

to the 90
th

/99
th

survival percentile, respectively, and 25,483 controls

whose age at death or at last contact was at or below the age corre-

sponding to the 60
th

survival percentile. Consistent with previous

reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower

odds of surviving to the 90
th

and 99
th

percentile age, while rs7412
(ApoE ε2) shows the opposite. Moreover, rs7676745, located near

GPR78, associates with lower odds of surviving to the 90
th

percentile

age. Gene-level association analysis reveals a role for tissue-speci�c

expression of multiple genes in longevity. Finally, genetic correlation

of the longevity GWA results with that of several disease-related phe-

notypes points to a shared genetic architecture between health and

longevity.
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7.1 Background

The average human life expectancy has been increasing for centuries.[1]

Based on twin studies, the heritability of human lifespan has been estimated

to be ∼25%, although this estimate di�ers among studies.[2] On the other

hand, the heritability of lifespan based on the correlation of the mid-parent

(i.e., the average of the father and mother) and o�spring di�erence between

age at death and expected lifespan was estimated to be 12%.[3] A recent study

has indicated that the di�erent heritability estimates may be in�ated due

to assortative mating, leaving a true heritability that is below 10%.[4] The

heritability of lifespan, estimated using the sibling relative risk, increases

with age and is assumed to be enriched in long-lived families, particularly

when belonging to the 10% longest-lived of their generation.[5, 2] To identify

genetic associations with human lifespan, several genome-wide association

(GWA) studies have been performed.[6, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19] These studies have used a discrete (i.e., older cases versus younger

controls) or a continuous phenotype (such as age at death of individuals

or their parents). The selection of cases for the studies using a discrete

longevity phenotype has been based on the survival to ages above 90 or

100 years or belonging to the top 10% or 1% of survivors in a population.

Studies de�ning cases using a discrete longevity phenotype often need to

rely on controls from more contemporary birth cohorts, because all others

from the case birth cohorts have died before sample collection. Previous

GWA studies have identi�ed several genetic variants, but the only locus that

has shown genome-wide signi�cance (P ≤ 5x10−8) in multiple independent

meta-analyses of GWA studies is apolipoprotein E (APOE),[20] where the

ApoE ε4 variant is associated with lower odds of being a long-lived case. The

lack of replication for many reported associations with longevity could be

due, at least partly, to the use of di�erent de�nitions for cases and controls

between studies. Furthermore, even within a study, the use of a single age cut-

o� phenotype for men and women and for individuals belonging to di�erent

birth cohorts will give rise to heterogeneity, as survival probabilities di�er by

sex and birth cohort,[21] and genetic e�ects are known to be age- and birth

cohort-speci�c.[5, 22] In an attempt to mitigate the e�ects of heterogeneous

case and control groups, we use country-, sex- and birth cohort-speci�c life

tables to identify ages that correspond to di�erent survival percentiles to

de�ne cases and controls in our meta-analyses of GWA studies of longevity.

Furthermore, most studies in our meta-analyses use controls from the same

study population as the cases, which limits the impact of sampling biases that
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could confound associations. The current meta-analyses include individuals

from 20 cohorts from populations of European, East Asian, or African Amer-

ican descent. Two sets of cases are examined: individuals surviving at or

beyond the age corresponding to the 90
th

survival percentile (90
th

percentile

cases) or the 99
th

survival percentile (99
th

percentile cases) based on life

tables speci�c to the country where each cohort was based, sex, and birth

cohort (i.e., birth year). The same country-, sex-, and birth cohort-speci�c

life tables are used to de�ne the age threshold for controls, corresponding to

the 60
th

percentile of survival. We identify two genome-wide signi�cant loci,

of which one is replicated in two independent European cohorts that use de

novo genotyping. We also perform a gene-level association analysis based

on tissue-speci�c gene expression and identify additional longevity genes.

In addition, using linkage disequilibrium (LD) score regression,[23] we show

that longevity is genetically correlated with multiple diseases and traits.
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Table 7.1: Samples included in the di�erent genome-wide association meta-
analyses or the replication and validation

Study Ancestry 90
th

cases 99
th

cases All controls Dead controls

Discovery

100-plus/LASA/ADC European 373 301 2271 245

AGES European 300 1,001 466

CEPH
a

European 1,234 1,112 831

CHS European 905 68 558 539

DKLS
a

European 960 610 1,917

FHS European 332 1,444 539

GEHA Danish
a

European 451 127 900

GEHA French European 271 81 358

GEHA Italy European 182 184

HRS European 361 3,312 657

LLFS European 1,110 338 552 82

LLS + GEHA Dutch European 1,037 377 712

Longevity European 548 271 584

MrOS European 1,171 82 386 320

Newcastle 85+
a

European 215 5,159

RS European 774 79 2,965 1,731

SOF European 812 37 354 300

Vitality 90+
a

European 226 1,995

Total 11,262 3,484 25,483 4,879

Replication
DKLSII

a
European 944 298 772

GLS European 1,613 1,613 4,215

Total 2,557 1,911 4,987

Validation
UK Biobank European 19,742 928 19,698

Trans-ethnic
CLHLS East Asian 2,178 2,178 2,299

CHS African American 177 211

Total 13,617 5,662 27,993

100-plus: 100-plus Study; LASA, Longitudinal aging study of Amsterdam; ADC, Amsterdam

dementia cohort; AGES, Age/Gene Environment Susceptibility Study; CEPH, CEPH

centenarian cohort; CHS, Cardiovascular Health Study; DKLS, Danish longevity study; FHS,

Framingham Heart Study; GEHA, Genetics of Healthy Aging Study; HRS, Health and

Retirement Study; LLFS, Long Life Family Study; LLS, Leiden Longevity Study; Longevity,

Longevity Gene Project; MrOS, Osteoporotic Fractures in Men Study; Newcastle 85+,

Newcastle 85+ Study; RS, Rotterdam study; SOF, Study of Osteoporotic Fracture; Vitality 90+,

Vitality 90+ project; GLS, German longevity study; CLHLS, Chinese Longitudinal Healthy

Longevity Survey.
a

For these studies, controls were provided by a separate cohort. Further

details of the cohorts are provided in Supplementary Data 4.
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7.2 Results
7.2.1 Genome-wide association meta-analysis

We performed two meta-analyses in individuals of European ancestry com-

bining cohort-speci�c genome-wide association data generated using 1000

Genomes imputation: (i) 90
th

percentile cases versus all controls and (ii)
99
th

percentile cases versus all controls. The numbers of cases and controls

in each study are shown in Table 7.1. For both case de�nitions, multiple

genetic variants at the well-replicated APOE locus reached genome-wide

signi�cance (p≤5x10
−8

) (Table 7.2, Figure 7.1 and Figure 7.4). Consistent

with previous reports, rs429358 (ApoE ε4) was associated with lower odds of

surviving to the 90
th

or 99
th

percentile age at the genome-wide signi�cance

level. In addition, we report a genome-wide signi�cant association of rs7412
(ApoE ε2) with higher odds of surviving to the 90

th
and the 99

th
percentile

age. Conditional analysis in two of the cohorts with individuals of European

ancestry, CEPH and LLS (combined with GEHA Dutch) (representing 18%

of the 90
th

percentile cases and 6% of all controls), indicated that the signal

at the APOE locus was explained by these two independent variants, i.e.,
rs429358 (ApoE ε4) and rs7412 (ApoE ε2). There was no evidence of hetero-

geneity of e�ect across cohorts for ApoE ε2 (p-value for heterogeneity (phet)
= 0.619, Table 7.2). For ApoE ε4, on the other hand, there was evidence of

heterogeneity (phet = 0.004, Table 7.2), although the direction of e�ect of

this variant was consistent across cohorts (Figure 7.2). Besides ApoE ε4 and

ε2, one additional variant, rs7676745, located on chromosome 4 near GPR78,

showed a genome-wide signi�cant association in the 90
th

percentile cases

versus all controls analysis (p= 4.3x10
−8

, Table 7.2). The rare allele of this

variant (A) was associated with lower odds of surviving to the 90
th

percentile

age and there was no evidence of heterogeneity of e�ect across cohorts (Phet

= 0.462, Table 7.2). The regional association and forest plots for this locus

are depicted in Figure 7.1 and Figure 7.2. Most of the variants reported in

Table 7.2 show stronger e�ects in the 99
th

percentile as compared to the 90
th

percentile analysis (Figure 7.5), indicating that the use of a more extreme

phenotype results in stronger e�ects.

7.2.2 Replication
The e�ects of ApoE ε4 and ε2 were replicated in the two cohorts (i.e., DKLSII

and GLS) in which de novo genotyping, using predesigned Taqman SNP

Genotyping Assays, was applied (Table 7.2). However, we were not able to

replicate the e�ect of rs7676745 in these cohorts, since there was no Taqman
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Table 7.2: Samples included in the di�erent genome-wide association meta-
analyses or the replication and validation

rsID Closest gene Alleles EAF OR [95% CI] P I
2

(%) Phet

90th percentile cases versus all controls (Discovery)
rs116362179 - T/C 0.05 1.34 [1.20-1.50] 4.9x10

−7
0 0.457

rs7676745
a GPR78 A/G 0.04 0.67 [0.57-0.77] 4.3x10

−8
0 0.462

rs7754015 - G/T 0.43 0.90 [0.86-0.94] 6.8x10
−7

0 0.670

rs35262860 RP1 GCT/G 0.39 1.11 [1.07-1.15] 3.9x10
−7

0 0.941

rs3138136 RDH5 T/C 0.10 0.83 [0.77-0.89] 5.4x10
−7

14.5 0.284

rs429358 APOE C/T 0.13 0.60 [0.56-0.64] 1.3x10
−56

54.3 0.004

rs7412 APOE T/C 0.09 1.28 [1.19-1.37] 2.4x10
−11

0 0.619

90th percentile cases versus all controls (Replication)
rs429358 APOE C/T 0.45 [0.40-0.51] 5.2x10

−36
85.4 0.009

rs7412 APOE T/C 1.32 [1.18-1.48] 2.4x10
−6

16.6 0.274

99th percentile cases versus all controls (Discovery)
rs3830412 KALRN A/AT 0.22 1.21 [1.12-1.30] 4.3x10

−7
0 0.767

rs138762279 - AT/A 0.16 0.79 [0.72-0.86] 1.2x10
−7

0 0.769

rs62502826 KIF13B A/G 0.15 1.23 [1.23-1.33] 5.6x10
−7

14.9 0.298

rs7039467 CDKN2A/B A/G 0.48 1.20 [1.12-1.28] 1.1x10
−7

0 0.843

rs429358 APOE C/T 0.13 0.52 [0.47-0.58] 3.9x10
−34

0 0.833

rs7412 APOE T/C 0.09 1.47 [1.32-1.64] 3.2x10
−12

0 0.639

99th percentile cases versus all controls (Replication)
rs429358 APOE C/T 0.44 [0.38-0.50] 4.0x10

−32
84.0 0.012

rs7412 APOE T/C 1.35 [1.19-1.53] 2.0x10
−6

0 0.534

Alleles, e�ect allele/other allele; EAF, e�ect allele frequency; OR, odds ratio (i.e., odds to

become long-lived when carrying the e�ect allele); 95% CI, 95% con�dence interval; I2,

heterogeneity statistic; phet , p-value for heterogeneity;
a

We were not able to replicate the

e�ect of this genetic variant, since there was no Taqman SNP Genotyping Assay available.

We only report the most signi�cant genetic variant for the loci with at least one variant with

a p-value≤1x10
−6

. The rsID is based on dbSNP build 150. The Chr:Position is based on

Genome Reference Consortium Human Build 37 (GRCh37)

SNP Genotyping Assay available for this variant.

7.2.3 Validation in parental age-based data sets

Given that all available studies with genome-wide genetic data that met

our inclusion criteria were included in our genome-wide association meta-

analyses, we additionally set out to validate our �ndings in two UK Biobank

parental longevity data sets (Table 7.1) and the parental lifespan data set

recently created by Timmers and colleagues.[13] Since the genotyped individ-
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uals in the UK Biobank were recruited at relatively young ages (40-69 years),

these data sets were based on the age reached by the parents of the study

participants. Hence, the phenotypes used for validation were di�erent from

those used in our meta-analyses, resulting in smaller e�ect sizes. Moreover,

the reference panels used to impute the genetic variants (a merged panel

of UK10K, 1000G Phase 3, and Haplotype Reference Consortium (HRC) for

parental longevity and HRC alone for parental lifespan)[13] were di�erent

from the one used in our meta-analyses (1000G Phase 1), which could have

in�uenced the outcome of the analyses. Of the variants that showed a p-

value≤ 1x10
−6

in our meta-analyses (Table 7.2), only ApoE ε4 and ε2 were

signi�cantly associated with both parental longevity and lifespan (p≤0.05)

in these data sets (Table 7.3). Moreover, the rare allele (A) of the second most

signi�cant variant at the CDKN2A/B locus, rs2184061, was associated with

increased parental lifespan (p=8.4x10
−6

), but not with parental longevity (p
= 0.329). However, we had adequate power to validate all of our identi�ed

variants, even when the e�ect sizes were halved in the parental longevity

data sets.

7.2.4 Trans-ethnic meta-analyses

We subsequently performed two trans-ethnic meta-analyses (90
th

and 99
th

percentile cases versus all controls) to see if the increase in sample size

would lead to identi�cation of additional longevity loci. In this analysis we

included individuals of European (all previously used data sets), East Asian

(CLHLS), and African American (CHS) ancestry. However, with the exception

of APOE and rs2069837, located in IL6, which has previously been associated

with longevity in CLHLS9, this analysis did not identify additional genome-

wide signi�cant loci (Table 7.4, Figure 7.3 and Figure 7.6). The observed

association of the genetic variant in IL6 in the trans-ethnic meta-analyses

was mainly driven by the association in the East Asian population. The other

variant previously associated with longevity in CLHLS9, rs2440012, located

in ANKRD20A9P, did not pass quality control in the large majority of the

included cohorts from populations of European descent and was thus not

analysed in the trans-ethnic meta-analyses.

7.2.5 Comparison of control definitions

To examine the impact of the de�nition of controls, we performed a sensitivity

analysis in which we compared the results of the meta-analysis using the

same case de�nition (90
th

percentile) with (i) all controls and (ii) dead controls
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Figure 7.1: Results of the European genome-wide associationmeta-analyses.
Manhattan plot presenting the − log10 P-values from the European genome-wide

association meta-analysis of the 90
th

percentile cases versus all controls (a) and

99
th

percentile cases versus all controls (b). The red line indicates the threshold for

genome-wide signi�cance (p≤5x10
−8

), while the blue line indicates the threshold for

genetic variants that showed a suggestive signi�cant association (p≤1x10
−6

). The

variants that are reported in Table 7.2 are highlighted in green. For representation

purposes, the maximum of the y-axis was set to 14. Regional association plot for

the APOE (c) and GPR78 (d) loci based on the results from the 90
th

percentile cases

versus all controls meta-analysis. The colour of the variants is based on the linkage

disequilibrium with rs429358 (ApoE ε4) (c) or rs7676745 (d)

only. For this analysis, only cohorts that contributed results using both

control de�nitions were considered (i.e., 100-plus/LASA/ADC, AGES, CHS,

FHS, HRS, LLFS, MrOS, RS, and SOF). The results of the two meta-analyses

with di�erent control groups were very similar (Figure 7.7). Among the
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Figure 7.2: Study-speci�c results for the genetic variants inAPOE andGPR78.
Forest plots for the ApoE ε4 (a) and ε2 (b) variants and rs7676745 (c) based on the

results from the 90
th

percentile versus all controls analysis. The size of the boxes

represents the sample size of the cohort. We had no data available for ApoE ε4 in

LLFS and for rs7676745 in DKLS, GEHA Italy, GEHA Danish, LLS (combined with

GEHA Dutch), Longevity, and Newcastle 85+. The data for ApoE ε2 in FHS was

based on imputation using the Haplotype Reference Consortium reference panel

due to the low-imputation quality of this variant when using the 1000 Genomes

reference panel.

three loci with at least one genetic variant with a p-value≤1x10
−6

in either

meta-analysis (and analysed in the same cohorts in both meta-analyses),

the most signi�cant variants had odds ratios (ORs) that di�ered by <1%
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(Supplementary Table 1).

7.2.6 Replication of previously identified loci for human lifespan

To determine the association of previously identi�ed loci for human lifespan

and longevity, we performed a look-up of the reported genetic variants within

these loci in our meta-analyses data sets. The only previously identi�ed loci

that contained variants that showed a signi�cant (p<7.8x10
−4

, i.e., Bonferroni

adjusted for the number of tested loci (N=64)) and directionally consistent

associations in our study were FOXO3 and CDKN2A/B (Supplementary Data

1). As depicted in Figure 7.8, the e�ects of the most frequently reported

variants within these loci (i.e., rs2802292 and rs1556516) �uctuate between

cohorts and there seems to be no correlation with the genetic background of

the included populations. However, for the reported variants within both

loci, the odds of surviving to the 99
th

percentile age is higher than the odds

of surviving to the 90
th

percentile age, indicating they likely a�ect both

early and late-life mortality. Several of the loci that have been associated

with increased parental lifespan in the most recent and largest meta-analysis

of GWA studies for this phenotype (i.e., KCNK3, HTT, LPA, ATXN2/BRAP,

and LDLR)[13] contain genetic variants that show a nominal signi�cant

association (p< 0.05) with higher odds of surviving to the 90
th

and/or 99
th

percentile age. Since the phenotypes used in our study (i.e., cases surviving

at or beyond the age corresponding to the 90
th

/99
th

survival percentile) were

di�erent from the one used in the previous study (i.e., parental lifespan), we

performed an additional look-up of these variants in one of the UK Biobank

data sets we created for validation of our �ndings (i.e., the 90
th

percentile

cases versus all controls data set). With the exception of the variant in

HTT, all variants showed a nominal signi�cant association in this data set

(Supplementary Table 2), indicating that the lack of signi�cant replication of

these loci in our discovery phase data set is not likely to be due to a di�erence

in the used phenotype.

7.2.7 Gene-level association analysis

In addition to genetic variant associations, GWA studies can also be used

to identify gene-level associations by integrating results from expression-
quantitative-trait-locus (eQTL) studies that relate variants to gene expression.

In order to identify gene-level associations, we used MetaXcan, an analytic

approach that uses tissue-speci�c eQTL results from the GTEx project to

estimate gene-level associations with the trait examined from summary-level
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Table 7.3: Results of the validation in the UK Biobank parental age-based
data sets

rsID Closest gene Alleles EAF OR 95% CI P

99th percentile cases versus all controls (Parental longevity)
rs116362179 - T/C 0.04 1.01 0.94-1.08 0.775

rs7676745
a GPR78 A/G 0.04 0.98 0.92-1.06 0.667

rs7754015 - G/T 0.43 1.00 0.97-1.03 0.832

rs35262860 RP1 GCT/G 0.39 0.97 0.94-0.99 0.021

rs3138136 RDH5 T/C 0.11 1.00 0.95-1.04 0.863

rs429358 APOE C/T 0.16 0.85 0.81-0.88 1.1x10
−16

rs7412 APOE T/C 0.08 1.12 1.06-1.18 2.2x10
−5

90th percentile cases versus all controls (Parental longevity)
rs116362179 - T/C 0.04 1.00 0.98-1.02 0.697

rs7676745
a GPR78 A/G 0.05 1.01 0.99-1.03 0.247

rs3138136 RDH5 T/C 0.11 0.99 0.98-1.00 0.135

rs429358 APOE C/T 0.15 0.90 0.89-0.91 3.1x10
−83

rs7412 APOE T/C 0.08 1.06 1.05-1.08 7.6x10
−17

99th percentile cases versus all controls (Parental longevity)
rs3830412 KALRN A/AT 0.20 1.11 0.99-1.24 0.081

rs138762279 - AT/A 0.34 1.05 0.95-1.17 0.299

rs62502826 KIF13B A/G 0.14 1.04 0.90-1.19 0.614

rs7039467 CDKN2A/B A/G 0.69 0.93 0.83-1.05 0.245

rs2184061 CDKN2A/B A/C 0.40 0.95 0.87-1.05 0.329

rs429358 APOE C/T 0.16 0.76 0.66-0.87 9.6x10
−5

rs7412 APOE T/C 0.08 1.23 1.05-1.45 0.011

99th percentile cases versus all controls (Parental longevity)
rs62502826 KIF13B A/G 0.14 1.00 0.99-1.02 0.376

rs2184061 CDKN2A/B A/C 0.40 1.02 1.01-1.03 8.4x10
−6

rs429358 APOE C/T 0.15 0.90 0.89-0.91 3.1x10
−84

rs7412 APOE T/C 0.08 1.06 1.05-1.08 7.6x10
−17

For the CDKN2A/B locus we have also reported the second most signi�cant variant in

this locus (rs2184061), since the allele frequency of the most signi�cant variant (rs7039467 )

is not comparable between the meta-analyses and UK Biobank data sets due to di�erence

in the reference panel used for imputation. The rsID is based on dbSNP build 150. The

Chr:Position is based on Genome Reference Consortium Human Build 37 (GRCh37). Alleles,
e�ect allele/other allele; EAF, e�ect allele frequency; OR [95% CI], odds ratio (i.e., odds of

parent(s) to become long-lived when carrying the e�ect allele), and relative 95% con�dence

interval.
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GWA study results.[24] Tissue-speci�c genetically predicted expression of

14 genes (ANKRD31, BLOC1S1, KANSL1, CRHR1, ARL17A, LRRC37A2, ERCC1,
RELB, DMPK, CD3EAP, PVRL2, GEMIN7, BLOC1S3, and APOC2) was signi�-

cantly associated with survival to the 90
th

and/or 99
th

percentile age after

adjustment for multiple testing (Table 7.5). Eight of these genes (ERCC1,
RELB, DMPK, CD3EAP, PVRL2, GEMIN7, BLOC1S3, and APOC2) are located

near the APOE gene, raising the likely possibility that these associations re-

�ected the in�uence of variants in this well-established longevity-associated

locus. The remaining genes are located on chromosome 5, 12, and 17. As

depicted in Supplementary Data 2, distinct sets of genetic variants were used

by MetaXcan for all signi�cant tissue-speci�c gene expression associations

with survival to the 90
th

and/or 99
th

percentile age.

7.2.8 Genetic correlation analyses
LD score regression was performed to determine the genetic correlation

between the di�erent case de�nitions used for our meta-analyses (based on

the results from the European cohorts only), and between longevity and

other traits and diseases.[23] The genetic correlation (rg) between the 90
th

and 99
th

percentile analysis, using all controls for both groups, was 1.01 (SE
= 0.06, p = 3.9x10

−66
). Using LD Hub,[25] which performs automated LD

score regression, we subsequently estimated the genetic correlation of our

phenotypes with 246 diseases and traits available in their database. We found

a signi�cant genetic correlation of our phenotypes with the father’s age

at death phenotype from the UK Biobank. The most signi�cant (negative)

genetic correlation of both our phenotypes was with coronary artery disease

(CAD) (rg (SE) = -0.40 (0.07) and rg (SE) = -0.29 (0.07), respectively) and

several traits involved in type 2 diabetes (T2D) also showed a signi�cant

association with one or both phenotypes after Bonferroni adjustment for

multiple testing (Table 7.6 and Supplementary Data 3).
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Table 7.4: Results of the trans-ethnic genome-wide association meta-analyses

rsID Closest gene Alleles EAF OR [95% CI] P I
2

(%) phet

90th percentile cases versus all controls
rs12143832 ECE1 C/T 0.46 0.90 [0.87-0.94] 2.0x10

−7
0 0.722

rs7676745
a GPR78 A/G 0.04 0.67 [0.58-0.78] 1.7x10

−7
1.8 0.428

rs1262476 - A/G 0.24 1.12 [1.07-1.17] 9.8x10
−7

0 0.574

rs2069837 IL6 G/A 0.08 0.90 [0.82-0.99] 5.2x10
−8

50.7 0.005

rs35262860 RP1 GCT/G 0.39 1.11 [1.07-1.15] 5.6x10
−7

0 0.955

rs62127362 CEP89 C/G 0.13 0.87 [0.82-0.93] 4.3x10−7 21.4 0.190

rs429358 APOE C/T 0.13 0.60 [0.55-0.66] 1.0x10
−61

52.1 0.004

rs7412 APOE T/C 0.09 1.26 [1.19-1.35] 1.7x10
−12

0 0.718

99th percentile cases versus all controls
rs2758603 PMF1 C/T 0.34 1.12 [1.02-1.22] 9.8x10

−7
57.2 0.005

rs3830412 KALRN A/AT 0.22 1.21 [1.12-1.30] 8.2x10
−7

0 0.767

rs138762279 - AT/A 0.16 0.79 [0.72-0.86] 2.2x10
−7

0 0.769

rs2069837 IL6 G/A 0.09 0.90 [0.76-1.08] 1.4x10
−8

67.7 3.5x10
−4

rs7039467 CDKN2A/B A/G 0.48 1.20 [1.12-1.28] 2.1x10
−7

0 0.843

rs429358 APOE C/T 0.13 0.55 [0.50-0.61] 1.3x10
−36

20.0 0.247

rs7412 APOE T/C 0.09 1.39 [1.26-1.53] 1.7x10
−12

10.0 0.347

We only report the most signi�cant genetic variant for the loci with at least one variant with

a p-value ≤1x10
−6

. The reported p is the p-value from the Han-Eskin random-e�ects (RE
2

)

model from METASOFT. The rsID is based on dbSNP build 150; the Chr:Position is based on

Genome Reference Consortium Human Build 37 (GRCh37); Alleles, e�ect allele/other allele;

EAF, e�ect allele frequency (based on individuals of European ancestry only); OR, odds ratio

(i.e., odds to become long-lived when carrying the e�ect allele); 95% CI, 95% con�dence interval;

I2, heterogeneity statistic; phet , p-value for heterogeneity.
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Figure 7.3: Results of the trans-ethnic genome-wide association meta-
analyses. Manhattan plot presenting the − log10 p-values from the trans-ethnic

genome-wide association meta-analysis of the 90
th

percentile cases versus all con-

trols (A) and 99
th

percentile cases versus all controls (B). The red line indicates the

threshold for genome-wide signi�cance (p≤5x10
−8

), while the blue line indicates

the threshold for genetic variants that showed a suggestive signi�cant association

(p≤1x10
−6

).

7.3 Discussion

We brought together studies from all over the world to perform GWA study

meta-analyses in over 13,000 long-lived individuals of diverse ethnic back-

ground, including European, East Asian and African American ancestry,

to characterise the genetic architecture of human longevity. We used the

1000 Genomes reference panel for imputation to expand the coverage of the

genome in comparison to previous GWA studies of longevity. Consistent with

previous reports, rs429358, de�ning ApoE ε4, was associated with decreased

odds of becoming long-lived. Moreover, we report a genome-wide signi�cant

association of rs7412, de�ning ApoE ε2, with increased odds of becoming

long-lived. We additionally found a genome-wide signi�cant association of a

locus near GPR78. Gene-level association analysis revealed association of in-

creased KANSL1, CRHR1, ARL17A, and LRRC37A2 expression and decreased

ANKRD31 and BLOC1S1 expression with increased odds of becoming long-

lived. Genetic correlation analysis showed that our longevity phenotypes

are genetically correlated with father’s age at death, CAD and T2D-related

phenotypes. Genetic variation in APOE is well known to be associated with

longevity and lifespan, with the �rst report more than two dec- ades ago
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in a small candidate gene study.[26] Since then, there have been numerous

candidate gene studies, including individuals of diverse ancestry, which have

identi�ed associations of ApoE with longevity.[27, 28, 29, 30] However, thus

far, rs7412, the ApoE ε2-de�ning, genetic variant has not been reported to

show a genome-wide signi�cant association in GWA studies of longevity

and lifespan. This could be due to the fact that we performed imputation

using the 1000 Genomes reference panel, while earlier GWA studies used the

HapMap reference panel, which has limited coverage of this variant. ApoE

mediates cholesterol metabolism in peripheral tissues and is the principal

cholesterol carrier in the brain. The ApoE ε2 and ε4 variants have previously

been associated with a decreased (ε2) or increased (ε4) risk for several age-

related diseases, such as cardiovascular disease and Alzheimer’s disease,[31]

which could explain their e�ect on longevity. The fact that the two variants

in ApoE show opposite e�ects may be attributable to di�erences in structural

and biophysical properties of the protein, since ApoE ε2 shows high stability

and ApoE ε4 low stability upon folding.[32] We also found a genome-wide

signi�cant association of rs7676745, located on chromosome 4 near GPR78.

We have to note that this locus would bene�t from replication in independent

cohorts in the future, given that we were not able to replicate this variant

in the cohorts in which de novo genotyping was applied. There is no re-

port of association of this locus with other traits according to Phenoscanner

(http://www.phenoscanner.medschl.cam.ac.uk/),[33] although other

genetic variants in this gene have been associated with several diseases and

traits in the UK Biobank, including death due to a variety of disorders. The

GPR78 protein, belongs to the family of G-protein-coupled receptors, whose

main function is to mediate physiological responses to various extracellular

signals, including hormones and neuro-transmitters.[34] However, the spe-

ci�c function of GPR78 is still largely unknown, although it has been shown

to play a role in lung cancer metastasis.[35] To maximise power for discovery,

we meta-analysed results from all of the studies that contained long-lived

individuals that met our 90
th

and/or 99
th

percentile case de�nitions, had

genome-wide genetic data, and were able to participate. Hence, we were

not able to replicate our �ndings in an independent cohort with genome-

wide genotype data and participants reaching the age of our case de�nitions.

Therefore, we tried to validate our �ndings using two related phenotypes,

parental longevity and lifespan, in the UK Biobank. We applied our case

and control de�nitions to the parental lifespan of genotyped middle-aged

UK Biobank participants rather than the participants themselves, as none

of the latter ful�lled the age criteria for cases in our study. Although this

http://www.phenoscanner.medschl.cam.ac.uk/
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resulted in relatively large data sets for both the 90
th

and 99
th

percentile

analysis, the power to replicate our �ndings using the parental longevity

traits was lower in comparison to replication using the traits based on the

genotyped individuals themselves, since these individuals share only half of

their parental genomes. In addition, many of the genotyped individuals, who

were 40-69 years at recruitment, will never reach the age belonging to the

90
th

, let alone the 99
th

, percentile of their birth cohort. This may explain why

we were unable to validate any of our suggestive associations (p≤1x10
−6

),

with the exception of the genetic variants at the APOE locus in these data sets.

On the other hand, we were able to validate one additional locus, CDKN2A/B,

in the parental lifespan data set. This is not surprising, since this locus had

already been reported to associate with parental lifespan.[13] However, it

is unclear why our reported variants at this locus, rs7039467 and rs2184061,

are not associated with parental longevity, given that the most signi�cant

parental lifespan-associated variant at this locus, rs1556516, also shows a

nominal signi�cant e�ect on parental longevity (see Supplementary Table 2).

We hypothesise that this may be due to a di�erence in the LD structure of

the reference panels used for imputation.

We were able to detect signi�cant genetic associations at two previously

identi�ed longevity-related loci, FOXO3 and CDKN2A/B. For the other loci,

we did not �nd evidence for replication (p>7.8x10
−4

), despite having ade-

quate power (≥0.8) for replication of all but one of the examined genetic

variants (rs28926173) associated with the discrete longevity phenotypes. We

were not able to calculate our power to replicate the variants associated with

the continuous lifespan-related phenotypes, although we should have had

adequate power to replicate variants with a minor allele frequency (MAF) >

12% and an OR > 1.1 (based on the 90
th

percentile versus all controls anal-

ysis). However, several of the variants associated with parental lifespan

show a directionally consistent and nominal signi�cant association with

our phenotypes, indicating they may also be relevant for longevity. The

failure to replicate previously reported loci could be due to the use of a

di�erent longevity phenotype then what was used in previous studies, the

small e�ect size of some of the variants associated with parental lifespan,

and the modest power of our study. The fact that we detect signi�cant as-

sociations of variants in the FOXO3 locus is not surprising, since this locus

was previously reported in the longevity GWA study from the CHARGE con-

sortium,[6] from which many cohorts are included in these meta-analyses.

So far, three functional longevity-associated variants have been identi�ed

at the FOXO3 locus (rs2802292, rs12206094, and rs4946935). For all of them,
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Table 7.5: Results of the trans-ethnic genome-wide associationmeta-analyses

Genes Tissue OR90 p90 OR99 p99

ANKRD31 Stomach 0.63 1.1x10−6 0.61 9.0x10
−4

BLOC1S1 Adipose subcutaneous 0.49 4.5x10−7 0.56 0.009

KANSL1 Skin sun exposed lower leg 1.22 1.5x10−6 1.26 1.9x10
−4

CRHR1 Nerve tibial 1.54 3.4x10−7 1.81 6.2x10
−6

ARL17A Artery aorta 1.24 8.1x10−7 1.31 5.9x10
−5

ARL17A Breast mammary tissue 1.18 1.8x10−6 1.22 3.2x10
−4

ARL17A Colon sigmoid 1.21 2.2x10−6 1.21 0.002

LRRC37A2 Minor salivary gland 1.17 2.2x10−6 1.20 4.4x10
−4

ERCC1 Ovary 1.19 2.8x10−6 1.24 1.8x10
−4

RELB Lung 0.57 2.0x10−7 0.44 2.9x10
−6

DMPK Stomach 1.64 1.7x10−6 2.31 1.8x10
−6

CD3EAP Brain substantia nigra 0.51 8.0x10−17 0.36 3.8x10−15

PVRL2 Artery coronary 1.36 5.0x10−7 1.59 1.6x10
−6

PVRL2 Oesophagus muscularis 1.62 6.6x10−7 2.31 4.4x10−8

GEMIN7 Brain nucleus accumbens basal ganglia 0.85 1.5x10
−4

0.70 1.4x10−7

BLOC1S3 Oesophagus muscularis 2.80 6.4x10−16 4.47 1.3x10−13

APOC2 Skin not sun exposed suprapubic 0.75 4.2x10−7 0.74 9.3x10
−4

OR, odds ratio (i.e., odds to become long-lived when having an increased tissue-speci�c gene

expression); p-values, highlighted in bold are signi�cant after adjustment for multiple testing

of 247,999 longevity associations with gene-tissue pairs (Storey q-value<0.05); OR90 and p90
are based on the analysis of the 90

th
percentile cases versus all controls meta-analysis data set,

while OR99 and p99 are based on the analysis of the 99
th

percentile cases versus all controls

meta-analysis data set
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an allele-speci�c response to cellular stress was observed. Consistently, the

longevity-associated alleles of all three variants were shown to induce FOXO3
expression.[36, 37] The CDKN2A/B locus has previously been associated with

parental lifespan and parents’ attained age in the UK Biobank as well as

a diversity of age-related diseases.[38, 13, 39] The longevity-associated al-

lele of the most signi�cant variant at this locus (rs1556516) has also been

associated with lower odds of developing CAD.[40] Although the molecular

mechanism behind this association is still unclear, it is known that genes

encoded at the CDKN2A/B locus are involved in cellular senescence,[41] a

known hallmark of ageing in animal models.[42] The gene-level association

analysis identi�ed several associations between increased (KANSL1, CRHR1,
ARL17A, and LRRC37A2) or decreased (ANKRD31 and BLOC1S1) genetically

driven tissue-speci�c gene expression with survival to the 90
th

percentile

age. The increased expression of KANSL1, CRHR1, ARL17A, and LRRC37A2
on chromosome 17q21.31 is regulated by di�erent genetic variants, indicat-

ing that these associations may be independent. More functional work is

needed to determine the exact relationship between the altered genetically

driven tissue-speci�c expression of these genes and longevity in humans.

A limitation of MetaXcan is that the underlying GTEx models might not

have been adequately adjusted for age, which could be problematic for an

age-related phenotype like longevity. However, MetaXcan has successfully

been used to identify gene-level associations with age-related diseases and

traits, such as Alzheimer’s disease and age-related macular degeneration.[24]

The genetic correlation analyses showed that survival to ages correspond-

ing to the 90
th

and 99
th

percentile shared genetic associations with father’s

age at death, CAD and T2D-related phenotypes, suggesting that survival to

old ages may at least partially be explained by protective in�uences on the

mechanisms underlying these traits. The genetic correlation with CAD and

T2D-related phenotypes is expected, since it has previously been reported

that individuals from long-lived families show a decreased prevalence of

cardiovascular disease and T2D.[43, 44] The higher genetic correlation of

our longevity phenotypes with father’s in comparison to mother’s age at

death may be explained by the di�erence in the prevalence of cardiovas-

cular diseases and T2D between men and women in the last century,[45,

46] which may be, at least partially, attributable to a di�erence in smoking

prevalence.[47] Hence, the correlation of our longevity phenotypes with

the parental age at death phenotypes from UK Biobank is likely due to the

absence of death from speci�c diseases (i.e., those with a higher prevalence

in men). For longevity-speci�c loci, on the other hand, one would expect
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that they will have bene�cial e�ects on multiple diseases simultaneously,

since long-lived individuals show a delay in overall morbidity.[48] Our study

design imposed an age gap between cases and controls to reduce outcome

misclassi�cation, which we expected could potentially increase power by

increasing the genetic e�ect size. It has been correctly noted that longevity

study designs that include an age gap between cases and controls result in

an e�ect estimate that is based on an OR and a relative risk (RR) term, which

could lead to the identi�cation of genetic variant associations related to early

mortality (OR), rather than survival past the case age threshold (RR) (for

more details see Sebastiani et al.).[49] However, we have presented evidence

that imposing a case-control age gap did not greatly in�uence our results or

prevent our replication of variant associations previously discovered using

study designs without a case-control age gap. First, our sensitivity analysis

indicated that reducing the age gap between cases and controls had a min-

imal e�ect on our results. Our sensitivity analysis compared results using

dead controls, where all individuals had died before they reached the 60
th

percentile age, and all controls, which included dead controls and individuals

whose age at last contact was below the 60
th

percentile age but whose age

of death was unknown. There is likely to be some outcome misclassi�cation

of the living controls, since a small percentage may survive beyond the age

corresponding to the 90
th

or 99
th

survival percentile. On the other hand, the

age gap between cases and controls was narrower for all controls compared

to dead controls. However, despite the narrower age gap, the suggestively

signi�cant results in all controls and dead controls comparisons with 90
th

per-

centile cases were essentially unchanged, and there was a very high genetic

correlation between the results of these two meta-analyses, indicating that

the age gap had little or no impact on our results. Second, if we had discov-

ered a large number of genome-wide signi�cant variant associations in our

study, it could be argued that the OR, re�ecting early mortality, contributed

to some or all of them. However, the only genome-wide signi�cant variant

associations we detected were in the APOE locus, which have been identi�ed

using multiple study designs, including designs with no prespeci�ed age gap

between cases and controls,[12] and the GPR78 locus. Third, it is unlikely

that our study design prevented the replication of �ndings from previous

GWA studies of survival to extreme ages (i.e., 99
th

percentile cases) that did

not include a case-control age gap, since such studies would only identify

variants associated with survival past the minimum case age and not with

early mortality. For variants with no early mortality association, it would be

expected that the association estimate in our study would have an OR equal
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Table 7.6: Results of the genetic correlation analyses of the 90th and 99th
percentile phenotypes with other diseases and traits

Disease/Trait rg90 (SE90) p90 rg99 (SE99) p99

Coronary artery disease -0.40 (0.07) 1.7x10−8 -0.29 (0.07) 1.2x10−5

Fathers age at death 0.74 (0.13) 2.5x10−8 0.54 (0.13) 2.7x10−5

HDL cholesterol 0.36 (0.07) 1.0x10−7 0.22 (0.07) 0.002

Age of �rst birth 0.33 (0.07) 3.8x10−7 0.16 (0.07) 0.019

Years of schooling 2016 0.26 (0.05) 9.6x10−7 0.12 (0.05) 0.017

Waist circumference -0.26 (0.05) 2.4x10−6 -0.19 (0.06) 0.001

Type 2 diabetes -0.44 (0.10) 4.4x10−6 -0.42 (0.10) 2.0x10−5

Overweight -0.28 (0.06) 1.2x10−5 -0.23 (0.07) 9.0x10
−4

Fastin insulin main e�ect -0.45 (0.11) 3.0x10−5 -0.33 (0.11) 0.002

Urate -0.26 (0.07) 5.0x10−5 -0.15 (0.06) 0.013

Body mass index -0.21 (0.05) 9.2x10−5 -0.19 (0.07) 0.004

Cigarettes smoked per day -0.49 (0.13) 1.0x10−4 -0.31 (0.13) 0.016

Mothers age at death 0.51 (0.14) 2.0x10−4 0.14 (0.13) 0.289

Waist-to-hip ratio -0.24 (0.07) 2.0x10−4 -0.15 (0.07) 0.028

p-values highlighted in bold are signi�cant after Bonferroni adjustment for multiple testing

(p < 0.05/246). rg90, SE90, and p90 are based on the analysis of the 90
th

percentile cases

versus all controls meta-analysis data set, while rg99, SE99, and p99 are based on the analysis

of the 99
th

percentile cases versus all controls meta-analysis data set. rg, genetic correlation;

SE, standard error of the rg estimate; HDL, high-density lipoprotein.

to one and a RR greater than one. Nothing prevents our study design from

also detecting this type of variant association, as our estimated association

parameter re�ects both the OR and RR.

The majority of the previously performed GWA studies of longevity

used the survival of individuals to a pre-de�ned age threshold (i.e., 85, 90,

or 100 years) as selection criterion to de�ne long-lived cases. Although

these studies used a consistent phenotype for each cohort included in the

GWA study, this type of selection may gave rise to heterogeneity, given that

survival probabilities di�er between sexes and birth cohorts.[21] Moreover,

it was recently shown that the heritable component of longevity is strongest

in individuals belonging to the top 10% survivors of their birth cohort.[2]

Hence, instead of using a pre-de�ned age threshold, we decided to select

cases based on country-, sex- and birth cohort-speci�c life tables. For the

de�nition of controls we used the 60
th

percentile age, since we wanted to

include as many controls as possible (preferably from the same cohort as
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the cases), while leaving a large enough age gap between our cases and

controls. Using the 1920 birth cohort as an example, the di�erence between

the 60
th

and 90
th

percentile age is 14 years (men) or 11 years (women), which

is quite substantial. The di�erence between the 70
th

and 90
th

percentile

age, on the other hand, is considerably smaller (9 years (men) or 7 years

(women)) and the living controls are more likely to reach the 90
th

percentile

age, which increases the risk of outcome misclassi�cation. Moreover, even

when selecting the 60
th

percentile controls from much later birth cohorts (i.e.,
1940) than the cases (i.e., 1900) the ages will not overlap. Our study has several

limitations. First, we did not analyse the sex and mitochondrial chromosomes,

since we were unable to gather enough cohorts that could contribute to the

analysis of these chromosomes. However, these chromosomes may harbour

loci associated with longevity that we thus have missed. Second, although

we included as many cohorts as possible, the sample size of our study is still

relatively small (especially for the 99
th

percentile analysis) in comparison

to GWA studies of age-related diseases, such as T2D and cardiovascular

disease, and parental age at death.[9, 50, 51] Hence, this limited our power

to detect loci with a low MAF (<1%) that contribute to longevity. Third,

we did not perform sex-strati�ed analyses and may thus have missed sex-

speci�c longevity-related genetic variants. The reason for this is that (i)
we only identi�ed a limited number of suggestive signi�cant associations

in our unstrati�ed 90
th

and 99
th

percentile analyses, (ii) our sample size is

modest (especially when strati�ed by sex), and (iii) thus far, there has been

no report of any genome-wide signi�cant sex-speci�c longevity locus. Given

that we have included nearly all cohorts with long-lived individuals with

genome-wide genetic data in our study, it will be challenging to increase

the sample size in future GWA studies using the same extreme phenotypes.

Future genetic studies of longevity may therefore bene�t from the use of

alternative phe- notypes or more rigorous phenotype de�nitions. Alternative

phenotypes that could be used are the parental lifespan or healthspan-related

phenotypes that were analysed in the UK Biobank or biomarkers of healthy

aging.[13, 52, 53] One way to strengthen the longevity phenotype is by

selecting cases from families with multiple individuals belonging to the top

10% survivors of their birth cohort.[2] Moreover, given the limited number

of longevity-associated genetic variants identi�ed through GWA studies and

the availability of a�ordable exome and whole-genome sequencing, future

genetic studies of longevity may also bene�t from the analysis of rare genetic

variants. Ideally, such studies should also try to include participants from

genetically diverse populations. Most cohorts that are currently included in
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genetic longevity studies originate from populations of European descent,

while some longevity loci may be speci�c for non-European populations, as

exempli�ed by the previously reported genome-wide associations of genetic

variants in IL6 and ANKRD20A9P in Han Chinese.[8] Moreover, a recent

genetic study of multiple complex traits has shown the bene�t of analysis

of diverse populations.[54] In conclusion, we performed a genome-wide

association study of longevity-related phenotypes in individuals of European,

East Asian and African American ancestry and identi�ed theAPOE andGPR78
loci to be associated with these phenotypes in our study. Moreover, our gene-

level association analyses highlight a role for tissue-speci�c expression of

genes at chromosome 5q13.3, 12q13.2, 17q21.31, and 19q13.32 in longevity.

Genetic correlation analyses show that our longevity-related phenotypes

are genetically correlated with several disease-related phenotypes, which

in turn could help to identify phenotypes that could be used as potential

biomarkers for longevity in future (genetic) studies.
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7.4 Methods

7.4.1 Study populations

In this collaborative e�ort, we included cohorts that participated in one or

more of the previously published GWA studies on longevity.[6, 7, 8] The

sample sizes and descriptive characteristics of the cohorts used in this study

are provided in Table 7.1, Supplementary Data 4, and the Supplementary

Methods. We have complied with all relevant ethical regulations for work

with human subjects. All participants provided written informed consent

and the studies were approved by the relevant institutional review boards.

7.4.2 Case and control definitions

Cases were individuals who lived to an age above the 90
th

or 99
th

percentile

based on cohort life tables from census data from the appropriate country,

sex, and birth cohort. Controls were individuals who died at or before the

age at the 60
th

percentile or whose age at the last follow-up visit was at

or before the 60th percentile age. Hence, the number of selected cases and

controls is de�ned by the ages of their birth cohort corresponding to the

60
th

or 90
th

/99
th

percentile age and is independent of the study population

used (i.e., the number of controls and cases within a study population is

not based on the percentiles of that speci�c population, but instead on that

of their birth cohorts). As part of their recruitment protocol, many of the

studies enroled participants that were already relatively old at the time

of recruitment (i.e., close to (or even over) the 60
th

percentile age). The

majority of these individuals subsequently survived past the 60
th

percentile

age threshold of their respective birth cohorts, resulting in a small number

of controls in comparison to the number of cases for some of these studies.

The cohort life tables were available through the Human Mortality Database

(www.mortality.org),[55] the United States Social Security Administration

(here)[21] or National registries (here). For example, the 60
th

, 90
th

, and 99
th

percentile correspond to ages of 75, 89, and 98 years for men and 83, 94, and

102 years for women for the 1920 birth cohort from the US. For cohort life

tables providing birth cohort by decade, linear model predictions were used

to estimate the ages corresponding to survival percentiles at yearly birth

cohorts. For the parental longevity analyses in the UK Biobank, cases were

individuals with at least one parent achieving an age above the 90
th

or 99
th

percentile and who had not themselves died, while controls were individuals

for whom both parents died at or before the age at the 60
th

percentile.

www.mortality.org
https://www.ssa.gov/oact/NOTES/as120/LifeTables_Tbl_7.html
https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=CBS&tableId=80333ned&_theme=90
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7.4.3 Genome-wide association analysis of individual cohorts
Details on the genotyping (platform and quality control criteria), imputation

and genome-wide association analyses for each cohort are provided in Sup-

plementary Data 5. In all cohorts, genetic variants were imputed using the

1000G Phase 1 version 3 reference panel. The logistic regression analyses

were adjusted for clinical site, known family relationships, and/or the �rst

four principal components (if applicable). All cohorts used a Hardy-Weinberg

equilibrium (HWE) p-value that was between 1x10
−4

and 1x10
−6

to exclude

variants not in HWE, which is considered standard in GWA studies. However,

this may have resulted in removal of variants that were out of HWE in the

cases due to mortality selection.[56]

7.4.4 �ality control of individual cohorts
Quality control of the summary statistics from each cohort was performed

using the EasyQC software and the standard script (�leqc-1000G.ecf) avail-

able on their website.[57] The only di�erence was that we used the expected

minor allele count (eMAC) instead of the MAC. To this end, we �rst calcu-

lated the E�ective N (2/(1/Ncases + 1/Ncontrols)) for each cohort. The use of

the E�ective N instead of the Total N leads to a more stringent �ltering of

genetic variants and decreases the chance of false positive �ndings due to

an imbalance between the number of cases and controls.[57] The E�ective N
was subsequently used to calculate the eMAC (2 x minor allele frequency x

E�ective N x imputation quality) for each variant. Variants were excluded

when eMAC < 10, with the exception of the Newcastle 85 + (90
th

percentile

cases versus all controls) and the RS (99
th

percentile cases versus all controls)

data sets in which we excluded variants when eMAC < 25 due to the large

imbalance between the number of cases and controls in these data sets (1:24

and 1:38, respectively) in comparison to the other ones (all < 1:10). For the

CLHLS and LLFS data sets, we �ipped the strands of several variants based

on the dis- cordance of allele frequencies with the reference panel. We only

�ipped palindromic variants with a MAF < 0.4 and an allele frequency that

di�ered from the reference panel by <10% after switching.

7.4.5 Meta-analyses
The �xed-e�ect meta-analyses based on the data sets with individuals of

European ancestry were performed on the cleaned �les using METAL,[58]

with the E�ective N as weight and adjustment for genomic control (lambda

(λ)) for each cohort. Cohorts with an E�ective N < 50 were excluded from
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the meta- analyses. We did not apply genomic control on the meta-analyses

results, since there was limited in�ation (all λ < 1.04, Figure 7.4). The trans-

ethnic meta-analyses were performed using the random-e�ects model of Han

and Eskin, implemented in METASOFT.[59] This model separates hypothesis

testing from the estimation of the e�ect size, which allows the test to better

model the between-study heterogeneity that is typically encountered in a

trans-ethnic meta-analysis. Prior to using METASOFT, study-speci�c results

were �ltered as described above, which included removing genetic variants

with eMAC < 10, and applying genomic control by multiplying each variant’s

standard error by the inverse of the square root of the lambda for cohorts

with λ > 1. Genetic variants for which the total E�ective N was less than half

of the maximum E�ective N were removed from the meta-analyses results.

7.4.6 Conditional analyses

Conditional analyses were performed using the -condition-on option im-

plemented in SNPTEST to determine the number of independent signals at

the APOE locus. We performed this analysis in the cohorts that were anal-

ysed using SNPTEST and for which both the ApoE ε4 and ApoE ε2 variant

showed a signi�cant association in the unadjusted analysis (i.e., CEPH and

LLS (combined with GEHA Dutch)). In both cohorts, the association of ApoE

ε2 remained signi�cant (p < 0.05) after adjustment for ApoE ε4, indicating

an independent e�ect.

7.4.7 Gene-level association analysis

MetaXcan was used to identify genetically predicted tissue-speci�c expres-

sion associations with longevity using the results from the 90
th

and 99
th

percentile cases versus all controls meta-analyses.[24] GTEx version 7 tissue

models of genetically predicted expression were used. To maximize the num-

ber of genetic variants that MetaXcan could match with tissue models, the

MetaXcan SNP annotation �le (gtex_v7_hapmapceu_dbsnp150_snp_annot.txt)

was used to map variants from the GWA study results �le to rsIDs by chro-

mosome, position, and alleles. To control for the false discovery rate when

testing multiple genes across multiple tissues, the Storey q-value was applied

and a q-value < 0.05 was considered signi�cant.[60] Colocalization of the

tissue-speci�c eQTL results from the GTEx project and our longevity meta-

analyses results was performed using the coloc.abf function implemented in

the R-package coloc.[61]
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7.4.8 Genetic correlation analysis
To estimate the genetic correlation between the di�erent phenotypes used in

this study, we used LD score regression.[23] The genetic correlation between

the results from the 90
th

and 99
th

percentile cases versus all controls meta-

analyses and 246 diseases and traits were estimated using the LD Hub web

portal (http://ldsc.broadinstitute.org/ldhub/).[25] Since LD score

regression is currently only possible with data from individuals of European

ancestry, we used our meta-analyses results based on the cohorts from

populations of European descent only.

7.4.9 Power calculation
The power calculations for the validation in the UK Biobank and for the

replication of previously identi�ed loci associated with human lifespan were

performed using the Genetic Association Study Power Calculator (available

here) using an additive disease model and a disease prevalence of 0.1 (90
th

percentile) or 0.01 (99
th

percentile).

7.4.10 Reporting summary
Further information on research design is available in the Nature Research

Reporting Summary linked to this article.

7.5 Data availability
The full meta-analyses summary statistics are available for download at this

address, through GRASP website (accessible here), and through the NHGRI-

EBI GWAS Catalog website (here). All other data that supports the �ndings

of this study are available from the corresponding authors upon request.
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7.8 Supplementary Figures

Figure 7.4: Quantile-quantile plots for the European genome-wide associa-
tion meta-analyses. Quantile-quantile plots of the expected versus (unadjusted)

observed − log10 P-values for the European genome-wide association meta-analyses

of the 90
th

percentile cases versus all controls (λ = 1.036, a) and 99
th

percentile

cases versus all controls (λ = 1.036, b).



7

226 Chapter 7. The largest GWAS of longevity

Figure 7.5: Results of the suggestive signi�cant genetic variants from the
European genome-wide association meta-analyses. Forest plot for the sug-

gestive signi�cant genetic variants from the European genome-wide association

meta-analyses of the 90
th

and 99
th

percentile versus all controls. We had insuf-

�cient studies with data for rs7676745 in the 99
th

percentile versus all controls

meta-analysis to reliable analyse this genetic variant due to its relatively low minor

allele frequency.
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Figure 7.6: Quantile-quantile plots for the trans-ethnic genome-wide asso-
ciation meta-analyses. Quantile-quantile plots of the expected versus (unad-

justed) observed − log10 P-values for the trans-ethnic genome-wide association

meta-analysis of the 90
th

percentile cases versus all controls (λ = 0.97, a) and 99
th

percentile cases versus all controls (λ = 0.93, b).
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Figure 7.7: Results for the European genome-wide association meta-
analyses using di�erent control de�nitions. Manhattan plot presenting the

− log10 P-values from the European genome-wide association meta-analysis of the

90
th

percentile cases versus all controls (a) or dead controls only (b). The red line

indicates the threshold for genome-wide signi�cance (P ≤5x10
−8

), while the blue

line indicates the threshold for genetic variants that showed a suggestive signi�cant

association (P ≤ 1x10
−6

). For representation purposes, the maximum of the Y-axis

was set to 14.
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Figure 7.8: Study-speci�c results for the genetic variants in FOXO3 and
CDKN2A/B. Forest plots for rs2802292 (a) and rs1556516 (b) based on the results

from the 90
th

percentile versus all controls analysis. The size of the boxes represents

the sample size of the cohort.
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7.9 Supplementary Tables
Supplementary Tables and Supplementary Information can be accessed by

scanning the following code or accessing the journal’s website at this address.

https://www.nature.com/articles/s41467-019-11558-2#Sec23
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Abstract

Genetic association studies are frequently used to study the genetic

basis of numerous human phenotypes. However, the rapid interro-

gation of how well a certain genomic region associates across traits

as well as the interpretation of genetic associations is often complex

and requires the integration of multiple sources of annotation, which

involves advanced bioinformatic skills. We developed snpXplorer, an

easy-to-use web-server application for exploring Single Nucleotide

Polymorphisms (SNP) association statistics and to functionally anno-

tate sets of SNPs. snpXplorer can superimpose association statistics

from multiple studies, and displays regional information including

SNP associations, structural variations, recombination rates, eQTL,

linkage disequilibrium patterns, genes and gene-expressions per tis-

sue. By overlaying multiple GWAS studies, snpXplorer can be used

to compare levels of association across di�erent traits, which may

help the interpretation of variant consequences. Given a list of SNPs,

snpXplorer can also be used to perform variant-to-gene mapping and

gene-set enrichment analysis to identify molecular pathways that are

overrepresented in the list of input SNPs. snpXplorer is freely available

at https://snpxplorer.net. Source code, documentation, exam-

ple �les and tutorial videos are available within the Help section of

snpXplorer and at https://github.com/TesiNicco/snpXplorer.

https://snpxplorer.net
https://github.com/TesiNicco/snpXplorer
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8.1 Background
Genome-wide association studies (GWAS) and sequencing-based association

studies are a powerful approach to investigate the genetic basis of complex

human phenotypes and their heritability. Facilitated by the cost-e�ectiveness

of both genotyping and sequencing methods and by established analysis

guidelines, the number of genetic association studies has risen steeply in the

last decade: as of February 2021, the GWAS-Catalog, a database of genetic

association studies, contained 4,865 publications and 247,051 variant-trait

associations. [1] To understand how genetic factors a�ect di�erent traits,

it is valuable to explore various annotations of genomic regions as well as

how associations relate between di�erent traits. But this requires combining

diverse sources of annotation such as observed structural variations (SV),

expression-quantitative-trait-loci (eQTL), or chromatin context. Moreover, a

framework to quickly visualize and compare association statistics of speci�c

genomic regions across multiple traits is missing, and may be bene�cial to

the community of researchers working on human genetics. In addition, the

functional interpretation of the e�ects of genetic variants on a gene-, protein-

or pathway-level is di�cult as often genetic variants lie in non-coding re-

gions of the genome. As a one- to one mapping between genetic variants

and a�ected genes is not trivial in these circumstances, it might be wise

to associate multiple genes with a variant. Hence, a profound knowledge

of biological databases, bioinformatics tools, and programming skills is of-

ten required to interpret GWAS outcomes. Unfortunately, not everyone is

equipped with these skills. To assist human geneticists, we have developed

snpXplorer, a web-server application written in R that allows (i) the rapid

exploration of any region in the genome with customizable genomic features,

(ii) the superimposition of summary statistics from multiple genetic associ-

ation studies, and (iii) the functional annotation and pathway enrichment

analysis of SNP sets in an easy-to-use user interface.



8

8.2 Methods 239

Figure 8.1: snpXplorer graphical abstract. The �gure shows an overview of the

exploration and annotation capabilities of snpXplorer.

8.2 Methods

8.2.1 Web server structure

snpXplorer is a web-server application based on the R package shiny that

o�ers an exploration section and a functional annotation section. The ex-

ploration section represents the main interface (Figure 8.1) and provides an

interactive exploration of a (set of) GWAS data sets. The functional annota-

tion section takes as input any list of SNPs, runs a functional annotation and

enrichment analysis in the background, and send the results by email.

8.2.2 Exploration section

First, input data must be chosen, which can either be one of the available

summary statistics datasets and/or the user can upload their own association

dataset. One of the main novelties in snpXplorer is the possibility to select

multiple association datasets as inputs (including data uploaded by the user).

These will be displayed on top of each other with di�erent colours. The avail-
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able summary statistics will be kept updated. As of February 2021, snpXplorer
includes genome-wide summary statistics of 23 human traits classi�ed in 5

disease categories: neurological traits (Alzheimer’s disease, family history

of Alzheimer’s disease, autism, depression, and ventricular volume),[2, 3,

4, 5, 6] cardiovascular traits (coronary artery disease, systolic blood pres-

sure, body-mass index and diabetes), [7, 8, 9, 10] immune-related traits

(severe COVID infections, Lupus erythematosus, in�ammation biomark-

ers and asthma),[11, 12, 13, 14] cancer-related traits (breast, lung, prostate

cancers, myeloproliferative neoplasms and Lymphocytic leukaemia),[15, 16,

17, 18] and physiological traits (parental longevity, height, education, bone-

density and vitamin D intake).[9, 19, 20, 21, 22] These summary statistics

underwent a process of harmonization: we use the same reference genome

(GRCh37, hg19) for all SNP positions, and in case a study was aligned to the

GRCh38 (hg38), we translate the coordinates using the liftOver tool.[23] In

addition, we only store chromosome, position and p-value information for

each SNP-association. The user may upload own association statistics to

display within snpXplorer : the �le must have at least chromosome-, position-,

and p-value columns, and the size should not exceed 600Mb. snpXplorer
automatically recognizes the di�erent columns, supports PLINK (v1.9+ and

v2.0+) association �les,[24] and we provide several example �les in the Help

section of the web-server. After selecting the input type, the user should

set the preferred genome version. By default, GRCh37 is used, however, all

available annotation sources are available also for GRCh38, and snpXplorer
can translate genomic coordinates from one reference version to another. In

order to browse the genome, the user can either input a speci�c genomic

position, gene name, variant identi�er, or select the scroll option, which

allows to interactively browse the genome. The explorative visualisation

consists of 3 separate panels showing (i) the SNP summary statistics of the

selected input data (Figure 1A), (ii) the structural variants in the region of

interest (Figure 1B), and (iii) the tissue-speci�c RNA-expression (Figure 1C).

The �rst (and main) visualization panel shows the association statistics of

the input data in the region of interest: genomic positions are shown on the

x-axis and association signi�cance (in − log10 scale) is reported on the y-axis.

Both the x-axis and the y-axis can be interactively adjusted to extend or

contract the genomic window to be displayed. Linkage disequilibrium (LD)

patterns are optionally shown for the most signi�cant variant in the region,

the input variant, or a di�erent variant of choice. The linkages are calculated

using the genotypes of the individuals from the 1000Genome project, with

the possibility to select the populations to include.[25] There are two ways to
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visualise the data: by default, each variant-association is represented as a dot,

with dot-sizes optionally re�ecting p-values. Alternatively, associations can

be shown as p-value pro�les: to do so, (i) the selected region is divided in bins,

(ii) a local maximum is found in each bin based on association p-value, and

(iii) a polynomial regression model is �tted to the data, using the p-value of

all local maximum points as dependent variable and their genomic position

as predictors. Regression parameters, including the number of bins and the

smoothing value, can be adjusted. Gene names from RefSeq (v98) are always

adapted to the plotted region.[26] Finally, recombination rates from HapMap

II, which give information about recombination frequency during meiosis,

are optionally shown in the main plot interface.[27] The second panel shows

structural variations (SV) in the region of interest. These are extracted from

three studies that represent the state-of-the-art regarding the estimation

of major structural variations across the genome using third-generation

sequencing technologies (i.e. long read sequencing).[28, 29, 30] Structural

variations are represented as segments: the size of the segment codes for the

maximum di�erence in allele sizes of the SVs as observed in the selected stud-

ies. Depending on the di�erent studies, structural variations are annotated

as insertions, deletions, inversions, copy number alterations, duplications,

mini-, micro- and macro-satellites, and mobile element insertions (Alu el-

ements, LINE1 elements, and SVAs). The third panel shows tissue-speci�c

RNA-expression (from the Genotype-Tissue-expression consortium, GTEx)

of the genes displayed in the selected genomic window.[31] The expression

of these genes across 54 human tissues is scaled and reported as a heatmap.

Hierarchical clustering is applied on both the genes and the tissues, and the

relative dendrograms are reported on the sides of the heatmap.

The side panel allows the user to interact with the exploration section.

In order to guide the user through all the available inputs and options, help

messages automatically appear upon hovering over items. The side panel

reports (i) the top 10 variants with highest signi�cance (together with the

trait they belong to, in case multiple studies were selected), and (ii) the top

eQTLs associations (by default, eQTLs in blood are shown, and this can

be optionally changed), and cross-references including GeneCards, GWAS-

catalog, and LD-hub.[1, 32, 33] Finally, download buttons allow to download

a high-quality image of the di�erent visualisation panels as well as the tables

reporting the top SNP and eQTL associations, the SVs in the selected genomic

window, and the LD table.
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Figure 8.2: snpXplorer exploration section. A. First and main visualisation

interface reporting summary statistics of multiple genetic studies as shown with

p-value pro�les. B. Structural variants within the region of interest are reported as

segments and colored according to their type C. Tissue-speci�c RNA-expression

(from Genotype-Tissue-Expression, GTEx) of the genes displayed in the region of

interest.
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8.2.3 Functional Annotation section

The functional annotation pipeline consists of a two-step procedure: �rstly,

genetic variants are linked to likely a�ected genes (variant-gene mapping);

and, secondly, the likely a�ected genes are tested for pathway enrichment

(gene-pathway mapping). In the variant-gene mapping, genetic variants are

linked to the most likely a�ected gene(s) by (i) associating a variant to a gene

when the variant is annotated to be coding by the Combined Annotation

Dependent Depletion (CADD, v1.3), (ii) annotating a variant to genes based

on found expression-quantitative-trait-loci (eQTL) from GTEx (v8, with

possibility to choose the tissue(s) of interest), or (iii) mapping a variant to

genes that are within distance d from the variant position, starting with d ≤
50kb, up to d ≥ 500kb, increasing by 50kb until at least one match is found

(from RefSeq v98).[26, 31, 34] Note that this procedure might map multiple

genes to a single variant, depending on the e�ect and position of each variant.

Then, we �rst report whether the input SNPs as well as their likely associated

genes were previously associated with any trait in the GWAS-Catalog (traits

are coded by their Experimental Factor Ontology (EFO) term). For this

analysis, we downloaded all signi�cant SNP-trait associations of all studies

available in the GWAS-Catalog (v1.0.2, available at https://www.ebi.ac.

uk/gwas/docs/file-downloads), which includes associations with p <
9x10−6. Given a set of input SNPs associated with a set of genes, this

analysis results in a set of traits (provided that the SNPs and/or the genes

were previously associated with a trait). Hereto, we plot the number of SNPs

in the list of uploaded SNPs that associate with the trait (expressed as a

fraction). To correct for multiple genes being associated with a single variant,

we estimate these fractions by sampling (500 iterations) one gene from

the pool of genes associated with each variant, and averaging the resulting

fractions across the sampling. Summary tables of the GWAS-Catalog analysis,

including also EFO URI links for cross-referencing are provided as additional

output. Next, we report on the structural variations that lie in the vicinity

(10kb upstream and downstream) of the input SNPs, and present information

such as SV start and end position, SV type, maximum di�erence in allele

size, and genes likely associated with the relative SNPs. Finally, we perform

a gene-set enrichment analysis to �nd molecular pathways enriched within

the set of genes associated with the input variants. Also, here we use the

mentioned sampling technique to avoid a potential enrichment bias due to

multiple genes being mapped to the same variant (this time the sampling is

used to calculate p-values for each term). The gene-set enrichment analysis

https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ebi.ac.uk/gwas/docs/file-downloads
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is performed using the Gost function from the R package gpro�ler2.[35] The

user can specify several gene-set sources, such as Gene Ontology (release

2020-12-08),[36] KEGG (release 2020-12-14),[37] Reactome (release 2020-12-

15),[38] and Wiki-pathways (release 2020-12-10).[39] The full table of the

gene-set enrichment analysis comprising all tested terms and their relative

sampling-based p-values is sent to the user. For each of the selected gene-set

sources, the signi�cant enriched terms are plotted (up to FDR<10%). In case

the Gene Ontology is chosen as gene-set source, we additionally reduce the

visual complexity of the enriched biological processes using (i) the REVIGO
tool and (ii) a term-based clustering approach.[40] We do so because the

interpretation of gene-set enrichment analyses is typically di�cult due to

the large number of terms. Clustering enriched terms then helps to get an

overview, and thus eases the interpretation of the results. Brie�y, REVIGO
masks redundant terms based on a semantic similarity measure, and displays

enrichment results in an embedded space via eigenvalue decomposition of the

pairwise distance matrix. In addition to REVIGO, we developed a term-based

clustering approach to remove redundancy between enriched terms. To do

so, we �rst calculate a semantic similarity matrix between all enriched terms,

and then apply hierarchical clustering on the obtained distance matrix. We

estimate the optimal number of clusters using a dynamic cut tree algorithm

and plot the most recurring words of the terms underlying each cluster using

wordclouds. We use Lin as semantic distance measure for both REVIGO
and our term-based clustering approach.[41] Figures representing REVIGO
results, the semantic similarity heatmap (showing relationships between

enriched terms), the hierarchical clustering dendrogram, and the wordclouds

of each clusters, are generated. Finally, all tables describing REVIGO analysis

and our term-based clustering approach (including all enriched terms and

their clustering scheme) are produced and sent as additional output to the

user for further manipulation. Note that the initial signi�cant GO terms are

not removed and also included in the reporting.
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8.3 Results

8.3.1 Case Study

To illustrate the performances of snpXplorer, we explored the most recent set

of common SNPs associated with late-onset Alzheimer’s disease (AD, N=83

SNPs, Table S1).[42] Using this dataset as case study, we show the bene�ts of

using snpXplorer in a typical scenario. Brie�y, AD is the most prevalent type

of dementia at old age, and is associated with a progressive loss of cognitive

functions, ultimately leading to death. In its most common form (late-onset

AD, with age at onset typically >65 years), the disease is estimated to be

60-80% heritable. With an attributable risk of ∼30%, genetic variants in APOE
gene represent the largest common genetic risk factor for AD. In addition

to APOE, the genetic landscape of AD now counts 83 common variants that

are associated with a slight modi�cation of the risk of AD. Understanding

the genes most likely involved in AD pathogenesis as well as the crucial

biological pathways is warranted for the development of novel therapeutic

strategies for AD patients. We retrieved the list of AD-associated genetic

variants in Table 1 of the preprint from Bellenguez et al, 2020.[42] This study

represent the largest GWAS on AD performed to date, and resulted in 42

novel SNPs reaching genome-wide evidence of association with AD. The

exploration section of snpXplorer can be �rstly used to inspect the association

statistics of the novel SNP-associations in previous studies of the same trait

(i.e. International Genomics of Alzheimer Project (IGAP) and family history

of AD (proxy AD)). Speci�cally, a suggestive degree of association in these

regions is expected to be found in earlier studies. As expected, suggestive

association signals were already observed for the novel SNPs, increasing the

likelihood that these novel SNPs are true associations (Figure 8.4).

After the �rst explorative analysis, we pasted the variant identi�ers

(rsIDs) in the annotation section of snpXplorer, specifying rsid as input type,

Gene Ontology and Reactome as gene-sets for the enrichment analysis, and

Blood as GTEx tissue for eQTL (i.e. the default value). The N=83 variants

were linked to a total of 162 genes, with N=54 variants mapping to 1 gene,

N=12 variants mapping to 2 genes, N=7 variants mapping to 3 genes, N=2

variants mapping to 4 genes, N=1 variant mapping to 5 genes, N=4 variants

mapping to 4 genes, and N=1 variant mapping to 7, 8 and 11 genes (??). N=10

variants were found to be coding variants, N=31 variants were found to be

eQTL, and N=42 variants were annotated based on their genomic position.

These results are returned to the user in the form of a (human and machine-

readable) table, but also in the form of a summary plot (Figure 8.3A and ??).
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Figure 8.3: Results of the functional annotation of N=83 variants associated
with Alzheimer’s disease (AD). A. The circular summary �gure shows the type

of annotation of each genetic variant used as input (coding, eQTL or annotated by

their positions) as well as each variant’s minor allele frequency and chromosomal

distribution. B. REVIGO plot, showing the remaining GO terms after removing

redundancy based on a semantic similarity measure. The colour of each dot codes

for the signi�cance (the darker, the more signi�cant), while the size of the dot

codes for the number of similar terms removed from REVIGO. C. Results of our

term-based clustering approach. We used Lin as semantic similarity measure to

calculate similarity between all GO terms. We then used ward-d2 as clustering

algorithm, and a dynamic cut tree algorithm to highlight clusters. Finally, for each

cluster we generated wordclouds of the most frequent words describing each cluster.
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These graphs not only inform the user about the e�ect of the SNPs of interest

(for example, a direct consequence on the protein sequence in case of coding

SNPs, or a regulatory e�ect in case of eQTLs or intergenic SNPs), but also

suggest the presence of more complex regions: for example, ??B indicates

the number of genes associated with each SNP, which normally increases for

complex, gene-dense regions such as HLA-region or IGH -region. In order to

prioritize candidate genes, the authors of the original publication integrated

(i) eQTLs and colocalization (eQTL coloc) analyses combined with expres-

sion transcriptome-wide association studies (eTWAS) in AD-relevant brain

regions; (ii) splicing quantitative trait loci (sQTLs) and colocalization (sQTL

coloc) analyses combined with splicing transcriptome-wide association stud-

ies (sTWAS) in AD-relevant brain regions; (iii) genetic-driven methylation

as a biological mediator of genetic signals in blood (MetaMeth).[43] In order

to compare the SNP-gene annotation of the original study with that of snpX-
plorer, we counted the total number of unique genes associated with the SNPs

(i) in the original study (N=97), (ii) using our annotation procedure (N=136),

and (iii) the intersection between these gene sets (N=79). When doing so, we

excluded regions mapping to the HLA-gene cluster and IGH -gene clusters (3

SNPs in total) as the original study did not report gene names but rather HLA-

cluster and IGH -cluster. Nevertheless, our annotation procedure correctly

assigned HLA-related genes and IGH -related genes with these SNPs. The

number of intersecting genes was signi�cantly higher than what could be

expected by chance (p=0.03, based on one-tail p-value of binomial test, Table

S2). For 6 SNPs, the gene annotated by our procedure did not match the gene

assigned in the original study. Speci�cally, for 4/6 of these SNPs, we found

signi�cant eQTLs in blood (rs60755019 with ADCY10P1, rs7384878 with PILRB,
STAG3L5P, PMS2P1, GIGYF1, and EPHB4 genes, rs56407236 with FAM157C
gene, and rs2526377 with TRIM37 gene), while the original study reported the

closest genes as most likely gene (rs60755019 with TREML2 gene,rs7384878
with SPDYE3 gene,rs56407236 with PRDM7 gene and rs2526377 with TSOAP1
gene). In addition, we annotated SNPs rs76928645 and rs139643391 to SEC61G
and WDR12 genes (closest genes), while the original study, using eQTL and

TWAS in AD-relevant brain regions, annotated these SNPs to EGFR and

ICA1L/CARF genes. While the latter two SNPs were likely mis-annotated in

our procedure (due to speci�c datasets used for the annotation), our annota-

tion of the former 4 SNPs seemed robust, and further studies will have to

clarify the annotation of these SNPs. With the resulting list of input SNPs and

(likely) associated genes, we probed the GWAS-Catalog and the datasets of

structural variations for previously reported associations. We found a marked
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enrichment in the GWAS-Catalog for Alzheimer’s disease, family history of

Alzheimer’s disease, and lipoprotein measurement (??, Table S3 and Table

S4). The results of this analysis are relevant to the user as they indicate other

traits that were previously associated with the input SNPs. As such, they may

suggest relationships between di�erent traits, for example in our case study

they suggest the involvement of cholesterol and lipid metabolism in AD, a

known relationship.[43] Next, we searched for all structural variations in a re-

gion of 10kb surrounding the input SNPs, and we found that for 39/83 SNPs,

a larger structural variations was present in the vicinity (Table S5), including

the known VNTR (variable number of tandem repeats) in ABCA7 gene,[44]

and the known CNV (copy number variation) in CR1, HLA-DRA, and PICALM
genes (Table S5).[45, 46, 47] This information may be particularly interesting

for experimental researchers investigating the functional e�ect of SVs, and

could be used to prioritize certain genomic regions. Because of the complex

nature of large SVs, these regions have been largely unexplored, however

technological improvements now make it possible to accurately measure

SV alleles. We then performed our (sampling-based) gene-set enrichment

analysis using Gene Ontology Biological Processes (GO:BP, default setting)

and Reactome as gene-set sources, and Blood as tissue for the eQTL analysis.

After averaging p-values across the number of iterations, we found N=132

signi�cant pathways from Gene Ontology (FDR<1%) and N=4 signi�cant

pathways from Reactome (FDR<10%) (Figure 8.7 and Table S6). To facili-

tate the interpretation of the gene-set enrichment results, we clustered the

signi�cantly enriched terms from Gene Ontology based on a semantic simi-

larity measure using REVIGO (Figure 8.3 B) and our term-based clustering

approach (Figure 8.3C). Both methods are useful as they provide an overview

of the most relevant biological processes associated with the input SNPs.

Our clustering approach found �ve main clusters of GO terms (Figure 8.3C

and Figure 8.8). We generated wordclouds to guide the interpretation of

the set of GO terms of each cluster (Figure 8.3C). The �ve clusters were

characterized by (1) tra�cking and migration at the level of immune cells, (2)

activation of immune response, (3) organization and metabolic processes, (4)

beta-amyloid metabolism and (5) amyloid and neuro�brillary tangles forma-

tion and clearance (Figure 8.3C). All these processes are known to occur in

the pathogenesis of Alzheime’s disease from other previous studies.[42, 43,

48, 49] We observed that clusters generated by REVIGO are more conserva-

tive (i.e. only terms with a high similarity degree were merged) as compared

to our term-based clustering which generates a higher-level overview. In the

original study (Table S15 from [42]), the most signi�cant gene sets related
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to amyloid and tau metabolism, lipid metabolism and immunity. In order to

calculate the extent of term overlap between results from the original study

and our approach, we calculated semantic similarity between all pairs of

signi�cantly enriched terms in both studies. In addition to showing pairwise

similarities between all terms, this analysis also shows how the enriched

terms in the original study relate to the clusters found using our term-based

approach. We observed patterns of high similarity between the signi�cant

terms in both studies (Figure 8.9). For example, terms in the “Activation of

immune system” and the “Beta-amyloid metabolism” clusters (de�ned with

our term-based approach), reported high similarities with speci�c subsets of

terms from the original study. This was expected as these clusters represent

the most established biological pathways associated with AD. The cluster

“Tra�cking of immune cells” had high similarity with a speci�c subset of

terms from the original study, yet we also observed similarities with the

Activation of immune system cluster, in agreement with the fact that these

clusters were relatively close also in tree structure (Figure 8.3C). Similarly,

high similarities were observed between the Beta-amyloid metabolism and

the Amyloid formation and clearance clusters. Finally, the Metabolic processes
had high degree of similarity with a speci�c subset of terms, but also with

terms related to Activation of immune system cluster. Altogether, we showed

that (i) enriched terms from the original study and our study had a high

degree of similarity, and (ii) that the enriched terms of the original study

resembled the structure of our clustering approach. The complete analysis

of 83 genetic variants took about 30 minutes to complete.

8.4 Discussion
Despite the fact that many summary statistics of genetic studies have been

publicly released, the integration of such a large amount of data is often

di�cult and requires speci�c tools and knowledge. Even simple tasks, such

as the rapid interrogation of how well a certain genomic region associates

with a speci�c trait or multiple traits can be frustrating and time consuming.

Our main objective to develop snpXplorer was the need for an easy-to-use

and user-friendly framework to explore, analyse and integrate outcomes

of GWAS and other genetic studies. snpXplorer showed to be a robust tool

that can support a complete GWAS analysis, from the exploration of speci�c

regions of interest to the variant-to-gene annotation, gene-set enrichment

analysis and interpretation of associated biological pathways. To our knowl-

edge, the only existing web-server that o�ers a similar explorative framework
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as snpXplorer is the GWAS-Atlas.[50] GWAS-Atlas was primarily developed

as a database of publicly available GWAS summary statistics. It o�ers possi-

bilities to visualise Manhattan and quantile-quantile (QQ) plots, to perform

downstream analyses using MAGMA statistical framework, and to study

genetic correlation between traits by means of LD score regression.[51, 52]

However, snpXplorer was developed mainly for visualisation purposes, and

thus incorporate multiple unique features such as the possibility to visualise

multiple GWAS datasets simultaneously or to upload an external association

dataset for additional comparisons with existing datasets. Moreover, snpX-
plorer annotates these visualisations with several genomic features such as

structural variations, recombination rates, LD patterns and eQTLs. All the

relevant information showed in snpXplorer, such as top SNP information,

eQTL tables, LD tables and structural variants can be easily downloaded for

further investigations. Further, we would like to stress the relevance of over-

laying the GWAS results with structural variants found by third-generation

sequencing. Such structural variations have already been shown to play a

signi�cant role for several traits, in particular for neurodegenerative diseases,

and snpXplorer is thus far the only web-server where such information can

be visualized in the context of GWAS summary statistics.[44, 45, 53, 54]

We do acknowledge that for an in-depth functional annotation analysis of

GWAS, the possibility of integrating additional ad-hoc information (such

as eQTLs, sQTLs, eTWAS and sTWAS from speci�c disease-related regions)

may improve the analysis, but such data is not always available, is time

consuming and requires deep knowledge. Several online and o�ine tools

have been developed with a similar goal, e.g. SNPnexus, ANNOVAR, FUMA
and Ensembl VEP.[55, 56, 57, 58] Some of these tools are characterized by a

larger list of annotation sources, for example implementing multiple tools

for variant e�ect prediction (e.g. SNPnexus, Ensembl VEP or ANNOVAR), or

more extensive pathway enrichment analyses at the tissue- and cell-type

level (e.g. FUMA). We have shown that snpXplorer provides similar results in

terms of annotation capabilities and gene-set enrichment analysis as com-

pared to existing tools. Yet, snpXplorer has several unique features for the

functional annotation section, such as the extensive interpretation analysis

implemented in REVIGO, our term-based clustering approach and the word-

cloud visualisation, or the possibility to associate multiple genes with each

SNP during gene-set enrichment analysis. Moreover, snpXplorer develop-

ment will continue by implementation of additional annotation sources and

analyses. Altogether, we showed that snpXplorer is a promising functional

annotation tool to support a typical GWAS analysis. As such, it has been
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previously applied for the annotation and downstream analysis of genetic

variants associated with Alzheimer’s disease and human longevity.[49]

8.4.1 Future updates
For future updates, we plan to keep updated and increase the list of summary

statistics available to be displayed in the exploration section. In its current

version, the exploration section of snpXplorer requires the user to de�ne a re-

gion of interest to look, while genome-wide comparisons are not considered.

However, it is our intention to implement a genome-wide comparison across

GWAS studies that, given a set of input GWASs and a signi�cance threshold

alpha, reports all SNPs with a p<α across the studies, allowing for a more

rapid visualisation of overlapping SNP-associations. Moreover, we plan to

increase the number of annotation sources and available options in the an-

notation section (for example, including methylation-QTL, protein-QTL and

splicing-QTL). Finally, we are also working towards adding a framework to

calculate weighted polygenic risk scores given a set of individuals’ genotypes

and a reference study to take variant e�ect-sizes from.

8.5 Availability
snpXplorer is an open-source web-server available at https://snpxplorer.

net. Tutorial videos, full documentation and link to code are available in the

Help page of the web-server. snpXplorer is running as from March-2020, was

tested both within and outside our group, and runs steadily on both Unix

and Windows most common browsers (Safari, Google Chrome, Microsoft

Edge, Internet Explorer, and Firefox). For certain steps, snpXplorer does rely

on external tools and sources (e.g. REVIGO), and consequently depends on

their availability. Although discouraged, the tool can also be installed locally

on your machine: additional information on how to do it are available in

our github at https://github.com/TesiNicco/SNPbrowser, however, we

note that for the stand-alone version additional �les should be downloaded

separately, for example, all summary statistics. snpXplorer requires R (v3.5+)

and python (v3+) correctly installed and accessible in your system. snpXplorer
uses the following R packages: shiny, data.table, stringr, ggplot2, liftOver,
colourpicker, rvest, plotrix, parallel, SNPlocs.Hsapiens.dfSNP144.GRCh37, lme4,
ggsci, RColorBrewer, gpro�ler2, GOSemSim, GO.db, org.Hs.eg.db, pheatmap,
circlize, devtools, treemap, basicPlotteR, gwascat, GenomicRanges, rtracklayer,
Homo.sapiens, BiocGenerics, and the following python libraries: re, werkzeug,
robobrowser, pygosemsim, numpy, csv, networkx and sys.

https://snpxplorer.net
https://snpxplorer.net
https://github.com/TesiNicco/SNPbrowser
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Figure 8.4: Rapid exploration of novel SNP-associations in existing GWAS
datasets. A. The �gure shows the region surrounding WDR12 gene, for which a

novel SNP-association was found in the case-study GWAS of Alzheimer’s disease

(AD). Two previous studies of AD are plotted, and show that suggestive association

signals were present in earlier studies, yet the association did not reach genome-

wide statistical signi�cance, likely due to sample size. Similar plots show the regions

surrounding TSPAN14 (B), SHARPIN (C),PRDM7 (D) ,PLEKHA1 (E) and NCK2 (F).
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8.8 Supplementary Figures

Figure 8.5: Extreme AD cases vs. normal controls: EkEA−NC .Variant- gene
mapping procedure. A. The �gure shows the type of genetic variants used as

input, classi�ed as coding, eQTL or annotated by their positions. B. The barplot

shows the number of genes associated with each variant. C. The barplot shows the

chromosomal distribution of all input variants.

Figure 8.6: Fraction of SNPs and Genes association with traits in the GWAS
Catalog. A. Number of input SNPs previously associated with traits in the GWAS

catalog. B. Fraction of genes (associated with input SNPs) previously associated

with traits in the GWAS Catalog.
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Figure 8.7: Gene-set enrichment analysis. The �gure shows the barplot of the

most signi�cant pathways (FDR<10%) from Reactome.
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Figure 8.8: Semantic similarity matrix.The plot shows the semantic similarity

matrix between all signi�cantly enriched GO (Gene Ontology) biological processes

terms (N=132). As semantic similarity, we used Lin.
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Figure 8.9: Comparison of gene-set enrichment results in the original study
and using snpXplorer functional annotation section.The heatmap shows the

pairwise semantic similarity values between all signi�cantly enriched terms in the

original study (y-axis, N=92) and using snpXplorer functional annotation section (x-

axis, N=132). The terms from our study (x-axis) are ordered based on their assigned

cluster as a result of our term-based clustering approach. Large similarity patterns

are visible in the heatmap, especially of terms (from the original study) mapping to

Activation of immune response cluster (red cluster) and to Beta-amyloid metabolism
cluster (green cluster). Some enriched terms mapping to Tra�cking of immune
cells (black cluster) had high similarity with Activation of immune response (purple

cluster) cluster, and some terms mapping to Amyloid formation and clearance had

high similarity with Beta-amyloid metabolism, resembling the structure of the tree

constructed in our study. The remaining Metabolic processes cluster (blue cluster)

had high similarity with a speci�c subset of enriched terms, but we also observed

high similarity with the Activation of immune system cluster.
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8.9 Supplementary Tables
Supplementary Tables can be accessed by scanning the following code or

accessing the journal’s website here.

https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkab410/6287842#supplementary-data
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Key �ndings

The overall objective of this thesis was to investigate the genetic

factors underlying maintained cognitive health until extreme ages, in

the context of Alzheimer’s disease (AD) and extreme human longevity.

Here, we provide a summary of our key �ndings:

• Cognitively healthy centenarians have a lower frequency of

common variants that increase the risk to develop AD and have

a higher frequency of variants that protect against the disease.

• The risk to develop, or being resilient against, AD changes

on a pathway basis: we found that the polygenic risk of vari-

ants involved in immune response and endocytosis processes

associated the most with the resilience against AD

• The majority of alleles that increase the risk of AD, negatively

a�ect lifespan. While for most alleles the negative e�ect on

lifespan is explained through the increased risk of AD, a subset

of alleles appeared to be bene�cial for healthy aging, and as

such, decreased the risk of AD

• A polygenic risk score of longevity comprising 330 variants

associated with becoming a cognitively healthy centenarian, led

up to 4-year di�erence in survival and functionally associated

with hallmarks of longevity

• We combined previous GWAS of clinical AD and AD by-proxy

in the largest genome-wide meta-analysis of AD to date, which

led to the discovery of six novel genetic variants that in�u-

ence the risk of AD, expanding the knowledge of the genetic

landscape of AD

• In the largest genome-wide association meta-analysis of

longevity to date, we discovered one variant in addition to

APOE variants near GPR78 gene to be signi�cantly associated

with longevity, and identi�ed a shared genetic architecture of

health and longevity

• We have developed snpXplorer, an open-source web application

that allows the exploration of GWAS association results, as

well as the functional annotation and the pathway enrichment

analysis of any given set of genetic variants
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9.1 General discussion
The study of individuals with extreme longevity has enabled the discovery of

environmental and genetic factors that impact lifespan.[1, 2] However, with

an increasing fraction of individuals reaching old age, the next challenge is

to determine which factors are associated with a healthy lifespan. Reaching

100 years is only satisfying when chronic illnesses and cognitive decline due

to dementia can be escaped as much as possible. The 100-plus Study and

other centenarian studies around the world have demonstrated that although

rare, this is possible. About ∼10% of all centenarians can be considered to be

in good cognitive and physical conditions.[3, 4] This subgroup of individuals

may have speci�c characteristics that protect or delay the onset of cognitive

impairment and other age-related diseases, which emphasizes the need to

explore the underlying mechanisms that maintained their cognitive health.

In this chapter, we interpret the most important �ndings presented in this

thesis, including the exploration of genetic factors in cognitively healthy

centenarians. We will further discuss challenges, limitations, and future

perspectives.

9.2 Genetic factors influencing resilience against Alzheimer’s dis-
ease
Resilience is the process that allows individuals to withstand adverse con-

ditions.[5] In the context of Alzheimer’s disease (AD) research, this refers

to the ability to escape the development of clinical symptoms of AD, while

being exposed to risk factors that would normally result in cognitive de-

cline.[6] Given the high heritability of AD, such resilience mechanisms may

also be genetically encoded. However, while cognitive resilience is an ac-

tive research �eld in psychology and psychiatry, the extent of the role of

the genetically encoded resilience, in AD and other age-related disease, is

largely unexplored. In this thesis, we investigated for the �rst time the role

of genetic factors underlying the resilience against Alzheimer’s disease in

individuals that reached extremely old ages without su�ering from demen-

tia. In chapter 2 and chapter 3, we studied the frequency of AD-associated

genetic variants in cognitively healthy agers, middle-aged population con-

trols, and relatively young AD cases.[7, 8] These individuals together cover

the entire cognitive spectrum, with cognitively healthy agers and AD cases

representing the two extremes. Therefore, using the healthy population

subjects as the middle point, we were able to study, on the one end, the risk

to develop AD (in a comparison of young AD cases and population controls),
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and, on the other end, the resilience against AD (by comparing population

controls and cognitively healthy agers). Comparing the two extremes in the

cognitive spectrum, we observed a remarkable average 2-fold enrichment

in the variant e�ect-sizes compared to expected e�ect-sizes from published

GWAS. At the level of the single variant, the e�ect-size increase was as high

as 6-fold. Importantly, this enrichment was mainly driven by the cognitively

healthy centenarians. This means that cognitively healthy agers are depleted

with genetic variants associated with increased AD-risk compared to the

general population, and that the study of individuals with extreme pheno-

types is protifable for the research of genetic factors associated with AD.

However, our research raises additional questions regarding the nature of

extreme cases, e.g. the existence of rare, undiscovered genetic variations

that may explain the early onset of the disease. Interestingly, the degree

of depletion/enrichment of the di�erent AD variants in the centenarians

was not constant but appeared to cluster on a pathway basis. In chapter 3,

we focused on the major pathways thought to underly AD pathogenesis,

and we combined the e�ect of multiple variants in Polygenic Risk Scores

(PRSs) and pathway-speci�c PRSs. We showed that a PRS including all AD-

associated variants signi�cantly associated with both the increased risk and

the resilience against AD. Furthermore, we found that the escaping AD was

genetically encoded by variants associated with immune-related processes,

even after excluding the large e�ect of APOE-associated variants. Although

not speci�cally on AD, previous animal and human studies have highlighted

the relationship between immune response and psychological resilience in

humans.[5] Genetic variants involved in immune-related mechanisms may

also contribute to such e�ect, eventually making resilient individuals able

to better recover from in�ammation-induced stressors.[5] Altogether, we

observed that achieving extreme ages with maintained cognitive health is

encoded, at least in part, by genetic factors that are speci�cally involved in

immune-related mechanisms. This suggests that modulating immune-related

pathways may be a feasible strategy to prevent AD.

9.3 APOE alleles in cognitively healthy centenarians
The strongest genetic factors associated with increased AD-risk, protec-

tion against AD, and human longevity, are the ε2 and ε4 alleles in the

APOE gene.[9, 10, 11, 12] Despite >20 years of research, the mechanisms by

which APOE a�ects molecular pathways of AD is not completely understood.

Although more research will eventually lead to a deeper understanding
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of APOE functions, it seems that the APOE gene is involved in all major

known AD-associated pathways (β-amyloid metabolism, lipid and choles-

terol metabolism, and immunity), which we also showed in chapter 3 and

chapter 4. Likely due to the combination of e�ect on both AD and longevity,

our cohort of cognitively healthy centenarians is remarkably enriched for

the ε2 allele and depleted for the ε4 allele. That is, while the frequency of

ε2 and ε alleles is respectively 8% and 16% in the general population, in AD

is about 4% and 43%, and in our centenarians the frequencies were 16% and

8%.[7] For this reason, it was necessary to correct the analyses in chapter 3

and chapter 5 according to carriership of APOE variants: after correction, we

still observed a signi�cant di�erence in the PRS and pathway-PRS between

centenarians and population subjects, on both AD and longevity. Of note:

in our cohort of centenarians, N=47 carried at least one APOE ε4 allele, and

a single centenarian was homozygous for APOE ε4 (ε4/ε4); compared to

those who did not carry a deleterious APOE ε4 allele, the carriers reported a

signi�cantly lower polygenic risk score for AD (excluding APOE variants),

suggesting that even the negative e�ects of APOE ε4/ε4 genotype can be

balanced out through other (protective) variants.

9.4 The aging e�ect of AD-associated variants
In chapter 2 and chapter 3, we showed that cognitively healthy centenarians

are genetically protected against AD, largely due to genetic variants involved

in immune-related processes. As cognitively healthy centenarians are both

free from dementia and extremely old, this suggests that the etiology of

AD and healthy lifespan might overlap across these biological pathways. In

chapter 4 and chapter 5, we have studied in depth to what extent genetic

variants associated with AD and other age-related diseases are related to

extreme human longevity. The current view of the genetics of longevity

is that it depends on a depletion of genetic elements associated with an

increased risk of age-related diseases.[1, 13, 14] Therefore, given the large

prevalence of AD at old ages and the increased mortality due to the disease,

one would expect that variants increasing the risk of AD, would negatively

a�ect lifespan. In accordance with this hypothesis, we showed that the

majority of alleles increasing the risk of AD, negatively a�ected longevity.

However, we identi�ed di�erent trajectories of e�ect on healthy aging of

AD-associated genetic variants. Firstly, genetic variants that increase the risk

of AD and as a consequence, they harm longevity; these genetic variants are

likely the variants with the "purest" AD-e�ect (e.g. CR1, CD33, BIN1, PICALM,
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and MS4A6A).[15] Secondly, genetic variants that primarily a�ect longevity,

suggesting that the negative e�ect on lifespan contributes to the increased

risk to develop AD, but potentially also other diseases. For example, in this

group of variants we �nd the non-synonymous variant in PLCG2 which was

recently found to be protective against other conditions than AD, but also

genetic variants in APOE, SHARPIN, IQCK, PRKD3, CD2AP, HLA, and SPI1
genes, which were previously associated with respiratory system disease,

cardiovascular diseases, autoimmune disorders, and cancer.[16, 17, 18, 19,

20, 21, 22] In line with the �ndings from chapter 2 and chapter 3, this group

of genetic variants was also strongly enriched at the functional level for

immune system response and endocytosis, which align to known hallmarks

of aging. Before us, only one study investigated the relationship between

AD-associated variants and longevity: they did not have access to extremely

old (and healthy) individuals, used a relatively small sample size and did

test only a small number of variants.[23] Apart from APOE, they could not

�nd any signi�cant e�ect on the longevity of AD-associated variants.[23]

Likely, due to a larger number of variants that we studied as well as the

extreme phenotype of the cognitively healthy centenarians, we were the �rst

to investigate genetic factors and pathways associated with the resilience

against AD, and to show potential pleiotropic e�ects on longevity of genetic

variants associated with AD.

9.5 Genetic predisposition to extreme longevity
Whilst the analysis in chapter 4 was limited to AD, in chapter 5 we used

the summary statistics from the largest GWAS on parental longevity to date

to prioritize the genetic factors that have the largest e�ect on becoming a

cognitively healthy centenarian.[24] This resulted in a PRS comprising 330

genetic variants that not only associated with becoming a cognitively healthy

centenarian but interestingly, associated with up to a 4-year di�erence in

survival in an independent cohort of healthy, middle-aged individuals. A

previous study in literature showed that a PRS of parental longevity was

signi�cantly associated with survival, and we validate these results in a

cohort of cognitively healthy centenarians. In line with expectations, the

majority of the genetic variants included in the PRS were previously as-

sociated with several age-related conditions, including cardiovascular and

autoimmune diseases, as well as cancer. Interestingly, we found suggestive

evidence of the compensation-e�ect between the PRS and the APOE ε4 allele,

as individuals who carried an APOE ε4 allele and had a high longevity-PRS
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survived longer than those that did not carry an APOE ε4 allele and had

a lower PRS. Such compensation mechanisms for the APOE ε4 allele were

previously observed in a number of studies of AD, and although the results

did not strongly replicate across di�erent studies, several variants (i.e. rs5882
in the CETP gene, rs10553596 in the CASP7 gene, and rs4934 in the SERPINA3
gene) were reported to exhibit bu�ering e�ects with respect to the presence

of the APOE ε4 allele.[25, 26] In functional terms, aging is associated with

a high degree of in�ammation, cellular stress, as well as reduced capacity

of cell-di�erentiation and development.[1, 13] We showed that the variants

included in the PRS were functionally enriched for oxidative stress reduction

and cell/tissue di�erentiation. Altogether, we con�rmed in a cohort of cogni-

tively healthy agers, that the human lifespan is in�uenced by a constellation

of genetic variations distributed along the genome, likely acting to diminish

the risk of age-related diseases and to balance out the alterations that physi-

ologically take place in the aging individual. Further studies concerning the

downstream e�ects of such genetic variants and their implications at the

gene- and pathway-level may be of interest to the development of anti-aging

drugs.

9.6 Extreme phenotypes in GWAS
In the previous chapters, we have shown that using extreme phenotypes

represent an added value for the genetic research of complex polygenic

traits. While we focused mainly on common and low-frequency genetic

variants (minor allele frequency >1%), before this thesis, the use of extreme

phenotypes in genetic studies was mainly applied to discover rare, causative,

mutations responsible for various age-related diseases.[27, 16, 14, 17, 18] In

such a setting, usually, extreme cases (for example, individuals that man-

ifested clinical symptoms of a disease at a younger age or with extreme

clinical manifestations) were compared to healthy controls. Only a handful

of studies included both extremes of a disease spectrum, and showed, simi-

larly to us, a relative increase in e�ect-size. For example, centenarians were

labeled "super-controls" for the study of genetic factors underlying diabetes

and possibly other age-related diseases.[28] In chapter 2 and chapter 3, we,

for the �rst time, reported similar �ndings in the context of AD. The inclusion

of individuals with extreme phenotypes in genetic studies led to an increase

in the variant e�ect-sizes, which translates to higher statistical power to

detect signi�cant associations. While the main drawback of extreme phe-

notypes is their availability, which precludes the possibility to gather very
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Figure 9.1: The updated genetic landscape of Alzheimer’s disease from ge-
netic studies. The top panel of the �gure shows the course of the genetic research

of AD, from early 1990’s with the discovery of the causal mutations in APP, PSEN1
and PSEN2, until nowadays, with the discovery of ∼40 common genetic variants

signi�cantly associated with AD. However, the research of new genetic determinants

is continuing, and larger GWAS will likely �nd association of additional rare and

common genetic variants with AD.

large sample sizes, our �ndings might have methodological implications in

terms of study design and sample selection for future genetic studies of AD,

other age-related diseases, and longevity.[29]

9.7 Large collaborative e�orts make the di�erence
With the knowledge of the protective elements retained in the genome of

cognitively healthy agers, we sought to join other researchers in chapter 6

and chapter 7 by participating in two of the largest, collaborative genome-

wide meta-analyses of AD and longevity to date. These collaborative e�orts

were important to further improve the knowledge of the genetic landscape

underlying these traits. For AD, our study resulted in the discovery of 6

additional genetic variants associated with an increased risk of AD, which

raised the total number of genetic variants associated with AD to 41.[30]

This number will likely increase in the future due to an increased number of

samples compared. [31] Although the number of centenarians included was
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small compared to the total number of controls, we note that the majority of

all the newly discovered variants associated signi�cantly and in the correct

direction in a comparison of centenarians and AD cases within our cohort

only (Figure 9.1). Another practical implication of our meta-analysis of AD

concerned the e�ectiveness of the PRS in a clinical setting. To date, despite

the strong predictive e�ect exerted by PRS, it is currently not used as an

additional tool for AD diagnosis.[30, 32, 33] Nevertheless, the identi�cation,

before onset of AD, of individuals at the highest risk of developing AD or

individuals who are compromised in a certain pathway, is a promising tool in

a diagnostic setting, and for the development and the application of preventa-

tive personalized treatment strategies.[34, 35] Unlike AD, genetic factors that

in�uence longevity are more complex to study. For example, the phenotype

de�nition is not clear, and which individuals should be used as cases or con-

trols is not easily de�nable. In chapter 7, we and our collaborators de�ned

a novel, signi�cantly improved classi�cation method of cases and controls

based on the age at 90/99
th

and 60
th

percentile of survival probability per

country. This resulted in a harmonization of the criteria to de�ne cases and

controls across di�erent cohorts and countries, facilitating collaborative ef-

forts. In terms of �ndings, we con�rmed the longevity-association of variants

in the APOE gene and propose the association of a novel variant (rs7676745)

near the GPR78 gene.[14] This variant was previously associated with psychi-

atric disorders, and its association was signi�cant and in the correct direction

in our study alone. Besides, through genetic correlation analyses, we showed

that the genetic architecture between health and longevity overlaps, which

�nds accordance with previous studies, and our results from chapter 5. Nev-

ertheless, the major challenge to study human longevity is the lack of a large

sample size, as such individuals are rare and need to be approached indi-

vidually.[4] One way out is to combine case-controls studies with by-proxy

studies, similarly to what we have done in chapter 6 for AD, which then may

lead to a better understanding of the genetic landscape of extreme human

longevity.

9.8 Towards an updated disease model of AD
Our results in chapter 6 had important implications in terms of AD biology.

On the one end, we identi�ed a common genetic variation in the APP (Amy-

loid Precursor Protein) gene that increased the risk of AD, which enforces

the evidence that APP processing is an important risk factor of AD, next

to other strong risk factors, and, moreover, links the sporadic form of AD
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with the autosomal dominant form. On the other end, we added on the

growing importance of the immune system in AD development, as multi-

ple new genetic loci pointed to genes involved in immune-signaling (e.g.
PLCG2, SHARPIN, CD33, and IL34). This is in line with what we showed in

chapter 3 where we have quanti�ed the contribution of each AD-associated

pathway to the total polygenic risk of AD, showing that, excluding APOE
variants, ∼65% of the total risk of AD is due to variants involved in immune

response and endocytosis pathways (Figure 9.2). These latter two biological

pathways have been, in fact, proposed as potential central pathways whose

dysfunction may trigger the molecular cascade leading to β-amyloid and

tau accumulation, and synaptic and neuronal damage. Physiologically, the

resident immune cells within the brain are involved, among other functions,

in the clearing of cellular debris including aggregated β-amyloid peptides.

However, the brain immune response may not react su�ciently or vice versa,

it may react too strongly, possibly starting a molecular cascade typical of

AD that leads to cognitive decline.[36] Genetic variants involved in immune

response may modify how cellular debris and β-amyloid deposits in the brain

are recognized, captured, and cleared (Figure 9.2).[37] To this end, the post-

mortem analysis of the brains of cognitively healthy centenarians showed

that, despite being cognitively healthy, these centenarians are not free from

the typical neuropathological hallmarks of AD (accumulation of β-amyloid

plaques and neuro�brillary tangles), yet, these are not severe enough to cause

cognitive decline.[38] This capacity of monitoring the neuropathological hall-

marks of the disease may be maintained in cognitively healthy centenarians

due to a lower vulnerability of age-related decline, possibly as a result of a

depletion of deleterious genetic variants and a concurrent enrichment of pro-

tective genetic elements, as we saw in chapter 2, chapter 3, and chapter 5. An

alternative theory explaining AD development identi�es in the endosomal

tra�cking pathway the trigger that starts the pathological events associated

with Alzheimer’s disease, culminating in β-amyloid and tau pathology, neu-

ronal and microglial dysfunction. The endosomal tra�cking pathway is a

crucial molecular pathway that regulates the tra�cking of intracellular and

extracellular proteins and lipids (including the toxic β-amyloid peptides),

and allows to direct them to other cellular compartments, to sort them for

degradation, or to recycle them to the extracellular space. [39] An abnormal

tra�cking of endosomes, together with a potential dysfunction within the

clearence system, may be the �rst step leading to amyloid, tau deposition,

and synaptic and neuronal loss (Figure 9.2).[40]
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Figure 9.2: An updated hypothetical model of Alzheimer’s disease.



9

9.9 Interpretation of GWAS 275

9.9 Interpretation of GWAS

One of the major complexities in GWAS studies is the functional interpreta-

tion of the e�ect that a certain genetic variant has at the gene-, protein- and

pathway-level, because the majority of genetic variants analyzed through

GWAS relies in non-coding regions. In chapter 3, we approached this com-

plexity by using published variant-gene associations as found in two pre-

vious GWASs of AD, which implemented di�erent techniques to �ne-map

the variant-gene association.[41, 42] However, this approach was limited

to AD. For other traits, several tools have been developed to address the

variant-gene association,[43, 44] including the approach that we propose in

chapter 4, that we further improved in chapter 5, and that evolved in the

web-server application that we presented in chapter 8. Our approach was to

use multiple resources, such as tissue-speci�c RNA expression and predicted

variant e�ect, to allow multiple genes to associate with each variant, depend-

ing on the annotation certainties.[45, 46] However, because neighboring

genes are often functionally related, allowing multiple genes to associate

with a variant could result in an enrichment bias. The main advantage of our

method is that it relies on a sampling-based framework to perform gene-set

enrichment analysis, which takes into consideration annotation uncertainties

and avoids enrichment bias. In addition, gene-set enrichment results are

often redundant and di�cult to interpret, which we addressed by means of

a semantic similarity-based algorithm to cluster similar terms and reduce

the complexity of the enriched pathways.[47] We used such an approach to

perform gene-set enrichment analysis in chapter 4 (in the context of AD) and

chapter 5 (on longevity), and the resulting enriched pathways overlapped

and improved those from previous studies. For example, in chapter 3 we

studied �ve major pathways previously associated with AD from literature,

while in chapter 4 we estimated these pathways using our sampling-based

approach. As a result, in chapter 4 we clustered together all immune-related

pathways (immune response and endocytosis), and added a cluster of path-

ways pointing to synaptic plasticity and remodeling. This re�ned and fully

automated classi�cation of each variant’s e�ect on pathways may be used to

further improve pathway-speci�c PRSs for patient strati�cation. Next to the

functional interpretation of GWAS, to compare genetic association statistics

across di�erent traits can highlight a shared genetic basis of di�erent traits.

The state-of-the-art method to do so is LD-score regression and genetic cor-

relation analysis, however, these approaches are limited to studies with large

sample size.[48] An alternative approach is either to visually explore associ-
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ation statistics in the same region across phenotypes or to browse existing

datasets of variant-trait associations, such as the GWAS catalog.[49] We have

addressed these limitations in snpXplorer (chapter 8), where we allow the

visual superimposition of summary statistics from any study and the analysis

of any given set of genetic variants in terms of functional enrichment and

overlap with previous traits.

9.10 Becoming a cognitively healthy centenarian

In this thesis, we attempted to discover genetic signatures that are associated

with becoming a cognitively healthy centenarian, which likely represents

the ideal model of aging in good cognitive and physical conditions. Previous

studies from our cohort showed that cognitively healthy centenarians were

signi�cantly more educated and performed signi�cantly better in neuropsy-

chological tests compared to centenarians from the same birth cohort.[50,

51] A possible explanation for this could be an advantageous genetic back-

ground as these individuals have a lower genetic risk to develop AD and other

age-related diseases. Importantly, our studies shed light on the relationship

between resilience against factors associated with AD risk, and longevity.

Due to the di�culties in gathering a large number of cognitively healthy

super-agers, this was never explored before and might explain why, apart

from APOE, genetic variants in�uencing AD risk do not seem to in�uence

longevity in large GWAS. In terms of functional implications, our �ndings

from chapter 2, chapter 3, chapter 4, and chapter 5 pose great importance

to genetic variants involved in immune-related pathways. These �ndings

�t well in the context of a compromised immune response and a higher

degree of chronic in�ammation that are typically associated with aging. Ge-

netic factors may result in improved regulatory mechanisms of the immune

response, that might compensate for age-related changes and result in a

better immune and metabolic system, at least in the context of Alzheimer’s

disease, that we observe in our cognitively healthy centenarians through

the pathway-speci�c PRSs.[1, 13, 2] We also observed a similar pattern in

the context of longevity, where we highlighted pathways such as di�erentia-

tion processes, cellular response to stress, and nervous system development.

The maintenance of these biological pathways may be associated with a

slower progression of the aging mechanisms and with a concurrent delay of

age-related diseases.
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9.11 Drawbacks of studying centenarians
The study of individuals with extremely old age is not without �aws. Next to

the di�culty in collecting a large sample of cognitively healthy centenarians

due to their rareness in the population,[4] the de�nition of a cognitively

healthy centenarian is not straightforward. In our study, all participants

self-reported to be cognitively healthy, which was also con�rmed by a family

member or proxy-acquaintance. However, to date, there are no speci�c

neuropsychological tests developed to score the cognitive performances of

such old individuals. The 100-plus Study implements a battery of cognitive

tests that typically are carried out in a memory clinic and, therefore, are

specialized for the diagnosis of cognitive decline and dementia. While these

tests allow to score di�erent cognitive domains, they are not developed

for extremely old individuals, and are usually not implemented in other

centenarian studies. Our study has pioneered towards the identi�cation of

cognitive tests that may be more speci�c for centenarians.[51] Given this

protocol, virtually any centenarian study around the world can identify a

subset of individuals that maintained their cognitive and physical abilities

in a same standardized way. This will eventually lead to more collaborative

e�orts, essential for genetic studies. An additional drawback relates to the

short follow-up time available for these individuals, as well as di�culties

in studying environmental factors. However, due to the high heritability

estimates of longevity within families, a more feasible approach may be

to investigate the children of the cognitively healthy centenarians, which

should have inherited part of the protective genetic elements of their parents,

are younger and thus could be followed-up for a longer time. This is an

on-going e�ort in the 100-plus Study.

9.12 Future perspectives
The 100-plus Study is currently enrolling additional cognitively healthy cen-

tenarians and their family members, allowing the further exploration of the

unique characteristics of these individuals. Our cohort of centenarians will

continue to be part of large-collaborative studies investigating common (and

rare) genetic factors associated with longevity and age-related diseases. Ow-

ing novel developments in the genetics �eld, the impact of larger structural

genetic variations in diseases and longevity may be explored. In fact, with an

increasing understanding of the architecture of our genome, it has become

clear that structural variants (especilly those comprising repeated elements),

are not only junk DNA, but may be implicated in diseases by interfering with
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the normal gene transcription and translation processes. For AD, recently

evidence of such mechanisms in the ABCA7 gene was shown. The common

ABCA7 AD-associated variant is in linkage with an intronic variable number

of tandem repeats (VNTR), a type of structural variation characterized by

speci�c patterns of DNA that are repeated in tandem.[52] In this ABCA7
VNTR, an excessive number of repeat units was associated with increased

AD risk. To be able to infer the length of VNTRs at genomic level (either by

direct measurement or by imputation), will allow to test whether such struc-

tural variations in�uence AD-risk.Apart from AD, such structural variations

may also in�uence longevity directly, for example, the terminal parts of the

chromosomes, i.e. the telomeres, are enriched with repetitive sequences, and

the shortening of telomers is thought to be a direct consequence of aging.

Therefore, the study of such variations will likely open new scenarios in

the way we look at a genetic predisposition to aging and diseases. This will

eventually allow to �ll-in the missing heritability gap that still underlies the

genetics of AD, longevity, and other age-relted traits. Finally, these e�ort

will improve the predictive power of the PRS, which will hopefully be used

as a valuable clinical parameter.

9.13 Conclusions
The main �nding of this thesis was the characterization of the role of genetic

variants associated with AD in cognitively healthy agers, and to discover

molecular pathways that associate with the resilience against AD and other

age-related diseases. We provided evidence for the e�ectiveness of using

extreme phenotypes in genetic studies, the use of a PRS in a clinical setting

for AD diagnosis, and actively improved the knowledge of the genetic factors

that are associated with AD and longevity. The �ndings in this thesis are

instrumental for future studies dealing with longevity, AD and other age-

related disorders, and should inspire collaborative e�orts especially among

centenarian studies.
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10.1 English summary

One important accomplishment of humankind is the extension of the av-

erage life expectancy. However, a consequence of an aged population is

the increased prevalence of age-related diseases, and, as a consequence, an

increasing fraction of individuals will spend part of their old age in disability

or dependence on others. Of all age-related diseases, a major contribution to

poor health is cognitive decline and dementia, of which Alzheimer’s disease

(AD) is the most common type. However, dementia and AD are not inevitable:

in fact, a small proportion of the population (<0.1%) reaches at least 100 years

of age while maintaining a high level of cognitive and physical functions,

so-called cognitively healthy centenarians. To investigate the genetic and

environmental factors that characterize these individuals, the 100-plus Study

was initiated.

Alzheimer’s disease is a progressive neurodegenerative disorder charac-

terized by loss of cognitive functions that leads to loss of independence, and

death. Currently, there is no e�ective treatment to prevent of to slow down

AD progression. The main risk factor for AD is aging: while the disease is

rare before the age of 65 years, the prevalence increases exponentially and

reaches ∼ 40% per year at 100 years of age. Next to aging, genetic factors

play an important role as heritability estimates range 60-80%. The largest

common genetic risk factor for AD is APOE genotype,which leads up to

30-fold increased risk for the disease. In addition to APOE, today ∼80 single

nucleotide polymorphisms have been associated with the modulation of the

risk of AD. Furthermore, these �ndings have been pivotal to understand the

molecular events that are associated with AD development. While the most

accepted hypothesis explaining AD pathogenesis puts amyloid accumulation

at the basis of the molecular cascade that leads to cognitive decline, genetic

studies have led to an evolution of this traditional hypothesis to encompass

more complex aspects of the disease. As such, today it is thought that a

dysregulation of the endo-lysosomal tra�cking and immune systems are

also major causal pathways of AD. Since AD is lethal at old age, it would

be expected that genetic variants that increase the risk of AD, should a�ect

negatively human lifespan.In fact, the main genetic risk factor for AD, APOE
genotype, is also the largest genetic risk factor for longevity. Surprisingly,

apart from APOE, none of the other genetic variants known to a�ect AD, also

a�ects human longevity. Genetic factors are also though to a�ect human

longevity: in fact, heritability of longevity up to ∼70 years of age ranges

10-25%, but to reach higher ages, we become increasingly dependent on the
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favourable genetic elements in our genomes. In addition to APOE, several

genetic variations have been found to a�ect human longevity, but these fac-

tors were not con�rmed in di�erent studies and populations, likely re�ecting

both technical and biological di�erences.Nevertheless, a common term to

all previous genetic studies of longevity is that the genetic variants found

to in�uence human longevity were previously associated with the risk of

several age-related diseases. This suggests that an extended human lifespan

is associated with a lower genetic risk of age-related diseases. Given this

background, the overall objective of this thesis was to investigate the genetic

factors underlying extreme human longevity and the escape of Alzheimer’s

disease, for which we explore the genetic architecture of the cognitively
healthy centenarians from the 100-plus Study.

10.1.1 Part I

In the �rst part of the thesis, which comprises chapter 2-5, we focus on the

comparison of the cognitively healthy centenarians with young AD patients

and population controls in the context of Alzheimer’s disease and human

longevity. In chapter 2, we exploited extreme phenotypes in the genetic

research of AD by comparing extreme controls, i.e. cognitively healthy

centenarians, and extreme AD cases, i.e. relatively young AD patients, in a

case-control study of AD. We report that cognitively healthy centenarians

have a lower frequency of genetic variants associated with increased AD risk

compared to the general population, and a higher frequency of protective

genetic variants. This led to a 2-fold enrichment in the variant e�ect-size,

showing that the use of extreme phenotypes in genetic studies of complex

traits is pro�table. In chapter 3, we investigated the molecular pathways

that are known to play a role in AD pathogenesis and their association

with the resilience against AD. In this study, we combined the e�ect of

multiple variants together into polygenic risk scores (PRS) and pathway-

speci�c polygenic risk scores, which incorporate the e�ect of multiple genetic

variants acting on the same molecular pathway. We report that cognitively

healthy centenarians have the lowest PRS and pathway-speci�c PRS for

all major AD-associated pathways. Moreover, only the PRS of immune

system and endocytosis pathways signi�cantly in�uenced the resilience

against AD, even after excluding APOE variants. In chapter 4, we attempted
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to disentangle the e�ect on longevity from the e�ect on AD risk of the

genetic variants that are associated with AD. We found that most genetic

variants that increase the risk of AD were associated with lower odds of

longevity. Based on our analysis, most AD-associated variants negatively

a�ect longevity through their increased risk of AD. However, a subset of

variants preferentially involved in immune-related processes seemed to a�ect

not only AD but also other age-related diseases, such that the cumulative

e�ect on longevity was larger than the e�ect on AD alone. In chapter

5, we focused on human longevity and, using publicly available data, we

constructed a polygenic risk score (PRS) that associated with becoming a

cognitively healthy centenarians and independently with survival. This PRS

included 330 genetic variants, did not include APOE variants, associated

with up to 4-years longer survival, and showed functional enrichment for

hallmarks of longevity, such as slow cell di�erentiation and replacement,

and regulation of oxidative stress.

10.1.2 Part II

In the second part of the thesis, we present the contribution of the cogni-

tively healthy centenarians from the 100-plus Study to large, collaborative

GWAS of AD and longevity. In chapter 6, we combined clinical studies of

AD and by-proxy studies of AD into one of the largest GWAS of AD. This

collaborative e�ort led to the discovery of six additional genetic variants

associated with AD. Our �ndings reinforced the role of β-amyloid processing

and immune response as central biological pathways in AD. Furthermore,

we add on the growing literature showing the applicability of polygenic

risk score (PRS) of AD in order to stratify patients based on their genetic

background and to identify those at highest risk for the disease. In chapter

7, we collaborated on the, to date, largest GWAS of longevity. We introduced

a new, unbiased, method to identify cases (i.e. the long-lived individuals)

and controls, based on country- and sex-speci�c survival percentiles. In

addition to APOE variants, we found a novel association near GPR78 gene,

and through genetic correlation and gene expression analyses, we showed a

marked overlap between the genetics of diseases and the genetics of longevity.

In chapter 8, the last chapter, we present snpXplorer, a tool freely available

to the scienti�c community to explore summary statistics of genetic stud-
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ies, compare levels of association between di�erent traits, and functionally

annotate sets of genetic variants.
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10.2 Nederlandse samenva�ing

De verlenging van de gemiddelde levensverwachting is een belangrijke

prestatie van de mensheid, maar heeft wel de vergrijzing van de bevolking als

gevolg. Hierdoor komen leeftijdsgebonden ziekten steeds vaker voor en is een

steeds groter deel van de mensen op hun oude dag invalide of afhankelijk van

anderen. Van alle leeftijdsgebonden ziekten dragen cognitieve achteruitgang

en dementie, waarvan de ziekte van Alzheimer de meest voorkomende is, in

belangrijke mate bij aan een slechte gezondheid. Dementie en AD zijn echter

niet onvermijdelijk: een klein deel van de bevolking (<0,1%) bereikt ten minste

de leeftijd van 100 jaar en behoudt daarbij een hoog niveau van cognitieve

en fysieke functies; de zogenaamde cognitief gezonde honderdjarigen. Om de

genetische en omgevingsfactoren te onderzoeken die deze individuen maken

tot wie ze zijn, werd het 100-plus Onderzoek opgezet.

De ziekte van Alzheimer is een progressieve neurodegeneratieve aan-

doening die wordt gekenmerkt door verlies van cognitieve functies met als

gevolg verlies van onafhankelijkheid en uiteindelijk de dood. Momenteel is

er geen e�ectieve behandeling om de progressie van de ziekte van Alzheimer

te voorkomen of te vertragen. De belangrijkste risicofactor voor de ziekte van

Alzheimer is veroudering: hoewel de ziekte zeldzaam is voor de leeftijd van

65 jaar, neemt de prevalentie exponentieel toe en bereikt ∼40% per jaar op de

leeftijd van 100 jaar. Naast veroudering spelen genetische factoren een belan-

grijke rol, waarbij de erfelijkheidsschattingen variëren van 60-80%. De meest

voorkomende genetische risicofactor voor de ziekte van Alzheimer is het

APOE-genotype, dat leidt tot een tot 30-voudig verhoogd risico op de ziekte.

Naast APOE zijn vandaag ∼80 single-nucleotide polymor�smen in verband

gebracht met de modulatie van het risico op de ziekte van Alzheimer. Boven-

dien zijn deze bevindingen van cruciaal belang geweest om de moleculaire

processen te begrijpen die in verband worden gebracht met de ontwikkel-

ing van de ziekte van Alzheimer. De meest geaccepteerde hypothese over

de pathogenese van de ziekte van Alzheimer stelt dat de accumulatie van

amyloïd het begin is van een moleculaire cascade die leidt tot cognitieve

achteruitgang. Genetische studies hebben geleid tot een herziening van deze

traditionele hypothese die nu ook de complexe aspecten van de ziekte omvat.

Zo wordt tegenwoordig gedacht dat een ontregeling van de endo-lysosomale

processen in de cel en het immuunsysteem belangrijke causale routes van de

ziekte van Alzheimer zijn. Aangezien de ziekte van Alzheimer dodelijk is op

oudere leeftijd, zou men verwachten dat genetische varianten die het risico

op de ziekte van Alzheimer verhogen, een negatieve invloed op de levensduur
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van mensen hebben. Dit is ook zo want de belangrijkste genetische risico-

factor voor de ziekte van Alzheimer, het APOE-genotype, is ook de grootste

genetische risicofactor voor levensduur. Verrassend genoeg heeft, afgezien

van APOE, geen van de andere genetische varianten waarvan bekend is dat

ze invloed hebben op de ziekte van Alzheimer ook invloed op levensduur.

Levensduur is echter wel erfelijk bepaald; de erfelijkheid van de levensduur

tot ∼70 jaar wordt geschat op 10-25%, maar om hogere leeftijden te bereiken,

worden we steeds afhankelijker van de gunstige genetische elementen in

ons genoom. Naast APOE zijn verschillende genetische variaties gevonden

die de menselijke levensduur beïnvloeden, maar deze factoren werden niet

bevestigd in verschillende studies en populaties, waarschijnlijk als gevolg

van zowel technische als biologische verschillen. Niettemin is een gemeen-

schappelijk kenmerk van alle eerdere genetische studies van levensduur dat

de genetische varianten die de levensduur van de mens bleken te beïnvloe-

den, eerder in verband werden gebracht met het risico van verschillende

leeftijdsgebonden ziekten. Dit suggereert dat een langere levensduur van

de mens geassocieerd is met een lager genetisch risico op leeftijdsgebonden

ziekten.

Gezien deze achtergrond was het algemene doel van dit proefschrift om

de genetische factoren te onderzoeken die ten grondslag liggen aan extreme

menselijke levensduur en het ontsnappen aan de ziekte van Alzheimer. Hi-

ervoor onderzochten we de genetische architectuur van patiënten met de

ziekte van Alzheimer en de cognitief gezonde honderdjarigen uit de 100-plus

Studie.

10.2.1 Part I

In het eerste deel van het proefschrift (hoofdstukken 2-5) richtten we ons

op de verschillen in erfelijke factoren tussen cognitief gezonde honderdjari-

gen, jonge patiënten met de ziekte van Alzheimer en een controle groep uit

de algemene bevolking.

In hoofdstuk 2 hebben we gekeken naar de toegevoegde waarde van

de analyse van extreme fenotypes in het genetisch onderzoek naar de ziekte

van Alzheimer. We vergeleken extreme controles, d.w.z. cognitief gezonde

honderdjarigen, met extreme jonge patiënten met de ziekte van Alzheimer.

Wij vonden dat cognitief gezonde honderdjarigen een lagere frequentie van

genetische risico varianten hebben en een hogere frequentie van bescher-

mende genetische varianten. Gemiddeld zagen we een 2-voudige verrijking

in de variant e�ect-grootte, waaruit blijkt dat het gebruik van extreme feno-
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types kunnen helpen bij genetische studies naar de oorsprong van de ziekte

van Alzheimer.

In hoofdstuk 3 onderzochten we de moleculaire pathways waarvan

bekend is dat ze een rol spelen in de pathogenese van de ziekte van Alzheimer

en hun associatie met de weerbaarheid tegen de ziekte van Alzheimer. In

deze studie hebben we het e�ect van meerdere varianten samengevoegd tot

polygene risicoscores (PRS) en pathway-speci�eke polygene risicoscores.

Deze laatste omvatten het e�ect van meerdere genetische varianten die

inhaken op dezelfde moleculaire pathway. Wij vonden dat cognitief gezonde

honderdjarigen de laagste PRS en pathway-speci�eke PRS hebben voor alle

belangrijke Alzheimer-geassocieerde pathways. Bovendien bleken alleen

de PRS van de immuunsysteem- en endocytose-pathways een signi�cante

invloed te hebben op de weerbaarheid tegen de ziekte van Alzheimer, zelfs

na het uitsluiten van APOE-varianten.

In hoofdstuk 4 hebben we geprobeerd om het e�ect van genetische

varianten op de levensduur los te koppelen van het e�ect op het risico op

de ziekte van Alzheimer. We ontdekten dat de meeste genetische varianten

die het risico op de ziekte van Alzheimer verhogen, geassocieerd waren

met een lagere kans op een lange levensduur. Op basis van onze analyse

hebben de meeste Alzheimer-geassocieerde varianten een negatieve invloed

op de levensduur door hun verhoogde risico op de ziekte van Alzheimer.

Echter, een subset van varianten die bij voorkeur betrokken zijn bij immuun-

gerelateerde processen leken niet alleen invloed te hebben op de ziekte van

Alzheimer, maar ook op andere ouderdomsziekten, zodat het cumulatieve

e�ect op de levensduur groter was dan het e�ect op de ziekte van Alzheimer

alleen.

In hoofdstuk 5 richtten we ons op de menselijke levensduur en maakten

we gebruik van publiek beschikbare gegevens om een polygene risicoscore

te maken die de kans verhoogd om cognitief gezond honderd jaar te worden

en ook associeerde met overleving. Deze polygene risicoscore bevatte 330

genetische varianten (geen APOE-varianten) en associeerde tot 4 jaar langere

overleving. De varianten in de polygene risicoscore toonde functionele

verrijking voor kenmerken van een lange levensduur, zoals langzame cel-

di�erentiatie en vervanging, en regulatie van oxidatieve stress.

10.2.2 Part II

In hoofdstuk 6 hebben we klinische studies van de ziekte van Alzheimer

en by-proxy studies van de ziekte van Alzheimer gecombineerd in één van
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de grootste GWAS. Deze gezamenlijke inspanning leidde tot de ontdekking

van zes extra genetische varianten die geassocieerd zijn met de ziekte van

Alzheimer. Onze bevindingen versterken de rol van beta-amyloïd verw-

erking en immuunrespons als centrale biologische pathways in de ziekte

van Alzheimer. Verder dragen we bij aan de groeiende literatuur die de

toepasbaarheid van polygene risicoscore van AD aantoont. Met de polygene

risicoscore konden we patiënten strati�ceren op basis van hun genetische

achtergrond en diegenen met het hoogste risico op de ziekte identi�ceren.

In hoofdstuk 7 werkten we mee aan de, tot nu toe, grootste GWAS

van langlevendheid. We introduceerden een nieuwe, onbevooroordeelde

methode om gevallen (d.w.z. de langlevende individuen) en controles te iden-

ti�ceren, gebaseerd op land- en geslachtsspeci�eke overlevingspercentielen.

Naast APOE-varianten vonden we een nieuwe associatie in de buurt van het

GPR78-gen, en door middel van genetische correlatie en genexpressieanaly-

ses toonden we een duidelijke overlap aan tussen de genetica van ziekten en

de genetica van een lang leven.

In hoofdstuk 8, het laatste hoofdstuk, presenteren we snpXplorer, een

instrument dat vrij beschikbaar is voor de wetenschappelijke gemeenschap

om samenvattende statistieken van genetische studies te verkennen. snpX-
plorer combineert meerdere niveaus van associatie en verricht functionele

annotatie van sets van genetische varianten.
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10.3 Riassunto in Italiano

Un importante traguardo del genere umano consiste nell’aumento dell’aspettativa

di vita media. Tuttavia, una consequenza di una crescente popolazione

anziana risulta essere l’aumento di diverse patologie legate all’invecchiamento.

Ne consegue che una frazione in aumento di individui spenderà parte della

loro età avanzata in disabilità e/o dipendenza da altri. Tra tutte le patologie

collegate all’invecchiamento, il declino cognitivo e la demenza, di cui la

malattia di Alzheimer è la causa più frequente, rappresentano le cause mag-

giori di impedimento. Ciò nonostante, lo sviluppo di demenza e/o malattia

di Alzheimer non è una conseguenza inevitabile dell’invecchiamento: infatti,

una piccola frazione di individui (<0.1%) raggiunge età superiori ai 100 anni

mantenendo un livello sorprendentemente alto di funzioni cognitive e �siche,

i cosiddetti centenari cognitivamente sani. Per individuare fattori genetici ed

ambientali che caratterizzano questi speciali individui, lo studio 100-plus è

stato iniziato.

La malattia di Alzheimer è una patologia caratterizzata da un progressivo

deterioramento delle funzioni cognitive che porta a mancanza di indipen-

denza, risultando letale. Attualmente, non ci sono rimedi e/o trattamenti

farmacologici in grado di prevenire, attenuare, o revertire il progresso della

malattia. Il fattore di rischio maggiore per lo sviluppo della malattia è l’età:

mentre la patologia risulta essere rara prima dei 65 anni, la prevalenza au-

menta esponenzialmente all’aumentare dell’età, e raggiunge il ∼40% all’anno

a 100 anni di età. Inoltre, fattori genetici giocano un ruolo centrale nello

sviluppo della malattia dato che l’ereditarietà della malattia di Alzheimer

varia tra 60% e 80%. Il maggiore fattore di rischio genetico per la malattia

di Alzheimer è dato dal genotipo del gene APOE. Il genotipo di APOE è

determinato da due mutazioni genetiche a livello del gene APOE. Nella sua

forma a più alto rischio, il genotipo di APOE aumenta il rischio di sviluppare

la malattia di Alzheimer �no a 30 volte. Oltre ad APOE, oggi conosciamo ∼80

singole mutazioni genetiche che in�uenzano signi�cativamente il rischio

di sviluppare la patologia. La scoperta di questi fattori di rischio ha perme-

sso l’identi�cazione dei processi molecolari che sono associati allo sviluppo

della malattia. L’ipotesi più accreditata per lo sviluppo della malattia di

Alzheimer pone l’accumulo di frammenti della proteina amiloide nel cervello

come evento scatenante la cascata molecolare che porta al declino cogni-

tivo. Tuttavia, studi genetici hanno evidenziato l’importanza di altri processi

molecolari. Di conseguenza, si è assistito ad un’evoluzione della tradizionale

ipotesi amiloidea in modo da includere aspetti più complessi della malattia.
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Oggi, si pensa che una deregolazione dei sistemi endo-lisosomiali e del sis-

tema immunitaria siano a loro volta processi centrali per lo sviluppo della

malattia di Alzheimer.

Dato che la malattia di Alzheimer risulta letale ad età avanzata, ci si

aspetterebbe che mutazioni genetiche che aumentano il rischio di svilup-

pare la malattia, abbiano un e�etto negativo su longevità e sopravvivenza.

Infatti, il maggiore fattore di rischio genetico per la malattia di Alzheimer,

il genotipo di APOE, rappresenta anche il principale fattore genetico che

in�uenza la longevità. Speci�catamente, i genotipi di APOE che aumentano

il rischio di sviluppare la malattia di Alzheimer, sono anche associati a una

ridotta longevità. Soprendentemente, ad esclusione di APOE, nessuna della

altre mutazioni genetiche associate alla malattia di Alzheimer, in�uenzano

signi�cativamente la longevità umana.

In precedenza, numerosi studi hanno esaminato il contributo dei fattori

genetici nel modi�cate la durata della vita umana. Ne emerge un panorama

contrastante: infatti l’ereditarietà della longevità �no a ∼70 anni risulta es-

sere relativamente bassa (10-25%), tuttavia, per raggiungere età più avanzate,

diventiamo sempre più dipendenti dai fattori favorevoli nascosti nel nostro

genoma. In altre parole, più si invecchia, più i fattori genetici diventano

importanti. Oltre ad APOE, diverse altre mutazioni genetiche sono state

associate a longevità, anche se l’e�etto di queste mutazioni genetiche non

è stato confermato in diversi studi, od in diverse popolazioni. Queste di-

vergenze tra studi probabilmente ri�ettono sia problematiche tecniche (di

set-up dello studio e/o di metodologie statistiche), sia di�erenze a livello

biologico. Ciò nonostante, un fattore comune a tutti i precedenti studi di

genetica di longevità è che le mutazioni genetiche identi�cate erano state

precedentemente associate a diverse patologie conseguenti l’invecchiamento.

Questo suggerisce che una durata più lunga della vita umana dipende da una

predisposizione genetica che diminuisce il rischio di sviluppare patologie

associate all’età avanzata.

Nel complesso, lo scopo di questa tesi consiste nello studio dei fattori

genetici alla base dell’estrema longevità e dalla resilienza nei confronti della

malattia di Alzheimer che osserviamo nei centenari cognitivamente sani

dello Studio 100-plus.

10.3.1 Prima parte

La prima parte di questa tesi, corrispondente ai capitoli 2-5, focalizza sulla

comparazione tra centenari cognitivamente sani, pazienti a�etti da Alzheimer
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ed individui adulti sani nella popolazione (controlli), nel contesto dei fattori

genetici associati alla malattia di Alzheimer, e longevità.

Nel capitolo 2, abbiamo utilizzato fenotipi estremi nella ricerca genetica

applicata alla malattia di Alzheimer. Abbiamo contrapposto controlli estremi,

i.e. centenari cognitivamente sani, a casi estremi, i.e. pazienti a�etti da

Alzheimer con un’età relativamente bassa.Abbiamo trovato che i centenari

avevano una frequenza più bassa di mutazioni genetiche associate ad un

aumento del rischio di Alzheimer (rispetto alla popolazione generale), ed una

frequenza più alta di mutazioni genetiche che risultano protettive nei con-

fronti della malattia (rispetto alla popolazione generale). Una consequenza

pratica di questo studio è che l’utilizzo di fenotipi estremi nella ricerca di fat-

tori genetici associati a patologie complesse (come la malattia di Alzheimer),

è redditizio.

Nel capitolo 3, abbiamo studiato i processi molecolari che svolgono un

ruole importante nello sviluppo e nel processo di resilienza contro la malat-

tia di Alzheimer. In questo studio, abbiamo combinato l’e�etto di multiple

mutazioni genetiche in un valore di rischio poligenico (polygenic risk score,

PRS). Questi valori di rischio poligenici quanti�cano il rischio genetico di

sviluppare una determinata patologia, in questo caso la malattia di Alzheimer.

Di conseguenza, più il valore di rischio è alto, maggiore è il rischio di svilup-

pare la patologia. Inoltre, abbiamo combinato l’e�etto di più mutazioni che

agiscono a livello del medesimo processo molecolare, creando un valore

di rischio poligenico speci�co per ciascun processo molecolare. Abbiamo

trovato che i centenari possedevano i valori di rischio poligenici (PRS) più

bassi in una comparazione tra centenari, pazienti a�etti da Alzheimer, ed

individui adulti sani nella popolazione. Soprattutto, abbiamo identi�cato

che i valori di rischio poligenici speci�co per il sistema immunitario ed il

sistema endosomiale erano associati signi�cativamente alla resilienza contro

la malattia di Alzheimer, anche escludendo il fattore genetico di APOE.

Nel capitolo 4, abbiamo ragionato che mutazioni genetiche che aumen-

tano il rischio di sviluppare la malattia di Alzheimer dovrebbero essere asso-

ciate ad una maggiore mortalità, e di conseguenza, ad un rischio minore di

longevità. In questo studio, abbiamo tentato di separare l’e�etto su longevità

da quello su Alzheimer da parte delle mutazioni genetiche che sono associate

al rischio di sviluppare la malattia di Alzheimer. Abbiamo trovato che la

maggioranza delle mutazioni genetiche che aumentano il rischio di svilup-

pare Alzheimer sono anche associate a minori probabilità di longevità. In

base alla nostra analisi, la maggioranza delle mutazioni genetiche diminuisce

la longevità a causa del rischio aumentato di Alzheimer. Tuttavia, un sot-
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togruppo di mutazioni speci�catamente coinvolte in processi immunitari,

conferisce protezione non solo nei confronti della malattia di Alzheimer, ma

anche nei confronti di altre patologie dell’età avanzata, cosicchè l’e�etto

cumulativo sulla longevità risulti maggiore dell’e�etto su Alzheimer da solo.

Nel capitolo 5 abbiamo focalizzato sulla longevità umana, ed utilizzando

dati pubblicamente disponibili, abbiamo costruito un valore di rischio poli-

genico (PRS) che associava signi�cativamente con il diventare un centenario,

ed in un campione independente di invididui di mezza età, con sopravvivenza.

Questo PRS includeva 330 mutazioni genetiche comuni nella popolazione

generale, non includeva APOE, e determinava �no a 4 anni in più di so-

pravvivenza. A livello molecolare, queste mutazioni hanno e�etto a livello

di processi che solitamente sono alterati in età avanzata, come una ridotta

velocità di di�erenziazione e sostituzione cellulare, e la regolazione dello

stress ossidativo.

10.3.2 Seconda parte

Nella seconda parte della tesi,abbiamo presentato il contributo dei centenari

dello Studio 100-plus in grandi studi di associazione genomica (GWAS) di

Alzheimer e longevità.

Nel capitolo 6, abbiamo combinato studi clinici di Alzheimer e studi di

proxy (o di delega) di Alzheimer in uno dei piu grandi GWAS di Alzheimer.

Questo studio, che includeva più di mezzo milione di individui in totale, ha

portato alla scoperta di 6 nuove mutazioni genetiche associate ad Alzheimer.

Questi risultati hanno rinforzato il ruolo del metabolismo dell’amiloide e

del sistema immunitario come processi centrali nello sviluppo di Alzheimer.

Inoltre, abbiamo sviluppato un valore di rischio poligenico (PRS) signi�cativa-

mente predittivo per la malattia di Alzheimer, che potrebbe essere utilizzato

nella clinica per la strati�cazione di pazienti di Alzheimer e l’identi�cazione

di individui con il rischio più alto di sviluppare la malattia.

Nel capitolo 7, abbiamo partecipato al più grande (�no ad ora) studio

di associazione genomica (GWAS) di longevità. In questo studio, abbiamo

introdotto un metodo nuovo ed imparziale per l’iden�cazione di casi (indi-

vidui longevi) e controlli, basato su percentili di sopravvivenza speci�ci per

paese e sesso. Oltre ad APOE, abbiamo individuato una nuova mutazione

vicino al gene GPR78, ed attraverso analisi di correlazione genetica ed espres-

sione genica, abbiamo identi�cato una soprapposizione tra la genetica della

longevità e quella di alcune patologie dell’età avanzata.

Nel capitolo 8, l’ultimo della tesi, presentiamo snpXplorer, uno stru-
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mento gratuitamente disponibile ai ricercatori per esplorare associazioni

derivanti da studi genetici, per comparare livelli di associazione genetica

in diversi fenotipi o patologie, e per eseguire l’annotazione funzionale di

qualsiasi gruppo di mutazioni genetiche.
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