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Abstract Data reuse is seen as an important practice for realizing value from data. But, as 

scholars have repeatedly shown, the “cooked” character of data can present great challenges 

for data reuse. Yet, empirical research into how organizations can reuse data despite its 

“cooked” character is still underresearched. To address this gap, we followed five teams as 

they developed ML solutions for tackling complex, agricultural challenges. Our research finds 

that the development teams engage in creative data work which goes beyond mere preparation 

of data for training a machine learning model. In doing so, the team engaged in three data work 

practices: problematization, creative data work, and scrutinizing datasets. Our study shows 

that, in what seemingly appears as a merely technical and “janitorial” work, developers 

iteratively learn and interlace their knowledge of available data and a phenomenon in an effort 

to creatively produce a representation of that phenomenon in a form of a workable training set. 

 

1. Introduction 

Scholars have highlighted the importance of organizations opening their data and realizing 

value from its reuse for knowledge production and innovation (Gunther et al 2017a; Van den 

Broek and Van Veenstra, 2015; Leonelli 2013; Verhulst 2020). But, reusing data for purposes 

it was not originally intended for is arguably a major challenge for organizations. Data is 

embedded in a particular context in which it is produced, collected, stored, and worked with 

for a particular representational purpose, i.e. data is always “cooked” (Pine 2019; Jones 2019). 

So, data workers using “cooked” data need to cope with the fact that “cooked” characteristics  

This paper was presented at a paper development workshop. As such, it is an early work-
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of data cannot be removed from some “pure data” which can then be reused freely (Gitelman 

& Jackson).  

Challenge of data reuse is particularly relevant for machine learning (ML). In the 

discourse on ML, data work, including the one performed for data reuse, is primarily 

understood as a process of cleaning, augmenting, and assembling data into a particular 

representation of a target phenomenon (Zhang et al 2020, Kitchin 2014, Jones 2019, Lehr & 

Ohm 2011). Yet, studies have shown that working with data involves practices of judging, 

understanding, and contextualizing data (Gitelman & Jackson 2013; Pine 2019; Jones 2019). 

This suggests that developing training sets for ML from “cooked” data involves more than 

merely technical work. Moreover, so far, we know little about how actors deal with “cooked” 

data when aiming to use the data to train ML models, and establish generativity in practice. 

Thus, there is a need for deeper understanding of work involved in ML development that takes 

into account all data choices and practices involving data. To address this issue, in this paper 

we formulate the following research question:  

How do data workers cope with the embedded nature of cooked data when creating training 

sets for machine learning?  

To answer the research question, we conducted a qualitative study on five machine 

learning development teams tackling predefined challenges related to agriculture, thereby 

relying on open data from a range of different contexts (e.g., satellite data and weather data). 

We adopt a practice perspective (Feldman & Orlikowski 2011) to analyze these cases and make 

sense of the work that goes into data reuse. By emphasizing how actors carry out the data work 

- e.g., how data workers collect, assemble, and transform data - the practice perspective enables 

us to understand how data from different contexts actually “come to be used” in new contexts 

(Jones, 2019).  

Our findings show that data workers enact three practices that emerge as they cope with 

the “cooked” character of data in order to create ML models and facilitate reuse beyond the 

original purpose for which the data has been produced. These practices are: problematization, 

creative data work, and scrutinizing datasets. The three practices show how facilitating data 

generativity involves creative work of creating workable representations of target phenomena 

in the form of a training set. Data work performed is creative because developers tackle 

emerging and unexpected challenges through inventive actions that go beyond mere technical, 



 

 

linear work. Alongside it, data workers iteratively learn and improve their understanding of 

data and how particularities of that data enable or constrain them to construct a workable 

representation of a phenomenon of interest in the form of a training set. By looking at the work 

involved in production of these data sets from a practice perspective, we are able to explicate 

practices that often remain hidden or underappreciated, while their enactment is crucial for 

successful data reuse. This insight is important for organizations that are increasingly 

implementing machine learning solutions using reused data to cater for their specific 

organizational needs.  

2. Theoretical background 

In this section, we discuss scholarly work relevant for our research question. The first one 

concerns the nature of data. The relevance of this debate is in the centrality of the question of 

(un)boundedness, i.e. the ability to use data in novel contexts. As such, it is closely related to 

the literature on data sharing and reuse, with empirical studies engaging with both literatures. 

Yet, the literature on the properties of data, while bringing new insights, often involves 

conceptual arguments for or against a certain property with empirical cases being somewhat 

rare. This motivated us to also include the literature on data work in our research. Besides 

bringing valuable empirical insights, data work studies also involve uncovering hidden aspects 

of work involved around data, which makes it a natural setting for our research question. 

Finally, we also review the literature on digital representations. This research line stresses the 

enduring problem of representations never being the same as what they represent. As such, it 

highlighted the key problem data workers face when working with data - data can never fully 

represent a phenomenon - and enabled us to focus on the way data workers cope with this 

problem. 

Properties of Data Data has increasingly been conceptualized as an “unbounded”, “portable” 

and “open-ended” resource, meaning that it can be used for many different purposes beyond 

the original purpose, in a wide range of new contexts (Constantiou & Kallinikos 2015; Alaimo, 

Kallinikos & Aaltonen 2020; Alaimo & Kallinikos 2016; Ekbia 2009; Gerlitz & Helmond, 

2013; Kallinikos et al. 2013), often in unexpected ways and with unanticipated consequences 

(Lycett 2013, Yoo et al 2012; Gunther et al 2017). According to one line of research into 

properties of data, the unbounded character of data stems from data being continuously editable 

(Alaimo et al 2020) and non-rival (Shapiro & Varian, 1999; Alaimo et al 2020). This means 



 

 

that data can always be modified and once used data as a resource is not depleted. Furthermore, 

data has been characterized as being dynamic (Kallinikos et al., 2013; Yoo et al., 2010), and 

objective (Davenport & Prusak 2007). Since data represents objective facts of the world, this 

representational capacity of data stays the same when data travels to new contexts. Hence, the 

argument goes, data can always be modified for new contexts and in principle all data can be 

used by everyone.  

But, the scholarship on data is becoming increasingly varied and growing in size with 

critical voices making strong arguments against the supposed unbounded character of data. For 

example, data has recently been characterized as dissimilar (Jones 2019; Kitchin & McArdle, 

2016), contextual (Jones 2019; Strong et al. 1997), constructed (Neff et al 2017; Kitchin & 

Lauriault 2014), ‘cooked’ (Gitelman & Jackson 2013; Jones 2019) and ‘dirty’ (Muller et al 

2019). These critiques of data unboundedness highlight how the way data was produced and 

what consequences data production has on how data can be (re)used (Jones 2019; Gitelman & 

Jackson 2013). The critique maintains that data is intrinsically local, situated, and theory-laden, 

thus having no meaning or truth value outside of the context of use. So, not only are data 

constructed and “cooked”, but these are properties that cannot be disentangled or cleaned from 

some “pure data” which can be recontextualized or reused freely (Gitelman & Jackson 2013; 

Kitchin & Lauriault 2014; Jones 2019). This situated and constructed nature of data arguably 

influences the extent to which the data can be reused for purposes beyond the original purpose. 

These critiques form a great challenge for the potential value creation through data sharing and 

reuse. So, the debate emerging around the issue of (un)boundedness is relevant for 

understanding the potentials and challenges of data reuse, because the ability to create value 

through data sharing and reuse depends on the ability of organizations to use data in contexts 

different from the one data was produced in and for.  

Data sharing and reuse Organizations are investing increasing amounts of resources into 

establishing data sharing ecosystems in an effort to create value through interorganizational, 

collaborative data reuse (Gehlaar & Otto 2020; Lis & Otto 2020). Disparate literature on data 

sharing suggests that data is not necessarily readily available or useful for reuse and thus cannot 

be aggregated without considering the context of its production (Pine 2019; Bowker & Star 

2000). This line of research supports the critique of data’s unbounded character, by 

illuminating the practices involved in the recontextualization of data needed for data reuse 

(Birnholtz and Bietz 2003; Gitelman & Jackson 2013; Leonelli 2014; Rolland and Lee 2013). 



 

 

This work highlights the importance of understanding data, meaning learning how data 

production is situated and enacted through ‘localized work within social, cultural, and political 

contexts that in turn shape the production and interpretation of data’ (Pine 2019). So, even 

though some data can be transported and recontextualized, this is not an inherent property of 

data, but an outcome of practices involved in uncovering the historicity of data journeys for 

this to be successful (Leonelli & Tempini 2020; Gunther et al 2017). As Neff (2017) clearly 

illustrates, ‘the work of making and analyzing data is a journey, not a destination, the product 

of layers of contributions from multiple people; so data often lead to new questions’. Hence, 

to uncover what data is and how it can be shared and reused, we need to look into the data work 

involved in data’s “journey”. 

Data work Data work refers to practices of organizing, analyzing, judging, and decision- 
making concerning data (Foster et al 2018; Bjørnstad & Ellingsen 2019). Research on data 

work has its roots predominantly in studies on data practices in the healthcare sector (Berg & 

Bowker 1997; Cabityza et al 2019; Bjørnstad & Ellingsen 2019; Dixon-Woods et al 2012; 

Elingsen et al 2018; Holten Møller & Bjørn 2011; Pine 2019). These studies emphasized that 

data is not an independently existing entity and that it can only be understood in its wider 

sociotechnical context. Furthermore, in agreement with critical voices in the debate on data 

(Jones 2019; Gitelman & Jackson 2013), data work studies highlight the importance of making 

visible the practices through which data comes about. These practices often remain hidden due 

to the social status of people that are usually involved in most of the data work practices such 

as administrative staff, labelers, and other data workers whose practices are deemed as 

scutwork (Pine 2019). Studies on data work have expanded to new contexts and repeatedly 

showed that data work practices require much effort, involve human judgment, reflect political 

choices (Foster et al 2018; Pine 2019) and sometimes require intensive sensemaking involving 

multiple stakeholders to put the data in context (Fischer et al 2017). These insights are 

particularly illuminating in the context of data work for ML. Currently, ML development is 

often described in a linear and technical way (Lehr & Ohm 2017;  Muller et al 2019). Yet, 

research on data work suggests that many aspects of development are not being highlighted or 

uncovered with such understanding of ML development.  

Representations Opportunities and pitfalls of data reuse both rest on data’s representational 

capacity. Data appear to be in a correspondence relation to a phenomenon it represents (Bailey 

et al., 2012; Knorr-Cetina, 1999). This supposed representational character of data promises 



 

 

creation of objective knowledge about the world. Scholars argue that because of the ability to 

decouple digital representations (or in this case data) from a physical device that produced data, 

representations promise a radical transformation of work, yet this promise is faced with 

skepticism due the inherent inability of representations to capture the complexity of the 

phenomena it stands for (Bailey et al 2012; Monteiro & Parmiggiani 2019), but also critiques 

because of the detrimental effects reliance on representations can have on expertise (Zuboff 

1988). For example, Bailey et al. (2012) shows that in simulations, when representations of 

vehicles do not match their referents and there is no way to empirically validate them, engineers 

can neither analyze vehicle performance in an informative way nor find solutions to known 

problems. Similarly, Monteiro & Parmiggiani (2019) find that sensors detecting sand in oil 

wells located at the deep-sea levels need to be continuously verified, while representations they 

produce require expert interpretation accounting for the context of production. Thus, 

representations cannot reliably stand for their referents, as they are unable to portray the full 

complexity of the phenomenon they represent. Moreover, in instances where verification is 

more difficult or even inherently impossible, issues with working with representations are 

amplified because there is no possibility to inspect the correspondence relationship between a 

phenomenon and its representation. 

Four lines of research we discussed bring many insights for data reuse. The debate on 

data (un)boundedness is informative for data reuse as it investigates the constraints which can 

hinder data reuse. But, this is also a key gap we identified as research into how 

(un)boundedness is actually established in practice is still under developed. Uncovering this 

issue is important as it would provide us with insights into how data workers can facilitate 

data’s generative potential and realize value from data for organizations.  

 

3. Methods 

We conducted a qualitative study on five data science teams tackling predefined challenges 

related to agriculture through data reuse. The context of agriculture is particularly interesting 

as it involves global challenges of food security and climate change making this setting as 

timely as ever. Moreover, agriculture is inherently an interdisciplinary endeavor which requires 

knowledge spanning several disciplines such as biology, meteorology, and economics. Hence, 

agriculture is a prime context for studying reuse of diverse data. Furthermore, natural sciences 

are often spoken of as ‘hard’ sciences involving objective and exact data. If such data is indeed 



 

 

‘hard’, its reuse should be easier since data should preserve its correspondence relationship to 

the world in novel contexts.  

We adopted a practice lens in our study as we aimed to see how data reuse was enacted 

through ongoing activities, without assuming some inherent properties of data (Feldman & 

Orlikowski 2011). So, in our interviews, we ask participants to describe in detail their actions 

during a two-month hackathon from the moment of registration to the end of the final 

hackathon event. We conducted twenty-one semi-structured interviews with participants (~1 

hour each), observed five introductory webinars (~30 minutes each), and three final hackathon 

events (~2,5 hours each). Overview of the teams is given in Table 1. Studying hackathon teams 

is highly suitable to address the question of how data scientists reuse data. The datasets that the 

teams used were not pre-fabricated, and they were produced for different purposes then those 

of the teams. Furthermore, the short team duration of two months offered us a “pressure-

cooker” situation that makes it convenient to observe a full process of development, from 

finding data sources to evaluating models. Also, the variety of phenomena and methods across 

challenges provides a rich research context. Of course, its downside is its generalizability, 

which we will discuss at the end of the paper. 

We analyzed our data in several phases. In the first phase, we structured our data in 

case-based narratives that described in detail the work involved in development of datasets. 

Through comparison of narratives, several issues came to the fore. Participants struggled with 

framing the right research questions for their projects, understanding what appropriate data 

means, and understanding how the output of their tools ought to be represented and understood. 

This led us to engage with the literature on data work which studied the need for understanding 

data production in data related projects. So, in the second phase, by continuously going back 

and forth between the cases and the literature on data and data work, we identified challenges 

and actions that data workers engage in for facilitating data reuse across the five cases. We 

created event lists for each case that explicated data related actions and challenges that emerged 

during the hackathon’s two-month period. We noticed a difficulty in describing the 

relationships between challenges and actions in a stepwise way and, consequently, finding clear 

developmental phases was difficult. This was surprising given the clarity and linearity with 

which ML development is usually described. Moreover, challenges and actions we listed were 

often unexpected and required more than mere technical work and expertise.  To address this 

issue, in the third phase, we temporally bracketed (Langley 1999) our data in three phases: 



 

 

collecting data, preparing data, creating a dataset, and listed assumptions, realizations, and 

reactions related to data that occurred in each of the case for each of the three bracketed phases. 

This enabled us to see more finegrainedly the creative actions of developers in each phase, as 

they faced specific challenges such as coping with fragmented data, diversity of data, and 

complexity of ML models. By aggregating the actions and challenges according to the three 

temporal brackets, we came to three broad themes of digging into domain and data expertise, 

creativity of data work, and evaluation of newly constructed data. In the fourth phase we 

structured data from the desert locust team in a case-oriented matrix based on the three themes 

and searched for a general practice associated with each of the themes (Yin 1984). Then, we 

compared all other cases to the resulting matrix and saw a great fit with the resulting practices, 

with all of the activities within a theme having a common goal of producing a specific outcome: 

phenomenon definition, training set, and evaluation, respectively. From this, the practices of 

problematization, creative data work, and scrutinizing datasets emerged. But, we also saw a 

need for more finegrained structuring of data, as activities and challenges within the same 

general practice involved various motivations, strategies, and impact. So, we grouped the 

activities in a total of seven subpractices associated with specific data work challenges teams 

had to address. The practices, subpractices, and outcomes we identified are shown in Table 1. 

 

 

 

 
Table 1 Overview of practices, subpractices, and outcomes 

Practice Problematization Creative data work Scrutinizing datasets 

Subpractices Digging into domain 
expertise;  
 
Digging into data 
expertise;  
 
Interlacing domain 
and data expertise 

Integrating data into 
workable datasets;  
 
Creating 
representational 
proxies 

Scrutinizing ML 
workability of 
datasets;  
 
Scrutinizing the 
consequences of use 

Practice outcomes Phenomenon 
definition 

Training set Evaluation 

 



 

 

We opted for using the conceptual composition of reporting our findings, due to a 

complex nature of problems developers tackled and a larger number of theoretical constructs 

involved (Berends & Deken 2019). So, we introduce the main concepts beforehand and use 

them as ‘theoretical signposts in narratives that follow and later connected in a theoretical 

process model’(Berends & Deken 2019). So, we organize our findings according to three main 

phases, each characterized by a practice that emerges and ends during that phase. Each phase 

consists of several subpractices enacted for data reuse which gives rise to a general creative 

practice of coping with the issue of data reuse. Conceptual composition also enables us to 

present our findings in a space-effective way (Berends & Deken 2019), which is valuable for 

us due to a larger amount of rich cases. So, the case narratives are not presented in a fully 

inductive manner and due to considerations of space we use representative data to illustrate 

concepts we developed. But, this compositional strategy also highlights the theoretical 

relevance of our findings and shows a strong link between our data and the process model that 

emerged from it. Also, we make up for the lack of narrative display through continuous use of 

tables. In Table 2, we provide an overview of the five cases. 



 

 

 
Table 2 Case overview 

Case Land Boundary 
Detection 

Desert Locust Outbreak 

 

Weather forecast 

 

Composite maps 

 

Agriclimatic factors 

Aim Develop a tool for 
detecting boundaries 
between crop fields 

Develop a tool for 
estimating the impact and 
movement of desert locust 
swarms 

Develop a tool for 
forecasting weather 
over a small 100x100 
meter crop field 

Develop a tool for 
producing agricultural 
production advice 

Develop a tool for 
calculating 
agricultural 
phenomena from 
climatic data 

Participants Two geomaticians and 
two machine learning 
experts 

Four remote sensing 
specialists, one 
agricultural business 
owner, one academic 
agronomist, and one data 
journalist 

A machine learning 
expert, two software 
engineers, and a 
geomatician 

An industrial engineer, 
four academic 
agronomists, one 
farmer, business 
master student, and 
agriculture master 
student 

Five geomaticians 

Data used  Data from a regional 
Land parcel 
identification system, 
Sentinel 2 satellite data 
(13 bands) 

Sentinel 1 radar data, 
Sentinel 2 satellite data (4 
bands), weather data from 
an international 
meteorological 
organization (12 
variables), locust GPS 
locations from UN Food 
and agriculture 
organization  

Sensor data from a 
small university owned 
field (4 weather 
variables), weather data 
from a continental 
meteorological 
organization (5 weather 
variables). 

Prices of goods 
(various sources), 
Yield data (personal 
and university owned 
data), Land ownership 
data (government 
data), weather data 
from an international 
meteorological 
organization, Sentinel 
2 satellite data 

Weather data from 
farmer owned weather 
stations (various 
weather variables), 
weather data from a 
continental 
meteorological 
organization (5 
weather variables) 



 

 

4. Findings 

We structure our findings around the three main practices of data reuse for ML projects. We 

present our data in the form of temporally ordered practices of problematization, creative data 

work for ML, and scrutinization of data sets. These practices consist of several subpractices 

data workers enacted to tackle specific changes and produce an outcome of a practice which is 

then used as input for the subsequent developmental work. 

 

4.1 Initiating a data reuse project in the context of ML - Problematization 

The initiation of ML development is often not a straightforward issue for developers as it 

requires development teams to face the complex nature of phenomena they aim to capture with 

their training sets. This means that developers have to formulate their developmental trajectory 

with respect to a particular goal they wish to attain, e.g. milestones to develop a tool for 

improvement of agricultural practices. As a result, developers need to understand well what a 

particular need the tool they are developing has to solve which requires involvement with, and 

understanding of, domain specific requirements of their tool.  This issue can be even harder to 

solve in case of data reuse, as developers are constrained with respect to available resources 

they can use to model a phenomenon.  

So, early on each team aimed at agreeing what exactly the target phenomenon was, 

what knowledge about the phenomenon they wanted to produce with ML, i.e. what type of 

outcomes should the resulting model provide, and how that tool can help agricultural 

practitioners to perform their work. Also, developers looked closely how their data relates to 

the target phenomenon. So, each team aimed at inspecting how well the available data can 

represent a phenomenon and how can data be refined into a better representation of that 

phenomenon. To achieve this, the teams also explored what similarities and differences there 

were between what data represented and what the phenomenon was to see if there are 

opportunities or threats for constructing workable representations from available data. In the 

following subsections, we provide examples and explanations of the two subpractices 

developers engage in. We show how these subpractices result in developers constructing a 

phenomenon definition as the product of the general problematizations practice.  We present 

the practices of problematization across cases in Table 3.



 

 

 
Table 3 Problematization 

Case Land Boundary Detection Desert Locust Outbreak Weather forecast Composite maps Agriclimatic factors 

Subpractice – 

Digging into domain 

expertise 

The team needs to understand 

the need that land use agencies 

currently have, while thinking 

of other potential uses of 

reused data. Hard to define a 

goal because of the ambiguity 

of the word ‘boundary’. 

Explore different ways 

boundary can be understood 

and how it aligns to potential 

data sources. 

It is not possible to observe the 

locust, while it is dangerous for 

livelihoods of people, so there 

is a great need for a tracking 

system. The team also know 

little about the locust so they 

search for academic articles on 

the topic to be able to think of 

potential proxy phenomena. 

There is a need for more local 

forecasts that farmers can rely 

on. There is a need for more 

long-term, yet reliable, 

forecasts to manage 

agricultural practices in a 

better way.  

 

The team needs to know which 

exact questions would be 

relevant for the biggest amount 

of farmers and if those 

questions can be translated in 

computational terms. They 

consult agricultural experts on 

the matter. 

The team did not know a priori 

which factors are of special 

interest for farmers. The team 

interviewed farmers to see 

what kind of phenomena they 

would deem interesting and 

relate them to the team’s 

agricultural expertise. 

Subpractice – 

Digging into data expertise 

The team needs to define what 

kind of outputs a resulting 

model should provide and 

define what kind of datasets 

the team should develop. The 

team also investigates how 

available data is structured to 

identify potential uses, but also 

deficiencies of sources. 

It is hard to define a goal 

because there is no particular 

data referencing the actual 

locust. The team understands 

that even the locust GPS points 

are actually just sighting 

reports. They realize a need for 

establishing a good data proxy 

for the locust. 

The team investigates closely 

what data they have available 

and look for relationship 

between them. They perform 

statistical analysis on the data 

to evaluate the potential of 

‘uncovering hidden patterns’. 

The team needed guidance on 

which exact data to search for 

as they were not sure what 

exactly the phenomenon they 

should represent is. They 

consider what data might be 

available for them to inform 

them of potential phenomena 

to represent. 

The team did not know what 

data they can use for local 

predictions of events, while 

they realized global data has 

issues with the accuracy and 

internal uncertainty due to 

microclimatic differences.  

Subpractice – 

Interlacing domain and data 

expertise 

The domain expertise informs 

the way satellite images need 

to be constrained to be able to 

represent the land boundaries 

in a workable way. In the same 

Digging into domain enables 

the team to consider which 

phenomena can serve as 

proxies for the locust – e.g. 

vegetation change. On the 

By learning about the data, the 

team sees potential 

opportunities of combining 

local and global weather data, 

due to correlations between the 

The team creates a framework 

explicating three questions 

they want to answer – what and 

where to plant, and where to 

sell – each associated with a 

The team iteratively compares 

available weather variables 

and phenomena farmers 

highlighted during the 

interviews. By comparing the 



 

 

time, LPIS data is used to 

define what a land boundary is. 

other hand, understanding the 

opportunities and deficiencies 

of satellite and radar images 

enable the team to work out a 

way to represent vegetation 

change specifically for 

tracking the locust. 

two. Yet, the team lacks the 

domain expertise to interpret 

what underlines those 

correlations, so they search for 

alternative strategies to find 

important parameters to 

consider 

list of data sources that can 

potentially be used to answer 

the questions. 

two, they map one onto 

another to find which factors to 

make calculations on. 

Outcome –  

Phenomenon definition 

Land boundary is defined so 

that it fits the way data is 

structured in the LPIS. 

Read blogs and papers on the 

problem, while relating their 

findings to potential data 

sources. They realize 

vegetation can serve as a proxy 

and they can use satellite data 

for it. 

They combine similar, yet 

different weather phenomena 

from two data sources in case 

the pair seems to correlate 

enough to be treated as a single 

phenomenon. 

The team infers from the 

general framework the notion 

of best practices as a guide to 

where and when to plant a 

particular plant and where to 

sell it. 

The team formulates a list of 7 

factors that farmers have 

highlighted and the team 

believes they can be calculated 

from available data. 



 

 

Digging into domain expertise Development teams we studied were faced with an issue of 

understanding how exactly their tools can improve actual agricultural practices. This was 

crucial for these teams as they wanted to ensure the relevance of their solutions for potential 

end users. Also, they believed that understanding the need can help them realize what kind of 

data they would need to search for to address that need. Hence, overcoming the issue of finding 

potential data for reuse and defining data requirements for ML involves developers learning 

about the practices they want to improve and relate them to the potential inputs that some 

algorithms can work with.  

All five development teams engaged in this subpractice in their first meetings where 

they discussed aims of their respective projects. To illustrate, the composite maps team was 

early on faced with a confusing situation in which different participants had very different ideas 

on what need they wanted to satisfy for farmers. As an agronomist that participated in this team 

explained: 

First, the challenge was to ourselves what really do we want to do and why we want to 

do something. So in the course of the discussion we came to, I was prompted by the fact 

that we've not asked ourselves these questions. What we needed to get from this question 

is to realize what data needs to be available to answer the question. (Agronomist, 

Composite maps) 

This required the team to discuss which problems exactly they wanted to solve and then 

if those problems can be framed in terms of a ML problem. Moreover, as the team mentor 

explained, their solution needed to have enough information for the advice to be understandable 

by farmers that would use it: 

‘[Our aim] is to detect the good and the wrong places on the field and you need to 

convince farmers that this is reality and for example if there is a discussion with them 

okay this part of the field is bad for this and this reason. So it is necessary to then have 

such dialogue in this stage not only to offer farmers a “black box”. They want to have 

some evidence and to explain to them what you are doing with this data.’ (Mentor, 

Composite maps) 

As these examples illustrate, the issue of understanding the need presses developers to 

understand the domain and think about the way that their tools will be embedded in the 

practices they are developing the tool for. This is important for the developers, as understanding 



 

 

the need can help them in agreeing what exact data they can search for, as well as in what way 

they can define the kind of outputs their ML tool can have. 

Digging into data expertise Besides understanding the needs that agricultural practitioners 

have, the teams also had to figure out what kind of a training set they need to develop and how 

to evaluate the usefulness of data sources available for reuse. In doing so, the developers 

worked on agreeing what kind of training data, and ultimately model outcomes, they wanted 

to produce. The challenge to constructing a dataset is particularly salient in case of data reuse, 

as developers are dependent on the existing data, which was not produced, formatted, or even 

stored for the purpose that they want to use it for. Hence, developers can face the problem of 

potentially useful data being fragmented or inaccessible. This was especially evident in the 

case of the composite maps team which struggled with the fact that land ownership data is both 

fragmented across national databases and often inaccessible due to privacy concerns. This is 

why other teams relied on open data, with the exception of the agricultural factors team which 

reached out directly to farmers to collect their data. 

Furthermore, since the data that teams searched for was produced for a different 

purpose, developers faced large discrepancies between what the available data represents and 

what aspects of the phenomenon developers need to represent. As the case of the desert locust 

team nicely illustrates, when there is no data available on the phenomenon, the path to defining 

a phenomenon can be hard. The team was considering what data they can use to represent the 

locust and they found that the only available data directly referencing the locust were GPS 

locations of reported locust occurrences. But, as one participant explained, when looking into 

the data, the team soon faced an issue:  

‘there's not that much information in the GPS points. Basically, you have like the name 

of the city or the village, and then you have the GPS location, and the date. So we were 

missing some information to identify how big it can be.’(Geomatician 1, Desert locust)  

In this example, we can clearly see how the differences between what the data represent 

and what the developers want to represent can pose problems. This issue can be further 

complicated when there is a lack of domain knowledge. The team working on the desert locust 

didn’t know much about the insect prior to the challenge, besides hearing about infestations. 

As one participant pointed out:  

‘I didn’t know what to do, because I'm not like a biologist guy. So I didn't know at all 

how we can measure the size of the swarm’ (Geomatician 2, Desert locust)  

 



 

 

Interlacing domain and data expertise After digging into the available domain and data 

expertise, the team looked for ways to use this information to construct a phenomenon 

definition that will be used to define what training sets and model outcomes they need to reach. 

This work involves interlacing domain and data expertise the developers dug into. Interlacing 

knowledge involves examining ‘what, how, and why of the various [design] options’ that 

enables developers ‘to recontextualize and transform that knowledge to improve or even 

radically alter their own designs’ (Tuertscher et al 2014). An interesting illustration of 

interlacing comes from the agriclimatic factors team that reached out directly to farmers and 

interviewed them about the kinds of phenomena that would be interesting for them, to ensure 

they understand the need of actual agricultural practitioners. As one participant said bluntly: 

‘we know that what we call agroclimatic factors is something of interest to farmers because 

we discussed with farmers what they want’(Geomatician 1, Agriclimatic factors).  

As they considered which phenomena they can represent, the team investigated how 

various data sources relate to specific phenomena highlighted by farmers. The team came to 

the idea to use satellite-based climate data, but as one participant explained, there can be quite 

a discrepancy between what the data states and what is the actual state of affairs: 

‘If we talk about the temperature, we can feel influences like if you are by the river or 

by water, you can expect different microclimate than if you're somewhere else. This is 

why it is hard to use the global data for this. Global data can give us some, let's say 

some overview, but then you usually need some meteorological station to work with.’ 

(Geomatician 2, Agriclimatic factors)  

Since the team wanted to produce a visualization of factors across a region, e.g. 

probability that frost will be present on a specific date in a specific location, they needed data 

that is more fine-grained than global meteorological data. Yet, when they turned to local, 

farmer owned meteorological stations, they found issues too. While global meteorological data 

is uniform across the globe, not all-weather stations are the same, because they don’t 

necessarily measure the same kind of phenomena – some measure multiple temperature related 

phenomena, but not wind, while others measure precipitation and wind, but only one 

temperature related phenomena, for example. Moreover, even if they measure the same kind 

of phenomena, they are not necessarily the same kind of instrument, meaning that their 

accuracy and fine-grainedness might diverge too. To solve these issues, the team decided to 

define a set of agricultural factors that match the insights from interviews they conducted, but 



 

 

that are also least prone to complications due to the specific issues that the two identified data 

sources can have. 

 To illustrate a different strategy, the land boundary team aimed at identifying 

boundaries between crop fields and one issue they encountered was that a “field” can be 

understood in relation to plants as an area where they grow, in administrative terms as an area 

that is registered with the municipality, or as an area that is physically surrounded with a fence. 

The team had access to a regional land parcel identification system (LPIS, which contains 

images of fields with marked boundaries based on farmers’ reports. Those farmer reports 

defined a field as a continuous land covered in a single crop and owned by a single farmer. As 

they found out about the definition of a field from the LPIS, the team decided to define a 

boundary as the edge of a LPIS documented field. This also enabled them to use LPIS data as 

labels. Interestingly, as the team wanted to use LPIS data to label satellite images, one 

participant soon pointed out a problem: 

‘the crops are growing between May and July. Then it's cut. [We] were all the time 

discussing the best season for the choice of [satellite] data. If you, for example, choose 

autumn you cannot see those boundaries properly because there is no crop.’ 

(Geomatician, Land Boundary) 

So, as the team learned more about the domain and the data, they were able to anticipate 

challenges that they will be facing in the course of constructing workable training sets for ML. 

These examples show how the interlacing of the interpretation of the phenomenon and the 

interpretation of data can be used to guide definition of the developmental goals. Moreover, 

this also shows that, besides it being important to identify information needs to see what kind 

of data might be relevant for representing the phenomena, it is also very important to learn 

about the data so that developers can see what reuse opportunities they can leverage. So, data 

reuse crucially depends on interlacing knowledge about data with the knowledge about the 

domain. 

 

4.2 Creating a training set from reused data – Creative data work 

The main objective that the development teams had was to overcome the challenges stemming 

from the tension between a phenomenon definition and the ability to represent that 

phenomenon with available data coming from diverse sources. Each team aimed at 

constructing a workable and representative training set, meaning that the training sets the teams 

made had to be adequate for the purposes of ML, in terms of their format and size, but also 



 

 

representative of the phenomenon in a sense that the resulting model should provide 

informative outcomes for end-users. To achieve this, the team had to face and overcome the 

heterogeneity of data coming from different sources, as well as the complexities of working 

with diverse and large data sets. In our cases, we found that these challenges triggered the 

development teams to engage in the practice of creative data work. Hence, the creative work 

consists of two subpractices: integrating data into workable datasets and creating 

representational proxies. We present the practices of creative data work across cases in Table 

4.



 

 

 
Table 4 Creative data work 

Case Land Boundary Detection Desert Locust Outbreak Weather forecast Composite maps Agriclimatic factors 

Subpractice – 

Integrating data into workable 

datasets 

The team is faced with a need 

to do multiple transformations 

to be able to use such diverse 

data. The team relies on 

domain and data expertise to 

brute force the data into a 

unique format. 

To produce a proxy 

representation of the locust, 

the team needs to integrate 

satellite images, radar images, 

weather data, and GPS 

locations. The team seeks 

outside expert help for 

combining all data sources. 

There is a great discrepancy in 

the frequency, resolution, and 

measures coming from two 

available data sources. The 

team relies on statistical 

analysis and a time warping 

algorithm to integrate the two 

datasets. 

 

The team is faced with an 

increasing amount of 

identified data sources needed. 

The team performs statistical 

analysis and consultations with 

experts to find which data can 

be made obsolete. 

Available data sources exhibit 

great diversity which is a 

challenge. The team searches 

for the biggest common set of 

variables present in all sources 

and builds their training set 

from that data. 

Subpractice – 

Creating representational 

proxies 

 

Representing fields in a rich 

way is in tension with 

representing fields outside of 

the embedded environment 

fields are in. The team 

considers temporal constraints 

they can place on satellite data 

and the richness of resulting 

representations. Moreover, 

there is a tradeoff between the 

number of types of satellite 

imagery and complexity of 

their model. They enforce 

strict temporal constraints, but 

then also use all types of 

images.  

The team faces a tradeoff 

between the amount and 

finegrainedness of weather 

data and the complexity of 

resulting data. The tradeoffs 

are directly related to the type 

of proxy representation the 

team can make. They use 

statistical analysis to make 

data choices. They also face 

representational tradeoffs 

between satellite and radar 

images and opt for overcoming 

deficiencies of both through 

integration. 

The team faces the issue of 

raising complexity of their 

dataset, so they decide to 

partition their data into one-to-

one pairs of weather variables 

from the two datasets. To 

further reduce complexity, 

they use autoencoders to 

extract relevant features of 

datasets through machine 

learning. 

The team sees great 

differences in the level of 

finegrainedness of data and 

choosing one level over the 

other enables the use of some 

data while it makes other data 

unusable. They decide to use 

data coming from a single 

organization to ensure it can be 

integrated due to same data 

governance requirements that 

applied to all data types. 

The team sees a need for 

making data choices regarding 

the amount of weather 

variables that is ultimately 

included in the training set, as 

they anticipate the issue of 

complexity that might arise. 

They rely on their domain 

expertise to make 

computationally most efficient 

calculations. 



 

 

Outcome – 

Training set 

14-layered images – 13 layers 

of transformed satellite images 

with the 14th layer being the 

labels created form LPIS data 

Timeseries dataset correlating 

vegetation and weather change 

with reported locust 

occurances. 

Three datasets integrating 

specific pairs of variables 

produced by autoencoders. 

The team does not produce a 

training set, but a collection of 

diverse data. They lack a 

framework to deal with data 

reuse challenges. 

The team produces 7 training 

sets for each factor 

respectively by integrating the 

two data sources. 



 

 

Integrating data into workable datasets Developing workable ML tools always depends on 

usable ways to integrate large and diverse datasets coming from different sources and the same 

is the case in data reuse. Yet, standardized and reliable strategies to overcome these issues do 

not exist, as the specific issues that can emerge between two data sources depends on how the 

data was created, curated, and what is the context of its use. So, data diversity was a challenge 

faced by all development teams and this issue was particularly salient in these cases of data 

reuse because data that is being used is not produced for the purpose of being combined 

together. This makes the work of transforming and integrating data even more challenging. 

To illustrate, for the land boundary team this meant a great deal of inspecting images 

they collected. Based on the way the team interpreted what a field boundary is and how satellite 

images and the LPIS data represent the details of crops, the team discussed how to construct 

the training set from the data they had available. The team was faced with the decision on 

which out of 13 different types of satellite images they can use. Sentinel 2 satellites capture 

images that differ in terms of the light-wave they capture, as well as in their resolutions (having 

a 10, 20, or 60-meter resolutions). So, the team had to judge on the ability to use these images 

to accurately represent fields. The tradeoff was between choosing a larger amount of data which 

they can use for training by using all types of images or selecting only more fine-grained types 

of images. Another potential issue was that not all images could show clearly the boundaries 

between fields as they capture diverse aspects of nature. Figure 1 illustrates how three different 

combinations of several satellite bands can represent the fields differently. 

 

Figure 1 Differences and similarities of satellite data representations 



 

 

 Because of the number of images they had at their disposal, the team looked at the 

small sample of them and compared them. Using a naked eye, the team agreed that they share 

enough similarity that they can all be used – e.g. when they selected a particular field and 

checked all 13 images, they could have seen the boundaries themselves. As Figure X (above) 

illustrates, there is a correlation between moisture, vegetation, and color, among other 

phenomena different satellite images capture. Nevertheless, the geomatician raised concerns 

about using all of the types of satellite images, because in remote sensing ‘the combination of 

satellite bands is a cornerstone for a good result’ (Geomatician, Land Boundary Detection) 

and using all of them can lead to many problems pertaining to the transformation that need to 

be done to integrate all of them. Yet, as one of the machine learning experts argued, the team 

already lost a lot of data due to limiting images to spring time: 

‘for machine learning you need a lot of data and we didn’t have many anymore. We 

probably didn't have enough data as the net needed to train it’. (Machine learning 

expert, Land Boundary Detection) 

Note, the team decided to use only the images taken between May and July, so they 

leverage the fact that fields have crops on them, making it easier for them to see where the 

boundaries between different fields are. The mentor agreed with the concerns over the amount 

of data they had on their disposal, but integration of all of the images was a great challenge. 

The team had to solve the problem of different resolutions (10, 20, or 60 meter resolution), as 

well as the fact that the LPIS data was expressed in a different coordinate system than the 

satellite images. This required the team to perform multiple transformations of images so that 

they can all be mapped one onto another. While the machine learning experts solved the 

resolution problem and patching satellite images together, the geomaticians performed 

geomatic transformation of LPIS expressing its coordinates in the same system satellite images 

were formatted in. After combining all of the images, the team produced 14-layered images of 

crops that should have correlated various aspects of crops with the existence of reported 

boundaries. Yet, the team was concerned with how well their training set can be used due to, 

what they regarded as, the lack of training examples. Moreover, they were concerned with how 

well the outputs of their ML model will look like and if they will be useful for detecting the 

land boundaries. 



 

 

 These issues were encountered by all teams, since the data they were acquiring came 

from multiple organizations, with different data governance systems, formats, frequencies, etc. 

The example above illustrates an issue that any interorganizational data sharing that does not 

have common standardization will face. 

Creating representational proxies The second issue the teams faced was that of evaluating 

tradeoffs when creating proxy representations of their respective phenomena. Multiple 

problems can emerge that developers face when creating proxies. Different data sources can 

have both complementary and competing ways of representing a phenomenon. So choosing 

one over the other or integrating both can be complicated and with far reaching consequences. 

Also, developers need to consider what computational resources are available and what 

developers can do with it. Here, the tradeoff is between how many different data sources are 

being combined and how complex the model resulting from that training set will be. This is an 

important tradeoff to consider, as the use of multiple resources was seen as needed to create a 

representation of defined phenomena from reused data, yet by including lots of different 

sources or types of data,, they might not have the computational power needed to actually train 

or run their model. This issue was particularly evident for the weather forecast, agriclimatic 

factors, and desert locust teams as they tried to estimate how many different weather variables 

they can use without rendering their data too complex. Hence, developers need to strike a 

balance between representations being created and model complexity.  

To illustrate this challenge and how it was addressed, consider the desert locust team 

which discovered that, since the danger with the locust is precisely in it eating vast amounts of 

vegetation, sudden and widespread changes in vegetation were known to be linked to the locust 

infestation. Furthermore, they found that the desert locust numbers and movement are linked 

to rain since locusts tend to lay eggs in moist areas. During a team meeting, participants 

brainstormed ideas on how they could use this information for solving the problem of 

representing the locust. A remote specialist from France had experience with proxy 

representations, as he worked on a project where he tracked immigration by representing 

change of urban environments through satellite imagery. He argued that natural phenomena 

such as vegetation and weather change might serve as reliable proxies for the locust in the same 

way. As he explained: 



 

 

[we were] noticing that there is like specific temperature or specific precipitation 

[connected] to it. So soil moisture was [also included in these factors]. And then maybe 

you can add other data, but I mean, with three types of data you already have, a lot of 

data to collect, and you have a lot of information to analyze to get something 

interesting. (Geomatician 2, Desert locust) 

So, the remote specialists suggested that they can use NDVI – a vegetation index 

derived from satellite imagery whose sudden changes can be indicative of desert locust 

location. But, as another remote specialist pointed out, the satellite imagery has issues of so-

called “cloud cover” (clouds stand in a way of the light being reflected from Earth), and 

therefore creates poor representations of vegetation during rain. As he explained, this was a 

great disadvantage:  

the desert locust crisis is happening after some meteorological events, like rain, a 

specific temperature on the ground, soil moisture, I don't know, so I knew that maybe 

the clouds will be a problem as [the crisis is] happening after rains. And so, if we are 

missing the time when we have the locust we are losing some information. (Geomatician 

1, Desert locust) 

As an alternative the team considered using radar images. Unlike the satellite which 

works by collecting light reflected from the Earth, radars send their signals which can penetrate 

the clouds and are collected once they contact Earth’s surface. But, the way radars work also 

means that they can provide information on the texture of land cover, but not also on the amount 

of vegetation. As the French remote sensing specialist explained: 

Radar measurement is based on the signal that's touching the ground and let's say the 

shape or the texture of the ground, but then when you are like... sometimes when you 

have a signal on the mountain and signal on the forests, you will get the same signal. 

(Geomatician 1, desert locust) 

The team also had to decide if and how to incorporate weather data in their training set. 

They believed that if they could combine images with weather data, they could construct a 

reliable representation of the desert locust. But, the team worried that including too many 

weather variables would render their model too complex. So, they had to make a judgement on 

the number of different variables that they would use. The French remote sensing expert had 



 

 

some experience with ML and he suggested that keeping more than three variables would 

greatly increase the complexity of their model, while this would not greatly improve the 

predictive power of their model. The team first decided to list several variables and correlate 

them with the time stamped GPS data on locust presence by doing statistical analysis. Finally, 

the team was faced with choosing between the numerous potential data sources which ones to 

use and in what amount, making evident the representational tradeoffs they had to make. 

4.3 Identifying emerging issues – Scrutinizing datasets 

After developing the training sets, the main objective that the teams set out to achieve is 

evaluating their training sets. The teams were interested in how well they managed to construct 

a training set that represents a phenomenon and that can be used as input for ML. Moreover, 

as they have also faced potential challenges related to consequences of use and workability of 

their training sets for ML, the teams engaged in the practice of scrutinizing datasets. In doing 

so, development teams inspected potential issues that can emerge from the use of tools based 

on their training sets and realized how consequential the tasks they performed in the creative 

work were on their training sets - which often surprised them. While investigating what have 

happened during the creative data work and what the consequences for their project are, the 

teams realized that there is a discrepancy between what their training sets represents and can 

achieve, and what they initially set out to do with them. Moreover, they realize that the 

complexities of data have increased and that tradeoffs they made at start have had a large effect 

on what they can do with their training sets now.  

 The main outcome of scrutinization is the evaluation of their training set. In this 

evaluation, a development team pin points specific issues that can emerge due to the way a 

dataset is constructed. As a result, development teams realize that they need to work again on 

improving and reinterpreting their understanding of the need they are trying to solve, as well 

as to improve their understanding of the newly constructed data. This practice shows how 

anticipation of issues that can emerge from future use impacts the developmental practices 

while the project is still running. The concern that the developers had comes directly from the 

fact that data is being reused and, after seeing how unexpected issues can emerge while 

producing datasets, developers operate under great uncertainty over how that data will impact 

the risks connected with the future tool use. We present the practices of scrutinizing datasets 

across cases in Table 4. 

 

 



 

 

 
Table 5 Scrutinizing datasets 

Case Land Boundary Detection Desert Locust Outbreak Weather forecast Composite maps Agriclimatic factors 

Subpractice – 

Scrutinizing ML workability of 

datasets 

Numerous transformations led to 

loss of large amounts of data, 

while data that was left does not 

represent the boundaries in the 

same way as they defined them in 

phenomenon definition. 

The team considers how good their 

data is for the problem definition. 

They find specific issues for areas 

near water or inability to 

differentiate between phenomena 

that can have similar data trace 

(e.g. forest on a mountain and in a 

plaine). 

Some datasets perform well, while 

others have a bias in predictions. 

The team considered how well 

their datasets represent 

phenomena, but due to lack of 

domain expertise cannot evaluate 

them properly.   

The data the team collected is, in 

general, not good enough for ML 

as it is in unusable formats, often 

outdated, and lacks crucial 

metadata. The team needs to 

improve on the quality and format 

of their data/ 

The team realizes that they cannot 

capture everything they planned 

due to specific discrepancies 

between some data and 

phenomena they wanted to 

represent. They modify the factors 

based on specific representational 

problems data has. 

Subpractice – 

Scrutinizing the consequences of 

use 

The team deliberates on the use of 

their tool and realizes the need for 

perfect accuracy as their tool 

should be used for determining 

amounts of subsidies and taxation 

for government agencies. So, 

mistakes can bring large negative 

consequences both on farmers and 

agencies. 

The team is concerned about the 

possibility of their tool having 

false negative predictions, this not 

alarming the population about the 

incoming infestation which can 

have grave consequences on the 

livelihoods of people living in 

those areas. 

The team notices that there can be 

issues with explainability of model 

outcomes due to the stacked 

architecture they created. They 

notice a bias in outcomes, but due 

to lack of expertise cannot identify 

how to fix the bias. They see this 

as problematic for end users. 

The team agrees that their initial 

phenomenon definition was too 

broad and use of such diverse data 

can lead to lack of explainability 

with respect to the causes of 

certain recommendations the tool 

would make to farmers. On the 

other hand, lowering the amount of 

data needed for the same 

phenomenon can lead to a lack of 

justification for recommendations. 

There is a great risk attached to the 

uncertainty of data being used. 

While small uncertainties can 

sometimes be nonconsequential on 

the end-users, for some factors that 

same data can have detrimental 

consequences on agricultural 

practices. 

Outcome – 

Evaluation 

The team sees a need to redefine 

the phenomenon based on 

identified need for more 

understanding of constructed data 

and need that exists. 

 

The requirement to faithfully 

represent the locust was dropped 

and the ability to estimate which 

communities to warn of danger 

became the focus for redefinition. 

The team discusses other 

parameters that they had to use for 

training the model, and seek 

domain expertise needed for 

redefinition of phenomena. 

The lack of data made them unable 

to define the phenomenon and due 

to the lack of time, the team did not 

manage to fix the issue. This case 

stresses the need to substantially 

connect the phenomenon with 

available data to be able to solve 

the challenge. 

The team sees a need for 

redefining some factors to cope 

with uncertainty of data. They seek 

consultations with farmers and 

analyze data to come up with new 

definitions of phenomena. 

 



 

 

Scrutinizing the consequences of use Scrutinizing datasets involves considerations of 

explainability or utility of tools for end users, as well as risks that might emerge through use 

due to the type of data that was reused. These considerations proved to be very consequential 

on how the teams approached the further development of their solutions. In case of weather 

forecast and composite maps teams, they were most concerned with the explainability of their 

products to end-users. The issue that the former had was that their stacked deep learning 

architecture disabled themselves to explain the outputs of their model. This raised concerns 

since they saw some kind of bias in the outputs which made their predictions imprecise, yet 

without understanding why. For the composite maps on the other hand, the issue of 

explainability was tied closely with the inability to collect all desired data, which led them to 

believe they cannot produce a tool good enough for farmers. 

The other three teams were concerned with the risks attached to the use of their tools. 

To illustrate this challenge, the team calculating the agriclimatic factors realized that how much 

of a gap between data and phenomena is acceptable depends on each individual case. As one 

participant explained: 

‘this is kind of dangerous for talking about some freezing periods. Because if you like 

have the temperature plus one or minus one, it's a big difference for the crop in the 

area. So, for the crop related issues it's not a good data source. But if you calculate the 

accumulated, for example, soil solar radiation or the accumulated temperature, you 

say, like okay, for this hour, it was like 10 degrees Celsius. And even if it was 11 or 9, 

it doesn't matter that much.’ (Geomatician 3, Agriclimatic factors) 

As the GIS expert explained, inaccuracy of measurements is something that is normal 

and expected, but the degree of inaccuracy constrains the number of phenomena that can be 

calculated from it without potentially bringing harm to farmer’s crops. A one-degree Celsius 

difference can amount to a difference between a field that is covered in frost and a field that is 

not, which is a difference between a healthy plant and a frozen plant. So, at least when it comes 

to sharing predictions with farmers, the team was very cautious about which phenomena could 

be reliably calculated with the available data. Similar considerations were deliberated by the 

locust team as they thought of effects their early warning system can have on infested areas or 

the land boundary team when it comes to the distribution of subsidies or charging of taxes 

based on the boundaries their tool identified. 

 



 

 

Scrutinizing ML Workability of datasets Developing ML solutions requires data not only to 

represent a phenomenon, but that it is also constructed in a way that it can be used as training 

examples for ML. This requires the data to be of a certain volume and variety, but also quality 

and format. Yet, these properties can be hard to achieve as work invested in one, can be 

detrimental for the other. For example, as we have shown, for three teams inclusion of the large 

amount of weather variables can be understood as both positive, as well as detrimental for ML 

development. Hence, workability is something that can be competingly interpreted by the 

developers. 

When evaluating the effects of transformations done on images, the land boundary team 

was unpleasantly surprised because ‘when you clean up those data, it causes a loss of big 

portions of area’ (Machine learning expert, Land boundary). Due to numerous transformations 

to deal with the differences in resolution and format, many resulting images turned out to be 

simply black, missing land boundary data, or the team simply wasn’t able to recognize what 

the images showed. Also, there was a discrepancy between the way the team defined land 

boundaries and what the ‘good images’ showed, namely the algorithm segmented all of the 

pixels in two classes, those that fell within the boundaries of a field and those that did not seen 

on Figure 2. So, there weren’t any pixels that actually referred to a boundary between a field 

and a non-field at all.  

 
Figure 2 Example of a land boundary model output 

 The team decided to check how all images looked like and were still faced with some 

discrepancies due to the interpretative nature of land boundaries. As Figure 3 illustrates, 

boundaries between crops are far from fixed due to plants being living beings embedded in the 

natural world, making the observed boundary fundamentally different from the one that is 



 

 

registered in the LPIS. Moreover, as unused land can exhibit physical boundaries due to over 

growing or a single crop field can have some visible boundary due to a disease, but these 

aspects are not reported in the LPIS, there is an inherent imperfectness of the representation 

with respect to capturing the actual boundaries.  

 
Figure 3 Differences between representations and phenomena 

 This example shows how considerations of workability, such as considerations of what 

an algorithm will learn, is important to understand for developers, so that they can address 

these issues before they move on to the next development stage. 

 

 

5. Discussion 
 

5.1 Model of creative data work for machine learning 

Our findings illustrate how actors facilitate data reuse in the context of ML by engaging in 

creative work and actively co-constructing data and phenomena. Such creative work involves 

learning about how the data “came to be” (Jones, 2019) and what the data represent, as well as 

learning more about the phenomenon of interest for which actors aim to reuse these data. By 

continuously inspecting the existing and emerging discrepancies between what data represents 

and how the phenomenon is defined, data workers search for ways to reinterpret the meaning 

of data and phenomena, so they can repurpose the data in new, innovative ways and use them 

as input for ML models. We identified three practices that emerged as teams coped with 

challenges of repurposing data coming from different contexts: problematization, creative data 

work, and scrutinizing datasets. Furthermore, these practices seem to form a closed loop, as 

the last practice of scrutinizing datasets reveals challenges that require redefinition of a 

phenomenon initiating the practice of problematization again. We present the process model 

we developed in Figure 1. 



 

 

 
 

 

Initiating data reuse projects can be more challenging, compared to producing data for 

machine learning, since the data from which the value needs to be realized is already produced 

with all of the limitations which that process placed on data. As a result, a target phenomenon 

has to be defined in terms of that data while accounting for all of its “cooked” characteristics. 

Since reuse involves data that was not produced for the purpose it is being used for, identifying 

similarities and differences between what data represents and what aspects of a phenomenon 

developers want to represent is very important. To successfully identify those, the developers 

need to both have in mind the internal discrepancies of available data, as well as how each of 

them, or combination thereof, can be used to capture a phenomenon through a proxy 

representation. Hence, the practice of problematization clearly shows the importance of tight 

knowledge interlacing (Tuertscher et al 2014) between domain and data expertise for 

successful data reuse. This interlacing is beneficial because if developers are not involved in 

data production and they might not be informed about the opportunities, but also threats of 

reusing some data 

Digging into domain knowledge and relating the findings to technical knowledge of 

data, enabled teams we studied to infer how to define a phenomenon in terms of available data.  

Learning about data production can be hindered by the lack of recorded information on how 

Figure 4 Model of creative data work 



 

 

data was produced or even subsequently altered. Yet, knowledge of this can prove to be 

important for development of best strategies for value generation later on or even 

reconsideration of which data can best serve the aims defined in the previous practice. This is 

so because particularities of data inform developers of possibilities to use certain data as a 

representational proxy. Lack of knowledge about data can lead to unexpected consequences of 

its use, or to nonuse of potentially valuable data. 

Production of a phenomenon definition enables developers to engage in data work 

needed to produce a training set that matches the definition. Data work in ML development is 

often regarded as merely technical, described in a straightforward and stepwise way, and in 

general taken to be dull, janitorial work of cleaning and preparing data (Lehr & Ohm 2011). 

Yet, data work we observed seemed to go beyond mere technical considerations, as it required 

innovative thinking, and was filled with judgement calls based on domain expertise and/or data 

science experience. Having a phenomenon definition, developers engaged in creating a training 

set that can workably represent the defined phenomenon. Data work that developers perform 

in this practice is creative for several reasons. First, as we show in our cases, challenges that 

developers face are emerging and unanticipated, which leads to developers finding novel ways 

to represent phenomena that are very complex. Furthermore, developers cannot simply follow 

some predefined steps for constructing workable representations, because tradeoffs and 

integrations they have to make depend on their judgement calls and understanding of the 

similarities and differences between what data represents and a target phenomenon. Developers 

need to work with what they have and depending on the computational resources, domain and 

data expertise, data accessibility, and many other factors they try to find the best way to ensure 

workability and utility of their main outcome - a training sets. 

As they cope with issues pertaining to the lack of standardization and representational 

tradeoffs that they have to make, development teams also think and try to anticipate how 

consequential their responses to emerging challenges will be on the final product of their 

development. So, engaging in a practice of scrutinizing datasets enabled developers to realize 

that the data they created from repurposed data sources still bears marks of the initial way data 

was created. Hence, the teams became aware of the enduring consequences of data reuse that 

their data work was not able to fully eliminate and use data in new contexts without considering 

its journey. Furthermore, this practice emerged as a key moment in which developers, faced 

with the unexpected consequence of their work, addressed potential issues of future use of their 

tools and impact they can have on end users. This anticipation fed back into their work and 



 

 

enabled them to put data they constructed in a new context. For developers to be able to do this 

though, they need to have a good understanding of the practices in which their tools can be 

potentially embedded. 

As teams were learning about the specific issues that might emerge, we identified that 

the practice of problematization reemerged, as a phenomenon is again being redefined based 

on the newly constructed training set. So, we offer insights that suggest that these practices are 

cyclical in nature. This suggests that knowing the reasons and actions through which data was 

refined is crucial for successful data work throughout the process. Since the decoupling of data 

and phenomena is always present to a certain degree and there is “no such thing as a perfect 

tuning of machines dictated by material agency as a thing-in-itself” (Pickering 2010), we have 

a reason to believe that these practices are cyclical and emerge in data work more generally. 

 

5.2 Theoretical implications 

Practices of creating proxy representations for ML Our study informs the scholarship on 

digital representations by explaining practices of dealing with their imperfections. While 

representations are known to be socially, politically and materially constructed, less is known 

about the work that goes into coping with, and overcoming, their limitations. We find that the 

rich literature on data work enables us to uncover the critical role of interlacing domain and 

data expertise in ML development. Tight interlacing of domain and data expertise plays a role 

in coping with imperfect representations by guiding data related choices – such as making 

representational tradeoffs and integration in the face of data diversity. So, beyond showing that 

domain expertise matters for making ML meaningful or understandable, our case emphasizes 

how it has an active role in continuous coping with imperfectness of representation. Moreover, 

evaluating relevant pieces of domain knowledge is performed with references to technical 

specifications of how to capture this knowledge by available data. Hence, it is through 

interlacing of expertise that developers make their data choices and discover imperfections of 

the data in the first place. This interlacing can be instantiated through collaboration of experts 

with different backgrounds and through consultation with external researchers and academic 

articles, but it can also involve hybrid expertise instantiated in one person or distributed across 

teams. This insight calls for more research in different arrangements of epistemic dependencies 

developers can find themselves in as they work on reusing data. 

Data reuse for ML requires creative data work Our findings also show the relevance of the 

research on data work for the literature on data sharing and reuse (Gehlaar & Otto 2020; Lis & 



 

 

Otto 2020; Leonelli 2014). Production of data sets involves a messy process filled with 

judgement calls aimed at coping with the imperfect nature of data. Facilitating data reuse does 

not solely rely on standardization of datasets or cleaning noise, but data workers also have to 

actively engage in reinterpreting and realigning data and a phenomenon. By leveraging the 

focus on the broader data work practices, we uncovered how exactly developers create training 

sets and how they cope with “cooked” data. Our findings are in accordance with the general 

belief that preparatory work takes up most of the time and effort in ML development. 

Interestingly, this work is often regarded as menial and boring in the discourse on ML (Lehr & 

Ohm 2011). Yet, our insights suggest that this is precisely the work that requires most creativity 

and innovativeness, and instead of it being merely ‘janitorial’, this data work seems to be most 

consequential on the successfulness of data reuse projects and as such should be regarded as 

data work that requires most attention from scholars and organizations alike. So, our findings 

have an implication for future research on data reuse for ML by highlighting the practices that 

often remain hidden in the discourse on ML, but are very consequential on the success of ML 

projects.  

(Un)boundedness of data We also bring valuable insights to the debate on the properties of 

data. We complement existing conceptualizations of data as potentially unbounded (Ekbia 

2009; Alaimo et al 2020), yet situated resources (Jones 2019; Strong et al. 1997) by illustrating 

that unboundedness is not something inherent to the data, but an outcome of practices that 

involve a creative and messy process aimed at coping with different representations of the 

world. In doing so, we agree with the critical voices arguing for need to give attention to the 

historicity of data, but also show how data can come to be reused despite their “cooked” nature 

(Gitelman & Jackson 2013; Jones 2019). Through iterative development of representational 

proxies, data workers can bridge the deficiencies of data and produce workable ML datasets.   

By taking a practice perspective, we haven’t looked at data work as involving 

arrangements of disparate entities (e.g. people, technology, data) (Feldman & Orlikowski 

2011), but at concrete practices that emerge in data work, thus uncovering how 

(un)boundedness comes about in practice. Our findings show that the same data can pose 

different issues, as well as opportunities, for reuse depending on the work that is invested in it. 

So, instead of assuming data unboundedness or uncovering the biases and constraints that limit 

unboundedness of data, our study shows how data (un)boundedness is being established in the 

first place thus enabling or limiting data reuse. 

 



 

 

5.3 Practical implications 

Organizing for data reuse Our findings have important implications for organizations that 

aim at leveraging data reuse both intra- and interorganizationally (Gelhaar & Otto 2020; Lis & 

Otto 2020). Intraorganizationaly, organizations constructing data lakes which enable data use 

and reuse need to be aware that, besides ensuring data accessibility and lack of noise in form 

of data standardisation, data reuse requires creative ways of engaging with data, understanding 

how it can be interpreted and how it relates to the domain which it stands for. This suggests a 

need for a greater interdepartmental collaboration on ML development where data and domain 

experts can collaborate on identifying and overcoming challenges related to data reuse. This 

insight builds on top of the need for appropriate data curation and thorough documentation that 

brings clarity to the differences and similarities available data has to phenomena that can 

potentially be represented with it (Leonelli & Tempini 2020). Interorganizationally, our 

findings add to the already known challenges of establishing data ecosystems (Lis & Otto 

2020). Besides the collaborative and competing challenges, organizations can face challenges 

related to the need for domain expertise to understand data. This challenge is particularly 

salient when data is shared across contexts and the expertise instantiated in organizations can 

differ greatly. Similarly to intraorganizational insights we provided, besides sharing data, 

organizations also need to share their expertise to be able to realize the maximal value of reused 

data. 

Machine learning development Our findings have implications for how we understand 

machine learning development, as well as how to train data and domain experts, and organize 

collaboration between them. Instead of perceiving and treating preparatory work as 

undesirable, automatable, boring, and merely technical, our findings suggest that data work 

involved in construction of training sets is the most creative and important part of ML 

development, that it involves deep expertise in data and the domain, and which is crucial to 

invest in to realize value from data reuse. Hence, both in education and during employment, 

preparatory work that data workers do needs to be given its due credit and organizations. Also, 

both domain and data experts, and those that are developing to become one, need to be aware 

of the need for interlacing the two expertise in practice. So, they should be trained to have 

hybrid expertise to tackle data reuse challenges in a particular domain or be trained on how to 

collaborate with other experts on such projects. 

 

5.4 Limitations  



 

 

Limitations of the research design can be built upon as several research questions arise from 

the boundary conditions. The setting of a hackathon enabled us to observe the full process of 

development, from finding data sources to evaluating models, but the pressure-cooker setting 

has several boundary conditions. First, as the development process finished after two months 

of hacking, we were not able to observe if the development process is indeed cyclical and in 

what manner. Future research can address this issue by performing a longitudinal study. Also, 

this limitation raises an interesting question for future research that can study how business and 

research organizations cope with the perpetual issues of imperfectness of representations. 

Second, participants in a hackathon often did not know each other, their expertise were not 

necessarily compatible, there were not any organizational pressures, and, due to the global 

pandemic, the participants collaborated exclusively virtually. So, it remains an open question 

if the dynamics that we observed will also emerge in organizations and in what way. 

Nevertheless, by bringing data to the fore of our paper, we aimed at showing how practices 

emerged due to the particularities of data being reused. Hence, we expect that the general 

practices replicate also in an organizational setting. Third, we have focused our attention on 

the case of ML development for agriculture, so our findings might not generalize to all cases 

of data sharing and reuse or even ML development in some other context. So, it remains for 

future research to investigate data reuse in other contexts and using other technologies. 
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