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ABSTRACT 

Dendritic cells (DCs) play a critical role in the regulation of adaptive immune responses, furthermore they act as a bridge between the 
innate and the adaptive immune systems they have been ideal candidates for cell-based immunotherapy of cancers and infections in 
humans. The first reported trial using DCs in 1995, since they have been used in trials all over the world for several of indications, including 
cancer and human immunodeficiency virus infection. Generally, for in vitro experiments or for DCs vaccination monocyte-derived dendritic 
cells (moDCs) were generated from purified monocytes that isolated from peripheral blood by density gradient centrifugation. A variety of 
methods can be used for enrichment of monocytes for generation of clinical-grade DCs. Herein we summarized up to date understanding of 
systems and inputs used in procedures to differentiate DCs from blood monocytes in vitro.  
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INTRODUCTION 

For more than a century it has been hypothesized that the 
immune system can be redirected to target malignant cells and 
thus cure cancer [1, 2]. In 1973 Steinman discovered a new type 
of immune cell, the dendritic cell (DCs) [3], which play an 
important role in the induction of specific immunity. DCs are 
sentinels of the immune system, as they are deployed throughout 
the body and monitor their surroundings for antigens and 
danger signals derived from pathogens or tissue damage. DCs 
have been clinically used for three decades, with more than 300 
completed or ongoing registered clinical trials conducted to test 
their application for boosting anti-tumor immunity [4]. DCs are 
the most potent professional antigen-presenting cells (APC) and 
play critical roles in regulating the innate and adaptive immune 
responses [5].  

In their immature state, DCs mainly reside in lymphoid and 
peripheral tissues where they recognize and capture antigens 
and become activated in the presence of foreign pathogens. This 
activation occurs following stimulation by exogenous danger 
signals via pattern recognition receptors (PRR) such as Toll-like 
receptors (TLR) [6, 7] and leads to DC migration to the draining 
lymph node and the presentation of the processed epitopes to T 
cells. During the T cell activation, DC engages the T-cell receptor 
(TCR), secrete specific cytokines and stimulate the immune 
responses toward TH1, TH2, or Tregs depending on the cytokine 
environment. Due to their proficiency at antigen cross-
presentation (i.e., the presentation to both CD4+and CD8+T cells), 
DC have been used as vaccine platforms to induce anti-tumor 
cytotoxic T lymphocyte (CTL) CD8 immune responses [8, 9]. 

With DC vaccination, mature DCs loaded with tumor antigens ex-
vivo are injected into cancer patients to induce tumor-specific 
effector T-cells that aim to recognize and eliminate cancer cells and 
induce immunological memory to control tumor growth [10]. In the 
majority of clinical DC vaccination trials conducted so far, DCs 
differentiated ex-vivo from monocytes or CD34+progenitors have 
been used, since naturally circulating DCs (nDCs) are present in the 
blood but only constitute about 1% of blood mononuclear cells. The 

most commonly used preparation involves the reinfusion of ex-vivo 
derived DC pulsed with tumor-associated antigens (TAAs) or tumor 
cell lysates and stimulated with a defined maturation cocktail. The 
gold standard maturation cocktail included the pro-inflammatory 
cytokines TNF-α, IL-1β, and IL-6 in combination with prostaglandin-
E2 (PGE2) [11, 12]. 

While, DC-based vaccinations appeared promising after Sipuleucel-T 
(Provenge®) approval in 2010, a DC-based immunotherapy for the 
treatment of advanced prostate cancer [13], however unfortunately, 
the vaccination against established malignancies has shown partial 
clinical benefit. 

Recently Indian government agency (CDSCO-Central Drugs 
Standard Control Organization) has approved in 2017 an 
autologous monocyte-derived and tumor lysate-pulsed mature DC-
based vaccine (APCEDEN®) for treatment of four cancer 
suggestions (prostate, ovarian, colo-rectal and non-small cell lung 
carcinoma) [14]. Furthermore, the efficacy profile of APCEDEN® 
therapy demonstrated a survival benefit of >100 d [14]. Various 
types of DC vaccines have been evaluated in clinical trials so far 
(table 1). The most commonly used preparation involves the 
reinfusion of ex-vivo derived DC pulsed with tumor-associated 
antigens (TAAs) or tumor cell lysates and stimulated with a 
defined maturation cocktail and clinical trial results demonstrated 
encouraging outcome along with safe and well-tolerated in 
patients with solid tumors [15]. 

We explored previous and recent years published papers in 
English indexed in Pubmed from 1967-2020, using key words 
like Cancer immunotherapy, Generation of DCs, Monocytes 
presence of a cytokine cocktail and growth factors, DC 
vaccination and Antigen loading/pulsing method. The papers 
quoted in the references of those articles were also explored. In 
this review, we have briefed the cellular aspects essential for 
Monocyte-derived dendritic cells efficacy, the selection of 
suitable culture medium, appropriate culture medium 
supplements, growth factors, and cytokines. We will also review 
the molecular markers used to characterize DCs by flow 
cytometry and antigen loading of moDCs. 
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Table 1: Current encouraging clinical trials using personalized DC-based vaccines [15] 

NCT number Indication Interventions Phase Enrolment Start 
date 

Estimated 
primary 
completion 
date 

Tumor 
Lysate 

1 NCT00703105 Ovarian cancer Ontak (anti-CD25) DC vaccine+ontak Phase-2 36 2008 2018 
2 NCT01204684 Glioma Astrocytoma 

Astro-oligodendroglioma 
Glioblastoma 

Autologous tumor lysate-pulsed DC+0.2% 
resiquimod DC vaccination+polyICLC 

Phase-2 60 2010 2018 

3 NCT01635283 Newly diagnosed or 
recurrent low-grade 
glioma 

Tumor lysate-pulsed autologous DC vaccine Phase-2 18 2012 2019 

4 NCT01946373 Malignant melanoma Cyclophosphamide Fludarabine T cells 
Interleukin-2 DC vaccine 

Phase-1 10 2013 2018 

5 NCT01973322 Malignant melanoma stage 
III, Stage IV 

Arm 1: autologous DC loaded with autologous 
tu lysate (DC vaccine)+RT Arm 2: DC 
vaccine+IFN-α Arm 3: both arm 1 and 2+RT 
Arm 4: DC vaccine 

Phase-2 24 2013 2019 

6 NCT01957956 Newly diagnosed 
glioblastoma 

Tumor lysate-pulsed autologous dendritic cell 
vaccine+temozolomide 

Early 
phase-1 

21 2013 2016 

 
7 

NCT01808820 Malignant glioma 
Glioblastoma 

Dendritic cell vaccine Tumor lysate Imiquimod 
Leukapheresis 

Phase-1 20 2013 2019 

8 NCT02496520 Advanced solid tumors, 
sarcoma Central nervous 
system tumor 

Dendritic cells Surgery as needed 
Chemotherapy as needed Radiation: radiation 
therapy as needed 

Phase 
1|2 

10 2014 2018 

9 NCT01803152 Sarcoma Soft tissue 
sarcoma Bone sarcoma 

Biological: dendritic cells vaccine Lysate of 
tumor Gemcitabine Imiquimod Leukapheresis 

Phase-1 56 2014 2019 

10 NCT02718391 Malignant melanoma DC pulsed with autologous tumor lysate Phase-2 120 2015 2019 
11 NCT02301611 Malignant melanoma Autologous Tumor Lysate (TL)+Yeast Cell Wall 

Particles (YCWP)+Dendritic Cells (DC) 
(TLPLDC Vaccine) Placebo 

Phase-2 120 2015 2019 

12 NCT02503150 Metastatic colorectal 
cancer 

Antigen pulsed dendritic cells+chemotherapy 
Chemotherapy 

Phase-3 480 2015 2019 

13 NCT02678741 Metastatic melanoma TLPLDC vaccine in addition to standard of care 
checkpoint inhibitor of choice 

Phase 
1|2 

45 2016 2019 

14 NCT03395587 Newly diagnosed 
glioblastoma 

Autologous DC pulsed with autologous tumor 
lysate 

Phase-2 136 2018 2022 

15 NCT03360708 Recurrent glioblastoma Cytokine-induced killer cells Tumor lysate-
pulsed autologous DC vaccine 

Early 
phase-1 

20 2018 2022 

16 NCT03014804 Recurrent glioblastoma Autologous dendritic cells pulsed with tumor 
lysate Nivolumab 

Phase-2 30 2018 2020 

RNA 
Peptide 

17 NCT01983748 Uveal melanoma Autologous DC loaded with autologous tumor 
RNA 

Phase-3 200 2014 2022 

18 NCT02775292 Adult solid neoplasm 
Childhood solid neoplasm 
Metastatic neoplasm 

Aldesleukin Cyclophosphamide Fludarabine 
phosphate Nivolumab NY-ESO-1 reactive TCR 
retroviral vector transduced autologous PBL 
NY-ESO-1(157-165) peptide-pulsed autologous 
DC vaccine 

Phase-1 12 2017 2019 

Tumor 
Neoantig
en 

19 NCT01885702 Colorectal cancer Neoantigen-loaded DC vaccination Phase 
1|2 

25 2010 2016 

20 NCT03300843 Melanoma 
Gastrointestinal Breast 
Ovarian Pancreatic cancer 

DC vaccine loaded with neoantigen coding 
peptide 

Phase-2 86 2018 2027 

 

Sources of monocytes 

It’s very impressive for monocyte-derived dendritic cell culture is to 
select the monocyte source, since these cells are the preferred 
precursors for in vitro moDCs generation. One probability is to 
directly collect blood by venipuncture. The advantage of whole 
blood as a monocyte source is the freshness of the material. 
However, the drawback of using whole blood is the low yield of 
monocytes, since they represent only 6% of all peripheral blood 
cells, so using whole blood requires the processing of a large blood 
volume [16]. Processing a 450 ml blood bag usually generates 30–80 
ml of buffy coat with approximately 1x109 cells [17]. 

Second possible source is a leukopak. This is an enriched 
leukapheresis product consisting of a variety of blood cells 
including monocytes, lymphocytes, and erythrocytes. There are 
two types of leukopaks: one is collected from peripheral blood 
without any stimulation on the blood donor and the other are 
obtained from donors who were stimulated with G-CSF 
(granulocyte colony stimulating factor) to induce leukocyte 
production and trigger migration of stem cells from bone marrow 
into the bloodstream [18]. 

Although the production of leukopaks from such specific donors is 
not usual, this kind of product can be commercially provided under 
request. Commercial leukopaks generally contain 80–200 ml of 
processed material with approximately 7x109peripheral blood 
mononuclear cells (PBMC), [19] (more information available on: 

www. allcells. com/products/whole-tissue/leuko-pak). The effect of 
various DC vaccination parameters on immunological and clinical 
outcome of vaccination has been studied in numerous small phase 
I/II clinical trials in cancer patients. Most of these studies have been 
performed with moDCs, due to their easy differentiation protocol in 
vitro [20]. 

Separation of monocytes from whole blood 

After consider the source of cells the next step in moDCs isolation 
and culture. In 1968, Boyum introduced a convenient and rapid 
separation using centrifugation through a Ficoll-sodium metrizoate 
solution [21]. This separation method takes advantage of cell density 
differences of the components in whole blood that, when centrifuged 
in the presence of a density gradient media, exhibits a unique 
migration pattern through the medium allowing distinct cell 
populations to be fractionated [22]. 

Following centrifugation above the FicollPaque layer, PBMCs form a 
layer of cells similar to a cloud, while the plasma is the uppermost 
layer in the tube. The PBMC layer includes B and T lymphocytes, 
monocytes, NK (Natural Killer) cells, and dendritic cells [23]. 
FicollPaque methodology is highly efficient and recovers around 
95% of the mononuclear cells present in the original blood sample 
[24, 25]. There is a very vital step during isolation of PBMCs from 
blood, one of them is pipetting and carefully layering of blood over 
density gradient solution into centrifuge tubes, and a second vital 
step is centrifugation acceleration and deceleration is very critical. 

https://clinicaltrials.gov/ct2/show/NCT00703105
https://clinicaltrials.gov/ct2/show/NCT01204684
https://clinicaltrials.gov/ct2/show/NCT01635283
https://clinicaltrials.gov/ct2/show/NCT01946373
https://clinicaltrials.gov/ct2/show/NCT01973322
https://clinicaltrials.gov/ct2/show/NCT01957956
https://clinicaltrials.gov/ct2/show/NCT01808820
https://clinicaltrials.gov/ct2/show/NCT02496520
https://clinicaltrials.gov/ct2/show/NCT01803152
https://clinicaltrials.gov/ct2/show/NCT02718391
https://clinicaltrials.gov/ct2/show/NCT02301611
https://clinicaltrials.gov/ct2/show/NCT02503150
https://clinicaltrials.gov/ct2/show/NCT02678741
https://clinicaltrials.gov/ct2/show/NCT03395587
https://clinicaltrials.gov/ct2/show/NCT03360708
https://clinicaltrials.gov/ct2/show/NCT03014804
https://clinicaltrials.gov/ct2/show/NCT01983748
https://clinicaltrials.gov/ct2/show/NCT02775292
https://clinicaltrials.gov/ct2/show/NCT01885702
https://clinicaltrials.gov/ct2/show/NCT03300843
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Isolation of monocytes from whole blood 

Since monocytes is the ability to adhere to inert surfaces like plastic, 
different from other cells present in the PBMC fraction. Monocytes 
isolation procedure take advantage of this characteristic usually 
seed PBMC cells in a plastic flask with the appropriate culture 
medium and allow adherence for 2 h in a humidified incubator. All 
monocytes will adhere to the culture flask while B and T 
lymphocytes, NK cells, and DCs will remain non-adherent and can be 
eliminated as floating cells [26]. 

Another distinct characteristic of monocytes is the only circulating 
blood cells to show high expression of CD14 on their membrane, this 
molecule is widely used as a biomarker for monocytes and as a 
target for their purification (fig. 1) [27]. It is worthy of note that the 
CD14 molecule belongs to the lipopolysaccharide (LPS) receptor 
complex. Recognition through this receptor is interpreted by the cell 
as a “danger signal” [28] capable of inducing a maturation process 
on immature DCs. 

 

Fig. 1: Generation and maturation of moDCs [27] 

 

Culture medium for monocyte-derived dendritic cell 

There are numerous different culture media described and used for 
moDCs [29]. However, it is essential to consider the general and 
specific objectives of the experiments, as well to take into 
consideration the cost of the different supplements to be used. If the 
main objective is for clinical purpose (therapeutic grade), utilizeonly 
Food and Drug Administration (FDA) approved culture medium like 
AIM-V (GIBCO, Catalog number: 087-0112DK). For research 
purposes, PromoCell, for example, offers three different medium 
types: DC Generation Medium (Catalog number: C-28050), DC 
Generation MediumDXF (Catalog number: C-28052), and Monocyte 
Attachment Medium (Catalog number: C-28051). 

Another culture medium used to generate moDCs is RPMI-1640. It 
was developed by Moore and colleagues at the Roswell Park 
Memorial Institute, hence the acronym RPMI [30]. The RPMI-1640 
composition is available and well established and there are several 
customized versions of RPMI, some of them lacking specific 
components, others already supplemented with certain growth 
factors or other molecules [22, 31]. 

Serum is a quite ubiquitous supplement in cell cultures. The final 
concentrations of serum used vary from 1-10%. It is also feasible to 
use plasma or umbilical cord blood serum. Nevertheless, if the cells 
will not be used in clinical applications, fetal bovine serum (FBS) is 
the least expensive choice, and is also easier to obtain. Though cell 
culture procedures are performed in aseptic environments, however 
any biological contaminant can demolish the cell culture, therefore 
the use of antibiotics and antimycotics is at times required. The most 
frequent antibiotics used in cell cultures are penicillin-streptomycin 
for Gram-positive and Gram-negative bacteria whereas gentamicin 
against mycoplasmain culturing cells that are intended for clinical 
use, the FDA does not recommend the use of penicillin or β-lactams 
due to the possibility of severe hypersensitivity reactions [32]. A 
broadly used antifungal agent is amphotericin B. It acts against both 
fungi and yeasts. Generally, monocyte cultured in RPMI-1640 media 
supplemented with 1-10% FBS, 2 mmol Glutamax, 100 μg/ml 
penicillin/streptomycin, 1% non-essential amino acids and 1% 
sodium pyruvate [31]. 

The time required to establish monocyte cell differentiation in vitro is 
quite variable. The most of the studies consider that the differentiation 
process from monocyte to immature DC is terminated in five days with 
an additional period of 48 h for maturation [33, 34, and 35]. 

Cytokines for the moDCs 

Sallusto and Lanzavecchia [36] are former to achieve in vitro moDCs 
generation with medium supplementation and through different 

cytokines, combined use of IL-4 and GM-CSF. In the subsequent 
years, numerous works characterized different protocols regarding 
the use of different cytokines in order to induce in vitro monocyte 
differentiation and maturation. It is important to know that different 
combinations of cytokines will generate moDCs with diverse 
characteristics and functions, thus we should decide the cytokines 
that good match the cause of the research work.  

GM-CSF growth factor appears to down-regulate the expression of 
the macrophage colony-stimulating factor (M-CSF) receptor on 
monocytes, thus inhibiting M-CSF induced differentiation of 
monocytes into macrophages [37]. In the same way, IL-4 applies its 
actions in monocytes differentiation by inhibiting macrophage 
colony formation [38, 39]. The DC generated by this procedure, after 
seven days in culture, demonstrates a typical dendritic morphology. 

Sanarico and his groups [40] explain different methodology for 
inducing differentiation of moDCs in vitro using GM-CSF, IL-4, and IL-
2. Another combination of cytokines was used to generate moDCs by 
Takahashi et al. [41]. A combination of GM-CSF and IL-7 gave rise to 
floating cells with characteristic DC morphology and a few adherent 
cells developed the appearance of Langerhans cell-like dendrites. 
Santini et al.[42], and Mohty et al. [43] two different groups used the 
combination of GM-CSF and IFN-α to produce moDCs in vitro. 
Moreover, in both cases, the DCs generated with GM-CSF and IFN-α 
showed a typical DC morphology. Iwamoto and co-workers used TNF-
α together with GM-CSF to initiate the differentiation of monocytes 
into DCs (called TNF-DC by the authors), [44].  

In vitro maturation of moDCs 

Generally in vivo, DC maturation is triggered by bacterium, virus, or 
other microorganism or tissue injury. To induce the DC maturation 
process in vitro it is necessary to give a stimulus that mimics a danger 
signal [28, 45]. In vitro, this can be imitated by incubation with 
pathogen receptor agonists or a cocktail of proinflammatory cytokines.  

Most common material used to mimic DC activation when provoked 
by bacteria is LPS, a characteristic component of the wall of Gram-
negative bacteria [46, 47]. However, due to its possible toxicity, LPS 
is only used in research protocols.  

Flagellin is another substance that mimics the danger signal triggered 
by the presence of Gram-negative and/or Gram-positive bacteria. 
Flagellin induced DC maturation results in the activation of the NF-κB 
signaling pathway and cytokine production [48]. Imiquimod and Poly 
(I: C) also have been used as adjuvants in protocols to develop cancer 
vaccines [49]. Short synthetic single-stranded DNA molecules that 
contain unmethylated CpG dinucleotides (CpG) are also used as TLR9 
agonists to activate iDCs [50]. 
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Interleukins and several other molecules can simultaneously be used 
to induce DC maturation. A “maturation cocktail” canhave IL-6, IL-
1β, TNF-α, IFN-γ, and PGE2 [51]. This cocktail augments the pro-
inflammatory effects of TNF-α by generating an inflammatory 
environment that induces DC maturation [45]. 

However, a cytokine cocktail consisting of tumor necrosis factor 
(TNFα), interleukin (IL)-1β, IL-6 and PGE2, or monocyte-
conditioned medium with TNFα and PGE2 are the most widely used 
methods for moDC maturation [51, 52].  

Although whether this is the best cocktail to induce maturation, still 
it’s controversial because PGE2 may confer immunosuppressive 
effects [53, 54]. To further induce DC activation, mimicking viral 
infection, type-I interferons have been added to the cocktail [55]. 
Furthermore recently, utilize of Toll-like receptor (TLR) ligands [56, 
57] or electroporation with mRNA-encoding proteins that induce DC 
maturation [58] has been investigated.  

The immunophenotyping of moDCs 

Dendritic cells are so called because of their characteristic cell 
surface projections that resemble the dendrites of neurons. DCs are 
a heterogeneous cell population in terms of locations, phenotypes, 
and immunological functions. Such plasticity DCs allows to 
differentially shape the immune response when presented with 
diverse pathogens. DCs, monocytes and macrophages usually 
comprise the mononuclear phagocyte system. An emerging theme is 
that components of this system are not as related as was presumed a 
decade ago. Currently Flow cytometry is frequently used to analyze 
lymphocyte subsets but synchronized detection of DCs and 
monocytes is hampered by the lack of a positive lineage marker.  

Therefore because of the lack of DC specific markers, it is query 
whether DCs constitute a separate lineage of cells. The perplexity is 
related to results showing that DCs can be generated from mature 
peripheral blood Monocytes as well as from un separated 
CD34+progenitor cells when cultured in the presence of GM-CSF and 
TNF-α [59, 60]. 

The success of the moDCs differentiation can be characterized by 
phenotype of the DCs. Thus farther expression of certain molecules 
is typically used to indicate successful moDCs differentiation and/or 
maturation. Because peripheral blood monocyte, is the main source 
for in vitro DC generation, expresses high levels of CD14 on its 
membrane, and moDCs lacks the expression of this same molecule. 

Furthermore, to find out the success of the iDC maturation process, 
it is vital to monitor the increased expression of co-stimulatory 
molecules such as CD40, CD80, and CD86. These molecules are 
constitutively expressed at low levels in DCs, however, their 
expression considerably increased after induction of maturation by 
LPS [61, 62]. 

On the other hand, Human leukocyte antigen-II (HLA-II) molecule 
constitutively expressed at low levels in both monocytes and DCs. 
After a maturation stimulus, its expression on DCs is augmented. 
Therefore, like co-stimulatory molecules, HLA-II can be used as an 
indicator of the success of the iDC maturation process [63, 64]. 

Besides that, in blood monocytes, CD isoforms for example CD1a, 
CD1b, and CD1c (BDCA-1) can be upregulated on the cell surface by 
cytokine cocktails designed to drive DC differentiation in vitro [65]. 

Next potential markers are CD207 [66], and CD209 (DC-SIGN), 
which is expressed on plasmacytoid DCs (pDCs) and moDCs and is 
greatly expressed on DCs in mucosal tissues. The expression of this 
last marker is increased after LPS-mediated DC maturation 
induction [67]. 

Antigen loading of moDCs 

Our immune system is able to differentiate between self, non-self and 
eradicate damaged cells. To evade elimination by immune responses, 
tumors, cancerous cells not only acquire the capability to prevent 
immune recognition, but also create an immunosuppressive 
environment and actively hijack immune cells to aid in tumor 
progression [68, 69]. Reactivating the immune system to treat patients 

with cancer was proposed at the end of the nineteenth century and 
cancer immunotherapy has further developed ever since [70, 71]. DCs 
loaded ex-vivo with specific TAAs or whole tumor lysate to generate 
an immune response aiming for cancer-cell elimination and recently in 
vivo loading of DCs is being exploited [72, 73]. 

Thus, to induce a tumor-specific immune response, DCs should be 
loaded with tumor antigens. The most extensively used techniques 
for antigen loading of DCs vaccines are pulsing DCs with or tumor 
lysate, MHC-binding peptides of TAAs, corresponding long peptides 
or proteins, or TAA-encoding mRNA. All antigen-loading techniques 
have their own advantages and disadvantages and not any technique 
has proven to be superior to the others thus far. However recently, 
there is a great effort made in improving existing DC vaccines and 
developing new ones. Moreover, DCs loading together MHC class-I 
and class-II epitopes appears favourable for the quality of the 
induced immune response [74]. Various new approaches include 
genetically engineered DCs that express TAAs or display enhanced 
immunostimulatory properties or explore in vivo antigen loading of 
DCs with freshly released TAAs due to chemotherapy or 
immunogenic tumor-cell death [75-77]. 

DISCUSSION 

A dendritic cell for immunotherapy using ex-vivo generated moDCs 
in patients with cancer was first explored over two decades ago [78]. 
A various clinical trial [79] has established the safety and ability of 
moDCs immunotherapy to induce anti-tumor responses [80, 81]. 
Therefore, based on the known difficulties of isolating and 
generating moDCs from human blood, here we provide and 
discussed comprehensive information for the generation of moDCs.  

In order to study the biology of DCs, and their roles in immune 
responses, and their potential use for the treatment of certain 
diseases, and methods to generate mouse DCs in vitro have been well 
described by Shortman, [82]. DCs have unique features that have 
made them an ultimate choice for antitumor vaccines. They are 
considered as the most effective APC accountable for primarily 
sensitizing naive T cells to specific antigens [83]. DCs are 100-times 
more potent than APCs, B cells and monocytes, in inducing T-cell 
proliferation [84, 85]. Furthermore, DCs play a central role in the 
establishment of immunologic memory [86]. In compare with 
monocytes and B cells, DCs are able to use soluble protein antigens 
to sensitize naive T cells in vitro [84]. Using these soluble proteins, 
DCs have successfully sensitized CD4+ [87] and CD8+T cells inducing 
antigen-specific cytotoxic T lymphocytes (CTLs) [88, 89]. This 
potential capacity gives developers of DC-based vaccines a wider 
range of potential antigen targets that can be effectively used to 
sensitize T cells. With respect to their use against cancer, the ability 
of DCs to prime T cells to attack tumor cells has been demonstrated 
in vitro [90] as well as in various animal models [91, 92]. Another, 
studies in 1990s, by Sallusto and Lanzavecchia, [36] confirmed that 
human monocytes differentiate into DCs in vitro by culturing with 
GM-CSF and IL-4.  

Moreover, injection of moDCs and pulsed with exogenous antigens 
used to rapidly expands human T cell immunity [93]. Furthermore 
moDCs pulsed with certain TAAs can frequently expand CTLs and elicit 
regression even in advanced cancer [94]. The GM-CSF in vitro cultured 
DC is the most common DC type used in studies of mouse and human 
DC biology, and for immunotherapy using DC vaccines [82]. The 
differentiation of monocytes in vivo [95] and under mimicked 
physiological conditions [96] has previously been confirmed. In 
addition to playing a role in activating the immune system, DCs can 
also induce immune tolerance, which is a potential barrier to a 
successful vaccine strategy. Evidence has suggested that DCs that are 
not fully matured will be prone to inducing tolerance [97, 98]. 

CONCLUSION  

The medical and scientific community established marvellous efforts 
in the understanding DCs and their precursors. As a result of such 
efforts, moDCs are presently used in clinical protocols for the 
treatment of a variety of diseases, including cancer. Despite these 
achievements, gaps are still exist in terms of the how monocyte are 
derived and what best methods to be used to isolate and culture 
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them in vitro, and how to achieve a high yield and purity of the 
isolated monocytes. As well as appropriate combination of cytokines 
and growth factors that will generate moDCs and transcription 
profiles of these cells in different stages of maturation. This review 
presented key information in relation to the generation of human 
moDCs from blood monocytes. Furthermore moDCs manufacturing 
strategies need to be reproducible, robust, and inexpensive with the 
ultimate goal of providing safe, high-quality products. 
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