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ABSTRACT 

Objective: To study the kinetics of periodate oxidation of polyethylene glycol-600 (PEG-600), a familiar non-toxic polymer used in pharmaceutical 
and other fields of industry.  

Methods: Reactions were carried out in alkaline medium and measured the kinetics by iodometry. One oxygen atom loss or two electrons transfer 
was observed per each molecule of periodate i.e., the rate of reaction was measured periodate converts to iodate because the formed iodate species 
is unable to oxidize the substrate molecules.  

Results: Based on log (a-x) versus t plots, order w. r. t. oxidant (periodate) is unity. Reactions were found to be independent of substrate (PEG-600) 
concentration. A decrease in rate with an increase in alkali concentration [OH–] was found and order was inverse fractional. Temperature 
dependence of reaction rate was studied and then calculated the corresponding Arrhenius parameters.  

Conclusion: An appropriate rate law was proposed by considering the above experimental results. 
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INTRODUCTION 

Liquid polyethylene glycols (PEG 200-600) are used in parenteral as 
well as oral liquids. Polyethylene glycols (PEGs) are utilized in 
various pharmaceutical preparations which are useful for different 
routes of administration including oral (capsule, tablet and solution) 
and intravenous (injection) [1]. In drug delivery systems, PEGs play 
a vital role [2]. PEGs (200 to 8,000,000) are widely applicable in 
cosmetics [3]. Toxic substances from the surface of burned skin can 
be removed by using liquid PEGs as antidotes [4]. PEGs exhibit good 
phase transfer features and excellent solvent properties which can 
be integrated into an effective integrated system (known as ABRE-
aqueous biphasic reactive extraction) which enables separation of 
catalysts and/or reactants from products [5]. Mechanical properties 
of concrete are improved by the usage of polyethylene glycol as self-
curing agent [6, 7]. 

Among other PEGs, PEG-600 is widely used to understand the 
intestinal physiology in human beings as it has low toxicity and 
freely excreted along with urine [8]. It is also extensively useful in 
the preparation of ointment bases and as a food additive. PEG-600 is 
also used for the preparation of membranes from Cellulose Acetate 
[9]. PEG 600 acts as an excellent environment-friendly surfactant in 
combination with polysorbate 20 in inhibition of zinc composite 
corrosion in presence of alkaline medium [10]. PEG 600 is used 
during dyeability of fabric. The process improves fabric 
sustainability as PEG acts as a swelling agent [11]. 

Study of reaction rate constants is useful for investigation of 
reaction mechanism and to derivation of rate laws to explain the 
observations [12]. Literature collection shows that kinetics of 
oxidation reactions involving N-halo oxidants [13-21] and inorganic 
oxidants [22, 23] were well studied. Similarly, researchers are 
interested in the study of oxidation of various substituted alcohols 
[13, 14, 21] including polyethylene glycols and especially, ceric (IV) 
ions [24, 25] and Fenton [26-28] were the best used oxidants. 
Catalytic amounts of Mn/Ce composite oxide direct the oxidation of 
PEG to a radical mechanism [29]. Similarly, the involvement of free 
radicals was proposed using Ce(IV) oxidant in sulphuric acid 

medium in spite of the incomplete understanding of mechanism 
[24]. Poly(oxyethylene)‐dicarboxylic acids were resulted in high 
concentrations in the room temperature oxidation of PEGs by Jone's 
reagent [30, 31] proposed two different stages in the uncatalyzed 
oxidation of PEG by permanganate and also studied the Ruthenium 
(III) influence. As periodate oxidation of PEG-600 was not studied 
earlier, it was considered for the present study taking into 
consideration of its wide industrial and pharmaceutical usage.  

MATERIALS AND METHODS  

In the current study, all the chemicals used were analytical grade 
purity. Reaction kinetics were measured by iodometry [32, 33]. In 
the PEG-600 oxidation, one oxygen atom loss or two electrons 
transfer was observed per each molecule of potassium periodate 
(KIO4) i.e., the rate of reaction was measured periodate converts to 
iodate because, the formed iodate species is unable to oxidize the 
substrate molecules. Further confirmed the same by conducting the 
experiments separately with iodate [12, 32, 33]. 

RESULTS AND DISCUSSION 

Reaction orders of oxidant 

To understand the order of reaction w. r. t. [oxidant], periodate 
concentration was altered from 0.00025 to 0.002 M, whereas 
maintained the concentrations of other reactant at constant values 
(table 1). Graphs were drawn between log (a-x) vs time (fig. 1). 
Linear curves were observed up to about 2/3rd of the reaction. It 
indicates first order reactions w. r. t. [periodate]. In addition, 
confirmed the first order kinetics from almost constant reaction rate 
values in the range of studied oxidant concentration. 

Reaction orders of substrate and alkali 

Independence of reaction rate on [substrate] was observed because, 
reaction rates were almost constant by changing the concentration 
of PEG-600 in the range of 0.0025 to 0.1 M. In contrast, literature 
survey shows that a decrease in reaction rate with an increase in 
substrate concentration was noted in the oxidation of sugar alcohols 
by KIO4 in alkaline medium [32, 33]. 
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Table 1: Variation of [periodate] and rate constants 

Conc of periodate (M) k1 x 104 (min-1) 
0.00025 5.62 
0.0005 5.30 
0.001 5.16 
0.002 5.07 
Reaction conditions:  
[PEG-600] = 0.025 M  
Temperature = 35 °C [OH–] = 0.1 M 

 

 

Fig. 1: Plot of log(a-x) versus time at [KIO4] = 0.002 M, [PEG-600] = 0.025 M, [OH–] = 0.1 M and Temperature = 35 °C 

 

Table 2: Reaction rate variation with [PEG-600] and [alkali] 

Variant Conc of variant (M) k1 x 104 min-1 
[Substrate] 0.0025 5.43 

0.0125 5.35 
0.025 5.30 
0.05 5.26 
0.1 5.69 

[Alkali] 0.05 7.13 
0.1 5.30 
0.2 4.51 
0.5 3.34 

General reaction conditions:  
[PEG-600] = 0.025 M [KIO4] = 0.005 M 
Temperature = 35 °C [OH–] = 0.1 M 

 

Concentration of alkali was increased in the range of 0.05 to 0.5 M, 
where, reaction rate was decreased. A graph of log k1vs log [OH–] 

shows a linear curve with a slope of–0.32 (fig. 2). It indicates the 
inverse fractional order of reaction in [alkali]. 

 

 

Fig. 2: Effect of alkali concentration on oxidation of PEG-600 by periodate 
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Dissociation of potassium periodate takes place in alkaline medium 
[34] and results in establishment of equilibrium conditions between 
the products with those of reactants (1–3). The following equations 
show values of K1, K2 andK3 (relevant equilibrium constants) which 
were shown at 298.2 K.  

2IO4
− + 2OH− ⇌ H2I2 O10

4− log K1 = 15.05(1) 

IO4
− + OH− + H2O ⇌ H3IO6

2− logK2 = 6.21(2) 

IO4
− + 2OH− ⇌ H2IO6

3− logK3 = 8.67(3) 

The degree of existence of periodate species in aqueous alkaline 
medium can be calculated with the help of above equilibria. Out 
of the four species of periodate, concentrations of species-1 and 
2 𝑂4

− and H2I2O10
4− are insignificant at the level of maintained 

hydroxide ion concentration. Hence, the available species at high 
concentrations are species–3 and 4 (H2I𝑂6

3− and H3I𝑂6
2−), the 

concentrations of which can be determined with the support of 

Crouthamel’s data [35] (1951) in similar passion to others [36-
38]. Hence, the sum of concentration of these two active species 
(H3I𝑂6

2− and H2I𝑂6
3−) can be considered as equivalent to the 

overall periodate ion concentration which is denoted by [IO4
−]ex 

The given below equations (4) and (5) were proposed by J. H. 
Shan [39] based on the above equilibria (2) and (3). 

H2IO6
3− =  

β3[OH−]2

1+β2[OH−]+β3[OH−]2
[IO4

−]ex = f ([OH−])[IO4
−]ex(4) 

H3IO6
2− =  

β2[OH−]

1+β2[OH−]+β3[OH−]2
[IO4

−]ex = ∅ ([OH−])[IO4
−]ex(5) 

Variation of concentrations of periodate species with 
concentration of alkali (fig. 3). A gradual increase in H2IO6

3− 
concentration was observed with an increase in alkali 
concentration while a reverse phenomenon i.e., a gradual 
decrease in H3I𝑂6

2− concentration was noticed. So, these two 
species can complex with PEG-600. 

 

 

Fig. 3: Variation of concentrations of periodate species with different concentrations of alkali 

 

Temperature effect 

First-order rate constants (k1) were measured at different 
concentrations from 35 to 50 °C, where an increase in rate constant 
was observed with an increase in temperature. log (k1) was plotted 

against 1/T to give a straight line (fig. 4). Thermodynamic 
parameters were determined using Eyring equation and slope of the 

plot [40]. Tabulated the values of activation parameters (


ΔE , 


ΔH , 


ΔG and
ΔS ) (table 3). 

 

Table 3: Arrhenius parameters at 308 K 


ΔE KJ/mole 

ΔH  KJ/mole 
ΔS  JK-1/mole log10 PZ 

ΔG  KJ/mole. 
79.25 76.69  93.00 8.38 105.33 

 

 

Fig. 4: Dependence of reaction rate on temperature variation 
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Boric acid and salts effect 

Literature survey indicates an improvement of reaction rate in 
alkali medium by the addition of boric acid in the 
periodateoxidation of different sugar alcohols [32, 33]. It was 
due to the favoured conditions to complex the sugar alcohols 
with borate ion. So, it gives a competition to form a stable 
complex of periodate with sugar alcohols. Hence, explained the 
observed substrate inhibition in such cases. However, in this 

study, no much alteration in reaction rate was observed after 
boric acid addition (table 4). It might be due to good number of 
hydroxyl groups in view of reasonable hydoxyl value of [41] 
PEG-600 in the range of 178–197. So, inspite of complexing of 
greatly ionisable potassium borate with certain–OH groups on 
PEG-600, the balance free hydroxyl groups number on substrate 
is also substantially high. Doubling of reaction rate was observed 
with the addition of bromide ions while, rate was retarded by 
the inclusion of chloride or iodide ions. 

 

Table 4: Reaction rate variation with [salt] and [boric acid] 

Variant Nature of Variant/Variant Conc (M) k1 x 104 min-1 
Salt 0 5.30 

KCl 3.72 
KBr 13.27 
KI 1.78 
KNO3 5.29 

[Boric Acid] 0 5.30 
0.01 4.91 
0.025 5.33 
0.05 5.51 

General Reaction Conditions:  
[PEG-600] = 0.025 M[KIO4] = 0.005 M 
Temperature = 35 °C [OH–] = 0.1 M 
[Salt] = 0.1 M 

 

Rate law of equation 

The principal reaction products in the present study were long 
chain aldehydes along with a negligible extent of carboxylic acids 
in view of thorough oxidation. The nature of final products was 
identified using spot tests [42]. Conversion to 2,4-
dinitrophenyldrazones further established the formation of 
aldehydes. Nature of products are in the same order that reported 
by Szymański JK et al. [24]. Though the technical name of these 
substrates is ‘polyethylene oxides’, but commonly called as 
polyethylene glycols because the terminal–OH groups present on 
these displayan ample effect on physical properties and also on 
chemical properties [43]. Besides to it, hydroxyl value is also 
reasonably high. Hence, the oxidation of terminal hydroxyl groups 
resulted in the products noticed. Difficulty was faced while 
recording the precise stoichiometry. Suggested a rate law taking 
into consideration of the above kinetic orders. 

As discussed above, available species in reasonable quantities are 
H2I𝑂6

3− and H3I𝑂6
2−. They form complexes C1 and C2 respectively 

with the substrate (PEG-600), which dissociate at slower rate to 
form products.  

 

We know that [IO4–]T = [IO4–]+[H2I2O104–]+[H3IO62–]+[H2IO63–

]+[Complex C1]+[Complex C2] 

Where [IO4–]T represents the total concentration of periodate and it 
can be rewritten as given below by taking into consideration of [IO4–

] and [H2I2O104–] as negligible. 

[IO4
−]T =  [H3I𝑂6

2−]  + [H2I𝑂6
3−] +[Complex C

1
] +[Complex C

2
] 

= K
2 
[I𝑂4

−][OH−] +K
3 
[I𝑂4

−]  [OH−]
2 

 

+𝐾2
 
𝐾4

 
[S] [I𝑂4

−] [OH−]+𝐾3𝐾5
 
[S] [I𝑂4

−] [OH−]
2 

We can presume the non-availability of any uncomplexed periodate 
ions (H3I𝑂6

2− and  H2I𝑂6
3−) because they are totally complexed with–

OH groups present on substrate molecules in view of large number 
of hydroxyl groups in the range [41] of 178–197. Hence, the above 

equation can be rewritten as given below by omitting the negligible 
quantities (H3I𝑂6

2− and  H2I𝑂6
3−). 

[IO4
−]T =  𝐾2

 
𝐾4

 
[S] [I𝑂4

−] [OH−]+𝐾3𝐾5
 
[S] [I𝑂4

−] [OH−]
2

 

Rate = 𝑘1 [Complex  𝐶1] + 𝑘2 [Complex 𝐶2] 

= 𝑘1𝐾4 [H3I𝑂6
2−] [S] + 𝑘2𝐾5 [H2I𝑂6

3−] [S] 

=    𝑘1𝐾2𝐾4[I𝑂4
−] [OH−] [S] +𝑘2𝐾3𝐾5[I𝑂4

−] [OH−]2[S] 

=   [I𝑂4
−] [OH−] [S] {𝑘1𝐾2𝐾4 + 𝑘2𝐾3𝐾5[OH−]} 

= 
[IO4

−]T [S]{𝑘1𝐾2𝐾4 + 𝑘2𝐾3𝐾5[OH−]}

[S]{ 𝐾2

 

𝐾4+ 𝐾3𝐾5

 

[OH−] 
 

=  
[IO4

−]T {𝑘1𝐾2𝐾4 + 𝑘2𝐾3𝐾5[OH−]}

{ 𝐾2

 

𝐾4+ 𝐾3𝐾5

 

[OH−] 
  

First order reaction in [oxidant] and zero order in [S] are explained 
by the above rate law. Value of k2 is very less than unity and hence, 
hydroxide concentration is very small than that of value in 
denominator. Henceforth, inverse fractional order in [OH–] is 
explained.  

In view of the present focus of research on applications of natural 
polymers in pharmaceutical and other fields [44-46], the outcome of 
the present study help to understand the stability of familiar non-
toxic polymer (PEG-600) in presence of periodate in alkaline 
medium. 

CONCLUSION 

An appropriate rate law was proposed for the periodate oxidation of 
PEG-600, a pharmaceutical polymer in alkaline medium. Long chain 
aldehydes were the prime final product with insignificant degree of 
carboxylic acids. The present study helps to understand the stability 
of the polymer.  
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