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ABSTRACT 

Objective: The objective of this study was to prepare and investigate the effects of formulation parameters on the properties of gastric floating 

tablets containing diclofenac sodium (DICL) as a model of poorly soluble acidic drug, sodium bicarbonate (NaHCO3) or calcium carbonate (CaCO3) as 

gas-forming agent, hydroxypropyl methylcellulose (HPMC) K100M or K15M as swelling polymer and sodium lauryl sulfate (SLS) as wetting agent. 

Methods: DICL floating tablets were prepared using direct compression method. The compressed tablets were evaluated for tablet properties, 

swelling index, and in vitro buoyancy. The in vitro release under non-sink condition was determined. Molecular interaction was studied using 

differential scanning calorimetry and fourier transform infrared spectroscopy. 

Results: The tablet properties of all DICL floating tablets were within the acceptance criteria. The molecular interaction between DICL and 

excipients in the formulation was excluded. Depends on the formulation compositions, the swelling index at 3 h (SI) ranged from 44±11 to 1158±33 

%, whereas the buoyancy properties namely floating lag time (FLT) and total floating time (TFT) were 0.33±0.03 to 10.04±0.04 min and 10.0±0.0 

to>12 h, respectively. NaHCO3 showed higher swelling, buoyancy and release properties compared to those of CaCO3. NaHCO3 at 20% gave sufficient 

swelling (SI of 1074±16 %), buoyancy (FLT of 0.39±0.03 min, TFT of>12 h) and release properties (cumulative release of 5.83±0.02 %). HPMC 

K100M showed better swelling property of which its initial swelling rate was 1412±25 %/h compared to HPMC K15M (1042±31 %/h). HPMC 

K100M at 20% showed better buoyancy and release properties compared to those obtained from HPMC K100M at 30%. The release testing under 

non-sink conditions was able to distinguish the effect of formulation parameters on the DICL release profiles. Incorporation of SLS at 0.25% could 

enhance both release rate and cumulative release of DICL from the floating tablets. Nevertheless, it showed the unacceptable adverse effect on 

swelling and buoyancy properties of DICL floating tablets. The TFT of DICL floating tablets containing 0.25% SLS was only 0.5±0.0 h. 

Conclusion: DICL floating tablets were successfully prepared. Tablets possessing suitable swelling and buoyancy properties were obtained using 

NaHCO3 at 20% as a gas-forming agent, with HPMC K100M at 10 and 20% as floating matrix and swelling polymer. Addition of SLS as wetting and 

solubilizing agent showed the unacceptable adverse effect on the swelling and buoyancy properties of DICL floating tablets. The release under sink 

conditions and/or in vivo pharmacokinetic studies shall be further performed.  
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INTRODUCTION 

Oral administration is the most preferred route among all other 

routes of administration used for systemic action. This route is 

widely used due to its ease of administration, and thus patient 

compliance can be improved [1]. However, the absorption of orally 

administered drugs has been impacted by several factors, including 

physicochemical properties of the drugs, gastric resident time (GRT) 

and localization of the drugs in the gastrointestinal tract.  

Floating drug delivery systems (FDDSs) were developed to extend 

the GRT of the dosage form in order to improve the bioavailability of 

drugs [2]. Such systems are characterized by the buoyancy of the 

dosage form to float over the gastric content for an extended period 

of time due to their relatively low density, compared to the density 

of gastric fluid [3, 4]. While the drug is floating over the gastric 

content, it is slowly released at the desired controlled-rate, resulting 

in higher bioavailability, enhanced therapeutic efficacy, and shorter 

time intervals for drug administration, which in turn improves 

patient compliance [5]. FDDSs are of particular interest for drugs 

which: (a) act locally in the stomach; (b) are primarily absorbed in 

the stomach; (c) are poorly soluble at an alkaline pH; (d) have a 

narrow window of absorption; and (e) are unstable in the intestinal 

or colonic environment [6]. Furthermore, most of the drugs 

developed using the FDDSs have a short half-life and are generally 

well soluble in acidic medium. FDDSs include effervescent systems, 

of which important compositions are gas-forming agents and 

swellable polymers [7]. The effects of these compositions have been 

studied [8-10]. Nevertheless, limit study has been performed with 

the FDDSs of poorly soluble in acidic drugs. 

Diclofenac sodium (DICL) is a nonsteroidal anti-inflammatory drug 

used to relieve pain and inflammation. Generally, DICL needs to be 

administered several times a day in order to maintain its therapeutic 

effects as DICL has short half-life [11]. DICL is a moderate weakly 

acidic drug (pKa 4.0) [12]. Its solubility in an acidic pH environment 

is extremely low.  

Various methods are reported to improve the release of poorly 
soluble drugs, including (a) reduction of particle size to increase 

surface area, and thus increasing the release rate of drug; (b) 
formation of water-soluble complexes; (c) drug derivatization; (d) 

manipulation of solid state of drug substance to improve drug 
release; and (e) solubilization in surfactant systems [13, 14]. 

Sodium lauryl sulfate (SLS) is the most popular surfactant used in 
oral drug delivery [15, 16]. It is an anionic surfactant used in the 

formulation of tablets as the solubilizing agent to increase the 

solubility of the poorly soluble drug, by enhancing hydrophilic 
environment and wettability in the tablets matrix [17]. Presently, 

there is very little information on the impact of SLS on the 
properties of floating tablets. 

Therefore, the objective of this present work was to prepare and 

investigate the effect of formulation parameters on the properties of 

gastric floating tablets containing diclofenac sodium (DICL) as a 

model of poorly soluble acidic drug, sodium bicarbonate (NaHCO3) 
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or calcium carbonate (CaCO3) as gas-forming agent, hydroxypropyl 

methylcellulose (HPMC) K100M or K15M as swelling polymer, and 

sodium lauryl sulfate (SLS) as wetting agent. 

MATERIALS AND METHODS 

Materials 

Diclofenac sodium (DICL) was obtained as a gift sample from T. O. 
Chemicals (1979) Co., Ltd., Bangkok, Thailand. Hydroxypropyl 
methylcellulose (HPMC K100M and K15M) were provided by 
Maxway Pharmaceutical Co., Ltd., Bangkok. Microcrystalline 
cellulose (MCC; Avicel PH102) was bought from Onimax Co., Ltd., 
Bangkok, Thailand. Sodium bicarbonate (NaHCO3), calcium 
carbonate (CaCO3), sodium lauryl sulfate (SLS), magnesium stearate, 
and silicon dioxide (Aerosil) were received from K Science Center 
and Medical Co., Ltd., Khon Kaen, Thailand. 

Solubility study  

The solubility of DICL in 0.1N hydrochloric (HCl), 0.1N HCl 

containing 1 and 2% SLS media was determined. The excessive 

amount of DICL was added into 10 ml of each medium in test tube 

(n=3). The mixture was sonicated for 30 min and then shaken at 80 

rpm for 24 h using a shaking water bath (LSB-030S, Labtech, Korea) 

at a maintained temperature of 37±0.5 °C. The saturated solution 

was filtrated through nylon syringe filter (0.45 μm, 13 mm, Millipore 

filter, Millipore, Bedford, MA). The clear supernatant was 

appropriately diluted and determined using UV-Visible spectro-

photometer (UV-1201, Shimadzu, Japan) at wavelength 276 nm. 

Preparation of DICL floating tablets 

DICL floating tablets were prepared using the direct compression 

method. The drug, MCC, HPMC, NaHCO3 or CaCO3 with or without 

SLS were accurately weighed and mixed in a blender for 10 min. 

The blended powder was subsequently lubricated with 

magnesium stearate and Aerosil for 3 min. The obtained drug-

excipients mixture was compressed at the force of 60 kgf/cm2 

using the hydrostatic press machine (Model 3126, Shimadzu, 

Japan) without holding time. The floating formulations of DICL 

tablets are shown in table 1. 

 

Table 1: Compositions of DICL floating tablets (100 mg-DICL per tablet) 

Composition Formulation 

(%) F1 F2 F3 F4 F5 F6 F7 FS1 FS2 FS3 

DICL 40 40 40 40 40 40 40 40 40 40 

HPMC K100M 20 20 20 20 10 30 - 20 20 20 

HPMC K15M - - - - - - 20 - - - 

NaHCO3 - 20 10 30 20 20 20 20 20 20 

CaCO3 20 - - - - - - - - - 

SLS - - - - - - - 0.25 0.5 1 

Aerosil 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Mg stearate 1 1 1 1 1 1 1 1 1 1 

MCC 18.5 18.5 28.5 8.5 28.5 8.5 18.5 18.25 18 17.5 

 

Evaluation of DICL floating tablets 

Weight variation 

The weight variation was determined through random selections of 

twenty DICL floating tablets from each batch. The selected tablets were 

then weighed individually and accurately using an electronic balance 

(GF-600, AND, Japan), and the average weight was determined.  

Thickness 

The thickness of the DICL floating tablets was measured using a 

vernier caliper (SM-112, TECLOCK, Japan). Ten tablets of each batch 

were randomly selected.  

Hardness 

The hardness test was conducted to measure the tablet strength. Ten 

tablets were selected randomly from each formulation for hardness 

evaluation using tablet hardness tester (VK200, Vankel, UK). 

Friability 

Friability evaluation was carried out using friability apparatus 
(Vankel, U. S.). 26 DICL floating tablets (6.5 g) were selected 
randomly from each batch. All tablets were weighted initially (Wi) 
and put into the friability apparatus. The tables were placed into the 
drum and rotated for 100 revolutions in 4 min. Then, the tablets 
were removed, de-dusted and then weighted again (Wf). The 
percentage of friability was calculated using equation (1) [18]. 
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 Friability %
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Drug content 

Ten tablets of each DICL floating formulation were selected and 

individually weighed, and then triturated in a mortar. A quantity of 

powder equivalent to 100 mg of drug was transferred into 100 ml 

volumetric flask, and mixed up with methanol (HPLC grade) to the 

volume. The sample solution was mixed thoroughly and filtered 

using 0.45 µm filter. The filtrate was diluted to the suitable 

concentration and analyzed for drug content at a wavelength of 276 

nm, using methanol as the blank by UV-Visible spectrophotometer 

(UV-1201, SHIMADZU, Japan) [6, 19]. 

Swelling index 

Six tablets of each formulation were weighed (Wi) and placed into a 

separate beaker containing 100 ml of 0.1 N HCl solution, maintained 

at 37±0.5 °C using circulation water bath (WiseCircu, Korea) [6]. At 

regular time intervals, the tablets were taken out of the medium and 

blotted with tissue paper to remove the excessive water on the 

surface of tablets. The swollen tablets were weighed again (Wf) and 

calculated for swelling index using equation (2) 

( )
100

-
index  Swelling

i

if ×=
W

WW

……………………… (2) 

In vitro buoyancy  

Buoyancy properties of DICL floating tablets were determined 
simultaneously with in vitro release study. The duration the tablets 
rose from the bottom of the beaker and floated on the surface of the 
medium, or floating lag time (FLT), and the duration the tablet 
remained floating on the surface of the medium, or total floating 
time (TFT), were determined by visual observation of its floating 
behavior in 0.1 N HCl solution at 37±0.5 °C [20] using dissolution 
tester apparatus (VK7000, Vankel, US).  

In vitro drug release 

Drug release studies of the prepared floating tablets were carried out 
using the paddle method (apparatus type II) at 50 rotations per min by 

dissolution tester apparatus. Each tablet was placed into 900 ml of 0.1 N 

HCl solution with the maintained temperature at 37±0.5 °C. The sample 
solution was taken every hour from the vessel in the volume of 10 ml, 

and then filtered through a 0.45 µm filter. The amount of drug release in 
each sample was determined at a wavelength of 276 nm using a UV-

Visible spectrophotometer. The withdrawn amount (10 ml) of each 
sample solution was replaced with the fresh medium [6, 19]. 
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Molecular interaction 

Thermal study 

Differential scanning calorimetry (DSC) curves of the sample were 

determined using a differential scanning calorimeter (DSC822, 

Mettler Toledo, Switzerland). Mass of the sample (2-3 mg) was 

weighed accurately and placed into 40-μl open aluminum pan. The 

sample was heated at a temperature ranging between 25-320 °C at a 

heating rate of 10 °C/min under a constant flow of nitrogen gas. 

Fourier transform infrared (FTIR) spectroscopy 

Fourier transform infrared (FTIR) spectra of the sample were 

determined using an FTIR spectrophotometer (Spectrum One, 

Perkin Elmer, Norwalk, CT). The sample was gently titrated and 

mixed with potassium bromide in a weight ratio of 1:100, and then 

compressed using a hydrostatic press at a pressure of 10 tons for 5 

min. The disc was placed in the sample holder and scanned from 

4000 to 600 per cm at a resolution of 4 per cm. 

Statistical analysis 

The statistical analysis was performed using the SPSS program for 

Microsoft Windows, release 19 (SPSS (Thailand) Co. Ltd., Bangkok, 

Thailand). The results were expressed as the mean±SD. One-way 

ANOVA and independent samples t-test were used to test the 

statistical significance of differences among groups. The significance 

was determined with 95% confident limits (α=0.5) and was 

considered significant at a level of P less than 0.05. 

RESULTS AND DISCUSSION 

DICL solubility 

The effects of SLS (1 and 2% in 0.1 N HCl solution) on DICL solubility 

of DICL were determined. The solubility of DICL in 0.1 N HCl solution 

was 3.48±0.05 µg/ml. Addition of SLS significantly increased the 

solubility of DICL in 0.1 N HCl (54.24±4.76 and 114.18±15.41 µg/ml 

for 1 and 2% SLS, respectively) (*P<0.05). The improvements in 

solubility were significantly pronounced at higher concentrations of 

SLS (*P<0.05). Unfortunately, in the preliminary study, it was found 

that the addition of SLS in the release medium had a negative effect 

on the in vitro buoyancy property. The prepared DICL floating 

tablets could not float in the medium containing SLS. These might 

relate to the density and surface active properties of the medium 

containing SLS. Therefore, in order to study the effect of tablet 

compositions on the in vitro buoyancy and release, 0.1 N HCl 

solution was used in the study. Additionally, in order to distinguish 

the release profiles between different formulations, non-sink 

conditions might be appropriate, as the release testing under sink 

conditions generally leads to rapid release rates. It was claimed that 

the release testing under non-sink conditions can be a predictive 

tool for formulation development as well as batch-to-batch quality 

control [21]. 

 

Table 2: Weight variation, thickness, hardness, friability and drug content of DICL floating tablets 

Formulation Weight variation (mg)a Thickness (mm)b Hardness (kg/cm2)b Friability (%) Drug content (%)c 

F1 250.1±0.2 3.6±0.0 8.3±0.1 0.47 102.5±0.3 

F2 250.0±0.3 3.6±0.0 8.4±0.2 0.13 104.5±0.1 

F3 250.0±0.1 3.6±0.0 8.2±0.1 0.36 104.0±0.1 

F4 250.0±0.2 3.6±0.0 8.4±0.1 0.45 102.2±0.1 

F5 250.6±0.4 3.6±0.0 8.5±0.2 0.30 103.7±0.5 

F6 250.2±0.2 3.6±0.0 8.5±0.3 0.36 100.5±0.3 

F7 250.0±0.2 3.6±0.0 8.6±0.2 0.31 100.7±0.4 

FS1 249.4±0.3 3.6±0.0 8.2±0.2 0.51 104.0±0.2 

FS2 249.8±0.2 3.6±0.0 8.5±0.3 0.41 100.6±0.1 

FS3 250.0±0.4 3.6±0.0 8.4±0.2 0.41 101.3±0.1 

amean±SD, n = 20, bmean±SD, n = 6, cmean±SD, n = 3.  

 

Tablet properties 

All DICL tablets of the floating formulations were evaluated for 

weight variation, thickness, hardness, friability, and drug content. As 

shown in table 2, the average weight of the tablets ranged between 

249.4 and 250.6 mg which was within the range of the limitation 

criteria of ±5%. All formulations showed the uniform thickness of 

3.6 mm. The hardness of the tablets ranged between 8.2 and 8.6 

kg/cm2 for all formulations, with friability of less than 1%. The drug 

content was within the acceptable ranges of 90-110% for all 

formulations. These results were found to be satisfactory and within 

the acceptance criteria in USP 39-NF 34 [18]. 

Effects of gas-forming agent type 

The effects of each type of gas-forming agents, namely CaCO3 and 

NaHCO3 (F1 and F2, respectively) on swelling index, in vitro 

buoyancy and release properties were shown in table 3 and fig. 1. 

The determination of the swelling index of the tablets was 

performed in order to determine the swelling capacity of the tablets 

in 0.1 N HCl solution at 37±0.5 °C for 3 h. The swelling index was 

plotted against time as seen in fig. 1a. It could be seen that the 

swelling profile obtained from DICL floating tablets containing 

NaHCO3 was higher than that containing CaCO3. The initial swelling 

rate, calculated over the study time range of 0–0.5 h, of DICL floating 

tablets containing NaHCO3 was significantly higher than that of the 

tablets containing CaCO3 (*P<0.05). Moreover, the swelling index of 

the tablets containing NaHCO3 measured at 3 h was significantly 

higher than that of the tablets containing CaCO3 (*P<0.05). This may 

be due to the higher aqueous solubility and higher gas-forming 

efficiency of NaHCO3, which generated more pores inside the tablet 

matrix, leading to faster water uptake and higher swelling capacity 

when compared to CaCO3 [22]. 

The buoyancy properties, consisting of floating lag time (FLT) and total 

floating time (TFT), of each DICL floating formulation, were determined. 

FLT is defined as the duration the dosage form rises to the surface of the 

medium, while TFT is defined as the total duration the dosage constantly 

remains floating. The in vitro buoyancy results were shown in fig. 1b. It 

could be seen that the tablets containing NaHCO3 showed significantly 

shorter FLT but longer TFT compared to those of the tablets containing 

CaCO3 (*P<0.05). These results indicated that NaHCO3 provided better 

buoyancy properties compared to CaCO3. Such an outcome was in line 

with the previous work of ciprofloxacin and cinnarizine HCl floating 

tablets [6, 22]. The buoyancy capability of tablets may be described using 

equation 3 [23]. The total force acting vertically on the immersed object, 

F, that was given by the vectorial sum of buoyancy, F(b), and gravitational 

forces, F(g), acting on the test object can be expressed below.  

( )gVddFFF sf(g)(b) −=−=
…………………….… (3) 

Where df and ds represent the fluid density and solid object density, g is 

the acceleration due to gravity and W and V are the weight and volume 

of the test objects. The better floating is exhibited by the object when F 

value is more positive [23, 24]. According to equation 3, NaHCO3 

generated greater gas and pores inside tablets, which resulted in lower 

density, ds, of tablets compared to CaCO3. Therefore, NaHCO3 exhibited 

better buoyancy capacity when compared to CaCO3. 

The in vitro release study was conducted to investigate the effects of 

type of gas-forming agent on the release-time profiles of DICL from 

the tablets. The typical release-time profiles are shown in fig. 1c. It 
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clearly shows that DICL release from tablets containing NaHCO3 was 

higher than that of the tablets containing CaCO3. The initial release 

rates, calculated over the study time range of 0–1 h, of DICL floating 

tablets containing NaHCO3 was significantly higher than that of the 

tablets containing CaCO3 (*P<0.05). At 12 h, the cumulative release 

obtained from tablets containing NaHCO3 was significantly higher 

than that of the tablets containing CaCO3 (*P<0.05). The initial 

release rate within the first hour was found to be in the same order 

(NaHCO3>CaCO3) as the swelling index at 3 h, but the opposite order 

was noted for the FLT of the tablets. The concentration of DICL in 0.1 

N HCl medium at 12 h from the tablets containing NaHCO3 was 

higher than that from the tablets containing CaCO3 (5.95±0.02 and 

4.15±0.03 µg/ml, respectively). The solubility of both concentrations 

was significantly higher than that of DICL in medium (*P<0.05). This 

may be due to the higher efficacy of NaHCO3 as an alkalizing agent in 

increasing the tablet microenvironment pH compared to CaCO3. 

The tablets with higher swelling capacity but short FLT tended to give 
the higher initial release rate and the higher release-time profile. The 
presence of NaHCO3 might have been responsible for this situation 
because of its higher gas-forming capacity, higher aqueous solubility of 
NaHCO3 [22] and higher alkalizing property compared to CaCO3. As a 
result, NaHCO3 was chosen as a gas-forming agent for further studies. 

 

Table 3: Effects of formulation parameters on swelling, in vitro buoyancy and release properties of DICL floating tablets (mean±SD, n = 3) 

Formulation 

 

Swelling properties Buoyancy properties Release properties 

Initial swelling rate 

(%/h) 

Swelling index at 3 

h (%) 

FLT (min) TFT (h) Initial release rate 

(%/h) 

Cumulative release at 12 

h (%) 

F1 115±11 144±11 10.04±0.04 10.0±0.0 0.95±0.05 4.00±0.04 

F2 1412±25 1074±16 0.39±0.03 >12 1.67±0.02 5.83±0.02 

F3 1538±41 1048±20 7.06±0.01 >12 n/a* n/a* 

F4 1051±30 n/a* 0.33±0.03 >12 5.24±0.02 6.69±0.05 

F5 1061±8 820±7 0.35±0.01 >12 4.04±0.01 6.26±0.02 

F6 917±47 1158±33 0.63±0.07 >12 1.15±0.03 5.54±0.03 

F7 1042±31 878±20 0.46±0.03 >12 1.83±0.10 5.99±0.10 

FS1 1419±55 n/a* 0.35±0.01 0.5±0.0 4.55±0.02 6.31±0.02 

FS2 2019±34 n/a* 0.39±0.01 0.3±0.0 n/a* n/a* 

FS3 n/a* n/a* 0.49±0.01 0.2±0.0 n/a* n/a* 

FLT: floating lag time, TFT: total floating time, *not applicable. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 1: Effects of gas-forming agent type including CaCO3 and 

NaHCO3 on swelling index (a), in vitro buoyancy (b) and in vitro 

release of DICL floating tablets (mean±SD, n = 3) 

Effects of NaHCO3 concentration 

The effects of concentrations of NaHCO3 at 10, 20 and 30% (F3, F2 

and F4, respectively) on swelling index, in vitro buoyancy and 

release were shown in table 3 and fig. 2. It could be seen in fig. 2a 

that the tablets containing 10 and 20% NaHCO3 showed a 

comparable swelling profile that was higher compared to the tablets 

containing 30% NaHCO3. Surprisingly, the increases of NaHCO3 

concentration from 10 to 20 and 30% resulted in the significant 

decreases of initial swelling rates of DICL floating tablets (*P<0.05). 

NaHCO3 is freely soluble in water and able to absorb water rapidly 

[25]. The increase of NaHCO3 might enhance the ability of NaHCO3 to 

impede water uptake and initial swelling of tablets. However, the 

swelling index at 3 h, obtained from the tablets containing 10 and 

20% NaHCO3, was comparable (P>0.05). These findings are parallel 

to those of the previous work which reported that the change of 

NaHCO3 concentration had an insignificant effect on the swelling of 

tablets [26]. It should be noted that the swollen tablets containing 

30% NaHCO3 could not be completely taken out for evaluation after 

1 h. This may be because the high amount of NaHCO3 generated too 

much gas bubbles and pore formation in tablets, leading to 

excessively high porosity and delicacy. 

The in vitro buoyancy properties of tablets containing different 
amounts of NaHCO3 were shown in fig 2b. It could be seen that the 
tablets containing 20 and 30% NaHCO3 provided comparable short 
FLT (<1 min) (P>0.05), which was shorter than that of the tablets 
containing 10 % NaHCO3 (*P<0.05). All tablets containing different 
amounts of NaHCO3 could be floated for at least 12 h. This finding 
was similar to that of the previous works [2, 6, 19]. This study 
revealed that the higher amount of NaHCO3 (20 and 30%) could 
enhance the gas-forming rate, and the high amount of NaHCO3 inside 
the tablets resulted in their shorter FLT. Furthermore, 20% NaHCO3 
might be enough to shorten the FLT of DICL floating tablets. 

The effects of the amounts of NaHCO3 (at 20 and 30%) on the release 

of DICL floating tablets were determined and shown in fig. 2c. The 

effect on tablets containing 10% NaHCO3 was not determined 

because their FLT was too long. It could be seen that DICL release 

from the tablets containing 30% NaHCO3 was higher than that of the 

tablets containing 20% NaHCO3. The initial release rate of DICL 

floating tablets containing 30% NaHCO3 was significantly higher 

than that of the tablets containing 20% NaHCO3 (*P<0.05). At 12 h, 

the cumulative release obtained from the tablets containing 30% 

NaHCO3 was significantly higher than that of the tablets containing 
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20% NaHCO3 (*P<0.05). This is parallel to the previous works which 

reported that the increase in the concentration of gas-forming 

agents resulted in the higher drug release [6, 20]. The concentration 

of DICL released at 12 h from the tablets containing 30% NaHCO3 

was higher than that from the tablets containing 20% NaHCO3 

(6.67±0.05 and 5.95±0.02 µg/ml, respectively) and the solubility of 

DICL in medium, respectively. The increase of NaHCO3 from 20 to 

30% might increase the hydrophilicity and wettability of the tablets 

and the excess amount of NaHCO3 might raise the microenvironment 

pH, resulting in an increase of DICL solubility. 

It has been reported that the increase of NaHCO3 concentration in 

floating tablets resulted in the worsen flowability of powder [19]. 

Furthermore, the increase of NaHCO3 from 20 to 30% had no effect on 

the buoyancy properties but was likely to improve the friability of 

floating tablets. Therefore, NaHCO3 at 20% was chosen to be used in 

further studies. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 2: Effects of NaHCO3 concentration on the swelling index 

(a), in vitro buoyancy (b) and in vitro release of DICL floating 

tablets (mean±SD, n = 3) 
 

Effects of hydroxypropyl methylcellulose (HPMC) grade 

Hydroxypropyl methylcellulose (HPMC) is one of the cellulose ether 

polymers that have been widely used as floating matrices and swelling 

polymer in the floating dosage forms [27]. There are many grades of 

HPMC available in the market. HPMC K15M and K100M, which were 

different in terms of molecular weight and solution viscosity, were 

chosen for the study on the effects of HPMC grades. The effects of 

different grades of HPMC, namely HPMC K15M and K100M (F7 and F2, 

respectively), on swelling index, in vitro buoyancy and release of DICL 

floating tablets were shown in table 3 and fig. 3. It could be seen in fig. 3a 

that the swelling profile and the swelling index at 3 h obtained from the 

tablets containing HPMC K100M were significantly higher than those of 

the tablets containing HPMC K15M (*P<0.05). The result was in line with 

that of the previous studies [26, 28] which reported that the higher 

swelling capacity was obtained with a higher grade of HPMC. HPMC 

K100M and K15M are different in terms of molecular weight, water 

uptake and solution viscosity. It is known that the ability of swelling 

formation is dependent on the presence of hydrophilic groups. The 

water uptake of these functional groups results in water entry into 

polymer network, leading to expansion and consequently an ordering of 

polymer chains. The swelling equilibrium (maximum water uptake) is 

reached when the osmotic forces of the functional groups are balanced 

by the restrictive forces of the higher ordering of the polymer chains [29, 

30]. The HPMC K100M may enhance greater water uptake and 

expansion of polymer chains compared to HPMC K15M.  

The effects of HPMC grade on buoyancy properties of DICL floating 

tablets were shown in fig. 3b. It was noted that the tablets containing 

HPMC K15M and K100M showed comparable FLT and TFT (*P>0.05). 

The result was in line with that of the previous work [31] which 

reported the comparable effects of different molecular weights of 

chitosan on FLT and TFT of acetylsalicylic acid floating tablets. 

According to equation 3 and swelling index results, the tablets 

containing HPMC K100M might have greater volume, V, and density ds, 

than those of the tablets containing HPMC K15M during the buoyancy 

study. As a result, the comparable buoyancy capability was observed. 
 

 

(a) 

 

(b) 

 

(c) 

Fig. 3: Effects of HPMC grades, namely HPMC K15M and K100M, 

on the swelling index (a), in vitro buoyancy (b) and in vitro 

release of DICL floating tablets (mean±SD, n = 3) 
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The effect of HPMC grade investigated in the in vitro release study 

was shown in fig. 3c. It could be seen that the DICL releases from the 

tablets containing HPMC K15M and 100M were comparable. The 

initial release rates and the cumulative releases at 12 h obtained 

from the tablets containing HPMC K15M and 100M were 

comparable (P>0.05). The concentrations of DICL in the medium at 

12 h from the tablets containing K15M and 100M were also 

comparable (5.97±0.02 and 5.95±0.02 µg/ml, respectively). 

This study revealed that HPMC grade affected only the swelling 

properties of tablets. However, it had no effect on the buoyancy 

capability and DICL release of the tablets containing HPMC. As a result, 

HPMC K100M was chosen as the representative of HPMC in further 

studies. 

Effects of HPMC concentration 

The effects of concentrations of HPMC K100M at 10, 20 and 30% (F5, 

F2 and F6, respectively) on swelling index, in vitro buoyancy and 

release of DICL floating tablets, were shown in table 3 and fig. 4. It 

could be seen in fig. 4a that the increase of HPMC concentration from 

10 to 20% resulted in the higher swelling profile and initial swelling 

rate (*P<0.05). However, the increase of HPMC concentration from 20 

to 30% resulted in lower initial part of the swelling profile and initial 

swelling rate (*P<0.05). However, at 3 h, a swelling index of tablets 

increased when the concentration of HPMC increased from 10 to 30% 

(*P<0.05). This result was similar to that of the previous study, which 

reported that when the concentration of polymers was higher, the 

swelling properties of the tablets increased as a result [32]. In the case 

of 30% HPMC, the high amount of HPMC may impede the initial water 

uptake and in turn, the swelling of the polymer.  

The in vitro buoyancy results were shown in fig. 4b. It could be seen 

that the tablets containing 10 and 20 % HPMC showed comparable 

FLT (P>0.05), which were shorter than that observed in the tablets 

containing 30% HPMC (*P<0.05). All tablets containing various 

concentrations of HPMC could be floated for at least 12 h. This result 

was in line with that of the previous work [33] which reported that 

the increase of HPMC concentration was likely to prolong FLT. This 

may be because the high concentration of HPMC inhibited the initial 

hydration of medium into the matrix of the tablets, then retarded the 

gas forming, resulting in the prolonged FLT. 

The effect of HPMC concentration on the release of DICL floating tablets 

was determined and shown in fig 4c. It could be seen that DICL release 

from the tablets containing 10% HPMC was higher than those from the 

tablets containing 20 and 30% HPMC. The initial release rates and the 

cumulative releases obtained from the tablets containing 10% HPMC 

were significantly higher than those from the tablets containing 20 and 

30% HPMC (*P<0.05). The concentration of DICL released at 12 h from 

the tablets containing 10% HPMC K100M was higher than those from 

the tablets containing 20 and 30% HPMC K100M (6.27±0.02, 5.95±0.02 

and 5.73±0.03 µg/ml, respectively). This was because the higher 

polymer molecular weight or higher polymer concentration formed the 

higher strength gel-swellable structure, which retarded the release of 

drug from the matrix [34, 35], and may also retard the release and 

interaction of NaHCO3 with 0.1 N HCl solution.  

The tablets with a lower concentration of HPMC K100 were likely to 

shorten FLT and increase DICL release. Therefore, 10 and 20% 

HPMC were chosen for further study of SLS effects. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 4: Effects of HPMC K100M concentration on swelling index 

(a), in vitro buoyancy (b) and in vitro release of DICL floating 

tablets (mean±SD, n = 3) 

 

Effects of SLS concentration 

The limited amount of DICL release from DICL floating tablets was 

due to the poor solubility of DICL in 0.1 N HCl solution. In an attempt 

to increase the DICL release, the SLS was incorporated as a wetting 

agent in the DICL floating tablets. The effects of concentrations of 

SLS at 0.25, 0.5 and 1% on swelling index, in vitro buoyancy and 

release of DICL floating tablets prepared with 10 or 20% HPMC 

K100M were determined and shown in table 3 and fig. 5.  

In the case of DICL floating tablets containing 10% HPMC K100M, it 

was found that the tablets swelled very fast and the swollen tablets 

could not be completely taken out for evaluation because of their 

high porosity and delicacy. For the buoyancy studies, the tablets 

containing 0.25 and 0.5% SLS showed comparable FLT, which was 

comparable to tablets without SLS (P>0.05) (data not shown). They 

showed TFT of less than 1 min. DICL floating tablets containing 1% 

SLS did not float. As a result, the in vitro release of DICL floating 

tablets containing 10% HPMC K100M was not determined. This may 

be because SLS improved the wettability of the tablets and the 

exceptionally low concentration of HPMC remaining as floating 

matrix would lead to the loss of physical integrity.  

In the case of DICL floating tablets containing 20% HPMC K100M, it 

could be seen in fig. 5a that all tablets with various concentrations of 

SLS were unable to exhibit complete swelling profile. The tablets 

containing 0.25 and 0.5% SLS (FS1 and FS2, respectively) could be 

evaluated only for a period of 0.5 h, and they could not be 

completely taken out for evaluation after that. The increase of SLS 

concentration from 0.25 to 0.5% resulted in the significant increases 

of initial swelling rates of DICL floating tablets (*P<0.05). When 

compared to the tablets without SLS, the tablets containing 0.25% 

SLS showed comparable initial swelling rates (P>0.05), but the 

tablets containing 0.5% SLS showed significantly higher initial 

swelling rate (*P<0.05). For 1% SLS, the tablets swelled very fast, 

and the swollen tablets could not be completely taken out for 

evaluation. Incorporation of SLS at high concentrations (0.5 and 1%) 

might increase the wettability of tablets, [16] which could result in 

the higher initial swelling rates.  

The in vitro buoyancy results are shown in fig. 5b. It could be seen 

that all tablets containing various concentrations of SLS showed FLT 
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of shorter than 1 min. The tablets containing 0.25 and 0.5% SLS 

showed comparable FLT (P>0.05), which were shorter than that of 

the tablets containing 1% SLS (*P<0.05). When compared to the 

tablets without SLS, only the tablets containing 1% SLS showed 

significantly longer FLT (*P<0.05). For the TFT, the tablets 

containing 0.25% SLS floated longer than those containing 0.5 and 

1% SLS. It should be noted that all tablets containing various 

concentrations of SLS showed TFT of less than 12 h. The increase of 

SLS concentration was likely to prolong the FLT but shorten the TFT. 

It is known that SLS has the wettability and disintegration 

properties. Incorporation of SLS into tablets at high concentrations 

(0.5 and 1%) might increase the wettability and the ability to 

disintegrate the tablets, but decrease the interfacial tension between 

the tablets and the release medium. After the tablets came into 

contact with the release medium, the tablets might be wet quickly, 

followed by disaggregation of the tablets with less swelling of 

polymer, which would result in increases of V and ds, according to 

equation 3 and the swelling study. 

Tablets containing 0.25% SLS were selected as representatives for 

observation of SLS effects. The effects of SLS incorporation at 0.25% 

on the release of DICL floating tablets were determined and shown 

in fig. 5c. It could be seen that the release of the tablets containing 

0.25% SLS was higher than that of the tablets without SLS. The 

initial release rate of DICL floating tablets containing 0.25% SLS was 

higher than that of the tablets without SLS. At 12 h, the cumulative 

release obtained from the tablets containing 0.25% SLS was 

significantly higher than that of the tablets without SLS (*P<0.05). 

However, the integrity of these tablets did not remain after 0.5 h. It 

clearly showed that the higher drug release was obtained with 

increased SLS concentration. This was due to the solubilization 

effect of SLS, together with the improvement of a hydrophilic 

environment and wettability of the tablets, which consequently 

enabled the higher drug release [17, 36].  

The presence of SLS in DICL floating tablets were found to affect the 

swelling properties, in vitro buoyancy and release. Nevertheless, SLS 

could not be used in DICL floating tablets in this study.  

Molecular interactions 

Molecular interactions between DICL and each excipient in DICL 

floating tablets were investigated using DSC and FTIR spectroscopy. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 5: Effects of SLS on swelling index (a), in vitro buoyancy (b) 

and in vitro release of DICL floating tablets containing 20% 

HPMC K100M (mean±SD, n = 3) 

 

Thermal study 

The DSC thermograms of DICL, each excipient (NaHCO3, Aerosil, 

MCC, Mg stearate, SLS and HPMC K100M) and the mixture of DICL 

with each excipient (at a ratio of 1:1) are presented in fig. 6. A sharp 

exothermic peak appeared at 284.0 °C (fig. 6a), corresponding to the 

melting point of DICL (283-285 °C) [37]. As presented in fig. 6c, 6e 

and 6g, there was no change in the exothermic peak of DICL in the 

mixture thermograms, exhibiting the compatibility of the drug with 

NaHCO3, Aerosil and MCC, respectively. The DSC thermogram of 

DICL-Mg stearate (fig. 6i) became broaden due to the evaporation of 

Mg stearate, which had a flash point of 250 °C [25]. As shown in fig. 

6k, the DSC curve of DICL-SLS mixture almost disappeared due to 

the lower melting points (endothermal events) of SLS compared to 

DICL, and the decomposition phenomena of SLS at 192.6 °C, 

suggesting that DICL might be dissolved in the melted SLS [38]. Fig. 

6m presented the DSC curve of DICL-HPMC K100M which exhibited 

the shift of the peak to lower temperature, which was possibly due 

to the high melting of HPMC K100 that interfered the DSC peak. 
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Fig. 6: DSC thermograms of DICL (a), NaHCO3 (b), DICL-NaHCO3 

(c), Aerosil (d), DICL-Aerosil (e), MCC (f), DICL-MCC (g), Mg 

stearate (h), DICL-Mg stearate (i), SLS (j), DICL-SLS (k), HPMC 

K100M (l) and DICL-HPMC K100M (m) 

 

Fourier transform infrared (FTIR) spectroscopy 

The FTIR spectra of DICL, each major ingredient (NaHCO3, MCC and 

HPMC K100M) and mixtures of DICL-each ingredient (at the ratio as 

F2) are shown in fig. 7. The distinct peaks of DICL at 3387 cm-1 (NH 

stretching of secondary amine), 1557 cm-1 (C=C stretching), 1305 

cm-1 (C-N stretching), and 747 cm-1 (C-Cl stretching) [39] are 

shown in the spectra of DICL and DICL-excipients. Based on the FTIR 

results, it seemed that there was no interaction between DICL and 

the ingredients tested. 
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Fig. 7: FTIR spectra of DICL (a), NaHCO3 (b), DICL-NaHCO3 (40:20) (c), MCC (d), DICL-MCC (40:18.5) (e), HPMC K100M (f) and DICL-HPMC 

K100M (40:20) (g) 

 

CONCLUSION 

In this study, DICL floating tablets were prepared successfully. The 

weight variation, thickness, hardness, friability, and drug content 

were satisfied and within the acceptance criteria of USP 39-NF 34. 

The effects of type and concentration of gas-forming agents, as well 

as grade and concentration of floating matrix and swelling polymers,  

were verified. The molecular interaction between DICL and 

excipients in the formulation was excluded. Incorporation of SLS as a 

wetting and solubilizing agent revealed the enhancing effects on the 

rate and cumulative amount of DICL releases from the floating 

tablets. Nevertheless, SLS addition showed unacceptable adverse 

effects on swelling and buoyancy properties of DICL floating tablets. 

SLS, therefore, could not be used as the wetting agent for DICL 

floating tablets. 

The release testing under non-sink conditions was able to 

distinguish the effects of formulation parameters on the DICL 

release profiles. As a result, the limited release from the developed 

floating tablets was obtained. For realistic release and in vivo 

characterization, the release under sink conditions and/or in vivo 

pharmacokinetic study will be further carried out.  
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