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ABSTRACT

Objective: The objective of the study was to analyze the mutual epitope-based vaccine that can evoke immune response against hemorrhagic fever 
caused by Ebola virus (EBOV) and Marburg virus (MARV).

Methodology: VP40, VP24, VP35, VP30, and NP proteins of Ebola and MARV were recovered from the protein database and subjected to many 
bioinformatics tools to predict the best B- and T-cell epitopes. And finally, the selected proteins were subjected to molecular docking human leukocyte 
antigen (HLA)-DR (major histocompatibility complex [MHC] Class I and II) to confirm their antigenicity in silico.

Results: The epitopes from EBOV were stable while were unstable from MARV. Further, molecular docking simulation using most significant MHC 
Class II and Class I molecules demonstrated that their epitopes may bind within HLA-binding affinity to evoke an immune response.

Conclusions: In this study, the data revealed the epitopes from VP40 protein could be the specific target for peptide-based vaccine design against 
Ebola and MARV.
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INTRODUCTION

The first human outbreak of Ebola virus (EBOV) was in 1976, 
however, the natural reservoir of this virus remains unknown. Ebola 
hemorrhagic fever is generated by a negative strand of RNA virus. 
The viral genome encodes 7 structural proteins and 1 non-structural 
protein (dissolved glycoprotein) [1]. Morphologically, the virus is made 
up of a limited genome completely surrounded in an envelope, which is 
coated by the membrane glycoprotein coordinated in homotrimers [2]. 
Genetic and antigenic characterization of EBOV isolates during human 
outbreaks has caused the identification of four subtypes Ebola Sudan, 
E. Zaire, E. Ivory Coast, and E. Reston. In assessment to Ebola Reston, 
which originates in Asia and has no other way been stated to originate 
the human sickness, the alternative three subtypes distributed on 
the African subcontinent and are pathogenic for people, originating 
a particular fevered drained disease [3-5]. After an incubation period 
of approximately a week, subjects unexpectedly develop high fever, 
diarrhea, vomiting, respiration issues, and hemorrhaging. Death arises 
within a few days. The reported death case rates are approximately 
80% with E. Zaire and 50% with E. Sudan [6,7], resulting approximately 
1850 people and brought about almost 1300 deaths [8-10]. EBOV 
hemorrhagic fever is a zoonotic disorder that spreads by direct contact 
with infected alive or dead animals. The natural reservoir of both 
Ebola and Marburg virus (MARV) is unknown. A study done in 1968 
though confirmed that MARV could persist for more than 3 weeks in 
Aedes mosquitoes after spatial inoculation [11-15]. Since the first 
recorded human outbreak in 1976, several laboratory and field 
studies have been conducted to identify the animal(s) – vertebrate or 
invertebrate – that can harbor the virus asymptomatically. EBOV and 
MARV belong to the family Filoviridae and cause a severe fever with 
high case fatality rates [16-18]. The nucleocapsid of EBOV is made 
up of the nucleoprotein NP, which directly encapsulates the viral 
genome [19]. EBOV nucleocapsid attaches with the viral protein VP24 
and the polymerase cofactor VP35, to form a long helical nucleocapsid 
∼1000 nm  in  length and 50 nm  in diameter  [20-22].  In addition,  the 
nucleocapsid can also associate with viral polymerase L and the 
transcription factor VP30 [23]. Nucleocapsid formation takes place in 
inclusion bodies within the perinuclear domain of EBOV- and MARV-

infected cells, which operated as virus factories [24,25]. The enrollment 
of nucleocapsid in cell periphery and for developing progeny virions is 
the filoviral matrix protein VP40 [20,26-28] which is arranged in lower 
place of plasma membrane in an ordered lattice. This study aims to 
check the common epitope of EBOV and MARV for the development of 
subunit vaccines to treat the virus induced zoonosis in affected humans.

METHODOLOGY

Prediction of antigenicity
All the entire amino acid sequences of every vp40, vp24, vp30, vp35, 
and NP proteins of EBOV and MARV have been retrieved from protein 
databases (http://www.us.expasy.org/sprot; http://www.ncbi.nlm.
nih.gov/protein/) and non-identical sequences had been analyzed 
with VaxiJen v2.0 (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/
VaxiJen.html) antigen prediction server [29]. For optimum efficiency, 
a threshold value of 0.5 was accustomed to test the antigenicity of 
every full length protein. Amino acid sequences for each proteins that 
have antigenic score >0.5 had been chosen and less than 0.5 score 
proteins also selected for further studies [30]. All expected B-cell 
epitopes (16-mer) having a BCPreds cutoff score >0.8 were selected 
and afterward checked for membrane topology by comparing with 
Transmembrane Helices Hidden Markov Models (TMHMM) results 
for exo-membrane amino acid sequences. Surface defined as a B-cell 
epitope sequence having the cutoff value >0.8 for BCPreds was then 
analyzed using VaxiJen at threshold 0.5 to test the antigenicity. Finally, 
2–3 epitopes with the highest VaxiJen scores were selected to use in 
prediction of T-cell epitopes.

Prediction of T-cell epitopes from selected B-cell epitopes
T-cell epitopes were predicted from the chosen B-cell epitopes and 
two screening steps were followed. Within the screening, the selection 
criteria were: (i) The T-cell epitope sequence should bind to both 
the major histocompatibility complex (MHC) I and MHC II molecules 
and therefore the least number of total interacting MHC molecules 
should be >15, (ii) the T-cell epitope sequence must interact with 
human leukocyte antigen (HLA)-DRB1×0101 of MHC-II, and (iii) 
T-cell epitope sequence should be antigenic supported on VaxiJen 
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score. Propred-1 (http://www.imtech.res.in/raghava/propred1/) 
[31] and Propred (http://www.imtech.res.in/raghava/propred/) 
[32] servers that utilize amino acid position coefficients inferred 
from literature employing linear prediction model [33] were want 
to identify common epitopes that bind to both MHC I and MHC II 
molecules. Total numbers of interacting MHC alleles were counted. 
For quantitative structure–activity relationship (QSAR) simulation 
approach, the half maximal (50%) inhibitory concentration (IC50) 
and antigenicity of common epitopes (predicted by Propred-1 and 
Propred) were calculated using MHCPred v.2 (http://www.ddg-
pharmfac.net/mhcpred/MHCPred/) server [34]. and VaxiJen v2.0, 
respectively. Epitopes with high antigenicity were selected and bound 
with predicted 15 molecules of both MHC I and II allels. The second 
screening was supported on structure and QSAR simulation methods 
using T-Epitope Designer (http://www.bioinformation.net/ted/) [35] 
and MHCPred, respectively. T-epitope designer can screen peptides for 
>1000 HLA alleles. Within the second screening, the criteria were as 
follows: The peptide should bind >75% of total HLA molecules; the 
peptide must bind with high scores to (i) HLA-DRB1×0101. T-epitope 
Designer was used for the first two criteria and MHCPred was used 
for the ultimate criteria. The ultimate list of T-cell epitopes was made 
with peptide sequences that pass these above-mentioned criteria and 
VaxiJen and IC50 scores. Physicochemical properties of identified B- and 
T-cell epitopes (15-mer) were analyzed with the ProtParam computer 
program (http://web.expasy.org/protparam/).

Molecular docking of predicted epitopes with HLA-DR
The predicted epitopes of B and T cells subjected for molecular docking 
with MHC I molecules (HLA-B7 and HLA-B44) and MHC Class-II 
molecules (HLA-DRB1×0101 and HLA-DRA) [34]. Multiple sequence 
alignment was used for HLA super types B7, B44. (https://www.
ebi.ac.uk/Tools/msa/clustalw2/). SWISS-MODEL was used for 3D 
structure of these seven proteins (http://www.swissmodel.expasy.org) 
[35,36]. Moreover, similarity among these molecules, HLA molecules 
were identified by multiple sequence alignment and the best molecular 
docking orientation was chosen based on binding free energy and 
hydrogen bond.

RESULTS AND DISCUSSION

Antigenicity and topology of selected proteins
Ebola and MARV have 65–70% amino acid homology in the 
untranslated regions [20]. The homology of vp40, vp24, vp30, vp35, 
and NP is approximately above 80% for all proteins between Ebola and 
MARV [37]. Because of high percentage of homology present between 
these two virus, the present study focuses on identification of common 
epitope for Ebola and MARV. Moreover, the antigenicity was observed 
based on autocross covariance transformation of protein sequence 
using VaxiJen. Moreover, identification of exo-membrane sequence 
selected for this present study exhibits various degrees of antigenicity. 
According to VaxiJen score, the highest VaxiJen score showing the 
highest antigenicity of an amino acid sequence of vp40, vp24, vp30, 
vp35, and NP of Ebola was 0.4831, 0.4779, 0.5129, 0.5079, and 0.4379 
and for MARV was 0.4454, 0.5348,0.5408, 0.4380, and 0.4639. Although 
Ebola virus and Marburg virus scored less than 0.5 which leads to non-
antigenic in nature using VaxiJen. Analysis of transmembrane topology 
analysis of these proteins was done employing TMHMM and the results 
revealed that the lengths of exo-membrane sequences for selected 
proteins of EBOV were 1–326, 1–251, 1–288, 1–340, and 1–739 and for 
MARV 1–303, 1–253, 1–277, 1–329, and 1–629.

Antigenic B-cell epitope
To make a proper vaccine, a peptide must be producing B-cell and 
T-cell-mediated immunity as well as peptide must be hydrophilic in 
nature [38]. BCPreds were used to analyze for B-cell epitope prediction 
using BCPreds and all predicted B-cell epitopes were selected on the 
based as already mentioned in methodology. In general, BCPreds 
containing 16-mer epitopes [30] and VaxiJen minimal values more 
than 0.8 and 0.5 accordingly were listed. After the BCPreds and VaxiJen 
minimal values, single epitope was selected from each protein for 

further analysis and each listed B-cell epitope from a protein exposed 
100% similarity with all amino acid sequences of that protein.

T-cell epitope selected from B-cell epitope
T-cell epitope selection is based on B-cell epitopes. In the initial 
screening, MHCPred was used for identified 9-mer epitopes which 

Table 1: Accession numbers, VaxiJen score and exo-membrane 
sequences of VP40, VP24, VP30, VP35, NP of Ebola virus and 

Marburg virus

Protein Accession number VaxiJen 
score

Exo-membrane 
sequence

Ebola VP40 AKB09553.1 0.4831 1–326
Ebola VP24 AKB09558.1 0.4779 1–251
Ebola VP30 AKB09553.1 0.5129 1–288
Ebola VP35 AKB09552.1 0.5079 1–340
Ebola NP AKB09551.1 0.4379 1–739
Marburg VP40 CAA78116.1 0.4454 1–303
Marburg VP24 CAA78119.1 0.5348 1–253
Marburg VP30 CAA78118.1 0.5408 1–277
MarburgVP35 CAA78115.1 0.4380 1–329
Marburg NP CAA78114.1 0.4639 1–692

a b

c d

a b

c

Fig. 1: (a-d) Molecular docking simulation of major 
histocompatibility complex Class1 molecules with selected 

proteins

Fig 2: (a-c) Molecular docking simulation with major 
histocompatibility complex Class II molecules with selected 

proteins
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were all antigenic with best VaxiJen score. In the second screening level, 
selected peptides from the first screening were used to analyze and 
predict their binding capabilities to more than 1000 MHC alleles with 
the help of T-epitope designer and epitopes that bound more than 75% 
MHC alleles were listed. For mostly used A×0101 alleles, the minimal 
value was set accordingly that listed peptides must bind to these HLA 
molecules. The final list of epitopes was made with peptide sequences 
that confirmed the criteria of the second screening level.

Molecular docking of predicted epitopes
Normally, molecular docking was used to identify the correlation 
between the epitopes with the MHC Class II molecules. Molecular 
docking results revealed that the HLA-DRA does not have collection in 
the peptide-binding sector and serves as the solely alpha chain for HLA-
DRB1 to HLA-DRB5. Molecular docking study revealed that epitope 
side chain attached into the grooves of HLA-DRsB1×0101 and HLA-
DRB1×1501 through respective hydrogen bonds.

Docking outcomes also showed predicted epitope might attach 
with MHC II molecules in antigen presenting cells and also could 
trigger the B- and T-cell epitopes. Epitope binding within the groove 
of the MHCII molecules is recommended as director enticement 
of binding affinity [34,39]. The analysis observed that the selected 
proteins and listed B- and T-cell epitopes bound with the groove of 

HLA-B7 and HLA-B44. Moreover, multiple alignment result of MHC II 
molecules and HLA-DRA exposed that these molecules have difference 
in particular sequence as well as alignment of super types B7 and B44 
showed the dissimilarity of their sequence.

CONCLUSIONS

In the present study, we aimed to design an epitope-based common 
vaccine for both Ebola and MARV and lead to investigate the genome 
proteins which are vp40, vp24, vp30, vp35, and NP proteins. In this 
study, VP40 has the best binding affinity in both Ebola and MARV 
that lead to design peptide vaccine against hemorrhagic fever. The 
prediction of non-identical sequence or antigenicity of sequence from 
selected membrane proteins were retrieved through TMHMM and 
VaxiJen score methods. For B-cell epitope prediction, both BCPreds 
and AAP server methods were used, which were lastly used for T-cell 
epitopes. In this study, we analyzed 9-mer epitope from EBOV and also 
from MARV. Moreover, we investigated the similarities between both 
the epitopes. From the selected epitopes, we subjected to molecular 
docking simulation and the docking result with both the MHC molecules 
was appropriate with binding affinity.

These selected epitopes were observed to be stable and might accurate 
for an epitope to be used as a common vaccine and also reflect the 
common cure and therapeutic treatment for EBOV and MARV.
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