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ABSTRACT

This work describes the concept of filtering of signals using discrete Kalman filter. The true state of constant, random constant having process noise 
and autoregressive (p) process when corrupted by measurement noise are estimated using discrete Kalman filter and results are presented using 
MATLAB.
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INTRODUCTION

Filtering is desirable in many situations in engineering and embedded 
systems. For example, radio communication signals are corrupted 
with noise. A good filtering algorithm can remove the noise from 
electromagnetic signals while retaining the useful information [1].

If the statistics of the signal are known beforehand, an optimum 
filter can be designed according to the Wiener -Hopf equations. The 
drawback of this approach is that in the real world the signals input to 
the filter are not stationary. Under such circumstances, adaptive filters 
must be designed, to track the changes of signal and noise [2].

The Newton and steepest descent algorithms are investigated as 
possible searching methods for adaptive filtering. Although both 
methods are not directly applicable to practical adaptive filtering, smart 
reflections inspired them which led to practical algorithms such as least 
mean squares (LMS) and Newton-based algorithms.

The LMS is a search algorithm in which a simplification of gradient 
vector computation is made possible by appropriately modifying the 
objective function. The convergence speed of the LMS is dependent on 
the eigenvalue spread of the input signal autocorrelation matrix. The 
normalized LMS algorithm is simpler to use than the LMS algorithm 
because it allows the step size to be selected without having to know 
the largest eigenvalue of the autocorrelation matrix of input signal. 
It simplifies the selection of step size to ensure that the coefficients 
converge.

The recursive least squares algorithm ensures fast convergence even 
when the eigenvalue spread of the input signal autocorrelation matrix 
is large. All these advantages come with the cost of an increased 
computational complexity and some stability problems, which are not 
as critical in LMS based algorithms [3].

In 1960, R.E. Kalman published his famous paper describing a recursive 
solution to the discrete data linear filtering problem. Since that time, 
due to large part in advances in digital computing; the Kalman filter has 
been the subject of extensive research and application, particularly in 
the area of autonomous or assisted navigation [4,5].

The Kalman filter, rooted in the state space formulation of linear 
dynamical systems, provides a recursive solution to the linear 
optimal filtering problem. It applies to stationary as well as non-

stationary environments. The solution is recursive in that each 
updated estimate of the state is computed from the previous 
estimate and the new input data, so only the previous estimate 
requires storage. In addition to eliminating the need for storing 
the entire past observed data, the Kalman filter is computationally 
more efficient than computing the estimate directly from the entire 
past observed data at each step of the filtering process [4]. Section 2 
presents the state space model and discrete Kalman filter algorithm. 
Section 3 deals with implementation and simulation. Experimental 
results are also included in Section 3. Finally, the concluding remarks 
are presented in Section 4.

MATHEMATICAL MODELING

The Kalman filter is a linear, discrete time, finite dimensional time-
varying system that evaluates the state estimate that minimizes 
the mean-square error. It estimates a process by using a form of 
feedback control: The filter estimates the process state at some time 
and then obtains feedback in the form of (noisy) measurements. As 
such, the equations for the Kalman filter fall into two groups: Time 
update equations and measurement update equations. The time 
update equations are responsible for projecting forward (in time) 
the current state and error covariance estimates to obtain the a 
priori estimates for the next time step. The measurement update 
equations are responsible for the feedback – i.e., for incorporating a 
new measurement into the a priori estimate to obtain an improved a 
posteriori estimate.

The time update equations can also be thought of as predictor 
equations, while the measurement update equations can be thought of 
as corrector equations. Indeed the final estimation algorithm resembles 
that of predictor-corrector algorithm for solving numerical problems 
as shown in Fig. 1.

State space time domain modelling of auto regressive (AR) process
Consider the system to be governed by the linear constant coefficient 
difference equation:
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for which the direct form II realization is shown in Fig. 2. Here w(n) is 
the process noise and ξ(n) is the measurement noise.
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The state variables of the system are the numerical quantities memorized 
by the system that comprise the state. In Fig. 2, v1(n),…,vM(n) are the 
internal variables which comprise the state variables for this system [5].

We have,

vi(n+1)=vi+1(n) (2)
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Eq. (2) and Eq. (3) are the state equations for the system.
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⇒v(n+1)=Av(n)+c(x(n)+w(n)) (5)
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and c=[0 0 0. 0 1]T (7)

The output can be computed from the state variables at time n using
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Where b=[a(M) a(M−1) a(1)]T) (9)

and d=1 (10)

The discrete Kalman filter algorithm
State Equation

v(n+1)=A(n)v(n)+C(n)(x(n)+w(n))

Observation Equation

y(n)=B(n)v(n)+d(x(n)+w(n))+ξ(n)

The system noise w(n) and the measurement noise ξ(n) are assumed 
to be white Gaussian noise with known variances Qw(n) and Qξ(n) 
respectively.

Initialization: 
 { }

{ }
v(0|0) E v(0)

HP(0|0) E v(0)v (0)

=

=

Computation: For n=1,2 compute

1.	 Assuming	the	estimate	of	state	vector	v̂(n|n), the error covariance 
P(n|n) are obtained from nth iteration. The predicted state vector and 
prediction error covariance matrix at the (n+1)th iteration are then 
computed from

v n n A n v n n

P n n A n P n n AH n Qw n
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1 1

2.	 The	Kalman	filter	gain	 K n( )+1  is then computed from

K(n+1)=P(n+1|n)BH(n+1[B(n+1)P(n+1)BH(n+1+Qξ(n+1)]−1.

3. The estimate of the state vector and the corresponding error 
covariance matrix are updated after obtaining a new measurement 
data y(n+1) at time n using.

Fig. 1: The ongoing discrete Kalman filter cycle

Fig. 2: Direct form II realization of the discrete time system with 
input-output description
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As the time update projects the current state estimate ahead in 
time, the measurement update adjusts the projected estimate by an 
actual measurement at that particular time. The first task during the 
measurement update is to compute Kalman gain. Next, is to measure 
the process to obtain the measurement and then generate a posteriori 
state estimate by incorporating the measurement. Finally, the last step 
is to obtain the posteriori error covariance estimate. Thus, after each 
time and measurement update pair, this loop process is repeated to 
project or predict the new time step priori estimates using the previous 
time step posteriori estimates. The Kalman filter recursively conditions 
the current estimate on all of the past measurements. The complete 
picture of the operation of Kalman filter is shown in Fig. 3.

IMPLEMENTATION AND SIMULATION

Estimating a constant using discrete Kalman filter
1. Example: Let us attempt to estimate a scalar constant x=2, a 

voltage for example. Let’s assume that we have the ability to take 
measurements of the constant, but that the measurements are 
corrupted	by	a	√0.0	volt	RMS	white	Gaussian	measurement	noise.

2. Simulation: The process is governed by the linear difference equation 
(5) with a measurement given by Eq. (8). The state does not change 
from step to step so A=1. Though the process noise w=0, a very small 
process variance of the order of Qw=0.01 is assumed. Here, the state 
is nothing but measurement so C=1. The variance of measurement 
noise is considered as Qξ=0.1. Let the initial estimate of v and error 
covariance P be 1.50 distinct measurements y(n) that had an error 
normally	distributed	around	zero	with	a	standard	deviation	of	√0.1	
is then simulated. Fig. 4 depicts the results of this simulation.

Estimating a random constant having process noise using discrete 
Kalman filter
1. Example: Let us attempt to estimate a scalar random constant x=2 

corrupted	by	√0.1	volt	RMS	white	Gaussian	process	noise,	a	voltage	
for	example.	The	measurements	are	corrupted	by	a	√0.01	volt	RMS	
white Gaussian measurement noise.

2. Simulation: The process is governed by the linear difference equation 
(5) with a measurement given by Eq. (8). Here, the process noise 
and measurement noise are considered as white Gaussian noises 
with variances 0.1 and 0.01 respectively. The state matrix A and the 
measurement matrix C are both taken as 1. Let the initial estimate 
of v and error covariance P be 1.50 distinct measurements y(n) 
that had an error normally distributed around zero with a standard 
deviation	of	√0.01	is	then	simulated.	Fig. 5 depicts the results of this 
simulation.

Estimating an AR (p) process using discrete Kalman filter
1. Example: Let x(n) be the AR (p) process that is generated by the 

following difference equation

x n a k x n k w n
k

p
( ) ( ) ( ) ( )= − +

=
∑
1

 (11)

Where w(n) is the white Gaussian noise with a variance 0.36, and let

y(n)=x(n)+ξ(n)	 (12)

be noisy measurements of x(n)	and	ξ(n)	is	white	Gaussian	noise	with	
variance 0.01 that is uncorrelated with w(n).

Let p=4 so the AR (4) process is generated according to the difference 
equation

x(n)=0.1x(n−1)+0.2x(n−2)+0.3x(n−3)+0.4x(n−4)+w(n)	 (13)
The state matrix A is a matrix of order 1×p and the measurement matrix 
C is an identity matrix of order p.

Fig. 3: A complete picture of the operation of the Kalman filter

Fig. 4: Estimating a constant using discrete Kalman filter

Fig. 5: Estimating a random constant having process noise using 
discrete Kalman filter

Fig. 6: Estimating an auto regressive (4) process using discrete 
Kalman filter
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Let the initial estimate of v be a zero vector matrix of order 1×p and 
error covariance P be identity matrix of order p.

2. Simulation: The state matrix A is a matrix of order 1×4 and the 
measurement matrix C is an identity matrix of order 4. Let the initial 
estimate of v be a zero vector matrix of order 1×4 and error covariance 
P be identity matrix of order 4. 50 distinct measurements y(n) that had 
an error normally distributed around zero with a standard deviation 
of	√0.01	is	simulated.	Fig. 6 depicts the results of this simulation.

In all the cases, the true value is given by the solid line and the 
filter estimate by the remaining curve. Under conditions where the 
covariance of process noise Qw and measurement noise Qξ are constant, 
both the estimation error covariance P and Kalman gain K will stabilize 
quickly and then remain constant. If this is the case, these parameters 
can be pre-computed by running the filter off-line. It is frequently the 
case however that the measurement error (in particular) does not 
remain constant.

CONCLUSION

It is tried to estimate the true state by implementing discrete Kalman 
filter for different cases and observed that the results are satisfactory.
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