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ABSTRACT

The parametric models autoregressive (AR)/AR-moving average (MA)/MA are sometimes not capable of finding out the power spectral densities of 
random sequences. Under such circumstances, the non-parametric methods outperform the parametric ones because of the sensitivity of the latter 
to model specifications. The maximum entropy method (MEM) is regarded as the non-parametric method of spectrum estimation; it suggests one 
possible way of extrapolating the autocorrelation sequence so that a more accurate estimate of the spectrum can be obtained with better resolution. 
This paper investigates the work of realizing MEM method and evaluating its performance with minimum variance method.
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INTRODUCTION

The spectrum estimation considers the problem of estimating the 
power spectral density of a wide sense stationary (WSS) random 
process using statistical descriptors [1]. The non-parametric methods 
are defined as the methods of spectrum estimation which are based 
on the idea of estimating the autocorrelation sequence of a random 
process from a set of measured data, and then taking the Fourier 
transform to obtain an estimate of the power spectrum. These methods 
are classified as classical and non-classical methods. The periodogram, 
modified periodogram, Bartlett, Welch, Blackman-Tukey methods 
come under the classification of classical methods whereas the 
minimum variance (MV) and the maximum entropy methods (MEM) 
come under the classification of non-classical methods of spectrum 
estimation.

The classical methods effectively extrapolate the autocorrelation 
sequence with zeros, but one of the limitations with this approach to 
spectrum estimation is that the autocorrelation sequence can only 
be estimated for lags less than the data record length. As a result, the 
autocorrelation sequence is set to zero for lags greater than or equal 
to the data record length. This windowing significantly limits the 
resolution and accuracy of the estimated spectrum [2-6].

However, many random signals of interest have autocorrelations that 
are nonzero for lags greater than or equal to the data record length, 
so a more accurate extrapolation of the autocorrelation sequence 
is needed to mitigate the effects of the window and to find a more 
accurate estimate of the spectrum. The MEM method suggests one 
possible way to perform this extrapolation. A brief description of the 
non-classical methods of spectrum estimation is given in the sections 
1.1 and 1.2.

THE MV METHOD

The MV method of spectrum estimation is an adaptation of the 
maximum likelihood method developed by Capon for the analysis 
of two-dimensional power spectral densities. In the MV method, the 
power spectrum is estimated by filtering a process with a bank of 
narrowband bandpass filters. The MV spectrum estimation technique 
involves the following steps:
1.	 Design	a	bank	of	bandpass	filters	gi(n) with a center frequency ωi so 

that	each	filter	rejects	the	maximum	amount	of	out-of-band	power	
while passing the component at frequency ωi with no distortion.

2. Filter x(n)	with	each	filter	in	the	filter	bank	and	estimate	the	power	
in each output process yi(n).

3.	 Set	p̂x(ejwi) equal to the power estimated in step (2) divided by the 
filter	bandwidth.

For a wide-sense stationary process x(n), the MV spectrum estimate of 
the power spectrum is
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Where Rx is the p×p autocorrelation matrix. The resolution of the 
spectrum estimate of the MV method is less, hence, we go for MEM 
method of spectrum estimation [1].

MEM
An important application of entropy (uncertainty) is the determination 
of	 the	 probabilities	 of	 the	 random	 events	 of	 a	 partition	 subject	 to	
various constraints, with the MEM. The method of MEM states that 
the unknown probabilities must be so chosen as to maximize the 
entropy	 (maximize	 the	 uncertainty)	 of	 the	 partition	 subject	 to	 the	
given constraints [2]. It is optimal for problems where we have prior 
information about multiplicities, but no noise [3]. Its estimate is based 
on the principle that the estimate of the autocorrelation sequence 
must correspond to the most random signal whose autocorrelation 
values in the lag values less than or equal to the finite range coincide 
with the measured values [4]. The ME method finds an all-pole model 
for a process using the autocorrelation method and then uses the 
model parameters to estimate the spectrum [1]. It is represented as 
follows:
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Where ap(κ) and ϵp are the all-pole coefficients.

MATHEMATICAL MODELING OF MEM

Given the autocorrelation rx(κ)	 of	 a	 WSS	 process	 for	 lags	 |κ|≥p,	 the	
problem that we wish to address, illustrated in Fig. 1, is how to 
extrapolate rx(κ)	for	|κ|>p.	Denoting	the	extrapolated	values	by	re(κ) it 
is clear that some constraints should be placed on re(κ).
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For example, if
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Then, Px(eji) should correspond to a valid power spectrum, i.e. Px(ejω) 
should	be	real-valued	and	non-negative	for	all	ω.	In	general,	however,	
only constraining Px(ejω) to be real and non-negative is not sufficient 
to guarantee a unique extrapolation. Therefore, some additional 
constraints must be imposed on the set of allowable extrapolations. 
One such constraint proposed by Burg is to perform the extrapolation in 
such a way so as to maximize the entropy of the process. Since entropy 
is a measure of randomness or uncertainty, a maximum entropy 
extrapolation is equivalent to finding the sequence of autocorrelations, 
re(κ), that make x(n) as white (random) as possible. In some sense, 
such an extrapolation places as few constraints as possible or the 
least amount of structure on x(n). In terms of the power spectrum, this 
corresponds to the constraint that Px(ejω) be “as flat as possible” (Fig. 2).

For a Gaussian random process with power spectrum Px(ejω), the 
entropy is

π
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Therefore, for Gaussian processes with a given partial autocorrelation 
sequence, rx(κ)	for	|κ|≤p,	the	maximum	entropy	power	spectrum	is	the	
one	 that	maximizes	Eq.	 (4)	 subject	 to	 the	 constraint	 that	 the	 inverse	
discrete-time Fourier transform of Px(ejω) equals the given set of 
autocorrelations	for	|κ|≤p,

;
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The values of re(κ) that maximize the entropy may be found by setting 
the derivative of H(x) with respect to equal to zero as follows:
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From Eq. (1) we see that
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Which, when substituted into Eq. (6), yields
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Defining Qx(ejω)=1/Px(ejκω
), Eq. (8) states that the inverse discrete-time 

Fourier transforms of Qx(ejω) is a finite-length sequence that is equal to 
zero	for	|κ|>p.
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Fig. 1: Extrapolating autocorrelation sequence

Fig. 2: Different extrapolations of a partial autocorrelation sequence and the corresponding power spectral densities
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Therefore,

−= = ∑
=−

1( ) ( )
( )

pjw jkwe q k exQx jwP e k px
 (10)

it follows that the minimum entropy power spectrum for a Gaussian 
process, which we will denote by P ̂mem(ejω), is an all-pole power 
spectrum,
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Using the spectral factorization theorem, it follows that Eq. (11) may 
be expressed as
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Alternatively, in terms of the vectors

αp=[1,αp(1),…,αp(p)]T and e=[1,ejω,…,ejpω]T, the MEM spectrum may be 
written as

=
2| (0)|ˆ ( ) 2| |
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 (13)

Having determined the form of the MEM spectrum, all that remains 
is to find the coefficients αp(κ) and b(0). Due to the constraint is given 
in Eq. (5), these coefficients must be chosen in such a way that the 
inverse discrete-time Fourier transform of P ̂mem(ejω) produces an 
autocorrelation sequence that matches the given values of rx(κ) for 
|κ|≤p.	 If	 the	 coefficients	αp(κ) are the solution to the autocorrelation 
normal equations:
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And if:
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Then, the autocorrelation matching constraint given in Eq. (5) will be 
satisfied. Thus, the MEM spectrum is:

∈
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Where ap is the solution to Eq. (14). In summary, given a sequence of 
autocorrelations, rx(κ) for κ=0,1,…,p, the MEM spectrum is computed 
as follows. First, the autocorrelation normal equations (14) are solved 
for the all-pole coefficients αp(κ)	 and	 ϵp. Then, the MEM spectrum is 
formed by incorporating these parameters into Eq. (16). Note that since 
P̂mem(ejω) is an all pole power spectrum, then rx(κ) satisfies the Yule-
Walker equations.
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Therefore, the MEM extrapolates the autocorrelation sequence according 
to this recursion. The properties of MEM method have been studied 
extensively	 and	 as	 a	 spectrum	 analysis	 tool,	 this	 method	 is	 subject	
to different interpretations. It may be argued, for example, that in the 
absence of any information or constraints on a process x(n), given a set of 

autocorrelation values, rx(0),…rx(p), the best way to estimate the power 
spectrum is to Fourier transform the autocorrelation sequence formed 
from the given values along with an extrapolation that imposes the least 
amount of structure on the data, i.e., performs a maximum entropy 
extrapolation. This would seem to be preferable of an extrapolation that 
somewhat arbitrarily sets rx(κ)=0 for |κ|>p as in the classical approach. 
On the other hand, it may also be argued that since the maximum 
entropy extrapolation imposes an all-pole model on the data unless the 
process is known to be consistent with this model, then the estimated 
spectrum may not be very accurate. The maximum entropy spectrum 
is identical to the autoregressive (AR)-model spectrum only when the 
exact autocorrelation rx(κ) is known. When only an estimate of rx(κ) 
is available for 0≤κ≤p, the AR-model estimates of Yule-walker and 
Burg are not maximum entropy spectrum based on estimates of the 
autocorrelation sequence results in a set of nonlinear equations [5].

RELATIONSHIP BETWEEN MEM AND MV SPECTRUM ESTIMATES

There is an interesting relationship that exists between the MEM and the 
MV spectrum estimates. This relationship states that the p th-order MV 
estimate	is	the	harmonic	mean	of	the	MEM	estimates	of	orders	κ=0,1,…,p.	
To derive this relationship, we will use the recursion given in Eq. below
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for computing the inverse of a Toeplitz matrix. This recursion provides 
the following expression for the inverse of the (p+1)×(p+1) Toeplitz 
matrix Rp,
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For a WSS process with an autocorrelation matrix Rp, the p th-order MV 
estimate is
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Multiplying on the left by eH and on the right by e we have
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or,
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Note that the first two terms in Eq. (22) are proportional to the inverse 
of the MV estimates of order p and p−1,	respectively,	and	the	last	term	
is the reciprocal of the p th-order MEM spectrum. Therefore, we have
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which is a recursion for the p th-order MV estimate in terms of the (p−1)
st-order MV estimate and the p th-order MEM spectrum. Solving this 
recursion for we find
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Therefore, the MV estimate is the harmonic mean of the MEM spectra 
from the low order to the high order estimates. As a result of this 
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smoothing, for WSS processes consisting of narrowband components 
in noise, the MEM spectrum generally provides a higher resolution 
spectrum estimate than the MV method.

SELECTION CRITERIA FOR PERFORMANCE EVALUATION

An important factor in the selection of a spectrum estimation technique 
is the performance of the estimator. In comparing one non-parametric 
method to another, there is a trade-off between resolution and variance. 
The variability, v of the estimate is represented as,

{ }
{ }

=
ˆvar ( )

2 ˆ ( )

jwP ex
v

E P ewx
 (25)

The variability must be as low as possible to determine the given non-
parametric method as the best method.

Resolution, Δw of the estimate is represented as,

Δw=f2−f1 (26)

Where f2−f1 is the bandwidth of the main lobe.

The resolution must be high to determine the given non-parametric 
method as the best method.

The overall figure of merit µ is defined as the product of the variability, 
v and the resolution Δw.

µ=vΔw (27)

As the figure of merit decreases the performance of the non-parametric 
method increases, so the figure of merit should be as low as possible.

MONTE CARLO SIMULATION AND RESULTS

For the purpose of simulation, the following random process consisting 
of a sinusoidal signal in white noise is considered.

x(n)=5sin(nω)+v(n) (28)

With ω=0.4π, n=512 and (n) is zero mean unit variance white noise.

The order of the bandpass filter (p) is taken as 10.

Realization of MV method
Monte Carlo simulation with 50 runs of the input signal shown in Eq. 
(28) is performed to evaluate the performance of the MV spectrum. The 
steps involved in this evaluation are as follows:
Step 1: The signal shown in Eq. (28) is transposed.
Step 2: Covariance matrix of the transposed input signal and the bandpass 

filter	is	computed.
Step 3: Eigenvalues and the corresponding eigenvectors are computed 

so	that	the	criterion	R*v=v*d	is	satisfied.
Step 6: A diagonal matrix which is the inverse of the absolute of the 

eigenvalues is computed.
Step 7: The squared value of the power spectrum of the eigenvectors 

is calculated.
Step 8: Frequency is normalized for the purpose of plotting the MV 

spectrum.
Step 9: The periodogram of the MV method is computed and plotted 

in Fig. 3.

Realization of MEM
Monte Carlo simulation with 50 runs of the input signal shown in Eq. 
(28) is performed to evaluate the performance of the MEM spectrum. 
The steps involved in this evaluation are as follows:
Step 1: The random process consisting of noise shown in Eq. (28) is 

transposed.

Step 2: Frequency is normalized for the purpose of plotting. The all-
pole coefficients α and e are calculated using the autocorrelation 
matrix.

Step 3: The inputs of autocorrelation matrix are x’ and p.
Step 4: The MEM spectrum is computed using Eq. (16) and plotted in 

Fig. 4.

Comparison of MEM and MV methods
The type of process being analyzed and the closeness of the process to 
the AR process are the critical factors on which the comparison of the 
MEM with MV method depends.

Fig. 3: Minimum variance spectrum of the given random process

Fig. 4: Maximum entropy method spectrum of the given random 
process

Table 1: Comparison of non‑classical methods using simulated 
results

Method used Variability Resolution Figure of 
merit

MV 0.0256 0.15 0.0038
Maximum entropy 0.0055 0.3 0.0016
MV: Minimum variance
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CONCLUSION

The simulated results as shown in Table 1, in section 5.3, show that the 
performance of the MEM is better than that of the MV method as it produced 
less variability, the figure of merit, and high resolution than MV method.

REFERENCES

1. Monson H. Hayes, Statiscal Digital Signal Processing and Modeling. 
New York: John Wiley and Sons, INC; 2002.

2. Papoulis A. Probability, Random Variables, and Stochastic Processes. 
3rd ed. New York, NY: McGraw-Hill Europe; 2002.

3rd ed. Chichester: John Wiley & Sons, INC; 2006.
5. Proakis JG, Manolakis DG. Digital Signal Processing Principles, 

Grove, CA: Brooks/Cole; 2004.

Algorithms and Applications, PHI: Prentice. Hall; 2007.
6. Chapman SJ. “MATLAB Programming for Engineers. 3rd ed. 
Pacific 

3. Janes ET. On the Rationale of Max-Ent Method. IEEE Paper
4. Vaseghi SV. Advanced Digital Signal Processing and Noise Reduction.
 

14

 Jawahar et al.
                                                                                                                                                                             Innovare Journal of Eng. & Tech Vol 6, Issue 1, 2018, 10-14


