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ABSTRACT

Online object tracking is an important task in radar and sonar signal processing as it is a challenging problem due to the presence of noise, and 
dynamic changes. A variety of stochastic algorithms for tracking targets have been proposed and implemented to reach these challenges. Approaches 
toward highly nonlinear applications are an advanced task. In this paper, we devote the effort to use the particle filtering with estimation of various 
states of a vehicle launched from an idealized spherical, airless, non-rotating earth to improve tracking efficiency. The simulation results show that the 
PF improved the tracking performance compared to the Kalman based filters (EKF, UKF) for the rocket launch application.
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INTRODUCTION

In earlier days, many real-time applications have been carried on, but 
due to some unwanted errors and inefficient estimation techniques 
there existed a deviation in the results from its expected values. To 
avoid these, many mathematical models have been developed, but 
the one most acceptable is the state estimation models. This is one of 
the most powerful mathematical tools. This paper focuses on the use 
of a state estimation method for real-time monitoring and control 
of a system. The advantages of the state estimation as well as the 
challenges associated with adopting such a method in practice have 
been reviewed. This paper also deals with the estimation of the state 
vector of nonlinear system, assumes that the measurement errors, as 
well as the number of outliers that could occur within a given time 
window, are bounded. Nonlinear Filtering is certainly very important in 
estimation since most real-world problems are nonlinear. In this paper, 
we devote the effort to use the particle filtering (PF) with estimation 
of various states of a vehicle launched from earth to improve tracking 
efficiency. Estimation of vehicle states is done by PF, which focuses on 
controlling of any process modeling, obtained from a priori knowledge 
and updating it. The simulation results show that the PF improved the 
tracking performance compared to the Kalman based filters (EKF, UKF) 
for the rocket launch application.

From previous data of certain recognizable parameters such as physical 
laws or exploratory perceptions is one of the imperative practices for 
Engineers to control the procedure demonstrating.

A vast class of estimation issues is worried with finding an ideal gauge 
of an obscure parameter, when a straight capacity of this amount, 
undermined by clamor, is accessible for producing the gauge. Be that as 
it may, the class of estimation issues frequently experienced are those 
in which the obscure amount is describable by conditions which are not 
direct capacities. At that point, the hypothesis of Kalman channel [1,2], 
created to show ideal state assessments of straight frameworks, no 
longer yields an ideal gauge.

A problematic arrangement, to such nonlinear frameworks, is linearizing 
the nonlinear conditions around some ostensible esteem [3-5], with a 
supposition, an ostensible arrangement of the framework’s nonlinear 
differential conditions must exist, and hence, it must give a decent 
estimate to the real conduct of the framework [6-12]. It gives great 
results if the contrast between the ostensible and real arrangement 

is depicted by an arrangement of straight differential conditions. By 
and by the ostensible conditions or ostensible direction may not be 
accessible from the earlier.

For exceptionally nonlinear application regions, show precisely the 
fundamental elements of a physical framework is a testing errand. 
Furthermore, it is vital to process information on-line as it arrives, 
both from the perspective of capacity expenses and in addition for 
fast adjustment to changing sign attributes. In this paper, following of 
very nonlinear issues are investigated, with an emphasis on molecule 
channels.

Nonlinear separating can be troublesome and complex; it is 
unquestionably not too comprehended as straight sifting. In any 
case, as a large portion of this present reality issues are nonlinear 
in nature, change of nonlinear models is required. Moreover, every 
single nonlinear framework is displayed by state space of limited 
measurement. Amplified Kalman channel, unscented separating, 
goes under nonlinear augmentations of the Kalman channel and 
these nonlinear estimation strategies have gotten to be across the 
board. In this paper, the nonlinear Kalman based sifting models and 
molecule separating models are assessed and executed on MATLAB, 
and the outcomes demonstrated that PF gives better likelihood of state 
estimation.

PF
PF, otherwise called consecutive Monte Carlo strategies (SMC), are 
complex model estimation systems in light of recreation. Molecule 
channels have imperative applications in all fields of science 
and designing, econometrics (the utilization of arithmetic and 
measurements to the investigation of monetary and money related 
data), tracking move targets, radar, and sonar flag preparing. The PF is 
a powerful answer for the test of non-straight, non-Gaussian following.

They are typically used to appraise Bayesian models and are the 
consecutive (“on-line”) simple of Markov chain Monte Carlo (MCMC) 
clump strategies and are frequently like significance examining 
techniques. All around planned molecule channels can regularly be 
much speedier than MCMC. They are regularly a contrasting option 
to the extended Kalman channel (EKF) or unscented Kalman channel 
(UKF) with the favorable position that, with adequate examples, they 
approach the Bayesian ideal gauge, so they can be made more precise 
than either the EKF or UKF. Be that as it may, when the reenacted 
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test is not adequately huge, they may experience the ill effects of test 
impoverishment. The methodologies can likewise be joined by utilizing 
a form of the Kalman channel as a proposition conveyance for the 
molecule channel.

Molecule channels are presently a standard method for doing non-
direct, non-Gaussian separating. Molecule channel is a consecutive 
Monte Carlo strategy utilized for Bayesian sifting. Point mass, or 
particles, with relating weights are utilized to frame an estimation of 
a likelihood thickness work PDF). The particles are proliferated after 
some time by Monte Carlo reproduction to acquire new particles and 
weights (as a rule as new data are gotten), subsequently shaping a 
progression of PDF approximations after some time.

The primary target of molecule channel (PF) is to track a variable 
of enthusiasm as it advances after some time. In this strategy for 
estimation, the whole pdf is spoken to by a limited number of 
haphazardly chose tests. The premise of the technique is to build an 
example based representation of the whole pdf. Different duplicates 
(molecule) of the variable of intrigue are utilized, everyone connected 
with a weight that means the nature of that particular molecule. The 
weighted whole of the considerable number of particles gives the gauge 
of the variable of intrigue.

PF is a recursive model, works in two states: Forecast and updation. 
After every activity, every molecule is adjusted by existing model 
(expectation arrange), including the expansion of arbitrary commotion 
keeping in mind the end goal to recreate the impact of clamor on the 
variable of intrigue. At that point, every molecule’s weight is re-assessed 
in light of the most recent tangible data accessible (overhaul stage). At 
times, the molecule with little weight is dispensed with, a procedure 
called resampling.

The PF method receives an alternate way to deal with Kalman based 
channels by examining various guessed states for the objective; these 
are the particles. It does not endeavor to demonstrate the conveyance 
utilizing a diagnostic shape. Rather, the instability (thus the dispersion) 
is spoken to utilizing the differing qualities of the arrangement of 
particles which basically speak to the conveyance. Every Particle is 
contrasted and the estimation and weighted in like manner [13,14]. 
Those particles with high weights are engendered, and those with low 
weights disposed of.

In this manner, the PF speaks to a track utilizing various weighted 
irregular specimens in the track space, from which it is anything but 
difficult to concentrate track gauges and measures of vulnerability. 
Ordinarily, a solitary track may be spoken to utilizing something like 
250 particles.

The thought required in PF is to speak to the back thickness by an 
arrangement of irregular particles with related weights. And after that 
process a gauge in light of these examples and weights.

MODELING EXAMPLE FOR ROCKET LAUNCH

Consider the problem of estimating various states of a vehicle launched 
from an idealized spherical, airless, and non-rotating earth. The 
measured output is processed to give estimates of the vehicle’s states 
which describe its trajectory.

The state estimation cannot be accurately explained by KF since 
nonlinearities are exhibited by forces that act on the vehicle. The 
most dominant force is aerodynamic drag which is a function of 
vehicle acceleration and has a substantial nonlinear variation in 
altitude. The gravitational force attracts the vehicle toward the 
center of the earth. The tracking radar should be able to track 
accurately the vehicle that is experiencing a set of complicated and 
highly nonlinear forces. These depend on the current position and 
velocity of the vehicle as well as on certain other characteristics 
which are not known a priori.

The topological depiction of parameters is shown in the Fig. 1.

The altitude above the earth’s surface (h), distance of the vehicle downrange 
from the launch site (D), velocity with respect to an inertial base (v),
Flight path angle between velocity vector and vehicle fixed reference 
line (γ),
Aerodynamic drag (Dg),
Earth radius (R),
Elevation angle between radar site and vehicle (α),
Reference angle between launch site and vehicle (θ),
Reference angle between launch site and radar site (θR),
Slant-range distance from radar site to vehicle s–Disturbing force 
orthogonal to v is (Fn),
Vehicles thrust vector with respect to an inertial basis (T).

And r=h+R

State variable equations that define the vehicle’s trajectory:
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The development of the above equations takes the assumption that the 
propagation errors and the measurement errors were Random and 
these equations are modeled as a continuous non-linear system.

For the observation equations, the functions are,
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To estimate the states a non-linear filter is used which estimates their 
deviation from the normal trajectory or the current estimated trajectory. 
The nominal trajectory is given by the nominal state equations with the 
white process noise ignored.

The actual trajectory is the trajectories represented by the launch 
and boost it. In this study, it is simulated by the state equation which 
contains the process noise as would be expected in a realistic situation. 

Fig. 1: Topological depiction of parameters
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To linearize about the nominal state, we define a small error as the 
difference between the nominal state and the actual state.

The problem is to estimate the four parameters of vehicle’s trajectory 
launched from the earth. The launch site and Trajectory of the launch 
vehicle are in a plane which contains a RADAR tracking station. The 
measurement model is located at 40 nautical miles from the launch 
site. The wind noise is assumed to be zero until 15 seconds and surface 
winds are assumed to be negligibly small up to 2500 feet for simulation 
purpose.

The trajectory is intended to achieve 80 miles of altitude with 
a suitable flight path angle (γ) to leave the satellite into a circular 
orbit. In the simulation process, it was assumed that in the absence 
of noise (it was assumed that until 10 seconds the vehicle will not 
be disturbed by any unknown forces) the initial estimated equations 
are same as the actual equations. After 10 seconds, the predictions 
are generated and updated more accurately by taking the noisy 
measurements into account. Furthermore, the bearing (α) measured 
by an observer is not computed for approximately 10 seconds, to 
prevent the computer from reaching an exponential overflow during 
the simulation process.

In the initialization, several constants, initial conditions, and standard 
deviations of measurement errors have been assumed as follows.
vo=100 ft/second,
Do=0 ft,
ho=0 ft,
γo= 89.66°,
T/wo=1.3,
R=20.89×10^6 ft,
g=32.17 ft/second2,
D=40 n mi,
σv=0 ft/second,
σD=10 ft,
σh=100 ft,
σφ=0.001°,
σs=100 ft,
σα=0.01 rad.

FILTER MODEL FORMULATION

Step 1:
The state space model by means of propagation and measurement 
equations are given by Equation (5) and (7)

Xk+1=f (xk, uk, wk) (7)
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Zk=h (xk, vk)

Where,
xk is state of the system, uk is the input and (wk) and (vk) are independent 
white noise processes with known pdf.

Step 2:
Assuming that the pdf of the initial state p(x0) is known, randomly 
generate N initial particles on the basis of the pdf p(x0). These particles 
are denoted I i i N0 1 2+ =, ( , ...., ) . The parameter N is chosen by the user as 
trade-off between computational effort and estimation accuracy.

Step 3:
For k=1, 2,…, do the following.

i. Perform the time propagation step to obtain a priori particles Ik i,
−  

using the known process equation and the known pdf of the process 
noise.

 I Ik i k k k
i

, ,( , )−
− −

+
−= ∫ 1 1 1i ω i=1…., N.

Where each ωk
i
−1  noise vector is randomly generated on the basis of 

the known pdf of ωk−1

ii. Compute the relative likelihood qi of each Ik i,
−  particle conditioned 

on the measurement Zk. This is done by evaluating the pdf p z Ik k i( / ),
−  

on the basis of the nonlinear measurement equation and the pdf of 
the measurement noise.

iii. Scale the relative likelihoods obtained in the previous step as follows.
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Now the sum of all the likelihoods is equal to one.

iv. Generate a set of posteriori particles Ik i,
+ on the basis of the relative 

likelihoods qi. This is called the resampling step.
v. Now that we have a set of particles, Ik i,

+  that are distributed 
according to the pdf p(xk/zk) we can compute any desired statistical 
measure of this pdf. We are interested in computing the mean and 
the covariance.

RESULTS

Figs. 2-5 plots the estimated mean squared error values of the 
parameters Altitude, Distance, velocity, and path angle, respectively.

Figs. 6-9 plots the comparison between true and estimated parameters 
of altitude, distance, velocity, and path angle, respectively.

Figs. 10-13 plot the comparison of true and estimated parameters 
of EKF and UKF for altitude, distance, velocity, and path angle, 
respectively.

CONCLUSIONS

In this paper, the performance of idealized rocket launch has been 
analyzed and presented using estimation approaches for state space 
models with nonlinear measurements using PF. Montecarlo simulations 
are carried out for Kalman based, and PF approaches in the noisy 
environment. The PF maintains multiple hypotheses about the state of 
the tracked objects by representing the state space by a set of weighted 
samples. In general, the more samples and richer target representation, 
the better the chances of tracking in cluttered and noisy environments. 
A PF has been shown to provide more accuracy than the classical Kalman 
based approaches. It was shown from the simulation result that, the 

Fig. 2: Altitude estimation error
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four parameters of the launch vehicle converges earlier in PF approach 
when compared to the conventional Kalman based approaches.

PF provides better performance for highly nonlinear and noisy 
environment. However, it increases the computational complexity. 
Hence, for further development, this paper proposes the following 
improvements:

Fig. 3: Distance estimation error

Fig. 4: Velocity estimation error

Fig. 5: Path angle estimation error

Fig. 6: True and estimated altitude estimation

Fig. 7:  True and estimated distance

Fig. 8: True and estimated velocity
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Fig. 9: True and estimated path angle

Fig. 10:  Altitude estimation using EKF and UKF

Fig. 11:  Distance estimation using EKF and UKF

Fig. 12:  Velocity estimation using EKF and UKF

Fig. 13:  Pathangle estimation using EKF and UKF

• PF can be associated with unscented Kalman filter not only to improve 
the performance but to reduce the complexity.

• It can further be enhanced by processing multiple filters.
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