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ABSTRACT

A particle filter (PF) is proposed for tracking a torpedo using bearings-only measurements when torpedo is attacking an ownship. Towed array is 
used to generate torpedo bearing measurements. Ownship evasive maneuver is used for observability of the bearings-only process. PF combined with 
modified gain bearings-only extended Kalman filter is used to estimate torpedo motion parameters, which are used to calculate optimum ownship 
evasive maneuver. Monte-Carlo simulation is carried out, and the results are presented for typical scenarios.
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INTRODUCTION

In the sea environment, two-dimensional headings only target 
movement examination is for the most part utilized. An ownship screens 
loud sonar orientation from a transmitting target and discovers target 
movement parameters (TMP) - viz., range, course, bearing, and speed 
of the objective. The fundamental suppositions are that the objective 
moves at consistent speed more often than not. The ownship movement 
is unlimited. The objective and ownship are thought to be in the same 
flat plane. The issue is intrinsically nonlinear as the estimation is 
nonlinear. Direction bearing only tracking (BOT) is the assurance of the 
direction of an objective exclusively from bearing estimations. In this 
aloof target following, a solitary ownship screens a grouping of bearing 
estimations, which are thought to be accessible at equi-dispersed 
discrete times. The objective movement investigation can be seen as 
target confinement and its following. The BOT zone has been generally 
explored [1-4], and various answers for this issue have been proposed.

Since bearing estimations are extricated from single detached sonar, 
the procedure stays inconspicuous until ownship executes a legitimate 
move. For introducing the ideas in clear, it is accepted that the objective 
is moving at steady speed. Established minimum squares strategy and 
Kalman channel cannot be straightforwardly connected. One valuable 
methodology is the pseudo-linear estimator (PLE) detailing proposed 
in [1] which bumps the nonlinearities into the commotion term, 
bringing about a direct estimation condition.

Here, the estimation grid contains components that are elements 
of uproarious orientation and, by and large, are associated with the 
clamor terms of the estimation condition. Accordingly, the PLE displays 
an inclination in the evaluated TMP [1,5,6]. As it offers a non-veering 
arrangement, commonly PLE is utilized as a move down arrangement 
alongside the advanced sifting systems (which will be talked about in 
the blink of an eye). The established PLE which is as clump preparing 
is changed over into consecutive handling [7] so as to not require 
introduction of target state vector and this component is particularly 
valuable for sea submerged target following.

Greatest maximum likelihood estimator (MLE) is observed to be an 
appropriate calculation for inactive target following applications, by 
righteousness of its qualities [1]. This is angle look taking into account a 
group preparing of all the accessible estimations. MLE is asymptotically 
proficient, reliable, fair and its covariance grid approaches the 
Cramer - Rao destined for substantial specimens. Rather than accepting 

some discretionary qualities, PLE yields are utilized for the introduction 
of MLE [8].

Another methodology, use of extended Kalman filter (EKF) in adjusted 
modified polar (MP) organizes [9] edge is observed to be helpful for 
this nonlinear application. In this calculation, the perceptible and 
inconspicuous segments of the evaluated state vector are consequently 
decoupled. Such decoupling is appeared to avoid covariance framework 
sick molding, which is the essential driver of shakiness. The MP state 
evaluations are asymptotically fair. A half and half arrange framework 
approach created by Walter Grossman is likewise another effective 
commitment to direction just latent target following [10].

Another effective commitment to this field is by Song and Speyer [11]. 
The difference in EKF [3,4] is dispensed with by altering the ownship 
picks up. This calculation is named as altered addition heading 
just developed Kalman channel (modified gain bearings-only 
EKF [MGBEKF]). The crucial thought behind MGBEKF is that the 
nonlinearities “modifiable.” This calculation has a few likenesses with 
the pseudo estimation work, however, it is not the same. In pseudo 
estimation channel, the addition is an element of at various times 
estimations. It is to be noticed that MGBEKF depends on the calculation 
for the EKF, the increase of the MGBEKF is a component of just past 
estimations. Along these lines, by dispensing with the immediate 
relationship of the addition and estimation commotion process in the 
assessments of MGBEKF, the predisposition in the estimation is wiped 
out. An improved adaptation of the adjusted addition capacity is made 
accessible by Galkowski and Islam [12]. This adaptation is helpful for 
air applications, where height and bearing estimations are accessible. It 
is further adjusted for submerged target following applications [13,14], 
where direction just estimations are accessible.

The conventional Kalman channel is ideal when the model is straight. 
Tragically, a large portion of the state estimation issues like following 
of the objective utilizing course just data are nonlinear, in this manner 
restricting the reasonable convenience of the Kalman channel and 
EKF. Consequently, the attainability of a novel change, known as 
unscented change, which is intended to spread data as mean vector and 
covariance framework through a nonlinear procedure, is investigated 
for submerged applications. The unscented change is combined with 
specific parts of the great Kalman channel. It is less demanding to 
actualize and utilizes the same request of computations. Utilizing course 
just estimations, unscented Kalman filter (UKF) channel calculation 
gauges TMP [15,16]. UKF can be dealt with as a contrasting option to 
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MGBEKF. Yet at the same time, the fundamental imperative that is the 
pdf of commotion in the estimations is to be Gaussian, for ideal results. 
Consequently, UKF can take up nonlinearity however not non-Gaussian 
commotion in the estimations.

Particle filters (PF) [17-19] are the new era of cutting edge channels, 
which are helpful for nonlinear and non-Gaussian applications. 
PF or sequential Monte-Carlo strategies utilize an arrangement of 
weighted state tests, called particles, to estimated the back likelihood 
dissemination in a Bayesian setup. Anytime of time, the arrangement of 
particles can be utilized to estimated the pdf of the state. As the quantity 
of particles increment to limitlessness, the estimation approaches 
the genuine pdf. They give almost ideal state gauges on account of 
nonlinear and non-Gaussian frameworks, dissimilar to Kalman channel 
based methodologies. Since PFs do not inexact nonlinearities or non-
Gaussian commotion in the framework and utilize an extensive number 
of particles, they have a tendency to be computationally unpredictable. 
Be that as it may, with the as of now accessible propelled microchips, 
the calculation can be effortlessly overseen. PF joined with MGBEKF 
(PFMGBEKF) is proposed in this paper for inactive heading just torpedo 
following utilizing towed cluster estimations.

The undertaking is to appraise the torpedo movement parameters, 
while ownship is in assault by a torpedo. Subsequent to getting the 
principal contact of the torpedo, ownship tries to escape by doing a 
specific move. This move depends on 700 relative bearing strategy, 
which is being utilized by Navy. Here, this first move is called as ownship 
wellbeing move. The thought is to escape from the field as right on time 
and fast as could be allowed. When all is said in done, the ownship tries 
to build the rate in the wake of swinging to the required course. This 
is required for the ownship to escape from the objective as ahead of 
schedule as would be prudent.

The ownship’s consequent getaway moves can be done in efficient way, 
if torpedo’s extent, bearing, course, and speed are known. As these 
are not accessible, these are assessed utilizing PFMGBEKF. Here as a 
course are just accessible, ownship well-being move will be utilized 
for discernibleness of the procedure. Amid wellbeing move, ownship 
tries to escape in a manner that extent among ownship and target 
gets to be most extreme worth with increment in time. Be that as it 
may, for getting arrangement, it is another route round. Reach ought 
to abatement to get additionally bearing rate with increment in time. 
With this limitation, ownship tries to assess the torpedo movement 
parameters to ascertain legitimate hesitant moves utilizing closest 
path of approach (CPA) at different time moments and break from 
torpedo assault.

Section 2 describes mathematical modeling of measurements, 
PFMGBEKF and CPA. PFMGBEKF is developed and implemented on 
PC platform using MATLAB. Section 3 describes about implementation 
aspects of the algorithm. Extensive simulation is carried out and the 
results are presented for three scenarios. Section 4 covers the limitations 
of the algorithm, and finally the paper is concluded in Section 5.

MATHEMATICAL MODELING

State and measurement equations
Let the target state vector be Xs (k) where,

X (k) = x(k) y(k) R (k) R (k)s x y

T
 





 � (1)

Where  x(k) and y(k)  are target velocity components and, Rx (k) and Ry 
(k) are range components, respectively. The target state dynamic 
equation is given by,

Xs(k+1)=ϕXs(k)+b(k+1)+Гɷ(k)� (2)

Where ϕ and b are transition matrix and deterministic vector, 
respectively. The transition matrix is given by,
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Where t is sample time,

b(k+1)=[0 0−{xo(k+1)−xo(k)}−{yo(k+1)−yo(k)}]� (4)
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Where xo(k) and yo(k) are ownship position components. The plant 
noise ɷ(k) is assumed to be zero mean white Gaussian with covariance.

E k k Q kj[ ( ) ( )]ω ω δ′ = � (6)
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True north convention is followed for all angles to reduce mathematical 
complexity and for easy implementation. The bearing measurement, Bm 
is modeled as,

B k 1 tan
 k 1

 k 1
km

1+( ) = +( )
+( )


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




 + ( )− r

r
x

y
 � (8)

Where ς(k) is error in the measurement, and this error is assumed to 
be zero mean Gaussian with variance σ2. The measurement and plant 
noises are assumed to be uncorrelated to each other. Equation 8 is a 
nonlinear equation and is linearized using the first term of the Taylor 
series for Rx and Ry. The measurement matrix is obtained as,

H(k+1 0 0 R (k+1/k)/R (k 1/k) R (k+1/k)/R (k 1/k)y
2

x
2)= + − +





   

�

� (9)

Since the true values are not known, the estimated values of Rx and Ry 
are used in Equation 9.

PF
The PF is a statistical brute-force approach to estimation that often 
works well for problems (i.e.,  systems that are highly nonlinear) 
that are difficult for the conventional Kalman filter. Let us derive the 
basic idea of the PF, it was invented to numerically implement the 
Bayesian estimator. The main idea is intuitive and straight forward. 
At the beginning of the estimation problem, we randomly generate N 
state vectors based on the initial pdf P(Xs(0)) (which is assumed to be 
known). These state vectors are called particles and are denoted as 
Xs(k/k) (k=1, 2,….,N). At each time step, we propagate the particles to 
the next time step using the process equation.

Xs(k+1/k)=f(Xs(k−1/k), w(k+1)), (k=1, 2,…., N)� (10)

Where each w(k+1) noise vector is randomly generated on the basis of 
the known pdf of w(k). After we receive the measurement at time k, we 
compute the conditional relative likelihood of each particle Xs(k+1/k). 
That is, we evaluate the pdf P Z k X k ks( ( ) ( / ))+1 . This can be done if 
we know the nonlinear measurement equation and the pdf of the 
measurement noise. For example, if an m-dimensional measurement 
equation is given as Z(k)=h(Xs(k))+v(k) and v(k)~N(0, R) then a relative 
likelihood q(k), that the measurement is equal to a specific measurement 
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z* given the premise that Xs(k) is equal to the particle Xs(k+1/k) can be 
computed as follows [18].

q(k)=P[Z(k)=z*|Xs(k)=Xs(k+1/k)]

        =P[v(k)=z*−h(Xs(k+1/k))]

~

( )
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The ~ symbol in the above equation means that the probability is not 
really given by the expression on the right side, but the probability 
is directly proportional to the right side. Hence, if this equation is 
used for all the particles, Xs(k+1/k) (k=1, 2.,N), then the relative 
likelihoods that the state is equal to each particle will be correct. 
Now we normalize the relative likelihoods obtained in Equation 11 
as follows.

q k q k

q i
i

N( )
( )

( )

=

=
∑

1

� (12)

Now we resample the particles from the computed likelihoods and a 
new set of particles that are randomly generated on the basis of the 
relative likelihoods q(k).

Particle filtering combined with other filters
One approach that has been proposed for improving particle 
filtering is to combine it with another filter such as the EKF, UKF, 
or MGBEKF  [18]. In this approach, each particle is updated at 
the measurement time using the EKF, UKF or MGBEKF and then 
resampling (if required) is performed using the measurement. This 
is like running a bank of N Kalman filters (one for each particle) 
and then adding a resampling step after each measurement. After 
Xs(k+1/k) is obtained, it can be refined using the EKF, UKF or MGBEKF 
measurement-update equations. In this paper, PF is combined with 
the MGBEKF. Xs(k+1/k) is updated to Xs(k+1/k+1) according to the 
following MGBEKF equations [18].

P(k+1/k)i=ϕ(k+1/k)iP(k/k)iϕT(k+1/k)i+ГQ(k+1)ГT	 � (13)

G(k+1)i=P(k+1/k)iHT(k+1)i[σ2+H(k+1)iP(k+1/k)iHT(k+1)i]−1� (14)

Xs(k+1)/K+1)i=Xs(k+1/k)i+G(k+1)i[Bm(k+1)−h(k+1, Xs(k+1/k)i)]� (15)
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Where G(k+1) is Kalman gain, P(k+1/k) is a priori estimation error 
covariance for the ith particle and g (.) is modified gain function. g(.) is 
given by,

 =   m x m y m m x m y m
ˆ ˆ ˆ ˆg  0 0 cos B /(R sin B +R cos B ) -sin B /(R sin B +R cos B )

� (17)

Since true bearing is not available in practice, it is replaced by the 
measured bearing to compute the function g (.).

Resampling
In every update of PFMGBEKF, it is monitored to decide whether 
resampling of particles in respect of target state vector and its 

covariance matrix is required or not. Resampling is required when the 
effective sample size, Neff<N/3 [18].

Where N

q

eff

i
2

i=1

N
=

∑
1

� (18)

Whenever resampling is required, the following procedure based on 
weights of particles is adopted. In this method, weights are sorted in 
descending order. The corresponding original indexes before sorting 
are remembered. Then, replication of particles (both the state and 
covariance matrices) is carried out in proportion to the weights of 
the particles starting with the particle with maximum weightage. 
This procedure is repeated for the particle with the next maximum 
weightage. This process is continued till all the particle positions are 
filled up. This method is close to the method suggested by Ristick 
et al. [17].

CPA
Let us assume that a target and ownship are moving at predefined 
constant velocities. At a certain point of time, these vehicles move 
through a point at which minimum distance will be there between them. 
This minimum distance is called CPA. Once torpedo motion parameters 
are estimated using PFMGBEKF, CPAs are calculated for all possible 
ownship evasive courses (say 0-360 in step of 1°). Ownship will do 
evasive maneuver in the course at which maximum CPA is generated. 
CPA is calculated as follows.

It is assumed that target motion parameters and ownship parameters 
are known. Initially, ownship is at the origin. Let the ownship and target 
courses be φ and ψ, respectively. The distance between target and 
ownship positions at time t can be derived as follows (Fig. 1):

xt=R sinB+(Vt sinψ-V0 sinφ) t� (19)

yt= R cosB + (Vt cosψ -V0 cosφ) t� (20)

Where Vt and V0 are the speeds of target and ownship, respectively.

To simplify the Equation 20.

Let p = R sinB

q=R cosB

m= (Vt sinψ - V0 sinφ)

n=(Vt cosψ - V0 cosφ)

Then eqn.(19) & eqn. (20) become,

Fig. 1: Ownship and target encounter
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xt= (p + mt)� (21)

yt = (q + nt)� (22)

The distance Rt between ownship and target is given by

)R  (p mt) (q nt)t
2 2= + + +

By differentiating Rt
2w. r. t to time and equating it to zero,

d

dt
(Rt

2)=2(m2+n2) t+2 (m p + n q)=0� (23)

For a particular value of t say t = tm Equation (23) can be written as

t
(pm qn)

m n
m 2 2

=
+

+
� (24)

At this stage, taking second derivative, we have,

d

dt
R 2(m n )

2

2 t
2 2 2( ) = + � (25)

And it is always >0. Hence, tm gives minimum time at which the distance 
R is minimum. If tm ≤0, it implies that present range is CPA and time to 
reach CPA point is zero. If tm>0, substituting the value of tm in Equation 
21, we will get Rt

2 as follows:

Rt
2=(p2+q2)+(m2+n2) (−(p m + q n)/(m2+n2))2+2 (p m + q n) (−(p m + q n)/

(m2+n2))

=(p2+q2)+(p m + q n)2/(m2+n2)–2(p m + q n)2/(m+n)2

=(p2+q2)−(p m+ q n)2/(m2+n2)� (26)

since R2=p2+q2, Equation 26 can be modified as follows:

Rt
2=R2−(p*m+q*n)2/(m2+n2)� (27)

Rt is nothing but CPA. So,
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IMPLEMENTATION AND SIMULATION

For the implementation of the algorithm, the initial estimate of target 
state vector is chosen as follows. As only bearing measurements are 
available, it is not possible to guess the velocity components of the 
target. Hence, these components are each assumed as 15  m/second, 
which are close to the realistic speed of the torpedo. The range of the 
day, say 10,000 m, can be utilized in the calculation of initial position 
components of the torpedo as follows:

X (0|0) = [15 15 10000 sin Bm 10000 cos Bm]T� (29)

It is assumed that the initial estimate, X(0|0) is uniformly distributed. 
Then, the elements of initial covariance diagonal matrix can be written as,

P Diag x y r rx y
( / )

* ( / ) * ( / ) * ( / ) * ( / )
0 0

4 0 0

12

4 0 0

12

4 0 0

12

4 0 0

1

2 2 2 2

=
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22


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







 �

� (30)

As PF is combined with MGBEKF, 1000 particles (almost similar 
performance is achieved with 10000 particles) are used to estimate 
target motion parameters.

The measurement interval is assumed to be 1 second. It is also assumed 
that TA maximum auto detection range limit is 10,000 m. Estimation 
of torpedo motion parameters is stopped when the range is 500 m. 
Maximum ownship speed is 11  m/second. Ownship turning rate is 
considered 1°/second. It is assumed that measurements are corrupted 
with 1° r.m.s error of Gaussian distribution. All angles are considered 
with respect to True North 0-360°, clockwise positive. For the purpose 
of presentation, three scenarios as shown in Table 1 are considered for 
evaluation of the algorithm. The results obtained for the scenarios 1-3 
are shown in Figs. 2-4, respectively. The estimated solution is said to be 
converged when,
a.	 Error in the range estimate ≤20% of the actual range
b.	 Error in the course estimate ≤5°
c.	 Error in the speed estimate ≤4 knots.

The convergence time to obtain all the target motion parameters 
with the required accuracy for each scenario is shown in Table 1. The 

Fig. 2: (a) Error in range estimate, (b) error in course estimate, (c) error in speed estimate for scenario 1

a

c

b
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ownship evasive maneuver for each scenario is based on CPA. As it is 
straightforward to find out maximum CPA using Equation 28, CPA 
results are not presented in the paper.

Limitations of the algorithm
Angle on target bow (ATB) is the angle between the target course and 
line of sight. When ATB is more than 60°, the distance between the 

Table 1: Geometrical scenarios

S. No. Initial range 
(m)

Initial bearing 
(°)

Target speed 
(m/second)

Target course 
(°)

Ownship speed 
(m/second)

Ownship 
course (°)

Convergence 
time (second)

1 4500 90 15.45 293 (0°) 6.18 0° 145
2 6000 270 15.45 66.42 (0°) 6.18 0° 128
3 5000 320 15.45 125 (0°) 6.18 0° 124

Fig. 3: (a) Error in range estimate, (b) error in course estimate, (c) error in speed estimate for scenario 2

a

c

b

Fig. 4: (a) Error in range estimate, (b) error in course estimate, (c) error in speed estimate for scenario 3

a

c

b
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target and ownship increases as time increases and the bearing rate 
decreases substantially with the increase in a number of samples. In 
such situation, it is very difficult to track the target. Furthermore, the 
algorithm cannot provide good results when the measurement noise 
is more than 1° r.m.s. In general, these two situations are constraints to 
any type of filtering technique.

CONCLUSION

PF (which is useful for nonlinear and non-Gaussian applications) 
combined with MGBEKF is proposed to estimate target motion 
parameters in passive target tracking. The performance of the 
PFMGBEKF is greatly superior to the standard EKF. In this paper, 
tracking of torpedo using towed array measurements is explored. 
Ownship safety maneuver is used for observability of the process. CPA 
method uses the estimated torpedo motion parameters to find out 
ownship evasive maneuver. Extensive simulation is carried out, and 
the results are found to be consistent. For the purpose of presentation, 
results of three typical scenarios are presented.
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