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ABSTRACT 

A graph G is said to be domination subdivision stable ( DSS ) if  ( Gsd uv ) =  ( G ), for all u, v  V ( G ), u adjacent to v. In this paper we have provided 
two methods of obtaining a DSS graph from a non DSS graph. 
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INTRODUCTION 

A set of vertices D in a graph G = ( V, E ) is a dominating set if every 
vertex of V – D is adjacent to some vertex of D. The cardinality of the 
smallest dominating set of G is called the domination number of G 
and it is denoted by γ ( G ). A vertex in V – D is k – dominated if it is 
dominated by at least k – vertices in D. For properties related to 
graph theory we refer to [1] 

The open neighborhood of vertex v  V ( G ) is defined by N ( v ) = { u 
 V ( G ) | ( u v )  E ( G ) } while its closed neighborhood is the set N 
[ v ] = N ( v )  { v }. The private neighborhood of v  D is defined by 
pn [ v, D ] = N ( v ) – N ( D – { v } ). We indicate that u is adjacent to v 
by writing u  v. For properties related to domination we refer to 
[2]. 

MATERIALS AND METHODS 

An elementary edge contraction of a graph G is obtained by removal 
of u and v and the addition of a new point w adjacent to those points 
which u or v was adjacent. G uv is the graph obtained by contracting 
uv. In [3], Tamara Burton et al. defined a graph to be domination dot 
critical ( DDC ) if  ( Guv ) <  ( G ),  u, v  V ( G ). They have proved 
the following result. 

The subdivision of some edge e with endpoints { u, v } yields a graph 
containing one new vertex w, and with an edge set replacing e by 
two new edges, { u, w } and { w, v }. We shall denote the graph 
obtained by subdividing any edge uv of a graph G, by Gsd uv. Let w be 
a vertex introduced by subdividing uv. We shall denote this by Gsd uv 
= w. 

In [4], M. Yamuna et al have introduced the concept of domination 
subdivision stable graphs. A graph G is said to be domination 
subdivision stable ( DSS ) if the  - value of G does not change by 
subdividing any edge of G.  

Example 

 

Fig. 1:  ( G ) =  ( Gsd uv) = 2. This is true for all e = ab  E ( G ). 
Here G is a DSS graph. 

In [4], they have proved the following result 

R1. A graph G is DSS if and only if for every u, v ∈ V ( G ), either there 
is a γ - set containing u and v or, there is a γ - set D such that 

1. pn[ u, D ] = { v } or 
2. v is 2 – dominated. 

R2. Every DDC graph is DSS. 

RESULTS AND DISCUSSIONS 

Theorem 1  

Let G be a graph which is not DSS. There is a subdivision graph of G 
which is DSS. 

Proof  

Since G is not DSS, there is at least one u, v  V ( G ), u  v such that γ 
( Gsd uv ) ≠ γ ( G ). By [ R1 ], either both u, v  D or pn[ u, D ]  2, v  
pn[ u, D ], where D is any γ – set for G. Let E = { es / es = ( us, vs ), us  
vs, γ ( Gsd usvs ) ≠ γ ( G ) }.  

Let Xi = N ( vi ) – { ui }, Yi = N ( Xi ), Zi = N ( ui ) – { vi }. For any em  E ( 
G ), let γ ( Gsd umvm ) = wm. Dm = D  { wm } is a γ – set for Gsd umvm. Let 
Gm = Gsd umvm. 

Case 1 

em  E such that um  D, vm  D, m = 1, 2, …, k. 

For all xm  Xm, γ ( Gm sd vmxm) = γ( Gm ), since Dm – { wm }  { vm } is a 
γ – set for Gm such that every xm Xm, xm  D is 2 – dominated. 

For all ym  Ym, such that ym  D, γ ( Gm sd xmym) = γ( Gm ), since Dm – { 
wm }  { xm } is a γ – set for Gm for every xm Xm. Also γ ( Gm sd umwm ) 
= γ ( Gm sd wmvm ) = γ ( Gm ), since pn[ wm, D ] = vm. 

Case 2 

em  E such that um, vm  D, m = 1, 2, …, p. Note that k + p = | E |. 

For all xm  Xm, γ ( Gm sd vmxm) = γ( Gm ), since Dm – { wm }  { vm } is a 
γ – set for Gm such that every xm Xm, xm  D is 2 – dominated. 

Similarly for all zm  Zm, γ ( Gm sd umzm) = γ( Gm ), since Dm – { wm }  { 
um } is a γ – set for Gm such that every zm  Zm, zm  D is 2 – 
dominated. Also since wm is selfish, γ ( Gm sd umwm ) = γ ( Gm sd wmvm ) 
= γ ( Gm ). 

From case 1, for all em  E ( G ) in graph Gm, for all xm  Xm, ym  Ym 
such that γ ( Gsd vmxm ) ≠ γ ( G ), γ ( Gsd xmym ) ≠ γ ( G ) become DSS in 
Gm. 
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Similarly from case 2, for all em  E ( G ) in a graph Gm, for all xm  Xm, 
zm  Zm such that γ ( Gsd vmxm ) ≠ γ ( G ) and γ ( Gsd umzm ) ≠ γ ( G ) 
become DSS in Gm. 

Also the new edges introduced are DSS and the edges which were 
subdivision stable in G are DSS in Gm also. Let Em = { em / em = ( um vm 
), um  vm, γ ( Gsd umvm ) ≠ γ ( Gm ) }, clearly | Em | < | E |. If Gm is DSS 
we terminate here else starting from Em we repeat the same 
procedure to obtain a new graph Gm + 1. If Gm + 1 is DSS we terminate 
here else we continue to generate a sequence of graphs Gm, Gm + 1, … 
such that 

1. | Em + 1 | < | Em |. 
2. γ ( Gm + 1 ) = γ ( Gm ) + 1. 

until we obtain a graph that is DSS. 

Theorem 2 

Let G be a graph which is not DSS. There is a graph H of G which is 
DSS, if H can be obtain from G by a sequence of elementary 
contraction. 

Proof  

Since G is not DSS there is at least one u, v  V ( G ), u  v such that γ 
( Gsd uv ) ≠ γ ( G ). By [ R1 ], either both u, v  D or pn[ u, D ]  2, v  
pn[ u, D ], where D is any γ – set for G. Let E = { es} and | E | = k + p. 
Let Xi = N ( vi ) - { ui }, Yi = N ( Xi ), Zi = N ( ui ) – { vi }. For any em  E ( 
G ), let γ ( G umvm ) = γ ( G ), by [ R2 ]. D is a γ – set for G umvm also. 
Let Gm = G umvm. 

Case 1 

em  E such that um  D, vm  D, where m = 1, 2, …, k.  

For all xm  Xm, γ ( Gm sd ( umvm ) xm ) = γ ( Gm ), since xm is 2 – 
dominated in Gm. 

For all ym  Ym such that ym  Dm, γ ( Gm sd xmym ) = γ ( Gm ), since xm is 
2 – dominated in Gm. 

Case 2 

em  E such that um, vm  D, where m = 1, 2, …, p. Note that k + p = | E 
|. 

For all xm  Xm, such that xm  Dm. γ ( Gm sd ( umvm ) xm ) = γ ( Gm ), 
since umvm is 2 – dominated in Gm.  

Similarly for all zm  Zm such that zm  Dm, γ ( Gm sd ( umvm ) zm ) = γ ( 
Gm ), since umvm is 2 – dominated in Gm. The edges which are DSS in G 
are DSS in Gm also. Let Em = { em / em = ( um vm ), um  vm, γ ( Gm sd 
umvm) ≠ γ ( G ) }, clearly | Em | < | E |. If Gm is DSS, we terminate here 
else starting from Em we repeat the same procedure to obtain a new 
graph Gm + 1. If Gm + 1 is DSS we terminate here else we continue to 
generate a sequence of graphs Gm, Gm + 1, Gm + 2, …, Gq such that 

1. | Em + 1 | < | Em |. 
2. γ ( Gm + 1 ) = γ ( Gm ). 

until we obtain a graph Gq + 1 such that γ ( Gq + 1 uv ) < γ ( Gq + 1), for all 
u, v  V ( Gq + 1 ), u  v, that is till we obtain a dot critical graph Gq. We 
know that every dot critical graph is DSS. This implies Gq is DSS.  

CONCLUSION  

The paper provides two methods of obtaining DSS graph from a non 
DSS graph by applying graph operations. By applying other graph 
operations like complement, dual, cross product we can generate 
DSS graphs from non DSS graphs.  
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