Vol 2. Issue 3 . 2014

ISSN: 2347-1573

Original Article

GENERATING DSS GRAPH BY EDGE SUBDIVISION AND EDGE CONTRACTION

M. YAMUNA¹, K. KARTHIKA²

SAS, VIT University, Vellore, Tamilnadu, India ,Email: karthika.k@vit.ac.in

Received: 14 May 2014, Revised and Accepted:17 June 2014

ABSTRACT

A graph G is said to be domination subdivision stable (DSS) if γ (G_{sd} uv) = γ (G), for all u, v \in V (G), u adjacent to v. In this paper we have provided two methods of obtaining a DSS graph from a non DSS graph.

Keywords: domination, subdivision, contraction.

INTRODUCTION

A set of vertices D in a graph G = (V, E) is a dominating set if every vertex of V – D is adjacent to some vertex of D. The cardinality of the smallest dominating set of G is called the domination number of G and it is denoted by γ (G). A vertex in V – D is k – dominated if it is dominated by at least k – vertices in D. For properties related to graph theory we refer to [1]

The open neighborhood of vertex $v \in V$ (G) is defined by N (v) = { $u \in V (G) | (uv) \in E (G)$ } while its closed neighborhood is the set N [v] = N (v) $\cup \{v\}$. The private neighborhood of $v \in D$ is defined by pn [v, D] = N (v) $- N (D - \{v\})$. We indicate that u is adjacent to v by writing $u \perp v$. For properties related to domination we refer to [2].

MATERIALS AND METHODS

An elementary edge contraction of a graph G is obtained by removal of u and v and the addition of a new point w adjacent to those points which u or v was adjacent. G. uv is the graph obtained by contracting uv. In [3], Tamara Burton et al. defined a graph to be domination dot critical (DDC) if γ (G.uv) < γ (G), \forall u, v \in V (G). They have proved the following result.

The subdivision of some edge e with endpoints { u, v } yields a graph containing one new vertex w, and with an edge set replacing e by two new edges, { u, w } and { w, v }. We shall denote the graph obtained by subdividing any edge uv of a graph G, by G_{sd} uv. Let w be a vertex introduced by subdividing uv. We shall denote this by G_{sd} uv = w.

In [4], M. Yamuna et al have introduced the concept of domination subdivision stable graphs. A graph G is said to be domination subdivision stable (DSS) if the γ -value of G does not change by subdividing any edge of G.

Example

Fig. 1: γ (G) = γ (G_{sd} uv) = 2. This is true for all e = ab \in E (G). Here G is a DSS graph.

In [4], they have proved the following result

R₁. A graph G is DSS if and only if for every $u, v \in V$ (G), either there is a γ - set containing u and v or, there is a γ - set D such that

- 1. pn[u, D] = { v } or
- 2. v is 2 dominated.
- R2. Every DDC graph is DSS.

RESULTS AND DISCUSSIONS

Theorem 1

Let G be a graph which is not DSS. There is a subdivision graph of G which is DSS.

Proof

Since G is not DSS, there is at least one u, $v \in V$ (G), $u \perp v$ such that γ (G_{sd} uv) $\neq \gamma$ (G). By [R₁], either both u, $v \notin D$ or pn[u, D] ≥ 2 , $v \in$ pn[u, D], where D is any γ – set for G. Let E = { e_s / e_s = (u_s, v_s), u_s $\perp v_s$, γ (G_{sd} u_sv_s) $\neq \gamma$ (G)}.

Let X_i = N (v_i) – { u_i }, Y_i = N (X_i), Z_i = N (u_i) – { v_i }. For any $e_m \in E$ (G), let γ ($G_{sd} u_m v_m$) = w_m . D_m = D \cup { w_m } is a γ – set for $G_{sd} u_m v_m$. Let G_m = $G_{sd} u_m v_m$.

Case 1

 $e_m \in E$ such that $u_m \in D$, $v_m \notin D$, m = 1, 2, ..., k.

For all $x_m \in X_m$, γ ($G_m \text{ sd } v_m x_m$) = γ (G_m), since $D_m - \{w_m\} \cup \{v_m\}$ is a γ – set for G_m such that every $x_m \in X_m$, $x_m \in D$ is 2 – dominated.

For all $y_m \in Y_m$, such that $y_m \in D$, $\gamma (G_{m \ sd} x_m y_m) = \gamma (G_m)$, since $D_m - \{w_m\} \cup \{x_m\}$ is a γ - set for G_m for every $x_m \in X_m$. Also $\gamma (G_m \ sd \ u_m w_m) = \gamma (G_m \ sd \ w_m v_m) = \gamma (G_m)$, since $pn[w_m, D] = v_m$.

Case 2

 $e_{m}\in E \text{ such that } u_{m}, v_{m} \not\in D, m = 1, 2, ..., p. \text{ Note that } k + p = \mid E \mid.$

 $\begin{array}{l} \mbox{For all } x_m \in X_m, \gamma \ (\ G_m \ sd \ v_m x_m) = \gamma (\ G_m \), \mbox{ since } D_m - \{ \ w_m \ \} \cup \{ \ v_m \ \} \ is \ a \\ \gamma \ - \ set \ for \ G_m \ such \ that \ every \ x_m \in X_m, \ x_m \not \in D \ is \ 2 \ - \ dominated. \end{array}$

 $\begin{array}{l} \mbox{Similarly for all } z_m \in Z_m, \gamma \left(\ G_{m \ sd} \ u_m z_m \right) = \gamma \left(\ G_m \), \ since \ D_m - \left\{ \ w_m \right\} \cup \left\{ \ u_m \ \right\} \ is \ a \ \gamma \ - \ set \ for \ G_m \ such that \ every \ z_m \ \in \ Z_m, \ zm \ \not\in \ D \ is \ 2 \ - \ dominated. \ Also \ since \ w_m \ is \ selfish, \gamma \left(\ G_m \ _{sd} \ u_m w_m \ \right) = \gamma \left(\ G_m \ _{sd} \ w_m v_m \ \right) \\ = \gamma \left(\ G_m \). \end{array}$

From case 1, for all $e_m \in E$ (G) in graph G_m , for all $x_m \in X_m, y_m \in Y_m$ such that γ ($G_{sd} v_m x_m$) $\neq \gamma$ (G), γ ($G_{sd} x_m y_m$) $\neq \gamma$ (G) become DSS in G_m .

Similarly from case 2, for all $e_m \in E$ (G) in a graph G_m , for all $x_m \in X_m$, $z_m \in Z_m$ such that γ ($G_{sd} v_m x_m$) $\neq \gamma$ (G) and γ ($G_{sd} u_m z_m$) $\neq \gamma$ (G) become DSS in G_m .

Also the new edges introduced are DSS and the edges which were subdivision stable in G are DSS in G_m also. Let E_m = { e_m / e_m = ($u_m \, v_m$), $u_m \perp v_m$, γ ($G_{sd} \, u_m v_m$) $\neq \gamma$ (G_m) }, clearly | E_m | < | E |. If G_m is DSS we terminate here else starting from E_m we repeat the same procedure to obtain a new graph $G_{m\,+1}$. If $G_{m\,+1}$ is DSS we terminate here else we continue to generate a sequence of graphs G_m , $G_{m\,+1}$, ... such that

 $\begin{array}{ll} 1. & \mid E_{m\,+\,1} \mid < \mid E_m \mid. \\ 2. & \gamma \left(\; G_{m\,+\,1} \; \right) = \gamma \left(\; G_m \; \right) + 1. \end{array}$

until we obtain a graph that is DSS.

Theorem 2

Let G be a graph which is not DSS. There is a graph H of G which is DSS, if H can be obtain from G by a sequence of elementary contraction.

Proof

Since G is not DSS there is at least one u, $v \in V$ (G), $u \perp v$ such that γ (G_{sd} uv) $\neq \gamma$ (G). By [R₁], either both u, $v \notin D$ or pn[u, D] $\geq 2, v \in$ pn[u, D], where D is any γ - set for G. Let E = { es} and | E | = k + p. Let X_i = N (v_i) - { u_i }, Y_i = N (X_i), Z_i = N (u_i) - { v_i }. For any e_m \in E (G), let γ (G umVm) = γ (G), by [R₂]. D is a γ - set for G. umVm also. Let G_m = G, umVm.

Case 1

 $e_m \in E$ such that $u_m \in D$, $v_m \notin D$, where m = 1, 2, ..., k.

For all $x_m \in X_m, \gamma$ (G_m $_{sd}$ ($u_m v_m$) x_m) = γ (G_m), since x_m is 2 –dominated in $G_m.$

For all $y_m\in Y_m$ such that $y_m\in D_m,\gamma$ (G_m $_{sd}$ x_my_m) = γ (G_m), since x_m is 2 – dominated in G_m .

Case 2

 $e_m \in E$ such that $u_m, v_m \not\in D,$ where m = 1, 2, ..., p. Note that k + p = | E |.

For all $x_m\in X_m$, such that $x_m\in D_m.$ γ (G_m $_{sd}$ (u_mv_m) x_m) = γ (G_m), since u_mv_m is 2 – dominated in G_m .

Similarly for all $z_m \in Z_m$ such that $z_m \in D_m, \gamma$ (G_m sd (u_mv_m) z_m) = γ (G_m), since u_mv_m is 2 – dominated in G_m . The edges which are DSS in G are DSS in G_m also. Let E_m = { e_m / e_m = ($u_m v_m$), $u_m \perp v_m$, γ (G_m sd u_mv_m) $\neq \gamma$ (G)}, clearly | E_m | < |E|. If G_m is DSS, we terminate here else starting from E_m we repeat the same procedure to obtain a new graph G_m +1. If G_m +1 is DSS we terminate here else we continue to generate a sequence of graphs G_m , G_m +1, G_m +2, ..., G_q such that

 $\begin{array}{ll} 1. & \mid E_{m+1} \mid < \mid E_m \mid. \\ 2. & \gamma \left(\; G_{m+1} \; \right) = \gamma \left(\; G_m \; \right). \end{array}$

until we obtain a graph G_{q+1} such that γ (G_{q+1} , uv) < γ (G_{q+1}), for all $u, v \in V$ (G_{q+1}), $u \perp v$, that is till we obtain a dot critical graph G_q . We know that every dot critical graph is DSS. This implies G_q is DSS.

CONCLUSION

The paper provides two methods of obtaining DSS graph from a non DSS graph by applying graph operations. By applying other graph operations like complement, dual, cross product we can generate DSS graphs from non DSS graphs.

REFERENCES

- 1. Harary. Graph Theory. Addison Wesley. Narosa Publishing House; 2001.
- 2. Burton T and Sumner D. Domination Dot Critical Graphs. Discrete Math., 2006; 306: 11 18.
- 3. Haynes TW, Hedetniemi ST and Slater PJ. Fundamentals of Domination in Graphs. Marcel Dekker. New York; 1998.
- Yamuna M and Karthika K. Domination Subdivision Stable Graphs. International Journal of Mathematical Archive. 2012; 3(4):1467-1471.