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ABSTRACT 

One of the most urgent challenges that medical sciences face today is overcoming the problem of drug resistance. This review paper encompasses 
research studies that provide a solution towards this major concern. It aims to highlight the therapeutic effects of various metal-based nanoparticles 
over conventional antibiotics. Severe infections caused by bacteria, viruses, fungi and parasites are transmitted easily and spread across millions of 
people round the globe. Resistance developed by these organisms and their various strains against regular antibiotics has posed great threat to save 
the lives of humans. Nanoparticles are tiny in nature and thus capable of generating Reactive Oxygen Species (ROS). These ROS bursts to create 
severe oxidative stresses causing damage to DNA, lipids peroxidation and protein changes resulting in cell death. This mechanism is quite different 
from traditional antibiotics and hence gives better results towards microbial resistance. The study demonstrates the use of metal nanoparticles such 
as silver, zinc oxide, aluminium oxide, gold, copper oxide, titanium dioxide, magnesium oxide, iron oxide in combination with various antibiotics to 
efficiently kill infectious microbes. 
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INTRODUCTION 

These infectious diseases spread through fungi, viruses, bacteria and 
parasites, which have become the cause of many deaths throughout 
the world [1]. Infectious diseases were classified 2 groups: emerging 
and re-emerging. New diseases were being referred as emerging 
infectious diseases whereas re-emerging diseases are not new but 
suffer from drug resistance and thus they again appear, due to which 
there is difficulty in treating and controlling them [2]. However, the 
ability to prevent infection of the human body is only possible by the 
immune system. Although some infections are direct, whereas others 
are very transmissible and dangerous [3]. Transmission of infections 
occurs when some microorganism enters the host cell, resulting in 
their replication inside the host cell, causing the tissue to be damaged. 
However, it is necessary to mention that some microbes can replicate 
the body's externally, which results in tissue damage [4]. 

Drug resistance largely interferes with the treatment of infectious 
diseases, which makes it necessary to develop a novel therapy which 
could overcome this resistance. The therapeutic agents such as any 
metal nanoparticles were used for the treatment of infectious 
diseases. Metal nanoparticles show antimicrobial activity, which 
depends on size. Small size of nanoparticles easily penetrates the 
bacterial cell wall, resulting in cell death [5]. Hence, drug delivery 
capability as well as their therapeutic efficacy is aimed at 
improvement at the pathological site. Metal nanoparticles have good 
properties [physico-chemical] [6]. The unique Physico-chemical 
properties of metal nanoparticles make them a potent weapon 
against infectious diseases. Hence, these were designed for the 
majority of biomedical applications [7]. This review focuses on the 
biological activity of metal-based nanoparticles that are affordable 
and non-toxic and provide potential therapeutics against various 
fungal, parasitic, viral and bacterial diseases. 

Search criteria 

Exploring the latest knowledge over the subject through Research 
gate, Pubmed, EMBASE, Google scholar, Google web searches, 
SCOPUS and Web of Science greatly assisted in writing this review 
paper. Updated information has been incorporated on the basis of an 
extensive literature search on this subject. 

Mechanism of nanoparticles to microbes  

As a supplement to antibiotics, Nanomaterials as antimicrobials are 
highly promising and are receiving great interest as they can fill the 
gap where antibiotics are often unsuccessful. It includes combatting 
multidrug-resistant biofilm and mutants [8, 9]. An antibacterial 
nanoparticle is now in use [metal, metal oxide, and organic NPs] 
indicates the diversity of internal and modified chemical 
composition properties. Thus, it is unexpected that they have several 
ways [fig. 1]. Apart from this, there is considerable variation in the 
genetics of the target bacteria, as well as inhibiting them in cell wall 
structure, essential metabolic pathways and many components can 
prove to be very fatal for microorganisms. In addition, the 
physiological condition of bacteria, i.e., the planktonic, growth rate, 
biofilm, the sensitivity of the bacteria to stable or starved, can 
contribute significantly to the nanomaterials [10, 11]. In some cases, 
the ratio between bacteria and nanomaterials is important for 
subsequent toxicity. Furthermore, many environmental factors play 
a role and affect nanomaterials lethality, which contain bacteria, 
including pH, aeration and temperature [12]. With other 
nanoparticles, the physiological properties of particles including 
chemical modification, coating, size, shapes, and mixing in different 
ratios and the use of solvent affect all their antibacterial activity 
[13]. Thus, the Mode of Action and Level of hazard of Nanomaterials 
Antibacterial is still unclear and literature can find in other reports 
[14, 15]. However, as usually, nanomaterials works with two major 
routes, Which are related to each other and occur in many cases 
simultaneously: 1. reactive oxygen The production of species [ROS], 
also known as oxygen-free radicals, acts as nanomaterials 
nanocatalysts and with different chemical structures to generate ROS 
associated with their hazardous and toxic effects has been well-
characterized in previous studies [16, 17]. Compared with 
microparticles or their bulk of origin, NPs possess unique 
physicochemical properties [size, surface area, shape, solubility, and 
aggregation status] that correlate with their potential to generate ROS 
[18-24]. 2. Disruption of membrane potential and integrity [25, 26]. 

Membrane damage occurs when the nm tie electrostatic bacteria 
goes to the cell wall and membrane, causing loss of membrane 
potential, membrane depolarization, and integrity, which in turn, 
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imbalance of transport, impaired respiration, obstruction of energy 
transit And/or cell analysis, and ultimately cell death [27]. 

The most effective determinant for both in vitro and in vivo 
cytotoxicity of ROS, Nanomaterials is believed to be, by the 
disruption of the respiratory chain itself or directly induced by the 
Nanomaterials [28]. A burst of ROS occurs through severe oxidative 
stress, causing damage to all the brain cells, thereby prohibiting lipid 
peroxidation, protein changes, enzymes and RNA and DNA damage. 

In high doses, ROS leads to cell death and low dose, causing severe 
DNA damage and mutations [29, 30]. In some cases, where ROS 
production is visible or induced by UV light [31] NM poisoning is 
photocatalytic, for example as show in table 1, TiO2

 

 nm was induced 
under almost-UV light, lipid peroxidation, which was E. coli leads to 
respiratory disease and death of cells [32]. Several other effects of 
nanomaterials include direct inhibition of specific essential enzymes, 
induction of nitrogen reactive species [NRS] [30, 12, 15, 16] and 
induction of programmed cell death [31]. 

 

Fig. 1: Mode of action of nanoparticles on bacteria (Adapted and modified) 

 

Table 1: Various nanomaterials kill to various bacterial cell wall 

Nanoparticles Size [nm] Microbes Time Concentration Target site Reference 
Ag 9.3 E. coli 10 min -  Cell wall [33] 
Au 25 C. pseudotuberculosis 20 min 50, 100 and 200 µg/ml Cell wall [34] 
Fe3O4 Ag 60 E. coli, S. epidermidis, Bacillus subtilis 24 h 60-70 μg/ml Cell wall [35] 
MgO 4 E. coli, B. megaterium 20-60 min -  Cell wall [36] 
ZnO 30 Salmonella enteric, Escherichia coli 16 h 0.5 mg/ml Cell wall [37] 
Cu 100 B. subtilis, E. coli 24 h 60 μg/ml -  [38] 
TiO 8 2 Staphylococcus aureus 30 min - Cell wall [39] 
Al2O 60 3 E. coli, B. subtilis, Pseudomonas - 20 μg/ml Flocculation [40] 

 

Classification of infections 

Infectious disease is a clinically clear disorder that is caused by the 
presence of a pathogenic agent that can be either a bacteria, fungus, 
virus or parasite, from these diseases to one person [tuberculosis, 
malaria,] and due to the ability to move from one species to another 
[influenza, flu] sometimes called these communicable diseases. 
Infectious diseases can be highly classified: 1] known diseases which 
are insistent [e. g., tuberculosis, dengue, malaria,]; 2] New, 
previously unknown diseases [e. g., severe acute respiratory 
syndrome]; And 3] threatening to progress in the near future [e. g., 
avian influenza] is a major threat to these diseases because more 
than half of the world's deaths occur in these diseases, especially in 
developing countries [41]. Parasitism causes the benefits and 
infections received by pathogenic bacteria attacking the host [42]. 
These infections are described in below.  

[i] Bacterial infections treated with metal-based nanoparticles 

Treatment of bacterial infection is being interrupted by drug 
resistance due to which the danger is increasing on all over the 
world. Several molecular strategies have also been developed which 
increase their adhesion for host cells and their ability also gives the 
result of their colonies [43]. One such molecular strategy is hair-like 
organelles which are known as pili on the surface of bacteria. 
Bacteria are bound with host cells through these pili. Only Gram-
positive and Gram-negative bacteria possess hair-like organelles 

structure [43-45]. Another probable molecular strategy is through 
forming biofilms that would protect bacteria in adverse conditions 
[43, 46]. Biofilm formation consists of protein, exopolysaccharides, 
EDNA etc. and has three main steps, i.e. the attachment to the 
surface of the host cell, the formation and separation of biofilm 
structure [47]. These components resists antibiotics and 
antibacterial agents. Biofilm creates adhesion between bacterial 
cells, from which multi-layered biofilms are formed. This segment 
will focus on the antibacterial activity of metal-based antibacterial 
compounds. 

Silver nanoparticles 

Several papers have been reported on silver nanoparticles 
penetrated to the bacterial cell wall. Subsequently, damage the 
structure of cell wall then cell death as shown in [fig. 1]. Some 
researchers have proposed that the silver nanoparticles produce 
free radicals and interact with bacteria and release silver ion, which 
causes cellular enzyme deactivation and inhibits several functions in 
cell and causing cell death. Another study reported that silver 
nanoparticles interact with DNA, inhibit to bacterial DNA replication, 
resulting cell death [70-77]. Tuberculosis is an infectious disease that 
affects the lungs and bacterium are caused by Mycobacterium 
tuberculosis [48-50]. Silver nanoparticles inhibited the growth of 
Mycobacterium tuberculosis in vitro and showed low cytotoxic 
effects. Silver nanoparticles were selected for the treatments and 
their therapeutic outcome as shown in (table 2). 
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Table 2: Various metal-based nanoparticles with antimicrobial activity their therapeutic outcome 

Metal nanoparticles Therapeutic effect References 
AgNPs Hampers growth of Mycobacterium tuberculosis [48-50] 
AgNPs in urinary catheter Potent against urinary tract infections causing bacteria [51-56] 
AgNPs combined with blue light and either of the 
Clarithromycin, Azithromycin, Amoxicillin, Linezolid Or 
Vancomycin 

Very efficient against Staphylococcus aureus. [57] 

AgNPs synthesised by plants extracts Stable and antibacterial nanoparticles. [58-69] 
AgNPs isolated from industrialized area Molecular identification Bacillus strain CS 11 [70] 
AgNPs Effective against Staphylococcus aureus and Escherichia coli  [71-77] 
AgNPs generated using biological Methods [virus, 
fungi etc.] 

Efficient antibacterial activity. [78-84] 

AgNPs+rifampicin and polymixin B  Very Effectively treat Acinetobacter baumannii infection. [85] 
AgNPs+amoxicillin Effectively treat Escherichia coli [86] 
AgNPs prevention of gastrointestinal [87] 
Al2O3 Good Antimicrobial sensitivity against Escherichia coli NPs [88] 
Al2O3 Nanoparticles entered Candida cells to disrupt their physiological activity. NPs [89-90] 
Al2O3NPs Effectively treat P. aeruginosa prepare using plant extract [91] 
Al2O3 Potent against gram-negative and gram-positive bacteria NPs [92, 93] 
AuNPs combined with ofloxacin Superior bactericidal property [94] 
AuNPs combined with gentamicin Effective against Escherichia coli [95, 96] 
AuNPs combined with kanamycin, ampicillin, 
streptomycin and levofloxacin 

High potency against Micrococcus luteus, E. coli, and Staphylococcus aureus [97, 98] 

AuNPs Highly active against pathogens and multi-drug resistant, Gram-negative 
and Gram-positive pathogens 

[99] 

AuNPs prepare using Mulberry leaf extract Effective against human pathogen 
Vibrio cholera [gram-negative] and Staphylococcus aureus [gram-positive] 

[100] 

Cu2 Good antibacterial activity against Bacillus sp. FU4 O NPs [101] 
Cu2 Good antibacterial activity against S. dysenteriae, Vibrio cholerae non.0139 

[L4], Vibrio cholerae non.0139 [CSK6669], S. pneumoniae, S. aureus and E. coli 
O NPs prepare using plant extract  [102-104] 

Cu2 Highly active O NPs [105] 
Cu2 Antibacterial against Pseudomonas fluorescens, Aeromonas O NPs 

Hydrophila and Flavobacterium branchiophilum, 
[106] 

FeNPs prepare using plant extract Antibacterial properties Escherichia Coli, Pseudomonas Aeruginosa, and 
Staphylococcus Aureus 

[107, 108] 

Fe2O3 Effective against S. pneumonia NPs+erythromycin [109] 
Fe2O3 Poor antibacterial activity NPs combined with ciprofloxacin [110] 
Ga NPs Hampered mycobacteria [111] 
Ga NPs Effective against Pseudomonas aeruginosa [112] 
Ga NPs Strongly inhibited Mycobacterium tuberculosis [113] 
Ga NPs Destroyed metabolism of F. Tularensis Fe [114] 
MgONPs using plant extract of Swertia chirayaita Gram+ve bacteria S. epidermidis, S. aureus, B. cereus and Gram-ve bacteria, 

P. vulgaris, E. coli, K. pneumonia 
[115] 

Tio2 NPs Effective against Streptococcus mutans and E. coli [116-121] 
Tio2 NPs Potent against S. aureus [122] 
ZnONPs nanoparticles coated wit gentamicin Significant antibacterial activity against Pseudomonas aeruginosa, Escherichia 

coli, Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus 
[123] 

ZnONPs prepare using Azadirachta indica Good antimicrobial activity against Gram-positive and Gram-negative 
bacteria: S. aureus, S. pyogenes and Escherichia coli 

[124] 

ZnONPs Concentration of the nanoparticles determined inhibition of B. subtilis [125, 126] 
  

Furthermore, silver nanoparticles also treat urinary tract 
infections which are caused by P. aeruginosa and Enterobacter.  

These were also used in synergy with antibiotic to treat bacterial 
infection thereby enhancing the therapeutic outcome. Li et al. 
suggested the combination of amoxicillin and silver nanoparticles 
against Escherichia coli [85] to check for selected functionalities 
[hydroxyl and amido-groups] on amoxicillin with silver 
nanoparticles, which resulted in the formulation of powerful 
antibacterial activity. Apart from this, Wan et al. reported that the 
synergistic effect aginst Acinetobacter baumannii to combine the 
antibiotics polymixin B and rifampicin with the silver nanoparticles, 
which are treated with hospital-acquired infections [86]. The 
possible mechanism for this synergistic effect was due to the 
disruption of the bacterial cell wall by Ag+ion thereby producing 
cytotoxic ROS by the visible blue light. 

Silver nanoparticles have been prepared using plant extract which 
contains secondary metabolites such as vincristine, tannin, 
flavanoids and polyphenols which helps to form Ag nanoparticles. 
Examples include Catharanthus roseus [C. roseus] [L.] G. Don,  
[13], neem leaves [12], aloe vera [14], Parkia speciosa Hassk pods 
[11]. These plant extracts were used as reducing and stabilizing 
agents and show antibacterial potency [58-69]. 

Aluminium oxide nanoparticles 

Aluminium Oxide nanoparticles exhibit antimicrobial activity 
against pathogenic microbes. An Aluminium Oxide nanoparticle 
penetrates to bacterial cell wall, resulting damage to all respiratory 
function and cell death [fig. 1]. Ansari et al. reported the green 
synthesis of Aluminium Oxide nanoparticles using leaf extract of 
lemon grass and their antimicrobial activity against extended-
spectrum metallobeta-lactamases and beta-lactamases of clinical 
isolates of P. aeruginosa was found greater [91], Jalal et al. reported 
that Aluminium Oxide nanoparticles generation using leaf extract of 
Cymbopogon citratus. These nanoparticles get attached to the 
surface of bacterial cell wall, disrupting physiological activity and 
causing cell death [89, 90]. Sadiq et al. Reported that Aluminium 
Oxide nanoparticles are demonstrated antimicrobial activity against 
Escherichia coli [87, 88, 92, 93]. 

Gold nanoparticles 

Ahamad et al. reported that gold nanoparticles combine with antibiotic 
ofloxacin, resulting exhibit superior antimicrobial activity [94]. Other 
researches have also reported that the gold nanoparticles when 
combined with antibiotics gentamicin are efficient against both Gram-
positive and Gram-negative bacteria [95, 96]. The combine antibiotic 
with gold nanoparticles to enhanced the antimicrobial activity. In 
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addition, Saha et al. reported that the combines kanamycin, ampicillin, 
streptomycin and levofloxacin [97, 98]. With the gold nanoparticles, 
which are treated with E. coli, Micrococcus luteus and Staphylococcus 
aureus infections [95-98]. Conjugating the antibiotic to the nanoparticles 
resulted enhanced antimicrobial efficiency when compare to antibiotic 
alone suggesting that the gold nanoparticles enhance interaction with 
the bacterial cell wall, resulting in cell death. Furthermore, Advallane et 
al. was reported that biosynthesis of gold nanoparticles using leaf extract 
of mulberry against human pathogen Vibrio cholera [gram-negative] and 
Staphylococcus aureus [gram-positive].  

Copper oxide nanoparticles 

Taran et al., showed that Copper oxide nanoparticles demonstrated 
antimicrobial activity against bacterial strains and are highly active 
against Bacillus sp. FU4 [101]. Chatterjee et al. have reported similar 
finding in which the antibacterial activity of copper oxide is due to 
generation of ROS nand DNA degradation in bacterial cells as show 
in fig. 1 [105]. The copper oxide nanoparticles are attributed to 
attach to surface of the bacterial cell, disrupted cell wall and causing 
cell death. The antimicrobial activity is depends on the particles size. 
The small size of nanoparticles shows high antibacterial activity. The 
spherical shapes of copper oxide nanoparticles show the highly 
antimicrobial activity against Aeromonas hydrophila, Pseudomonas 
fluorescens and Flavobacterium branchiophilum [106].  

Iron oxide nanoparticles 

Massadeh et al., investigated that iron oxide nanoparticles combine 
with ciprofiloxin, exhibited the poor antibacterial activity which may 
be due to interaction with ciprofiloxin inhibiting the absorbance of 
nanoparticles on the surface of bacterial cell [110]. But Aparicio-
Caamaño et al. suggested that the combination that could inhibit S. 
pneumonia growth: Fe nanoparticles with erythromycin. This was 
due to enhanced entry of erythromycin into the bacterial cell wall 
due to the FeO nanoparticles [100]. Rafi et al. reported that plant 
extract could be used to produce iron oxide nanoparticles where 
concentration would determine the shape,size and antimicrobial 
activity of the nanoparticles [98, 99]. 

Gallium nanoparticles 

Gallium nanoparticles also exhibited antibacterial activity [table 2]. 
Narayanasamy et al., investigated that GaNPs hampered the growth of 
mycobacterium for 15 d after a single drug-loaded [111]. Kurtjak et al., 
investigated that Gallium nanoparticles with the good antimicrobial 
activity against p. aeruginosa [112]. Choi et al., suggested that the 
prepare of gallium nanoparticles for enhanced the antimicrobial 
activity against Mycobacterium tuberculosis infection [113]. The 
nanoparticles enhanced the maturation of phagosome, which indicates 
their potential as anti-tuberculosis drugs [114].  

Magnesium oxide nanoparticles 

Magnesium oxide nanoparticles are attributed to the attachment to 
the surface of the bacteria cell wall, distrusting the ATP, resulting the 
cell death. Gaurav et al., Magnesium oxide nanoparticles using plant 
extract and show antimicrobial activity against Gram+ve bacteria [S. 
aureus, S. epidermidis, B. cereus] and Gram–ve bacteria [E. coli, P. 
vulgaris, K. pneumonia]. There are few paper published [106].  

Titanium dioxide nanoparticles 

Titanium dioxide nanoparticles’ antimicrobial activity is due to 
interaction with surface of bacterial cell where photo-catalytic action 
results in cell permeability and therefore cell death. Lin et al., prepared 
the Titanium dioxide nanoparticles with smaller size which produces 
the high content of ROS. The smaller surface area resulted in greater 
penetration and thus more damage of membrane [116-121]. 

Zinc oxide nanoparticles 

Raghupati et al., prepared smaller zinc oxide nanoparticles which 
resulted in nanoparticles with good antibacterial activity. Hsueh et 
al., reported the inhibition effect of ZnO NPs on the growth of B. 
subtilis to depend solely on nanoparticles concentration. The 
accumulation of nanoparticles on the outer membrane of bacterial 
cell resulted cell death [125-126]. Voicu et al., coated ZnO NPs with 
gentamicin and determined their antimicrobial activity against, 

Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, 
Listeria monocytogenes and Bacillus cereus [123].  

[ii] Fungal infections treated with metal-based Nanoparticles 

Fungus is a ubiquitous and diverse group of micro-organisms. Some 
groups of fungi are plant pathogens which can cause serious 
infections in human beings [127, 128]. Skin disorders are due to a 
fungal group known as dermatophytes [129, 130]. Dermatophytoses 
may lead to major problems in immune-compromised hosts, and 
growing expansion of fungal skin infections in patients with HIV 
[131, 132]. In addition, prophylaxis with Antifungal may be due to 
the emergence of resistant strains [133]. Therefore, there is a need 
to search for a new generation of antifungal agents [134, 135]. 

Silver nanoparticles 

Only few studies have reported the effects of silver nanoparticles on 
dermatophytes as most of them focused on the effect on Candida 
species [136-143]. The antifungal activity of AgNPs in biostabilized 
footwear materials was evaluated against dermatophytes and other 
fungi [144]. Noorbakhsh et al. [145, 146] investigated the effects of 
biologically synthesized silver nanoparticles by Klebsiella 
pneumoniae against Trichophyton rubrum. 

Copper oxide nanoparticles  

Sengal et al. found the efficacy of Copper oxide nanoparticles 
combined with fluconazole against Candida albicans infection [147]. 
Gold nanoparticles are potential anti-fungal agents which are 
developed by plasmonic clinical sample synthesis. The gold 
nanoparticles were negatively charged and inhibited the cell, 
replication and good antifungal effect [148].  

Magnetic nanoparticles have also been found to be effective against the 
antifungal effect. Niemirowicz et al., suggested antifungal activity 
demonstrated against C. glabrata, C. tropicalis, and C. albicans [149, 150]. 

Titanium dioxide nanoparticles  

The antifungal activity of titanium dioxide nanoparticles attributes 
to interaction with cell surface of fungi where photo-catalytic action 
results in cell permeability and cell death. Haghighi et al., prepared 
the Titanium dioxide nanoparticles with smaller size which 
produces the high content of ROS. The smaller surface area resulted 
in greater damage of the membrane [151].  

Zinc oxide nanoparticles 

Sardella et al., prepared zinc oxide nanoparticles which demonstrated 
good antifungal activity against Penicillium expansum and Botrytis 
cinerea [152, 153]. Xue et al., reported that zinc oxide nanoparticles 
inhibit growth of fungal by the accumulation of nanoparticles on the 
outer membrane of the fungal cell causing cell death [154]. In addition, it 
also showed its antifungal activity against A. flavus and A. fumigates [155, 
156]. Grijaba et al. reported that the zinc oxide nanoparticles with 
antifungal activity against Erythricium salmonicolor [157]. 

Viral infections treated with metal-based nanoparticles 

Some viral infections are persistent and cannot be removed from the 
body through the immune system alone such as Herpes, Hepatitis, HIV, 
etc. which may occur for many years. There are reports that metal-based 
therapeutics are effective to treat viral infections as explained below. 

HIV 

HIV is a viral infection with 36.7 million people suffering from 
HIV/AIDS worldwide [158-162]. 

Lara et al., reported the use of silver nanoparticles as an anti-HIV activity 
in both the initial phase of viral multiplication and entry-level of the HIV-
1 life cycle [158-162]. In the initial phase, the silver nanoparticles got 
bind to gp120, as it inhibits the CD4-dependent virion binding, its fusion 
and also its infectivity. With the use of gp120 glycoprotein, silver 
nanoparticles prevent the virus from binding on host cells [162]. 

Kesarkar et al. reported that coated gold nanoparticles with 
polyethylene glycol exhibited greater antiviral activity. Kesarkar et 
al. further reported that the most effective concentration of gold 
nanoparticles at 2 µg/g and 4 µg/g were used for inhibiting virus 
entry [174]. 
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Table 3: Various metal-based nanoparticles with antifungal potency and their therapeutic effect 

Metal nanoparticles Therapeutic effect References 
Silver nanoparticles prepare using Erythrina suberosa   Antifungal Activity against C. albicans, C. kruseii, T. mentagrophytes, and 

C. viswanathii.  
[136] 

silver nanoparticles biofilms  Antifungal Activity against Candida albicans  [137] 
Silver nanoparticles  Antifungal Activity against Candida species [138-142] 
Amphotericin B-conjugated biogenic silver nanoparticles Antifungal activity against Candida albicans and [143] Candida tropicalis 
 Silver nanoparticles   Antifungal Activity against Foot mycosis prophylaxis [144] 
Silver nanoparticles  Antifungal Activity against Trichophyton rubrum [145, 146] 
Copper oxide nanoparticles combine with fluconazole Antifungal activity against Candida albicans [147] 
 Gold nanoparticles  Human Cutaneous Preventing From fungal infection [148] 
Magnetic nanoparticles Candidacidal activity against C. albicans, C. glabrata and C. tropicalis [149] 
Iron-oxide nanoparticles  Antifungal effect against different Candida species [150] 
TiO2 nanoparticles  Prevention of fungal biofilms especially biofilms formed on the surface 

of medical devices. 
[151] 

Zinc oxide nanoparticles Antifungal activity against Penicillium expansum and Botrytis cinerea [152, 153] 
ZnO nanoparticles  Inhibit the fungal growth and benefit to public health and environment [154] 
 ZnO-NPs Antifungal Activity against A. flavus and A. fumigates [155, 156] 
 ZnO-NPs Antifungal activity against Erythricium salmonicolor [157] 

 

Table 4: Various metal-based nanoparticles and their antiviral efficacy with therapeutic results 

Metal nanoparticles Type of infection Therapeutic result References 
Ag nanoparticles HIV Inhibits CD4-dependent viral binding. [158-162] 
Ag nanoparticles Herpes Prevention virus infection [163, 164] 
Ag nanoparticles Hepatitis Inhibits the production of HBV RNA and extracellular virions by interacting 

with HBV viral particles 
[165-167] 

Ag nanoparticles Influenza Damages morphological structure of influenza virus. Prevents binding sites of 
the virus. 

[168-173] 

Au [Gold] nanoparticles HIV Inhibits entry of virus [174] 
Au nanoparticles Herpes Inhibited attachment of virus and stops penetration into the cell. [175, 176] 
Au nanoparticle combined 
with interferon-alpha  

Hepatitis Targets interferon alpha [177, 178] 

Au nanoparticles Influenza Very reliable against influenza A virus [179, 180] 
FeO nanoparticles Hepatitis Hampered hepatitis C virus gene, protease and helicase, NS3. HCV NS3 gene encodes. [181] 
Cuprous nanoparticle Hepatitis Prevented virus entry that involved genotypes [1a, 1b, and 2a] thus restricting 

viral replication 
[182] 

ZnO nanoparticle Herpes Prevented viral entry and infection [183, 184] 

 

Herpes 

Herpes simplex virus HSV-1 and HSV-2 causes Herpes. 

When Silver nanoparticles and HSV-2 interacts, it results in the 
reduction of offspring of the virus with weak cytotoxicity in vitro 
[163]. The High concentrations of silver nanoparticles are toxic to 
Vero cells. 100 µg/ml concentration of silver nanoparticles was used 
for inhibit the viral replication.  

Baram-Pinto et al., reported the inhibition of HSV-1 virus by coating 
gold nanoparticles with mercarptoethene sulfonate. When the gold 
nanoparticles get attached to the surface of cell membrane, it 
inhibits viral entry and prevents from infection. These gold 
nanoparticles are non-toxic and very much useful for the treatment 
of viral infection [175, 176].  

Mishra et al., developed micro nanoparticles of zinc oxide 
nanoparticles coated with various nanoscopic spikes that mimicks 
cell induced filopodia, which bind to their cell surface and inhibit 
viral entry and prevent infection [183, 184].  

Hepatitis 

Hepatitis is a viral infection which are of various types namely A, B, 
C, D, E and G type Hepatitis. Hepatitis A is caused by RNA virus that 
spreads through oral route and sexual contact [174]. Hepatitis B is 
caused by DNA virus that pass on genetically and sexually. Hepatitis 
C is caused by RNA virus and passes on by infected blood or sexually. 
In addition, Hepatitis D is caused by RNA virus. It can be found only 
in those who are infected with Hepatitis B virus [HBV]. The dual 
infection of Hepatitis B virus [HBV] and Hepatitis D virus [HDV] can 
result in more serious disease and worse outcome. Hepatitis E virus 
is transmitted through contaminated water or food.  

Hepatitis G virus is recently discovered and belongs to Flaviviridae 
family. Silver, gold, iron oxide and cuprous oxide nanoparticles were 
used for the treatment of hepatitis infections [table 4].  

Lu et al., investigated the nanosize [10 nm and 50 nm] of silver 
nanoparticles were studied in vitro as anti-HBV on the HepAD38 cell line. 
It has been observed that nanoparticles reduced the external HBV DNA 
formation of hepAD38 cells by 50%. These silver nanoparticles inhibits 
the production of hepatitis B virus RNA and virions [165-167].  

Yarshi et al., developed In vitro evaluation on a blood sample infected 
with hepatitis C virus for hepatitis C virus viral loaded in a 1:1 ratio and 
gold nanoparticles didn’t show any activity on the virus [177, 178]. But 
they act as drug delivery systems such as Hyaluronic acid-gold 
nanoparticles combination was used to treat hepatitis C infection to the 
delivery of interferon-alpha in liver. Ryoo et al., investigated that iron 
oxide nanoparticles were inhibited to hepatitis C virus gene, NS3 and 
encoded helicase and protease which are responsible for viral 
replication. 

Similarly, 2µg/ml concentration of cuprous oxide nanoparticles was 
used for inhibition of viral replication. These cuprous oxide 
nanoparticles are attached to the surface of cell membrane to inhibit 
viral entry, to prevent from infection of hepatitis C [182]. 

Influenza 

Influenza is a viral infection that spreads through the respiratory system 
which is spread all over the world, especially among people suffering 
from chronic diseases. Xiang et al., reported the treatment of H3N2 
influenza viruses by silver nanoparticles as they damage the 
morphological structure of the virus [168-173]. The damage was time-
dependent. Li et al., investigated the delivery of silver nanoparticles in 
combination with amantadine to inhibit the H1N1 infection by ROS 
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accumulation [168-173]. Other reports on silver nanoparticles also 
suggest about to inhibit the influenza virus and show anti-influenza 
activity, respectively [168-173]. Thus the antiviral activity was due to 
preventing virus attachment to the cell surface.  

Parasitic infections 

There are many examples of parasitic infections such as malaria, 
leishmaniasis, helminths etc. which suffer from drug resistance due 
to poor treatment compliance. 

Malaria 

Malaria is a mosquito-borne infection with 210 million people 
suffering from Malaria. In 2015, it was estimated that there were 
438,000 people died in all over world [185-186]. It is spread by 
mosquitoes and caused by a parasite protozoan belonging to the 
Plasmodium type. The major challenge to treat malaria infections is 
drug resistance, which is due to bad treatment, mutation rates of 
parasites, efficacy of selected medicines and various strains of 
malaria parasites, which are responsible for co-infection. 

Silver nanoparticles 

There are few reports on silver nanoparticles against the antiplasmodial 
activity. Mishra et al., reported that growth of P. falciparum in human R. 
B. C culture was inhibited by silver nanoparticles synthesized using leaf 
extract. These biosynthesized silver nanoparticles were used against 
antiplasmodial activity at concentration IC50 [g/ml] of 3.75 for Amylase 
[185]. Murugan et al., reported the silver nanoparticles to have shown 
antiplasmodial activity against chloroquine-sensitive and chloroquine-
resistant strains of Plasmodium falciparum at [IC50] 72.45 and 76.08 
µg/ml, respectively when using C. tomentosum as a reducing, capping 
and stabilizing agent [187]. 

Selvam et al., developed biosynthesized silver nanoparticles using 
Catharanthus roseus leaf extract as a reducing and stabilizing agents, 
which showed antiplasmodial activity against P. falciparum at 25, 50, 
75, and 100 µg/ml, respectively [189].  

Gold nanoparticles 

Dutta et al., reported that gold nanoparticles synthesized using bark 
extract of Syzygium jambos, demonstrated antiplasmodial activity 
against chloroquine-resistant strains of P. falciparum at 51.63 and 
49.38 µgm/l while activity against chloroquine-sensitive strains of P. 
falciparum at IC50 values of 49.54 and 45.49 µg/ml [202, 203].  

Leishmaniasis 

Leishmaniasis is caused by Leishmania parasites. It is caused by the 
bite of infected female phlebotomine sandflies. Over 90 sandfly are 

known to transmit Leishmania parasites. Some of the anti-
leishmanial drugs suffer from drug resistance [197, 198] Some 
researches have revealed treatment of leishmanial infection by 
metal-based nanoparticles [table 5].  

Silver nanoparticles 

Lima et al., found out an antileishmanial activity against 
promastigote forms of Leishmania amazonensis by synthesizing 
chitosan-based silver nanoparticles which demonstrated 
antileishmanial activity at MIC ranging from 1.69 to 3.38 µg Ag/ml 
[190-196]. Ahmad et al., developed silver nanoparticles using 
Sargentodoxa cuneata extract and these nanoparticles thus acted as 
reducing, capping and stabilizing agents and showed antileishmanial 
activity at IC50 values of 4.37 and 5.29 µg/ml, respectively [190-
196]. In another research, Zahir et al., found out high antileishmanial 
efficacy of developed silver nanoparticles against Leishmania 
parasites at IC50

Gold Nanoparticles [GNPs] 

 of 14.94 µg/ml and 3.89 µg/ml [190-196]. 

Sazgarnia et al., reported the increased exposure time of the 
microwave to the parasites in the presence of GNPs induced a 
significant decline in promastigotes survival rate in comparison to 
similar samples without GNPs. The least survival of amastigotes was 
also recorded in the groups containing GNPs [204]. 

Helminth 

Helminth also commonly known as parasitic worms which are 
invertebrate, elongated, round or flat bodies. Helminth infection 
causes morbidity and mortality. Helminth infections are generally 
treated using anthelmintics agents but some of these infections 
offer resistance towards drug. Metal-based nanoparticles like 
silver, gold and zinc oxide were used for the treatment of Helminth 
infections.  

Rashid et al., reported that silver nanoparticles which were 
synthesized from momordica charantia plant extract and coated 
with polyaniline had a kill time of worms as 35.12±0.5 and 59.3±0.3 
min [200-201].  

Kar et al., reported that Gold nanoparticles prepared with the help of 
gold chloride and mycelia-free fungus affected the parasite and 
cause paralysis resulting in death [205]. 

Iron oxide nanoparticles were more effective than zinc oxide 
nanoparticles when treated against T. vitulorum and evaluated for 
the antihelmintic activity. Treatment with low dose of 0.004%, 
results in an increase of SOD. 

  

Table 5: Various metal-based nanoparticles with anti-parasitic efficacy with therapeutic results 

Metal nanoparticles Infection Therapeutic outcome References 
 Silver nanoparticles  Malaria Inhibition of the growth of P. falciparum in vivo and in vitro [185-188] 
 Silver nanoparticles Malaria The AgNPs showed antiplasmodial activity against P. falciparum [189] 
Silver nanoparticles Leishmaniasis Inhibition of proliferation and metabolic activity of promastigotes. Good 

antileishmanial activity in vitro and in vivo 
[190-196] 

Silver nanoparticles Leishmaniasis Ag-NPs demonstrated significant antileishmanial effects by inhibiting the 
proliferation and metabolic activity of promastigotes. 

[197, 198] 

Silver nanoparticles Leishmaniasis  The IC50 for nanosilver solutions was high significantly [14.9 μg ml-1]. [199] 
Silver nanoparticles Helminth  Enhanced anthelmintic activity against worm [200, 201] 
Gold nanoparticles  Malaria Moderate delayed parasitemia rise in vivo, moderate antiplasmodial activity 

against P. falciparum 
[202, 203] 

Gold nanoparticles Leishmaniasis The presence of GNPs during MW irradiation was more lethal for promastigotes 
and amastigotes in comparison to MW alone. 

[204] 

Gold nanoparticles Helminth Affected the physiological functioning of the parasite causing paralysis and 
subsequent death 

[205] 

Selenium nanoparticle  Leishmaniasis  Unlike selenium NPs, showed an anti-Leishmanial effect in vivo. [206] 
Copper [II] nanoparticle Malaria  The two compounds showed significant antimalarial activities against the 

parasites 
[207] 

Zinc oxide nanoparticles and 
iron oxide nanoparticles 

Helminth The anthelmintic activity of the metal oxides nanoparticles was via induction of 
oxidative stress 

[208] 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ponarulselvam%20S%5BAuthor%5D&cauthor=true&cauthor_uid=23569974�


M. Gupta 
Int J Pharm Pharm Sci, Vol 13, Issue 8, 20-31 

26 

Future prospects 

Despite the above-mentioned clinical efficacy of inorganic metal 
nanoparticles, it is extremely necessary to develop cost-effective 
metal nanoparticles so that application of these inorganic 
nanoparticles can increase further to treat infections than other 
drugs Also, there is a more need to study the toxicological properties 
and pharmacological properties for the treatment of all infection. 
Metal-based nanoparticles have the ability to overcome drug 
resistance which makes it promising for the treatment of infectious 
diseases in the future of medical sciences. 

CONCLUSION  

Infection diseases were classified as bacteria, fungi, viral and 
parasitic as well as their treatments is affected by drug resistance. 
Nowadays, most of the medicines used for the treatment of 
infections are suffering from drug toxicity, which are non-selective, 
and these infections can be overcome by metal-based nanoparticles.  

They can also be engineered by introducing selected biological 
moieties with specific binding activity to selected target cells 
thereby improving their therapeutic efficacy at the pathological site. 
Metal-based nanoparticles of antimicrobial activities is related to 
their ability to produce ROS that damage the bacterial cell wall and 
bind to DNA or RNA, due to disturbed the microbial replication 
process, mitochondrial function as well as bacterial enzyme activity. 
The combinations of antibiotics with nanoparticles are exhibits the 
good synergistic effects against the microbes. 
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