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ABSTRACT  

Objective: Since structural changes of adsorbed protein are necessary for cellular uptake of nanoparticles (NPs) it is of prime importance to know 
about structural changes of bovine serum albumin (BSA) when it interacts with CuO NPs–a potential new antitumor drug.  

Methods: CuO NPs prepared by sol-gel technique were characterized by x-ray diffraction (XRD) and tunneling electron microscope (TEM) 
techniques. The conformational changes induced by CuO NPs on BSA were studied by various spectroscopic techniques such as steady state and 
time-resolved fluorescence measurements. The changes in fluorescence emission parameters such as fluorescence intensity, fluorescence emission 
maximum and lifetimes of fluorescent residues in BSA were studied. 

Results: XRD analysis showed the average particle size as 32 nm. The TEM micrograph showed particles of different size varying from 10 to 45 nm. 
Fluorescence quenching was confirmed due to a decrease in fluorescence intensity of CuO NPs–BSA complex. The analysis of lifetime measurements 
indicated BSA contained two tryptophan (trp) residues that fluoresced in different environments. Static quenching mechanism was confirmed by 
time-resolved measurements when BSA interacted with CuO NPs.  

Conclusion: Minor structural changes of BSA protein were observed during the interaction studies.  
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INTRODUCTION 

Nanotechnology holds a huge promise for the design and development 
of many types of novel products with its potential medical applications 
on early disease detection, treatment and prevention [1-4]. NPs large 
functional surface area allows them to bind absorb and carry other 
compounds [5]. Copper compounds have been used to treat cancer and 
several diseases for thousands of years [6]. In vitro and in vivo studies 
showed that metal oxide NPs can directly kill tumor cells [7]. CuO NPs 
have many advantages such as simple preparation procedure, long-term 
stability, and anticancer properties and showed a strong affinity to bind 
blood carrier proteins [8, 9]. BSA is a good model to study protein 
conformational changes due to its wide range of physiological functions 
[10], an ideal protein for intrinsic fluorescence measurements [11], well-
characterized structure and property and readily undergoes 
conformational changes [12, 13]. 

The NP-protein interactions give rise to the formation of protein corona 
which has a major impact on NPs cellular uptake. When protein 
structure of an adsorbed protein is lost uptake of NPs by the cell will get 
inhibited whereas unfolding of an adsorbed protein facilitates cellular 
uptake of NPs due to access receptors on cell surface. Thus structural 
changes of adsorbed protein are necessary for cellular uptake of NPs 
[14]. NPs exhibit unique behaviour in human body, but there is only a 
limited knowledge of how NPs interact with cells and proteins. Since 
blood circulatory system is the most probable treatment administration 
option for NPs into the human body, it is important to investigate how 
adsorption of blood proteins on NPs will affect the protein’s secondary 
structure [15]. Spectroscopic techniques can be used as a powerful tool 
to accomplish this need. Therefore, in the present study interaction of 
CuO NPs with BSA was studied by spectroscopic techniques. To the best 
of our knowledge lifetime measurements by TCSPC technique of BSA–
CuO complex is reported for the first time. 

MATERIALS AND METHODS 

Chemicals 

BSA was purchased from Sigma-Aldrich, USA. Copper chloride and 
sodium hydroxide were purchased from SD fine chemicals, India.  

Preparation of CuO NPs 

0.5M CuCl2.6H2

Stock preparation and interaction of BSA with CuO NPs 

O was dissolved in de-ionized water in a 250 ml conical 
flask with constant stirring. A very little amount of citric acid was added 
to the above solution [16]. The solution mixture was heated at 80 °C with 
continuous stirring. Then a required quantity of separately prepared 
NaOH solution was added slowly into the above heated solution under 
vigorous stirring. The colour of the solution turned to black from blue 
which confirmed the formation of CuO. The addition of NaOH solution 
was stopped after the formation of large amount of black precipitate. The 
obtained black precipitate was collected by a centrifuge. The obtained 
mass was washed several times with ethanol and de-ionized water to 
remove impurities. The product was further dried at 80 °C for 12 h in 
oven. The dried product was grinded well using mortar and pestle and 
then it was annealed at 300 °C to obtain crystalline CuO Nano powder. 

Among the prepared stock solutions of BSA and CuO NPs, CuO NPs 
were subjected to ultrasonic vibration for 20 min. The mixture of 
BSA with various concentrations of CuO NPs was homogenized and 
kept for 30 min for incubation. The emission spectra were taken in 
the range 310-420 nm at an excitation wavelength of 290 nm [17]. 
Double distilled water was used for interaction studies. All 
measurements were performed at room temperature.  

Characterization 

XRD 

The structure of CuO was confirmed using Brucker K 8600 X-ray 
diffractometer in the 2θ range of 20 ° to 80 °.  

TEM 

The particle size of the prepared nano-sized CuO was estimated with 
the help of JEOL JSM 5610 LV tunnelling electron microscope. 

Steady-state fluorescence measurements 

JASCO FP–8600 spectrofluorometers was used for fluorescence 
measurements with excitation wavelength 290 nm. The excitation 
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slit width 2.5 nm, emission slit width 2 nm and scan rate 500 
nm/min were maintained constant for all measurements. 

Time-resolved fluorescence measurements 

Picosecond time-correlated single photon counting (TCSPC) 
spectrometer was used for fluorescence lifetime measurements. The 
excitation source is the tunable Ti-sapphire laser (Tsunami, Spectra 
Physics, USA). 

RESULTS AND DISCUSSION  

XRD analysis  

The structure of CuO has been investigated using XRD profile. Fig. 1 
shows XRD pattern of CuO NPs. All the existing diffraction peaks in 
XRD profile are in good agreement with standard JCPDS data (File no. 
05-661). The diffraction peaks also confirmed the monoclinic 
structure of CuO. The peaks are broad due to nano size effect. The 
average particle size was calculated as 32 nm using Scherrer formula. 

 

 

Fig. 1: XRD pattern of CuO NPs 

 

TEM study  

The size and morphology of CuO NPs have been examined using 
TEM. The nanoparticles are spherical in shape as shown in fig. 2. The 
TEM micrograph has shown particles of different size approximately 
from 10 nm to 45 nm. The TEM result also coincides with the 
estimated particle size in XRD analysis. 

 

Fig. 2: TEM micrograph of CuO NPs 
 

Steady-state fluorescence analysis 

The intrinsic fluorescence spectra of BSA and BSA-CuO NP complex at 
excitation wavelength 290 nm are shown in fig. 3. BSA-metal oxide 
NPs interaction was reported earlier at this same excitation 
wavelength [18, 19]. Fig. 3 clearly shows that the emission maximum 
of BSA is at 343 nm and fluorescence spectrum of native BSA is 
different than that of BSA-CuO NP complex. With increasing 
concentrations of CuO NPs in BSA a gradual decrease in fluorescence 
intensity without any shift in emission maximum of BSA was observed. 
This result is consistent with the studies in which it was reported that 
the binding abilities of TiO2 NPs and Ag-doped TiO2 NPs with serum 
albumins showed that both TiO2 NPs and Ag-doped TiO2

Increased concentrations of Copper (I) oxide NPs and gold NPs in 
BSA resulted in a decrease in fluorescence intensity due to 
quenching [22, 13]. Quenching of the intrinsic fluorescence of BSA 
with a blue shift in emission maximum was reported during the 
interaction studies of BSA with increasing concentrations of ZnO 
NPs [23], Cu NPs [24, 25], silver NPs [26] and colloidal capped CdS 
NPs [27]. The addition of ZnO NPs of different concentration with 
BSA resulted in a small red shift with a change in maximum emission 
intensity suggesting the occurrence of fluorescence quenching 
process [19]. The interaction of BSA with Al

 NPs quench 
fluorescence without any shift in emission maxima [20, 21]. The 
fluorescence intensity of BSA gradually decreased for increasing 
concentrations of CuO NPs indicating CuO NPs are responsible for 
quenching the fluorescence of BSA. The decreased fluorescence 
intensities of CuO NP-BSA conjugates suggests interactions between 
CuO NPs and BSA. A concentration-dependent quenching of intrinsic 
fluorescence intensity of BSA, suggests that CuO NPs binds to BSA. 

2O3

 

 NPs did not show 
any concentration-dependent fluorescence quenching [28]. 

 

Fig. 3: Fluorescence spectra of BSA at different concentrations of CuO NPs (0, 6, 9 and 12 x 10-8
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Time-resolved fluorescence analysis 

The exponential decay curves of BSA and BSA-CuO NP complex are 
shown in fig. 4. The fluorescence decay of BSA was fitted with two 
exponentials, T1 = 6.50 ns and T2

The fluorescence lifetime of both trp residues in BSA decreased when 
interacted with different concentrations of CuO NPs. The decrease was 
more prominent for lifetime T

 = 2.46 ns and is consistent with 
the studies that lifetimes of trp fluorescence are often multi-
exponential [29]. The changes in a lifetime, give information about 
the local environment of the trp-residues [30]. The marked 
difference between two lifetimes indicated that one of the trp 
residues in a protein may be relatively exposed whereas other trp 
residue appears to be deeply buried inside the protein [31]. 

2. Similar results were observed with 
decrease in fluorescence lifetime when BSA interacted with TiO2 NPs 

and silver NPs [32, 33]. While increasing concentrations of CuO NPs in 
BSA, lifetime of BSA-CuO NP complex gradually increased for lifetime T1 
whereas an increase and then decrease in fluorescence lifetime was 
observed for lifetime T2 (fig. 4 and table 1). Overall there was no 
significant change in lifetime of both trp residues compared to that of 
native BSA. For static quenching, complex formation will not disturb 
fluorescence lifetime of trp residues in BSA [12]. Therefore, present 
results clearly indicated static quenching was consistent in this reaction 
process. This result is consistent with fluorescence quenching rate 
constant studies in which static quenching mechanism was observed 
when BSA interacted with Cu NPs [24, 25] and CuO NPs [34]. Static 
quenching mechanism was confirmed by time-resolved measurements 
when BSA interacted with colloidal ZnO nps [35], SnO2 nps [32], TiO2

 

 
nps [36] and no significant change in average lifetime of trp residues 
with gold NPs [37]. 

 

Fig. 4: Time-resolved fluorescence decay of BSA at different concentrations of CuO NPs (0, 6, 9 and 12 x 10-8

 

Conformational changes of BSA-CuO NP complex 

 M) 

The protein NP interaction result in considerable changes of the 
structure and function of proteins [38, 39]. When different 
concentrations of CuO NPs interacted with BSA a gradual reduction of 
BSA fluorescence intensity was observed. Protein conformational 
changes will generate some alterations in fluorescence intensity and 
disturb microenvironment around trp residues [40, 41]. Thus it is 
concluded that conformational changes occurred during this 

interaction studies. There was no significant change in fluorescence 
lifetime of both trp residues in BSA when interacted with CuO NPs 
indicating static quenching process. For static quenching, fluorescence 
lifetime will not get disturbed [18]. In the present study, a decrease in 
fluorescence intensity and a small change in lifetimes (fig. 3, fig. 4 and 
table 1) implies minor conformational changes induced by CuO NPs on 
BSA. Conformational changes were observed when BSA interacted 
with Copper I oxide NPs [15], Cu NPs [25], ZnO NPs [23], colloidal ZnO 
NPs [35], TiO2

 
 NPs [20] and tin oxide NPs [32]. 

Table 1: Emission wavelengths, corresponding fluorescence intensities, lifetime of BSA and BSA with different concentrations of CuO NPs 

Sample Emission maximum (nm) Fluorescence intensity (a. u.) Lifetime T1 Lifetime T(ns) 2 (ns) 
BSA 343 464 6.50 2.46 
BSA+6x10-8 343 M, CuO NPs 438 6.38 2.12 
BSA+9x10-8 343 M CuO NPs  424 6.40 2.37 
BSA+12x10-8 343 M CuO NPs 401 6.42  2.32 

  

CONCLUSION 

CuO NPs were synthesized by sol-gel technique. XRD analysis 
showed the average particle size as 32 nm. The TEM micrograph 
showed particles of different size varying from 10 to 45 nm. Based 
on fluorescence spectroscopic studies of BSA and BSA-CuO NP 
complex following conclusions were made. Fluorescence quenching 
was confirmed due to a decrease in fluorescence intensity of CuO 
NPs–BSA complex. The analysis of lifetime measurements indicated 
that no significant change in both lifetimes T1 and T2

The two lifetimes indicated that BSA contained two trp residues, 
longer lifetime indicated that trp residue is buried inside 
hydrophobic interior of protein and shorter lifetime indicted trp 
residue is closer to the quencher. BSA–CuO NP conjugate made 
changes in BSA fluorescence emission parameters probably 
confirmed minor conformational changes in the structure of BSA. 

 of trp residues 
in BSA, when interacted with different concentrations of CuO NPs, 
confirmed static quenching was dominant in this reaction process.  
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