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ABSTRACT 

Objective: Plasma protein binding (PPB) of drugs is important pharmacokinetic (PK) phenomena controlling the free drug concentration in plasma 

and the overall PK and pharmacodynamic profile. Prediction of PPB at the very early stages of drug development process is of paramount 

importance for the success of new drug candidates. The study presents a quantitative structure–pharmacokinetics relationship (QSPkR) modelling 

of PPB for neutral drugs.  

Methods: The dataset consists of 117 compounds, described by 138 molecular descriptors. Genetic algorithm and stepwise multiple linear 

regression are used for variable selection and QSPkR models development. The QSPkRs are evaluated by internal and external validation 

procedures. 

Results: A robust, significant and predictive QSPkR with explained variance r2 0.768, cross-validated q2
LOO-CV 0.731,and geometric mean fold error of 

prediction (GMFEP) 1.79 is generated, which is able to predict the extent of PPB for 67.6% of the drugs in the dataset within the 2-fold error of 

experimental values. A simple empiric rule is proposed for distinguishing between drugs with different binding affinity, which allowed correct 

classification of 78% of the high binders and 87.5% of the low binders.  

Conclusions: PPB of neutral drugs is favored by lipophilicity, dipole moment, the presence of substituted aromatic and fused rings and a nine-

member ring system, and is disfavored by the presence of aromatic N-atoms.  

Keywords: Plasma protein binding (PPB), Quantitative structure–pharmacokinetics relationship (QSPkR), In silico prediction, Human serum 

albumin (HSA), Alpha-1-acid glycoprotein (AGP). 
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INTRODUCTION 

Most of the drugs bind reversibly to various proteins in plasma: 

human serum albumin (HSA), alpha-1-acid glycoprotein (AGP), 

lipoproteins, etc. Plasma protein binding (PPB) is a major determinant 

of the overall pharmacokinetic (PK) and pharmacodynamic (PD) 

profile. According to the free drug theory, only the free drug is able to 

be distributed throughout the body and to reach the target receptor–

i.e. PPB controls drug potency in vivo [1, 2]. Similarly, as only the 

unbound fraction is available for the clearance organs, PPB may 

influence drug metabolism, bioavailability and renal excretion [3, 4]. 

As a result, changes in PPB may have considerable clinical 

consequences, especially for highly bound drugs (>99%) with narrow 

therapeutic window, high hepatic extraction ratio (if administered iv), 

and high renal clearance, as well as in critically ill patients [3, 5–7]. The 

importance of PPB for PK and PD and its clinical relevance have been 

reviewed recently [1–3, 8–10]. 

The progress of combinatorial chemistry and high throughput 

technologies has led to the proposal of extensively growing number 

of structures with drug-like activities. It has been long recognized 

that the success of a new drug candidate depends not only on 

activity and safety but also on its proper absorption–distribution–

metabolism–excretion (ADME) characteristics. As PPB appears to be 

a key determinant for ADME, extensive research has been 

undertaken targeted to the prediction of PPB at very early stages of 

drug development process.  

In the last two decades in silico modeling has established itself as one 

of the most reliable and promising approaches for early prediction of 

ADME. It showed the comparable predictive ability to the traditional 

in vivo and in vitro methodologies, while allowing predictions to be 

made on the basis of theoretical molecular descriptors, even on virtual 

compounds, thus reducing the investments in technology resources 

and time [11]. The progress of methodologies for in silico prediction of 

ADME is reviewed in several articles and monographs [11–20]. In 

silico modeling utilizes two general approaches: structure-based and 

ligand-based. Structure-based methods require knowledge about the 

3D structure of both protein and drug and are suitable for modeling 

specific interactions between drug molecules and proteins. 

Determination of the X-ray crystallographic structures of the main 

binding plasma proteins (HSA and AGP) enabled application of 

structure-based techniques such as molecular dynamics, molecular 

docking, etc. for more-detailed studying of plasma protein-drug 

interactions [21–31]. The ligand-based approach is generally used for 

modeling more complex PK properties, resulting from several 

underlying processes [18]. One of the most widely used techniques is 

quantitative structure–pharmacokinetics relationship (QSPkR) 

modeling. QSPkR models are empirical equations, relating the ADME 

parameter of interest with a set of molecular descriptors, encoding 

various aspect of the chemical structure. QSPkR can serve as both 

predictive and diagnostic tool as it can give insight into the major 

molecular features governing given ADME property.  

Numerous successive QSPkR models have been proposed for analysis 
and prediction of PPB. Most of them concerned drug binding to HSA–
the major plasma protein, accounting for 50–60% of all proteins. A 
number of QSPkRs were reported for the chromatographic capacity 
factor on HSA-immobilized stationary phase as a measure for HSA 
binding affinity, developed on the same dataset of 94 molecules using 
various statistical tools [32–38]. Several models were based on 
topological sub-structural descriptors [39, 40] or pharmacophore 
similarity principle [41–43]. A wide diversity of descriptors have been 
used, and the repertoire of statistical tools included multiple linear 
regression (MLR), artificial neural networks (ANN), support vector 
machines (SVM), pharmacophore similarity and fingerprints, etc. 

Although the free fraction of drug in plasma (fu,p) was considered as 

the most reliable parameter characterizing the overall PPB in vivo, 

only a few studies were focused on the prediction of PPB to all 
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proteins in plasma, without explicit consideration of any particular 

protein [44–46]. According to all QSPkR models, two factors 

appeared to be essential for drug binding affinity: lipophilicity and 

ionization state of the molecule. In general, lipophilicity is favorable 

for PPB, although there are examples for drugs with equal 

lipophilicity and quite a different extent of PPB, and vice versa. Lexa 

et al. reported a very low correlation between the % HSA binding 

and log P for the studied dataset with r2 0.28 and stated that 

lipophilicity is a necessary but not sufficient requirement for high 

HSA binding [29]. According to Kratochwil et al. the effect of 

lipophilicity on PPB was larger for acids than for bases [41]. 

Yamazaki proposed a non-linear relationship between the % PPB 

and logD7.4 for a dataset of 90 basic and neutral drugs, but not for 

acidic drugs and for the mixed dataset [42]. It is generally accepted, 

that HSA binds preferably acidic and neutral compounds, while AGP 

is specialized in complexation of basic and neutral molecules [3, 8]. 

Therefore different structural requirements for binding to various 

plasma proteins could be expected, and separate QSPkR analysis 

according to the ionization state of the molecules seems reasonable.  

QSPkR models for PPB of acidic and basic drugs have been published 

recently [47, 48]. Lipophilicity was identified as a major factor with 

a positive contribution for both types, while the presence of 

quaternary C-atom contributed negatively to PPB. PPB of acidic 

drugs was further favored by the presence of aromatic non-

substituted atoms, cyano-groups and a high number of hydrogen 

bond donor-acceptor pairs, while the presence of a 4-member ring 

and I-atoms disfavored PPB. PPB of basic drugs was favored by the 

presence of aromatic non-substituted non-bridged and bridged rings 

and molecular volume, and disfavored by the ionization. The present 

study is focused on the development of QSPkR models for PPB of 

neutral drugs. 

MATERIALS AND METHODS 

Datasets 

The dataset used in the study consisted of 117 molecules extracted 

from the dataset of Obach et al., the largest and best-curated source 

of data for the key ADME parameters after IV administration [49]. A 

drug was considered as neutral if the fraction ionized as an acid (fA) 

or as a base (fB) at physiological pH = 7.4 didn’t exceed 3%. The mol 

files of the drugs were derived from public databases–Drug Bank 

[50], Chemical books [51], or ChEBI [52]. The value of the free 

fraction of the drug in plasma (fu) was used as a quantitative 

measure for PPB. It ranged between 0.0016 and 1 (mean 0.40 ± 0.38, 

median 0.25), and was logarithmically transformed in order to reach 

close to normal distribution. For better interpretability, QSPkR 

models were developed for pfu =-logfu, so that high value of pfu 

implied a high extent of PPB. 

The whole dataset was divided into five subsets. To this end, the 

molecules were arranged in an ascending order according to their 

fu values and one of every five drugs was allocated to different 

subset. Each subset was used once as a test set for validation of the 

QSPkR model, developed on a training set, consisting of the 

remaining four subsets. In summary, five training sets (differing in 

25% of their content), and five corresponding external test sets 

were used (table 1). 

 

Table 1: Training and test sets used for QSPkR development and validation 

Training set Subsets included Test set 

A 2+3+4+5, n = 93 1, n = 24 

B 1+3+4+5, n = 93 2, n = 24 

C 1+2+4+5, n = 94 3, n = 23 

D 1+2+3+5, n = 94 4, n = 23 

E 1+2+3+4, n = 94 5, n = 23 

 

Molecular descriptors and variable selection 

The chemical structures of the compounds were described with 138 

molecular descriptors computed by ACD/logD version 9.08 (Advanced 

Chemical Development, Inc) and MDL QSAR version 2.2 (MDL 

Information Systems Inc) software. They included physicochemical 

(logP, PSA, dipole moment, polarizability), constitutional (number of 

atoms, groups and bonds of a different type, rings, circles, etc.), 

geometrical (volume, surface, ovality), electrotopological state and 

connectivity indices, etc. A three-step variable selection was performed 

for identification of the more significant predictors: 1. manual rejection 

of descriptors with a non-zero value for less than 10 molecules; 2. 

filtering through a genetic algorithm (GA); 3. Stepwise linear regression 

(SWR) with Fisher criteria F-to-enter 4.00 and F-to-remove 3.99. Both 

GA and SWR were implemented in MDL QSAR package. 

Generation of QSPkR models for pfu 

A number of QSPkR models were constructed for each of the five 

training sets using MLR and different combinations of descriptors. 

Drugs for which the values of pfu were predicted with residuals not 

following the normal distribution law were considered as outliers. 

They were removed from the dataset, and the models were rebuilt. 

The goodness of fit and significance of the models were assessed by:  

-Coefficient of determination (explained variance): 
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where pfu,obs,i and pfu,calc,i are the observed and calculated by the 

model values of pfu for the ith compound in the training set, and 

pfu,obs,mean is the mean observed value for pfu. 

-Standard error of the estimate:  
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Where n is the number of molecules in the train set and p–the 

number of descriptors in the model.  

- Variance ratio, or Fisher statistics:  
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QSPkR model validation 

The QSPkR models were validated by internal leave-one-out cross-

validation (LOO-CV) and external test set validation. Predictive 

performance was assessed by:  

- Cross-validated coefficient for the training set:  
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- Predictive coefficient for the external test set:  
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- Root mean square error of prediction (RMSEP): 
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- Mean fold error of prediction:  
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- Accuracy: the percentage of molecules in the test set which fu value 

is predicted within the two-fold or three-fold error of the 

experimental value. 

The QSPkR models were considered as well predictive if they met 

the proposed recently statistical criteria: q2
LOO-CV>0.5, r2

pred>0.5 [53] 

and GMFEP<2 and accuracy at two-fold error level>60% [54]. 

RESULTS 

The QSPkR models developed on the five training sets together with 

their statistics and outliers are shown in table 2. 

  

Table 2: QSPkR models for PPB of neutral drugs developed on 5 training sets 

Train Model r2 q2
LOO-CV SEE F 

1 

020.0SaaN*)011.0(042.0

acnt_SaasC)015.0(081.0SaaaC*)108.0(593.0

Dipole*)015.0(065.0Plog*)016.0(201.0pfu

−±−
−±+±+

+±+±=

 

0.781 0.732 0.309 57.2 

Outliers: eltanolone, felodipine, fenoximone, nisoldipine, paclitaxel, tacrolimus, teniposide 

2 

093.0nrings*)029.0(099.0

9xvch*)26.11(54.48acnt_SaasC*)016.0(082.0

Acnt_4intSHB*)022.0(140.0Plog*)018.0(304.0pfu

+±−
−±+±+

+±+±=

 

0.830 0.789 0.302 78.9 

Outliers: diazepam, fenoximone, nisoldipine, paclitaxel, pimobendan, tetrahydrocannabinol 

3 

300.09xvch*)75.11(81.654xc*)359.0(146.2

G*)038.0(253.0Dipole*)014.0(058.0

acnt_SaasC*)014.0(068.0Plog*)016.0(239.0pf

min

u

−±+±−
−±−±+

+±+±=

 

0.838 0.801 0.280 69.6 

Outliers: aminocamptothecin, felodipine, paclitaxel, paricalcitol, pimobendan, Sch34343 

4 

023.0Dipole*)017.0(043.05xvch*)891.0(603.2

acnt_SaaaC*)082.0(247.0acnt_SaaN*)047.0(204.0

acnt_SaasC*)015.0(087.0Plog*)016.0(228.0pfu

−±+±+
+±+±−

−±+±=

 

0.782 0.736 0.322 49.7 

Outliers: aminocamptothecin, nisoldipine, paricalcitol, tetrahydrocannabinol 

5 

( ) 109.0SaaN*009.0023.0acnt_SaasC*)015.0(044.0

9xvch*)931.9(56.534xvc*)399.0(973.1

Acnt_4intSHB*)023.0(090.0Plog*)016.0(314.0pfu

+±−±+
+±+±

−±+±=

 

0.867 0.843 0.263 87.3 

Outliers: aminocamptothecin, fenoximone, nisoldipine, paclitaxel, Sch 34343, teniposide 

Predictive ability of developed models was evaluated using five external test sets. Statistical parameters are presented in table 3.  

 

Table 3: Statistical parameters used for external validation of QSPkR models for neutral drugs 

Training set Test set r2
pred MFEP GMFEP RMSE Accuracy Outliers in the test set 

A 1 0.761 2.07 1.82 0.336 63% paracalcitol 

B 2 0.785 1.81 1.73 0.273 63% aminocamptothecin, teniposide, Sch 34343 

C 3 0.719 1.78 1.60 0.270 65% eltanolone, nisoldipine, doxitaxel, propofol 

D 4 0.811 1.96 1.70 0.310 65% fenoximone, paclitaxel, tacrolimus 

E 5 0.765 2.14 1.89 0.347 61% amidulafungin, pimobendan, tetrahydrocanabinol, 

 Mean 0.768 1.95 1.75 0.307 63.5%  

The eight most frequently emerging descriptors were used for generation of Consensus model, shown below.  

 

Consensus model 

038.0SaaN*)010.0(038.0

acnt_SaaaC*)066.0(208.0acnt_SaasC*)014.0(099.0

9xvch*)08.9(5.25Dipole*)014.0(046.0Plog*)015.0(203.0pfu

−±−
−±+±+

+±+±+±=

 

Where logP is the calculated n-octanol/water partition coefficient, 

Dipole–the dipole moment of the molecule, xvch9–valence 9th order 

chain connectivity index, SaasC_acnt, SaaaC_acnt and SaaN_acnt–the 

number of atoms of the type aasC, aaaC and aaN. Six drugs 

(aminocamptothecin, felodipine, nisoldipine, paclitaxel, paricalcitol, 

tacrolimus) were identified as outliers and were removed before 

construction of the final model. Statistic metrics of the model were 

as follows: r2=0.768, q2
LOO-CV = 0.731, SEE = 0.323, F = 57.39, MFEP = 

1.97, GMFE = 1.79, and accuracy at 2-fold level error = 67.6%. 

DISCUSSION 

The present study was focused on QSPkR modeling of PPB of neutral 

drugs. The dataset consisted of 117 compounds, described by 138 

molecular descriptors. The negative logarithm of the free fraction in 

plasma (pfu =-logfu) was used as an end-point variable. A three-step 

procedure was applied for selection of the most significant variables 

including manual filtering, GA and SWR. A number of significant 

QSPkRs were generated by MLR. Although built on training tests 

which differ in 25% of their content, the models were fairly similar 

in terms of descriptors involved and the outliers (table 2). This, 

together with the statistical metrics, suggests the significance 

robustness of QSPkRs. The predictive performance of the models 

was assessed by internal and external cross-validation. The values of 

q2
LOO-CV, r2

pred, GMFEP and accuracy are in agreement with the 
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accepted criteria for good predictive models, namely q2
LOO-CV>0.5, 

r2
pred>0.5 [53], GMFEP<2 and accuracy>60% [54]. 

The most frequently emerged descriptors were used for the 
construction of the Consensus model. The model is robust, 
significant and predictive as proved by the statistical metrics used: 
r2 = 0.768, q2

LOO-CV =0.731SEE = 0.323, F = 57.39, MFEP = 1.97 and 
GMFEP = 1.79. It was able to predict the fu values of 67.6% of the 
drugs in the dataset within the 2-fold error of experimental values.  

Consensus model involves descriptors with clear physical meaning 

which reveal the structural features responsible for PPB. The major 

factor with a positive contribution to PPB is lipophilicity, expressed 

as logP. It accounts for 55.58% of the explained variance (68.3% 

without the outliers). The polarity of the molecules (expressed as 

Dipole), the presence of a nine-member ring system (descriptor 

xvch9), substituted aromatic C-atoms (SaasC_acnt) and fused rings 

(SaaaC_acnt) also affect positively PPB, while the presence of 

aromatic N-atoms (SaaN_acnt) disfavors PPB.  

Analysis on the dataset allowed defining a cutoff for each descriptor 

and criteria for distinguishing between drugs with different extent 

of PPB. They are summarized in table 4. Although there was a strong 

positive correlation between pfu and SaaaC_acnt, the presence of 

aaaC-atoms was not involved as a criterion for high PPB, because 

molecules with this structural element were uniformly distributed 

within all PPB groups. 

 

Table 4: Checklist of criteria for high PPB of neutral drugs, based on a Consensus model 

№ Descriptor Positive effect Negative effect 

1 logP>3 √  

2 Dipole>5 √  

3 9-member ring system √  

4 Number of aasC≥ 3  √  

5 logP<0  √ 

6 Presence of aaN  √ 

 

The drugs in the dataset were divided into three groups:  

- High binders (fu≤ 0.1, i.e. PPB>90%) 

- Moderate binders (0.1<fu≤ 0.5, i.e. 50-90% PPB) 

- Low binders (0.5<fu≤ 1.0, i.e. PPB>50%) 

The group of high binders comprised 41 molecules with dominating 

positive features. For 68% of them logP>3; 49% were fairly polar 

with Dipole>5; 41% contained 9-member ring system, 60%–at least 

4 substituted aromatic C-atoms, and only 24%–aromatic N-atoms. 

The group of moderate binders involved 36 molecules with well-

balanced positive and negative features. logP>3 for only 14%; 46% 

had Dipole>5; 33% contained 9-member ring system, and 46%–at 

least 4 aasC-atoms. On the other hand, 30% contained aromatic aaN-

atoms, and 11% had logP<0. The low-binders group was 

represented by 40 molecules with few positive and dominating 

negative features. No one molecule had log P>0, instead, for 68% 

logP<0. Only 25% had Dipole>5, 27% contained 9-member ring 

system, 18%–at least 3 aasC atoms, and 48%–unfavorable aaN-

atoms.  

The difference between the number of met positive and negative 

criteria was used for classification of the drugs according to their 

PPB ability. The following empirical rule was drawn:  

Drugs with a difference ≥ 2 were expected to have high PPB (fu≤ 0.1).  

Drugs with a difference ≤ 0 were expected to have low PPB (fu>0.5). 

Drugs with difference =1 should have moderate PPB (0.1<fu≤ 0.5)  

Applying this rule, 67% of the drugs were correctly classified, 

namely 78% of the high binders, 31% of the moderate binders and 

87.5% of the low binders. 22% of the high binders were false 

classified: 5% as low binders, and 17%–as moderate. 12.5% of the 

low binders were erroneously classified as moderate binders. The 

prediction for the moderate PPB group was less accurate: 33% of 

the drugs were incorrectly classified as low binders, and another 

36%–as high binders.  

Five of the drugs with very high PPB (fu≤ 0.01), although correctly 

classified as high binders, were identified as outliers, highly under-

predicted by the model. These were: paricalcitol (fu0.0016, predicted 

0.026), aminocamptothecin (fu0.003, predicted 0.055), nisoldipine 

(fu0.003, predicted 0.037), felodipine (fu0.0036, predicted 0.031), 

tacrolimus (fu0.01, predicted 0.092). Similar weakness in the 

prediction of high plasma protein binders was reported for acidic 

and basic drugs [45, 46]. Highly bound drugs have very low unbound 

concentration in plasma which depends crucially on the rate of 

dissociation of the drug-protein complex. This kinetic factor is not 

taken into account in QSPkR modeling which assumes rapid 

dissociation of the complex. In addition, the low free drug 

concentration in plasma requires highly sensitive analytical 

techniques and special conditions to preserve the equilibrium state, 

therefore the possibility for incorrect experimental values for fu 

cannot be dismissed. 

The developed QSPkR model for neutral drugs is consistent with the 

structure of the major plasma proteins and their binding sites. Neutral 

drugs bind with variable affinity to both HSA and AGP [8]. 

Lipoproteins also contribute to PPB, especially for highly lipophilic 

compounds [55]. It was suggested that the binding of drugs to HSA 

occurs at two distinct binding sites defined as Site 1 (warfarin binding 

site) and Site 2 (benzodiazepine binding site) [56, 57]. The 

architecture of the binding sites and the modes of complexation were 

revealed through X-ray crystallographic analysis of HSA complexes 

with various ligands [58–60]. Both drug binding sites represent large 

hydrophobic cavities with polar clusters. Site 1 is larger, with three 

compartments and two polar patches a prerequisite for hydrophobic 

and electrostatic interactions. Most of Site 1 substrates (warfarin, 

phenylbutazone, oxyphenbutazone, etc.) are snugly pinned between 

the non-polar residuals at the bottom of the pocket and make a 

number of hydrogen bonds with the polar residuals Tyr150, His242, 

Lys199, Arg222. The structure of the pocket and the mode of 

complexation imply that Site 1 has a preference for molecules with 

two anionic or electronegative features on the opposite sides of the 

ligand molecule [59]. Site 2 is narrower, with a single polar cluster, 

with high affinity for neutral molecules as diazepam, digoxin, 

clofibrate, 3’-azido-3’-deoxythymidine, acidic ibuprofen, etc. [58, 61]. 

The presence of only one basic polar patch, located unilaterally in the 

hydrophobic pocket, determines the specificity of Site 2 for drugs with 

the peripherally located electronegative group. X-ray analysis revealed 

that Site 2 drugs are located in the centre of the pocket and able to 

form hydrogen bonds with Tyr411. Arg410 and Ser489 were also supposed 

to be involved in salt bridges and hydrogen bonding [59]. Human AGP 

exists as a mixture of two genetic variants, F1*S and A, which bind 

drugs with different selectivity [62]. The F1*S variant possesses a deep 

and wide branched drug binding pocket consisting of three lobes. The 

central lobe I is the largest and appears to serve as the main 

hydrophobic drugs binding chamber while lobes II and III are smaller 

and negatively charged [22]. The binding region of A variant is 

narrower and involves only lobe I and lobe II [62]. The crystal 

structures of complexes of a mutant of A variant and three basic AGP 

substrates (disopyramide, amitriptyline and chlorpromazine) gave 

inside into the binding mode to variant A [63]. Both disopiramide and 

amitryptilline contain two aromatic rings, which are in direct contact 

with Phe49 and Phe112, resulting in CH-π interactions. Additional van 
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der Waals interactions with different hydrophobic residuals (Glu64, 

Arg90, Leu62 and Arg90) stabilize the complex. Chlorpromazine has a 

fused aromatic ring system, involved in π-π stacking interactions with 

Phe112, and in CH-π interactions with Phe49 and Ala99. Further van der 

Waals contacts are made with Phe51, Val88, and Arg90.  

According to the Consensus model, the main factor favoring PPB of 

neutral drugs is lipophilicity. It is a premise for both selective 

hydrophobic interactions at the binding sites and non-selective 

“dissolution” in all binding proteins. The presence of aromatic 

substituted and fused rings (descriptors SaasC_acnt and SaaaC_acnt) 

and a nine-member ring system (encoded by xvch9, in most cases 

consisting of fused aromatic six-and five-member rings) is favorable 

in terms of the possibility of CH-π and π-π stacking at AGP binding 

sites. The dipole moment of the molecule is a measure of the uneven 

distribution of the electron density, and it has higher values for 

extended molecules with distant positive and negative centers. 

These structural features meet the requirements for binding of 

drugs at Site 2, as well as for binding at AGP binding site. The 

negative contribution of the presence of aromatic N-atoms 

(descriptor SaaN) could be attributed to decrease of lipophilicity and 

reduced tendency for hydrophobic and Van der Waals interactions 

in the binding site. Some of the descriptors were suggested to affect 

positively PPB of acids (logP and SaasC_acnt) and bases (logP and 

SaaaC_acnt) as well [47, 48].  

CONCLUSION 

The present study presents a set of statistically significant, 

predictive and interpretable models for PPB of neutral drugs. The 

final Consensus QSPkR allows prediction of 67.6% of the drugs 

within the two-fold error of experimental values. PPB of neutral 

drugs is favored by lipophilicity, the presence of aromatic 

substituted and fused rings, nine-member ring system and high 

dipole moment of the molecules, while the presence of aromatic N-

atoms has a negative effect. A simple rule is proposed for 

distinguishing between low and high plasma protein binders based 

on the difference between the number of positive and the number of 

negative features which allow correct classification of 78% of the 

high binders and 87.5% of the low binders. 
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