

International Journal of Pharmacy and Pharmaceutical Sciences

ISSN- 0975-1491

Vol 10, Issue 2, 2018

Review Article

ETHNOBOTANICAL USES, PHYTOCHEMISTRY AND PHARMACOLOGICAL ACTIVITIES OF PEPEROMIA PELLUCIDA (L.) KUNTH (PIPERACEAE)-A REVIEW

RAGHAVENDRA H. L.¹, PRASHITH KEKUDA T. R.^{2*}

¹Department of Biochemistry, School of Medicine, Wollega University, Nekemte, Ethiopia, ²Department of Microbiology, S. R. N. M. N College of Applied Sciences, N. E. S Campus, Balraj Urs Road, Shivamogga 577201, Karnataka, India Email: p.kekuda@gmail.com

Received: 02 Nov 2017 Revised and Accepted: 03 Jan 2018

ABSTRACT

Peperomia pellucida (L.) Kunth is a herb belonging to the family Piperaceae. In this review, an extensive literature survey was carried out to compile information available on medicinal uses, phytochemistry and pharmacological properties of *P. pellucida*. The plant is used as food, flavoring agent and as medicine. The plant is used as medicine for treating various ailments or disorders such as asthma, rheumatism, wound, fever, stomach problems, kidney infection, hemorrhoid pain, joint pain, hypertension, diarrhea, snake bite and measles. The plant contains phytochemical groups such as alkaloids, flavonoids, saponins, terpenoids, steroids and glycosides. Compounds such as dill apiole, phytol, stigmasterol, sitosterol, secolignans, tetrahydrofuran lignans, highly methoxylated dihydronaphthalenone, peperomins, sesamin and isoswertisin have been identified in the plant. Studies have shown that the plant exhibited several pharmacological activities such as antimicrobial, antioxidant, anti-angiogenic, antisinflammatory, analgesic, antipyretic, neuropharmacological, antisickling, anticancer, enzyme inhibitory, antiulcer, hypotensive, immunostimulatory, fracture healing and antidiabetic activities such as antiulcer, and antimicrobial activity. By this extensive literature review, it can be concluded that *P. pellucida* can be utilized as a promising candidate for developing newer drugs with potent pharmacological activities.

Keywords: Peperomia pellucida (L.) Kunth, Ethnomedicine, Traditional medicine, Phytochemical, Pharmacological activities

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ijpps.2018v10i2.23417

INTRODUCTION

Throughout the world, especially developing and under-developing countries, plants have been exploited as medicine to meet primary healthcare needs. It is estimated that vast majority of population relies on medicinal plants for therapy against several diseases or disorders. Traditional medicinal practitioners utilize plants, either singly or in certain formulations, to treat ailments. Non-availability (especially for people from remote areas) and high cost of modern drugs limits their use by people from economically poor background. Nowadays, medicinal plants are used routinely in urban settings in daily healthcare and as medication against ailments. Many indigenous medicinal systems such as Ayurveda, Siddha and Unani utilize several plant species. Besides, plants provide many lead compounds for the development of modern drugs. Majority of drugs available are from natural origin, especially from plants. Drugs such as taxol, quinine, artemisinin, vincristine, vinblastine, digoxin and codeine are from plant origin [1-6].

The genus Peperomia Ruiz and Pavon belongs to the family Piperaceae. The genus is the second largest genus in piperaceae and includes plants that are annual or perennial, usually succulent herbs and often epiphytic. The genus encompasses a number of species found distributed in tropical and subtropical regions worldwide. The species of Peperomia are characterized by bisexual flowers (sessile, sunk in rachis) in spike inflorescence and lateral or terminal stigma which is usually penicillate. The genus is often considered as one of the most species rich genera of angiosperms [7-10]. Peperomia pellucida (L.) Kunth (fig. 1) belonging to the family Piperaceae is commonly known by names such as pepper elder, rat ear and shining bush. The plant is native to South America and is found distributed in various countries in the world including India. The plant is very common during rainy season and usually grows in clumps in loose and humid soils and is found in shaded, damp habitats. The plant occurs more or less throughout year in wet places. It is characterized by succulent stems, fleshy and heart shaped leaves, and tiny dot like seeds attached to fruiting spikes. It is called neeru kaddi gida in Kannada. The plant is known to be edible

and is considered to possess cooling property [8, 10, 11]. In the present review, we presented updated information (up to 2017) concerned with the ethnobotanical uses, phytochemical composition and pharmacological properties of *P. pellucida*. An extensive literature survey on various aspects of the plant was carried out by referring flora, journals, and various search engines including Google scholar, Science Direct and Pubmed.

Plant description

P. pellucida is a slender herb (reaching 30-50 cm in length) with straight and succulent stem and is cosmopolitan in distribution. Leaves are opposite and alternate, up to 2.5x2 cm, ovate-deltoid, obtuse to acute at apex. Leaves are thin, fleshy, smooth, membranous when dry, 5-7 nerved from the base. Petiole is up to 1.5 cm long. Spikes are terminal and leaf-opposed, up to 5 cm long. Flowering occurs more or less throughout year. Fruits are ribbed and reticulate, minute in size and almost dry [8, 10].

Fig. 1: *Peperomia pellucida* (L.) Kunth (photograph by prashith kekuda).

Ethnobotanical uses of P. Pellucida

The plant *P. pellucida* is used ethno botanically as medicine, food and flavoring agent in various parts of the world. Aerial parts, young shoots, leaves and whole plant are used in the form of decoctions, juice, paste etc. to treat several diseases such as fever, cold, cough, viral diseases, rheumatic pain, asthma, vaginal infections and kidney infections. The Sumu (Ulwa) of southeastern Nicaragua and southern Miskitu uses *P. pellucida* against bites and stings (snakes, scorpions and insects), infections, venereal diseases and female disorders [12]. The plant is used as human food and medicine in Luang Prabang, Lao People's Democratic Republic [13]. In Lombok, Indonesia, the plant is used to treat fever [14]. In North-Kamrup district, Assam, India, the plant paste is applied externally to reduce pimple and white spots of the body [15]. In Trinidad and Tobago, the plant is use for cooling [16]. The whole plant is used in the treatment of measles in Ogun state, Nigeria [17]. Juice made from leaves and roots are used to treat athletes foot, decotion prepared from leaves is used in the treatment of hemorrhoid pain and kidney infection in Rondônia, Western Amazon, Brazil [18]. In Nigeria, the whole plant is used in haemmorhoids, hypertension, convulsion and bone fracture [19]. The whole plant is boiled and used to treat kidney infection and to lower hypertension in Mindanao, Philippines [20]. Table 1 depicts ethnobotanical (medicinal and non-medicinal) uses of *P. pellucida* in various parts of the world.

Table 1: Ethnobotanical uses of P. pellucida in various parts of the world

Region	Part used	Uses	Reference
Malappuram district, Kerala, India	Whole plant	Decoction prepared from whole plant is taken internally for	Chithra and
		treating rheumatism.	Geetha [21]
Barpeta district, Assam, India	Plant juice,	Plant juice is used in stomach problems, leaf paste is applied on	Kalita <i>et al.</i> [22]
	leaf paste	cuts and wounds.	
East Sepik, Papua New Guinea	Leaves,	Leaves are used as antidepressant and in the treatment of pimple.	Koch <i>et al.</i> [23]
	whole plant	Whole plant is used in the treatment of fever and headache.	
Indonesia	Aerial parts	Dizziness, headache, fever, stomachache	Waty <i>et al.</i> [24]
Greater Khulna division, Bangladesh	Whole plant	Whole plant is used in the treatment of diarrhea.	Rahmatullah <i>et</i>
			al. [25]
Bagerhat district, Bangladesh	-	Tribal community uses plant for medicinal purposes	Mollik et al. [26]
Tinsukia district, Assam, India	Whole plant	Paste made from the whole plant is applied on burns for quick relief.	Buragohain [27]
Assam, India	Young shoots	Young shoots are used as flavoring agents.	Bharali <i>et al.</i> [28]
Morigaon district, Assam, India	Aerial parts	Aerial part of the plant is used to treat stomach pain, joint pain and	Bordoloi <i>et al.</i>
		headache.	[29]
Jalpaiguri district, West Bengal, India	Whole plant	Paste made from whole plant is used against boils.	Bose [30]
Kanda community, Bangladesh	Whole plant	Paste made from the whole plant is applied by the sides of the	Rahmatullah <i>et</i>
		bitten place (poisonous snake, insect or reptile bites).	al. [31]
Saramaccan Maroons in Suriname	Whole plant	Used as herbal bath for children for general health promotion and	Ruysschaert <i>et al.</i>
		to get rid of evil.	[32]
Dominican Republic and New York city	Aerial parts,	Aerial parts are used in the treatment of flu, leaves are used to	Vandebroek <i>et al.</i>
(Dominican traditional medicine)	leaf	treat vaginal infections and asthma/chest congestion.	[33]
Okigwe Imo state, South Eastern Nigeria	Leaves	Leaves are used to treat athletes' foot and wound.	Uzodimma [34]
Assam, India	Leaf and	Stem and leaves are used in urinary disorder and fever.	Gogoi and Zaman
	stem		[35]
Trinidad	Whole plant	Infusion or decoction made from whole plant is used to treat cold	Clement et al.
		and cough and as cooling/cleansing agent.	[36]
Tshopo district, DR Congo	Leaves	Leaves are cooked and used as leafy vegetable.	Termote <i>et al.</i>
			[11]
Moulvibazar district, Bangladesh	Leaves,	Paste made from leaves and whole plant is used in the treatment	Das et al. [37]
	whole plant	of fever in children and adults respectively.	
Kamrup district, Assam, India	Leaves and	Leaves and stem are used in the treatment of fever.	Bora and Das
	stem		[38]

Table 2: Phytochemical groups identified in P. pellucida

Plant part	Phytochemical group	Reference
Whole plant	Tannins, saponins, flavonoids, terpenoids, phytosterols, alkaloids, phenolics	Gini and Jothi [46]
Leaf	Alkaloids, tannins, saponins, terpenoids, flavonoids, cardiac glycosides	Ojo <i>et al.</i> [47]
Leaf	Alkaloids, flavonoids, saponins, tannins, steroids, triterpenoids	Majumder and Kumar [48]
Leaf	Alkaloid, cardiac glycoside, terpene, saponin, tannin	Omotayo and Borokini [49]
Whole plant	Alkaloids, saponins, tannins, flavonoids, anthraquinones, glycosides	Idris <i>et al.</i> [50]
Leaf	Alkaloids, tannins, flavonoids, saponins and cardiac glycosides	Abere and Okpalaonyagu [51]
Leaf	Alkaloids, flavonoids	Ibibia [52]
Stem	Alkaloids, tannins, flavonoids, steroids, triterpenoids	Majumder [53]
Whole plant	Alkaloids, flavonoids, glycosides, saponins	Sheikh et al. [54]
Leaf	Alkaloids, tannins, saponins	Egwuche <i>et al.</i> [55]
Aerial parts	Alkaloids, flavonoid, tannins, saponins, steroids, glycosides	Raina and Hassan [56]

Phytochemistry of P. Pellucida

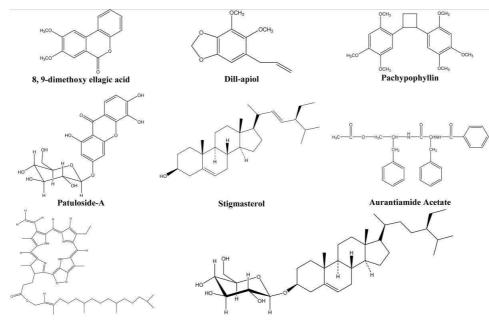

Plants produce a range of primary and secondary metabolites. The study of chemical compounds present in plants (phytochemicals) is known as phytochemistry. The therapeutic potential of plants is ascribed to the presence of a wide range of phytochemicals, mainly secondary metabolites. Significant advancements in the technology, mainly chromatographic and spectral analyses, led to the discovery of many types of phytochemicals from plants and the pharmacological studies revealed their potential role. Techniques such as column chromatography, Thin layer chromatography (TLC), Gas chromatography-mass spectrometry (GC-MS), Fouriertransform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance (NMR) spectroscopic techniques are routinely used to identify phytochemicals present in plants [39-45]. Various researchers have identified phytochemical groups and chemical compounds in leaves and whole plant by standard phytochemical procedures and various analytical techniques.

Table 2 and 3 provides information on various phytochemical groups and chemicals identified in different parts of the plant by standard phytochemical tests and GC-MS analysis respectively.

Table 3: Chemical compounds identified in P. pellucida by GC-MS analysis

Sample	Compounds identified	References
Essential oil	Dillapiole, trans-caryophyllene	da Silva <i>et al.</i> [57]
Leaf extract	phytol, 2-Naphthalenol, Hexadecanoic acid and 9,12-Octadecadienoic acid	Wei <i>et al.</i> [58]
Essential oil	Dillapiole, myristicine	Francois <i>et al.</i> [59]
Essential oil	carotol, dill apiole, pygmaein, (E)-caryophyllene, germacrene D, β-elemene, camphor, daucene, apiole, β-bisabolene and bicyclogermacrene	Verma <i>et al.</i> [60]
Whole plant extract	Apiol, Phytol, n-Hexadeconoic acid, E-2-Tetradecen-1-ol, Stigmasterol, Campesterol, and Sitosterol	Narayanamoorthi <i>et al.</i> [61]
Essential oil	γ -gurjunene, 1,10-di-epicubenol, (E)-caryophyllene, dillapiole, carotol, trans-β-guaiene	de Oliveira <i>et al.</i> [62]
Essential oil	Phytol, α-terpineol, β-caryophyllene, d-limonene, linalool	0koh <i>et al.</i> [63]

Ragasa et al. [39] isolated dill-apiol, aurantiamide acetate and pachypophyllin from leaf extract of *P. pellucida* and elucidated their structure by NMR studies. Pellucidin A, a novel dimeric ArC2 compound, along with dill-apiol has been isolated by Bayma et al. [64] from the aerial parts of *P. pellucida*. The structure of pellucidin A was established by spectral analyses. The study carried out by Xu et al. [65] revealed isolation of compounds such as secolignans, tetrahydrofuran lignans, highly methoxylated dihydronaphthalenone, peperomins, sesamin and isoswertisin from the whole plant of P. pellucida. Khan et al. [66] recovered a xanthone glycoside from leaves of P. pellucida and characterized the compound as Patuloside A (3-β-D-glucopyranosyloxy-1,5,6trihydroxy-9H-xanthene-9-one) by performing various chromatographic and spectral analyses. Leena and Annam [67] isolated a flavone glycoside from whole plant of P. pellucida and characterized the compound as vitexin by chromatographic and spectral analyses. The study carried out by Hartati *et al.* [41] identified compounds viz. stigmasterol, analogue of pheophytin and β -sitosterol-D-glucopyranoside in the solvent extract of *P. pellucida*. Susilawati *et al.* [68] isolated a compound namely 8,9-dimethoxy ellagic acid from the ethyl acetate fraction of leaf of *P. pellucida* by column chromatography and the structure was elucidated by chromatographic and spectral analyses. A compound by name 3',4', dihydroxy-3-5-dimethoxy flavone-7-0- β -rhamnose was isolated from ethyl acetate fraction of crude methanolic extract of aerial parts of *P. pellucida* and the structure was elucidated by the spectral data [43]. The study carried out by Ahmad *et al.* [69] revealed a total alkaloid content of 29.59 mg/g piperine in the dichloromethane fraction of plant material. Fig. 2 shows the structure of some of the compounds identified in the plant.

Analogue of Pheophytin

β Sitosterol-D-glycopyranoside

Fig. 2: Structures of some compounds identified in P. pellucida [39, 41, 66, 68]

Pharmacological activities of P. Pellucida

Many studies have been carried out to investigate pharmacological properties of *P. pellucida*. The plant is reported to exhibit several bioactivities such as hypotensive, immunostimulatory, antioxidant,

antimicrobial, analgesic, anti-inflammatory, fracture healing, gastroprotective and antidiabetic activity.

Concise information on pharmacological activities of extracts and purified compounds of *P. pellucida* is discussed below.

Hypotensive activity

Nwokocha *et al.* [70] evaluated hypotensive activity of aqueous extract from whole plant of *P. pellucida* in rat model. Intravenous administration of extract showed a dose dependent reduction in systolic and diastolic blood pressure, heart rate and mean arterial pressure. It was shown in the study that the extract induces bradycardia and hypotension in normotensive rats via mechanisms that are nitric oxide dependent. The study carried out by Fasola and Adeboye [71] also revealed anti-hypertensive activity of *P. pellucida* in normotensive rats. Intravenous administration of methanol extract resulted in marked decrease in mean arterial blood pressure and heart rate.

Neuropharmacological activity

The study carried out by Khan *et al.* [72] indicated that the petroleum ether and ethyl acetate fractions of ethanol extract of leaves of *P. pellucida* possess central nervous system depressant effect as the fractions were shown to possess dose dependent effects on duration of diazepam-induced sleep, nikethamide-induced toxicity, light-dark test and force swimming test.

Immunostimulatory activity

In a study, Lee *et al.* [73] revealed the potential of leaf extract of *P. pellucida* (mixed with fish pellets) as an immunostimulator in controlling motile aeromonad septicemia caused by *Aermomonas hydrophila* in *Oreochromis* spp. (red hybrid tilapia). It was observed that the mortality rate was considerably lesser in fishes that were fed with diet which was mixed with leaf extract.

Antimutagenicity activity

Ragasa *et al.* [39] evaluated antimutagenic activity of dill-apiol and pachypophyllin isolated from leaf extract of *P. pellucida* by micronucleus test. The compounds were not effective as the study did not indicated significant reduction in micronucleated polychromatic erythrocytes induced by mitomycin C.

Anti-angiogenic activity

The study carried out by Camposano *et al.* [74] revealed antiangiogenic activity of methanol extract of *P. pellucida* in terms of inhibition of angiogenesis in chorioallantoic membrane assay. The extract was shown to inhibit angiogenesis with an activity of 26%.

Fracture healing activity

Ngueguim *et al.* [75] evaluated the potential of ethanol extract of *P. pellucida* on bone regeneration following bone and marrow injury in rats, and determined the mode of action. The extract dose-dependently induced bone regeneration at the fracture site and significantly increased mineral deposition. The extract was also found to improve microarchitecture of the regenerating bone. It was shown that the extract accelerates fracture repair via stimulatory effects on osteoblast differentiation and mineralization. Recently, Florence *et al.* [76] revealed the potential of aqueous extract of *P. pellucida* to accelerate fracture healing in Wistar rats. Radiological tests revealed a dose dependent formation of callus at the level of the fracture gap and was evidenced by formation of a highly dense and compact fibrocartilagenous callus.

Antiulcerogenic/gastroprotective activity

Roslida and Aini [77] evaluated gastroprotective (antiulcerogenic) activity of ethanolic extract of aerial parts of *P. pellucida* in indomethacin and necrotizing agent induced models in rats. The result revealed that the extract at all doses produced significant inhibition of gastric mucosal damage induced by necrotizing agents and indomethacin. Rojas-Martínez *et al.* [78] determined gastroprotective activity of solvent extracts and Dillapiole from *P. pellucida*. Dichloromethane extract of leaf and stem displayed marked gastroprotective activity in rats with ethanol induced gastric ulcer. Dillapiole also exhibited marked gastroprotection.

Analgesic activity

Aziba *et al.* [79] determined analgesic activity of methanol extract of aerial parts of *P. pellucida* by acetic acid induced writhing in mice. It

was observed that oral administration of extract (70-210 mg/kg) exhibited a significant analgesic activity in mice. Arrigoni-Blank *et al.* [80] evaluated analgesic activity of aqueous extract prepared from aerial parts of *P. pellucida* by abdominal writhing and hot plate tests. The extract displayed significant analgesic activity at extract concentration of 400 mg/kg and 100 mg/kg in abdominal writhing and hot plate test respectively. The study carried out by Sheikh *et al.* [54] revealed analgesic potential of ethyl acetate extract of whole plant by acetic acid-induce writhing in mice.

Antipyretic activity

The study carried out by Khan *et al.* [81] revealed the antipyretic potential of petroleum ether and ethyl acetate soluble fractions of ethanol extract of leaves of *P. pellucida* in boiled milk induced pyrexia in albino rabbits. Administration of solvent fractions at a dose of 80 mg/kg body weight showed a significant reduction in elevated body temperature in albino rabbits.

Anti-inflammatory activity

Arrigoni-Blank et al. [82] evaluated anti-inflammatory activity of aqueous extract of leaves of *P. pellucida* by carrageenan induced paw edema test in rats. It was observed that the extract obtained from plants in all seasons displayed antiedematogenic activity with significant activity observed in phenophases of winter and spring. Arrigoni-Blank et al. [80] evaluated anti-inflammatory activity of aqueous extract prepared from aerial parts of P. pellucida by paw edema induced by carrageenan and arachidonic acid. It was observed that oral administration of 200 and 400 mg/kg of the extract showed an anti-inflammatory activity in the carrageenan test, which was based on interference with synthesis of prostaglandin, as confirmed by the arachidonic acid test. The study carried out by Mutee et al. [83] indicates the anti-inflammatory potential of petroleum ether, chloroform and methanol extract of P. pellucida in carrageenan induced rat paw edema. Among extracts, petroleum ether extract displayed significant activity when compared to chloroform and methanol extracts.

Antimicrobial activity

Ragasa *et al.* [39] isolated dill-apiol and pachypophyllin from leaf extract of *P. pellucida* and determined their antimicrobial activity. These compounds were selectively effective against *Trichophyton mentagrophytes* while other test microbes were not affected. In a study, Khan and Omoloso [84] screened antimicrobial activity of crude methanolic extract and petrol, dichloromethane, ethyl acetate and butanol fractions of methanolic extract of *P. pellucida*. Crude extract and fractions of of crude spectrum antibacterial activity. Butanol fraction of crude extract was more active. Patuloside A isolated from leaves of *P. pellucida* was shown to display concentration dependent inhibition of Gram positive and Gram negative bacteria. Patuloside A showed weak activity against *Aspergillus flavus* and *Candida albicans* while *A. niger* and *Rhizopus oryzae* were unaffected [66]. Further details on the antimicrobial potential of *P. pellucida* described by other researchers are shown in table 4.

Antidiabetic activity

Humzah et al. [93] showed that diet containing P. pellucida (10% and 20%) possess antidiabetic effect in alloxan-induced diabetes in rats. A considerable reduction in the blood glucose level was observed in the study. The levels of aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphate (ALP) were lesser in rats fed with diet containing P. pellucida. Moreover, the concentration of total cholesterol, triglycerides (TG), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) content were also lesser in rats fed with diet containing P. pellucida. The levels of superoxide dismutase (SOD), catalase and glutathione were also increased. Sheikh et al. [54] evaluated antidiabetic activity of ethyl acetate extract of whole plant of P. pellucida in alloxan-induced diabetic mice. A significant hypoglycemic effect was observed in mice administered with extract. 8,9-dimethoxy ellagic acid, isolated from leaf extract of P. pellucida, was evaluated for antidiabetic activity by alloxan-induced hyperglycemia in mice [68]. The compound was shown to exhibit 33.74% blood glucose lowering in normoglycemic model at 100 mg/kg dose.

P. pellucida

Extract	Part	Activity against	References	
Aqueous and ethanol	Leaf	Gram negative bacteria	Akinnibosun <i>et al.</i>	
extract		······································	[85]	
Methanol extract	Whole	Bacillus subtilis and Candida albicans	Wiart <i>et al.</i> [86]	
	plant			
Methanol extract	Leaf	Gram positive and Gram negative bacteria	Wei <i>et al.</i> [58]	
Methanol extract, solvent	Leaf	Gram positive and Gram negative bacteria; Fungi namely Aspergillus,	Oloyede et al. [87]	
fractions		Rhizopus, Candida and Penicillium		
Solvent extracts	Leaf	Pseudomonas aeruginosa, Salmonella typhii and Shigella dysenteriae and Aspergillus niger	Ibibia <i>et al.</i> [52]	
Aqueous and organic extracts	Leaf	Gram positive and Gram negative bacteria	Ojo <i>et al.</i> [47]	
Alcohol extract		Gram positive and Gram negative bacteria	Mensah et al. [88]	
Essential oil	Leaf	Fusarium moniliforme, Rhizopus stolonifer	Francois et al. [59]	
Ethanol extract	Leaf	Gram positive and Gram negative bacteria	Igwe and Mgbemena [89]	
Ethanol	Leaf	Shigella dysenteriae	Uddin <i>et al.</i> [90]	
Solvent extracts	Leaf	Gram positive and Gram negative bacteria	Zubair <i>et al.</i> [91]	
Aqueous and methanol	Aerial parts	Aeromonas hydrophila, Enterobacter cloacae, Streptococcus agalactiae	Raina and Hassan	
extract	_		[56]	
Solvent extracts	Whole	Gram positive and Gram negative bacteria	Idris <i>et al.</i> [50]	
	plant			
Essential oils	Leaf and	Gram positive, Gram negative bacteria, Mycobacterium smegmatis	Okoh <i>et al.</i> [63]	
	stem			
Ethanol extract	Leaf	Candida albicans	Hastuti <i>et al.</i> [92]	

Acaricidal activity

In a study, de Oliveira *et al.* [62] evaluated the activity of the essential oils from leaf and stem against *Tetranychus urticae*. It was observed that the stem oil was fourfold more toxic than the leaf oil however the activity of essential oils was lesser than eugenol, the positive control.

Anticancer/cytotoxic activity

Peperomin E, isolated from whole plant of *P. pellucida*, was found to exhibit cytotoxicity against cell lines viz. HL-60, MCF-7 and HeLa cell lines [65]. Khan et al. [66] determined cytotoxic activity of Patuloside A, isolated from leaves of P. pellucida, against brine shrimp nauplii. The compound exhibited cytotoxicity with an LC_{50} value of 18.24µg/ml and the activity observed was lesser when compared to standard drug. Wei et al. [58] determined cytotoxic potential of methanolic extract of P. pellucida leaf against MCF-7 cell by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium line bromide (MTT) assay. The extract displayed concentration dependent cytotoxicity with an IC_{50} value of $10.4\pm0.06\mu g/ml$. Oloyede et al. [87] screened cytotoxicity of crude methanol extract and fractions such as hexane, ethyl acetate, butanol and aqueous fractions of leaves of P. pellucida by brine shrimp lethality assay. Crude extract, hexane and ethyl acetate fractions were shown to be effective while butanol and aqueous fractions were not effective in causing mortality of brine shrimp larvae.

Antioxidant activity

Mutee et al. [83] determined antiradical activity of chloroform, petroleum ether and methanol extract of P. pellucida by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Methanol extract was shown to display marked scavenging of free radicals when compared to other extracts. Wei et al. [58] screened methanolic extract of P. pellucida leaf for radical scavenging potential by DPPH assay. The extract was shown to display concentration dependent scavenging of radicals but the activity observed was considerably lesser than that of quercetin. Oloyede et al. [87] determined antioxidant potential of crude methanolic extract and hexane, ethyl acetate, butanol and aqueous fractions of leaves of P. pellucida by DPPH scavenging, hydrogen peroxide scavenging and ferric thiocyanate method. Extract and fractions were shown to exhibit marked activity in all methods. The study carried out by Beltran-Benjamin et al. [94] revealed an increase in the levels of antioxidant enzymes viz. superoxide dismutase and catalase on administration of crude methanolic extract of P. pellucida in rats. Phongtongpasuk and Poadang [95] evaluated antioxidant potential of butanol, ethyl acetate and methanol extracts of *P. pellucida* obtained by maceration and reflux method. Extracts obtained by reflux method displayed marked DPPH scavenging activity and reducing power. Phenolic content was also higher in extracts obtained by reflux method. The study carried out by Okoh *et al.* [63] showed the antioxidant potential of essential oil of leaf and stem of *P. pellucida*. The essential oils exhibited concentration dependent scavenging of DPPH, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and nitric oxide radicals.

Enzyme inhibitory activity

In a study, Ong *et al.* [96] evaluated porcine pancreatic lipase inhibitory activity of methanolic extract of leaves of *P. pellucida* and observed lesser potential of leaf extract to cause inhibition of lipase activity when compared to standard. Kurniawan *et al.* [43] isolated a compound by name 3',4', dihydroxy-3-5-dimethoxy flavone-7-O- β rhamnose from aerial parts of *P. pellucida* and evaluated its inhibitory activity against Angiotensin converting enzyme (ACE). The compound was found to inhibit ACE dose dependently with an IC₅₀ value of 7.72µg/ml. Ethyl acetate fraction was more potent than the compound. The study carried out by Parawansah *et al.* [97] showed the potential of ethanol extract of leaves of *P. pellucida* to inhibit the activity of xanthine oxidase. Extract was shown to exhibit inhibition of xanthine oxidase with an IC₅₀ value of 19.5 ppm.

Antisickling activity

Abere and Okpalaonyagu [51] evaluated antisickling activity of leaves of *P. pellucida* on the inhibition of sodium metabisulphite-induced sickling of the HbSS red blood cells. Leaf extract was found to significantly inhibit sickling of red cells with maximum inhibition of sickling (57.5%) at 500 mg/ml of the extract.

Anti-ostioporesis activity

The study carried out by Putri *et al.* [98] revealed the potential of ethanol extract of *P. pellucida* (100 mg/kg body weight [b. w]) to prevent osteoporosis in ovariectomized (OVX)-induced osteoporotic rats. At 100 mg/kg concentration, the extract treated rats showed improvement on three-dimensional image of the trabecular bone compared with the OVX-control group. Also, the trabecular cavity formation in 100 mg/kg extract-treated group was minimal.

Fibrinolytic activity

The study of Ebenezer *et al.* [99] showed a weaker fibrinolytic activity of *P. pellucida* extract. The *in vitro* clot lysis activity was

considerably lesser when compared to extracts from other plants. In another study, Zubair *et al.* [91] revealed the potential of ethyl acetate, hexane, chloroform and aqueous soluble fractions of *P. pellucida* to cause lysis of clot indicating thrombolytic activity. Marked activity was displayed by ethyl acetate soluble fraction.

Antidiarrhoeal activity

The ethanolic extract of *P. pellucida* leaves was evaluated for antidiarrhoeal activity in castor oil-induced diarrhoea in mice. The extract was shown to display concentration dependent anti-diarrhoeal activity [91].

Hair growth promotion activity

The study carried out by Kanedi *et al.* [100] revealed the potential of crude extract of *P. pellucida* in a topical gel formulation to promote hair growth in rabbits dose dependently. The mean hair length increased on increasing the concentration of extract in the gel.

Proximate and nutritive attributes of P. Pellucida

Egwuche *et al.* [55] evaluated nutritive attributes of *P. pellucida* leaves from Nigeria. The leaves were shown to contain carbohydrates (38.97%), proteins (7.68%), crude fibre (22.35%) and fat (1.08%). The leaves were also shown to contain appreciable quantity of calcium, magnesium, potassium and sodium. The study carried out by Ooi *et al.* [101] revealed the nutritive composition of *P. pellucida* from Malaysia. The plant was shown to contain an appreciable quantity of carbohydrates (about 45%) and proteins (about 10%) however the lipid content was low (about 3%). The plant is also shown to possess considerable quantity of potassium, calcium, iron and sodium.

CONCLUSIONS

The plant *P. pellucida* is a well-known medicinal plant being used ethnomedicinally for treatment of various diseases worldwide. *In vitro* and *in vivo* studies have shown many pharmacological activities of the plant which supports the traditional use of the plant. Literatures have shown the potential of isolated compounds to exhibit bioactivities such as antimicrobial, anticancer, gastroprotective and antidiabetic activities. The presence of phytochemicals such as alkaloids, flavonoids, saponins, tannins and glycosides in the plant. The plant *P. pellucida* appears to be suitable for developing drugs that can be used to treat several diseases or disorders. Utilization of the plant in suitable form can be beneficial in terms of promotion of health and disease therapy.

SOURCES OF SUPPORT

None

AUTHORS CONTRIBUTIONS

Both the authors namely Dr. Prashith Kekuda T. R and Dr. Raghavendra H. L were involved equally in literature survey, framing contents, writing draft paper and finalizing the review paper.

CONFLICTS OF INTERESTS

Authors declared that there are no potential conflicts of interest

REFERENCES

- 1. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 2001;109 Suppl 1:69-75.
- Pérez M, Boffill MA, Morón FJ, Sueiro ML, Marrero E, Betancourt E. Ethnopharmacological and preclinical study of diuretic activity in medicinal and food plants used by Cuban population. Emirates J Food Agric 2011;23:214-21.
- 3. Ayyanar M. Traditional herbal medicines for primary healthcare among indigenous people in Tamil Nadu, India. J Homeopathy Ayurvedic Med 2013;2:140.
- 4. Leonti M, Casu L. Traditional medicines and globalization: current and future perspectives in ethnopharmacology. Front Pharmacol 2013;4:92.

- 5. Hong L, Guo Z, Huang K, Wei S, Liu B, Meng S, *et al.* Ethnobotanical study on medicinal plants used by Maonan people in China. J Ethnobiol Ethnomed 2015;11:32.
- Raghavendra HL, Kekuda PTR, Pushpavathi D, Shilpa M, Petkar T, Siddiqua A. Antimicrobial, radical scavenging, and insecticidal activity of leaf and flower extracts of *Couroupita guianensis* Aubl. Int J Green Pharm 2017;11:171-9.
- Fyson PF. The flora of the nilgiri and pulney hill-tops. Vol. I. Bishen Singh Mahendra Pal Singh, Dehra Dun and Periodical Experts, Delhi; 1974. p. 345.
- 8. Bhat GK. Flora of South Kanara. Akriti Prints, Mangalore; 2014. p. 43.
- 9. Vergara Rodriguez D, Mathieu G, Samain M, Armenta Montero S, Kromer T. Diversity, distribution, and conservation status of *Peperomia* (Piperaceae) in the state of veracruz, Mexico. Trop Conservation Sci 2017;10:1-28.
- Melo A, Guimaraes EF, Alves M. Synopsis of the genus *Peperomia* ruiz and pav. (Piperaceae) in roraima state, Brazil. Hoehnea 2016;43:119-34.
- 11. Termote C, Van Damme P, Dhed'a Djailo B. Eating from the wild: Turumbu indigenous knowledge on noncultivated edible plants, Tshopo District, DR Congo. Ecol Food Nutr 2010;49:173-207.
- 12. Coe FG, Anderson GJ. Ethnobotany of the sumu (Ulwa) of southeastern Nicaragua and comparisons with Miskitu plant lore. Econ Bot 1999;53:363-86.
- Whitney CW, Min VS, Giang LH, Can VV, Barber K, Lanh TT. Conservation and ethnobotanical knowledge of a Hmong community in long lan, Luang Prabang, Lao People's Democratic Republic. Ethnobot Res Appl 2014;12:643-58.
- 14. Hadi S, Bremner JB. Initial studies on alkaloids from Lombok medicinal plants. Molecules 2001;6:117-29.
- Das NJ, Saikia SP, Sarkar S, Devi K. Medicinal plants of North-Kamrup district of Assam used in primary healthcare system. Indian J Tradit Know 2006;5:489-93.
- 16. Lans CA. Ethnomedicines used in trinidad and tobago for urinary problems and diabetes mellitus. J Ethnobiol Ethnomed 2006;2:45.
- 17. Sonibare MA, Moody JO, Adesanya EO. Use of medicinal plants for the treatment of measles in Nigeria. J Ethnopharmacol 2009;122:268-72.
- Santos MRA, Lima MR, Oliveira CLLG. Medicinal plants used in Rondônia, Western Amazon, Brazil. Rev Bras Plant Med 2014;16 Suppl 1:707-20.
- 19. Chukwuma EC, Soladoye MO, Feyisola RT. Traditional medicine and the future of medicinal plants in Nigeria. J Med Plants Studies 2015;3:23-9.
- Olowa L, Demayo CG. Ethnobotanical uses of medicinal plants among the muslim maranaos in Iligan city, Mindanao, Philippines. Adv Environ Biol 2015;9:204-15.
- 21. Chithra M, Geetha SP. Plant based remedies for the treatment of rheumatism among six tribal communities in Malappuram district, Kerala. Int J Bot Studies 2016;1:47-54.
- Kalita GJ, Rout S, Mishra RK, Sarma P. Traditionally used medicinal plants of bajali subdivision, barpeta district, Assam. J Med Plants Studies 2015;3:8-17.
- 23. Koch M, Kehop DA, Kinminja B, Sabak M, Wavimbukie G, Barrows KM, *et al.* An ethnobotanical survey of medicinal plants used in the East Sepik province of Papua New Guinea. J Ethnobiol Ethnomed 2015;11:79.
- 24. Waty DR, Saputri FC, Munim A. Secondary metabolites screening and acute toxicity test of *Peperomia pellucida* (L.) Kunth methanolic extracts. Int J PharmTech Res 2017;10:31-8.
- 25. Rahmatullah M, Mollik MAH, Paul AK, Jahan R, Khatun MA, Seraj S, *et al.* A comparative analysis of medicinal plants used to treat gastrointestinal disorders in two sub-districts of Greater Khulna division, Bangladesh. Adv Nat Appl Sci 2010;4:22-8.
- 26. Mollik MAF, Hossan MS, Paul AK, Taufiq-Ur-Rahman M, Jahan R, Rahmatullah M. A comparative analysis of medicinal plants used by folk medicinal healers in three districts of Bangladesh and inquiry as to mode of selection of medicinal plants. Ethnobot Res Appl 2010;8:195-218.
- 27. Buragohain J. Ethnomedicinal plants used by the ethnic communities of Tinsukia district of Assam, India. Recent Res Sci Technol 2011;3:31-42.

- 28. Bharali P, Sharma CL, Singh B, Sharma M. Ethnobotanical studies of spice and condiment plants used by some communities of Assam. Int J Adv Sci Res 2017;3:1-11.
- 29. Bordoloi R, Kashyap K, Das A. Ethno-medicinal study on the traditional herbal knowledge of the Tiwa tribe of Morigaon district of Assam, India. Asian J Sci Technol 2017;8:5484-9.
- 30. Bose D. An ethno-medicobotanical investigation among Rava tribe of Jalpaiguri district. NBU J Plant Sci 2011;5:61-5.
- 31. Rahmatullah M, Ayman U, Akter F, Sarker M, Sifa R, Sarker B, *et al.* Medicinal formulations of a Kanda tribal healer–A tribe on the verge of disappearance in Bangladesh. Afr J Tradit Complementary Altern Med 2013;10:213-22.
- 32. Ruysschaert S, Van Andel T, Van de Putte K, Van Dammea P. Bathe the baby to make it strong and healthy: plant use and child care among saramaccan maroons in suriname. J Ethnopharmacol 2009;121:148-70.
- Vandebroek I, Balick MJ, Ososki A, Kronenberg F, Yukes J, Wade C, *et al.* The importance of botellas and other plant mixtures in dominican traditional medicine. J Ethnopharmacol 2010; 128:20-41.
- Uzodimma DE. Medico-ethnobotanical inventory of Ogii, Okigwe Imo state, South Eastern Nigeria-I. Global Adv Res J Med Plants 2013;2:30-44.
- 35. Gogoi B, Zaman K. Phytochemical constituents of some medicinal plant species used in recipe during 'Bohag Bihu' in Assam. J Pharmacogn Phytochem 2013;2:30-40.
- Clement YN, Baksh Comeau YS, Seaforth CE. An ethnobotanical survey of medicinal plants in Trinidad. J Ethnobiol Ethnomed 2015;11:67.
- Das PR, Islam MT, Jahan R, Rahmatullah M. Ethnomedicinal plants used by the Nag clan of the Rai Ghatual tribe of Moulvibazar district, Bangladesh. Ancient Sci Life 2013;32:217–21.
- Bora R, Das AK. An inventory of ethnomedicinal plants among the rabha tribe residing nearby chandubi beel of kamrup district (Assam). Int J Innovative Res Sci Technol 2015;1:126-9.
- 39. Ragasa CY, Dumato M, Rideout JA. Antifungal compounds from *Peperomia pellucida*. ACGC Chem Res Commun 1998;7:54-61.
- 40. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha YL. Extraction, isolation and characterization of bioactive compounds from plants' extracts. Afr J Tradit Complementary Altern Med 2011;8:1-10.
- 41. Hartati S, Angelina M, Dewiyanti ID, Meiliawati L. Isolation and characterization compounds from hexane and ethyl acetate fractions of *Peperomia pellucida* L. J Trop Life Sci 2015;5:117-22.
- Papitha R, Ravi L, Selvaraj CI. Phytochemical studies and GC-MS analysis of *Spermadictyon suaveolens* Roxb. Int J Pharm Pharm Sci 2017;9:143-9.
- Kurniawan A, Saputri FC, Rissyelly, Ahmad I, Munim A. Isolation of angiotensin converting enzyme (ACE) inhibitory activity quercetin from *Peperomia pellucida*. Int J PharmTech Res 2016;9:115-21.
- 44. Biswas SM. Optimized analytical techniques for extraction and separation of bioactive compounds from diverse plant types. Biochem Anal Biochem 2017;6:313.
- 45. Ingle KP, Deshmukh AG, Padole DA, Dudhare MS, Moharil MP, Khelurkar VC. Phytochemicals: extraction methods, identification and detection of bioactive compounds from plant extracts. J Pharmacogn Phytochem 2017;6:32-6.
- 46. Gini TG, Jothi JG. Preliminary phytochemical screening of whole plant extracts of *Peperomia pellucida* (Linn.) HBK (Piperaceae) and *Marsilea quadrifolia* Linn. (Marsileaceae). Int J Pharmacogn Phytochem Res 2013;5;200-14.
- 47. Ojo OO, Ajayi SS, Owolabi LO. Phytochemical screening, antinutrient composition, proximate analyses and the antimicrobial activities of the aqueous and organic extracts of bark of *Rauvolfia vomitoria* and leaves of *Peperomia pellucida*. Int Res J Biochem Bioinformatics 2012;2:127-34.
- 48. Majumder P, Kumar AKV. Establishment of quality parameters and pharmacognostic evaluation of leaves of *Peperomia pellucida* (L.) HBK. Int J Pharm Pharm Sci 2011;3:375-8.
- 49. Omotayo FO, Borokini TI. Comparative phytochemical and ethnomedicinal survey of selected medicinal plants in Nigeria. Sci Res Essays 2012;7:989-99.

- Idris OO, Olatunji BP, Madufor P. *In vitro* antibacterial activity of the extracts of *Peperomia pellucida* (L). Br Microbiol Res J 2016;11:1-7.
- 51. Abere TA, Okpalaonyagu SO. Pharmacognostic evaluation and antisickling activity of the leaves of *Peperomia pellucida* (L.) HBK (Piperaceae). Afr J Pharm Pharmacol 2015;9:561-6.
- 52. Ibibia ET. Phytochemical and antimicrobial analyses of extracts of *Peperomia pellucida* (L). J Pharm Res 2012;5:2934-7.
- Majumder P. Phytochemical, pharmacognostical and physicochemical standardization of *Peperomia pellucida* (L.) HBK. stem. Int J Comprehensive Pharm 2011;8:1-4.
- Sheikh H, Sikder S, Paul SK, Hasan RAM, Rahaman MM, Kundu SP. Hypoglycemic, anti-inflammatory and analgesic activity of *Peperomia pellucida* (L.) HBK (Piperaceae). Int J Pharm Sci Res 2013;4:458-63.
- 55. Egwuche RU, Odetola AA, Erukainure OL. Preliminary investigation into the chemical properties of *Peperomia pellucida* L. Res J Phytochem 2011;5:48-53.
- Raina MS, Hassan MD. Screening of phytochemical properties and antimicrobial activity of Malaysian medicinal plants against aquatic bacteria. Malays J Microbiol 2016;12:284-90.
- 57. Da Silva MHL, Zoghbi MDGB, Andrade EHA, Maia JGS. The essential oils of *Peperomia pellucida* Kunth and *P. circinnata* Link var. *circinnata*. Flavour Fragrance J 1999;14:312–4.
- Wei LS, Wee W, Siong JYF, Syamsumir DF. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of *Peperomia pellucida* leaf extract. Acta Med Iranica 2011;49:670-4.
- Francois T, Michel JDP, Vyry WNA, Fabrice FB, Lambert SM, Henri AZP, *et al.* Composition and antifungal properties of essential oils from five plants growing in the mountainous area of the West Cameroon. J Essent Oil-Bear Plants 2013;16:679-88.
- Verma RS, Padalia RC, Goswami P, Chauhan A. Essential oil composition of *Peperomia pellucida* (L.) Kunth from India. J Essent Oil Res 2015;27:89-95.
- Narayanamoorthi V, Vasantha K, Rency RC, Maruthasalam A. GC MS determination of bioactive components of *Peperomia pellucida* (L.) Kunth. Biosci Discovery 2015;6:83-8.
- 62. de Oliveira JCS, da Camara CAG, Neves RCS, Botelho PS. Chemical composition and acaricidal activity of essential oils from *Peperomia pellucida* Kunth against *Tetranychus urticae*. Rev Virtual Quim 2017;9:1-9.
- Okoh SO, Iweriebor BC, Okoh OO, Okoh AI. Bioactive constituents, radical scavenging, and antibacterial properties of the leaves and stem essential oils from *Peperomia pellucida* (L.) kunth. Pharmacogn Mag 2017;13 Suppl S3:392-400.
- Bayma JD, Arruda MS, Müller AH, Arruda AC, Canto WC. A dimeric ArC2 compound from *Peperomia pellucida*. Phytochemistry 2000;55:779-82.
- Xu S, Li N, Ning MM, Zhou CH, Yang QR, Wang MW. Bioactive compounds from *Peperomia pellucida*. J Nat Prod 2006;69:247-50.
- Khan A, Rahman M, Islam MS. Isolation and bioactivity of a xanthone glycoside from *Peperomia pellucida*. Life Sci Med Res 2010;LSMR-1:1-10.
- 67. Leena PK, Annam C. Isolation and characterization of flavone glycoside vitexin from *Peperomia pellucida* Linn. J Drug Delivery Ther 2013;3:91-2.
- Susilawati Y, Nugraha R, Krishnan J, Muhtadi A, Sutardjo S, Supratman U. A new antidiabetic compound 8,9-dimethoxy ellagic acid from sasaladaan (*Peperomia pellucida* L. Kunth). Res J Pharm Biol Chem Sci 2017;8(1S):269-74.
- Ahmad I, Rissyelly, Kurniawan A, Munim A. Screening of extraction method for alkaloid enrichment of *Peperomia pellucida* (L.) Kunth. Asian J Pharm Clin Res 2017;10:214-9.
- Nwokocha CR, Owu DU, Kinlocke K, Murray J, Delgoda R, Thaxter K, *et al.* Possible mechanism of action of the hypotensive effect of *Peperomia pellucida* and interactions between human cytochrome P450 enzymes. Med Aromat Plants 2012;1:105.
- Fasola TR, Adeboye JO. Anti-hypertensive potentials of *Peperomia pellucida* (L.) HBK in anaesthetized normotensive rats. Adv Life Sci Technol 2015;29:1-4.
- 72. Khan A, Rahman M, Islam MS. Neuropharmacological effects of *Peperomia pellucida* leaves in mice. DARU 2008;16:35-40.

- 73. Lee SW, Sim KY, Wendy W, Zulhisyam AK. *Peperomia pellucida* leaf extract as immunostimulator in controlling motile aeromonad septicemia due to *Aeromonas hydrophila* in red hybrid tilapia, *Oreochromis* spp. farming. Vet World 2016;9:231-4.
- 74. Camposano JE, Torre DGLT, Laxamana JG, Larcia LLH. Screening for the anti-angiogenic activity of selected Philippine medicinal plants using chorioallantoic membrane assay. Mahidol Univ J Pharm Sci 2016;43:173-82.
- 75. Ngueguim FT, Khan MP, Donfack JH, Tewari D, Dimo T, Kamtchouing P, *et al.* Ethanol extract of *Peperomia pellucida* (Piperaceae) promotes fracture healing by an anabolic effect on osteoblasts. J Ethnopharmacol 2013;148:62-8.
- 76. Florence NT, Huguette STS, Hubert DJ, Raceline GK, Desire DDP, Pierre K, et al. Aqueous extract of *Peperomia pellucida* (L.) HBK accelerates fracture healing in Wistar rats. BMC Complementary Altern Med 2017;17:188.
- 77. Roslida AH, Aini NZ. Evaluation of gastroprotective effects of the ethanolic extract of *Peperomia pellucida* (L) Kunth. Pharmacologyonline 2009;2:676-86.
- Rojas Martinez R, Arrieta J, Cruz Antonio L, Arrieta Baez D, Velazquez Mendez AM, Sanchez Mendoza ME. Dillapiole, isolated from *Peperomia pellucida*, shows gastroprotector activity against ethanol-induced gastric lesions in wistar rats. Molecules 2013;18:11327-37.
- Aziba PI, Adedeji A, Ekor M, Adeyemi O. Analgesic activity of *Peperomia pellucida* aerial parts in mice. Fitoterapia 2001;72:57-8.
- Arrigoni Blank FM, Dmitrieva EG, Franzotti EM, Antoniolli AR, Andrade MR, Marchioro M. Anti-inflammatory and analgesic activity of *Peperomia pellucida* (L.) HBK (Piperaceae). J Ethnopharmacol 2004;91:215-8.
- 81. Khan A, Rahman M, Islam S. Antipyretic activity of *Peperomia pellucida* leaves in rabbit. Turk J Biol 2008;32:37-41.
- Arrigoni Blank MF, Oliveira RLB, Mendes SS, Silva PA, Antoniolli AR, Vilar JC, *et al.* Seed germination, phenology, and antiedematogenic activity of *Peperomia pellucida* (L.) H. B. K. BMC Pharmacol 2002;2:12.
- Mutee AF, Salhimi SM, Yam MF, Lim CP, Abdullah GZ, Ameer OZ, et al. In vivo anti-inflammatory and in vitro antioxidant activities of Peperomia pellucida. Int J Pharmcol 2010;6:686-90.
- Khan MR, Omoloso AD. Antibacterial activity of *Hygrophila* stricta and *Peperomia pellucida*. Fitoterapia 2002;73:251-4.
- 85. Akinnibosun HA, Akinnibosun FI, German BE. Antibacterial activity of aqueous and ethanolic leaf extracts of *Peperomia pellucida* (L.) H. B. and K. (Piperaceae) on three gram-negative bacteria isolates. Sci World J 2008;3:33-6.
- Wiart C, Mogana S, Khalifah S, Mahan M, Ismail S, Buckle M, *et al.* Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia. Fitoterapia 2004;75:68-73.
- 87. Oloyede GK, Onocha PA, Olaniran BB. Phytochemical, toxicity, antimicrobial and antioxidant screening of leaf extracts of

Peperomia pellucida from Nigeria. Adv Environ Biol 2011;5:3700-9.

- 88. Mensah JK, Ihenyen JO, Okhiure MO. Nutritional, phytochemical and antimicrobial properties of two wild aromatic vegetables from Edo State. J Nat Prod Plant Resour 2013;3:8-14.
- Igwe OU, Mgbemena NM. Chemical investigation and antibacterial activity of the leaves of *Peperomia pellucida* L. HBK (Piperaceae). Asian J Chem Pharm Res 2014;2:78-86.
- Uddin SB, Sultana R, Faruque O. Antibacterial activity of some selected medicinal plants used by the Rakhaing community of Cox's Bazar district of Bangladesh. Academia J Microbiol Res 2014;2:21-7.
- **91.** Zubair KL, Samiya JJ, Jalal U, Mostafizur R. *In vitro* investigation of antdiarrhoeal, antimicrobial and thrombolytic activities of aerial parts of *Peperomia pellucida*. Pharmacologyonline 2015;3:5-13.
- Hastuti US, Ummah YPI, Khasanah HN. Antifungal activity of *Piper aduncum* and *Peperomia pellucida* leaf ethanol extract against *Candida albicans*. AIP Conference Proceedings 2017;1844:020006-1–020006-4. Doi.org/10.1063/1.4983417.
- Humzah RU, Odetola AA, Erukainure OL, Oyagbemi AA. *Peperomia pellucida* in diets modulates hyperglyceamia, oxidative stress and dyslipidemia in diabetic rats. J Acute Disease 2012;1:135-40.
- Beltran Benjamin KS, Co EL, Gaspi SAD, Matibag JLR, Su GLS. Enzyme activity and histopathology of rat liver treated with crude methanolic extract of *Pepperomia pellucida* (L.) HBK. J Biol Sci 2013;13:183-95.
- Phongtongpasuk S, Poadang S. Extraction of antioxidants from *Peperomia pellucida* L. Kunth. Thammasat Int J Sci Technol 2014;19:38-43.
- Ong S, Van SP, Lai H, Rao NK. *In vitro* lipase inhibitory effect of thirty two selected plants in Malaysia. Asian J Pharm Clin Res 2014;7:19-24.
- Parawansah, Nuralifah, Alam G, Natzir R. Inhibition of xanthine oxidase activity by ethanolic extract of *Peperomia pellucida* L., *Acacypha indica* L. and *Momordica charantia* L. Indonesian Biomed J 2016;8:161-6.
- Putri CA, Kartika GAA, Adnyana K. Preventive effect of *Peperomia pellucida* (L.) Kunth herbs on ovariectomy-induced osteoporotic rats. J Chin Pharm Sci 2016;25:546-51.
- Ebenezer OA, Kenneth E, Monday BB, Hilda MO. Fibrinolytic activity of some Nigerian medicinal plants. J Pharm Pharmacol 2014;2:177-84.
- 100. Kanedi M, Lande ML, Nurcahyani N, Anggraeni IR, Yulianty. Hair-growth promoting activity of plant extracts of suruhan (*Peperomia pellucida*) in rabbits. IOSR J Pharm Biol Sci 2017;12:18-23.
- 101. Ooi D, Iqbal S, Ismail M. Proximate composition, nutritional attributes and mineral composition of *Peperomia pellucida* L. (Ketumpangan Air) grown in Malaysia. Molecules 2012;17:11139-45.