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ABSTRACT 

Xanthine oxidoreductase (XOR) is a widely distributed housekeeping enzyme in mammals that catalyzes the last two steps in human purine 
catabolism to produce uric acid. The enzyme exists as a homodimer with independent electron transfer in each monomer. This has been studied 
extensively as a major constituent of the milk fat globule membrane (MFGM) which surrounds fat globules in cow's milk even though purine 
catabolism is the most accepted function of XOR. A huge number of literature highlights on the different catalytic forms of XOR and their importance 
in the generation of reactive oxygen species/reactive nitrogen species (ROS/RNS) and synthesis of uric acid which are involved in many 
physiological and pathological processes. However, a slight ambiguity resides in their biochemical functions. The aim of this article was to review 
the literature published on the structural, catalytical, physiological and pathological role of XOR and to resolve the ambiguity in biochemical 
processes and to firm up various natural inhibitors of XOR collectively. Uric acid, the product of purine catabolism shows antioxidant activity, and 
XOR-derived ROS and RNS play a role in innate immunity, milk secretion and also be involved in signaling and metabolism of xenobiotics. 
Furthermore, XOR is likely to be engaged in pathology because of excessive production of uric acid and ROS/RNS. This review also reports natural 
XOR inhibitors in plants which inhibit the enzyme to treat XOR associated pathology. 
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INTRODUCTION 

Xanthine oxidoreductase (XOR) is a widely distributed enzyme 
which has been extensively studied for more than 100 y because of 
its abundance in bovine milk which is available on a large scale. 
Bovine milk XOR is the first studied enzyme [1]. XOR has been 
isolated from different species from bacteria to men, yet minor 
structural and catalytical differences found in different species [2-5]. 
XOR is a truly representative form of two enzymes i. e xanthine 
dehydrogenase (XDH; EC 1.1.1.204) and xanthine oxidase (XO; EC 
1.1.3.22). They represent two forms of the same gene product. 
Mammalian XOR is synthesized in XDH form but converted to XO 
through irreversible post-translational modification in the presence 
of various stimuli [3, 6-8]. Merely mammalian XOR exists as two 
forms, whereas other species contains only the XDH form.  

This property is an added advantage to mammals to study XOR as an 
evolutionarily conserved housekeeping enzyme [6]. It is a well-
studied enzyme with a huge number of biochemical functions which 
plays a major role in physiology and pathology of humans. However, 
many review papers have been published on structural, physiology, 
pathological, and catalytic mechanisms of this enzyme, several 
questions yet to be answered to resolve ambiguity in the 
interconversion of XDH to XO and its influence on biochemical 
activities. Present review mainly focused on resolving ambiguity 
with respect to interconversions and their influence on principal 
biochemical activities and also outlined the natural inhibitors of 
these enzymes.  

Molecular structure and pathway of electron transfer in XOR  

XOR is a molybdenum-containing enzyme belongs to XO family. All 
the enzymes of this family possess multiple iron-sulfur clusters (at 
least two) in addition to the molybdenum center and FAD. 
Mammalian XOR is a homodimer consisting of two independent 
subunits with a molecular mass of 145KDa [6, 9-11]. Each subunit 
consists of one molybdopterin (MO-pterin) unit, two un-identical 
non-sulphur redox centers (Fe/SI and Fe/SII) and FAD as cofactor 
distributed in the C-terminal (85 KDa), N-terminal (20 KDa) and 
intermediate (40 KDa) domains respectively [9, 12-13]. Members of 
the XO family of enzymes usually catalyzes the oxidative 

hydroxylation of carbon center of their substrates typically aromatic 
heterocyclic’s or aldehydes. In this mechanism Mo (VI) is reduced to 
Mo (IV) at the active site [2]. This follows the oxidation of fully 
reduced XOR molecule includes the transfer of its six electrons to 
acceptor [14, 15]. Usually the substrate binds to the active site 
positioned nearer to molybdenum domain from there electrons 
transfers to acceptor through iron-sulfur proteins and flavin adenine 
dinucleotide (FAD) respectively [16]. Electron transfer is 
independent in two independent subunits [2]. 

 

 

Fig. 1: Inverted butterfly catalytic structure and electron 
transfer pathway of XOR dimer: Each XOR monomer includes A. 
N-terminal domain (20-kDa) B. Intermediate domain (40-kDa) 
C. C-terminal domain (85-kDa). The pathway of electron flow in 
XOR includes an MO-pterin unit, two unequal iron–sulfur redox 

centers Fe2/S2I and Fe2/S2II) and one molecule of FAD 
respectively 

 

[reviewed in 2, 14] 

In the fig. [1] Electron donors are of same substrates, but electron 
acceptor is different in two forms of the enzyme. In XDH, 
nicotinamide adenine dinucleotide (NAD+) is the preferred acceptor 
and in case of XO form oxygen (O2) is the electron acceptor which 
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can produce superoxide anion, hydrogen peroxide (H2O2) which 
acts as an important signaling molecule and also has a potential to 
generate reactive oxygen species (ROS) but in intermediate form 
XOD which was produced because of reversible thiol oxidation of 
XDH can reduce both NAD+ and O2 [15, 17-18]. The intermediate 
form can also produce ROS because of O2

 

 reduction. 

 

Fig. 2: Biological interconversions of mammalian XOR: Thiol 
oxidation converts XDH into reversible XOD (intermediate 

form) of the enzyme. Partial proteolysis converts XDH and XOD 
into the irreversible XO form [reviewed in 15, 17-18] 

 

Recently NADH oxidase activity of an enzyme has been identified 
where NADH donates its electrons directly to FAD to an electron 
acceptor O2 [19]. And also some papers have reviewed nitrates 
reducing power of XOR especially XO form. XO can reduce inorganic 
nitrates, glyceryl nitrates to nitric oxide (NO) under hypoxic 
conditions in the presence of NADH or xanthine as a reducing 
substrate which acts as an important signaling molecule. Moreover, 
in the presence of O2

 

, superoxide reacts rapidly with NO to generate 
reactive nitrogen species (RNS) particularly peroxynitrite an even 
more powerful bactericidal agent [17, 20-21]. A further complication 
is that this reaction can affect vasodilation effect of NO particularly 
in the ischemic conditions of vasculature when NO synthase activity 
is low. In this context, the two enzymes can be seen as 
complementary [22]. 

 

Fig. 3: Reduction mechanism of nitrates by XO: Xanthine/NADH 
donates electrons to nitrates and oxidizes to uric acid/NAD+

 

. 
Nitrates accept the electrons and reduces to NO and other RNS 

Distribution of mammalian XOR  

In mammals, XOR has been distributed in many organs; however 
highest levels are found in the liver, intestine and biological fluids 
such as blood, milk [23-26]. In respect of humans, highest levels are 
found in liver, intestine [27-31] while a very low activity has been 
detected in other organs [32-33]. Interestingly, human endothelial 
cells from the microvasculature of several tissues have been 
reported as expressing high levels of XOR activity [34]. XOR can be 
found in human milk and blood, but activity is low compared to 
bovine milk and blood under physiological conditions, but it can be 
increased under pathological conditions. [5, 35-37].  

 Biochemical roles of XOR  

Being a widely distributed enzyme XOR has been involved in many 
biochemical functions. These functions play a major role in 
physiology and pathology. 

Physiological role of XOR  

The physiological involvement of XOR is potentially complex. 
Although normal cellular/tissue distributed enzyme has an affinity 
for several substrates including aldehydes, purines, pyrimidines, 
pteridines, aza purines, heterocyclic compounds and retinol [35, 38] 
but the conventional role is purine catabolism especially in the liver 
[9, 15]. Despite purine catabolism other housekeeping functions of 
XOR are detoxification of xenobiotics, including antiviral and 
anticancer agents and regulation of cellular redox potential, 
lactation [6, 39, 40]. First three reactions involve in the generation of 
ROS/RNS, which are crucial to physiological functions such as innate 
immune defense and signal transduction. 

Purine catabolism  

In normal physiological conditions, XDH form of the enzyme was 
predominant in tissues and catalyzing the oxidative hydroxylation of 
hypoxanthine to xanthine and the oxidation of xanthine to uric acid. 
Uric acid acts as a potent antioxidant and free radical scavenger 
necessary to protect a cell from oxidative damage caused by ROS 
and RNS [9, 15, 19, 41]. This has been the proposed reason for 
increased lifespan in humans. Therefore, the lack of uricase activity 
could represent an evolutionary advantage for uricotelic primates 
over ureotelic mammals [42-43].  
 

 

Fig. 4: Mechanism of action of XDH: Xanthine donates electrons 
to NAD+ and oxidizes to uric acid. NAD+ 

 

accepts the electrons 
and is reduced to NADH in normal tissues 

Purine catabolism has also been detected in epithelial cells and 
vascular endothelial cells, but uric acid is secreted on the surface of 
these cells expanding their role extra in nasal fluid, saliva, and other 
body fluids as a systemic antioxidant [44-47]. 

Innate immune defense 

Surprisingly XOR itself contributes the synthesis of numerous ROS 
and RNS in XO form. In the early 1980s hypothesized that XDH can 
be converted to XO in the presence of stimuli (cell and tissue injury). 
This property of XOR to rapidly convert from XDH to XO makes XOR 
an ideal component for a fast immune response [6, 48]. 
 

 

Fig. 5: Mechanism of action of XO: Xanthine/other substrate 
donates electrons to O2 and oxidizes to uric acid/other substrates. 

O2 accepts the electrons and reduces to O2-and other ROS 
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From last two decades, attention has been focused on the ability of 
the XOR to generate ROS/RNS. At lower levels these two acts as 
secondary messengers, but at higher levels, they have an 
antimicrobial action which plays a major role in the cellular innate 
immune activity [49-51]. In addition to ROS/RNS uric acid the 
product of purine catabolism also plays a major role in immune 
defense mechanism as an antioxidant and free radical scavenger, 
besides being an anti-inflammatory effector with numerous 
protective roles in the body. The protective functions are not only at 
the cellular level but also involved in systemic functions due to 
circulating XOR and serum uric acid [47, 52-53]. Circulating XOR is 
in XO form due to proteolysis by plasma proteases [54]. Healthy 
mammals have low levels of circulating XOR. In the case of humans, 
these levels can dramatically increase in response to a range of 
diseases, particularly those affecting the liver [18]. XOR has been 
implicated as a destructive agent, particularly in many forms of 
ischemic-reperfusion (IR) injury due to the production of ROS/RNS 
[6, 16, 41, 55]. Nevertheless, the cytotoxic properties of ROS/RNS 
can also be beneficial, and an antimicrobial role for bovine milk XOR 
has been considered for many years. XOR initiates an antimicrobial 
response in response to infection, cytokines or other pro-
inflammatory mediators. These stimulate XDH to XO conversion 
which leads to the generation of ROS, and neutrophil infiltration 
inflammatory response. The neutrophils then act to combat the 
infectious agents [56-58]. Further examples of antimicrobial action 
of XOR identified in GIT, bile duct, vascular endothelium resulting 
from the generation of ROS and RNS. XOR also plays a major 
antimicrobial role in the bile juice produced from the lining of bile 
ducts [6, 40]. 

Recently new hypothesis were proposed to explain the antimicrobial 
property of milk. The location of XOR on the surface of fat globules in 
milk is well suited to its proposed antimicrobial role of mammalian 
milk. It is still an area of research how the purely structural role of XOR 
in secretion relates to the proposed antimicrobial function. It is most 
likely to be hypothesized that the pathogenic bacteria which can be 
targeted epithelial membrane antigens of the digestive tract are likely 
to bind to similar antigens on MFGM [59]. This interaction probably 
brought into close contact with XOR which is present on MFGM 
reinforced by the enzyme affinity for acidic polysaccharides, present 
on many bacterial capsules [60]. This interaction could be the stimulus 
for conversion of XDH to XO to generate ROS [61]. Still, it is not clear 
which is reducing substrate for the XO. This aspect is being under 
active area of investigation. XOR derived H2O2 exerts its antimicrobial 
effects by acting as a substrate for the lactoperoxidase system in milk.  

Unknown substrate+O2+H2O → Unknown product+O2-

In view of the newly discovered role of XOR to reduce nitrite to NO in the 
generation of RNS particularly peroxynitrite, can be seen as a potential 
mechanism of antimicrobial activity of milk. Usually, nitrate 

concentrations are likely to be high in the immediate micro-environment 
of enteric bacteria favoring XOR-catalyzed reduction to NO. 

Signal transduction  

As discussed above in innate immune defense at low levels XOR-
generated ROS/RNS act as secondary messengers in signal 
transduction, but convincing proof of the involvement in cellular 
signaling yet to be ambiguous. Recently a new hypothesis described 
the location of XOR on the outer surface of cultured human 
endothelial and epithelial cells, and to be localized to surfaces 
opposed to those of closely neighboring cells which are involved in 
cell-cell interactions [62]. 

In addition to above prominent activities, an XOR-generated ROS are 
responsible for Iron mobilization from ferritin in the liver [63], iron 
absorption in the intestinal mucosal [64] and the induction of 
proliferation [65-67]. It was also postulated that free radical generation 
by XOR and various metabolic pathways in developmental animals 
believed to be influenced the development [3]. 

Role of XOR in lactation  

Recently, evidence has been reported for the involvement of XOR in 
milk secretion [68]. XOR occurs in the milk fat globule membrane 
(MFGM). Fat droplets originate in the endoplasmic reticulum of the 
mammary secretory cell. In the secretion process, they migrate to the 
luminal surface and bud off from the cell, enveloped by the apical cell 
membrane to form a MFGM [61, 69]. Immediately after leaving the cell, 
the fat droplet is surrounded by a true biological membrane. During 
this process, the enzyme moves from the cytoplasm of the secretory 
cell to the apical cell membrane where it combines with adipophilin 
and butyrophilin. XDH was shown to form a complex with these 
proteins which mediate coupling between lipid droplet and the apical 
plasma membrane in the secretion process. This activity depends only 
on its protein structure not owing to catalytic activity. 

and other 
ROS 

Regardless of many decades of research into XOR, the human 
enzyme has characterized recently. The catalytic activity of human 
liver XOR is similar to bovine milk [70] enzyme, but surprisingly 
human milk enzyme has low xanthine oxidase activity due to its low 
molybdenum content (less than 5%). The NADH oxidase activity of 
human milk XOR is essentially same as that of the bovine milk 
enzyme which involves only FAD site [71]. The low enzymatic 
activity of human XOR is a puzzle [72]. If the process of milk 
secretion does not require enzymatic activity, this is only necessary 
in the first few weeks postpartum, in order to fulfill an antimicrobial 
role in the neonatal gut. Thereafter, this requirement ceases, and the 
activity falls to the level commonly found in purified milk XOR, 
which is generally obtained several weeks after birth. It was also 
reported that goat and sheep milk enzymes have relatively low 
activity similar to human XOR which has molybdenum contents of 
9% and 18% respectively. 

 

 

Fig. 6: Structural role of XOR in milk secretion process of mammary secretory cell  
A. Fat droplets originate in the endoplasmic reticulum of the mammary secretory cell and XOR movement from the cytoplasm of the secretory cell to 

the apical cell membrane B. Migration of fat droplets to the luminal surface enveloped by the apical cell membrane to form a MFGM [61, 69] and 
combining of XOR with adipophilin and butyrophilin on apical cell membrane C. XDH mediates coupling between lipid droplet and the apical plasma 

membrane in the secretion process. 

 

Pathological role of XOR  

So far several hundreds of publications have published about the 
involvement of XOR in pathogenesis, although the specific 
pathogenic mechanisms are still debated [41]. Whatever may be the 
mechanisms the agents involved in pathogenesis are ROS/RNS and 
uric acid generated by XOR.  

Role of ROS/RNS in pathology 

The usual function of ROS/RNS as a destructive agent has been 
illustrated in 1986 in IR injury [73]. IR injury is cell death that 
commonly results from interruption of blood flow to specific tissue, 
which occurs in a myocardial infarction or stroke. It can represent 
an unusual response to sequence a normal physiological process in 
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the vasculature, namely inflammation. On the basis of their studies 
of feline intestinal ischemia, Granger and colleagues proposed the 
consequences of events. In the course of ischemia, the energy status 
of the cell falls, transmembrane ion gradients break down, and the 
levels of intracellular calcium increase, which leads to activation of a 
calcium-dependent protease that irreversibly converts XDH into the 
XO. Concomitantly, cellular ATP is catabolized to hypoxanthine, 
which accumulates. On reperfusion, oxygen again becomes available 
and is reduced by the hypoxanthine-XO system, generating 
superoxide and H2O2

Hyperuricemia is the most cited pathology caused by XOR. It is a 
pathological condition caused by several reasons including over 
production by XOR, underexcretion, renal tubular disorders of uric 
acid. A hyperuricemic state possibly will also develop following 

tumor cell necrosis producing the so-called “tumor lysis syndrome” 
as neoplastic cells leak purines into the interstitial fluid and plasma, 
potentially leading to renal failure [80-81]. Congenital diseases may 
also give rise to hyperuricemia; the two most common are Lesch-
Nyhan and Kelley-Seegmiller Syndromes–X-linked recessive 
disorders involving the overproduction of uric acid owing to 
complete or partial lack of hypoxanthine guanine phosphoribosyl 
transferase (HGPRT) in elevated concentrations of XOR substrates in 
the cell [80, 82-83]. Hyperuricemia condition follows various 
pathological changes. Even though most frequently expressed 
clinical condition was gout with the deposition of uric acid crystals, 
particularly in the joints, giving rise to rheumatic problems such as 
dysarthria it may develop other insignificant pathologies such as 
urolithiasis/nephrolithiasis, chronic kidney diseases, and cardiac 
disorders also [84-85]. 

. These ROS then interact to generate hydroxyl 
radicals with consequent oxidation of biological molecules, including 
proteins, lipids, and nucleic acids. This process directs to tissue 
injury which plays a major role in respiratory and cardiovascular 
disease. This mechanism also has been considered to be a reason for 
the difficulty in organ preservation for transplantation, particularly 
for XOR-rich organs, such as the intestine and liver. Therefore, the 
University of Wisconsin preservation solution includes allopurinol 
although XOR activity was not definitively shown to be the main 
source of oxidative stress in tissue grafting [74]. 

As well as in vascular pathology, the exocytosis of XOR upon cellular 
insults/stress, such as ischemia has been recognized to be a 
component in the pathogenesis of reperfusion injury [75-76]. In 
addition, several studies have suggested that circulating XOR can 
bind to vascular endothelial cells, thus providing a center of 
attention for oxidative stress/damage at sites far from the initial 
injury [75, 77].  

During the 1970s and early 1980s, a new hypothesis was promoted to 
explore an association between cows’ milk XOR and ischemic heart 
disease [78, 79]. In this context, produced anti-bovine MFGM antibodies 
might cross-react with platelet membrane antigens, inducing platelet 
aggregation and hence atherogenesis. However, this hypothesis was 
later disproved, and it can be argued that they were anti-XOR 
autoantibodies and their role is protective, serving to remove 
endogenous XOR arising from various pathological states. Their elevated 
levels in myocardial infarction (MI) patients could be in response to 
enzyme released from vascular endothelial cell lesions [79].  

Role of uric acid in pathology 

So far discussion carried about XOR physiological activities, its 
association in pathology. In addition to this, deficiency of xanthine 
oxidase due to a genetic defect or severe liver deficiency has been 
detected. Hypouricemia, increased excretion of hypoxanthine and 
xanthine are associated with xanthine oxidase deficiency [86]. 

Inhibition of XOR 

The most commonly prescribed drugs for hyperuricemia of any 
cause is allopurinol, which has been a central part of clinical 
therapeutics for over 60 y. Allopurinol is converted to oxypurinol 
(also xanthine) in the process of inhibiting XOR, and is a competitive 
inhibitor of xanthine that actually inactivates the enzyme. It remains 
the only commercially available inhibitor of XOR in the United States 
[87]. Many recent studies have focused on natural and synthetic 
inhibitors of XOR that might be used as part of a daily regimen or be 
used to replace or synergize with allopurinol because of severe side 
effects of allopurinol [87-89]. Possibly the most promising synthetic 
pharmaceutical is known as TEI-6720 or Febuxostat [87, 90-92]. 
This compound is not a competitive inhibitor of XOR but instead 
interfere at the active site as a stably bound/docked molecule. It was 
proposed to be safe in patients with renal failure, but the evidence is 
not yet available [93-94]. 

In spite of the wide use of synthetic analogs in the treatment of gout 
the search for novel XO inhibitors with fewer side effects and potent 
activity are essential not only for the treatment of gout but also treat 
other diseases associated with the XO activity. In this review, we 
tabulated the various natural XO inhibitors that have been identified. 

 

Table 1: List of natural XO inhibitors and IC50 

Plant name 

values 

Part/extract Active phyto constituent IC50 Reference  value of µg/ml or) 
µm/ml 

Silybum marianum Sylimarin extract  27.58+/-3.48 Silibinin [95] 
Tephrosia purpurea Methanolic root extract - Polyphenols, Flavonoids [96] 
Erythrina indica Methanolic stem bark extract 52.75 Flavonoids [97] 
Erythrina stricta  Chloroform fraction 21.2 - [99] 
Cranberry  Juice 2.4  - [99] 
Purple grapes Juice 3.5  - [99] 
Black tea Extract  5.8  [99] 
 Green tea Dried leaves Epigallocatechin gallate (EGCG) 0.48    [100] 

Root Japanese knotweed Resveratrol -   [100] 
Origanum syriacum Aqueous extract of aerial parts - 317  [101] 
Origanum vulgare L Aqueous extract of aerial parts - 403.9  [101] 
Hyoscyamus reticulatus Aqueous extract of aerial parts - 12.8  [101] 
Achillea fragrantissima Aqueous extract of Aerial parts - 179.9  [101] 
Daphne linearifolia Aqueous extract of aerial parts - - [101] 
Hibiscus sabdariffa  Aqueous extract of calyx - - [101] 
Aristolochia maurorum Aqueous extract of aerial parts - - [101] 
Citrullus colocynthis Aqueous extract of seed - - [101] 
Laurus nobilis Aqueous extract of leaves - - [101] 
Pimpinella anisum  Aqueous extract of fruit - 300.4  [101] 
Tecoma stans  Ethanol extract - 38.97  [102] 
Cassia fistula  Methanol seeds extract Flavonoids 11.07  [103] 
     
Conyza bonariensis Methanol extracts Syringic acid Takakin 8-O-

glucuronide
500+/-41  

  170+/-12 
[104] 

Koelreuteria henryi  Acetone extracts - 91.8±1.7  [105] 
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Prunus campanulata Acetone extracts - 64.6±5.8  [105] 
Rhodiola rosea  Acetone extracts - 56.0 0±1.0  [105] 
Aronia melanocarpa Berries,bark extract   Anthocyanins  - [106] 
 Oroxylum indicum Seed extract Oroxin B, oroxinA, baicalin, 

baicalein 
- [107] 

Scutellaria baicalensis  Root Baicalin, wogonin, 
baicalein 

- [108] 

Methanol extractCinnamomum cassia  of - twig 18  [109] 
Methanol extractChrysanthemum 

indicum 
 of - flower 22  [109] 

Methanol extractLycopus europaeus  of - leaves 26 [109] 
Water extracts of rhizome Polygonum cuspidatum - 38  [109] 

Semecarpus 
Anacardium 

Ethyl acetate fraction of seeds Tetrahydroxymentoflavone 92 [110] 

Lagerstroemia speciosa Aqueous extracts of leaves Valoniec acid and ellagic acid - [111] 
Cyathea spinulosa  Tree  Caffeic acid - [112] 
Salvia mitiorrhiza Roots Lithospermic acid - [113] 
Palhinhaea cernua  Ethanolic extract of club moss 1-apigenin-4-(2-o-p-coumaroyl)β-

d-glucopyranoside 
23.95±0.43 [114] 

Cinnamomum 
osmophloeum 

Essential oil from leaves Cinnamaldehyde 16.3  [115] 

Momdica charantia Aqueous extract  coumarin - [116] 
Vicia faba Plant extracts Polyphenolic compounds 40-135  [117] 
Lotus edulis Plant extracts Polyphenolic compounds 55-260  [117] 
Chrysanthemum sinense Methanolic extracts of flowers Acaacetin 7-0-(3-0-acetyl) β-d-

glucopyranoside 
0.13-2.31  [118] 

Caulerpa species Seaweed Caulerpenyne - [119] 
Lonicera hypo-glauca 
(lh) 

Ethanolic extract Bioflavonoid and lonicera flavone 35.2  [120] 

Teucrium polium Methanol, chloroform, ethyl 
acetate extracts 

Proanthocyanidins, gallic 
acid,catechin and epicatechin 

0.07-11.76 [121] 

Tephrosia purpurea Root extracts Polyphenols and flavonoids - [122] 
Chrysanthemum 
coronarium 

Methanol extract - 199.5 [123] 

Achillea biebersteinii Methanol extract - 360.0  [123] 
Rosmarinus officinalis Methanol extract - 650.0  [123] 
Ginkgo biloba Methanol extract - 595.8  [123] 
Helianthemum 
ledifolium 

Methanol extract - - [123] 

Majorana syriaca Methanol extract - - [123] 
Mentha spicata Methanol extract - - [123] 
Populus nigra Methylene chloride-methanolic 

extracts 
- 8.3  [124] 

Betula pendula Methylene chloride-methanolic 
extracts 

- 25.9  [124] 

caryophyllus 
aromaticus 

Ethanolic extract - 5 [124] 

Hypericum perforatum Ethanolic extract - 50  [124] 
Fistulina hepatica Methanol extract - - [125] 
Hypholoma fasciculare Methanol extract - - [125] 
Infundibulicy 
begeotropa 

Methanol extract - - [125] 

Tricholoma populinum Methanol extract - - [125] 
Eucalyptus deglupta - - 44.5 [126] 
Syzgiumma lacense - - 51 [126] 
Olive Leaf extract Secoiridoidoleuropein and other 

apigenin derivative 
53.0 [127] 

Cinnamomum cassia  Methanol extract of the twig -   18  [128] 
Polygonum cuspidatum Rhizome extract   - 38  [128] 

XO-Xanthine oxidase 

 

All natural inhibitors extracted from specific plants collectively 
belongs to large groups of chemical constituents includes flavonoids, 
terpenoids, essential oils, polyphenols, glycosides anthocyanins and 
others. In addition to these plants, majorities of medicinal plants 
were previously reviewed [8, 129-132]. 

CONCLUSION  

The capability of the multifunctional enzyme XOR to execute 
various biochemical reactions owing to the synthesis of 
antioxidant uric acid and generation of ROS/RNS makes it an 

outstanding intra and extracellular protective housekeeping 
enzyme and an important component of the innate immune 
system. XOR is involved in numerous features of mammalian 
innate immunity such as antimicrobial activity in various regions 
due to the generation of ROS/RNS and also play a major role in the 
oxidative defense because of the synthesis of uric acid by purine 
catabolism. Apart from defense, an XOR-derived ROS/RNS have 
multiple potential roles, in both intra-and extracellular signaling. 

Additionally, the role of the enzyme in the process of milk secretion 
has long been suspected and recently convincingly demonstrated. 

https://en.wikipedia.org/wiki/Oroxylum_indicum�
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The structural role of XOR protein, rather than an enzymatic activity 
in milk secretion is unexpected. 

XOR is also involved in pathology due to the generation of ROS/RNS 
and synthesis of uric acid. Moreover, ROS and RNS have the capacity 
to combat infection and to promulgate injury throughout the 
vascular system. Similarly uric acid has the capacity to act as an 
antioxidant and at high concentrations able to cause hyperuricemia. 
For these reasons the levels of the enzyme are subject to rigorous 
control by the associated autoantibodies, a rare example of 
beneficial autoimmunity. 

Finally, the disease burden of hyperuricemia, which majorly involves 
in gout remains a major problem and increasing day by day. The 
available synthetic XO inhibitors are typically used to treat gout or to 
reduce serum levels of uric acid, yet they are exhibiting a huge 
number of side effects. Hence the research has been focused on 
natural XO inhibitors, which could have therapeutic potential in 
selected groups of patients with gout. However, much of the 
information concerning structure, catalytic mechanism and 
biochemical functions and also various natural inhibitors cited in 
this review is truthful. 
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