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ABSTRACT 

Objective: To identify the novel and simple bioactive antiandrogens, that can overcome to side effects as well as drug resistance.  

Methods: The AutoDock Vina (ADT) 1.5.6 software is used for molecular docking purposes. The molecular structures were drawn in ChemBiodraw 

ultra and by the help of ChemBiodraw 3D, all structures were energy minimized by MM2 method and converted to pdb extension file which is 

readable at the ADT interface.  

Results: Total ten compounds from both series were shown better binding affinity than R-bicalutamide including oxadiazole and triazole series. 

Among these pk42 and pk46 were studied in-depth which showed best binding affinity to the androgen receptor. The cis-isomers were found better 

than their trans-isomer. 

Conclusion: Novel 5-styryl-1,2,4-oxadiazole/triazole derivatives were studied through molecular modeling using Autodock Vina. The potent 

compounds which showed better binding affinity than R-bicalutamide like pk24 and 46 were further analyzed for their interactions. The 

conformational effect also found significant in binding to the androgen receptor.  
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INTRODUCTION  

Prostate cancer is one of the major concerns worldwide as it has 

emerged as the second leading cause of cancer-related deaths in men [1]. 

More than 6,70,000 men are diagnosed with prostate cancer every year. 

In 2013 in the United States, 233,000 newer cases of cancer were found 

and 29,480 deaths were reported [2, 3]. Although PC incidence rates are 

lower in Asian countries but in India, it has increased recently [4]. 

Testosterone and dihydrotestosterone are the two steroidal androgenic 

hormones which act as the main facilitators for the progression and 

development of the prostate cancer [5]. Androgens upon binding to the 

androgen receptor (AR) cause conformational changes in the AR genes. 

These AR-regulated genes encode prostate-specific antigen (PSA), is a 

serine protease, which acts as an important biomarker for the 

pathogenesis of PCa [6-8]. Hence steroidal agents like cyproterone 

acetate and spironolactone were employed for the treatment of prostate 

cancer (fig. 1) [9-11].  

But this therapy failed due to several drawbacks attributed to the 

non-specific effects of steroidal antiandrogens such as cross-

reactivity, poor bioavailability and lack of tissue selectivity, etc. 

these limitations has shifted the focus of researchers towards non-

steroidal class of anti-androgens as a potential of diminishing the 

cross reactions with other steroidal hormones which eliminates the 

unwanted side effects [12]. Another important application of non-

steroidal antiandrogens is their potential to provide various 

structural modifications to afford more potent scaffolds. Although 

this approach initially shows an 80–90% response rate, but when 

treatment is continued for 1–2 y, approximately 50% of patients 

progress to fatal androgen independent disease [13-41].  

Clearly, there is an unmet medical need for the treatment of advanced 

CaP. For this reason, efforts have been devoted to identifying novel 

small-molecule antagonists of the AR that are more effective than the 

current therapies which led to the newer classes of non-steroidal 

compounds which showed more potent activity as compared to the 

marketed non-steroidal anti-prostate drugs.  

However, these newer discoveries in the class of non-steroidal AR 

ligands provide the new insights to achieve the specificity and 

selectivity in tissue targeting as selective androgen receptor 

modulators (SARMs). 
 

 

Fig. 1: Antiandrogen ligands 
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Recently 3-aryl-6-methyl-2-thioxotetrahydropyrimidin-4(1H)-ones 

were reported as anti-prostate cancer agents, selectively inhibiting 

the androgen receptor [42-45]. Our interest and research works on 

biologically active heterocyclic scaffolds resulted in identifying a 

new class of antagonists based on 1,2,4-oxadiazole [43]; their stereo 

chemical aspects and preliminary virtual screening results are 

discussed herein. The target molecules were designed on the basis of 

molecular modeling, considering the structures of R-bicalutamide as 

a gold standard non-steroidal anti-prostate cancer agent. 

MATERIALS AND METHODS 

Molecular modeling is a well-explored tool for identification of 
potent compound without investing too much effort and money in 
research [46-50]. For molecular docking purpose we have used the 
AutoDock Vina (ADT) 1.5.6 software [51] and for comparison, the 
outcomes is compared in binding affinity score for best-docked 
conformation. The molecular structures were drawn in 
ChemBiodraw ultra and by the help of ChemBiodraw 3D, all 
structures were energy minimized by MM2 method [52] and 
converted to pdb extension file which is readable at the ADT 
interface. To identify the potential antiandrogen, we have used the 
1Z95 pdb file downloaded from pdb data bank (http://www. rcsb. 
org/pdb/explore. do?pdbId=1z95). The outcomes of results were 
analyzed by AutoDock Vina result which reveals close contact, 
hydrogen bond, hydrophilic and hydrophobic interactions. 

RESULTS AND DISCUSSION  

The X-ray crystal structure of R-Bicalutamide in WL AR LBD complex 

revealed that it oriented at the active binding site in a bent 

conformation, due to hydrogen bonding interactions of chiral 

hydroxyl with amide nitrogen (fig. 2). Therefore, we assumed that 

conformationally restricted model with relevance to anti-prostate 

activity can be investigated. With our current interests on 

heterocyclic scaffolds and anti-prostate cancer agents, we designed 

conformationally restricted oxadiazole derivatives with bioisosteric 

replacement with Cl, CN, CF3, F, NO2, Br [37,38].  

The restricted conformation further strengthens with a double bond 
at ring B in the newly designed pharmacophore (fig. 2). Total 160 
compounds were designed and studied by molecular docking 
through software Autodock Vina. The designed compounds were 
drawn in 3D structure by using ChemBioDraw Ultra 12.0 
(Cambridge Soft) and geometry was minimized by using MM2 
(molecular mechanics method).  

All geometries minimized structures were then converted or 
transformed into a readable format (pdb) by ChemBioDraw Ultra 
and used in Autodock-vina software (ADT). The protein 1Z95 
(androgen receptor) is prepared by ADT through removing water 
molecules, repairing for missing atoms, adding polar hydrogen 
atoms only, adding Kollman charges, and saved as macromolecule 
1Z95. The validation of method is performed by extracting the ligand 
present in the protein viz R-bicalutamide and docked which showed 
similar interaction as reported by Dalton et al. [23, 24]. The results 
obtained from molecular docking of designed ligands on the 
validated protein 1Z95 and are summarized in table 1 for 
oxadiazoles and in table 2 for triazoles derivative. Here the binding 
affinity of ligand towards mutant androgen receptor is represented 
in terms of docking score. 

 

Fig. 2: Design of novel series of compounds based on R-

bicalutamide 

 

Table 1: Designed ligands of oxadiazole derivatives (Series 1) 

 

Entry Code R1 R2 X R3 Binding affinity (Kcal/mol) 

 cis Trans     cis Trans 

1 pk1 pk81 H H O H -9 -8 

2 pk2 pk82 H H O F -9.3 -8.1 

3 pk3 pk83 H H O Cl -9.4 -6.8 

4 pk4 pk84 H H O Br NA* NA* 

5 pk9 pk89 F Cl O H -9.8 -8.5 

6 pk10 pk90 F Cl O F -10.1 -7.9 

7 pk11 pk91 F Cl O Cl -10.3 -6.9 

8 pk12 pk92 F Cl O Br NA* NA* 

9 pk17 pk101 Cl F O H -9.6 -8 

10 pk18 pk102 Cl F O F -10.1 -7.1 

11 pk19 pk103 Cl F O Cl -10 -6.4 

12 pk20 pk104 Cl F O Br NA* NA* 

13 pk25 pk105 Cl CN O H -10.5 -8.6 

14 pk26 pk106 Cl CN O F -10.9 -7.8 

15 pk27 pk107 Cl CN O Cl NA* -7 

16 pk28 pk108 Cl CN O Br NA* NA* 

17 pk33 pk113 Cl CF3 O H -10.4 NA* 

18 pk34 pk114 Cl CF3 O F -11.1 -7.8 

19 pk35 pk115 Cl CF3 O Cl -10.9 -7.3 

20 pk36 pk116 Cl CF3 O Br NA* -8.3 

21 pk41 pk121 CN CF3 O H -10.9 -8.6 

22 pk42 pk122 CN CF3 O F -11.6 -8.6 

23 pk43 pk123 CN CF3 O Cl -11.5 -7.6 

24 pk44 pk124 CN CF3 O Br NA* NA* 

25 pk49 pk129 NO2 CF3 O H -10.5 -8.2 
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26 pk50 pk130 NO2 CF3 O F -11.1 -7 

27 pk51 pk131 NO2 CF3 O Cl -10.7 -6.1 

28 pk52 pk132 NO2 CF3 O Br NA* NA* 

29 pk57 pk137 NO2 F O H -9.8 -7.6 

30 pk58 pk138 NO2 F O F -10.3 -6.7 

31 pk59 pk139 NO2 F O Cl -10.2 -5.3 

32 pk60 pk140 NO2 F O Br NA* NA* 

33 pk65 pk145 CF3 F O H -10.2 NA* 

34 pk66 pk146 CF3 F O F -10.4 -6.4 

35 pk67 pk147 CF3 F O Cl -10.4 -5.9 

36 pk68 pk148 CF3 F O Br NA* NA* 

37 pk73 pk153 CH3O CH3O O H -9.1 -7 

38 pk74 pk154 CH3O CH3O O F -9.5 -6.7 

39 pk75 pk155 CH3O CH3O O Cl -9.5 -6.2 

40 pk76 pk156 CH3O CH3O O Br NA* NA* 

41   R-Bicalutamide -10.9 

*NA–no result 

 

Table 2: Designed ligands of triazole derivatives (Series 2) 

 

Entry Code R1 R2 X R3 Binding affinity (Kcal/mol) 

 cis trans     cis trans 

1 pk5 pk85 H H NH H -9 -7.9 

2 pk6 pk86 H H NH F -9.3 -8.1 

3 pk7 pk87 H H NH Cl -9.1 -6.8 

4 pk8 pk88 H H NH Br NA* NA* 

5 pk13 pk93 F Cl NH H -9.8 -8.4 

6 pk14 pk94 F Cl NH F -10.3 -7.8 

7 pk15 pk95 F Cl NH Cl -10.3 -6.7 

8 pk16 pk96 F Cl NH Br NA* NA* 

9 pk21 pk97 Cl F NH H -9.8 -6 

10 pk22 pk98 Cl F NH F NA* -7.8 

11 pk23 pk99 Cl F NH Cl -10.2 -6.8 

12 pk24 pk100 Cl F NH Br -10.1 NA* 

13 pk29 pk109 Cl CN NH H -10.2 -8.5 

14 pk30 pk110 Cl CN NH F -10.8 -7.5 

15 pk31 pk111 Cl CN NH Cl -10.7 -6.5 

16 pk32 pk112 Cl CN NH Br NA* NA* 

17 pk37 pk117 Cl CF3 NH H -10.8 -8.3 

18 pk38 pk118 Cl CF3 NH F -11.1 -7.4 

19 pk39 pk119 Cl CF3 NH Cl -10.6 -6.9 

20 pk40 pk120 Cl CF3 NH Br NA* NA* 

21 pk45 pk125 CN CF3 NH H -11.3 -8.3 

22 pk46 pk126 CN CF3 NH F -11.7 -7.2 

23 pk47 pk127 CN CF3 NH Cl -11.6 -6.5 

24 pk48 pk128 CN CF3 NH Br NA* NA* 

25 pk53 pk133 NO2 CF3 NH H -10.6 -8 

26 pk54 pk134 NO2 CF3 NH F -10.9 -6.7 

27 pk55 pk135 NO2 CF3 NH Cl -11 -6.2 

28 pk56 pk136 NO2 CF3 NH Br NA* NA* 

29 pk61 pk141 NO2 CF3 NH H NA* -7.5 

30 pk62 pk142 NO2 CF3 NH F -10.3 -6.4 

31 pk63 pk143 NO2 CF3 NH Cl -10.1 -5.9 

32 pk64 pk144 NO2 CF3 NH Br NA* NA* 

33 pk69 pk149 CF3 F NH H -10.2 -7.5 

34 pk70 pk150 CF3 F NH F -10.8 -6.3 

35 pk71 pk151 CF3 F NH Cl -10.5 -5.9 

36 pk72 pk152 CF3 F NH Br NA* NA* 

37 pk77 pk157 CH3O CH3O NH H -9.1 -6.8 

38 pk78 pk158 CH3O CH3O NH F -9.4 -6.4 

39 pk79 pk159 CH3O CH3O NH Cl -9.4 -5.9 

40 pk80 pk160 CH3O CH3O NH Br NA* NA* 

41   R-Bicalutamide -10.9 

*NA–no result 
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The results obtained from molecular docking of designed analogs 

were studied and analyzed. The molecular docking analysis showed 

that all ligands were docked in the same ligand binding site as that of 

R-bicalutamide and showed a high binding affinity towards the 

androgen receptor [23]. The effect of geometrical isomers: cis and 

trans was studied, and cis geometrical isomers were found to be 

more potent as compared to trans isomers. Geometry has a profound 

influence on binding affinity as observed that cis isomers (adopt 

perfect bent conformation) are found better than their 

corresponding trans isomers as shown below in fig. 3 and fig. 4. 

Total ten compounds from both series were shown better binding 

affinity than R-bicalutamide including pk34, pk41, pk42, pk43, pk50 

from oxadiazole series in table 1, entries 18, 21,22,23,26 

respectively and pk38, pk45, pk46, pk47, pk55 from triazole series 

are in table 2, entries 18,21,22,23,27 respectively. Among these pk42 

and pk46 were studied in-depth which showed best binding affinity 

to the androgen receptor. The cis-isomers were found better than 

their trans-isomer. 

The study of most potent compounds also suggests the effect of 
substituents on both ring; we observed that electron withdrawing 
functional groups such as CF3, NO2 and CN are found better than 
electron donating functional groups like CH3, OCH3 on ring A 
whereas halogen particularly fluoro found better on ring “B”. 

The close contacts have shown for the most potent compounds pk42 
and pk46 from both classes of designed ligands. The ribbon 
structure of a protein is depicting the docked conformation of ligand 
onto the active site of protein as shown in fig. 5 and fig. 6. 

 

 

Fig. 3: Overlay of close contacts of cis isomers: (pk 42 in magenta color and pk46 in green color) with neighboring amino acid residues 
 

 

Fig. 4: Overlay of close contacts of trans isomers: (pk122) with 

neighboring amino acid residues 
 

An in-depth analysis of the docked conformation onto the active site 

of protein, showed following interactions:  

Ring A: CF3 from hydrogen bonding with Gln711, Met745 and 

Thr677 residues whereas CN situated in a hydrophobic region with 

Phe764, Val746 amino acid residues (fig. 5). 

 

 

Fig. 5: Visualization of active binding sites of protein with 

bound ligand pk42 (oxazole) and 46 (triazole) 

 

Fig. 6: Visualization of active binding sites of protein with 

bound ligand pk122 

 

Ring B: adopts bent conformation and disrupts AF2 region by 

interacting with Leu741, Val 903. 

These interactions increase the binding affinity of the ligands and 

suggesting for optimal electron withdrawing function groups as CF3, 

CN on ring A and F at ring B, also the cis conformation gives the bent 

structure for better fitting to the binding pocket of AR. 

CONCLUSION  

Progression of prostate cancer occurs due to the overexpression of 

androgen receptor. Though it is not limited to only prostate gland it 

can metastasize beyond the prostate gland also and start affecting 

another part of the body at that stage it becomes more complicated 

to treat. There are several ways to cure the prostate cancer but most 

commonly used is chemotherapy which mainly involves two classes 

of drugs in treatment that are steroidal based therapy and non-

steroidal based therapy. But due to the drawbacks in steroidal 

derivatives, non-steroidal therapy is preferred. Nonsteroidal 

antiandrogens also have limited application due to resistance and 

severe toxicity. Herein we design the novel oxadiazole and triazole, 

by hoping to overcome these limitations. 160 compounds were 

designed and studied by molecular docking through software 
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AutoDock Vina. Oxadiazoles and triazoles are found to be potent as 

androgen receptor modulator. The potency is being affected by the 

geometry of these novel compounds. Cis isomers showed better 

binding affinity than the trans isomers. Among these compounds, ten 

most feasible and potent derivatives were identified. The potent 

compounds which showed better binding affinity than R-

bicalutamide like pk24 and 46 were further analyzed for their 

interactions. The conformational effect also found significant in 

binding to the androgen receptor. Further investigations on these 

novel agents will provide the promising tool for new drug 

development to treat the prostate cancer.  
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