

ISSN- 0975-1491

Vol 8, Issue 11, 2016

Original Article

FEASIBILITY STUDY FOR PRODUCTION OF IODINE-131 USING DIOXIDE OF TELLURIUM-130

ABDESSAMAD DIDI*, AHMED DADOUCH, HASSANE EL BEKKOURI

Laboratory of Integration System and Technology Advanced (LISTA), Department of Physics, Faculty of Science Dhar Mahraz, University of Sidi Mohamed Ben Abdellah Fez Morocco Email: abdessamad.didi1@usmba.ac.ma

Received: 21 Jun 2016 Revised and Accepted: 12 Aug 2016

ABSTRACT

Objective: Currently, nuclear medicine is becoming increasingly important, through the discovery of several medical radioisotopes, which are used in diagnosis, treatment, and medical imaging. Among the most important radionuclide which is commonly used is iodine-131, with a half-life of 8.02 d. Iodine-131 is one of the mainly essential elements in nuclear medicine. Since their first use, several studies have been conducted to meet the world need of hospital specialists in nuclear medicine. The purpose of this study was to participate in a lawsuit about the feasibility of producing ¹³¹I.

Methods: using neutron activation of the dioxide of tellurium (TeO₂) under a neutron flux which varies between 5 10¹¹ and 10¹³ n/cm²s for 4, 6 and 8 hours** per irradiation cycle during 5 d, and used the Fortron90 Code to calculate the activity of iodine-131.

Results: The result of the activity of iodine-131 found about 4,634 Curie with an irradiation of 4 hours** per day and 9.381 Curie with an activation of 8 hours** per day.

Conclusion: Production of iodine-131 can be very effective if an acceptable capsule is used for different masses of tellurium and a neutron flux in a nuclear reactor.

Keywords: Iodine-131, Tellurium, Neutron activation, Thyroid, Cancer, Nuclear medicine, Becquerel

© 2016 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ijpps.2016v8i11.13595

INTRODUCTION

Radioisotopes used for many years in many fields of medicine [1-14], industry [15], food and science, [16-17]. Accelerators and nuclear reactors are frequently used for the production of radioisotopes, at the moment, the demand for medical isotopes increases, such as iodine-131, [18-32], but it raises problems of cost and transportation of the producer country to consumer countries, which requires a new strategy for countries who had research reactors to produce iodine-131 [33], Such as Morocco, which has personal skills, researchers and academics in the nuclear field. Furthermore, Morocco is also a well-developed infrastructure which uses the nuclear research reactor TRIGA-MARC II 2-MW installed at the National Centre of Energy and Science and Nuclear Techniques in Rabat (CNESTEN). This facility meets the global regulatory requirements, nuclear safety, radiation protection and environmental protection. At this time, some studies are made to the feasibility of the production 131I, B. El Bakkari [34], A. S. Elom Achoribo [35], O. Yu. Kochnov [36], M. A. El-Absy [37], D. IAEA CDOC[38]. There are two main methods for the production of ¹³¹I, the first way is the fission of ^{235}U [36] and the second way is a nuclear reaction (1) of 13 °Te, the last method is the one which attracts my interest.

$$^{130}_{52}\text{Te} + ^{1}_{0}\text{n} \rightarrow ^{131}_{52}\text{Te} + \gamma \rightarrow ^{131}_{53}\text{I} + ^{0}_{-1}\text{e} + \gamma \dots (1)$$

With $t_{1/2}(^{131}\text{Te})=25 \text{ min and } t_{1/2}(^{131}\text{I})=8.02 \text{ d}$

Research reactors cannot function for a long time because they should be stopped sporadically to make them cold, so a discontinuous operation is obligatory for the production of iodine-131. We call it cyclical irradiation, [40-42]. It is an irradiation of samples for a moment which can take hours. After the shutdown of the irradiation for some hours; we repeat this method for many cycles until the attainment of our objective.

The main aim of this theoretical study was to search the feasibility of producing ¹³¹I. We are interested in a range of neutron flux in the channel of irradiation from 5 10^{11} to 10^{13} n/cm²s which is generated by research nuclear reactor and capsulated targets of TeO₂, with the mass from 1 g to 150 g. By using an analytical method and the cyclic neutron activation technical, we calculate

the following activities of 4, 6 and 8 hours** of irradiation per day to achieve our goal.

METHODS AND MATERIALS

Production of-131

Productions of iodine-131 are generated by the following equation,

$$\frac{dN(\frac{133}{52}I)}{dt} = \sigma(\frac{130}{52}Te)\phi N(\frac{130}{52}Te)(1 - e^{-\lambda(\frac{131}{52}Te)t}) - \lambda(\frac{131}{53}I)N(\frac{131}{53}I)$$
.... Equation 1

With,

σ Cross section microscopic (barn)

 ϕ Neutron fluxes n/cm²s

 Λ Radiative constant h⁻¹

At t=0 are found that $N(^{131}_{53}I) = N(^{131}_{52}Te) = 0$

By integrating equation 1 can give the number of formal's core in each irradiation cycle which is in Equation 2, [34] [36][43-48].

$$\begin{split} \mathsf{N} \begin{pmatrix} 131\\53 \\ 1 \end{pmatrix} &= & \sigma \begin{pmatrix} 130\\52 \\ Te \end{pmatrix} \phi \mathsf{N} \begin{pmatrix} 130\\52 \\ Te \end{pmatrix} \begin{pmatrix} (\frac{1-e^{-\lambda} \begin{pmatrix} 133\\53 \\ 131 \end{pmatrix} i_{irrad}}{\lambda \begin{pmatrix} 131\\53 \\ 12 \\ Te \end{pmatrix}} + \\ & \frac{e^{-\lambda} \begin{pmatrix} 131\\52 \\ Te \end{pmatrix} i_{irrad} - e^{-\lambda} \begin{pmatrix} 131\\53 \\ 12 \\ Te \end{pmatrix}}{\lambda \begin{pmatrix} 131\\52 \\ Te \end{pmatrix} i_{irrad}} \end{pmatrix} e^{-\lambda \begin{pmatrix} 131\\53 \\ 12 \\ Te \end{pmatrix} i_{decay}} + \\ & \frac{(1-e^{-\lambda} \begin{pmatrix} 131\\52 \\ Te \end{pmatrix} i_{irrad} - e^{-\lambda} \begin{pmatrix} 131\\52 \\ Te \end{pmatrix} i_{decay} - e^{-\lambda} \begin{pmatrix} 131\\53 \\ 12 \\ Te \end{pmatrix}}{\lambda \begin{pmatrix} 131\\53 \\ 12 \\ Te \end{pmatrix}}$$

..... Equation 2

 $\mbox{Or } t_{irrad} \mbox{: } Irradiation \mbox{ time }$

 $t_{\mbox{\scriptsize decay}}$: Decay time at the end of irradiation.

And N(
$$^{130}_{52}$$
Te) = $\frac{m(^{130}_{52}$ Te)N_a}{M(^{130}_{52}Te)}...... Equation 3

m(130Te)=6.02 1023 mol-1, Avogadro's number;

m(130Te) the weight in grams of tellurium;

M(¹³⁰Te) the atomic mass of irradiated Telluriem isotope.

We can extract activity of ¹³¹I in each irradiation cycle using equation 4

$$A(^{131}_{53}I) = \lambda(^{131}_{53}I) N(^{131}_{53}I)$$
 Equation 4

With A activity by Curie,

As it was motioned at the beginning of the irradiation (^{130}Te) in the form of a cyclic radiation from each study, with 4, 6 and 8 hours** respectively per day for 5 d, the fig. 1 explains the steps of irradiation in each cycle.

Fig. 1: Evolution of activity with a cyclic irradiation

By accumulation of activity for each cycle is,

For the 1st cycle:

$$A(cycle 1) = A_{irrd time of first cycle} \begin{pmatrix} 131\\53 \end{pmatrix}$$
$$- A_{decay} (8h to 24h) of first cycle \begin{pmatrix} 131\\53 \end{pmatrix}$$

For the 2nd cycle:

$$\begin{split} A(\text{cycle 2}) &= A(\text{cycle 1}) + A_{\text{irrd time of second cycle}} \begin{pmatrix} 131\\53 \end{bmatrix} \\ &- A_{\text{decay time of second cycle}} \begin{pmatrix} 131\\53 \end{bmatrix}) \end{split}$$

For the 3rd cycle:

$$A(cycle 3) = A(cycle 2) + A_{irrd time of third cycle} \begin{pmatrix} 131\\531 \end{pmatrix}$$
$$- A_{decay time of third cycle} \begin{pmatrix} 131\\531 \end{pmatrix}$$

For the 4th cycle:

$$A(cycle 4) = A(cycle 3) + A_{irrd time of fourth cycle} \begin{pmatrix} 131\\531 \end{pmatrix}$$
$$- A_{decay time of fourth cycle} \begin{pmatrix} 131\\531 \end{pmatrix}$$

For the 5th cycle:

$$\begin{split} A(cycle 5) &= A(cycle 4) + A_{irrd time of fifth cycle} \begin{pmatrix} 131\\53 l \end{pmatrix} \\ &- A_{decay time of fifth cycle} \begin{pmatrix} 131\\53 l \end{pmatrix} \end{split}$$

Finally, we found the global activity of ¹³¹I,

After the final calculation, the results obtained are shown schematically in the form of figures.

RESULTS AND DISCUSSION

From the simulations obtained in five irradiation cycles for each cycle with 4, 6 and 8 hours^{**} of irradiation in a neutron flux 5 10^{11} , 10^{12} , 5 10^{12} and 10^{13} n/cm²s, we have observed clearly that the activity increases during 4, 6 and 8 hours^{**}.

After the stoppage of the first irradiation, the activity decreases slightly in the hours after (radioactive decay of Iodine-131). When we start the second cycle, the activity increases in the irradiation period and it decreases in the cooling period.

This process continues to increase and decrease until the end of the fifth round to achieve the maximum activity, fig. from 4 to 15 show the variation of the activity of ¹³¹I at different target weights (5g,

10g, 30g, 50g, 100g and 150g) and attached to a neutron flux ranges from 5 10^{11} to 10^{13} n/cm²s, for irradiation time 4, 6 and 8 hours^{**} in each cycle. This work was well validated with the study of A. S. Elom Achoribo [35] and B. El Bakkari [34].

Fig. 3: Evolution of activity [35]

To validate our results we compared them with the results of *AS Elom Achorido* [35] (fig. 3). For 1g, 3g and 5g, with a neutron flux of 5 10^{11} n/cm²s, masses of TeO₂ irradiated for 6 hours** per day (fig. 2), the results show the validation of our work. In our study, we are interested in 5g, 10g, 30g, 50g, 100g and 150g.

Fig. 4: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 5 10^{11} n/cm²s⁻¹ for an irradiation time of 4h during each day

After four hours of irradiation by cycle, the results which are shown in fig. 4, 5, 6 and 7 clarify that the activity increases with irradiation time, then a slight decrease at the end of irradiation, then it begins to increase after the second irradiation. For example, the neutron flux of $5 10^{11}$ n/cm²s for masses of 5g, 10g, 50g, 100g and 150g this activity is 2.86 10⁹, 5.72 10⁹, 1.71 10¹⁰, 2.86 10¹⁰, 5.72 10¹⁰ and 8.57 10¹⁰ Becquerel respectively. if we increase the fluxes to 10^{13} n/cm²s, and for the same masses, the activity is equal to 3.80 10¹⁰, 1.14 10¹¹, 3.43 10¹¹, 5.72 10¹¹, 1.14 10¹² and 1.71 10¹² Becquerel, respectively.

Fig. 5: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 10[12] n/cm²s⁻¹ for an irradiation time of 4h during each day

Fig. 6: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 5 10[12] n/cm²s⁻¹ for an irradiation time of 4h during each day

Fig. 7: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 10¹³ n/cm²s⁻¹ for an irradiation time of 4h during each day

Fig. 8: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 5 10^{11} n/cm²s⁻¹ for an irradiation time of 6h during each day

Fig. 9: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 10¹² n/cm²s⁻¹ for an irradiation time of 6h during each day

Fig. 10: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 5 10¹² n/cm²s⁻¹ for an irradiation time of 6h during each day

Fig. 11: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 10¹³ n/cm²s⁻¹ for an irradiation time of 6h during each day

The schemes illustrated in fig. 8, 9, 10 and 11 explain that the activity clearly related to the level of neutron flux and the mass of samples in addition to the microscopic Cross section of target of tellurium. After the analysis of the evolution of the activity, we noticed that the activity increases every day and every increase of irradiation followed directly with a slight decrease. For example, the neutron flux of 5 10^{11} n/cm²s and masses of 5g, 10g, 30g, 50g, 100g and 150g, activity was 3.08 10^9 , 8.71 10^9 , 2.61 10^{10} , 4.35 10^{10} , 8.71 10^{10} and 2.61 10^{11} Becquerel respectively. If we increase the flux to 10^{13} n/cm²s, and for the same masses, activity equals 8.71 10^{10} , 1.74 10^{11} , 5.23 10^{11} , 8.71 10^{11} , 1.74 10^{12} and 6.53 10^{12} Becquerel, respectively.

Productions ¹³¹I with 8 hours** of irradiation for each cycle

Fig. 12, 13, 14 and 15 show the evolution of 131 I with activation of 8 hours^{**} per day for 5 d. The activity of iodine-131 depends on irradiation time, the neutron flux and the mass of target capsules. For example in fig. 12, the neutron flux equal to 5 10^{11} n/cm²s, the activity becomes at the end of the cyclic irradiation 5.79 10^{9} , 1.16 10^{10} , 3.47 10^{10} , 5.79 10^{10} , 1.16 10^{10} and 1.74 10^{11} Becquerel,

respectively for 5 g, 10 g, 30 g, 50 g, 100 g et 150 g. Therefore, an increase in the neutron flux to 10^{13} n/cm²s and for the same masses in fig. 15, the activity increases respectively 1.16 10^{11} , 2.31 10^{11} , 6.94 10^{11} , 1.16 10^{12} , 2.31 10^{11} and 3.47 10^{12} Becquerel.

Fig. 12: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 5 10¹¹ n/cm²s for an irradiation time of 8h during each day

Fig. 13: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 10¹² n/cm²s⁻¹ for an irradiation time of 8h during each day

Fig. 14: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 5.10¹²n/cm²s⁻¹ for an irradiation time of 8h during each day

Fig. 15: Theoretical evolution activity (Bq) for I-131 production at a neutron flux of 10¹³ n/cm²s⁻¹ for an irradiation time of 8h during each day

Profile of activity

Maximum feasible activities have been based on the capsules used; when we increase the mass of TeO₂, it causes an increase in the activity. maximum activity in irradiation period 4, 6 and 8 hours** for the mass of 150 g give 2.317 Curie, 3.530 Curie, 4.69 Curie respectively in a flux of 5 10^{11} n/cm²s, if the neutron flux increases to 10^{12} n/cm²s, for the identical weight (150g) and for the same irradiation period 4, 6 and 8 hours** per day, we note that the activity increases respectively in the following values, 4.6345 Ci, 7.0616 Ci and 9.3818 Curie, fig. 16 and 17.

Fig. 16: Increased activity of Iodine-131 as a function of time of irradiation and the mass of the tellurium-130 target in a neutron flux of 5 10¹¹ n/cm²s

Fig. 17: Increased activity of Iodine-131 as a function of time of irradiation and the mass of the tellurium-130 target in a neutron flux of 10¹² n/cm²s

CONCLUSION

A feasibility study of the production of iodine-131 is done by using a neutron flux from 5 10^{11} to 10^{13} n/cm². Then the results were that the mass of 150 g and a flux of 5 10^{11} n/cm²s the activity gives (2.317 Curie in 4 hours^{**} of irradiation and 4.69 Curie in 8 hours^{**} of irradiation), for the same mass of 160 g in a flux of 10^{12} n/cm²s gives (4.634 Curie in 4 hours^{**} of irradiation and 9.381 Curie in 8 hours^{**} of irradiation). These results are compared with study of B. El Bekkouri [34] and AS Elom Achoribo [35]. We noticed that the neutron standpoint, an acceptable capsule for different masses of tellurium, and an irradiation in a neutron flux in the reactor, approximately in the center, can give continuation to the production of lodine-131.

CONFLICTS OF INTERESTS

Declared none

REFERENCES

1. Mbodj M, Guerrouj H, Amjad I, Ben Rais NA. Contribution of radio-iodine 131 in the treatment of Grave's Basedow disease in the department of nuclear medicine of Ibn sina hospital in rabat. J Med Nucl 2009;33:592–8.

- Schlienger JL, Goichot B, Grunenberge F. Iode et fonction thyroïdienne. La Revue Méd Int 1997;9:709–16.
- Maged Abdel Galil Hamed, Ahmed Fathy Abdel Ghany, Noha Mohamed Osman. The diagnostic usefulness of FDG-PET/CT in detecting tumor recurrence not evident in whole body I-131 scan in differentiated thyroid carcinoma. Egyptian J Radiol Nucl Med 2014;45:361-5.
- 4. René Caquet. Temps de lyse des euglobulines, 250 examens de laboratoire. 11th édition; 2010. p. 211–2.
- 5. Wémeau JL. Chapitre 17-Iode et thyroïde Les maladies de la thyroïde; 2010. p. 141–8.
- Taïeb D, Guille DA, Mundler LO. Guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. J Med Nucl 2008;32:101–10.
- 7. Vitaux F. Thyroid gland irradiations and thyroid cancers critical bibliographic journal. J Med Nucl 2007;31:350–5.
- **8.** Intidhar El Bez. Cancer de la thyroïde et ablation par iode 131 sous thyrogen: quand doser la thyroglobuline? Ann Endocrinol 2013;74:156.
- Spagnoli V, Azzalini L, Tadros VX, Picard F, Ly HQ. Contrastinduced nephropathy: an update. Ann Cardiol Angeiol 2016;65:87–94.
- Guerrouj H, Elamrani M, GhfirI, Ben Rais N. Apport de l'iode 131 dans le traitement de l'adénome thyroïdien toxique. J Med Nucl 2012;36:561–4.
- 11. Boisserie G, Hasboun D. Utilisation de l'imagerie multimodalité en radiothérapie. Cancer/Radiothérapie 2001;5(1 Suppl 1):15-35.
- Belkacémi Y, Tsoutsou PG, Comet B, Kerrou K, Lartigau E. Évaluation de la radiosensibilité tumorale par l'imagerie fonctionnelle et métabolique: de la recherche à l'application clinique. Revue de la littérature. Cancer/Radiothérapie 2006;10:124-33.
- Delmaire C. Imagerie des métastases cérébrales. Cancer/ Radiothérapie 2015;19:16-9.
- 14. Bhavna Shah. composites from agricultural detritus for pollution remedy. Int J Pharm Pharm Sci 2016;3:4-49.
- 15. Yongchun G, Jijin G, Huabai T, Yuewen Y. Miniature Neutron Source Reactor General Description. China Institute of Atomic Energy. Peking; 1992.
- 16. Hillaire-Marcel G, Isotopes and food. the Terrestrial Environment, B, Elesvier, Amsterdam; 1986. p. 507-48.
- Kelly SD, Food authenticity and traceability, A volume in Woodhead Publishing Series in Food Science, Technology and Nutrition; 2003. p. 156–83.
- Szumowski P, Rogowski F, Abdelrazek S, Kociura-Sawicka A, Sokolik-Ostasz A. Iodine isotope ¹³¹I therapy for toxic nodular goitre: treatment efficacy parameters. Nucl Med Rev Cent East Eur 2012;15:713.
- Stokkel MP, Handkiewicz Junak D, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging 2010;37:2218–28.
- Kaniuka S, Lass P, Sworczak K. Radioiodine an attractive alternative to surgery in large non-toxic multinodular goitres. Nucl Med Rev Cent East Eur 2009;12:239.
- Fast S. Prestimulation with recombinant human thyrotropin (rhTSH) improves the long-term outcome of radioiodine therapy for multinodular nontoxic goiter. J Clin Endocrinol Metab 2012;97:2653–60.
- 22. Giusti M. Long-term outcome after radioiodine therapy with adjuvant rhTSH treatment: comparison between patients with nontoxic and pre-toxic large multinodular goitre. Endocrine 2014;45:221–9.
- 23. Verelst J, Bonnyns M, Glinoer D. Radioiodine therapy in voluminous non-toxic goitre. Acta Endocrinol 1990;122:417–21.
- Huysmans DA, Buijs WC, van de Ven MT. Dosimetry and risk estimates of radioiodine therapy for large, multinodular goiters. J Nucl Med 1996;37:2072–9.
- Sun XS. Radiation therapy in thyroid cancer. Cancer/ Radiothérapie 2013;17:233–43.
- Schlumberger M, Chevillard S, Ory K, Dupuy C, Le Guen B, de Vathaire F. Cancer de la thyroïde après exposition aux rayonnements ionisants. Cancer/Radiothérapie 2011;15:394-9.
- Raoul JL. Traitement des carcinomes hépatocellulaires par injection intra-artérielle de radio-isotopes. Cancer/ Radiothérapie 2011;15:64-8.

- Cecconi A, Blotta A, Ntreta M, Busutti L. La radiothérapie métabolique par iode 131 et la radiothérapie transcutanée dans une population avec long suivi. Cancer/Radiothérapie 2007;1:429.
- 29. Dutrillaux B. Les cancers radio-induits. Cancer/Radiothérapie 1998;2:541-8.
- 30. Mallet F. Faisabilité et toxicité d'une séance unique de curiethérapie de haut débit de dose suivie d'une irradiation externe dans le cancer localisé de la prostate: étude rétrospective de la polyclinique de courlancy. Cancer/Radiothérapie 2010;14:11-8.
- 31. Mohammed Azharuddin. Evaluation of anti-thyroid activity of ficus racemosa linn bark in male rats. Int J Pharm Pharm Sci 2015;7:118-22.
- 32. Abdul Aziz Ramadan, Hasna Mandil, Jenan Sabouni. Determination of atorvastatin calcium in pure and its pharmaceutical formulations using iodine in acetonitrile by uv-visible spectrophotometric method. Int J Pharm Pharm Sci 2015;7:427-33.
- Gerbaulet AP. Quel avenir pour la curiethérapie? Cancer/Radiothérapie 1999;3(1, Suppl 1):11-27.
- El Bakkari B. analysis of I-131 production in the Moroccan TRIGA research reactor. Ann Nucl Energy 2015;78:140-5.
- 35. Elom Achoribo AS. Feasibility study for production of I-131 radioisotope using MNSR research reactor. Appl Radiat Isot 2012;70:76–80.
- Yu O Kochnov, Kolesov VV, Fomin RV, Jerdev GM. Assessment of the increasing in 131-I production due to improved tellurium target in the WWR-c reactor core. Nucl Eng Sci Technol 2015;1:213-7.
- El-Absy MA, El-Garhy MA, El-Amir MA, Fasih TW, El-Shahat MF. Separation and purification of 131 I from neutron irradiated tellurium dioxide targets by wet-distillation method. Separation Purification Technol 2010;71:1-12.
- International Atomic Energy Agency. Manual for reactor produced radioisotopes, IAEATECDOC-1340. IAEA: Vienna, Austria; 2003. p. 121-4.
- Daniel Cestau. Production of Iodine-131 from Low Enriched Uranium Targets International Meeting on Reduced Enrichment for Research and Test Reactors, Cape Town, South Africa; 2006.
- 40. Tout RE, Chatt A. The effect of sample matrix on selection of optimum timing parameters in cyclic neutron activation analysis. Anal Chim Acta 1981;133:409–19.
- 41. Parijat Pandey, Mandeep Dahiya. A brief review on inorganic nanoparticles. Int J Pharm Pharm Sci 2014;6:34-41.
- Shefali arora, Shilpi Agarwal, Shailey Singhal. Anticancer activities of thiosemicarbazides/thiosemicarbazones. Int J Pharm Pharm Sci 2014;6:34-41.
- 43. Lieser KH. Nuclear and radiochemistry: fundamentals and applications, second ed. Wiley-WCH, New York; 2001.
- 44. Mirzadeh S, Walsh P. Numerical evaluation of the production of radionuclides in a nuclear reactor (Part I). Appl Radiat Isot 1998;49:379-82.
- 45. Kassakov M. Analyse par activation neutronique de substances ayant des sections efficaces macroscopiques elevees pour l'absorption de neutrons thermiques. M. Sc. A. Ecole Polytechnique de Montreal, Montréal; 2006.
- 46. Revel G. Analyse par activation. Technique de l'ingénieur, traite analyse et caracterisation; 2009. p. 1-21.
- 47. Abdessamad Didi. Calculating concentrations of elements in sample and compare with standard certified results of the International Atomic Energy Agency (IAEA) Soil-7. Der Pham Chem 2016;8:250-5.
- DIDI. New design of thermal neutron flux distribution of Am-Be neutron source irradiation in paraffin moderator using MCNP-6. Mor J Chem 2016;4:285-8.

How to cite this article

 Abdessamad Didi, Ahmed Dadouch, Hassane EL Bekkouri. Feasibility study for production of iodine-131 using dioxide of tellurium-130. Int J Pharm Pharm Sci 2016;8(11):327-331.