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ABSTRACT 

Objective: The prime objective of our work was to develop an acceptable model for optimizing the cytotoxic potency of human carcinoma cell lines 

of marine microalga which gives true indications when compared to experimental results. 

Methods: The experimental result taken from Das et al., 2014 [12] for cytotoxic potency against human colon cancer (HT-29), human hepatocyte 

cancer (Hep-G2), and human breast cancer (MCF-7) cell lines was used to carry out a multi-objective (triple objective) optimization. Thirty non-

dominating solutions were considered for analyses of absorbance (y1), % cell survival (y2) and% cell inhibition (y3) data. The multi-objective (triple 

objective) optimization study by using experimental data of Das et al., 2014.  

Results: The solutions obtained by non-dominated sorting genetic algorithm (NSGA) have been compared with data obtained experimentally, and 

the results were found to be significant. This method has distinct advantages over other methods which relied heavily on statistical-regression-

models, single objective optimization methods in the sense that it does triple-objective optimization. The results were significant when compared 

with experimental data corroborating acceptability of the proposed model.  

Conclusion: The solutions obtained by NSGA method, on comparison with experimental data, showed the applicability and suitability of the 

proposed model. 
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INTRODUCTION 

Natural products can also be prepared by available routes or 

schematic organic synthesis processes (both semi-synthetic and 
synthetic) and they have been important in discovering or eliciting 

challenging synthetic targets based on cellular response [1]. Now, 
natural products can be a commercial product such as drugs, 

cosmetics, food supplements or food products having no added 
artificial ingredients [2-6]. Chemically derived drugs usually cause 

serious adverse effects, and hence the growing necessities for drugs 
from new sources of natural products are of paramount importance. 

Marine algae are not only major producers of carbon-based material 
in the sea; they also affect significant changes in the density and 

distribution of other inhabitants of the marine environment [7]. An 

understanding of the wide range of behavioral relationships that 
exist among different organisms would provide us with clues to 

produce substances of commercial or pharmaceutical importance. 
Marine secondary metabolites are set of diverse organic compounds, 

and may be obtained from microbes, sponges, seaweeds, and other 
marine organisms. The host organism synthesizes these compounds 

as secondary metabolites to protect themselves and it also helps 
them to maintain homeostasis in their environment [8]. 

Some of these secondary metabolites offer avenues for developing cost-

effective, safe and potent drugs. Literature review suggested that many 

of the sea bio-products are being exploited for their industrial, chemical, 

food, pharmaceutical, medical and cosmetic applications [3-9].  

Sea products named as seaweeds are taken by people because of 

nutritious value. Therefore, we can include food products from a marine 

organism or sea plants as a part of our daily meal or else to treat certain 

medical conditions such as inflammation, Herpes infection and 

sometimes even in cancer treatment [10-11]. One of the sea plant 

products from algae is used in the treatment of cancer. Das et al., [12] 

generated experimental data marine microalgae against human colon 

carcinoma (HT-29), human hepatocyte carcinoma (Hep-G2), and human 

breast carcinoma (MCF-7) cell lines. They developed a model based on 

response surface methodology (RSM) to get the various possible 

combinations of two independent variables so as to determine the 

optimum effect of cancer cells with the highest cytotoxicity. Hence, in our 

work we decided to perform a multi-objective optimization strategy for 

establishing the cytotoxic potency of an extract.  

With the above objective, we focussed on the development of 
optimum condition using a genetic algorithm. Response surface 
methodology (RSM) is a practical, inexpensive and relatively easy 
method to adopt [12]. RSM approach is a combination of statistical 
and mathematical techniques useful for developing, improving and 
optimizing processes [12-16]. This method has been used by for 
prediction of optimization of copper reduction from solution using 
Bacillus pumilus PD3 isolated from marine water [17]. Kiran et al. 
[18] studied the anti-adhesive activity of polyhydroxy butyrate 
biopolymer from a marine Brevibacterium casei MSI04 against 
pathogenic shrimp vibrios. Chen, et al., studied optimization of 
ultrasound-assisted extraction of Lingzhi polysaccharides using RSM 
and its inhibitory effect on cervical cancer cells [19]. But in our 
study, we used the advanced methodology for developing the 
optimum condition for this micro algae by using pareto technique. 
Since RSM has certain limitations and it may stick at local optima.  

Remarkable advancement has been made as of late in the 
improvement of evolutionary algorithms for multi-objective 
optimization problems (MOPs) [20-25]. MOPs are designated by the 
presence of multiple conflicting objectives that must be optimized 
simultaneously and permit multiple best solutions [25, 26]. These 
multiple solutions are all optimal in the sense that there are no other 
solutions in the entire solution domain or search space that are 
superior to them when all objectives are considered simultaneously 
[20-22]. These “non-inferior” or non-dominated solutions are 
referred to as pareto-optimal solutions and collectively represent 
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the pareto set or front. The multi-objective evolutionary algorithms 
(MOEAs) populace based techniques for comprehending MOPs that 
have been created recently [25, 27]. These algorithms manage the 
pursuit process around the global pareto-ideal district while keeping 
up sufficient populace differences to catch, however, many results on 
the pareto-front as could be allowed. The idea behind the present 
work was to develop a multi-objective condition for the cytotoxic 
potency of marine microalgae based on the results assay against 
human colon carcinoma (HT-29), human hepatocyte carcinoma (Hep-
G2), and human breast carcinoma (MCF-7) cell lines. The parameters 
which we optimized basically were the absorbance, cell survival (% of 
what) and cell inhibition (% of what), where we minimized the 
absorbance and enhanced the cell survival and the cell growth 
inhibition based on the response surface model obtained. This is a 
triple objective optimization, employed for the first time, as suggested 
by our literature survey, to develop the optimum condition for the 
cytotoxic potency of marine microalgae by using pareto technique. 

MATERIALS AND METHODS 

Experimental design procedures 

Based on the Box-Wilson Central Composite Design (CCD) model, 

experimental data were conducted by Das et al., [12] for three 

different cancer cell lines each at three levels of concentrations (low, 

medium and high) has taken from Das et al., [12]). 

Regression modelling 

Regression modeling explores the relationships between 

several explanatory variables and one or more response variables 

[27, 28]. ‘Explanatory’ variable is the independent variable, whereas, 

‘Response’ variably depends on independent variables. The objective 

is to optimize a response (output variable) which is influenced by 

several independent variables (input variables). The application of 

regression to design optimization is aimed at reducing the cost of 

expensive analysis methods and their associated numerical noise 

[28]. Response surface methodologies (RSM) are designs and models 

for working with continuous treatments when finding the optimal or 

describing the response is the goal. The first objective of RSM is to 

generate or predict the optimal response [29-31]. Since there are 

several responses, it becomes imperative to find the compromised 

optimum for such responses [29-31]. When there are constraints on 

the design data, the experimental model used must take into account 

such constraints [31-34]. The next important thing is to monitor and 

analyze how the response changes in a given direction, by fine-

tuning the process variables [31-34]. In general, the response 

surface can be visualized graphically and response surface plots 

allow graphical visual observations to ascertain whether the 

regression analysis equations are significant or not. From the 

polynomial regression equations, the impact of varying 

concentrations on different cell lines was studied following the 

methodology adopted by Zhang et al., [35]. All, highest negative 

influence was observed by the concentration of the drug. Whereas, 

% cell inhibition is greatly influenced by individual concentration or 

cell line, or their combined interaction, however, the role of 

concentration was found to be predominant. Using RSM, the 

relationship among the variables, i.e., the human cell lines and MEUF 

concentration were expressed mathematically in the form of the 

polynomial equation which gave the response of function of cell 

survival, cell inhibition and absorbance. This was done based on a 

central composite design to obtain a full second polynomial equation 

over a relatively broad range of parameters. The CCD took into account 

the combined effect of the both parameters and responses on the 

absorbance, % cell survival, and % cell inhibition (table 1). The 

polynomial equation is obtained from the regression analysis; the 

coefficient parameters were estimated by multiple linear regressions. 

 

Table 1: CCD design inputs and outputs or responses used in 

polynomial equation 

Inputs Outputs 

1. Concentration (µg/ml) 1. Absorbance at 492 nm 

2. Cancer cell lines 2. % cell survival 

 3. % cell inhibition 

Genetic algorithm for optimization 

Genetic algorithm (GA), which works on the principle of natural 

genetics, has the advantage of obtaining the pareto optimal set in a 

single run as it works with a population of points rather than with a 

single point [35, 36]. In the simplest form, the basic working 

principle of GA consists of a random selection of values for the 

variables which may be coded or real, constituting the population, 

calculation of the fitness value and then subjecting the population to 

reproduction, crossover and mutation so as to obtain a new 

population. This new population is also evaluated and checked to see 

if it meets the termination criteria.  

Algorithm 

GAs encodes the candidate solutions of a string of characters called 

as chromosomes, which are usually binary digits that are coded into 

a chromosome from substrings. The length of the string is usually 

determined according to the solution accuracy. A population size ‘N’ 

consists of the number of random strings for the variables or 

variations. The algorithm (GA) alters and appends the population 

iteratively, in each generation [35, 37]. The coding and decoding of 

sub-string is calculated and used in the next step function 

evaluation. The function value at the point x can be calculated by 

substituting the decoded x in the given objective function f(x). The 

function values for all the strings in the population are thus 

computed. A fitness function f(x) is derived from the objective 

function and used in successive genetic operations [37, 38].  

Thus, the fitness of all individuals in the population is evaluated by 

using genetic operators such as reproduction, crossover and mutation 

to create a new population (http://in.mathworks.com/ help/gads/ 

some-genetic-algorithm-terminology.html). Reproduction selects best 

strings in the population and forms a mating pool. We first calculate 

the average fitness of the population Favg obtained by finding the 

fitness values of all the strings and dividing the sum of the 

population size. Then we calculated the expected count ‘A’ of each 

string as F (x)/Favg. Thereafter, we computed the probability of each 

string being copied into the mating pool, ‘B’ by dividing A with 

population size N; calculated the cumulative probability, ‘C’; created 

random numbers between 0-1, and specified each string with a 

random number. If the random number falls near cumulative 

probability (C) of a particular string, that string is copied into the 

mating pool in a priority manner. During the crossover operation, 

new strings are created by exchanging information among strings in 

the mating pool. We chose a crossover probability Pc of around 0.8 

and flip a coin that provides a random probability of yes or no 

condition. If the outcome is yes, crossing over is performed. Finally, 

the mutation operator changes 1 to 0 and vice versa with a small 

mutation probability, Pm of around 0.5. In every cycle, a new 

population is generated, evaluated and tested for termination. If this 

conditions, not met, the population repeatedly operates in a loop by 

the above three operators and assessed [34-41]. This process is 

routinely repeated until the termination conditions are achieved. 

Multi-objective optimization  

Invariably, most of the real-life problems require optimization of 

several objective functions and hence require the use of multi-

objective optimization techniques. Traditionally, multi-objective 

functions are reduced to a single objective function by various 

methods and then saved as a single objective optimization technique 

[39-43]. All these optimization methods depend on the user’s 

decision to specify weights to the different objective functions and 

therefore depend highly on the judgment of the user. The user may 

change the priorities and solve the problem to get a number of 

solutions. The set of all the solutions is known as the Pareto optimal 

set and the corresponding objective value vectors are known as 

pareto-optimal front, but the Pareto optimal set cannot be obtained 

simultaneously in a single run. Non-dominated Sorting Genetic 

Algorithm (NSGA) basically is different from the normal genetic 

algorithm in a way it selects. In the genetic algorithm, selection is 

unbiased in a way that, there are equal chances of processing of 

dominant and in dominant independent variables. However, in NSGA 

the sorting in ranking is allotted to the various groups after grouping 

and the maximum value is given to the non-dominant set hence it is 
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biased to favour the Pareto set of solutions. Doing this NSGA makes 

sure that there is a maximum number of copies of a non-dominant 

set of solutions in mating pool. So that output value obtained mostly 

using Pareto set to get the multi-objectives. The multi-objective 

optimization problem can be formulated as follows:  

Minimize/maximize  

fi (x), I= 1, 2,3,…,N objectives 

Subject to 

gk (x) = 0, k = 1, 2, 3,…, K 

hl (x) ≤ 0, l = 1, 2, 3,…, L 

Where fi is the ith objective function, x is a decision vector, N objectives 

are the number of objectives, and K and L are the numbers of 

equality and inequality constraints, respectively. In the presence of 

conflicting objectives, optimizing x with respect to a single objective 

often results in unacceptable results with respect to the other 

objectives. A reasonable solution to a the multi-objective problem is 

to investigate a set of solutions, each of which satisfies the objectives 

at an acceptable level without being dominated by any other 

solution [12, 20, 43, 44, 46, 47, 48]. For a multi-objective 

optimization problem, any two solutions x1and x2can have one of 

two possibilities: one dominates the other or none dominates the 

other. In a minimization problem, without loss of generality, a 

solution x1dominates x2 if the following two conditions are satisfied:  

∀i∈{1,2,…., Nobjectives}: fi (x1) ≤ fi (x2), 

∃j∈{1,2,…., Nobjectives}: fj(x1) ≤fj(x2). 

If any of the above conditions is violated, the solution x1does not 

dominate the solution x2. If x1 dominates the solution x2, x1 is called 

the non-dominated solution within the set {x1, x2}. The solutions that 

are non-dominated within the entire search space are denoted as 

Pareto-optimal and constitute the Pareto-optimal set or Pareto-

optimal front.  

Problem formulation  

Minimize Absorbance (y1), Maximize % cell survival (y2), % cell 

inhibition (y3). 

The present work focuses on developing a multi-objective 

optimization methodology by integrating a response surface model 

(RSM) with genetic algorithms (GA) and evaluates its performance 

and applies it for Pareto optimization of cancer treatment. When GA 

is used to solve multi-objective optimization problems, it is denoted 

as non-sorted Genetic algorithm (NSGA). Here, the multi-objective 

optimization methodology that involves NSGA is referred to as a 

non-sorting Genetic algorithm. In cancer treatment study, the inputs 

were (x1), concentration (µg/ml), (x2) cancer cell line outputs are 

(y1) absorbance at 492 nm, (y2) % cell survival and (y3) % cell 

inhibition, respectively. Now, the objective is to minimize the 

absorbance and at the same time, maximize the cell survival. No 

single optimal solution exists with respect to both objectives, as 

improving the performance of one objective deteriorates the 

performance of another objective. For optimal % cell survival, the 

best configuration of formulation conditions is to be chosen. Thus, a 

cancer treatment system with the conflicting objectives is 

considered to be a suitable test bed for multi-objective Pareto 

optimization. The performance of the NSGA strategies is evaluated 

with respect to this cytotoxicity study and the results are further 

compared with those of experimental results. The multi-objective 

Pareto optimization problem and its configuration to 3 objectives 

are described and executed in Matlab-2012.  

RESULTS AND DISCUSSION 

Development of multi-objective model from experimental data 

From Das et al., [12] the data taken were used to develop regression 

models, optimization by genetic algorithms and finally multi-objective 

optimization algorithms. According to CCD, 13 experimental trials 

(MTT assays) were conducted for three different cancer cell lines, each 

at three levels of concentrations (low, medium and high). These 

experiments were conducted by Das et al., [12] published in 2014 

were taken to develop multi-objective optimization strategies. The 

experimental versus predicted values for 3 responses are compared 

with multi-objective optimization and are depicted in fig. 1A, fig. 1B, 

and fig. 1C. From the fig. 1A, the absorbance (y1) regression model, 

predicted versus experiments can be seen. In the same way, regression 

models of predicted versus experimental data for % cell survival (y2) 

and % cell inhibition (y3) shown in the fig. 1B and fig. 1C. 

 

 

Fig. 1A: Regression model predicted (J. Satya eswari et al., 2016) 

versus experimental (Das et al., [12]) for absorbance (y1), where 

x-axis represents number of experiments and y-axis absorbance 

 

 

Fig. 1B: Regression model predicted (J. Satya eswari et al., 2016) 

versus experimental (Das et al., [12]) % cell survival (y2), 

where, x-axis represents number of experiments and y-axis 

percentage (%) cell survival 

 

 

Fig. 1C: Regression model predicted (J. Satya eswari et al., 2016) 

versus experimental (Das et al., 2014) % cell inhibition (y3), 

where, x-axis represents number of experiments and y-axis % 

cell inhibition 

 

Regression modelling 

In RSM based methods, it is always about finding a suitable 
approximation for the true functional relationship between the 
responses (y) and a set of independent variables. If the response is 
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well modelled by a linear function of the independent variables, then 
the approximation function is modelled. In a previous research study 
by Das et al., [12] the regression equations were presented as 
response surface plots in showing the combined effect of 
independent factors X1 and X2 on the responses y1, y2, and y3. 
However, in our study, we have used RSM, to establish a relationship 
between the variables, i.e. the human cell lines and MEUF 
concentration, expressed mathematically in the form of the 
polynomial equation, which gave the response of function of cell 
survival, cell inhibition and absorbance. The above was based on a 
central composite design utilized to obtain a full second polynomial 
equation over a relatively broad range of parameters (ref and 
justification). Whereas, % cell inhibition is greatly influenced by 
individual concentration or cell line, or their combined interaction 
and the role of concentration is predominant. It uses the combined 
effect of the both parameters and responses on the absorbance, % 
cell survival and % cell inhibition.  

 

Regression equations 

1) Absorbance at 492 nm (y1) =  

0.60-0.086A+0.023B-0.011AB-0.041A
2
-0.100B2 

2) % cell survival (y2) = 71.65-12.32A-0.51B-1.02AB-.4A
2
-0.66B2 

3) % cell inhibition (y3) =  

28.35+12.32A+ 0.51B+1.02AB +3.84A
2
+0.66B2 

By using the above polynomial equations, we get al. l the predicted 
values of response variables; they are similar to the observed values 
and after that we compare between the observed values and the 
predicted values by making a graph. The fig. 1A shows absorbance at 
492 nm (y1) experimental versus predicted. The fig. 1B shows % cell 
survival (y2) experimental versus predicted, whereas, fig. 1C shows 
% cell inhibition (y3) experimental versus predicted.  

Genetic algorithms  

The model-based genetic algorithm optimization was carried out in 

Matlab-2012. The first output for absorbance at 492 nm (y1) is 

solved by a genetic algorithm. The optimization was running with 

the final objective function value 0.385. The termination criteria 

used for optimization by using tolerate function i.e. average change 

in the fitness value less than tolerance function. The population type 

is used double vector; the population size is 20 with the initial 

population given by Matlab-2012 GA default. The fitness scaling is 

scaling function by the ranking method. The selection criteria are a 

stochastic uniform method and in the reproduction, elite count is 2 

with crossover function: 0.8. The mutation function is constraint 

dependencies. The stopping criterion is generations the crossover 

function is scattered: 50 and tolerance: 10-6. The same conditions are 

maintained for solving the second and third objectives. The optimum 

output obtained for % cell survival (y2) is by GA is 17.93, and the 

third objective % cell inhibition (y3) is obtained by GA is 53.30. The 

fig. 2A, 2B, and 2C depicts the first, second and third objective 

functions solved by GA. From this fig. we can deduce the best fitness 

function along with the best Individual. The fitness of each 

individual and stopping criterion was also clearly observed looking 

at the above-mentioned figures. 

Multi-objective optimization 

The parameters used for NSGA (Non Sorting Genetic Algorithm) 
population type is double vector, the function creation dependent on 
constraint dependent, initial population used default, initial range in 
between 0 to 1, the selection criteria is tournament and the 
tournament size 2, in the reproduction the cross over fraction is 0.8, 
mutation is also constraint dependent, crossover function is 
intermediate type, migration is forward with the fraction 0.2, interval 
20, multi-objective settings contain distance measure function and 
Pareto front population fraction is 0.35, stopping criteria is 
generations-200*number of variables, time limit =infinite, tolerance 
10-4 [http://in.mathworks.com/help/gads/examples/multiobjective-
genetic-algorithm-options.html; 45]. The objective functions were 
optimized fulfilling the constraints. The NSGA algorithm was used for 
obtaining the pareto optimal solutions. Real-parameter NSGA 
described in the earlier section has been used to optimize the 
parameters. A population size of 150 was chosen. The different 
operation was performed over 103 generations to obtain the non-
dominated Pareto solutions. Average distance between two pareto 
solutions was found to be 0.0128. The lesser the observed or 
calculated distance is, better or significant the results are said to be. As 
many as thirty non-dominating solutions were obtained with respect 
to that absorbance (y1), % cell survival (y2) and % cell inhibition (y3). 
The solutions obtained by non-dominated sorting genetic algorithm 
have been compared with data obtained experimentally and the 
results were similar and significant. The Pareto solutions are shown in 
fig. 3. The three objectives are shown by scattered plot in fig. 4. 

 

 

Fig. 2A: Genetic algorithm optimization for absorbance (y1) 
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Fig. 2B: Genetic algorithm optimization for % cell survival (y2) 

 

 

Fig. 2C: Genetic algorithm optimization for % cell inhibition (y3)

 

Fig. 3: Pareto solutions based on NSGA algorithm showing the 

mean and best fitness values 

 

Fig. 4: 3D-scattered plot for triple objectives with 30 non-

dominated solutions 

CONCLUSION 

The main objective of this work i.e., to solve multi-objective 

optimization for the establishment of cytotoxic potency of marine 

microalgae with the assay against human colon cancer (HT-29), 

human hepatocyte cancer (Hep-G2), and human breast cancer (MCF-

7) cell lines was achieved and can be compared with the 

experimental results which established by Das et al., 2014. The RSM 

based single optimal type of study using GA for each of the 3 

objectives helped to minimize the absorbance and maximize cell 

survival and the cell growth inhibition. This is the first attempt for 

triple objective optimization, as far as we know, to develop the 

optimum condition for this marine microalgae by using Pareto 

technique. Thirty non-dominating solutions were obtained for 

absorbance (y1), % cell survival (y2) and% cell inhibition (y3). The 

solutions obtained by non-dominated sorting genetic algorithm 

were compared with the experimental data from Das et al., 2014 and 

the results were found to be significant which establishes the 

applicability of the proposed model. 
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